WO2011077825A1 - Liquid crystal display device, drive method of liquid crystal display device, and electronic device - Google Patents

Liquid crystal display device, drive method of liquid crystal display device, and electronic device Download PDF

Info

Publication number
WO2011077825A1
WO2011077825A1 PCT/JP2010/068756 JP2010068756W WO2011077825A1 WO 2011077825 A1 WO2011077825 A1 WO 2011077825A1 JP 2010068756 W JP2010068756 W JP 2010068756W WO 2011077825 A1 WO2011077825 A1 WO 2011077825A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
liquid crystal
data
writing period
display device
Prior art date
Application number
PCT/JP2010/068756
Other languages
French (fr)
Japanese (ja)
Inventor
尚宏 山口
高橋 功
業天 誠二郎
松田 登
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to JP2011547380A priority Critical patent/JPWO2011077825A1/en
Priority to US13/515,103 priority patent/US20120287110A1/en
Publication of WO2011077825A1 publication Critical patent/WO2011077825A1/en

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3685Details of drivers for data electrodes
    • G09G3/3688Details of drivers for data electrodes suitable for active matrices only
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3648Control of matrices with row and column drivers using an active matrix
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/13624Active matrix addressed cells having more than one switching element per pixel
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/0809Several active elements per pixel in active matrix panels
    • G09G2300/0842Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor
    • G09G2300/0857Static memory circuit, e.g. flip-flop
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3614Control of polarity reversal in general

Definitions

  • the present invention relates to a liquid crystal display device having a memory function.
  • a video signal is supplied to a liquid crystal capacitor in a pixel formation unit for displaying pixels.
  • the writing cycle is lengthened.
  • a circuit having a memory function (hereinafter referred to as a pixel memory circuit) is provided in each pixel formation portion so that the voltage applied to the liquid crystal capacitance is maintained. Yes.
  • liquid crystal display device incorporating such a pixel memory circuit
  • Examples of the liquid crystal display device incorporating such a pixel memory circuit include the display device disclosed in Patent Document 1.
  • JP 2007-286237 (published Nov. 1, 2007)
  • a source bus line is provided between pixel electrodes, and a black matrix is formed on the source bus line, resulting in a potential difference generated between the source bus line and the counter electrode.
  • the flicker on the source bus line can be hidden from being seen by the black matrix.
  • the pixel electrode 101 and the counter electrode 103 are applied with a signal (voltage) that is inverted at a constant period so that the liquid crystal is not deteriorated.
  • a signal voltage
  • in-phase or anti-phase signals are applied to the pixel electrode 101 and the counter electrode 103 so as to always have a constant potential difference.
  • the voltage applied to the liquid crystal interposed between the pixel electrode 101 and the counter electrode 103 that is, the liquid crystal applied voltage is 0 V (white display: normally white). Case). For this reason, flicker due to a variation in potential difference does not occur between the pixel electrode 101 and the counter electrode 103.
  • the signal supplied to the source bus line which is an output signal line of the binary driver is always “H” (high level signal for selecting black display) or “L” (white display is selected). Low level signal) is fixed to either signal. Therefore, if a signal that is inverted at a constant cycle as described above is applied to the counter electrode 103, for example, as shown in FIG. 5B, the source bus line Sn and the counter electrode 103 The potential difference between them varies.
  • the voltage applied to the liquid crystal interposed between the source bus line Sn and the counter electrode 103 that is, the liquid crystal applied voltage repeats 0V and 5V. . For this reason, flicker is caused between the source bus line Sn and the counter electrode 103 due to a change in potential difference.
  • the present invention has been made in view of the above-described problems, and its object is to suppress flicker generated between the source bus line and the counter electrode, so that whether or not there is a black matrix on the source bus line. Accordingly, an object of the present invention is to provide a liquid crystal display device with high display quality in which flicker is not visible.
  • the active matrix substrate includes a plurality of data signal lines and a plurality of scanning signal lines.
  • Pixel electrodes arranged in a matrix corresponding to the intersecting portions are formed, and the counter substrate is opposed to the pixel electrode of the active matrix substrate, and the counter voltage is synchronized with the voltage applied to the pixel electrode.
  • a period in which a voltage corresponding to a video signal supplied to the data signal wiring is applied to the pixel electrode is a video signal writing period, and a next video signal writing period.
  • the video signal non-writing period is the period until the signal signal supplied to the counter electrode with respect to the data signal wiring in the non-writing period.
  • Signal-phase or reverse phase is characterized by being supplied.
  • the driving method of the liquid crystal display device is a method of driving a liquid crystal display device in which a liquid crystal capacitor is sealed between an active matrix substrate and a counter substrate. Pixel electrodes arranged in a matrix form corresponding to the intersections with the plurality of scanning signal wirings are formed, and are applied to the pixel electrodes facing the pixel electrodes of the active matrix substrate on the counter substrate.
  • a counter electrode that applies a counter voltage to the liquid crystal capacitor in synchronization with a voltage is formed, and a period in which a voltage corresponding to a video signal supplied to the data signal wiring is applied to the pixel electrode is a video signal writing period,
  • the counter current is not connected to the data signal wiring during the non-writing period. It is characterized by supplying a signal of the same phase or reverse phase being supplied to.
  • a signal having the same or opposite phase as the signal supplied to the counter electrode is supplied to the data signal line.
  • the potential difference between the data signal wiring and the counter electrode can be made constant. As a result, it is possible to suppress the occurrence of flicker due to the potential difference being not constant on the data signal wiring during the non-writing period, so that it is possible to suppress the display quality from being deteriorated due to the flicker.
  • Another liquid crystal display device of the present invention includes a first display state in which the arrangement of liquid crystal molecules is irregular when no voltage is applied between the active matrix substrate and the counter substrate, and the arrangement of liquid crystal molecules when a voltage is applied.
  • a plurality of video signals for transmitting a plurality of video signals representing images to be displayed are transmitted to the active matrix substrate, respectively.
  • First display data for realizing the first display state is provided on the basis of an image signal that is provided for each electrode and the pixel signal and is transmitted by the data signal wiring. And a display data storage circuit that takes in the second display data for realizing the second display state through the second supply wiring and stores the respective data.
  • the counter substrate is formed with a counter electrode that faces the pixel electrode of the active matrix substrate and applies a counter voltage to the light diffusing liquid crystal in synchronization with a voltage applied to the pixel electrode.
  • the period when the voltage corresponding to the supplied video signal is applied to the pixel electrode is the video signal writing period, and the period until the next video signal writing period is the video signal non-writing period.
  • a signal having the same or opposite phase as the signal supplied to the counter electrode is supplied to the data signal wiring.
  • the driving method of the liquid crystal display device includes a first display state in which the arrangement of liquid crystal molecules is irregular when no voltage is applied between the active matrix substrate and the counter substrate, and the liquid crystal molecules when the voltage is applied.
  • a method of driving a liquid crystal display device in which light diffusing liquid crystal in a second display state in which the arrangement of the liquid crystal is in a regular state is sealed, and a plurality of images representing an image to be displayed are displayed on the active matrix substrate A plurality of data signal wirings for transmitting signals, a plurality of scanning signal wirings crossing the plurality of data signal wirings, and intersections of the plurality of data signal wirings and the plurality of scanning signal wirings, respectively.
  • the first display state is realized based on the pixel electrodes arranged in a matrix and the video signal provided for each of the pixel electrodes and transmitted by the data signal wiring.
  • the first display data is taken in via the first supply wiring
  • the second display data for realizing the second display state is taken in via the second supply wiring
  • the display data for storing the respective data
  • a counter electrode that is opposed to the pixel electrode of the active matrix substrate and applies a counter voltage to the light diffusion liquid crystal in synchronization with a voltage applied to the pixel electrode.
  • a period in which a voltage corresponding to the video signal formed and applied to the data signal wiring is applied to the pixel electrode is a video signal writing period, and a period until the next video signal writing period is a video signal non-writing period. Then, in the non-writing period, a signal having the same phase or opposite phase to the signal supplied to the counter electrode is supplied to the data signal wiring.
  • a signal having the same or opposite phase as the signal supplied to the counter electrode is supplied to the data signal line.
  • the potential difference between the data signal wiring and the counter electrode can be made constant. As a result, it is possible to suppress the occurrence of flicker due to the potential difference being not constant on the data signal wiring during the non-writing period, so that it is possible to suppress the display quality from being deteriorated due to the flicker.
  • the liquid crystal display device of the present invention includes an active matrix substrate on which pixel electrodes arranged in a matrix corresponding to intersections of a plurality of data signal lines and a plurality of scanning signal lines are formed, and the active matrix substrate A counter substrate facing the pixel electrode and formed with a counter electrode for applying a counter voltage to the liquid crystal in synchronization with a voltage applied to the pixel electrode is sealed between the active matrix substrate and the counter substrate.
  • a period in which a voltage corresponding to a video signal supplied to the data signal wiring is applied to the pixel electrode is a video signal writing period, and a period until the next video signal writing period is a non-video signal.
  • a signal having the same or opposite phase as the signal supplied to the counter electrode is supplied to the data signal wiring in the non-writing period. It is, in the non-write period of the video signal to the data signal lines, the relative data signal line, the signal of the signal in phase or opposite phase being supplied to the counter electrode is supplied.
  • the potential difference between the data signal wiring and the counter electrode can be made constant, so that the occurrence of flicker due to the non-constant potential difference on the data signal wiring can be suppressed during the non-writing period. .
  • the display quality can be prevented from being lowered due to flicker.
  • FIG. 1 is a block diagram illustrating a schematic configuration of a liquid crystal display device according to an embodiment of the present invention. It is a schematic plan view which shows the principal part of the active area of the liquid crystal display device shown in FIG. It is a schematic block diagram of 1 pixel of the active area shown in FIG. It is a schematic sectional drawing of the active area shown in FIG. (A) is a waveform diagram showing a potential difference between a counter electrode and a pixel electrode, (b) is a conventional waveform diagram showing a potential difference between the counter electrode and a source bus line, and (c) is a counter electrode. It is a waveform diagram of the present invention showing a potential difference between the source bus line and the source bus line.
  • FIG. 6 is a waveform diagram showing inversion periods of a counter electrode application signal Vcom, a black writing signal VA, and a white writing signal VB.
  • FIG. 2 is a circuit diagram of a polarity controller provided in the liquid crystal display device shown in FIG. 1.
  • FIG. 2 is a circuit diagram showing an example of a binary driver circuit provided in the liquid crystal display device shown in FIG. 1.
  • FIG. 9 is a timing chart of various signals when driving the binary driver having the circuit configuration shown in FIG. 8.
  • FIG. FIG. 6 is a circuit diagram showing another example of a binary driver circuit provided in the liquid crystal display device shown in FIG. 1. It is a timing chart of various signals at the time of driving the binary driver of the circuit configuration shown in FIG. It is a block diagram which shows schematic structure of the other liquid crystal display device which concerns on embodiment of this invention.
  • FIG. 1 is a schematic block diagram showing an example of the liquid crystal display device of the present invention.
  • FIG. 2 is a schematic configuration diagram of a display panel of the liquid crystal display device.
  • FIG. 3 is a schematic configuration diagram of one pixel of the display panel.
  • the liquid crystal display device 1 includes a display panel 10 and a power supply 20 for driving the display panel 10.
  • the display panel 10 includes an active area 11, a gate driver (scanning signal wiring driving circuit) 12, a binary driver 13 (data signal wiring driving circuit), a polarity controller (signal supply circuit) 14, and a timing generator 15.
  • a pixel electrode 101 is formed through a switching element 102 at an intersection between a source bus line Sn (data signal wiring) and a gate bus line Gn (scanning signal wiring).
  • the pixels are arranged in a matrix.
  • a pixel memory circuit to be described later is omitted for convenience of explanation.
  • the pixel includes a switching element 102 composed of a CMOS TFT composed of a P-type TFT and an N-type TFT provided at an intersection of a source bus line Sn and a gate bus line Gn, and the switching
  • the memory circuit 105 is connected to the drain electrode of the element 102, and the pixel electrode 101 is connected to the output side of the memory circuit 105 via the switching element 106.
  • a liquid crystal capacitor 104 is interposed between the pixel electrode 101 and the counter electrode 103, and a potential difference between the applied voltage of the pixel electrode 101 and the applied voltage of the counter electrode 103 is applied to the liquid crystal capacitor 104 as a liquid crystal applied voltage. ing.
  • the switching element 106 converts a signal supplied to the pixel electrode 101 into a black writing signal (hereinafter referred to as a black writing signal VA) and a white writing signal.
  • a black writing signal VA a black writing signal
  • a white writing signal VB a white writing signal
  • the switching element 102 is turned on by the scanning signal applied to the gate bus line Gn, so that the video signal applied to the source bus line Sn is output to the memory circuit 105.
  • the scanning signal is applied to the gate bus line Gn by the gate driver 12, and the video signal is applied to the source bus line Sn by the binary driver 13.
  • the gate driver 12 applies an active scanning signal to each gate bus line based on the gate start pulse signal GSP and the gate clock signal GCK in order to sequentially select each gate bus line by one horizontal scanning period. Are repeated with one vertical scanning period as a cycle. That is, the gate driver 12 adopts a driving method in which each gate bus line Gn is sequentially selected by one horizontal scanning period.
  • the binary driver 13 receives the digital video signal DV, the source start pulse signal SSP, the source clock signals SCK and SCKB, and the mode signals MODE and MODEB, and applies a driving video signal to each source bus line.
  • the binary driver 13 is further supplied with the black writing signal VA and the white writing signal VB described above. Instead of the video signal, the black writing signal VA or the white writing signal VB is supplied to the source bus line Sn. It is designed to be applied.
  • the black writing signal VA and the white writing signal VB are output from the polarity controller 14. As described above, the polarity controller 14 outputs the black writing signal VA and the white writing signal VB to the active area 11 in order to apply to the pixel electrode 101.
  • the polarity controller 14 uses the frame signal FRAME output from the timing generator 15, the power supply VDD and the power supply VSS supplied from the power supply 20, and the counter electrode application signal Vcom, the black write signal VA, and the white write signal. A signal VB is generated. Details of the polarity controller 14 will be described later.
  • the timing generator 15 receives image data DAT and a display mode instruction signal M sent from the outside, generates a digital video signal DV, and outputs it to the binary driver 13.
  • the timing generator 15 receives the mode signal MODE, MODEB, the frame signal FRAME, the source clock (shift of the data signal line driver) from the serial data SI, the serial clock SCLK, and the serial chip select signal SCS input from the outside of the panel. Timing signals as clock signals for operating the registers) SCK / SCKB, source start pulse (horizontal period timing signal) SSP, gate clock (timing signal input to the shift register of the gate signal line driver) GCK, and gate start pulse GSP Generate.
  • a source start pulse SSP is supplied from the timing generator 15 to the binary driver 13
  • a gate clock GCK and a gate start pulse GSP are supplied from the timing generator 15 to the gate driver 12, and from the timing generator 15 to the polarity controller 14,
  • a frame signal FRAME is supplied.
  • the source clocks SCK and SCKB are clock signals for operating the shift register of the binary driver 13.
  • the display panel 10 has a liquid crystal capacitor 104 sealed between an active matrix substrate 10a and a counter substrate 10b.
  • the active matrix substrate 10a is formed with pixel electrodes 101 arranged in a matrix corresponding to intersections of a plurality of source bus lines Sn and a plurality of gate bus lines Gn (not shown).
  • a counter electrode 103 is formed on the counter substrate 10b so as to face the pixel electrode 101 of the active matrix substrate 10a and apply a counter voltage to the liquid crystal capacitor 104 in synchronization with a voltage applied to the pixel electrode 101. Yes.
  • 5 (a) to 5 (c) are timing charts showing potential differences between the counter electrode 103 and the pixel electrode 101 and between the counter electrode and the source bus line Sn in the non-writing period.
  • the pixel electrode 101 and the counter electrode 103 are applied with a signal (voltage) that is inverted at a constant period so that the liquid crystal is not deteriorated. Then, as shown in FIG. 5A, the pixel electrode 101 and the counter electrode 103 are applied with signals (in-phase signals) that are inverted at the same timing and at the same timing so as to always have a constant potential difference. ing.
  • the voltage applied to the liquid crystal interposed between the pixel electrode 101 and the counter electrode 103 that is, the liquid crystal applied voltage is 0 V (white display: normally white). Case). For this reason, flicker due to a variation in potential difference does not occur between the pixel electrode 101 and the counter electrode 103.
  • the source bus line Sn which is an output signal line of the binary driver 13 is always “H” (high level signal for selecting black display) or “L” (low level signal for selecting white display). Signal) is fixed to either signal. For this reason, if a signal in which the counter electrode 103 is inverting at a constant cycle as described above is applied, as shown in FIG. 5B, between the source bus line Sn and the counter electrode 103, The potential difference fluctuates.
  • the voltage applied to the liquid crystal capacitor 104 interposed between the source bus line Sn and the counter electrode 103 that is, the liquid crystal applied voltage repeats 0V and 5V. become. For this reason, flicker is caused between the source bus line Sn and the counter electrode 103 due to a change in potential difference.
  • a signal that makes the potential difference between the source bus line Sn and the counter electrode 103 constant is supplied to the source bus line Sn.
  • the signal supplied to the source bus line Sn may be an in-phase signal that is inverted to the same polarity or a reverse-phase signal that is inverted to the opposite polarity at the same timing as the signal supplied to the counter electrode 103.
  • the black writing signal VA or the white writing signal VB output from the above-described polarity controller 14 is used as such an in-phase or anti-phase signal.
  • FIG. 5C shows an example in which the white write signal VB is supplied to the source bus line Sn. That is, the potential difference between the source bus line Sn and the counter electrode 103 is 0V, that is, the liquid crystal applied voltage is kept constant at 0V.
  • the counter electrode application signal Vcom, the black writing signal VA, and the white writing signal VB are all inverted with a width of 0V to 5V.
  • FIG. 6 shows that the counter electrode application signal Vcom and the white writing signal VB are in phase, and the counter electrode application signal Vcom and the black writing signal VA are in opposite phases. That is, since the signal in phase with the counter electrode application signal Vcom is the white writing signal VB, as described above, the white writing signal VB is supplied to the source bus line Sn during the non-writing period. The potential difference between the electrode 103 and the source bus line Sn is kept constant (0 V).
  • a period in which a voltage corresponding to the video signal supplied to the source bus line Sn is applied to the pixel electrode 101 is a video signal writing period, and a period until the next video signal writing period is a non-video signal. Write period.
  • the signal supplied to the counter electrode 103 is in phase with or opposite to that of the source bus line Sn.
  • the potential difference between the source bus line Sn and the counter electrode 103 can be made constant. As a result, it is possible to suppress the occurrence of flicker due to the potential difference being not constant on the source bus line Sn during the non-writing period, so that it is possible to suppress the deterioration of display quality due to the flicker.
  • the generation of the counter electrode application signal Vcom, the black writing signal VA, and the white writing signal VB is performed by the polarity controller 14 as described above.
  • FIG. 7 shows a specific circuit of the polarity controller 14.
  • the frame signal FRAME is input as a control signal for the switches SW1, SW2, and SW3 corresponding to the C contacts through the buffer.
  • the switches SW1, SW2, and SW3 are switches that sequentially output the voltages of the counter electrode application signal Vcom, the black writing signal VA, and the white writing signal VB.
  • the switches SW1, SW2, and SW3 select the power source so that the combination of the power source VDD, VSS, and VDD and the combination of the power source VSS, VDD, and VSS are sequentially switched. To do.
  • the polarity controller 14 outputs the counter electrode application signal Vcom, the black writing signal VA, and the white writing signal VB at the inversion cycle as shown in FIG.
  • FIG. 8 is a block diagram showing a schematic configuration of the binary driver 13.
  • FIG. 9 shows a timing chart of signals in the binary driver 13 shown in FIG.
  • the binary driver 13 is provided with 241 shift registers, which is one stage added to 240 corresponding to the number of pixels (240) beside the active area 11. Except for the 0th stage shift register, the outputs of the 1st stage shift register to the 240th stage shift register are respectively connected to latch circuits for latching the digital video signal DV.
  • source clock signals SCK and SCKB are input to each shift register, and outputs from the first-stage shift register to the 240th-stage shift register are connected to corresponding latch circuits.
  • the latch circuit Based on the output of the shift register, the latch circuit latches the digital video signal DV and outputs it to the signal line SL ⁇ n> connected to the source bus line Sn.
  • n is an integer of 1 to 240.
  • the binary driver 13 switches the digital video signal DV and the white writing signal VB between the latch circuit and the signal wiring SL ⁇ n> that is the output destination. Is provided.
  • the switching section A is provided with a switching element composed of two CMOS TFTs in series, and switches between the digital video signal DV and the white writing signal VB.
  • the source electrode of the switching element in the previous stage is connected to the white writing signal VB
  • the two gate electrodes are connected to the mode signal MODE and the inverted mode signal MODEB, respectively
  • the drain electrode is the signal wiring.
  • the output of the latch circuit is connected to the source electrode of the switching element at the subsequent stage, the two gate electrodes are connected to the mode signal MODEB and its inverted signal, the mode signal MODE, respectively, and the drain electrode is connected to the signal line SL. .
  • the switching unit A when the mode signal MODE is at the “High” level, the mode signal MODEB is naturally at the “Low” level, so that the switching element at the front stage is turned on and the switching element at the rear stage is turned off. Become. In this case, the white writing signal VB is output to the signal line SL.
  • the mode signal MODE is at the “Low” level
  • the mode signal MODEB is at the “High” level, so that the switching element at the front stage is turned off and the switching element at the rear stage is turned on.
  • the digital video signal DV latched by the latch circuit is output to the signal line SL.
  • the timing at which the mode signal MODE becomes “High” level is as shown in FIG. 9 in which data for one frame is written and data is not written until the start of data writing for the next frame (in the figure, data in the region B).
  • the retention period is equivalent).
  • FIG. 9 shows that in the region B, the potential difference (Vcom / VB) is constant. That is, it shows that the potential difference has a relationship as shown in FIG.
  • the signal to be switched is the white writing signal VB having the same phase as the counter electrode application signal Vcom. However, as shown in FIG. It may be a black writing signal VA having a phase opposite to that of the working signal Vcom.
  • a high-level signal black writing signal VA
  • a low-level signal white writing
  • Signal VB a signal having the same phase (or opposite phase) as the signal supplied to the counter electrode 103 is switched and output, so that the signal between the source bus line Sn and the counter electrode 103 is output. It is possible to make the potential difference generated in step 1 constant immediately after the start of the non-writing period. As a result, the flicker generated during the non-writing period can be reliably suppressed, and the display quality can be further improved.
  • the signal supplied from the polarity controller 14 to the pixel electrode 101 is a signal that is output to the source bus line Sn during the non-writing period
  • the signal can be shared. Accordingly, it is not necessary to separately provide a signal to be output to the source bus line Sn during the non-writing period, and the existing circuit can be used as it is, so that the manufacturing cost can be reduced and the apparatus can be downsized. It becomes possible.
  • the digital video signal DV is latched by a latch circuit using a shift register.
  • the present invention is not limited to this.
  • the binary driver 113 shown in FIG. As described above, the digital video signal DV may be latched by a latch circuit without using a shift register.
  • the digital video signal DV is divided into 80 groups (V1 to V80) of 3 each. That is, since one digital video signal DV (V1) is output to three latch circuits, three types of switching signals SSW1, SSW2, and SSW3 for the source are input to each latch circuit.
  • the switching signals SSW1, SSW2, and SSW3 are generated by a driver IC for driving the display panel 10 and supplied to the display panel 10 (not shown).
  • the binary driver 113 shown in FIG. 10 also includes a switching unit C that switches between the output of the latch circuit and the white writing signal VB, similarly to the binary driver 13 shown in FIG. Since the switching unit C has the same configuration as the switching unit A shown in FIG. 8, detailed description thereof is omitted.
  • the mode signal MODEB when the mode signal MODE is “High” level, the mode signal MODEB is naturally “Low”. Since it is “level”, the switching element at the front stage is turned on and the switching element at the rear stage is turned off. In this case, the white writing signal VB is output to the signal line SL. Further, when the mode signal MODE is at the “Low” level, the mode signal MODEB is at the “High” level, so that the preceding switching element is turned off and the succeeding switching element is turned on. In this case, the digital video signal DV (V1) latched by the latch circuit is output to the signal line SL.
  • FIG. 11 shows that in the region D, the potential difference (Vcom / VB) is constant. That is, it shows that the potential difference has a relationship as shown in FIG.
  • the present invention is effective when no black matrix is provided between the pixel electrodes 101, a black matrix may be provided.
  • the black matrix serves to conceal the flicker so that the flicker generated on the source bus line Sn is difficult to see.
  • the black matrix is not properly arranged, the flicker may be seen. Therefore, any invention that suppresses flicker, such as the present invention, can be applied regardless of the presence or absence of a black matrix.
  • the present invention is particularly effective when the black matrix is not provided between the pixel electrodes 101. Therefore, the present invention is effective for a liquid crystal display device having a narrow pitch pixel arrangement in which no black matrix is provided.
  • the liquid crystal is not particularly limited.
  • a light diffusion liquid crystal used in a liquid crystal display device using a display panel provided with a pixel memory circuit may be used.
  • it is suitable for a liquid crystal display device that achieves high resolution on a display screen with a limited space such as a liquid crystal display device used for a small portable terminal.
  • liquid crystal display device using the light diffusing liquid crystal although not shown, for example, a first display state in which liquid crystal molecules are irregularly arranged between the active matrix substrate and the counter substrate when no voltage is applied. And a light diffusing liquid crystal in a second display state in which the arrangement of liquid crystal molecules is in a regular state when a voltage is applied.
  • the active matrix substrate includes a plurality of data signal wirings for transmitting a plurality of video signals representing an image to be displayed, a plurality of scanning signal wirings crossing the plurality of data signal wirings, and the plurality of data Based on the pixel electrodes arranged in a matrix corresponding to the intersections of the signal wiring and the plurality of scanning signal wirings, and the video signal provided for each pixel electrode and transmitted by the data signal wiring, First display data for realizing the first display state is taken in via the first supply wiring, and second display data for realizing the second display state is taken in via the second supply wiring, A display data storage circuit for storing each data is formed.
  • the counter substrate is formed with a counter electrode that faces the pixel electrode of the active matrix substrate and applies a counter voltage to the light diffusion liquid crystal in synchronization with a voltage applied to the pixel electrode.
  • the period in which a voltage corresponding to the video signal supplied to the data signal wiring is applied to the pixel electrode is similar to the liquid crystal display device having the configuration shown in FIG.
  • the writing period and the period until the writing period of the next video signal are set as the non-writing period of the video signal, in the non-writing period, the same phase as the signal supplied to the counter electrode with respect to the data signal wiring (or The configuration is such that a signal of the opposite phase is supplied.
  • the gate driver 12 employs a driving method in which each gate bus line is sequentially selected by one horizontal scanning period.
  • the present invention is not limited to the line sequential drive type gate driver as described above, but can be applied to a liquid crystal display device employing a line address drive type gate driver that selectively drives only the gate lines that need to be rewritten. .
  • FIG. 12 shows a liquid crystal display device 1 having a gate driver that employs a line address driving method.
  • the configuration of the liquid crystal display device 1 shown in FIG. 12 is almost the same as that of the liquid crystal display device 1 shown in FIG. 1, and the signal input to the gate driver 12 is changed. That is, in FIG. 1, the gate start pulse signal GSP and the gate clock signal GCK are input from the timing generator 15 to the gate driver 12, whereas in FIG. GSEL is input.
  • the signal GEN and the signal GSEL are generated by decoding address data indicating position information of a pixel electrode to which a video signal is written from the serial data SI.
  • the signal GEN and a decoding circuit that generates the signal GSEL are arranged in the timing generator 15.
  • the signal GEN indicates a signal for controlling a period during which the gate bus line is selected.
  • the signal GEN “Low”, all lines are inactive.
  • the signal GSEL is a signal obtained by decoding the input address.
  • the gate driver 12 selectively drives the gate bus line Gn in accordance with the position information of the pixel electrode to which the video signal is to be written. That is, only the gate bus line Gn that needs to be rewritten is driven.
  • the black writing signal VA As described above, in the liquid crystal display device 1 shown in FIGS. 1 and 12, in the display panel 10, the black writing signal VA, the white writing signal VB, the mode signal MODE, the mode signal MODEB, and the counter electrode application signal are provided.
  • Vcom is generated inside the display panel 10
  • the present invention is not limited to this, and it may be generated by a driver IC provided outside the display panel 10.
  • a binary driver that outputs either a high level signal or a low level signal to the data signal wiring is provided, and the binary driver is provided. Is in phase with the signal supplied to the counter electrode from either a high-level signal or a low-level signal at the timing when the data signal wiring is switched from the writing period to the non-writing period. Or it is preferable to switch to a reverse phase and output.
  • the binary driver causes the data signal wiring to be switched from the high level signal or the low level signal to the counter electrode at the timing of switching from the writing period to the non-writing period. Since a signal having the same phase or opposite phase to the supplied signal is switched and outputted, the potential difference generated between the data signal wiring and the counter electrode can be made constant immediately after the start of the non-writing period. As a result, flicker occurring during the non-writing period can be reliably suppressed, and the display quality can be further improved.
  • a signal supply circuit that supplies a signal in phase or opposite phase to a signal applied to the counter electrode to the pixel electrode is provided, and the binary driver receives a signal supplied from the signal supply circuit to the pixel electrode, It is preferable that the signal be output to the data signal wiring during the non-writing period.
  • the signal supplied from the signal supply circuit to the pixel electrode is a signal output to the data signal wiring in the non-writing period, so that the signal can be shared.
  • the existing circuit can be used as it is, so that the manufacturing cost can be reduced and the apparatus can be downsized. It becomes.
  • a scanning signal line driving circuit for driving the scanning signal wiring is provided, and the scanning signal line driving circuit selectively drives the scanning signal wiring according to position information of a pixel electrode to which a video signal is written. It is preferable to do.
  • the liquid crystal display device having the above configuration can be applied to various electronic devices.
  • it is preferably mounted on a liquid crystal television in which improvement in display quality is essential. Further, it may be used as a monitor for a personal computer. If the liquid crystal display device of the present invention is used as an electronic device provided with a display device, display with high display quality without flicker is always performed. It becomes possible to make it.
  • the present invention can be used for all liquid crystal display devices in which the potential difference between the counter electrode and the pixel electrode is a liquid crystal applied voltage, and in particular, a liquid crystal in which the pixel pitch is narrow and the black matrix is not provided on the data signal wiring.
  • the present invention can be used for a display device and an electronic device including the display device.

Abstract

Provided is a liquid crystal display device in which, in the case where a period during which a voltage corresponding to a video signal supplied to a source bus line (Sn) is applied to a pixel electrode (101) is set as a write period of the video signal, and a period until the write period of the next video signal is set as a non-write period of the video signal, an in-phase signal or a reverse phase signal of a signal supplied to an opposite electrode (103) is supplied to the source bus line (Sn) during the non-write period. As a result, it becomes possible to keep a potential difference caused between the source bus line (Sn) and the opposite electrode (103) constant. Thus, a flicker caused between the source bus line and the opposite electrode is prevented, thereby achieving a liquid crystal display device having high display quality.

Description

液晶表示装置、液晶表示装置の駆動方法並びに電子機器Liquid crystal display device, driving method of liquid crystal display device, and electronic apparatus
 本発明は、メモリ機能を有する液晶表示装置に関する。 The present invention relates to a liquid crystal display device having a memory function.
 近年、携帯電話に代表される携帯端末においては、多機能化に伴う消費電力の増加が問題になっている。そこで、携帯端末において少しでも消費電力を低減させるために、特に電力消費の多い表示部を構成している液晶表示装置における省電力化が図られている。 In recent years, in mobile terminals typified by mobile phones, an increase in power consumption due to multi-function has become a problem. Therefore, in order to reduce power consumption even a little in the portable terminal, power saving is achieved in a liquid crystal display device that constitutes a display unit that consumes particularly high power.
 液晶表示装置において、消費電力を低減するために、例えば、携帯電話において時刻表示など画像変化の少ない画面の表示が行われる際に、画素を表示するための画素形成部内の液晶容量に映像信号を書き込む周期を長くすることが行われている。 In a liquid crystal display device, in order to reduce power consumption, for example, when displaying a screen with little image change such as a time display on a mobile phone, a video signal is supplied to a liquid crystal capacitor in a pixel formation unit for displaying pixels. The writing cycle is lengthened.
 ところが、液晶容量への映像信号の書込み周期を長くすると、液晶容量において長時間、印加された電圧が保持されなければならない。このため、上述のような液晶表示装置には、液晶容量に印加された電圧が保持されるように、各画素形成部にメモリ機能を有する回路(以下、画素メモリ回路と称する)が設けられている。 However, if the writing period of the video signal to the liquid crystal capacitor is lengthened, the applied voltage must be held for a long time in the liquid crystal capacitor. For this reason, in the liquid crystal display device as described above, a circuit having a memory function (hereinafter referred to as a pixel memory circuit) is provided in each pixel formation portion so that the voltage applied to the liquid crystal capacitance is maintained. Yes.
 このような画素メモリ回路を内蔵した液晶表示装置は、例えば、特許文献1に開示された表示装置を挙げることができる。 Examples of the liquid crystal display device incorporating such a pixel memory circuit include the display device disclosed in Patent Document 1.
日本国公開特許公報「特開2007-286237(2007年11月1日公開)」Japanese Patent Publication “JP 2007-286237 (published Nov. 1, 2007)”
 ところで、一般的な液晶表示装置において、ソースバスラインは、画素電極間に設けられており、その上にブラックマトリクスが形成されているので、ソースバスラインと対向電極との間で生じる電位差に起因する、当該ソースバスライン上のフリッカを上記ブラックマトリクスにより見えないように隠すことができる。 By the way, in a general liquid crystal display device, a source bus line is provided between pixel electrodes, and a black matrix is formed on the source bus line, resulting in a potential difference generated between the source bus line and the counter electrode. Thus, the flicker on the source bus line can be hidden from being seen by the black matrix.
 ところが、上述のように、ブラックマトリクスによりソースバスライン上のフリッカを見えないようすることが可能であるが、ブラックマトリクスを設けないような場合では、ソースバスラインと対向電極との間で生じる電位差が一定でないとフリッカが見えてしまう。 However, as described above, it is possible to hide the flicker on the source bus line by the black matrix, but in the case where the black matrix is not provided, the potential difference generated between the source bus line and the counter electrode. If is not constant, flicker will be visible.
 また、ソースバスライン上にブラックマトリクスが設けられていても、きちんとした位置に設けられていなければ、ソースバスライン上で生じるフリッカが見えてしまう。つまり、ソースバスライン上でフリッカが生じてしまうと、ブラックマトリクスが設けられていたとしてもフリッカが見えてしまう虞がある。 Also, even if a black matrix is provided on the source bus line, flicker generated on the source bus line can be seen if it is not provided at a proper position. That is, if flicker occurs on the source bus line, the flicker may be seen even if a black matrix is provided.
 通常、画素電極101と対向電極103は、液晶が劣化しないように一定周期で反転動作している信号(電圧)が印加されている。そして、画素電極101と対向電極103は、例えば図5の(a)に示すように、常に一定の電位差となるように同相または逆相の信号が印加されている。ここで、図5の(a)に示す例では、画素電極101と対向電極103との間に介在している液晶に印加される電圧、すなわち液晶印加電圧は0V(白表示:ノーマリホワイトの場合)となる。このため、画素電極101と対向電極103との間では電位差の変動に起因するフリッカは生じない。 Usually, the pixel electrode 101 and the counter electrode 103 are applied with a signal (voltage) that is inverted at a constant period so that the liquid crystal is not deteriorated. For example, as shown in FIG. 5A, in-phase or anti-phase signals are applied to the pixel electrode 101 and the counter electrode 103 so as to always have a constant potential difference. In the example shown in FIG. 5A, the voltage applied to the liquid crystal interposed between the pixel electrode 101 and the counter electrode 103, that is, the liquid crystal applied voltage is 0 V (white display: normally white). Case). For this reason, flicker due to a variation in potential difference does not occur between the pixel electrode 101 and the counter electrode 103.
 これに対して、バイナリドライバの出力信号ラインであるソースバスラインに供給される信号は、常に、”H”(黒表示を選択するハイレベルの信号)か、”L”(白表示を選択するローレベルの信号)かのいずれかの信号に固定されている。このため、対向電極103に、上述したように一定周期で反転動作している信号が印加されていれば、例えば図5の(b)に示すように、ソースバスラインSnと対向電極103との間に生じる電位差は変動する。ここで、図5の(b)に示す例では、ソースバスラインSnと対向電極103との間に介在している液晶に印加される電圧、すなわち液晶印加電圧は0Vと5Vを繰り返すようになる。このため、ソースバスラインSnと対向電極103との間では電位差の変動に起因するフリッカが生じる。 On the other hand, the signal supplied to the source bus line which is an output signal line of the binary driver is always “H” (high level signal for selecting black display) or “L” (white display is selected). Low level signal) is fixed to either signal. Therefore, if a signal that is inverted at a constant cycle as described above is applied to the counter electrode 103, for example, as shown in FIG. 5B, the source bus line Sn and the counter electrode 103 The potential difference between them varies. Here, in the example shown in FIG. 5B, the voltage applied to the liquid crystal interposed between the source bus line Sn and the counter electrode 103, that is, the liquid crystal applied voltage repeats 0V and 5V. . For this reason, flicker is caused between the source bus line Sn and the counter electrode 103 due to a change in potential difference.
 従って、ソースバスラインSnと対向電極103との間の電位差に変動が生じてしまうとフリッカが発生し、ブラックマトリクスの有無に関わらず見えてしまう場合があり、表示品位を低下させるという問題が生じる。 Therefore, if the potential difference between the source bus line Sn and the counter electrode 103 varies, flicker occurs, and it may be visible regardless of the presence or absence of a black matrix, resulting in a problem of lowering display quality. .
 本願発明は、上記の問題点に鑑みなされたものであって、その目的は、ソースバスラインと対向電極との間で生じるフリッカを抑制することで、ソースバスライン上にブラックマトリックスの有無に関わらず、フリッカの見えない表示品位の高い液晶表示装置を提供することにある。 The present invention has been made in view of the above-described problems, and its object is to suppress flicker generated between the source bus line and the counter electrode, so that whether or not there is a black matrix on the source bus line. Accordingly, an object of the present invention is to provide a liquid crystal display device with high display quality in which flicker is not visible.
 上記の課題を解決するために、アクティブマトリクス基板と対向基板との間に液晶容量が封入された液晶表示装置において、上記アクティブマトリクス基板には、複数のデータ信号配線と複数の走査信号配線との交差部にそれぞれ対応してマトリクス状に配置された画素電極が形成され、上記対向基板には、上記アクティブマトリクス基板の画素電極に対向し、当該画素電極に印加される電圧に同期して対向電圧を上記液晶容量に印加する対向電極が形成され、上記データ信号配線に供給される映像信号に応じた電圧が上記画素電極に印加される期間を映像信号の書込み期間、次の映像信号の書込み期間までの期間を映像信号の非書込み期間としたとき、上記非書込み期間に、上記データ信号配線に対して上記対向電極に供給されている信号と同相または逆相の信号が供給されることを特徴としている。 In order to solve the above problems, in a liquid crystal display device in which a liquid crystal capacitor is sealed between an active matrix substrate and a counter substrate, the active matrix substrate includes a plurality of data signal lines and a plurality of scanning signal lines. Pixel electrodes arranged in a matrix corresponding to the intersecting portions are formed, and the counter substrate is opposed to the pixel electrode of the active matrix substrate, and the counter voltage is synchronized with the voltage applied to the pixel electrode. Is applied to the liquid crystal capacitor, and a period in which a voltage corresponding to a video signal supplied to the data signal wiring is applied to the pixel electrode is a video signal writing period, and a next video signal writing period. When the video signal non-writing period is the period until the signal signal supplied to the counter electrode with respect to the data signal wiring in the non-writing period. Signal-phase or reverse phase is characterized by being supplied.
 また、本発明の液晶表示装置の駆動方法は、アクティブマトリクス基板と対向基板との間に液晶容量が封入された液晶表示装置の駆動方において、上記アクティブマトリクス基板には、複数のデータ信号配線と複数の走査信号配線との交差部にそれぞれ対応してマトリクス状に配置された画素電極が形成され、上記対向基板には、上記アクティブマトリクス基板の画素電極に対向し、当該画素電極に印加される電圧に同期して対向電圧を上記液晶容量に印加する対向電極が形成され、上記データ信号配線に供給される映像信号に応じた電圧が上記画素電極に印加される期間を映像信号の書込み期間、次の映像信号の書込み期間までの期間を映像信号の非書込み期間としたとき、上記非書込み期間に、上記データ信号配線に対して上記対向電極に供給されている信号と同相または逆相の信号を供給することを特徴としている。 Also, the driving method of the liquid crystal display device according to the present invention is a method of driving a liquid crystal display device in which a liquid crystal capacitor is sealed between an active matrix substrate and a counter substrate. Pixel electrodes arranged in a matrix form corresponding to the intersections with the plurality of scanning signal wirings are formed, and are applied to the pixel electrodes facing the pixel electrodes of the active matrix substrate on the counter substrate. A counter electrode that applies a counter voltage to the liquid crystal capacitor in synchronization with a voltage is formed, and a period in which a voltage corresponding to a video signal supplied to the data signal wiring is applied to the pixel electrode is a video signal writing period, When the period until the next video signal writing period is defined as the non-writing period of the video signal, the counter current is not connected to the data signal wiring during the non-writing period. It is characterized by supplying a signal of the same phase or reverse phase being supplied to.
 上記の構成によれば、データ信号配線に対する映像信号の非書込み期間に、当該データ信号線に対して、上記対向電極に供給されている信号と同相または逆相の信号が供給されることで、データ信号配線と上記対向電極との間の電位差を一定にすることができる。これにより、上記非書込み期間に、データ信号配線上において、電位差が一定でないことに起因するフリッカの発生を抑制できるので、フリッカによる表示品位の低下を抑制することができる。 According to the above configuration, in the non-writing period of the video signal with respect to the data signal wiring, a signal having the same or opposite phase as the signal supplied to the counter electrode is supplied to the data signal line. The potential difference between the data signal wiring and the counter electrode can be made constant. As a result, it is possible to suppress the occurrence of flicker due to the potential difference being not constant on the data signal wiring during the non-writing period, so that it is possible to suppress the display quality from being deteriorated due to the flicker.
 本発明の他の液晶表示装置は、アクティブマトリクス基板と対向基板との間に、電圧無印加時に液晶分子の配列が不規則な状態となる第1表示状態と、電圧印加時に液晶分子の配列が規則的な状態となる第2表示状態となる光拡散型液晶を封入してなる液晶表示装置において、上記アクティブマトリクス基板には、表示すべき画像を表す複数の映像信号をそれぞれ伝達するための複数のデータ信号配線と、上記複数のデータ信号配線と交差する複数の走査信号配線と、上記複数のデータ信号配線と上記複数の走査信号配線との交差点にそれぞれ対応してマトリクス状に配置された画素電極と、上記画素電極毎に設けられ、上記データ信号配線によって伝達される映像信号に基づいて、上記第1表示状態を実現するための第1表示データを、第1供給配線を介して取り込むと共に、上記第2表示状態を実現するための第2表示データを、第2供給配線を介して取り込み、それぞれのデータを記憶する表示データ記憶回路とが形成され、上記対向基板には、上記アクティブマトリクス基板の画素電極に対向し、当該画素電極に印加される電圧に同期して対向電圧を上記光拡散型液晶に印加する対向電極が形成され、上記データ信号配線に供給される映像信号に応じた電圧が上記画素電極に印加される期間を映像信号の書込み期間、次の映像信号の書込み期間までの期間を映像信号の非書込み期間としたとき、上記非書込み期間に、上記データ信号配線に対して上記対向電極に供給されている信号と同相または逆相の信号が供給されることを特徴としている。 Another liquid crystal display device of the present invention includes a first display state in which the arrangement of liquid crystal molecules is irregular when no voltage is applied between the active matrix substrate and the counter substrate, and the arrangement of liquid crystal molecules when a voltage is applied. In the liquid crystal display device in which the light diffusion type liquid crystal in the second display state that is in a regular state is sealed, a plurality of video signals for transmitting a plurality of video signals representing images to be displayed are transmitted to the active matrix substrate, respectively. Pixels arranged in a matrix corresponding to the intersections of the data signal wirings, the plurality of scanning signal wirings crossing the plurality of data signal wirings, and the intersections of the plurality of data signal wirings and the plurality of scanning signal wirings, respectively. First display data for realizing the first display state is provided on the basis of an image signal that is provided for each electrode and the pixel signal and is transmitted by the data signal wiring. And a display data storage circuit that takes in the second display data for realizing the second display state through the second supply wiring and stores the respective data. The counter substrate is formed with a counter electrode that faces the pixel electrode of the active matrix substrate and applies a counter voltage to the light diffusing liquid crystal in synchronization with a voltage applied to the pixel electrode. The period when the voltage corresponding to the supplied video signal is applied to the pixel electrode is the video signal writing period, and the period until the next video signal writing period is the video signal non-writing period. In addition, a signal having the same or opposite phase as the signal supplied to the counter electrode is supplied to the data signal wiring.
 また、本発明の液晶表示装置の駆動方法は、アクティブマトリクス基板と対向基板との間に、電圧無印加時に液晶分子の配列が不規則な状態となる第1表示状態と、電圧印加時に液晶分子の配列が規則的な状態となる第2表示状態となる光拡散型液晶を封入してなる液晶表示装置の駆動方法であって、上記アクティブマトリクス基板には、表示すべき画像を表す複数の映像信号をそれぞれ伝達するための複数のデータ信号配線と、上記複数のデータ信号配線と交差する複数の走査信号配線と、上記複数のデータ信号配線と上記複数の走査信号配線との交差点にそれぞれ対応してマトリクス状に配置された画素電極と、上記画素電極毎に設けられ、上記データ信号配線によって伝達される映像信号に基づいて、上記第1表示状態を実現するための第1表示データを、第1供給配線を介して取り込むと共に、上記第2表示状態を実現するための第2表示データを、第2供給配線を介して取り込み、それぞれのデータを記憶する表示データ記憶回路とが形成され、上記対向基板には、上記アクティブマトリクス基板の画素電極に対向し、当該画素電極に印加される電圧に同期して対向電圧を上記光拡散型液晶に印加する対向電極が形成され、上記データ信号配線に供給される映像信号に応じた電圧が上記画素電極に印加される期間を映像信号の書込み期間、次の映像信号の書込み期間までの期間を映像信号の非書込み期間としたとき、上記非書込み期間に、上記データ信号配線に対して上記対向電極に供給されている信号と同相または逆相の信号を供給することを特徴としている。 Further, the driving method of the liquid crystal display device according to the present invention includes a first display state in which the arrangement of liquid crystal molecules is irregular when no voltage is applied between the active matrix substrate and the counter substrate, and the liquid crystal molecules when the voltage is applied. A method of driving a liquid crystal display device in which light diffusing liquid crystal in a second display state in which the arrangement of the liquid crystal is in a regular state is sealed, and a plurality of images representing an image to be displayed are displayed on the active matrix substrate A plurality of data signal wirings for transmitting signals, a plurality of scanning signal wirings crossing the plurality of data signal wirings, and intersections of the plurality of data signal wirings and the plurality of scanning signal wirings, respectively. The first display state is realized based on the pixel electrodes arranged in a matrix and the video signal provided for each of the pixel electrodes and transmitted by the data signal wiring. The first display data is taken in via the first supply wiring, and the second display data for realizing the second display state is taken in via the second supply wiring, and the display data for storing the respective data And a counter electrode that is opposed to the pixel electrode of the active matrix substrate and applies a counter voltage to the light diffusion liquid crystal in synchronization with a voltage applied to the pixel electrode. A period in which a voltage corresponding to the video signal formed and applied to the data signal wiring is applied to the pixel electrode is a video signal writing period, and a period until the next video signal writing period is a video signal non-writing period. Then, in the non-writing period, a signal having the same phase or opposite phase to the signal supplied to the counter electrode is supplied to the data signal wiring.
 上記の構成によれば、データ信号配線に対する映像信号の非書込み期間に、当該データ信号線に対して、上記対向電極に供給されている信号と同相または逆相の信号が供給されることで、データ信号配線と上記対向電極との間の電位差を一定にすることができる。これにより、上記非書込み期間に、データ信号配線上において、電位差が一定でないことに起因するフリッカの発生を抑制できるので、フリッカによる表示品位の低下を抑制することができる。 According to the above configuration, in the non-writing period of the video signal with respect to the data signal wiring, a signal having the same or opposite phase as the signal supplied to the counter electrode is supplied to the data signal line. The potential difference between the data signal wiring and the counter electrode can be made constant. As a result, it is possible to suppress the occurrence of flicker due to the potential difference being not constant on the data signal wiring during the non-writing period, so that it is possible to suppress the display quality from being deteriorated due to the flicker.
 本発明の液晶表示装置は、複数のデータ信号配線と複数の走査信号配線との交差部にそれぞれ対応してマトリクス状に配置された画素電極が形成されたアクティブマトリクス基板と、上記アクティブマトリクス基板の画素電極に対向し、当該画素電極に印加される電圧に同期して対向電圧を上記液晶に印加する対向電極が形成された対向基板と、上記アクティブマトリクス基板と対向基板との間に封入された液晶とを備え、上記データ信号配線に供給される映像信号に応じた電圧が上記画素電極に印加される期間を映像信号の書込み期間、次の映像信号の書込み期間までの期間を映像信号の非書込み期間としたとき、上記非書込み期間に、上記データ信号配線に対して上記対向電極に供給されている信号と同相または逆相の信号が供給されることで、データ信号配線に対する映像信号の非書込み期間に、当該データ信号線に対して、上記対向電極に供給されている信号と同相または逆相の信号が供給される。これにより、データ信号配線と上記対向電極との間の電位差を一定にすることができるので、上記非書込み期間に、データ信号配線上において、電位差が一定でないことに起因するフリッカの発生を抑制できる。この結果、フリッカによる表示品位の低下を抑制することができるという効果を奏する。 The liquid crystal display device of the present invention includes an active matrix substrate on which pixel electrodes arranged in a matrix corresponding to intersections of a plurality of data signal lines and a plurality of scanning signal lines are formed, and the active matrix substrate A counter substrate facing the pixel electrode and formed with a counter electrode for applying a counter voltage to the liquid crystal in synchronization with a voltage applied to the pixel electrode is sealed between the active matrix substrate and the counter substrate. A period in which a voltage corresponding to a video signal supplied to the data signal wiring is applied to the pixel electrode is a video signal writing period, and a period until the next video signal writing period is a non-video signal. When the writing period is set, a signal having the same or opposite phase as the signal supplied to the counter electrode is supplied to the data signal wiring in the non-writing period. It is, in the non-write period of the video signal to the data signal lines, the relative data signal line, the signal of the signal in phase or opposite phase being supplied to the counter electrode is supplied. As a result, the potential difference between the data signal wiring and the counter electrode can be made constant, so that the occurrence of flicker due to the non-constant potential difference on the data signal wiring can be suppressed during the non-writing period. . As a result, the display quality can be prevented from being lowered due to flicker.
本発明の実施形態に係る液晶表示装置の概略構成を示すブロック図である。1 is a block diagram illustrating a schematic configuration of a liquid crystal display device according to an embodiment of the present invention. 図1に示す液晶表示装置のアクティブエリアの要部を示す概略平面図である。It is a schematic plan view which shows the principal part of the active area of the liquid crystal display device shown in FIG. 図2に示すアクティブエリアの1画素の概略構成図である。It is a schematic block diagram of 1 pixel of the active area shown in FIG. 図2に示すアクティブエリアの概略断面図である。It is a schematic sectional drawing of the active area shown in FIG. (a)は、対向電極と画素電極との電位差を示す波形図であり、(b)は、対向電極とソースバスラインとの電位差を示す従来の波形図であり、(c)は、対向電極とソースバスラインとの電位差を示す本発明の波形図である。(A) is a waveform diagram showing a potential difference between a counter electrode and a pixel electrode, (b) is a conventional waveform diagram showing a potential difference between the counter electrode and a source bus line, and (c) is a counter electrode. It is a waveform diagram of the present invention showing a potential difference between the source bus line and the source bus line. 対向電極印加用信号Vcom、黒書込用信号VA、白書込用信号VBの反転周期を示す波形図である。FIG. 6 is a waveform diagram showing inversion periods of a counter electrode application signal Vcom, a black writing signal VA, and a white writing signal VB. 図1に示す液晶表示装置に備えられた極性コントローラの回路図である。FIG. 2 is a circuit diagram of a polarity controller provided in the liquid crystal display device shown in FIG. 1. 図1に示す液晶表示装置に備えられたバイナリドライバの回路の一例を示す回路図である。FIG. 2 is a circuit diagram showing an example of a binary driver circuit provided in the liquid crystal display device shown in FIG. 1. 図8に示す回路構成のバイナリドライバを駆動する際の各種信号のタイミングチャートである。FIG. 9 is a timing chart of various signals when driving the binary driver having the circuit configuration shown in FIG. 8. FIG. 図1に示す液晶表示装置に備えられたバイナリドライバの回路の他の例を示す回路図である。FIG. 6 is a circuit diagram showing another example of a binary driver circuit provided in the liquid crystal display device shown in FIG. 1. 図10に示す回路構成のバイナリドライバを駆動する際の各種信号のタイミングチャートである。It is a timing chart of various signals at the time of driving the binary driver of the circuit configuration shown in FIG. 本発明の実施形態に係る他の液晶表示装置の概略構成を示すブロック図である。It is a block diagram which shows schematic structure of the other liquid crystal display device which concerns on embodiment of this invention.
 以下、本発明の実施の形態について、詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail.
 (液晶表示装置の概要)
 図1は、本願発明の液晶表示装置の一例を示す概略ブロック図である。
(Outline of liquid crystal display)
FIG. 1 is a schematic block diagram showing an example of the liquid crystal display device of the present invention.
 図2は、液晶表示装置の表示パネルの概略構成図である。 FIG. 2 is a schematic configuration diagram of a display panel of the liquid crystal display device.
 図3は、表示パネルの1画素の概略構成図である。 FIG. 3 is a schematic configuration diagram of one pixel of the display panel.
 図1に示すように、本実施の形態に係る液晶表示装置1は、表示パネル10と、当該表示パネル10を駆動するための電源20とを備えている。 As shown in FIG. 1, the liquid crystal display device 1 according to the present embodiment includes a display panel 10 and a power supply 20 for driving the display panel 10.
 上記表示パネル10は、アクティブエリア11、ゲートドライバ(走査信号配線駆動回路)12、バイナリドライバ13(データ信号配線駆動回路)、極性コントローラ(信号供給回路)14、タイミングジェネレータ15を備えている。なお、上記アクティブエリア11における画素数は、縦×横=320ドット×240ドットとする。 The display panel 10 includes an active area 11, a gate driver (scanning signal wiring driving circuit) 12, a binary driver 13 (data signal wiring driving circuit), a polarity controller (signal supply circuit) 14, and a timing generator 15. The number of pixels in the active area 11 is vertical × horizontal = 320 dots × 240 dots.
 上記表示パネル10は、図2に示すように、ソースバスラインSn(データ信号配線)と、ゲートバスラインGn(走査信号配線)との交差部にスイッチング素子102を介して画素電極101が形成された画素がマトリクス状に配置された構造となっている。なお、図2では、説明の便宜上、後述する画素メモリ回路については省略している。 In the display panel 10, as shown in FIG. 2, a pixel electrode 101 is formed through a switching element 102 at an intersection between a source bus line Sn (data signal wiring) and a gate bus line Gn (scanning signal wiring). The pixels are arranged in a matrix. In FIG. 2, a pixel memory circuit to be described later is omitted for convenience of explanation.
 上記画素は、図3に示すように、ソースバスラインSnとゲートバスラインGnとの交差部に設けられたP型TFTとN型TFTとからなるCMOS型TFTからなるスイッチング素子102と、当該スイッチング素子102のドレイン電極に接続されたメモリ回路105と、当該メモリ回路105の出力側にスイッチング素子106を介して接続された画素電極101とを備えた構造となっている。画素電極101と対向電極103との間には液晶容量104が介在され、画素電極101の印加電圧と対向電極103の印加電圧との電位差が液晶印加電圧として液晶容量104に印加されるようになっている。 As shown in FIG. 3, the pixel includes a switching element 102 composed of a CMOS TFT composed of a P-type TFT and an N-type TFT provided at an intersection of a source bus line Sn and a gate bus line Gn, and the switching The memory circuit 105 is connected to the drain electrode of the element 102, and the pixel electrode 101 is connected to the output side of the memory circuit 105 via the switching element 106. A liquid crystal capacitor 104 is interposed between the pixel electrode 101 and the counter electrode 103, and a potential difference between the applied voltage of the pixel electrode 101 and the applied voltage of the counter electrode 103 is applied to the liquid crystal capacitor 104 as a liquid crystal applied voltage. ing.
 上記スイッチング素子106は、メモリ回路105からの出力に応じて、上記画素電極101に供給される信号を、黒書込み用の信号(以下、黒書込用信号VAと称する)と、白書込み用の信号(以下、白書込用信号VBと称する)とを切り換えるようになっている。 In response to the output from the memory circuit 105, the switching element 106 converts a signal supplied to the pixel electrode 101 into a black writing signal (hereinafter referred to as a black writing signal VA) and a white writing signal. A signal (hereinafter referred to as a white writing signal VB) is switched.
 上記画素では、ゲートバスラインGnに印加されている走査信号によりスイッチング素子102をオンすることで、ソースバスラインSnに印加されている映像信号をメモリ回路105に出力するようになっている。 In the pixel, the switching element 102 is turned on by the scanning signal applied to the gate bus line Gn, so that the video signal applied to the source bus line Sn is output to the memory circuit 105.
 上記走査信号は、上記ゲートドライバ12によりゲートバスラインGnに印加され、上記映像信号は、上記バイナリドライバ13によりソースバスラインSnに印加されている。 The scanning signal is applied to the gate bus line Gn by the gate driver 12, and the video signal is applied to the source bus line Sn by the binary driver 13.
 上記ゲートドライバ12は、各ゲートバスラインを1水平走査期間ずつ順次に選択するために、ゲートスタートパルス信号GSPとゲートクロック信号GCKとに基づいて、アクティブな走査信号の各ゲートバスラインへの印加を1垂直走査期間を周期として繰り返す。つまり、ゲートドライバ12は、各ゲートバスラインGnを1水平走査期間ずつ順次に選択する駆動方式を採用していることになる。 The gate driver 12 applies an active scanning signal to each gate bus line based on the gate start pulse signal GSP and the gate clock signal GCK in order to sequentially select each gate bus line by one horizontal scanning period. Are repeated with one vertical scanning period as a cycle. That is, the gate driver 12 adopts a driving method in which each gate bus line Gn is sequentially selected by one horizontal scanning period.
 上記バイナリドライバ13は、デジタル映像信号DV、ソーススタートパルス信号SSP、ソースクロック信号SCK、SCKBおよびモード信号MODE、MODEBを受け取り、各ソースバスラインに駆動用の映像信号を印加する。 The binary driver 13 receives the digital video signal DV, the source start pulse signal SSP, the source clock signals SCK and SCKB, and the mode signals MODE and MODEB, and applies a driving video signal to each source bus line.
 上記バイナリドライバ13は、さらに、上述した黒書込用信号VA及び白書込用信号VBが入力され、上記映像信号の換わりに黒書込用信号VAまたは白書込用信号VBをソースバスラインSnに印加するようになっている。 The binary driver 13 is further supplied with the black writing signal VA and the white writing signal VB described above. Instead of the video signal, the black writing signal VA or the white writing signal VB is supplied to the source bus line Sn. It is designed to be applied.
 上記黒書込用信号VA及び白書込用信号VBは、上記極性コントローラ14から出力されている。極性コントローラ14からは、上述したように、画素電極101に印加するために、アクティブエリア11にも黒書込用信号VA及び白書込用信号VBを出力している。 The black writing signal VA and the white writing signal VB are output from the polarity controller 14. As described above, the polarity controller 14 outputs the black writing signal VA and the white writing signal VB to the active area 11 in order to apply to the pixel electrode 101.
 上記極性コントローラ14は、上記タイミングジェネレータ15から出力されるフレーム信号FRAMEと上記電源20から供給される電源VDDと電源VSSとにより、対向電極印加用信号Vcomと、黒書込用信号VA及び白書込用信号VBを生成している。この極性コントローラ14の詳細については後述する。 The polarity controller 14 uses the frame signal FRAME output from the timing generator 15, the power supply VDD and the power supply VSS supplied from the power supply 20, and the counter electrode application signal Vcom, the black write signal VA, and the white write signal. A signal VB is generated. Details of the polarity controller 14 will be described later.
 上記タイミングジェネレータ15は、外部から送られる画像データDATと表示モード指示信号Mとを受け取り、デジタル映像信号DVを生成し、バイナリドライバ13に出力するようになっている。 The timing generator 15 receives image data DAT and a display mode instruction signal M sent from the outside, generates a digital video signal DV, and outputs it to the binary driver 13.
 また、上記タイミングジェネレータ15は、パネル外部から入力されるシリアルデータSI、シリアルクロックSCLK、および、シリアルチップセレクト信号SCSから、モード信号MODE、MODEB、フレーム信号FRAME、ソースクロック(データ信号線ドライバのシフトレジスタを動作させるクロック信号としてのタイミング信号)SCK・SCKB、ソーススタートパルス(水平期間のタイミング信号)SSP、ゲートクロック(ゲート信号線ドライバのシフトレジスタに入力するタイミング信号)GCK、ゲートスタートパルスGSPを生成する。 The timing generator 15 receives the mode signal MODE, MODEB, the frame signal FRAME, the source clock (shift of the data signal line driver) from the serial data SI, the serial clock SCLK, and the serial chip select signal SCS input from the outside of the panel. Timing signals as clock signals for operating the registers) SCK / SCKB, source start pulse (horizontal period timing signal) SSP, gate clock (timing signal input to the shift register of the gate signal line driver) GCK, and gate start pulse GSP Generate.
 タイミングジェネレータ15からバイナリドライバ13へは、ソーススタートパルスSSPが供給され、タイミングジェネレータ15からゲートドライバ12へは、ゲートクロックGCK、ゲートスタートパルスGSPが供給され、タイミングジェネレータ15から極性コントローラ14へは、フレーム信号FRAMEが供給される。なお、ソースクロックSCK・SCKBはバイナリドライバ13のシフトレジスタを動作させるクロック信号となる。 A source start pulse SSP is supplied from the timing generator 15 to the binary driver 13, a gate clock GCK and a gate start pulse GSP are supplied from the timing generator 15 to the gate driver 12, and from the timing generator 15 to the polarity controller 14, A frame signal FRAME is supplied. The source clocks SCK and SCKB are clock signals for operating the shift register of the binary driver 13.
 (フリッカ対策)
 上記表示パネル10は、図4に示すように、アクティブマトリクス基板10aと対向基板10bとの間に液晶容量104が封入されている。上記アクティブマトリクス基板10aには、複数のソースバスラインSnと複数のゲートバスラインGn(図示せず)との交差部にそれぞれ対応してマトリクス状に配置された画素電極101が形成されており、上記対向基板10bには、上記アクティブマトリクス基板10aの画素電極101に対向し、当該画素電極101に印加される電圧に同期して対向電圧を上記液晶容量104に印加する対向電極103が形成されている。
(Flicker measures)
As shown in FIG. 4, the display panel 10 has a liquid crystal capacitor 104 sealed between an active matrix substrate 10a and a counter substrate 10b. The active matrix substrate 10a is formed with pixel electrodes 101 arranged in a matrix corresponding to intersections of a plurality of source bus lines Sn and a plurality of gate bus lines Gn (not shown). A counter electrode 103 is formed on the counter substrate 10b so as to face the pixel electrode 101 of the active matrix substrate 10a and apply a counter voltage to the liquid crystal capacitor 104 in synchronization with a voltage applied to the pixel electrode 101. Yes.
 図4に示す表示パネル10では、ソースバスラインSn上にはブラックマトリクスが設けられていないため、当該ソースバスライン上で生じるフリッカが見えてしまう。 In the display panel 10 shown in FIG. 4, since the black matrix is not provided on the source bus line Sn, flicker generated on the source bus line can be seen.
 図5の(a)~図5の(c)は、非書込み期間における、対向電極103と画素電極101、対向電極とソースバスラインSnの間の電位差を示すタイミングチャートである。 5 (a) to 5 (c) are timing charts showing potential differences between the counter electrode 103 and the pixel electrode 101 and between the counter electrode and the source bus line Sn in the non-writing period.
 上記画素電極101と対向電極103は、液晶が劣化しないように一定周期で反転動作している信号(電圧)が印加されている。そして、画素電極101と対向電極103は、図5の(a)に示すように、常に一定の電位差となるように同じ周期で同じタイミングで反転動作している信号(同相の信号)が印加されている。ここで、図5の(a)に示す例では、画素電極101と対向電極103との間に介在している液晶に印加される電圧、すなわち液晶印加電圧は0V(白表示:ノーマリホワイトの場合)となる。このため、画素電極101と対向電極103との間では電位差の変動に起因するフリッカは生じない。 The pixel electrode 101 and the counter electrode 103 are applied with a signal (voltage) that is inverted at a constant period so that the liquid crystal is not deteriorated. Then, as shown in FIG. 5A, the pixel electrode 101 and the counter electrode 103 are applied with signals (in-phase signals) that are inverted at the same timing and at the same timing so as to always have a constant potential difference. ing. In the example shown in FIG. 5A, the voltage applied to the liquid crystal interposed between the pixel electrode 101 and the counter electrode 103, that is, the liquid crystal applied voltage is 0 V (white display: normally white). Case). For this reason, flicker due to a variation in potential difference does not occur between the pixel electrode 101 and the counter electrode 103.
 これに対して、バイナリドライバ13の出力信号ラインであるソースバスラインSnは、常に、”H”(黒表示を選択するハイレベルの信号)か、”L”(白表示を選択するローレベルの信号)かのいずれかの信号に固定されている。このため、対向電極103が上述したように一定周期で反転動作している信号が印加されていれば、図5の(b)に示すように、ソースバスラインSnと対向電極103との間では電位差が変動する。ここで、図5の(b)に示す例では、ソースバスラインSnと対向電極103との間に介在している液晶容量104に印加される電圧、すなわち液晶印加電圧は0Vと5Vを繰り返すことになる。このため、ソースバスラインSnと対向電極103との間では電位差の変動に起因するフリッカが生じる。 On the other hand, the source bus line Sn which is an output signal line of the binary driver 13 is always “H” (high level signal for selecting black display) or “L” (low level signal for selecting white display). Signal) is fixed to either signal. For this reason, if a signal in which the counter electrode 103 is inverting at a constant cycle as described above is applied, as shown in FIG. 5B, between the source bus line Sn and the counter electrode 103, The potential difference fluctuates. Here, in the example shown in FIG. 5B, the voltage applied to the liquid crystal capacitor 104 interposed between the source bus line Sn and the counter electrode 103, that is, the liquid crystal applied voltage repeats 0V and 5V. become. For this reason, flicker is caused between the source bus line Sn and the counter electrode 103 due to a change in potential difference.
 そこで、上記構成の液晶表示装置1では、図5の(c)に示すように、ソースバスラインSnと対向電極103との間の電位差が一定になるような信号を当該ソースバスラインSnに供給するようにしている。ここでは、ソースバスラインSnに供給する信号は、対向電極103に供給されている信号と同じタイミングで同じ極性に反転する同相の信号、または逆の極性に反転する逆相の信号であることが好ましい。このような同相または逆相の信号としては、本実施形態では、上述した極性コントローラ14から出力される黒書込用信号VAまたは白書込用信号VBを用いる。図5の(c)では、ソースバスラインSnに白書込用信号VBが供給された例を示している。すなわち、ソースバスラインSnと対向電極103との間の電位差が0V、すなわち液晶印加電圧が0Vで一定に保たれていることを示している。 Therefore, in the liquid crystal display device 1 having the above configuration, as shown in FIG. 5C, a signal that makes the potential difference between the source bus line Sn and the counter electrode 103 constant is supplied to the source bus line Sn. Like to do. Here, the signal supplied to the source bus line Sn may be an in-phase signal that is inverted to the same polarity or a reverse-phase signal that is inverted to the opposite polarity at the same timing as the signal supplied to the counter electrode 103. preferable. In the present embodiment, the black writing signal VA or the white writing signal VB output from the above-described polarity controller 14 is used as such an in-phase or anti-phase signal. FIG. 5C shows an example in which the white write signal VB is supplied to the source bus line Sn. That is, the potential difference between the source bus line Sn and the counter electrode 103 is 0V, that is, the liquid crystal applied voltage is kept constant at 0V.
 ここで、本実施の形態では、上記対向電極印加用信号Vcom、黒書込用信号VA、白書込用信号VBは何れも0Vから5Vまでの幅で反転するものとする。図6は、対向電極印加用信号Vcomと白書込用信号VBとが同相、対向電極印加用信号Vcomと黒書込用信号VAとが逆相となっていることを示している。つまり、対向電極印加用信号Vcomと同相の信号が白書込用信号VBであるので、上述したように、非書込み期間中に、ソースバスラインSnに白書込用信号VBを供給することで、対向電極103とソースバスラインSnとの間における電位差を一定(0V)にしている。 Here, in this embodiment, the counter electrode application signal Vcom, the black writing signal VA, and the white writing signal VB are all inverted with a width of 0V to 5V. FIG. 6 shows that the counter electrode application signal Vcom and the white writing signal VB are in phase, and the counter electrode application signal Vcom and the black writing signal VA are in opposite phases. That is, since the signal in phase with the counter electrode application signal Vcom is the white writing signal VB, as described above, the white writing signal VB is supplied to the source bus line Sn during the non-writing period. The potential difference between the electrode 103 and the source bus line Sn is kept constant (0 V).
 ここで、上記ソースバスラインSnに供給される映像信号に応じた電圧が上記画素電極101に印加される期間を映像信号の書込み期間、次の映像信号の書込み期間までの期間を映像信号の非書込み期間とする。 Here, a period in which a voltage corresponding to the video signal supplied to the source bus line Sn is applied to the pixel electrode 101 is a video signal writing period, and a period until the next video signal writing period is a non-video signal. Write period.
 上記構成の液晶表示装置及びその駆動方法によれば、ソースバスラインSnに対する映像信号の非書込み期間に、当該ソースバスラインSnに対して、上記対向電極103に供給されている信号と同相または逆相の信号が供給されることで、ソースバスラインSnと上記対向電極103との間の電位差を一定にすることができる。これにより、上記非書込み期間に、ソースバスラインSn上において、電位差が一定でないことに起因するフリッカの発生を抑制できるので、フリッカによる表示品位の低下を抑制することができる。 According to the liquid crystal display device having the above configuration and the driving method thereof, during the non-writing period of the video signal with respect to the source bus line Sn, the signal supplied to the counter electrode 103 is in phase with or opposite to that of the source bus line Sn. By supplying the phase signal, the potential difference between the source bus line Sn and the counter electrode 103 can be made constant. As a result, it is possible to suppress the occurrence of flicker due to the potential difference being not constant on the source bus line Sn during the non-writing period, so that it is possible to suppress the deterioration of display quality due to the flicker.
 従って、図4に示すように、ソースバスラインSn上にブラックマトリックスが設けられていないような場合であっても、当該ソースバスラインSnと対向電極103との電位差を一定に保つようにすれば、フリッカの発生を抑制できる。これにより、ソースバスラインSn上のフリッカが見えないようになるので、フリッカによる表示品位の低下を抑制することができる。 Therefore, as shown in FIG. 4, even if the black matrix is not provided on the source bus line Sn, the potential difference between the source bus line Sn and the counter electrode 103 can be kept constant. The occurrence of flicker can be suppressed. As a result, the flicker on the source bus line Sn becomes invisible, so that deterioration of display quality due to flicker can be suppressed.
 上記対向電極印加用信号Vcom、黒書込用信号VA、白書込用信号VBの生成は、上述したように、極性コントローラ14により行われる。 The generation of the counter electrode application signal Vcom, the black writing signal VA, and the white writing signal VB is performed by the polarity controller 14 as described above.
 図7は、極性コントローラ14の具体的な回路を示す。 FIG. 7 shows a specific circuit of the polarity controller 14.
 上記極性コントローラ14では、フレーム信号FRAMEがバッファを通して、それぞれC接点相当のスイッチSW1・SW2・SW3の制御信号として入力される。スイッチSW1・SW2・SW3は、順に対向電極印加用信号Vcom、黒書込用信号VA、白書込用信号VBの電圧を出力するスイッチである。フレーム信号FRAMEがHighとLowとで切り替わる度に、スイッチSW1・SW2・SW3は、順に電源VDD・VSS・VDDの組み合わせと、電源VSS・VDD・VSSの組み合わせとの間で切り替わるように電源を選択する。これにより、上記極性コントローラ14から、対向電極印加用信号Vcom、黒書込用信号VA、白書込用信号VBが、図6に示すような反転周期で出力される。 In the polarity controller 14, the frame signal FRAME is input as a control signal for the switches SW1, SW2, and SW3 corresponding to the C contacts through the buffer. The switches SW1, SW2, and SW3 are switches that sequentially output the voltages of the counter electrode application signal Vcom, the black writing signal VA, and the white writing signal VB. Each time the frame signal FRAME is switched between High and Low, the switches SW1, SW2, and SW3 select the power source so that the combination of the power source VDD, VSS, and VDD and the combination of the power source VSS, VDD, and VSS are sequentially switched. To do. Thereby, the polarity controller 14 outputs the counter electrode application signal Vcom, the black writing signal VA, and the white writing signal VB at the inversion cycle as shown in FIG.
 (バイナリドライバの説明)
 図8は、バイナリドライバ13の概略構成を示すブロック図を示す。
(Description of binary driver)
FIG. 8 is a block diagram showing a schematic configuration of the binary driver 13.
 図9は、図8に示すバイナリドライバ13における信号のタイミングチャートを示す。 FIG. 9 shows a timing chart of signals in the binary driver 13 shown in FIG.
 ここで、上記バイナリドライバ13は、アクティブエリア11の横の画素数(240)に対応する240個に1段加えた241個のシフトレジスタを備えている。第0段のシフトレジスタを除いて、第1段のシフトレジスタ~第240段のシフトレジスタの出力は、それぞれデジタル映像信号DVをラッチするためのラッチ回路に接続されている。 Here, the binary driver 13 is provided with 241 shift registers, which is one stage added to 240 corresponding to the number of pixels (240) beside the active area 11. Except for the 0th stage shift register, the outputs of the 1st stage shift register to the 240th stage shift register are respectively connected to latch circuits for latching the digital video signal DV.
 すなわち、各シフトレジスタには、ソースクロック信号SCK、SCKBが入力され、第1段のシフトレジスタ~第240段のシフトレジスタの出力は、それぞれに対応したラッチ回路に接続される。ラッチ回路は、シフトレジスタの出力に基づいて、デジタル映像信号DVをラッチしてソースバスラインSnに接続されている信号配線SL<n>に出力される。ここで、上記nは、1~240の整数である。 That is, source clock signals SCK and SCKB are input to each shift register, and outputs from the first-stage shift register to the 240th-stage shift register are connected to corresponding latch circuits. Based on the output of the shift register, the latch circuit latches the digital video signal DV and outputs it to the signal line SL <n> connected to the source bus line Sn. Here, n is an integer of 1 to 240.
 上記バイナリドライバ13は、通常のバイナリドライバと異なり、ラッチ回路と、その出力先である信号配線SL<n>との間に、デジタル映像信号DVと、白書込用信号VBとを切り換える切換部Aが設けられている。 Unlike the normal binary driver, the binary driver 13 switches the digital video signal DV and the white writing signal VB between the latch circuit and the signal wiring SL <n> that is the output destination. Is provided.
 上記切換部Aは、2つのCMOS型TFTからなるスイッチング素子が直列に設けられ、デジタル映像信号DVと、白書込用信号VBとを切り換える。具体的には、前段のスイッチング素子のソース電極は白書込用信号VBに接続され、2つのゲート電極はモード信号MODEとその反転信号であるモード信号MODEBとにそれぞれ接続され、ドレイン電極は信号配線SLに接続されている。後段のスイッチング素子のソース電極はラッチ回路の出力が接続され、2つのゲート電極はモード信号MODEBとその反転信号であるモード信号MODEとにそれぞれ接続され、ドレイン電極は信号配線SLに接続されている。 The switching section A is provided with a switching element composed of two CMOS TFTs in series, and switches between the digital video signal DV and the white writing signal VB. Specifically, the source electrode of the switching element in the previous stage is connected to the white writing signal VB, the two gate electrodes are connected to the mode signal MODE and the inverted mode signal MODEB, respectively, and the drain electrode is the signal wiring. Connected to SL. The output of the latch circuit is connected to the source electrode of the switching element at the subsequent stage, the two gate electrodes are connected to the mode signal MODEB and its inverted signal, the mode signal MODE, respectively, and the drain electrode is connected to the signal line SL. .
 従って、上記切換部Aでは、モード信号MODEが”High”レベルのとき、当然モード信号MODEBは”Low”レベルであるので、前段のスイッチング素子がON状態になり、後段のスイッチング素子がOFF状態となる。この場合、信号配線SLに出力されるのは、白書込用信号VBとなる。 Therefore, in the switching unit A, when the mode signal MODE is at the “High” level, the mode signal MODEB is naturally at the “Low” level, so that the switching element at the front stage is turned on and the switching element at the rear stage is turned off. Become. In this case, the white writing signal VB is output to the signal line SL.
 また、モード信号MODEが”Low”レベルのとき、モード信号MODEBは”High”レベルであるので、前段のスイッチング素子がOFF状態になり、後段のスイッチング素子がON状態となる。この場合、信号配線SLに出力されるのはラッチ回路にてラッチされたデジタル映像信号DVである。 Further, when the mode signal MODE is at the “Low” level, the mode signal MODEB is at the “High” level, so that the switching element at the front stage is turned off and the switching element at the rear stage is turned on. In this case, the digital video signal DV latched by the latch circuit is output to the signal line SL.
 上記モード信号MODEが”High”レベルになるタイミングは、図9に示すように、1フレーム分のデータを書込み、次のフレームのデータ書込み開始までのデータの非書込み期間(図では領域Bにおけるデータ保持期間が相当)に切り替わるときとなる。 The timing at which the mode signal MODE becomes “High” level is as shown in FIG. 9 in which data for one frame is written and data is not written until the start of data writing for the next frame (in the figure, data in the region B). The retention period is equivalent).
 この非書込み期間において信号配線SLに出力される白書込用信号VBは、図6に示すように、対向電極印加用信号Vcomと同相であるので、信号配線SLに接続されたソースバスラインSnと対向電極103との電位差は一定となる。図9では、領域Bにおいて、電位差(Vcom/VB)が一定になっていることを示している。つまり、上記電位差が、図5(c)に示すような関係となっていることを示している。 Since the white writing signal VB output to the signal wiring SL in this non-writing period is in phase with the counter electrode application signal Vcom as shown in FIG. 6, the source bus line Sn connected to the signal wiring SL The potential difference with the counter electrode 103 is constant. FIG. 9 shows that in the region B, the potential difference (Vcom / VB) is constant. That is, it shows that the potential difference has a relationship as shown in FIG.
 図8に示すバイナリドライバ13の場合、切換対象となっている信号が、対向電極印加用信号Vcomと同相である白書込用信号VBとなっているが、図6に示すように、対向電極印加用信号Vcomの逆相の黒書込用信号VAであってもよい。 In the case of the binary driver 13 shown in FIG. 8, the signal to be switched is the white writing signal VB having the same phase as the counter electrode application signal Vcom. However, as shown in FIG. It may be a black writing signal VA having a phase opposite to that of the working signal Vcom.
 上記のように、バイナリドライバ13によって、ソースバスラインSnに対して、書込み期間から非書込み期間に切り換わるタイミングで、ハイレベルの信号(黒書込用信号VA)またはローレベルの信号(白書込用信号VB)の何れかの信号から、上記対向電極103に供給されている信号と同相(または逆相)の信号が切り換えられて出力されるので、ソースバスラインSnと対向電極103との間で生じる電位差を非書込み期間の開始直後から一定にすることが可能となる。これにより、非書込み期間に生じるフリッカを確実に抑制できるので、表示品位をさらに向上させることが可能となる。 As described above, a high-level signal (black writing signal VA) or a low-level signal (white writing) is applied to the source bus line Sn at the timing when the writing period is switched to the non-writing period. Signal VB), a signal having the same phase (or opposite phase) as the signal supplied to the counter electrode 103 is switched and output, so that the signal between the source bus line Sn and the counter electrode 103 is output. It is possible to make the potential difference generated in step 1 constant immediately after the start of the non-writing period. As a result, the flicker generated during the non-writing period can be reliably suppressed, and the display quality can be further improved.
 しかも、上記極性コントローラ14から画素電極101に供給される信号を、上記非書込み期間にソースバスラインSnに出力する信号としているので、信号の共通化を図ることができる。これにより、非書込み期間にソースバスラインSnに出力する信号を別途設ける必要がなく、既存の回路をそのまま使用することができるので、製造費を抑えて、且つ、装置の小型化を図ることが可能となる。 In addition, since the signal supplied from the polarity controller 14 to the pixel electrode 101 is a signal that is output to the source bus line Sn during the non-writing period, the signal can be shared. Accordingly, it is not necessary to separately provide a signal to be output to the source bus line Sn during the non-writing period, and the existing circuit can be used as it is, so that the manufacturing cost can be reduced and the apparatus can be downsized. It becomes possible.
 なお、図8に示すバイナリドライバ13の場合、シフトレジスタを用いてラッチ回路によるデジタル映像信号DVのラッチを行っているが、これに限定されるものではなく、例えば、図10に示すバイナリドライバ113のように、シフトレジスタを用いないでラッチ回路によるデジタル映像信号DVのラッチを行うようにしてもよい。 In the case of the binary driver 13 shown in FIG. 8, the digital video signal DV is latched by a latch circuit using a shift register. However, the present invention is not limited to this. For example, the binary driver 113 shown in FIG. As described above, the digital video signal DV may be latched by a latch circuit without using a shift register.
 図10に示すバイナリドライバ113では、デジタル映像信号DVを3つずつの80のグループ(V1~V80)に分けている。つまり、一つのデジタル映像信号DV(V1)が3つのラッチ回路に出力されているので、各ラッチ回路にはソース用の3種類のスイッチング信号SSW1、SSW2、SSW3がそれぞれ入力されている。 In the binary driver 113 shown in FIG. 10, the digital video signal DV is divided into 80 groups (V1 to V80) of 3 each. That is, since one digital video signal DV (V1) is output to three latch circuits, three types of switching signals SSW1, SSW2, and SSW3 for the source are input to each latch circuit.
 上記のスイッチング信号SSW1、SSW2、SSW3は、図示しないが、表示パネル10を駆動するためのドライバICで生成され、当該表示パネル10に供給される。 The switching signals SSW1, SSW2, and SSW3 are generated by a driver IC for driving the display panel 10 and supplied to the display panel 10 (not shown).
 なお、図10に示すバイナリドライバ113も、図8に示すバイナリドライバ13と同様に、ラッチ回路の出力と、白書込用信号VBとを切り換える切換部Cを備えている。この切換部Cは、図8に示す切換部Aと同じ構成であるので、詳細な説明は省略する。 Note that the binary driver 113 shown in FIG. 10 also includes a switching unit C that switches between the output of the latch circuit and the white writing signal VB, similarly to the binary driver 13 shown in FIG. Since the switching unit C has the same configuration as the switching unit A shown in FIG. 8, detailed description thereof is omitted.
 また、図10に示すバイナリドライバ113においても、図8に示すバイナリドライバ13の切換部Aと同様に、切換部Cでは、モード信号MODEが”High”レベルのとき、当然モード信号MODEBは”Low”レベルであるので、前段のスイッチング素子がON状態になり、後段のスイッチング素子がOFF状態となる。この場合、信号配線SLに出力されるのは、白書込用信号VBとなる。また、モード信号MODEが”Low”レベルのとき、モード信号MODEBは”High”レベルであるので、前段のスイッチング素子がOFF状態になり、後段のスイッチング素子がON状態となる。この場合、信号配線SLに出力されるのはラッチ回路にてラッチされたデジタル映像信号DV(V1)である。 Also in the binary driver 113 shown in FIG. 10, as in the switching unit A of the binary driver 13 shown in FIG. 8, in the switching unit C, when the mode signal MODE is “High” level, the mode signal MODEB is naturally “Low”. Since it is “level”, the switching element at the front stage is turned on and the switching element at the rear stage is turned off. In this case, the white writing signal VB is output to the signal line SL. Further, when the mode signal MODE is at the “Low” level, the mode signal MODEB is at the “High” level, so that the preceding switching element is turned off and the succeeding switching element is turned on. In this case, the digital video signal DV (V1) latched by the latch circuit is output to the signal line SL.
 上記モード信号MODEが”High”レベルになるタイミングは、図11に示すように、1フレーム分のデータを書込み、次のフレームのデータ書込み開始までのデータの非書込み期間(図では領域Dにおけるデータ保持期間が相当)に切り替わるときとなる。 As shown in FIG. 11, when the mode signal MODE becomes “High” level, the data for one frame is written, and the data is not written in until the start of data writing of the next frame (in the figure, the data in the region D). The retention period is equivalent).
 この非書込み期間において信号配線SLに出力される白書込用信号VBは、図6に示すように、対向電極印加用信号Vcomと同相であるので、信号配線SLに接続されたソースバスラインSnと対向電極103との電位差は一定となる。図11では、領域Dにおいて、電位差(Vcom/VB)が一定になっていることを示している。つまり、上記電位差が、図5(c)に示すような関係となっていることを示している。 Since the white writing signal VB output to the signal wiring SL in this non-writing period is in phase with the counter electrode application signal Vcom as shown in FIG. 6, the source bus line Sn connected to the signal wiring SL The potential difference with the counter electrode 103 is constant. FIG. 11 shows that in the region D, the potential difference (Vcom / VB) is constant. That is, it shows that the potential difference has a relationship as shown in FIG.
 なお、本願発明は、画素電極101間にブラックマトリクスが設けられていない場合に有効な発明であるが、ブラックマトリクスは設けられていてもよい。この場合、ブラックマトリクスがフリッカを隠す役目をして、ソースバスラインSn上で生じるフリッカを見え難くするものの、ブラックマトリクスの配置がきちんとしていなければフリッカが見える虞がある。従って、本願発明のように、フリッカを抑制する発明であれば、ブラックマトリクスの有無に関わらず適用することができる。 Although the present invention is effective when no black matrix is provided between the pixel electrodes 101, a black matrix may be provided. In this case, the black matrix serves to conceal the flicker so that the flicker generated on the source bus line Sn is difficult to see. However, if the black matrix is not properly arranged, the flicker may be seen. Therefore, any invention that suppresses flicker, such as the present invention, can be applied regardless of the presence or absence of a black matrix.
 上述のように、本願発明は、画素電極101間にブラックマトリクスが設けられていない場合に特に有効であることから、ブラックマトリクスを設けない狭ピッチの画素配置とする液晶表示装置に有効である。 As described above, the present invention is particularly effective when the black matrix is not provided between the pixel electrodes 101. Therefore, the present invention is effective for a liquid crystal display device having a narrow pitch pixel arrangement in which no black matrix is provided.
 また、本実施の形態では、液晶については特に限定しないで説明したが、例えば、画素メモリ回路を設けた表示パネルを使用した液晶表示装置において用いられる光拡散型液晶を用いてもよい。特に小型の携帯端末に使用される液晶表示装置などのようにスペースの限られた表示画面において高解像度化を図る液晶表示装置には好適である。 In this embodiment, the liquid crystal is not particularly limited. However, for example, a light diffusion liquid crystal used in a liquid crystal display device using a display panel provided with a pixel memory circuit may be used. In particular, it is suitable for a liquid crystal display device that achieves high resolution on a display screen with a limited space such as a liquid crystal display device used for a small portable terminal.
 上記光拡散型液晶を用いた液晶表示装置としては、図示しないが、例えば、アクティブマトリクス基板と対向基板との間に、電圧無印加時に液晶分子の配列が不規則な状態となる第1表示状態と、電圧印加時に液晶分子の配列が規則的な状態となる第2表示状態となる光拡散型液晶を封入して構成されている。 As a liquid crystal display device using the light diffusing liquid crystal, although not shown, for example, a first display state in which liquid crystal molecules are irregularly arranged between the active matrix substrate and the counter substrate when no voltage is applied. And a light diffusing liquid crystal in a second display state in which the arrangement of liquid crystal molecules is in a regular state when a voltage is applied.
 上記アクティブマトリクス基板には、表示すべき画像を表す複数の映像信号をそれぞれ伝達するための複数のデータ信号配線と、上記複数のデータ信号配線と交差する複数の走査信号配線と、上記複数のデータ信号配線と上記複数の走査信号配線との交差点にそれぞれ対応してマトリクス状に配置された画素電極と、上記画素電極毎に設けられ、上記データ信号配線によって伝達される映像信号に基づいて、上記第1表示状態を実現するための第1表示データを、第1供給配線を介して取り込むと共に、上記第2表示状態を実現するための第2表示データを、第2供給配線を介して取り込み、それぞれのデータを記憶する表示データ記憶回路とが形成されている。 The active matrix substrate includes a plurality of data signal wirings for transmitting a plurality of video signals representing an image to be displayed, a plurality of scanning signal wirings crossing the plurality of data signal wirings, and the plurality of data Based on the pixel electrodes arranged in a matrix corresponding to the intersections of the signal wiring and the plurality of scanning signal wirings, and the video signal provided for each pixel electrode and transmitted by the data signal wiring, First display data for realizing the first display state is taken in via the first supply wiring, and second display data for realizing the second display state is taken in via the second supply wiring, A display data storage circuit for storing each data is formed.
 上記対向基板には、上記アクティブマトリクス基板の画素電極に対向し、当該画素電極に印加される電圧に同期して対向電圧を上記光拡散型液晶に印加する対向電極が形成されている。 The counter substrate is formed with a counter electrode that faces the pixel electrode of the active matrix substrate and applies a counter voltage to the light diffusion liquid crystal in synchronization with a voltage applied to the pixel electrode.
 そして、上記構成の液晶表示装置において、図1に示す構成の液晶表示装置と同様に、上記データ信号配線に供給される映像信号に応じた電圧が上記画素電極に印加される期間を映像信号の書込み期間、次の映像信号の書込み期間までの期間を映像信号の非書込み期間としたとき、上記非書込み期間に、上記データ信号配線に対して上記対向電極に供給されている信号と同相(または逆相)の信号が供給される構成となっている。 In the liquid crystal display device having the above-described configuration, the period in which a voltage corresponding to the video signal supplied to the data signal wiring is applied to the pixel electrode is similar to the liquid crystal display device having the configuration shown in FIG. When the writing period and the period until the writing period of the next video signal are set as the non-writing period of the video signal, in the non-writing period, the same phase as the signal supplied to the counter electrode with respect to the data signal wiring (or The configuration is such that a signal of the opposite phase is supplied.
 上記の構成によれば、データ信号配線に対する映像信号の非書込み期間に、当該データ信号線に対して、上記対向電極に供給されている信号と同相(または逆相)の信号が供給されることで、データ信号配線と上記対向電極との間の電位差を一定にすることができる。これにより、上記非書込み期間に、データ信号配線上において、電位差が一定でないことに起因するフリッカの発生を抑制できるので、フリッカによる表示品位の低下を抑制することができる。 According to the above configuration, in the non-writing period of the video signal to the data signal wiring, a signal having the same phase (or opposite phase) as that of the signal supplied to the counter electrode is supplied to the data signal line. Thus, the potential difference between the data signal wiring and the counter electrode can be made constant. As a result, it is possible to suppress the occurrence of flicker due to the potential difference being not constant on the data signal wiring during the non-writing period, so that it is possible to suppress the display quality from being deteriorated due to the flicker.
 なお、本実施形態では、上述したように、ゲートドライバ12は各ゲートバスラインを1水平走査期間ずつ順次に選択する駆動方式を採用している。 In the present embodiment, as described above, the gate driver 12 employs a driving method in which each gate bus line is sequentially selected by one horizontal scanning period.
 しかしながら、本願発明は、上述のようなライン順次駆動方式のゲートドライバに限定されず、書き換えの必要なゲートラインのみを選択駆動するラインアドレス駆動方式のゲートドライバを採用した液晶表示装置にも適用できる。 However, the present invention is not limited to the line sequential drive type gate driver as described above, but can be applied to a liquid crystal display device employing a line address drive type gate driver that selectively drives only the gate lines that need to be rewritten. .
 図12は、ラインアドレス駆動方式を採用したゲートドライバを備えた液晶表示装置1を示している。 FIG. 12 shows a liquid crystal display device 1 having a gate driver that employs a line address driving method.
 ここで、図12に示す液晶表示装置1は、図1に示す液晶表示装置1とほとんど構成が変わらず、ゲートドライバ12に入力される信号が変更されている。つまり、図1では、ゲートドライバ12に対して、タイミングジェネレータ15からゲートスタートパルス信号GSPとゲートクロック信号GCKとが入力されているのに対して、図12では、タイミングジェネレータ15から信号GENと信号GSELとが入力されている。 Here, the configuration of the liquid crystal display device 1 shown in FIG. 12 is almost the same as that of the liquid crystal display device 1 shown in FIG. 1, and the signal input to the gate driver 12 is changed. That is, in FIG. 1, the gate start pulse signal GSP and the gate clock signal GCK are input from the timing generator 15 to the gate driver 12, whereas in FIG. GSEL is input.
 上記信号GENと、信号GSELとは、シリアルデータSIから、映像信号を書き込む対象となる画素電極の位置情報を示すアドレスデータをデコードすることによって生成される。この信号GENと、信号GSELを生成するデコード回路は、タイミングジェネレータ15内に配置されている。 The signal GEN and the signal GSEL are generated by decoding address data indicating position information of a pixel electrode to which a video signal is written from the serial data SI. The signal GEN and a decoding circuit that generates the signal GSEL are arranged in the timing generator 15.
 ここで、上記の信号GENは、ゲートバスラインが選択される期間を制御する信号を示す。例えば信号GEN=”High”の間アドレスによって選択されたゲートバスラインGnがアクティブになり、そこにつながっている画素が開き、ソースバスラインSnからのデータが取り込まれる。そして、信号GEN=”Low”の間はどのラインも非アクティブ状態となる。また、上記の信号GSELは入力されたアドレスがデコードされた信号を示す。 Here, the signal GEN indicates a signal for controlling a period during which the gate bus line is selected. For example, the gate bus line Gn selected by the address becomes active during the signal GEN = “High”, the pixel connected to the gate bus line Gn opens, and the data from the source bus line Sn is captured. During the signal GEN = “Low”, all lines are inactive. The signal GSEL is a signal obtained by decoding the input address.
 このように、図12に示す液晶表示装置1では、ゲートドライバ12が、映像信号の書込み対象となる画素電極の位置情報に応じて、上記ゲートバスラインGnを選択的に駆動している。つまり、書き換えの必要なゲートバスラインGnのみが駆動されることになる。 As described above, in the liquid crystal display device 1 shown in FIG. 12, the gate driver 12 selectively drives the gate bus line Gn in accordance with the position information of the pixel electrode to which the video signal is to be written. That is, only the gate bus line Gn that needs to be rewritten is driven.
 従って、書き換えの必要な画素電極に接続されているゲートバスラインGnのみが選択駆動されることで、上述したライン順次駆動方式に比べて非書込み期間を長くとることできる。 Therefore, only the gate bus line Gn connected to the pixel electrode that needs to be rewritten is selectively driven, so that the non-writing period can be made longer than in the above-described line sequential driving method.
 これにより、非書込み期間中のソースバスラインSnと対向電極との間の電位差調整を安定して行うことができるので、当該非書込み期間中におけるフリッカの発生を確実に抑制することができる。 This makes it possible to stably adjust the potential difference between the source bus line Sn and the counter electrode during the non-writing period, so that the occurrence of flicker during the non-writing period can be reliably suppressed.
 以上のように、図1、図12に示す液晶表示装置1では、表示パネル10内において、黒書込用信号VA、白書込用信号VB、モード信号MODE、モード信号MODEB、対向電極印加用信号Vcomを当該表示パネル10内部で生成する例を示したが、これに限定されるものではなく、表示パネル10の外部に設けられたドライバICで生成されるようにしてもよい。 As described above, in the liquid crystal display device 1 shown in FIGS. 1 and 12, in the display panel 10, the black writing signal VA, the white writing signal VB, the mode signal MODE, the mode signal MODEB, and the counter electrode application signal are provided. Although an example in which Vcom is generated inside the display panel 10 has been shown, the present invention is not limited to this, and it may be generated by a driver IC provided outside the display panel 10.
 また、上記データ信号配線を駆動するデータ信号配線駆動回路として、当該データ信号配線に対して、ハイレベルの信号またはローレベルの信号の何れかの信号を出力するバイナリドライバが設けられ、上記バイナリドライバは、上記データ信号配線に対して、上記書込み期間から非書込み期間に切り換わるタイミングで、ハイレベルの信号またはローレベルの信号の何れかの信号から、上記対向電極に供給されている信号と同相または逆相に切り換えて出力することが好ましい。 Further, as the data signal wiring driving circuit for driving the data signal wiring, a binary driver that outputs either a high level signal or a low level signal to the data signal wiring is provided, and the binary driver is provided. Is in phase with the signal supplied to the counter electrode from either a high-level signal or a low-level signal at the timing when the data signal wiring is switched from the writing period to the non-writing period. Or it is preferable to switch to a reverse phase and output.
 上記の構成によれば、バイナリドライバによって、データ信号配線に対して、書込み期間から非書込み期間に切り換わるタイミングで、ハイレベルの信号またはローレベルの信号の何れかの信号から、上記対向電極に供給されている信号と同相または逆相の信号が切り換えられて出力されるので、データ信号配線と対向電極との間で生じる電位差を非書込み期間の開始直後から一定にすることが可能となる。これにより、非書込み期間に生じるフリッカを確実に抑制できるので、表示品位をさらに向上させることが可能となる。 According to the above configuration, the binary driver causes the data signal wiring to be switched from the high level signal or the low level signal to the counter electrode at the timing of switching from the writing period to the non-writing period. Since a signal having the same phase or opposite phase to the supplied signal is switched and outputted, the potential difference generated between the data signal wiring and the counter electrode can be made constant immediately after the start of the non-writing period. As a result, flicker occurring during the non-writing period can be reliably suppressed, and the display quality can be further improved.
 また、上記対向電極に印加される信号と同相または逆相の信号を上記画素電極に供給する信号供給回路が設けられ、上記バイナリドライバは、上記信号供給回路から画素電極に供給される信号を、上記非書込み期間にデータ信号配線に出力する信号とすることが好ましい。 In addition, a signal supply circuit that supplies a signal in phase or opposite phase to a signal applied to the counter electrode to the pixel electrode is provided, and the binary driver receives a signal supplied from the signal supply circuit to the pixel electrode, It is preferable that the signal be output to the data signal wiring during the non-writing period.
 上記の構成によれば、信号供給回路から画素電極に供給される信号を、上記非書込み期間にデータ信号配線に出力する信号とすることで、信号の共通化を図ることができる。これにより、非書込み期間にデータ信号配線に出力する信号を別途設ける必要がなく、既存の回路をそのまま使用することができるので、製造費を抑えて、且つ、装置の小型化を図ることが可能となる。 According to the above configuration, the signal supplied from the signal supply circuit to the pixel electrode is a signal output to the data signal wiring in the non-writing period, so that the signal can be shared. As a result, it is not necessary to separately provide a signal to be output to the data signal wiring during the non-writing period, and the existing circuit can be used as it is, so that the manufacturing cost can be reduced and the apparatus can be downsized. It becomes.
 また、上記走査信号配線を駆動する走査信号線駆動回路を備え、上記走査信号線駆動回路は、映像信号の書込み対象となる画素電極の位置情報に応じて、上記走査信号配線を選択的に駆動することが好ましい。 In addition, a scanning signal line driving circuit for driving the scanning signal wiring is provided, and the scanning signal line driving circuit selectively drives the scanning signal wiring according to position information of a pixel electrode to which a video signal is written. It is preferable to do.
 従って、書き換えの必要な画素電極に接続されている走査信号配線のみが選択駆動されることで、各走査信号配線を1水平走査期間ずつ順次に選択する駆動方式に比べて非書込み期間を長くとることができる。 Accordingly, only the scanning signal wiring connected to the pixel electrode that needs to be rewritten is selectively driven, so that the non-writing period is made longer than the driving method in which each scanning signal wiring is sequentially selected by one horizontal scanning period. be able to.
 これにより、非書込み期間中のソースバスラインSnと対向電極との間の電位差調整を安定して行うことができるので、当該非書込み期間中におけるフリッカの発生を確実に抑制することができる。 This makes it possible to stably adjust the potential difference between the source bus line Sn and the counter electrode during the non-writing period, so that the occurrence of flicker during the non-writing period can be reliably suppressed.
 さらに、上記構成の液晶表示装置は、種々の電子機器に適用できる。例えば、表示品位の向上が必須である液晶テレビに搭載することが好ましい。また、パソコン用のモニタとして使用してもよく、表示装置を備えた電子機器であれば、その表示装置として本願発明の液晶表示装置を用いれば、常に、フリッカの無い表示品位の高い表示を行わせることが可能となる。 Furthermore, the liquid crystal display device having the above configuration can be applied to various electronic devices. For example, it is preferably mounted on a liquid crystal television in which improvement in display quality is essential. Further, it may be used as a monitor for a personal computer. If the liquid crystal display device of the present invention is used as an electronic device provided with a display device, display with high display quality without flicker is always performed. It becomes possible to make it.
 本発明は上述した本実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、本実施形態に開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。 The present invention is not limited to the above-described embodiment, and various modifications can be made within the scope shown in the claims, and the embodiment can be obtained by appropriately combining the technical means disclosed in the embodiment. Is also included in the technical scope of the present invention.
 本発明は、対向電極と画素電極との間の電位差を液晶印加電圧とする全ての液晶表示装置に利用することができ、特に、画素ピッチが狭くブラックマトリクスがデータ信号配線上に設けられない液晶表示装置及びこれを備えた電子機器に利用することができる。 The present invention can be used for all liquid crystal display devices in which the potential difference between the counter electrode and the pixel electrode is a liquid crystal applied voltage, and in particular, a liquid crystal in which the pixel pitch is narrow and the black matrix is not provided on the data signal wiring. The present invention can be used for a display device and an electronic device including the display device.
  1 液晶表示装置
 10 表示パネル
 11 アクティブエリア
 12 ゲートドライバ(走査信号配線駆動回路)
 13 バイナリドライバ(データ信号配線駆動回路)
 14 極性コントローラ
 15 タイミングジェネレータ
 20 電源
101 画素電極
102 スイッチング素子
103 対向電極
104 液晶容量
105 メモリ回路
Sn  ソースバスライン(データ信号配線)
Gn  ゲートバスライン(走査信号配線)
DAT 画像データ
DV デジタル映像信号
VA 黒書込用信号
VB 白書込用信号
Vcom 対向電極印加用信号
DESCRIPTION OF SYMBOLS 1 Liquid crystal display device 10 Display panel 11 Active area 12 Gate driver (scanning signal wiring drive circuit)
13 Binary driver (data signal wiring drive circuit)
14 polarity controller 15 timing generator 20 power supply 101 pixel electrode 102 switching element 103 counter electrode 104 liquid crystal capacitor 105 memory circuit Sn source bus line (data signal wiring)
Gn gate bus line (scanning signal wiring)
DAT Image data DV Digital video signal VA Black writing signal VB White writing signal Vcom Counter electrode application signal

Claims (8)

  1.  アクティブマトリクス基板と対向基板との間に液晶容量が封入された液晶表示装置において、
     上記アクティブマトリクス基板には、複数のデータ信号配線と複数の走査信号配線との交差部にそれぞれ対応してマトリクス状に配置された画素電極が形成され、
     上記対向基板には、上記アクティブマトリクス基板の画素電極に対向し、当該画素電極に印加される電圧に同期して対向電圧を上記液晶容量に印加する対向電極が形成され、
     上記データ信号配線に供給される映像信号に応じた電圧が上記画素電極に印加される期間を映像信号の書込み期間、次の映像信号の書込み期間までの期間を映像信号の非書込み期間としたとき、
     上記非書込み期間に、上記データ信号配線に対して上記対向電極に供給されている信号と同相または逆相の信号が供給されることを特徴とする液晶表示装置。
    In a liquid crystal display device in which a liquid crystal capacitor is sealed between an active matrix substrate and a counter substrate,
    The active matrix substrate is formed with pixel electrodes arranged in a matrix corresponding to the intersections of the plurality of data signal wirings and the plurality of scanning signal wirings,
    The counter substrate is formed with a counter electrode that faces the pixel electrode of the active matrix substrate and applies a counter voltage to the liquid crystal capacitor in synchronization with a voltage applied to the pixel electrode.
    When a period corresponding to the video signal supplied to the data signal wiring is applied to the pixel electrode is a video signal writing period and a period until the next video signal writing period is a video signal non-writing period ,
    In the non-writing period, a signal having the same phase or opposite phase to the signal supplied to the counter electrode is supplied to the data signal wiring.
  2.  上記データ信号配線を駆動するデータ信号配線駆動回路として、当該データ信号配線に対して、ハイレベルの信号またはローレベルの信号の何れかの信号を出力するバイナリドライバが設けられ、
     上記バイナリドライバは、
     上記データ信号配線に対して、上記書込み期間から非書込み期間に切り換わるタイミングで、ハイレベルの信号またはローレベルの信号の何れかの信号から、上記対向電極に供給されている信号と同相または逆相の信号に切り換えて出力することを特徴とする請求項1に記載の液晶表示装置。
    As the data signal wiring driving circuit for driving the data signal wiring, a binary driver for outputting either a high level signal or a low level signal to the data signal wiring is provided.
    The above binary driver
    At the timing when the data signal wiring is switched from the writing period to the non-writing period, either the high level signal or the low level signal is in phase with or opposite to the signal supplied to the counter electrode. The liquid crystal display device according to claim 1, wherein the liquid crystal display device is switched to a phase signal for output.
  3.  上記対向電極に印加される信号と同相または逆相の信号を上記画素電極に供給する信号供給回路が設けられ、
     上記バイナリドライバは、上記信号供給回路から画素電極に供給される信号を、上記非書込み期間にデータ信号配線に出力する信号とすることを特徴とする請求項2に記載の液晶表示装置。
    A signal supply circuit for supplying a signal in phase or opposite phase to the signal applied to the counter electrode to the pixel electrode;
    3. The liquid crystal display device according to claim 2, wherein the binary driver uses a signal supplied to the pixel electrode from the signal supply circuit as a signal output to a data signal line in the non-writing period.
  4.  アクティブマトリクス基板と対向基板との間に、電圧無印加時に液晶分子の配列が不規則な状態となる第1表示状態と、電圧印加時に液晶分子の配列が規則的な状態となる第2表示状態となる光拡散型液晶を封入してなる液晶表示装置において、
     上記アクティブマトリクス基板には、
     表示すべき画像を表す複数の映像信号をそれぞれ伝達するための複数のデータ信号配線と、
     上記複数のデータ信号配線と交差する複数の走査信号配線と、
     上記複数のデータ信号配線と上記複数の走査信号配線との交差点にそれぞれ対応してマトリクス状に配置された画素電極と、
     上記画素電極毎に設けられ、上記データ信号配線によって伝達される映像信号に基づいて、上記第1表示状態を実現するための第1表示データを、第1供給配線を介して取り込むと共に、上記第2表示状態を実現するための第2表示データを、第2供給配線を介して取り込み、それぞれのデータを記憶する表示データ記憶回路とが形成され、
     上記対向基板には、
     上記アクティブマトリクス基板の画素電極に対向し、当該画素電極に印加される電圧に同期して対向電圧を上記光拡散型液晶に印加する対向電極が形成され、
     上記データ信号配線に供給される映像信号に応じた電圧が上記画素電極に印加される期間を映像信号の書込み期間、次の映像信号の書込み期間までの期間を映像信号の非書込み期間としたとき、
     上記非書込み期間に、上記データ信号配線に対して上記対向電極に供給されている信号と同相または逆相の信号が供給されることを特徴とする液晶表示装置。
    Between the active matrix substrate and the counter substrate, a first display state where the arrangement of liquid crystal molecules is irregular when no voltage is applied, and a second display state where the arrangement of liquid crystal molecules is regular when a voltage is applied In a liquid crystal display device in which a light diffusion type liquid crystal is sealed,
    In the active matrix substrate,
    A plurality of data signal wirings for respectively transmitting a plurality of video signals representing images to be displayed;
    A plurality of scanning signal wirings crossing the plurality of data signal wirings;
    Pixel electrodes arranged in a matrix corresponding to the intersections of the plurality of data signal lines and the plurality of scanning signal lines,
    Based on a video signal provided for each of the pixel electrodes and transmitted by the data signal wiring, the first display data for realizing the first display state is taken in via the first supply wiring and the first A second display data for realizing two display states is taken in via the second supply wiring, and a display data storage circuit for storing each data is formed,
    In the counter substrate,
    A counter electrode is formed opposite to the pixel electrode of the active matrix substrate and applying a counter voltage to the light diffusion liquid crystal in synchronization with a voltage applied to the pixel electrode.
    When the video signal writing period is the period in which the voltage corresponding to the video signal supplied to the data signal wiring is applied to the pixel electrode, and the period until the next video signal writing period is the non-writing period of the video signal ,
    In the non-writing period, a signal having the same phase or opposite phase to the signal supplied to the counter electrode is supplied to the data signal wiring.
  5.  上記走査信号配線を駆動する走査信号配線駆動回路を備え、
     上記走査信号配線駆動回路は、
     映像信号の書込み対象となる画素電極の位置情報に応じて、上記走査信号配線を選択的に駆動することを特徴とする請求項1~4の何れか1項に記載の液晶表示装置。
    A scanning signal wiring drive circuit for driving the scanning signal wiring;
    The scanning signal wiring driving circuit is
    5. The liquid crystal display device according to claim 1, wherein the scanning signal wiring is selectively driven in accordance with position information of a pixel electrode to which a video signal is to be written.
  6.  アクティブマトリクス基板と対向基板との間に液晶容量が封入された液晶表示装置の駆動方法において、
     上記アクティブマトリクス基板には、複数のデータ信号配線と複数の走査信号配線との交差部にそれぞれ対応してマトリクス状に配置された画素電極が形成され、
     上記対向基板には、上記アクティブマトリクス基板の画素電極に対向し、当該画素電極に印加される電圧に同期して対向電圧を上記液晶容量に印加する対向電極が形成され、
     上記データ信号配線に供給される映像信号に応じた電圧が上記画素電極に印加される期間を映像信号の書込み期間、次の映像信号の書込み期間までの期間を映像信号の非書込み期間としたとき、
     上記非書込み期間に、上記データ信号配線に対して上記対向電極に供給されている信号と同相または逆相の信号を供給することを特徴とする液晶表示装置の駆動方法。
    In a driving method of a liquid crystal display device in which a liquid crystal capacitor is sealed between an active matrix substrate and a counter substrate,
    The active matrix substrate is formed with pixel electrodes arranged in a matrix corresponding to the intersections of the plurality of data signal wirings and the plurality of scanning signal wirings,
    The counter substrate is formed with a counter electrode that faces the pixel electrode of the active matrix substrate and applies a counter voltage to the liquid crystal capacitor in synchronization with a voltage applied to the pixel electrode.
    When a period corresponding to the video signal supplied to the data signal wiring is applied to the pixel electrode is a video signal writing period and a period until the next video signal writing period is a video signal non-writing period ,
    A method for driving a liquid crystal display device, comprising: supplying a signal having the same phase or a reverse phase to a signal supplied to the counter electrode to the data signal wiring during the non-writing period.
  7.  アクティブマトリクス基板と対向基板との間に、電圧無印加時に液晶分子の配列が不規則な状態となる第1表示状態と、電圧印加時に液晶分子の配列が規則的な状態となる第2表示状態となる光拡散型液晶を封入してなる液晶表示装置の駆動方法であって、
     上記アクティブマトリクス基板には、表示すべき画像を表す複数の映像信号をそれぞれ伝達するための複数のデータ信号配線と、上記複数のデータ信号配線と交差する複数の走査信号配線と、上記複数のデータ信号配線と上記複数の走査信号配線との交差点にそれぞれ対応してマトリクス状に配置された画素電極と、上記画素電極毎に設けられ、上記データ信号配線によって伝達される映像信号に基づいて、上記第1表示状態を実現するための第1表示データを、第1供給配線を介して取り込むと共に、上記第2表示状態を実現するための第2表示データを、第2供給配線を介して取り込み、それぞれのデータを記憶する表示データ記憶回路とが形成され、
     上記対向基板には、上記アクティブマトリクス基板の画素電極に対向し、当該画素電極に印加される電圧に同期して対向電圧を上記光拡散型液晶に印加する対向電極が形成され、
     上記データ信号配線に供給される映像信号に応じた電圧が上記画素電極に印加される期間を映像信号の書込み期間、次の映像信号の書込み期間までの期間を映像信号の非書込み期間としたとき、
     上記非書込み期間に、上記データ信号配線に対して上記対向電極に供給されている信号と同相または逆相の信号を供給することを特徴とする液晶表示装置の駆動方法。
    Between the active matrix substrate and the counter substrate, a first display state where the arrangement of liquid crystal molecules is irregular when no voltage is applied, and a second display state where the arrangement of liquid crystal molecules is regular when a voltage is applied A method of driving a liquid crystal display device in which a light diffusion type liquid crystal is sealed,
    The active matrix substrate includes a plurality of data signal wirings for transmitting a plurality of video signals representing an image to be displayed, a plurality of scanning signal wirings crossing the plurality of data signal wirings, and the plurality of data Based on the pixel electrodes arranged in a matrix corresponding to the intersections of the signal wiring and the plurality of scanning signal wirings, and the video signal provided for each pixel electrode and transmitted by the data signal wiring, First display data for realizing the first display state is taken in via the first supply wiring, and second display data for realizing the second display state is taken in via the second supply wiring, A display data storage circuit for storing each data is formed,
    The counter substrate is provided with a counter electrode that faces the pixel electrode of the active matrix substrate and applies a counter voltage to the light diffusion liquid crystal in synchronization with a voltage applied to the pixel electrode.
    When the video signal writing period is the period in which the voltage corresponding to the video signal supplied to the data signal wiring is applied to the pixel electrode, and the period until the next video signal writing period is the non-writing period of the video signal ,
    A driving method of a liquid crystal display device, wherein a signal having the same phase or a reverse phase as a signal supplied to the counter electrode is supplied to the data signal wiring during the non-writing period.
  8.  請求項1または4に記載の液晶表示装置を備えた電子機器。 Electronic equipment comprising the liquid crystal display device according to claim 1 or 4.
PCT/JP2010/068756 2009-12-24 2010-10-22 Liquid crystal display device, drive method of liquid crystal display device, and electronic device WO2011077825A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011547380A JPWO2011077825A1 (en) 2009-12-24 2010-10-22 Liquid crystal display device, driving method of liquid crystal display device, and electronic apparatus
US13/515,103 US20120287110A1 (en) 2009-12-24 2010-10-22 Liquid crystal display device, drive method of liquid crystal display device, and electronic device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-293297 2009-12-24
JP2009293297 2009-12-24

Publications (1)

Publication Number Publication Date
WO2011077825A1 true WO2011077825A1 (en) 2011-06-30

Family

ID=44195370

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/068756 WO2011077825A1 (en) 2009-12-24 2010-10-22 Liquid crystal display device, drive method of liquid crystal display device, and electronic device

Country Status (3)

Country Link
US (1) US20120287110A1 (en)
JP (1) JPWO2011077825A1 (en)
WO (1) WO2011077825A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08286170A (en) * 1995-02-16 1996-11-01 Toshiba Corp Liquid crystal display device
JP2002182619A (en) * 2000-10-05 2002-06-26 Sharp Corp Method for driving display device, and display device using the method
JP2002311901A (en) * 2001-04-11 2002-10-25 Sanyo Electric Co Ltd Display device
WO2010035548A1 (en) * 2008-09-24 2010-04-01 シャープ株式会社 Liquid crystal display device, active matrix substrate, and electronic device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4218249B2 (en) * 2002-03-07 2009-02-04 株式会社日立製作所 Display device
JP4564293B2 (en) * 2004-07-05 2010-10-20 東芝モバイルディスプレイ株式会社 OCB type liquid crystal display panel driving method and OCB type liquid crystal display device
JP2008532054A (en) * 2005-02-28 2008-08-14 東芝松下ディスプレイテクノロジー株式会社 Display device and manufacturing method thereof
EP1826741A3 (en) * 2006-02-23 2012-02-15 Semiconductor Energy Laboratory Co., Ltd. Display device and electronic device having the same
JP5508662B2 (en) * 2007-01-12 2014-06-04 株式会社半導体エネルギー研究所 Display device
CN101855668B (en) * 2007-11-14 2013-01-16 株式会社半导体能源研究所 Liquid crystal display device
CN101714546B (en) * 2008-10-03 2014-05-14 株式会社半导体能源研究所 Display device and method for producing same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08286170A (en) * 1995-02-16 1996-11-01 Toshiba Corp Liquid crystal display device
JP2002182619A (en) * 2000-10-05 2002-06-26 Sharp Corp Method for driving display device, and display device using the method
JP2002311901A (en) * 2001-04-11 2002-10-25 Sanyo Electric Co Ltd Display device
WO2010035548A1 (en) * 2008-09-24 2010-04-01 シャープ株式会社 Liquid crystal display device, active matrix substrate, and electronic device

Also Published As

Publication number Publication date
US20120287110A1 (en) 2012-11-15
JPWO2011077825A1 (en) 2013-05-02

Similar Documents

Publication Publication Date Title
JP4985020B2 (en) Liquid crystal device, driving method thereof, and electronic apparatus
JP5019668B2 (en) Display device and control method thereof
US20100309173A1 (en) Display device and mobile terminal
US9076405B2 (en) Display device, method for driving same, and liquid crystal display device
KR100755599B1 (en) Electro-optical device, method of driving electro-optical device, and electronic apparatus
KR100465471B1 (en) Display device
KR20080083583A (en) Liquid crystal device, method of driving the same and electronic apparatus
JP7114875B2 (en) ELECTRO-OPTICAL DEVICE, ELECTRO-OPTICAL DEVICE CONTROL METHOD, AND ELECTRONIC DEVICE
JP2011232568A (en) Electro-optic device and electronic apparatus
JP3613942B2 (en) Image display device, image display method, electronic apparatus using the same, and projection display device
KR100459624B1 (en) Display device
JP3726910B2 (en) Display driver and electro-optical device
US20060238479A1 (en) Display device
JP2008216893A (en) Flat panel display device and display method thereof
US20120062535A1 (en) Driving method of electro-optical device, electro-optical device, and electronic apparatus
KR101785339B1 (en) Common voltage driver and liquid crystal display device including thereof
JP2000276110A (en) Liquid crystal display device
KR100522060B1 (en) Display device
JP2012063790A (en) Display device
JP2011013420A (en) Electro-optical device, method for driving the same, and electronic apparatus
JP2010044295A (en) Electrooptical apparatus, its driving method, and electronic device
WO2011077825A1 (en) Liquid crystal display device, drive method of liquid crystal display device, and electronic device
JP2008158385A (en) Electrooptical device and its driving method, and electronic equipment
KR100477139B1 (en) LCD display with drive control circuit
KR101151286B1 (en) Driving method for LCD

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10839062

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011547380

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13515103

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10839062

Country of ref document: EP

Kind code of ref document: A1