WO2011081740A1 - Detecting blood flow degradation - Google Patents

Detecting blood flow degradation Download PDF

Info

Publication number
WO2011081740A1
WO2011081740A1 PCT/US2010/057581 US2010057581W WO2011081740A1 WO 2011081740 A1 WO2011081740 A1 WO 2011081740A1 US 2010057581 W US2010057581 W US 2010057581W WO 2011081740 A1 WO2011081740 A1 WO 2011081740A1
Authority
WO
WIPO (PCT)
Prior art keywords
blood
impedance value
dialysis system
controller
flow
Prior art date
Application number
PCT/US2010/057581
Other languages
French (fr)
Inventor
Michael James Beiriger
Original Assignee
Fresenius Medical Care Holdings, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fresenius Medical Care Holdings, Inc. filed Critical Fresenius Medical Care Holdings, Inc.
Priority to AU2010337269A priority Critical patent/AU2010337269B2/en
Priority to EP10782789.1A priority patent/EP2519275B1/en
Priority to EP12181761.3A priority patent/EP2529771B1/en
Priority to JP2012547081A priority patent/JP5841064B2/en
Priority to CA2785806A priority patent/CA2785806C/en
Publication of WO2011081740A1 publication Critical patent/WO2011081740A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/36Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits
    • A61M1/3621Extra-corporeal blood circuits
    • A61M1/3653Interfaces between patient blood circulation and extra-corporal blood circuit
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/36Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits
    • A61M1/3607Regulation parameters
    • A61M1/3609Physical characteristics of the blood, e.g. haematocrit, urea
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/36Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits
    • A61M1/3621Extra-corporeal blood circuits
    • A61M1/3653Interfaces between patient blood circulation and extra-corporal blood circuit
    • A61M1/3656Monitoring patency or flow at connection sites; Detecting disconnections
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/36Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits
    • A61M1/3621Extra-corporeal blood circuits
    • A61M1/3653Interfaces between patient blood circulation and extra-corporal blood circuit
    • A61M1/3659Cannulae pertaining to extracorporeal circulation

Definitions

  • This invention relates to detecting blood flow degradation, and more particularly to detecting blood flow degradation based on hydraulic impedance of a blood circuit.
  • Some known extracorporeal blood treatment devices draw blood from a patient via a blood circuit, circulate the blood through a treatment unit of the blood circuit, and then return the treated blood to the patient via the blood circuit.
  • This circulation of the blood outside the patient's body typically begins and ends with the passage of the blood through a single or dual lumen catheter system that is connected to the patient.
  • the circulation of blood is generally assisted by a pump to increase the rate of blood flow, as well as to provide a regulated flow of blood throughout the treatment.
  • a degradation in blood flow may occur, which may compromise treatment efficacy.
  • Such blood flow degradation can be the result of an access blockage, such as a needle of the catheter system contacting a wall of a vein in which it is inserted and thereby inhibiting blood flow.
  • Other blood flow degradation can result from a kinking or binding of blood circuit tubing and/or the formation of a clot. Clots may occur, for example, at an access point (i.e., a point at which the blood circuit connects to the patient) or within the blood circuit, such as at an input of the treatment unit.
  • this invention relates to detecting blood flow degradation, and more particularly to detecting blood flow degradation based on hydraulic impedance of a blood circuit.
  • One aspect of the invention features a method for detecting blood flow degradation in a dialysis system.
  • the method includes measuring a flow rate of blood in a blood line, calculating a current impedance value based on the measured flow rate, and comparing the current impedance value to a baseline impedance value.
  • Another aspect of the invention provides a computer-readable medium having encoded thereon software for detecting blood flow degradation in a blood circuit.
  • the software includes instructions for receiving information corresponding to measurement data from one or more sensors, calculating a current impedance value based on the measurement data, and comparing the current impedance value to a baseline impedance value.
  • the invention provides a dialysis system that includes a blood circuit including a blood pump and tubing for conveying blood between the blood pump and a patient.
  • the dialysis system also includes one or more flow sensors for measuring a flow rate of blood within the tubing, and a controller in communication with the one or more flow sensors.
  • the controller is configured to calculate a hydraulic impedance within the tubing based, at least in part, on signals received from the one or more sensors.
  • Implementations may include one or more of the following features.
  • the method can also include inferring blood flow degradation if the current impedance value differs from the baseline impedance value by more than a maximum limit.
  • the method can include transmitting a signal corresponding to the measured flow rate to a controller, and utilizing the controller to calculate the current impedance value based on the measured flow rate.
  • the method can also include utilizing the controller to compare the current impedance value to the baseline impedance value.
  • the method can include alerting a user if the current impedance value differs from the baseline impedance value by more than a maximum limit. Alerting the user can include activating an alarm, such as an audible alarm or a visual alarm.
  • alerting the user can include displaying information concerning a detected blood flow degradation on a display device.
  • the displayed information can include information regarding a cause of blood flow degradation.
  • the displayed information includes information regarding a location of a cause of blood flow degradation relative to the dialysis system.
  • the method can also include administering a saline bolus if the current impedance value differs from the baseline impedance value by more than a maximum limit.
  • the saline bolus is automatically administered at the direction of a controller of the dialysis system.
  • the method can also include adjusting a needle at a patient access point if the current impedance value differs from the baseline impedance value by more than a maximum limit.
  • the method also includes un-kinking kinked tubing if the current impedance value differs from the baseline impedance value by more than a maximum limit.
  • the method can include determining a cause of blood flow degradation indicated by the difference between the current impedance value and the baseline impedance value.
  • the method can also include determining a location of a cause of blood flow degradation based, at least in part, on the difference between the current impedance value and the baseline impedance value.
  • comparing the current impedance value to the baseline value comprises calculating a percent difference between the current impedance value and the baseline value.
  • the method can include identifying a cause of blood flow degradation based on the calculated percent difference.
  • the software also includes instructions for calculating the baseline impedance value based, at least in part, on measurement data received from the one or more sensors.
  • the tubing includes an arterial line for conveying blood from a patient to the blood pump, and a venous line for conveying blood from the pump back to the patient.
  • the one or more flow sensors include an arterial flow sensor arranged to measure a flow rate of blood flowing within the arterial line.
  • the controller is configured to calculate a hydraulic impedance within the arterial line based, at least in part, on signals received from the arterial flow sensor.
  • the one or more flow sensors include a venous flow sensor arranged to measure a flow rate of blood flowing within the venous line, and the controller is configured to calculate a hydraulic impedance within the venous line based, at least in part, on signals received from the venous flow sensor.
  • the dialysis system also includes one or more pressure sensors for measuring pressure within the tubing, and the controller is in communication with the one or more sensors.
  • the controller is configured to compare the calculated hydraulic impedance to a baseline impedance value, and to detect a blood flow degradation based on the comparison.
  • the dialysis system can also include a display device in communication with the controller.
  • the controller can be configured to display information concerning a detected blood flow degradation on the display device.
  • the dialysis system includes an audible alarm
  • the controller is configured to sound the audible alarm in response to detecting a blood flow degradation.
  • the controller is configured to control operation of the pump, and the controller is configured to halt operation of the pump in response to detecting a blood flow degradation.
  • the dialysis system can also include a saline source, a saline line connecting the saline source to the tubing, and a saline valve in electrical communication with the controller.
  • the saline valve is operable to control a flow of saline from the saline source toward the tubing, and the controller is configured to administer a saline bolus, via operation of the saline valve, in response to detecting a blood flow degradation.
  • the dialysis system also includes memory in communication with the controller.
  • the memory includes stored data corresponding to a baseline impedance value.
  • the controller is configured to calculate a baseline impedance value based, at least in part, on signals received from the flow sensors, and to cause the baseline impedance value to be stored in the memory.
  • the blood pump includes dual chambers operable to circulate blood through the blood circuit.
  • the blood pump can be a pneumatically driven pump.
  • the blood pump is a peristaltic pump.
  • the dialysis system also includes a pneumatic source and a directional control valve in fluid communication with the blood pump and the pneumatic source and in electrical communication with the controller.
  • the controller can be configured to control operation of the blood pump via the directional control valve.
  • the dialysis system also includes a dialyzer, connected to the blood circuit, for separating waste from blood flowing within the blood circuit.
  • the dialysis system includes a dialysate circuit through which dialysate flows.
  • the dialysis system includes a sorbent cartridge in fluid communication with the dialysate circuit.
  • the sorbent cartridge is configured so that the dialysate can pass therethrough.
  • the sorbent cartridge is adapted to remove one or more substances from the dialysate as the dialysate passes through the sorbent cartridge.
  • the dialysis system is a hemodialysis system.
  • the dialysis system is a sorbent-based dialysis system.
  • Implementations can include one or more of the following advantages.
  • a characteristic hydraulic impedance of blood flow within a blood circuit can be determined and clots, occlusions, or changes in access flow rate can be inferred from the hydraulic impedance.
  • Detection and identification of degradation in blood flow through a blood circuit can allow operators to correct these issues in order to maintain clearance.
  • Early detection allows for early correction of an issue, and, as a result complications associated with blood flow degradation can be reduced.
  • the systems and/or methods can provide for identification of degradation of blood flow through a blood circuit, which can allow an operator to attempt to rectify the issue before treatment efficacy is compromised. This may provide the operator with an opportunity to continue effective treatment in circumstances where effective treatment may otherwise have been compromised or abandoned.
  • the systems and/or methods can provide for automatic corrective or protective action in circumstances where a blood flow degradation issue is detected.
  • the systems may be configured to automatically deliver a saline bolus where a blood flow degradation issue is detected.
  • systems can be configured to automatically halt operation of a blood pump when a blood flow degradation issue is detected.
  • Respective characteristic hydraulic impedances of blood flow within arterial and venous lines of a blood circuit can be determined and the relative location of a cause of blood flow degradation can be inferred from the detected hydraulic impedances.
  • a cause of blood flow degradation (e.g., clot, occlusion, or access blockage) can be inferred based on magnitudes of the hydraulic impedances. Knowing the cause of blood flow degradation can help the system operator to select an appropriate way of addressing the issue.
  • FIG. 1 is a schematic view of a dialysis system.
  • FIG. 2 is a schematic view of a dual chamber pump of the dialysis system of
  • FIG. 3 is a schematic view of a dialysis system that has a single chamber blood pump.
  • FIG. 4 is a schematic view of a dialysis system that has a peristaltic blood pump.
  • FIG. 5 is a perspective view of a dialysis system that includes a dialysis machine and a module with a sorbent cartridge holder that is holding a sorbent cartridge.
  • a dialysis system such as a hemodialysis system including an extracorporeal fluid circuit used in filtering blood from a patient, can be configured to use measured data, pertaining to blood flow and fluid pressure, to calculate a hydraulic impedance to blood flow of the dialysis system.
  • the hydraulic impedance can be used for the detection and identification of blood flow degradation, and causes thereof, such as clots, occlusions, and access blockage, within the dialysis system.
  • the detection and/or identification of a blood flow degradation can allow for correction of the blood flow degradation before treatment efficacy is compromised.
  • FIG. 1 illustrates a dialysis system 10 for the extracorporeal treatment of blood from a patient 12 whose kidney function is impaired.
  • the dialysis system 10 includes a blood circuit 20 through which the patient's blood travels, a dialyzer 14 that separates wastes from the blood, and a dialysate circuit 16 through which dialysate flows carrying the separated waste away.
  • the blood circuit 20 includes an arterial line 22 for withdrawing blood from the patient 12 and delivering it to the dialyzer 14 and a venous line 24 for returning treated blood to the patient 12.
  • a dual chamber blood pump 26 drives the blood through the blood circuit 20.
  • the blood pump 26 defines two chambers 32, each of which contains a flexible membrane 34.
  • Each flexible membrane 34 divides its respective chamber 32 into first and second pumping chambers 36, 38.
  • a pair of arterial branch lines 40 with inlet valves 42 provide for fluid communication between the arterial line 22 and inlet ports 46 of the first pumping chambers 36.
  • a pair of venous branch lines 43 with outlet valves 44 provide for fluid communication between outlet ports 48 of the first pumping chambers 36 and the venous line 24.
  • Gaseous ports 50 at the second pumping chambers 38 communicate with a pneumatic pressure source 30 (e.g., a pneumatic pump) via pneumatic lines 52 and a directional control valve 54.
  • a pneumatic pressure source 30 e.g., a pneumatic pump
  • the pneumatic pressure source 30 drives the blood pump 26.
  • the pneumatic pressure source 30 supplies the blood pump 26 with both vacuum pressure and positive pressure.
  • This supply of vacuum and positive pressure is controlled via the directional control valve 54 in combination with a positive pressure regulator 56 and a vacuum pressure regulator 58.
  • the positive and negative pressure regulators 56, 58 can be electronically controlled pressure regulators and can be controlled via communication with a controller 70, which may be a processor.
  • the directional control valve 54 When the directional control valve 54 directs negative pressure to either of the second pumping chambers 38, the adjacent flexible membrane 34 deflects to enlarge the associated first pumping chamber 36 and thereby drawing blood into the first pumping chamber 36. When the directional control valve 54 subsequently directs positive pneumatic pressure to the second pumping chamber 38, the flexible membrane 34 deflects back to constrict the first pumping chamber 36, thereby expelling blood from the first pumping chamber 36.
  • the inlet and outlet valves 42, 44 are opened and closed accordingly.
  • the dual chambers 32 are both operated in this manner to pump blood through the branch lines 40, 43.
  • the dual chambers 32 can be operated in a dual capacity mode or in a parallel mode.
  • the directional control valve 54 provides the two gaseous ports 50 with positive pneumatic pressure at the same time, and with negative pneumatic (vacuum) pressure at the same time.
  • the dual chambers 32 then move blood in phase with each other.
  • the directional control valve provides the gaseous ports 50 with positive and negative pressure alternatively rather than simultaneously, the dual chambers 32 will move blood fully or partially out of phase with each other, depending on the degree to which the positive and negative pressures are out of phase with each other.
  • Pressure sensors 60 can also be provided for measuring the fluid pressure within the dual chambers 32. More specifically, the pressure sensors 60 can be placed in fluid communication with the second chambers 38, for monitoring pressure therein, and in electrical communication with the controller 70, for providing signals indicative of the measured pressure to the controller 70. As discussed below, this data may be used for calculating hydraulic impedance in the arterial line 22 and/or in the venous line 24.
  • the dual chambers 32 are each configured to draw a steady, preset vacuum pressure of about 0 to about -275 mm/Hg, and to exert a steady, preset positive pressure, to expel body fluid, at a pressure of about 0 to about +350 mm/Hg.
  • Cycle times for a blood treatment protocol can range between about 3 seconds to about 30 seconds for one full cycle of vacuum and positive pressure.
  • the maximum suitable cycle time for a given system can be selected to be a sufficiently short time period (e.g., from about 3 seconds to about 6 seconds) to avoid adverse effects from stagnation of the volume of fluid in the treatment unit during the vacuum (fill) portion of the cycle, such as settling, coagulation and adhesion of proteins, etc. to surfaces within the dialyzer 14.
  • flow sensors e.g., arterial and venous flow sensors 72a, 72b
  • Suitable flow sensors include ultrasonic and optical detectors.
  • the arterial and venous flow sensors 72a, 72b can be configured to measure the associated flow rate 5 to 15 times per second (e.g., 10 times per second).
  • the flow sensors 72a, 72b provide signals indicative of the flow rate of the blood in the associated fluid line.
  • the signals can be provided to the controller 70, which can utilize the measured flow rates to control other elements in the blood circuit 20, such as the inlet and outlet valves 42, 44, the directional control valve 54, the pneumatic pressure source 30, and/or audible or visual warning devices.
  • a source of fluid such as a saline bag 80, which communicates with the arterial line 22 via a saline line 82 and a saline valve 84 in electrical communication with the controller 70.
  • an anticoagulant solution such as a heparin supply 90 may communicate with the arterial line 22 through a heparin line 92 and an anticoagulant pump 94 that is responsive to the controller 70.
  • a saline bolus may be administered to the blood stream by briefly closing an upstream arterial blood valve 100 opening the saline valve 84 and continuing operation of blood pump 26, thus drawing in saline rather than blood into the circuit.
  • the upstream arterial blood valve 100 and the saline valve 84 may then be returned to position for the pump to draw blood into the circuit and push the saline and blood through the dialyzer 14 and the venous blood line 24.
  • the dialysis system 10 can also be provided with memory 1 10 (e.g., nonvolatile memory) adaptively coupled to the controller 70.
  • the memory 1 10 can be any form of memory that retains stored values when external power is turned off.
  • non-volatile memory components include hard disks, flash memories, battery-backed-up RAM, and other data storage devices.
  • the memory 1 10 may store instructions which, when executed, perform the various implementations of the disclosed method.
  • the dialysis system 10 can also include a data entry device 112, such as a keyboard, touch-screen monitor, computer mouse, or the like.
  • the dialysis system 10 further includes a display device 1 14, such as a read-out monitor, for displaying of operating values of the various individual components of the dialysis system 10.
  • the dialysis system 10 can be provided with a power source 1 16, a battery back-up 117, and a clock/timer 118.
  • the controller 70, memory 1 10, data entry device 112, and clock/timer 1 18 represent one configuration of a control system.
  • the controller 70 coordinates the operation of the dialysis system 10 by controlling the blood flow in the blood circuit 20, the dialysate flow in the dialysate circuit 16, and the flow of saline or heparin to the arterial line 22 via the saline and heparin lines 82 and 92, respectively.
  • the controller 70 utilizes hardware and/or software configured for operation of these components and can include any suitable programmable logic controller or other control device, or combination of control devices.
  • blood flow in the blood circuit 20 is controlled by operating the blood pump 26 and controlling the upstream arterial blood valve 100 and the down stream venous blood valve 102 in the arterial and venous lines 22, 24.
  • Dialysate flow in the dialysate circuit 16 can similarly be controlled by operating a dialysate pump 18.
  • the controller 70 is responsive to various input signals it receives, such as input signals from the arterial and venous flow sensors 72a, 72b, the pressure transducers 60, and the clock/timer 1 18. Additionally, the controller 70 can display system status, warnings, and various other treatment parameters, on the display device 114. That allows an operator to interact with the controller via the data entry device 112.
  • the dialysis system 10 via the controller 70, selects an appropriate pressure (e.g., via control of the pressure regulators 56, 58) to achieve a given blood flow rate, and can also measure the pressure inside the blood pump 26 via the pressure sensors 60. Because the dialysis system 10 measures the blood flow rate (via the flow sensors 72a, 72b), the characteristic hydraulic impedance (Z) of both the arterial line 22 and the venous line 24 can be determined.
  • the hydraulic impedance can be calculated from the following formula:
  • R the real part of the impedance
  • X the imaginary part of the impedance
  • the flow rate Q does not change instantaneously with pressure P.
  • the reactance X accounts for this lag between the flow rate Q and the pressure P.
  • the real part of the impedance dominates, and thus, for simplification, the impedance Z can be estimated as being substantially equal to the resistance R.
  • Clots, occlusions, and reduced access blood flow rates can reduce clearance (i.e., the rate at which certain fluids and solutes are cleared from the blood) in hemodialysis patients. Detecting and identifying reductions in flow can allow these issues to be corrected to maintain clearance.
  • Identification of a cause of blood flow degradation can allow for correction of the issue before treatment efficacy is compromised. This can give an operator an opportunity to continue effective treatment in circumstances where treatment may have otherwise been compromised or abandoned.
  • the pressure applied to arterial and venous blood is known. Because the arterial and venous blood flow is know, e.g., from the arterial flow sensor 72a and the venous flow sensor 72b, respectively, the arterial and venous flow resistance can be determined as follows:
  • PA arterial line pressure
  • a current impedance value i.e., the average value for a current cycle, either arterial or venous
  • a baseline value i.e., an arterial baseline value or a venous baseline value
  • the baseline values may be stored values (e.g., empirically predetermined values stored in memory 1 10) and/or a moving ensemble average value (e.g., an average impedance value of some or all preceding cycles over a given period of time). Nominal increasing impedance may be expected due to normal hemo- concentration over time. However, excessive increases in impedance can be used to indicate clotting or access blockages.
  • a percentage increase in impedance in both the arterial line 22 and the venous line 24 for the current cycle can be calculated as follows:
  • the percentage increase values can then be compared to maximum threshold values in order to determine whether the percentage increase in impedance is indicative of an issue contributing to the degradation of blood flow.
  • These maximum threshold values for increases in the hydraulic impedance can be set and/or adjusted by an operator via the data entry device 1 12, or can be pre-stored in the memory 1 10.
  • the various issues that may contribute to degradation of blood flow include kinking in the arterial or venous tubing; a needle at the access point engaging (e.g., bumping up against) a sidewall of the patients vein; and clot formation, which often occurs at the inlet of the dialyzer 14.
  • a kink in the tubing can be expected to produce a relatively large spike in the hydraulic impedance. For example, if a kink reduces blood flow by 90% the hydraulic impedance increases by about 10X proportional to the reduction in blood flow. If a needle bumps against the sidewall reducing the blood flow by 50% the impedance will increase by about 2X (200%) proportional to the blood flow. Clots at a flow reduced by 20% will yield an increase in impedance of about 1.25X (125%).
  • the location of a cause of blood flow degradation can be determined based on which of the flow sensors measured the increased impedance and the measured increased in hydraulic impedance. For example, a relatively large spike in the hydraulic impedance measured by the arterial flow sensor 72a may indicate a kink in the arterial line 22, whereas a relatively large spike in the hydraulic impedance measured by the venous flow sensor 72b may indicate a kink in the venous line 24. Similarly, an increase in the hydraulic impedance of about 20% measured by the arterial flow sensor 72a may indicate a clot formation in the arterial line 22, whereas an increase in the hydraulic impedance of about 20% measured by the venous flow sensor 72b may indicate a clot formation in the venous line 24.
  • An increase in the hydraulic impedance of about 100% measured by the arterial flow sensor 72a may indicate an access issue at an arterial patient connector 13.
  • an increase in the hydraulic impedance of about 100% measured by the venous flow sensor 72b may indicate an access issue at a venous patient connector 15.
  • notification can be provided to the operator, e.g., via the display device 1 14 or by sounding an audible alarm 120, to prompt the operator to remedy the issue, e.g., by repositioning needles, delivering saline bolus or rinse back, to restore the flow rate.
  • the notification can provide an indication of the cause of the blood flow degradation (e.g., kink, access issue, clot, etc.), as well as the location (e.g., arterial or venous line 22, 24) of the cause of the blood flow degradation. For example, if a kink in the tubing of the arterial or venous line 22, 24 is detected, a corresponding visual and/or audible alarm can be activated to notify the operator of the issue. The operator can then un-kink the arterial or venous line 22, 24 to restore the blood flow. If an access issue at the arterial or venous patient connector 13, 15 is detected, a corresponding visual and/or audible alarm can be activated to notify the operator of the access issue.
  • a corresponding visual and/or audible alarm can be activated to notify the operator of the access issue.
  • the operator can then reposition the needle of the arterial or venous patient connector 13, 15 to restore the blood flow. If a clot in the arterial or venous line 22, 24 is detected, a corresponding visual and/or audible alarm can be activated to notify the operator of the clot, and the operator can then deliver heparin or saline to the arterial or venous line 22, 24 to clear the clot and restore blood flow.
  • the dialysis system 10 can be configured to remedy the cause of the blood flow degradation automatically.
  • the dialysis system 10 can be configured to automatically administer a saline bolus or anticoagulant solution, e.g., via operation of the controller 70, where, for example, a clot is detected.
  • FIG. 3 illustrates a dialysis system 200 that includes a single chamber blood pump 226.
  • the single chamber blood pump 226 includes an outer housing 228 defining a pneumatic chamber 230 and a flexible membrane 232 defining a blood chamber 233.
  • the outer housing 228 includes at least one gaseous port 234, which is in fluid communication with a pneumatic pressure source 30 via a directional control valve 54.
  • An inlet valve 236 provides for fluid communication between an arterial line 22 and an inlet port 238 of the blood chamber 233.
  • An outlet valve 240 provides for fluid communication between an outlet port 242 of the blood chamber 233 and a venous line 24.
  • the controller 70 controls blood flow in the blood circuit 20 via operation of the inlet and outlet valves 236, 240, the directional control valve 54 and/or the pneumatic pressure source 30.
  • FIG. 4 illustrates another example of a dialysis system 300 which utilizes a peristaltic pump 326 for pumping blood through the blood circuit 20.
  • Arterial and venous pressure sensors 360a, 360b are provided for measuring pressure of blood flowing through the arterial and venous lines 22, 24, respectively.
  • the arterial and venous pressure sensors 360a, 360b provide signals indicative of the measured pressures to the controller 70, which utilizes the pressure data, along with blood flow rate data measured by arterial and venous flow rate sensors 72a, 72b, to calculate the hydraulic impedances in the arterial and venous lines 22, 24.
  • the flow can be inferred directly from the pump speed because the pump is a fixed flow device.
  • FIG. 5 shows a sorbent-based dialysis system 400 that includes a module 420 fluidly coupled to a dialysis machine 450, which houses a blood circuit 20 and a dialysate circuit 16 such as described above, e.g., with reference to FIG. 1.
  • the module 420 includes a sorbent cartridge holder 500 configured to hold a sorbent cartridge 524.
  • the module 420 also includes a manifold 422 to which fluid lines 424, 426 extending from an infusate container 428 and a sodium chloride container 430 are connected, a manifold 432 to which fluid lines 434, 436 extending from a dialysate bag or reservoir 438 are connected, and a manifold 440 to which fluid lines 442, 444 extending from an ammonium (NH 4 ) sensor 446 are connected.
  • the module 420 further includes a manifold 448 that can be used to fluidly connect other components, such as a priming solution bag, a rinsing solution bag, a cleaning solution bag, and/or a drain bag to the module 420.
  • Each of manifolds 422, 432, 440, and 448 can, for example, include projections on which fluid lines can be positioned to connect the various components described above to their respective manifold. Any of various other suitable connection mechanisms can alternatively or additionally be used to connect the fluid lines to the manifolds.
  • the manifold 422 When in an open position, as shown in FIG. 5, the manifold 422 permits an infusate solution (e.g., a solution including magnesium, calcium, and potassium) and a sodium chloride solution to be delivered into fluid circulating through the module 420.
  • Pumps and valves within the module 420 can, for example, be activated to pump the infusate solution and sodium chloride into the fluid circulating within the module 420.
  • the manifold 432 allows fluid to be transferred from the module 420 to the bag 438 and vice versa. Using pumps and valves within the module 420, fluid can be pumped into and suctioned out of the bag 438 via the fluid line 434 connected to the manifold 432.
  • the manifold 440 permits fluid to be transferred from the module 420 to the ammonium sensor 446 and vice versa. By activating pumps and valves within the module 420 in a desired manner, the fluid can be pumped from the module 420 to the ammonium sensor 446 and can be drawn back to the module 420 from the ammonium sensor.
  • the manifold 448 can also be placed in an open configuration during use and connected to fluid lines such that by activating pumps and valves within the module, fluid can be drawn into the module 420 from a bag (e.g., a priming solution bag, a rinsing solution bag, a cleaning solution bag) and/or pumped from the module into a bag (e.g., a drain bag).
  • a bag e.g., a priming solution bag, a rinsing solution bag, a cleaning solution bag
  • a bag e.g., a drain bag
  • the module 420 is configured in the manner shown in FIG. 5 to permit fluid communication between the fluid circulating within the module 420 and the sorbent cartridge 524, the infusate container 428, the sodium chloride container 430, the dialysate bag 438, the ammonium sensor 446, and, in some cases, one or more additional bags that can be connected to the module 420 via the manifold 448.
  • spent dialysis solution is moved from a dialysate circuit 16 (FIG. 1) of the dialysis machine 450 into the module 220 where it passes through the sorbent cartridge 524, and then the recycled dialysis solution exiting the sorbent cartridge 524 is moved back to the dialysis machine 450.
  • toxins such as urea
  • other substances such as calcium, magnesium, and potassium are stripped from the spent dialysis solution.
  • Sodium can also be stripped from the spent dialysis solution or, in certain cases, added to the spent dialysis solution as the spent dialysis solution passes through the sorbent cartridge 524.
  • calcium, magnesium, potassium, and sodium levels of the recycled dialysis solution exiting the sorbent cartridge 524 can be altered (e.g., by introducing calcium, magnesium, potassium, sodium, and/or a diluent into the recycled dialysis solution) to restore concentrations of those substances to desired levels.
  • a dialyzer 14 FIG. 1
  • toxins are transferred from the patient's blood into the dialysis solution, forming spent dialysis solution.
  • This spent dialysis solution is then circulated through the module 420 again to recycle or regenerate the spent dialysis solution. This process can be repeated until a desired amount of toxins have been removed from the patient's blood.
  • the volume of dialysis solution used during the treatment can be substantially reduced relative to certain conventional hemodialysis techniques.
  • maintaining the concentration of the various substances within the dialysis solution, such as calcium, magnesium, potassium, and sodium, can help to prevent the patient from experiencing discomfort during the treatment.
  • flow sensors and pressure sensor can be positioned along the blood circuit 20 of the dialysis machine 450, and measurements from the sensors can be used for the detection and identification of blood flow degradation, and causes thereof, such as clots, occlusions, and access blockage, within the dialysis system.

Landscapes

  • Health & Medical Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Biomedical Technology (AREA)
  • Engineering & Computer Science (AREA)
  • Anesthesiology (AREA)
  • Cardiology (AREA)
  • Hematology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • External Artificial Organs (AREA)

Abstract

A method for detecting blood flow degradation in a dialysis system. The method includes measuring a flow rate of blood in a blood line, calculating a current impedance value based on the measured flow rate, and comparing the current impedance value to a baseline impedance value.

Description

Detecting Blood Flow Degradation
TECHNICAL FIELD
This invention relates to detecting blood flow degradation, and more particularly to detecting blood flow degradation based on hydraulic impedance of a blood circuit.
BACKGROUND
Some known extracorporeal blood treatment devices, such as hemodialysis machines, draw blood from a patient via a blood circuit, circulate the blood through a treatment unit of the blood circuit, and then return the treated blood to the patient via the blood circuit. This circulation of the blood outside the patient's body typically begins and ends with the passage of the blood through a single or dual lumen catheter system that is connected to the patient. The circulation of blood is generally assisted by a pump to increase the rate of blood flow, as well as to provide a regulated flow of blood throughout the treatment.
Sometimes a degradation in blood flow may occur, which may compromise treatment efficacy. Such blood flow degradation can be the result of an access blockage, such as a needle of the catheter system contacting a wall of a vein in which it is inserted and thereby inhibiting blood flow. Other blood flow degradation can result from a kinking or binding of blood circuit tubing and/or the formation of a clot. Clots may occur, for example, at an access point (i.e., a point at which the blood circuit connects to the patient) or within the blood circuit, such as at an input of the treatment unit.
SUMMARY
In general, this invention relates to detecting blood flow degradation, and more particularly to detecting blood flow degradation based on hydraulic impedance of a blood circuit.
One aspect of the invention features a method for detecting blood flow degradation in a dialysis system. The method includes measuring a flow rate of blood in a blood line, calculating a current impedance value based on the measured flow rate, and comparing the current impedance value to a baseline impedance value. Another aspect of the invention provides a computer-readable medium having encoded thereon software for detecting blood flow degradation in a blood circuit. The software includes instructions for receiving information corresponding to measurement data from one or more sensors, calculating a current impedance value based on the measurement data, and comparing the current impedance value to a baseline impedance value.
In another aspect, the invention provides a dialysis system that includes a blood circuit including a blood pump and tubing for conveying blood between the blood pump and a patient. The dialysis system also includes one or more flow sensors for measuring a flow rate of blood within the tubing, and a controller in communication with the one or more flow sensors. The controller is configured to calculate a hydraulic impedance within the tubing based, at least in part, on signals received from the one or more sensors.
Implementations may include one or more of the following features.
The method can also include inferring blood flow degradation if the current impedance value differs from the baseline impedance value by more than a maximum limit.
In certain implementations, the method can include transmitting a signal corresponding to the measured flow rate to a controller, and utilizing the controller to calculate the current impedance value based on the measured flow rate.
The method can also include utilizing the controller to compare the current impedance value to the baseline impedance value.
In some implementations, the method can include alerting a user if the current impedance value differs from the baseline impedance value by more than a maximum limit. Alerting the user can include activating an alarm, such as an audible alarm or a visual alarm.
In certain implementations, alerting the user can include displaying information concerning a detected blood flow degradation on a display device. The displayed information can include information regarding a cause of blood flow degradation.
In some implementations, the displayed information includes information regarding a location of a cause of blood flow degradation relative to the dialysis system. The method can also include administering a saline bolus if the current impedance value differs from the baseline impedance value by more than a maximum limit.
In some implementations, the saline bolus is automatically administered at the direction of a controller of the dialysis system.
The method can also include adjusting a needle at a patient access point if the current impedance value differs from the baseline impedance value by more than a maximum limit.
In some implementations, the method also includes un-kinking kinked tubing if the current impedance value differs from the baseline impedance value by more than a maximum limit.
In certain implementations, the method can include determining a cause of blood flow degradation indicated by the difference between the current impedance value and the baseline impedance value.
The method can also include determining a location of a cause of blood flow degradation based, at least in part, on the difference between the current impedance value and the baseline impedance value.
In some implementations, comparing the current impedance value to the baseline value comprises calculating a percent difference between the current impedance value and the baseline value.
In certain implementations, the method can include identifying a cause of blood flow degradation based on the calculated percent difference.
In some implementations, the software also includes instructions for calculating the baseline impedance value based, at least in part, on measurement data received from the one or more sensors.
In some implementations, the tubing includes an arterial line for conveying blood from a patient to the blood pump, and a venous line for conveying blood from the pump back to the patient.
In certain implementations the one or more flow sensors include an arterial flow sensor arranged to measure a flow rate of blood flowing within the arterial line. The controller is configured to calculate a hydraulic impedance within the arterial line based, at least in part, on signals received from the arterial flow sensor. In some implementations, the one or more flow sensors include a venous flow sensor arranged to measure a flow rate of blood flowing within the venous line, and the controller is configured to calculate a hydraulic impedance within the venous line based, at least in part, on signals received from the venous flow sensor.
In certain implementations, the dialysis system also includes one or more pressure sensors for measuring pressure within the tubing, and the controller is in communication with the one or more sensors.
In some implementations, the controller is configured to compare the calculated hydraulic impedance to a baseline impedance value, and to detect a blood flow degradation based on the comparison.
The dialysis system can also include a display device in communication with the controller. The controller can be configured to display information concerning a detected blood flow degradation on the display device.
In certain implementations, the dialysis system includes an audible alarm, and the controller is configured to sound the audible alarm in response to detecting a blood flow degradation.
In some implementations, the controller is configured to control operation of the pump, and the controller is configured to halt operation of the pump in response to detecting a blood flow degradation.
The dialysis system can also include a saline source, a saline line connecting the saline source to the tubing, and a saline valve in electrical communication with the controller. The saline valve is operable to control a flow of saline from the saline source toward the tubing, and the controller is configured to administer a saline bolus, via operation of the saline valve, in response to detecting a blood flow degradation.
In certain implementations, the dialysis system also includes memory in communication with the controller.
In some implementations, the memory includes stored data corresponding to a baseline impedance value.
In certain implementations, the controller is configured to calculate a baseline impedance value based, at least in part, on signals received from the flow sensors, and to cause the baseline impedance value to be stored in the memory.
In some implementations, the blood pump includes dual chambers operable to circulate blood through the blood circuit. The blood pump can be a pneumatically driven pump.
In some implementations, the blood pump is a peristaltic pump.
In certain implementations, the dialysis system also includes a pneumatic source and a directional control valve in fluid communication with the blood pump and the pneumatic source and in electrical communication with the controller. The controller can be configured to control operation of the blood pump via the directional control valve.
In some implementations, the dialysis system also includes a dialyzer, connected to the blood circuit, for separating waste from blood flowing within the blood circuit.
In certain implementations, the dialysis system includes a dialysate circuit through which dialysate flows.
In some implementations, the dialysis system includes a sorbent cartridge in fluid communication with the dialysate circuit. The sorbent cartridge is configured so that the dialysate can pass therethrough. The sorbent cartridge is adapted to remove one or more substances from the dialysate as the dialysate passes through the sorbent cartridge.
In certain implementations, the dialysis system is a hemodialysis system.
In some implementations, the dialysis system is a sorbent-based dialysis system.
Implementations can include one or more of the following advantages.
In some implementations, a characteristic hydraulic impedance of blood flow within a blood circuit can be determined and clots, occlusions, or changes in access flow rate can be inferred from the hydraulic impedance. Thus, relatively simple techniques for detecting clots, access blockage, and kinks in system tubing can be provided.
Detection and identification of degradation in blood flow through a blood circuit, e.g., of a hemodialysis system, can allow operators to correct these issues in order to maintain clearance. Early detection allows for early correction of an issue, and, as a result complications associated with blood flow degradation can be reduced.
In some implementations, the systems and/or methods can provide for identification of degradation of blood flow through a blood circuit, which can allow an operator to attempt to rectify the issue before treatment efficacy is compromised. This may provide the operator with an opportunity to continue effective treatment in circumstances where effective treatment may otherwise have been compromised or abandoned.
In some cases, the systems and/or methods can provide for automatic corrective or protective action in circumstances where a blood flow degradation issue is detected. For example, the systems may be configured to automatically deliver a saline bolus where a blood flow degradation issue is detected. Alternatively or additionally, systems can be configured to automatically halt operation of a blood pump when a blood flow degradation issue is detected.
Respective characteristic hydraulic impedances of blood flow within arterial and venous lines of a blood circuit can be determined and the relative location of a cause of blood flow degradation can be inferred from the detected hydraulic impedances.
In some embodiments, a cause of blood flow degradation (e.g., clot, occlusion, or access blockage) can be inferred based on magnitudes of the hydraulic impedances. Knowing the cause of blood flow degradation can help the system operator to select an appropriate way of addressing the issue.
Other aspects, features, and advantages are in the description, drawings, and claims.
DESCRIPTION OF DRAWINGS
FIG. 1 is a schematic view of a dialysis system.
FIG. 2 is a schematic view of a dual chamber pump of the dialysis system of
FIG. 1.
FIG. 3 is a schematic view of a dialysis system that has a single chamber blood pump.
FIG. 4 is a schematic view of a dialysis system that has a peristaltic blood pump. FIG. 5 is a perspective view of a dialysis system that includes a dialysis machine and a module with a sorbent cartridge holder that is holding a sorbent cartridge.
DETAILED DESCRIPTION
A dialysis system, such as a hemodialysis system including an extracorporeal fluid circuit used in filtering blood from a patient, can be configured to use measured data, pertaining to blood flow and fluid pressure, to calculate a hydraulic impedance to blood flow of the dialysis system. As will be discussed in detail, the hydraulic impedance can be used for the detection and identification of blood flow degradation, and causes thereof, such as clots, occlusions, and access blockage, within the dialysis system. The detection and/or identification of a blood flow degradation can allow for correction of the blood flow degradation before treatment efficacy is compromised.
FIG. 1 illustrates a dialysis system 10 for the extracorporeal treatment of blood from a patient 12 whose kidney function is impaired. The dialysis system 10 includes a blood circuit 20 through which the patient's blood travels, a dialyzer 14 that separates wastes from the blood, and a dialysate circuit 16 through which dialysate flows carrying the separated waste away. The blood circuit 20 includes an arterial line 22 for withdrawing blood from the patient 12 and delivering it to the dialyzer 14 and a venous line 24 for returning treated blood to the patient 12.
A dual chamber blood pump 26 drives the blood through the blood circuit 20. Referring to FIG. 2, the blood pump 26 defines two chambers 32, each of which contains a flexible membrane 34. Each flexible membrane 34 divides its respective chamber 32 into first and second pumping chambers 36, 38. A pair of arterial branch lines 40 with inlet valves 42 provide for fluid communication between the arterial line 22 and inlet ports 46 of the first pumping chambers 36. A pair of venous branch lines 43 with outlet valves 44 provide for fluid communication between outlet ports 48 of the first pumping chambers 36 and the venous line 24. Gaseous ports 50 at the second pumping chambers 38 communicate with a pneumatic pressure source 30 (e.g., a pneumatic pump) via pneumatic lines 52 and a directional control valve 54.
The pneumatic pressure source 30 drives the blood pump 26. In this regard, the pneumatic pressure source 30 supplies the blood pump 26 with both vacuum pressure and positive pressure. This supply of vacuum and positive pressure is controlled via the directional control valve 54 in combination with a positive pressure regulator 56 and a vacuum pressure regulator 58. The positive and negative pressure regulators 56, 58 can be electronically controlled pressure regulators and can be controlled via communication with a controller 70, which may be a processor.
When the directional control valve 54 directs negative pressure to either of the second pumping chambers 38, the adjacent flexible membrane 34 deflects to enlarge the associated first pumping chamber 36 and thereby drawing blood into the first pumping chamber 36. When the directional control valve 54 subsequently directs positive pneumatic pressure to the second pumping chamber 38, the flexible membrane 34 deflects back to constrict the first pumping chamber 36, thereby expelling blood from the first pumping chamber 36. The inlet and outlet valves 42, 44 are opened and closed accordingly. The dual chambers 32 are both operated in this manner to pump blood through the branch lines 40, 43.
The dual chambers 32 can be operated in a dual capacity mode or in a parallel mode. In dual capacity mode, the directional control valve 54 provides the two gaseous ports 50 with positive pneumatic pressure at the same time, and with negative pneumatic (vacuum) pressure at the same time. The dual chambers 32 then move blood in phase with each other. In the parallel mode, the directional control valve provides the gaseous ports 50 with positive and negative pressure alternatively rather than simultaneously, the dual chambers 32 will move blood fully or partially out of phase with each other, depending on the degree to which the positive and negative pressures are out of phase with each other.
Pressure sensors 60, such as pressure transducers, can also be provided for measuring the fluid pressure within the dual chambers 32. More specifically, the pressure sensors 60 can be placed in fluid communication with the second chambers 38, for monitoring pressure therein, and in electrical communication with the controller 70, for providing signals indicative of the measured pressure to the controller 70. As discussed below, this data may be used for calculating hydraulic impedance in the arterial line 22 and/or in the venous line 24.
The dual chambers 32 are each configured to draw a steady, preset vacuum pressure of about 0 to about -275 mm/Hg, and to exert a steady, preset positive pressure, to expel body fluid, at a pressure of about 0 to about +350 mm/Hg.
Cycle times for a blood treatment protocol can range between about 3 seconds to about 30 seconds for one full cycle of vacuum and positive pressure. The maximum suitable cycle time for a given system can be selected to be a sufficiently short time period (e.g., from about 3 seconds to about 6 seconds) to avoid adverse effects from stagnation of the volume of fluid in the treatment unit during the vacuum (fill) portion of the cycle, such as settling, coagulation and adhesion of proteins, etc. to surfaces within the dialyzer 14.
Referring again to FIG. 1, flow sensors (e.g., arterial and venous flow sensors 72a, 72b) are disposed along the arterial and venous lines 22, 24. Suitable flow sensors include ultrasonic and optical detectors. The arterial and venous flow sensors 72a, 72b can be configured to measure the associated flow rate 5 to 15 times per second (e.g., 10 times per second). The flow sensors 72a, 72b, provide signals indicative of the flow rate of the blood in the associated fluid line. The signals can be provided to the controller 70, which can utilize the measured flow rates to control other elements in the blood circuit 20, such as the inlet and outlet valves 42, 44, the directional control valve 54, the pneumatic pressure source 30, and/or audible or visual warning devices.
Other components which interact with the blood circuit 20 include a source of fluid, such as a saline bag 80, which communicates with the arterial line 22 via a saline line 82 and a saline valve 84 in electrical communication with the controller 70.
Additionally, an anticoagulant solution such as a heparin supply 90 may communicate with the arterial line 22 through a heparin line 92 and an anticoagulant pump 94 that is responsive to the controller 70. A saline bolus may be administered to the blood stream by briefly closing an upstream arterial blood valve 100 opening the saline valve 84 and continuing operation of blood pump 26, thus drawing in saline rather than blood into the circuit. The upstream arterial blood valve 100 and the saline valve 84 may then be returned to position for the pump to draw blood into the circuit and push the saline and blood through the dialyzer 14 and the venous blood line 24.
The dialysis system 10 can also be provided with memory 1 10 (e.g., nonvolatile memory) adaptively coupled to the controller 70. The memory 1 10 can be any form of memory that retains stored values when external power is turned off. For example, such non-volatile memory components include hard disks, flash memories, battery-backed-up RAM, and other data storage devices. The memory 1 10 may store instructions which, when executed, perform the various implementations of the disclosed method.
The dialysis system 10 can also include a data entry device 112, such as a keyboard, touch-screen monitor, computer mouse, or the like. The dialysis system 10 further includes a display device 1 14, such as a read-out monitor, for displaying of operating values of the various individual components of the dialysis system 10. The dialysis system 10 can be provided with a power source 1 16, a battery back-up 117, and a clock/timer 118. The controller 70, memory 1 10, data entry device 112, and clock/timer 1 18 represent one configuration of a control system. The controller 70 coordinates the operation of the dialysis system 10 by controlling the blood flow in the blood circuit 20, the dialysate flow in the dialysate circuit 16, and the flow of saline or heparin to the arterial line 22 via the saline and heparin lines 82 and 92, respectively. To achieve this, the controller 70 utilizes hardware and/or software configured for operation of these components and can include any suitable programmable logic controller or other control device, or combination of control devices. Thus, blood flow in the blood circuit 20 is controlled by operating the blood pump 26 and controlling the upstream arterial blood valve 100 and the down stream venous blood valve 102 in the arterial and venous lines 22, 24. Dialysate flow in the dialysate circuit 16 can similarly be controlled by operating a dialysate pump 18. The controller 70 is responsive to various input signals it receives, such as input signals from the arterial and venous flow sensors 72a, 72b, the pressure transducers 60, and the clock/timer 1 18. Additionally, the controller 70 can display system status, warnings, and various other treatment parameters, on the display device 114. That allows an operator to interact with the controller via the data entry device 112.
The dialysis system 10, via the controller 70, selects an appropriate pressure (e.g., via control of the pressure regulators 56, 58) to achieve a given blood flow rate, and can also measure the pressure inside the blood pump 26 via the pressure sensors 60. Because the dialysis system 10 measures the blood flow rate (via the flow sensors 72a, 72b), the characteristic hydraulic impedance (Z) of both the arterial line 22 and the venous line 24 can be determined. The hydraulic impedance can be calculated from the following formula:
Q = P / Z
where:
Q = fluid flow rate;
P = fluid pressure; and
Z = hydraulic impedance
The hydraulic impedance Z is a complex number given by Z = R + jX. R, the real part of the impedance, is the resistance of the fluid circuit, and X, the imaginary part of the impedance, is the reactance of the circuit. If there is compliance, such as when orifices or chambers are present in the fluid circuit, the flow rate Q does not change instantaneously with pressure P. The reactance X accounts for this lag between the flow rate Q and the pressure P. In some cases, such as when there is little compliance, the real part of the impedance dominates, and thus, for simplification, the impedance Z can be estimated as being substantially equal to the resistance R.
Causes of blood flow degradation, such as clots or occlusions or changes in access flow rate, can be inferred from the hydraulic impedance and/or from changes in the hydraulic impedance. Clots, occlusions, and reduced access blood flow rates can reduce clearance (i.e., the rate at which certain fluids and solutes are cleared from the blood) in hemodialysis patients. Detecting and identifying reductions in flow can allow these issues to be corrected to maintain clearance.
Identification of a cause of blood flow degradation can allow for correction of the issue before treatment efficacy is compromised. This can give an operator an opportunity to continue effective treatment in circumstances where treatment may have otherwise been compromised or abandoned.
Because of the ability of the dialysis system 10 to modulate pressure (via control of the pressure regulators 56, 58) to achieve a set flow, the pressure applied to arterial and venous blood is known. Because the arterial and venous blood flow is know, e.g., from the arterial flow sensor 72a and the venous flow sensor 72b, respectively, the arterial and venous flow resistance can be determined as follows:
Figure imgf000013_0001
Zv = Pv / Qv
Where:
ZA = arterial line impedance;
PA = arterial line pressure;
QA = arterial line flow rate;
Zv = venous line impedance;
Pv = venous line pressure; and
Qv = venous line flow rate
By trending or comparing a current impedance value (i.e., the average value for a current cycle, either arterial or venous) to a baseline value (i.e., an arterial baseline value or a venous baseline value), the impedance of both the arterial line 22 and the venous line 24 can be monitored over time in order to detect degradations in the respective flow rates. The baseline values may be stored values (e.g., empirically predetermined values stored in memory 1 10) and/or a moving ensemble average value (e.g., an average impedance value of some or all preceding cycles over a given period of time). Nominal increasing impedance may be expected due to normal hemo- concentration over time. However, excessive increases in impedance can be used to indicate clotting or access blockages.
A percentage increase in impedance in both the arterial line 22 and the venous line 24 for the current cycle can be calculated as follows:
% increase arterial = (ZA(current) - ZA(baseline))/ ZA(baseline)
% increase VenOUS = (Zv(current) - Zv(baseline))/ Zv(baseline)
The percentage increase values can then be compared to maximum threshold values in order to determine whether the percentage increase in impedance is indicative of an issue contributing to the degradation of blood flow. These maximum threshold values for increases in the hydraulic impedance (arterial or venous) can be set and/or adjusted by an operator via the data entry device 1 12, or can be pre-stored in the memory 1 10.
The various issues that may contribute to degradation of blood flow include kinking in the arterial or venous tubing; a needle at the access point engaging (e.g., bumping up against) a sidewall of the patients vein; and clot formation, which often occurs at the inlet of the dialyzer 14. A kink in the tubing, for example, can be expected to produce a relatively large spike in the hydraulic impedance. For example, if a kink reduces blood flow by 90% the hydraulic impedance increases by about 10X proportional to the reduction in blood flow. If a needle bumps against the sidewall reducing the blood flow by 50% the impedance will increase by about 2X (200%) proportional to the blood flow. Clots at a flow reduced by 20% will yield an increase in impedance of about 1.25X (125%).
The location of a cause of blood flow degradation can be determined based on which of the flow sensors measured the increased impedance and the measured increased in hydraulic impedance. For example, a relatively large spike in the hydraulic impedance measured by the arterial flow sensor 72a may indicate a kink in the arterial line 22, whereas a relatively large spike in the hydraulic impedance measured by the venous flow sensor 72b may indicate a kink in the venous line 24. Similarly, an increase in the hydraulic impedance of about 20% measured by the arterial flow sensor 72a may indicate a clot formation in the arterial line 22, whereas an increase in the hydraulic impedance of about 20% measured by the venous flow sensor 72b may indicate a clot formation in the venous line 24. An increase in the hydraulic impedance of about 100% measured by the arterial flow sensor 72a may indicate an access issue at an arterial patient connector 13. Likewise, an increase in the hydraulic impedance of about 100% measured by the venous flow sensor 72b may indicate an access issue at a venous patient connector 15. Thus, not only can a cause of blood flow degradation be inferred, but also the relative location of that cause of blood flow degradation. If blood flow degradation is detected, notification can be provided to the operator, e.g., via the display device 1 14 or by sounding an audible alarm 120, to prompt the operator to remedy the issue, e.g., by repositioning needles, delivering saline bolus or rinse back, to restore the flow rate. The notification can provide an indication of the cause of the blood flow degradation (e.g., kink, access issue, clot, etc.), as well as the location (e.g., arterial or venous line 22, 24) of the cause of the blood flow degradation. For example, if a kink in the tubing of the arterial or venous line 22, 24 is detected, a corresponding visual and/or audible alarm can be activated to notify the operator of the issue. The operator can then un-kink the arterial or venous line 22, 24 to restore the blood flow. If an access issue at the arterial or venous patient connector 13, 15 is detected, a corresponding visual and/or audible alarm can be activated to notify the operator of the access issue. The operator can then reposition the needle of the arterial or venous patient connector 13, 15 to restore the blood flow. If a clot in the arterial or venous line 22, 24 is detected, a corresponding visual and/or audible alarm can be activated to notify the operator of the clot, and the operator can then deliver heparin or saline to the arterial or venous line 22, 24 to clear the clot and restore blood flow.
Other Implementations
While certain implementations have been described above, other
implementations are possible. As an example, while implementations have been described in which, in response to the detection of blood flow blow degradation, the operator is prompted to perform an action to restore blood flow, in some implementations, the dialysis system 10 can be configured to remedy the cause of the blood flow degradation automatically. For example, the dialysis system 10 can be configured to automatically administer a saline bolus or anticoagulant solution, e.g., via operation of the controller 70, where, for example, a clot is detected.
While a dialysis system having a dual chamber blood pump has been described, in some implementations, the blood pump may instead include a single chamber device. For example, FIG. 3 illustrates a dialysis system 200 that includes a single chamber blood pump 226. The single chamber blood pump 226 includes an outer housing 228 defining a pneumatic chamber 230 and a flexible membrane 232 defining a blood chamber 233. The outer housing 228 includes at least one gaseous port 234, which is in fluid communication with a pneumatic pressure source 30 via a directional control valve 54. An inlet valve 236 provides for fluid communication between an arterial line 22 and an inlet port 238 of the blood chamber 233. An outlet valve 240 provides for fluid communication between an outlet port 242 of the blood chamber 233 and a venous line 24. As in the case of the dual chamber pump described above, the controller 70 controls blood flow in the blood circuit 20 via operation of the inlet and outlet valves 236, 240, the directional control valve 54 and/or the pneumatic pressure source 30.
FIG. 4 illustrates another example of a dialysis system 300 which utilizes a peristaltic pump 326 for pumping blood through the blood circuit 20. Arterial and venous pressure sensors 360a, 360b are provided for measuring pressure of blood flowing through the arterial and venous lines 22, 24, respectively. The arterial and venous pressure sensors 360a, 360b provide signals indicative of the measured pressures to the controller 70, which utilizes the pressure data, along with blood flow rate data measured by arterial and venous flow rate sensors 72a, 72b, to calculate the hydraulic impedances in the arterial and venous lines 22, 24. Alternatively or additionally, when using a peristaltic pump, the flow can be inferred directly from the pump speed because the pump is a fixed flow device.
In some cases, the methods for detecting blood flow degradation described above can also be incorporated in sorbent-based dialysis systems. FIG. 5 shows a sorbent-based dialysis system 400 that includes a module 420 fluidly coupled to a dialysis machine 450, which houses a blood circuit 20 and a dialysate circuit 16 such as described above, e.g., with reference to FIG. 1. The module 420 includes a sorbent cartridge holder 500 configured to hold a sorbent cartridge 524. The module 420 also includes a manifold 422 to which fluid lines 424, 426 extending from an infusate container 428 and a sodium chloride container 430 are connected, a manifold 432 to which fluid lines 434, 436 extending from a dialysate bag or reservoir 438 are connected, and a manifold 440 to which fluid lines 442, 444 extending from an ammonium (NH4) sensor 446 are connected. The module 420 further includes a manifold 448 that can be used to fluidly connect other components, such as a priming solution bag, a rinsing solution bag, a cleaning solution bag, and/or a drain bag to the module 420. Each of manifolds 422, 432, 440, and 448 can, for example, include projections on which fluid lines can be positioned to connect the various components described above to their respective manifold. Any of various other suitable connection mechanisms can alternatively or additionally be used to connect the fluid lines to the manifolds.
When in an open position, as shown in FIG. 5, the manifold 422 permits an infusate solution (e.g., a solution including magnesium, calcium, and potassium) and a sodium chloride solution to be delivered into fluid circulating through the module 420. Pumps and valves within the module 420 can, for example, be activated to pump the infusate solution and sodium chloride into the fluid circulating within the module 420. Similarly, the manifold 432 allows fluid to be transferred from the module 420 to the bag 438 and vice versa. Using pumps and valves within the module 420, fluid can be pumped into and suctioned out of the bag 438 via the fluid line 434 connected to the manifold 432. The manifold 440 permits fluid to be transferred from the module 420 to the ammonium sensor 446 and vice versa. By activating pumps and valves within the module 420 in a desired manner, the fluid can be pumped from the module 420 to the ammonium sensor 446 and can be drawn back to the module 420 from the ammonium sensor. The manifold 448 can also be placed in an open configuration during use and connected to fluid lines such that by activating pumps and valves within the module, fluid can be drawn into the module 420 from a bag (e.g., a priming solution bag, a rinsing solution bag, a cleaning solution bag) and/or pumped from the module into a bag (e.g., a drain bag). With the sorbent cartridge 524 fluidly connected to the cartridge holder 500, as shown in FIG. 5, fluid circulating within the module 420 is allowed to pass through the sorbent cartridge 524.
During dialysis treatment, the module 420 is configured in the manner shown in FIG. 5 to permit fluid communication between the fluid circulating within the module 420 and the sorbent cartridge 524, the infusate container 428, the sodium chloride container 430, the dialysate bag 438, the ammonium sensor 446, and, in some cases, one or more additional bags that can be connected to the module 420 via the manifold 448.
During dialysis treatment, spent dialysis solution is moved from a dialysate circuit 16 (FIG. 1) of the dialysis machine 450 into the module 220 where it passes through the sorbent cartridge 524, and then the recycled dialysis solution exiting the sorbent cartridge 524 is moved back to the dialysis machine 450. As the spent dialysis solution is passed through the sorbent cartridge 524, toxins, such as urea, and other substances, such as calcium, magnesium, and potassium are stripped from the spent dialysis solution. Sodium can also be stripped from the spent dialysis solution or, in certain cases, added to the spent dialysis solution as the spent dialysis solution passes through the sorbent cartridge 524. Thus, calcium, magnesium, potassium, and sodium levels of the recycled dialysis solution exiting the sorbent cartridge 524 can be altered (e.g., by introducing calcium, magnesium, potassium, sodium, and/or a diluent into the recycled dialysis solution) to restore concentrations of those substances to desired levels. As the recycled dialysis solution then passes through a dialyzer 14 (FIG. 1) in the dialysis machine 450, toxins are transferred from the patient's blood into the dialysis solution, forming spent dialysis solution. This spent dialysis solution is then circulated through the module 420 again to recycle or regenerate the spent dialysis solution. This process can be repeated until a desired amount of toxins have been removed from the patient's blood. Because the dialysis solution is recycled during the treatment as opposed to simply being discarded, the volume of dialysis solution used during the treatment can be substantially reduced relative to certain conventional hemodialysis techniques. In addition, maintaining the concentration of the various substances within the dialysis solution, such as calcium, magnesium, potassium, and sodium, can help to prevent the patient from experiencing discomfort during the treatment. As with the system described above, e.g., with reference to FIG. 1, flow sensors and pressure sensor can be positioned along the blood circuit 20 of the dialysis machine 450, and measurements from the sensors can be used for the detection and identification of blood flow degradation, and causes thereof, such as clots, occlusions, and access blockage, within the dialysis system.
While methods for detecting blood flow degradation in dialysis systems have been described, the methods may also be employed in other types of extracorporeal blood treatment systems.
Other implementations are within the scope of the following claims.

Claims

WHAT IS CLAIMED IS:
1. A method for detecting blood flow degradation in a dialysis system, the method comprising:
measuring a flow rate of blood in a blood line;
calculating a current impedance value based on the measured flow rate; and comparing the current impedance value to a baseline impedance value.
2. The method of claim 1, further comprising inferring blood flow degradation if the current impedance value differs from the baseline impedance value by more than a maximum limit.
3. The method of any of the above claims, further comprising:
transmitting a signal corresponding to the measured flow rate to a controller; and
utilizing the controller to calculate the current impedance value based on the measured flow rate.
4. The method of any of the above claims, further comprising utilizing the controller to compare the current impedance value to the baseline impedance value.
5. The method of any of the above claims, further comprising alerting a user if the current impedance value differs from the baseline impedance value by more than a maximum limit.
6. The method of claim 5, wherein alerting the user comprises activating an alarm.
7. The method of claim 6, wherein the alarm is an audible alarm.
8. The method of claim 6, wherein the alarm is a visual alarm.
9. The method of claim 5, wherein alerting the user comprises displaying information concerning a detected blood flow degradation on a display device.
10. The method of claim 5, wherein the displayed information comprises information regarding a cause of blood flow degradation.
11. The method of claim 5, wherein the displayed information comprises information regarding a location of a cause of blood flow degradation relative to the dialysis system.
12. The method of any of the above claims, further comprising
administering a saline bolus if the current impedance value differs from the baseline impedance value by more than a maximum limit.
13. The method of claim 12, wherein the saline bolus is automatically administered at the direction of a controller of the dialysis system.
14. The method of any of the above claims, further comprising adjusting a needle at a patient access point if the current impedance value differs from the baseline impedance value by more than a maximum limit.
15. The method of any of the above claims, further comprising un-kinking kinked tubing if the current impedance value differs from the baseline impedance value by more than a maximum limit.
16. The method of any of the above claims, further comprising determining a cause of blood flow degradation indicated by the difference between the current impedance value and the baseline impedance value.
17. The method of any of the above claims, further comprising determining a location of a cause of blood flow degradation based, at least in part, on the difference between the current impedance value and the baseline impedance value.
18. The method of any of the above claims, wherein comparing the current impedance value to the baseline value comprises calculating a percent difference between the current impedance value and the baseline value.
19. The method of claim 18, further comprising identifying a cause of blood flow degradation based on the calculated percent difference.
20. A computer-readable medium having encoded thereon software for detecting blood flow degradation in a blood circuit, the software comprising instructions for:
receiving information corresponding to measurement data from one or more sensors;
calculating a current impedance value based on the measurement data; and comparing the current impedance value to a baseline impedance value.
21. The computer readable medium of claim 20, wherein the software further comprises instructions for calculating the baseline impedance value based, at least in part, on measurement data received from the one or more sensors.
22. A dialysis system comprising:
a blood circuit comprising:
a blood pump,
tubing for conveying blood between the blood pump and a patient; one or more flow sensors for measuring a flow rate of blood within the tubing; and
a controller in communication with the one or more flow sensors and configured to calculate a hydraulic impedance within the tubing based, at least in part, on signals received from the one or more sensors.
23. The dialysis system of claim 22, wherein the tubing comprises an arterial line for conveying blood from a patient to the blood pump, and a venous line for conveying blood from the pump back to the patient.
24. The dialysis system of claim 23,
wherein the one or more flow sensors comprise an arterial flow sensor arranged to measure a flow rate of blood flowing within the arterial line, and
wherein the controller is configured to calculate a hydraulic impedance within the arterial line based, at least in part, on signals received from the arterial flow sensor.
25. The dialysis system of claim 23,
wherein the one or more flow sensors comprise a venous flow sensor arranged to measure a flow rate of blood flowing within the venous line,
wherein the controller is configured to calculate a hydraulic impedance within the venous line based, at least in part, on signals received from the venous flow sensor.
26. The dialysis system of any of claims 22-25, further comprising:
one or more pressure sensors for measuring pressure within the tubing, and wherein the controller is in communication with the one or more sensors.
27. The dialysis system of any of claims 22-26, wherein the controller is configured:
to compare the calculated hydraulic impedance to a baseline impedance value, and
to detect a blood flow degradation based on the comparison.
28. The dialysis system of any of claims 22-27, further comprising a display device in communication with the controller, wherein the controller is configured to display information concerning a detected blood flow degradation on the display device.
29. The dialysis system of any of claims 22-28, further comprising an audible alarm, wherein the controller is configured to sound the audible alarm in response to detecting a blood flow degradation.
30. The dialysis system of any of claims 22-29, wherein the controller is configured to control operation of the pump, and wherein the controller is configured to halt operation of the pump in response to detecting a blood flow degradation.
31. The dialysis system of any of claims 22-30, further comprising:
a saline source,
a saline line connecting the saline source to the tubing, and
a saline valve in electrical communication with the controller,
wherein the saline valve is operable to control a flow of saline from the saline source toward the tubing, and
wherein the controller is configured to administer a saline bolus, via operation of the saline valve, in response to detecting a blood flow degradation.
32. The dialysis system of any of claims 22-31 , further comprising memory in communication with the controller.
33. The dialysis system of claim 32, wherein the memory includes stored data corresponding to a baseline impedance value.
34. The dialysis system of claim 32, wherein the controller is configured: to calculate a baseline impedance value based, at least in part, on signals received from the flow sensors, and
to cause the baseline impedance value to be stored in the memory.
35. The dialysis system of any of claims 22-34, wherein the blood pump is a peristaltic pump.
36. The dialysis system of any of claims 22-35, further comprising a dialyzer, connected to the blood circuit, for separating waste from blood flowing within the blood circuit.
37. The dialysis system of any of claims 22-36, further comprising a dialysate circuit through which dialysate flows.
38. The dialysis system of claim 37, further comprising a sorbent cartridge in fluid communication with the dialysate circuit and configured so that the dialysate can pass therethrough, the sorbent cartridge being adapted to remove one or more
5 substances from the dialysate as the dialysate passes through the sorbent cartridge.
39. The dialysis system of any of claims 22-38, wherein the dialysis system is a hemodialysis system. o 40. The dialysis system of any of claims 22-39, wherein the dialysis system is a sorbent-based dialysis system.
PCT/US2010/057581 2009-12-31 2010-11-22 Detecting blood flow degradation WO2011081740A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
AU2010337269A AU2010337269B2 (en) 2009-12-31 2010-11-22 Detecting blood flow degradation
EP10782789.1A EP2519275B1 (en) 2009-12-31 2010-11-22 Detecting blood flow degradation
EP12181761.3A EP2529771B1 (en) 2009-12-31 2010-11-22 Detecting blood flow degradation
JP2012547081A JP5841064B2 (en) 2009-12-31 2010-11-22 Detection of decreased blood flow
CA2785806A CA2785806C (en) 2009-12-31 2010-11-22 Detecting blood flow degradation

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US12/650,745 US8529491B2 (en) 2009-12-31 2009-12-31 Detecting blood flow degradation
US12/650,745 2009-12-31

Publications (1)

Publication Number Publication Date
WO2011081740A1 true WO2011081740A1 (en) 2011-07-07

Family

ID=43618316

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2010/057581 WO2011081740A1 (en) 2009-12-31 2010-11-22 Detecting blood flow degradation

Country Status (6)

Country Link
US (1) US8529491B2 (en)
EP (2) EP2519275B1 (en)
JP (1) JP5841064B2 (en)
AU (1) AU2010337269B2 (en)
CA (1) CA2785806C (en)
WO (1) WO2011081740A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015004009A1 (en) * 2013-07-09 2015-01-15 Rwth Aachen Method and device for the detection of suction of a sampling needle
US9233196B2 (en) 2012-05-09 2016-01-12 D—Med Consulting Ag Method for pre-filling a hemodialysis apparatus
WO2017218529A1 (en) * 2016-06-13 2017-12-21 Henry Ford Health System Method for detecting intravascular volume depletion during a hemodialysis session

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8152751B2 (en) 2007-02-09 2012-04-10 Baxter International Inc. Acoustic access disconnection systems and methods
DE102008035742B3 (en) * 2008-07-04 2010-01-14 Fresenius Medical Care Deutschland Gmbh Device for peritoneal dialysis
US8753515B2 (en) 2009-12-05 2014-06-17 Home Dialysis Plus, Ltd. Dialysis system with ultrafiltration control
US8501009B2 (en) 2010-06-07 2013-08-06 State Of Oregon Acting By And Through The State Board Of Higher Education On Behalf Of Oregon State University Fluid purification system
US8784668B2 (en) * 2010-10-12 2014-07-22 Fresenius Medical Care Holdings, Inc. Systems and methods for compensation of compliant behavior in regenerative dialysis systems
EP3165245B1 (en) 2011-08-02 2019-02-20 Medtronic, Inc. Hemodialysis system having a flow path with a controlled compliant volume
EP2744537B1 (en) 2011-08-16 2018-01-24 Medtronic, Inc. Modular hemodialysis system
AU2012318561B2 (en) 2011-10-07 2017-04-20 Outset Medical, Inc. Heat exchange fluid purification for dialysis system
US8992777B2 (en) 2011-11-18 2015-03-31 Fresenius Medical Care Holdings, Inc. Systems and methods for providing notifications in dialysis systems
US9165112B2 (en) 2012-02-03 2015-10-20 Fresenius Medical Care Holdings, Inc. Systems and methods for displaying objects at a medical treatment apparatus display screen
AU2013201556B2 (en) 2012-07-13 2014-06-05 Gambro Lundia Ab Filtering of pressure signals for suppression of periodic pulses
US10905816B2 (en) 2012-12-10 2021-02-02 Medtronic, Inc. Sodium management system for hemodialysis
US10543052B2 (en) 2013-02-01 2020-01-28 Medtronic, Inc. Portable dialysis cabinet
US10850016B2 (en) 2013-02-01 2020-12-01 Medtronic, Inc. Modular fluid therapy system having jumpered flow paths and systems and methods for cleaning and disinfection
US9623164B2 (en) * 2013-02-01 2017-04-18 Medtronic, Inc. Systems and methods for multifunctional volumetric fluid control
US10010663B2 (en) 2013-02-01 2018-07-03 Medtronic, Inc. Fluid circuit for delivery of renal replacement therapies
US9827361B2 (en) 2013-02-02 2017-11-28 Medtronic, Inc. pH buffer measurement system for hemodialysis systems
WO2015168280A1 (en) 2014-04-29 2015-11-05 Outset Medical, Inc. Dialysis system and methods
US10980929B2 (en) 2014-09-12 2021-04-20 Diality Inc. Hemodialysis system with ultrafiltration controller
US10016550B2 (en) 2014-09-12 2018-07-10 Easydial, Inc. Portable hemodialysis assembly with ammonia sensor
CN104383619B (en) * 2014-12-03 2016-08-24 佟博弘 Dialysate flow intelligent regulating device and method, dialysis machine
US10098993B2 (en) 2014-12-10 2018-10-16 Medtronic, Inc. Sensing and storage system for fluid balance
US9895479B2 (en) 2014-12-10 2018-02-20 Medtronic, Inc. Water management system for use in dialysis
US9713665B2 (en) 2014-12-10 2017-07-25 Medtronic, Inc. Degassing system for dialysis
US10874787B2 (en) 2014-12-10 2020-12-29 Medtronic, Inc. Degassing system for dialysis
JP2016174752A (en) * 2015-03-20 2016-10-06 ソニー株式会社 Blood state monitoring device, blood state monitoring method, blood state monitoring system, and blood state improving program
US10413654B2 (en) * 2015-12-22 2019-09-17 Baxter International Inc. Access disconnection system and method using signal metrics
ES2908601T3 (en) 2016-08-19 2022-05-03 Outset Medical Inc Peritoneal dialysis system and methods
US10272187B2 (en) 2017-02-22 2019-04-30 Fresenius Medical Care Holdings, Inc. System and methods for dialyzer flow rates estimation using measured dialyzer pressures
US11278654B2 (en) 2017-12-07 2022-03-22 Medtronic, Inc. Pneumatic manifold for a dialysis system
US11033667B2 (en) 2018-02-02 2021-06-15 Medtronic, Inc. Sorbent manifold for a dialysis system
US11110215B2 (en) 2018-02-23 2021-09-07 Medtronic, Inc. Degasser and vent manifolds for dialysis
WO2022231966A1 (en) 2021-04-27 2022-11-03 Contego Medical, Inc. Thrombus aspiration system and methods for controlling blood loss
DE102022133981A1 (en) 2022-12-12 2024-06-13 Fresenius Medical Care Deutschland Gmbh Device, system and method for detecting blood clots

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6210591B1 (en) * 1994-09-16 2001-04-03 Transonic Systems, Inc. Method to measure blood flow rate in hemodialysis shunts
GB2424966A (en) * 2005-04-07 2006-10-11 Geoffrey David Taylor Method and apparatus for controlling fluid flow.

Family Cites Families (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1189734B (en) 1986-02-05 1988-02-04 Demetrio Donatelli AUTOMATIC ACTUATION DEVICE FOR HEMODIALYTIC PROCESSES IN THE ABSENCE OF ANTI-AGULATING SUBSTANCES IN THE TREATED BLOOD
US4898576A (en) 1986-06-06 1990-02-06 Philip James H Intravenous fluid flow monitor
JPH02289259A (en) 1989-04-28 1990-11-29 Yokogawa Electric Corp Method for detecting mal-mounting of membrane filter
US5186431A (en) * 1989-09-22 1993-02-16 Yehuda Tamari Pressure sensitive valves for extracorporeal circuits
DE4024434A1 (en) * 1990-08-01 1992-02-13 Fresenius Ag Ultrafiltration regulation device for blood dialysis - uses pressure variations to determine blood vol. variation
DE4240681C2 (en) 1992-12-03 1994-09-08 Fresenius Ag Device for hemodialysis without anticoagulation
US5438510A (en) 1993-03-03 1995-08-01 Deka Products Limited Partnership User interface and monitoring functions for automated peritoneal dialysis systems
US5609576A (en) * 1994-09-13 1997-03-11 Ivac Medical Systems, Inc. Fluid flow impedance monitoring system
US5693008A (en) * 1995-06-07 1997-12-02 Cobe Laboratories, Inc. Dialysis blood tubing set
US6852090B2 (en) * 1997-02-14 2005-02-08 Nxstage Medical, Inc. Fluid processing systems and methods using extracorporeal fluid flow panels oriented within a cartridge
DE19746377C1 (en) * 1997-10-21 1999-07-01 Fresenius Medical Care De Gmbh Blood treatment device with a device for continuous monitoring of the patient's blood pressure
US7004924B1 (en) * 1998-02-11 2006-02-28 Nxstage Medical, Inc. Methods, systems, and kits for the extracorporeal processing of blood
US6299583B1 (en) * 1998-03-17 2001-10-09 Cardiox Corporation Monitoring total circulating blood volume and cardiac output
US6343614B1 (en) 1998-07-01 2002-02-05 Deka Products Limited Partnership System for measuring change in fluid flow rate within a line
US7766873B2 (en) 1998-10-29 2010-08-03 Medtronic Minimed, Inc. Method and apparatus for detecting occlusions in an ambulatory infusion pump
DE19901078C1 (en) * 1999-01-14 2000-02-17 Polaschegg Hans Dietrich Monitoring system for fistula or graft has instruments to detect pulse from patient's heart or external blood circulation pump
US6406631B1 (en) 1999-07-30 2002-06-18 Nephros, Inc. Two stage diafiltration method and apparatus
US7255680B1 (en) 1999-10-27 2007-08-14 Cardinal Health 303, Inc. Positive pressure infusion system having downstream resistance measurement capability
EP1095666A1 (en) 1999-10-29 2001-05-02 Infomed S.A. Extracorporeal blood purification apparatus
US6691047B1 (en) * 2000-03-16 2004-02-10 Aksys, Ltd. Calibration of pumps, such as blood pumps of dialysis machine
IT1320024B1 (en) 2000-04-07 2003-11-12 Gambro Dasco Spa METHOD FOR ADJUSTING THE INFUSION IN A DIALYSIS MACHINE AND DIALYSIS MACHINE FOR THE APPLICATION OF THE MENTIONED METHOD.
DK1175917T3 (en) 2000-07-07 2008-01-07 Fresenius Medical Care De Gmbh hemodialysis
US6503062B1 (en) 2000-07-10 2003-01-07 Deka Products Limited Partnership Method for regulating fluid pump pressure
JP2002095741A (en) 2000-09-25 2002-04-02 Kuraray Co Ltd Body fluid treatment device and method for detection of defective connection in body fluid circuit
EP1331964B1 (en) 2000-10-12 2008-12-31 Renal Solutions, Inc. Device for body fluid flow control in extracorporeal fluid treatments
DE10115991C1 (en) * 2001-03-30 2002-04-18 Fresenius Medical Care De Gmbh Detecting constrictions in blood circulation system involves analyzing frequency spectrum of oscillating pressure signal, forming conclusion regarding constriction from harmonic damping
US6929751B2 (en) 2002-05-24 2005-08-16 Baxter International Inc. Vented medical fluid tip protector methods
US7998101B2 (en) 2003-07-28 2011-08-16 Renal Solutions, Inc. Devices and methods for body fluid flow control in extracorporeal fluid treatment
JP4282505B2 (en) 2004-02-06 2009-06-24 旭化成クラレメディカル株式会社 Circuit connection detection method and blood purification apparatus in blood purification apparatus
WO2005107833A1 (en) 2004-05-07 2005-11-17 Gambro Lundia Ab Blood treatment equipment, method and software program for controlling infusion.
WO2005123230A2 (en) 2004-06-09 2005-12-29 Renal Solutions, Inc. Dialysis system
AU2006335289B2 (en) 2006-01-06 2012-04-05 Renal Solutions, Inc. Dual purpose acute and home treatment dialysis machine
US7981280B2 (en) 2006-01-06 2011-07-19 Renal Solutions, Inc. Recirculation of blood in an extracorporeal blood treatment system
JP5125013B2 (en) * 2006-07-25 2013-01-23 ニプロ株式会社 Method for detecting occurrence of trouble causing poor blood removal and hemodialysis apparatus
US20080149563A1 (en) 2006-12-22 2008-06-26 Renal Solutions, Inc. Method of controlling dialysis using blood circulation times
US8376978B2 (en) * 2007-02-09 2013-02-19 Baxter International Inc. Optical access disconnection systems and methods
KR101964364B1 (en) * 2007-02-27 2019-04-01 데카 프로덕츠 리미티드 파트너쉽 Hemodialysis system
US8100834B2 (en) * 2007-02-27 2012-01-24 J&M Shuler, Inc. Method and system for monitoring oxygenation levels of a compartment for detecting conditions of a compartment syndrome
US8388567B2 (en) * 2007-04-12 2013-03-05 Gambro Lundia Ab Apparatus for extracorporeal blood treatment
US8512553B2 (en) * 2007-07-05 2013-08-20 Baxter International Inc. Extracorporeal dialysis ready peritoneal dialysis machine
ES2446543T3 (en) * 2008-05-26 2014-03-10 Gambro Lundia Ab Hemodialysis machine or heme (day) filtration
DE102008035742B3 (en) 2008-07-04 2010-01-14 Fresenius Medical Care Deutschland Gmbh Device for peritoneal dialysis

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6210591B1 (en) * 1994-09-16 2001-04-03 Transonic Systems, Inc. Method to measure blood flow rate in hemodialysis shunts
GB2424966A (en) * 2005-04-07 2006-10-11 Geoffrey David Taylor Method and apparatus for controlling fluid flow.

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9233196B2 (en) 2012-05-09 2016-01-12 D—Med Consulting Ag Method for pre-filling a hemodialysis apparatus
EP2662101B2 (en) 2012-05-09 2018-05-30 D_MED Consulting AG Method for priming a haemodialysis device
WO2015004009A1 (en) * 2013-07-09 2015-01-15 Rwth Aachen Method and device for the detection of suction of a sampling needle
WO2017218529A1 (en) * 2016-06-13 2017-12-21 Henry Ford Health System Method for detecting intravascular volume depletion during a hemodialysis session
US11458233B2 (en) 2016-06-13 2022-10-04 Henry Ford Health System Method for detecting intravascular volume depletion during a hemodialysis session

Also Published As

Publication number Publication date
AU2010337269A1 (en) 2012-07-05
EP2529771A2 (en) 2012-12-05
US8529491B2 (en) 2013-09-10
EP2529771B1 (en) 2020-01-01
EP2519275B1 (en) 2020-03-04
CA2785806A1 (en) 2011-07-07
CA2785806C (en) 2017-10-10
EP2529771A3 (en) 2013-02-20
EP2519275A1 (en) 2012-11-07
AU2010337269B2 (en) 2014-08-28
JP5841064B2 (en) 2016-01-06
JP2013516225A (en) 2013-05-13
US20110160637A1 (en) 2011-06-30

Similar Documents

Publication Publication Date Title
US8529491B2 (en) Detecting blood flow degradation
JP4236060B2 (en) Method for monitoring the entrance / exit of a blood vessel during dialysis treatment, and apparatus for dialysis treatment provided with equipment for monitoring the entrance / exit of the blood vessel
JP6111299B2 (en) Extracorporeal blood treatment monitoring apparatus and method and extracorporeal blood treatment apparatus
US7004924B1 (en) Methods, systems, and kits for the extracorporeal processing of blood
US8388567B2 (en) Apparatus for extracorporeal blood treatment
US10850017B2 (en) Methods and systems for detecting an occlusion in a blood circuit of a dialysis system
US10702643B2 (en) Device and method for regulating and presetting the pump rate of blood pumps
US20100237011A1 (en) Blood treatment systems and related methods
CN111542353B (en) Device for extracorporeal blood treatment
CN116887874A (en) Method and device for evaluating measured pressure values
WO2023219084A1 (en) Blood purification device
CN118119415A (en) Peritoneal dialysis system with dual lumen patient line and method of detecting occlusion
JP2022185796A (en) Blood purification device
Circuit Single-Patient Hemodialysis Machines

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10782789

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010337269

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2785806

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2012547081

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2010337269

Country of ref document: AU

Date of ref document: 20101122

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2010782789

Country of ref document: EP