WO2011075587A1 - Combined use of cry1da and cry1fa proteins for insect resistance management - Google Patents
Combined use of cry1da and cry1fa proteins for insect resistance management Download PDFInfo
- Publication number
- WO2011075587A1 WO2011075587A1 PCT/US2010/060815 US2010060815W WO2011075587A1 WO 2011075587 A1 WO2011075587 A1 WO 2011075587A1 US 2010060815 W US2010060815 W US 2010060815W WO 2011075587 A1 WO2011075587 A1 WO 2011075587A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- plants
- seeds
- refuge
- protein
- field
- Prior art date
Links
- 108090000623 proteins and genes Proteins 0.000 title claims abstract description 186
- 102000004169 proteins and genes Human genes 0.000 title claims abstract description 132
- 241000238631 Hexapoda Species 0.000 title claims abstract description 38
- 239000003053 toxin Substances 0.000 claims abstract description 146
- 231100000765 toxin Toxicity 0.000 claims abstract description 145
- 238000000034 method Methods 0.000 claims abstract description 39
- 238000011161 development Methods 0.000 claims abstract description 17
- 241000196324 Embryophyta Species 0.000 claims description 117
- 241000256251 Spodoptera frugiperda Species 0.000 claims description 66
- 241000607479 Yersinia pestis Species 0.000 claims description 36
- 230000000749 insecticidal effect Effects 0.000 claims description 35
- 240000008042 Zea mays Species 0.000 claims description 32
- 239000000203 mixture Substances 0.000 claims description 28
- 235000002017 Zea mays subsp mays Nutrition 0.000 claims description 26
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 claims description 25
- 235000005822 corn Nutrition 0.000 claims description 25
- 230000009261 transgenic effect Effects 0.000 claims description 15
- 244000005700 microbiome Species 0.000 claims description 10
- 229920000742 Cotton Polymers 0.000 claims description 7
- 244000068988 Glycine max Species 0.000 claims description 4
- 235000010469 Glycine max Nutrition 0.000 claims description 4
- 244000038559 crop plants Species 0.000 claims 7
- 241000219146 Gossypium Species 0.000 claims 1
- 108700012359 toxins Proteins 0.000 description 178
- 210000004027 cell Anatomy 0.000 description 47
- 108020003175 receptors Proteins 0.000 description 20
- 102000005962 receptors Human genes 0.000 description 20
- 150000001413 amino acids Chemical class 0.000 description 19
- 230000027455 binding Effects 0.000 description 19
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 18
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 18
- 239000008188 pellet Substances 0.000 description 18
- 239000013612 plasmid Substances 0.000 description 18
- 239000000499 gel Substances 0.000 description 16
- 210000003000 inclusion body Anatomy 0.000 description 16
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 15
- 241001147398 Ostrinia nubilalis Species 0.000 description 15
- 239000000575 pesticide Substances 0.000 description 13
- 238000011282 treatment Methods 0.000 description 13
- 241000589540 Pseudomonas fluorescens Species 0.000 description 12
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 12
- 230000036515 potency Effects 0.000 description 12
- 239000000047 product Substances 0.000 description 12
- 108091028043 Nucleic acid sequence Proteins 0.000 description 11
- 239000013598 vector Substances 0.000 description 11
- 108020004414 DNA Proteins 0.000 description 10
- 238000009472 formulation Methods 0.000 description 10
- 239000000523 sample Substances 0.000 description 10
- 238000002415 sodium dodecyl sulfate polyacrylamide gel electrophoresis Methods 0.000 description 10
- 239000006228 supernatant Substances 0.000 description 10
- 230000009466 transformation Effects 0.000 description 10
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 10
- 238000004458 analytical method Methods 0.000 description 9
- 230000000694 effects Effects 0.000 description 9
- 108020001507 fusion proteins Proteins 0.000 description 9
- 102000037865 fusion proteins Human genes 0.000 description 9
- 230000000361 pesticidal effect Effects 0.000 description 9
- 239000000243 solution Substances 0.000 description 9
- 238000006467 substitution reaction Methods 0.000 description 9
- 230000009471 action Effects 0.000 description 8
- 239000012634 fragment Substances 0.000 description 8
- 238000002360 preparation method Methods 0.000 description 8
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 7
- 125000003275 alpha amino acid group Chemical group 0.000 description 7
- 229940098773 bovine serum albumin Drugs 0.000 description 7
- 239000002596 immunotoxin Substances 0.000 description 7
- 230000000306 recurrent effect Effects 0.000 description 7
- 230000007704 transition Effects 0.000 description 7
- 241000894006 Bacteria Species 0.000 description 6
- 206010034133 Pathogen resistance Diseases 0.000 description 6
- 230000004071 biological effect Effects 0.000 description 6
- VHJLVAABSRFDPM-QWWZWVQMSA-N dithiothreitol Chemical compound SC[C@@H](O)[C@H](O)CS VHJLVAABSRFDPM-QWWZWVQMSA-N 0.000 description 6
- 230000002068 genetic effect Effects 0.000 description 6
- 239000011780 sodium chloride Substances 0.000 description 6
- 238000012546 transfer Methods 0.000 description 6
- 241000193388 Bacillus thuringiensis Species 0.000 description 5
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 5
- 102000004142 Trypsin Human genes 0.000 description 5
- 108090000631 Trypsin Proteins 0.000 description 5
- 238000007792 addition Methods 0.000 description 5
- 229940097012 bacillus thuringiensis Drugs 0.000 description 5
- 238000004166 bioassay Methods 0.000 description 5
- 230000007613 environmental effect Effects 0.000 description 5
- 238000000855 fermentation Methods 0.000 description 5
- 230000004151 fermentation Effects 0.000 description 5
- 230000026045 iodination Effects 0.000 description 5
- 238000006192 iodination reaction Methods 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 239000003550 marker Substances 0.000 description 5
- 230000000813 microbial effect Effects 0.000 description 5
- 239000002953 phosphate buffered saline Substances 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- 239000000725 suspension Substances 0.000 description 5
- 230000002195 synergetic effect Effects 0.000 description 5
- 239000012588 trypsin Substances 0.000 description 5
- IYLGZMTXKJYONK-ACLXAEORSA-N (12s,15r)-15-hydroxy-11,16-dioxo-15,20-dihydrosenecionan-12-yl acetate Chemical compound O1C(=O)[C@](CC)(O)C[C@@H](C)[C@](C)(OC(C)=O)C(=O)OCC2=CCN3[C@H]2[C@H]1CC3 IYLGZMTXKJYONK-ACLXAEORSA-N 0.000 description 4
- 241000588724 Escherichia coli Species 0.000 description 4
- 208000037065 Subacute sclerosing leukoencephalitis Diseases 0.000 description 4
- 206010042297 Subacute sclerosing panencephalitis Diseases 0.000 description 4
- 239000007983 Tris buffer Substances 0.000 description 4
- 239000011324 bead Substances 0.000 description 4
- 239000013078 crystal Substances 0.000 description 4
- 239000012153 distilled water Substances 0.000 description 4
- 238000001962 electrophoresis Methods 0.000 description 4
- 238000011534 incubation Methods 0.000 description 4
- 239000012139 lysis buffer Substances 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- IYLGZMTXKJYONK-UHFFFAOYSA-N ruwenine Natural products O1C(=O)C(CC)(O)CC(C)C(C)(OC(C)=O)C(=O)OCC2=CCN3C2C1CC3 IYLGZMTXKJYONK-UHFFFAOYSA-N 0.000 description 4
- 239000002689 soil Substances 0.000 description 4
- 238000010561 standard procedure Methods 0.000 description 4
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 4
- DGVVWUTYPXICAM-UHFFFAOYSA-N β‐Mercaptoethanol Chemical compound OCCS DGVVWUTYPXICAM-UHFFFAOYSA-N 0.000 description 4
- 241000589155 Agrobacterium tumefaciens Species 0.000 description 3
- 108700003918 Bacillus Thuringiensis insecticidal crystal Proteins 0.000 description 3
- 241001057636 Dracaena deremensis Species 0.000 description 3
- 102000004190 Enzymes Human genes 0.000 description 3
- 108090000790 Enzymes Proteins 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 3
- 241000233866 Fungi Species 0.000 description 3
- 241000589516 Pseudomonas Species 0.000 description 3
- 239000000872 buffer Substances 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 238000010367 cloning Methods 0.000 description 3
- 230000002860 competitive effect Effects 0.000 description 3
- 239000002158 endotoxin Substances 0.000 description 3
- 229940088598 enzyme Drugs 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 239000008187 granular material Substances 0.000 description 3
- 239000002917 insecticide Substances 0.000 description 3
- 238000003780 insertion Methods 0.000 description 3
- 230000037431 insertion Effects 0.000 description 3
- 238000012423 maintenance Methods 0.000 description 3
- 239000002609 medium Substances 0.000 description 3
- 239000012528 membrane Substances 0.000 description 3
- 239000003094 microcapsule Substances 0.000 description 3
- 235000015097 nutrients Nutrition 0.000 description 3
- 108091033319 polynucleotide Proteins 0.000 description 3
- 102000040430 polynucleotide Human genes 0.000 description 3
- 239000002157 polynucleotide Substances 0.000 description 3
- 238000000159 protein binding assay Methods 0.000 description 3
- 231100000654 protein toxin Toxicity 0.000 description 3
- 230000002285 radioactive effect Effects 0.000 description 3
- 238000001525 receptor binding assay Methods 0.000 description 3
- 239000012723 sample buffer Substances 0.000 description 3
- FVAUCKIRQBBSSJ-UHFFFAOYSA-M sodium iodide Chemical compound [Na+].[I-] FVAUCKIRQBBSSJ-UHFFFAOYSA-M 0.000 description 3
- 238000001228 spectrum Methods 0.000 description 3
- 239000012536 storage buffer Substances 0.000 description 3
- 239000004094 surface-active agent Substances 0.000 description 3
- 230000002588 toxic effect Effects 0.000 description 3
- AXAVXPMQTGXXJZ-UHFFFAOYSA-N 2-aminoacetic acid;2-amino-2-(hydroxymethyl)propane-1,3-diol Chemical compound NCC(O)=O.OCC(N)(CO)CO AXAVXPMQTGXXJZ-UHFFFAOYSA-N 0.000 description 2
- 101150090724 3 gene Proteins 0.000 description 2
- 241000589158 Agrobacterium Species 0.000 description 2
- 241000589156 Agrobacterium rhizogenes Species 0.000 description 2
- 241000588986 Alcaligenes Species 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 241000223651 Aureobasidium Species 0.000 description 2
- 241000589151 Azotobacter Species 0.000 description 2
- 108091026890 Coding region Proteins 0.000 description 2
- 108700010070 Codon Usage Proteins 0.000 description 2
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 2
- 241000122106 Diatraea saccharalis Species 0.000 description 2
- 241000206602 Eukaryota Species 0.000 description 2
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 2
- 108010042653 IgA receptor Proteins 0.000 description 2
- 241000235649 Kluyveromyces Species 0.000 description 2
- 229930195725 Mannitol Natural products 0.000 description 2
- 241000215495 Massilia timonae Species 0.000 description 2
- 102000016943 Muramidase Human genes 0.000 description 2
- 108010014251 Muramidase Proteins 0.000 description 2
- 108010062010 N-Acetylmuramoyl-L-alanine Amidase Proteins 0.000 description 2
- 102100034014 Prolyl 3-hydroxylase 3 Human genes 0.000 description 2
- 241000589180 Rhizobium Species 0.000 description 2
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- 239000003242 anti bacterial agent Substances 0.000 description 2
- 235000021405 artificial diet Nutrition 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 239000012148 binding buffer Substances 0.000 description 2
- 230000003115 biocidal effect Effects 0.000 description 2
- 239000003139 biocide Substances 0.000 description 2
- 238000009395 breeding Methods 0.000 description 2
- 230000001488 breeding effect Effects 0.000 description 2
- 230000006037 cell lysis Effects 0.000 description 2
- 230000001413 cellular effect Effects 0.000 description 2
- 238000005119 centrifugation Methods 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- -1 dditional Species 0.000 description 2
- 238000012217 deletion Methods 0.000 description 2
- 230000037430 deletion Effects 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 230000029087 digestion Effects 0.000 description 2
- 238000007865 diluting Methods 0.000 description 2
- 239000002270 dispersing agent Substances 0.000 description 2
- 238000004520 electroporation Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000013613 expression plasmid Substances 0.000 description 2
- 239000000834 fixative Substances 0.000 description 2
- 238000005194 fractionation Methods 0.000 description 2
- 238000007710 freezing Methods 0.000 description 2
- 230000008014 freezing Effects 0.000 description 2
- 230000004927 fusion Effects 0.000 description 2
- 210000001035 gastrointestinal tract Anatomy 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 239000011539 homogenization buffer Substances 0.000 description 2
- 238000009396 hybridization Methods 0.000 description 2
- 238000003384 imaging method Methods 0.000 description 2
- 230000006698 induction Effects 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 230000003834 intracellular effect Effects 0.000 description 2
- 230000001418 larval effect Effects 0.000 description 2
- 239000003446 ligand Substances 0.000 description 2
- 230000000670 limiting effect Effects 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000012669 liquid formulation Substances 0.000 description 2
- 239000006166 lysate Substances 0.000 description 2
- 239000004325 lysozyme Substances 0.000 description 2
- 229960000274 lysozyme Drugs 0.000 description 2
- 235000010335 lysozyme Nutrition 0.000 description 2
- 239000000594 mannitol Substances 0.000 description 2
- 235000010355 mannitol Nutrition 0.000 description 2
- 238000000386 microscopy Methods 0.000 description 2
- 210000000110 microvilli Anatomy 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 238000000329 molecular dynamics simulation Methods 0.000 description 2
- 230000035772 mutation Effects 0.000 description 2
- 239000002773 nucleotide Substances 0.000 description 2
- 125000003729 nucleotide group Chemical group 0.000 description 2
- 229920001184 polypeptide Polymers 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 108090000765 processed proteins & peptides Proteins 0.000 description 2
- 102000004196 processed proteins & peptides Human genes 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000011002 quantification Methods 0.000 description 2
- 239000011541 reaction mixture Substances 0.000 description 2
- 239000004627 regenerated cellulose Substances 0.000 description 2
- 230000000717 retained effect Effects 0.000 description 2
- 238000005070 sampling Methods 0.000 description 2
- 238000005063 solubilization Methods 0.000 description 2
- 230000007928 solubilization Effects 0.000 description 2
- 238000000527 sonication Methods 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 231100000331 toxic Toxicity 0.000 description 2
- 230000014616 translation Effects 0.000 description 2
- JKMHFZQWWAIEOD-UHFFFAOYSA-N 2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid Chemical compound OCC[NH+]1CCN(CCS([O-])(=O)=O)CC1 JKMHFZQWWAIEOD-UHFFFAOYSA-N 0.000 description 1
- ZHVOBYWXERUHMN-KVJKMEBSSA-N 3-[(3s,5r,8r,9s,10s,13s,14s,17s)-10,13-dimethyl-3-[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-2,3,4,5,6,7,8,9,11,12,14,15,16,17-tetradecahydro-1h-cyclopenta[a]phenanthren-17-yl]-2h-furan-5-one Chemical compound O([C@@H]1C[C@H]2CC[C@@H]3[C@@H]([C@]2(CC1)C)CC[C@]1([C@H]3CC[C@@H]1C=1COC(=O)C=1)C)[C@@H]1O[C@H](CO)[C@@H](O)[C@H](O)[C@H]1O ZHVOBYWXERUHMN-KVJKMEBSSA-N 0.000 description 1
- QFVHZQCOUORWEI-UHFFFAOYSA-N 4-[(4-anilino-5-sulfonaphthalen-1-yl)diazenyl]-5-hydroxynaphthalene-2,7-disulfonic acid Chemical compound C=12C(O)=CC(S(O)(=O)=O)=CC2=CC(S(O)(=O)=O)=CC=1N=NC(C1=CC=CC(=C11)S(O)(=O)=O)=CC=C1NC1=CC=CC=C1 QFVHZQCOUORWEI-UHFFFAOYSA-N 0.000 description 1
- QCVGEOXPDFCNHA-UHFFFAOYSA-N 5,5-dimethyl-2,4-dioxo-1,3-oxazolidine-3-carboxamide Chemical compound CC1(C)OC(=O)N(C(N)=O)C1=O QCVGEOXPDFCNHA-UHFFFAOYSA-N 0.000 description 1
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 1
- 241000589220 Acetobacter Species 0.000 description 1
- 244000235858 Acetobacter xylinum Species 0.000 description 1
- 235000002837 Acetobacter xylinum Nutrition 0.000 description 1
- 102000002260 Alkaline Phosphatase Human genes 0.000 description 1
- 108020004774 Alkaline Phosphatase Proteins 0.000 description 1
- 238000008940 Alkaline Phosphatase assay kit Methods 0.000 description 1
- 241000186063 Arthrobacter Species 0.000 description 1
- 241000193830 Bacillus <bacterium> Species 0.000 description 1
- 108010077805 Bacterial Proteins Proteins 0.000 description 1
- 229940123779 Bacterial protease inhibitor Drugs 0.000 description 1
- 108010006654 Bleomycin Proteins 0.000 description 1
- 229920002799 BoPET Polymers 0.000 description 1
- 239000011547 Bouin solution Substances 0.000 description 1
- 241000724266 Broad bean mottle virus Species 0.000 description 1
- 241001337994 Cryptococcus <scale insect> Species 0.000 description 1
- 241000195493 Cryptophyta Species 0.000 description 1
- 239000003298 DNA probe Substances 0.000 description 1
- ZGTMUACCHSMWAC-UHFFFAOYSA-L EDTA disodium salt (anhydrous) Chemical compound [Na+].[Na+].OC(=O)CN(CC([O-])=O)CCN(CC(O)=O)CC([O-])=O ZGTMUACCHSMWAC-UHFFFAOYSA-L 0.000 description 1
- 102000002322 Egg Proteins Human genes 0.000 description 1
- 108010000912 Egg Proteins Proteins 0.000 description 1
- 108010042407 Endonucleases Proteins 0.000 description 1
- 102000004533 Endonucleases Human genes 0.000 description 1
- YQYJSBFKSSDGFO-UHFFFAOYSA-N Epihygromycin Natural products OC1C(O)C(C(=O)C)OC1OC(C(=C1)O)=CC=C1C=C(C)C(=O)NC1C(O)C(O)C2OCOC2C1O YQYJSBFKSSDGFO-UHFFFAOYSA-N 0.000 description 1
- 241000588698 Erwinia Species 0.000 description 1
- 108060002716 Exonuclease Proteins 0.000 description 1
- SXRSQZLOMIGNAQ-UHFFFAOYSA-N Glutaraldehyde Chemical compound O=CCCCC=O SXRSQZLOMIGNAQ-UHFFFAOYSA-N 0.000 description 1
- 239000004471 Glycine Substances 0.000 description 1
- 241000190714 Gymnosporangium clavipes Species 0.000 description 1
- 239000007995 HEPES buffer Substances 0.000 description 1
- 241000256244 Heliothis virescens Species 0.000 description 1
- 240000007049 Juglans regia Species 0.000 description 1
- 235000009496 Juglans regia Nutrition 0.000 description 1
- 241000588748 Klebsiella Species 0.000 description 1
- 241000186660 Lactobacillus Species 0.000 description 1
- 239000012741 Laemmli sample buffer Substances 0.000 description 1
- 241000255777 Lepidoptera Species 0.000 description 1
- 241000192132 Leuconostoc Species 0.000 description 1
- 239000007993 MOPS buffer Substances 0.000 description 1
- 241000124008 Mammalia Species 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- 239000005041 Mylar™ Substances 0.000 description 1
- 241001443590 Naganishia albida Species 0.000 description 1
- 241000033319 Naganishia diffluens Species 0.000 description 1
- 108020005187 Oligonucleotide Probes Proteins 0.000 description 1
- 240000007594 Oryza sativa Species 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- 241000346285 Ostrinia furnacalis Species 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 208000002193 Pain Diseases 0.000 description 1
- 241000222051 Papiliotrema laurentii Species 0.000 description 1
- 108091005804 Peptidases Proteins 0.000 description 1
- 102000035195 Peptidases Human genes 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 229920001213 Polysorbate 20 Polymers 0.000 description 1
- 239000004365 Protease Substances 0.000 description 1
- 229940124158 Protease/peptidase inhibitor Drugs 0.000 description 1
- 241000589615 Pseudomonas syringae Species 0.000 description 1
- 241000158450 Rhodobacter sp. KYW73 Species 0.000 description 1
- 241000191043 Rhodobacter sphaeroides Species 0.000 description 1
- 241000190932 Rhodopseudomonas Species 0.000 description 1
- 241000223252 Rhodotorula Species 0.000 description 1
- 241000223253 Rhodotorula glutinis Species 0.000 description 1
- 241000223254 Rhodotorula mucilaginosa Species 0.000 description 1
- 239000011542 SDS running buffer Substances 0.000 description 1
- 241000235070 Saccharomyces Species 0.000 description 1
- 241001479507 Senecio odorus Species 0.000 description 1
- 238000012300 Sequence Analysis Methods 0.000 description 1
- 241000607720 Serratia Species 0.000 description 1
- 241000607715 Serratia marcescens Species 0.000 description 1
- 244000061456 Solanum tuberosum Species 0.000 description 1
- 235000002595 Solanum tuberosum Nutrition 0.000 description 1
- 241000256248 Spodoptera Species 0.000 description 1
- 241000222068 Sporobolomyces <Sporidiobolaceae> Species 0.000 description 1
- 241000123675 Sporobolomyces roseus Species 0.000 description 1
- 241000187747 Streptomyces Species 0.000 description 1
- 239000012505 Superdex™ Substances 0.000 description 1
- 244000288561 Torulaspora delbrueckii Species 0.000 description 1
- 235000014681 Torulaspora delbrueckii Nutrition 0.000 description 1
- 241001495125 Torulaspora pretoriensis Species 0.000 description 1
- 108700019146 Transgenes Proteins 0.000 description 1
- 239000013504 Triton X-100 Substances 0.000 description 1
- 229920004890 Triton X-100 Polymers 0.000 description 1
- 241000589634 Xanthomonas Species 0.000 description 1
- 241000589636 Xanthomonas campestris Species 0.000 description 1
- 235000016383 Zea mays subsp huehuetenangensis Nutrition 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 239000002671 adjuvant Substances 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 150000001299 aldehydes Chemical class 0.000 description 1
- 230000006229 amino acid addition Effects 0.000 description 1
- 238000005349 anion exchange Methods 0.000 description 1
- 230000002924 anti-infective effect Effects 0.000 description 1
- 229940088710 antibiotic agent Drugs 0.000 description 1
- 229960005475 antiinfective agent Drugs 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 239000005667 attractant Substances 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- OCBHHZMJRVXXQK-UHFFFAOYSA-M benzyl-dimethyl-tetradecylazanium;chloride Chemical compound [Cl-].CCCCCCCCCCCCCC[N+](C)(C)CC1=CC=CC=C1 OCBHHZMJRVXXQK-UHFFFAOYSA-M 0.000 description 1
- GINJFDRNADDBIN-FXQIFTODSA-N bilanafos Chemical compound OC(=O)[C@H](C)NC(=O)[C@H](C)NC(=O)[C@@H](N)CCP(C)(O)=O GINJFDRNADDBIN-FXQIFTODSA-N 0.000 description 1
- 102000023732 binding proteins Human genes 0.000 description 1
- 108091008324 binding proteins Proteins 0.000 description 1
- 230000008827 biological function Effects 0.000 description 1
- 238000010170 biological method Methods 0.000 description 1
- 230000000853 biopesticidal effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- OWMVSZAMULFTJU-UHFFFAOYSA-N bis-tris Chemical compound OCCN(CCO)C(CO)(CO)CO OWMVSZAMULFTJU-UHFFFAOYSA-N 0.000 description 1
- 229960001561 bleomycin Drugs 0.000 description 1
- OYVAGSVQBOHSSS-UAPAGMARSA-O bleomycin A2 Chemical compound N([C@H](C(=O)N[C@H](C)[C@@H](O)[C@H](C)C(=O)N[C@@H]([C@H](O)C)C(=O)NCCC=1SC=C(N=1)C=1SC=C(N=1)C(=O)NCCC[S+](C)C)[C@@H](O[C@H]1[C@H]([C@@H](O)[C@H](O)[C@H](CO)O1)O[C@@H]1[C@H]([C@@H](OC(N)=O)[C@H](O)[C@@H](CO)O1)O)C=1N=CNC=1)C(=O)C1=NC([C@H](CC(N)=O)NC[C@H](N)C(N)=O)=NC(N)=C1C OYVAGSVQBOHSSS-UAPAGMARSA-O 0.000 description 1
- UDSAIICHUKSCKT-UHFFFAOYSA-N bromophenol blue Chemical compound C1=C(Br)C(O)=C(Br)C=C1C1(C=2C=C(Br)C(O)=C(Br)C=2)C2=CC=CC=C2S(=O)(=O)O1 UDSAIICHUKSCKT-UHFFFAOYSA-N 0.000 description 1
- 210000004899 c-terminal region Anatomy 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000010261 cell growth Effects 0.000 description 1
- 239000006285 cell suspension Substances 0.000 description 1
- 210000002421 cell wall Anatomy 0.000 description 1
- 210000003850 cellular structure Anatomy 0.000 description 1
- 235000013339 cereals Nutrition 0.000 description 1
- 229960001927 cetylpyridinium chloride Drugs 0.000 description 1
- YMKDRGPMQRFJGP-UHFFFAOYSA-M cetylpyridinium chloride Chemical compound [Cl-].CCCCCCCCCCCCCCCC[N+]1=CC=CC=C1 YMKDRGPMQRFJGP-UHFFFAOYSA-M 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 239000013043 chemical agent Substances 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 230000031902 chemoattractant activity Effects 0.000 description 1
- 210000000991 chicken egg Anatomy 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000012875 competitive assay Methods 0.000 description 1
- 230000009137 competitive binding Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 235000008504 concentrate Nutrition 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 230000021615 conjugation Effects 0.000 description 1
- NKLPQNGYXWVELD-UHFFFAOYSA-M coomassie brilliant blue Chemical compound [Na+].C1=CC(OCC)=CC=C1NC1=CC=C(C(=C2C=CC(C=C2)=[N+](CC)CC=2C=C(C=CC=2)S([O-])(=O)=O)C=2C=CC(=CC=2)N(CC)CC=2C=C(C=CC=2)S([O-])(=O)=O)C=C1 NKLPQNGYXWVELD-UHFFFAOYSA-M 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000011033 desalting Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000003795 desorption Methods 0.000 description 1
- 239000012470 diluted sample Substances 0.000 description 1
- 230000003467 diminishing effect Effects 0.000 description 1
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 1
- 229910000397 disodium phosphate Inorganic materials 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 231100000673 dose–response relationship Toxicity 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000010410 dusting Methods 0.000 description 1
- 235000013399 edible fruits Nutrition 0.000 description 1
- 239000012636 effector Substances 0.000 description 1
- 235000014103 egg white Nutrition 0.000 description 1
- 239000004495 emulsifiable concentrate Substances 0.000 description 1
- 239000003995 emulsifying agent Substances 0.000 description 1
- DEFVIWRASFVYLL-UHFFFAOYSA-N ethylene glycol bis(2-aminoethyl)tetraacetic acid Chemical compound OC(=O)CN(CC(O)=O)CCOCCOCCN(CC(O)=O)CC(O)=O DEFVIWRASFVYLL-UHFFFAOYSA-N 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 102000013165 exonuclease Human genes 0.000 description 1
- 238000010195 expression analysis Methods 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 244000037666 field crops Species 0.000 description 1
- 235000013312 flour Nutrition 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 230000037406 food intake Effects 0.000 description 1
- 238000004108 freeze drying Methods 0.000 description 1
- 238000001502 gel electrophoresis Methods 0.000 description 1
- 210000004602 germ cell Anatomy 0.000 description 1
- 230000012010 growth Effects 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 230000002140 halogenating effect Effects 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 238000003306 harvesting Methods 0.000 description 1
- 230000002962 histologic effect Effects 0.000 description 1
- 238000000265 homogenisation Methods 0.000 description 1
- 230000002779 inactivation Effects 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 239000002198 insoluble material Substances 0.000 description 1
- PNDPGZBMCMUPRI-UHFFFAOYSA-N iodine Chemical compound II PNDPGZBMCMUPRI-UHFFFAOYSA-N 0.000 description 1
- 229910052740 iodine Inorganic materials 0.000 description 1
- 239000011630 iodine Substances 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 229930027917 kanamycin Natural products 0.000 description 1
- SBUJHOSQTJFQJX-NOAMYHISSA-N kanamycin Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CN)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](N)[C@H](O)[C@@H](CO)O2)O)[C@H](N)C[C@@H]1N SBUJHOSQTJFQJX-NOAMYHISSA-N 0.000 description 1
- 229960000318 kanamycin Drugs 0.000 description 1
- 229930182823 kanamycin A Natural products 0.000 description 1
- 230000002147 killing effect Effects 0.000 description 1
- 238000002372 labelling Methods 0.000 description 1
- 229940039696 lactobacillus Drugs 0.000 description 1
- 235000014666 liquid concentrate Nutrition 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 230000033001 locomotion Effects 0.000 description 1
- 210000003750 lower gastrointestinal tract Anatomy 0.000 description 1
- 235000009973 maize Nutrition 0.000 description 1
- 231100001225 mammalian toxicity Toxicity 0.000 description 1
- 238000004949 mass spectrometry Methods 0.000 description 1
- 230000013011 mating Effects 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 230000010534 mechanism of action Effects 0.000 description 1
- 230000001404 mediated effect Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 230000002906 microbiologic effect Effects 0.000 description 1
- 239000011859 microparticle Substances 0.000 description 1
- 230000000116 mitigating effect Effects 0.000 description 1
- 230000037230 mobility Effects 0.000 description 1
- 229910000402 monopotassium phosphate Inorganic materials 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000009871 nonspecific binding Effects 0.000 description 1
- 108020004707 nucleic acids Proteins 0.000 description 1
- 102000039446 nucleic acids Human genes 0.000 description 1
- 150000007523 nucleic acids Chemical class 0.000 description 1
- 239000002751 oligonucleotide probe Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 244000052769 pathogen Species 0.000 description 1
- 230000001717 pathogenic effect Effects 0.000 description 1
- 239000000137 peptide hydrolase inhibitor Substances 0.000 description 1
- 235000021317 phosphate Nutrition 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 238000003322 phosphorimaging Methods 0.000 description 1
- 229910052615 phyllosilicate Inorganic materials 0.000 description 1
- 230000019612 pigmentation Effects 0.000 description 1
- 239000013600 plasmid vector Substances 0.000 description 1
- 231100000614 poison Toxicity 0.000 description 1
- 230000010152 pollination Effects 0.000 description 1
- 229920002401 polyacrylamide Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000000256 polyoxyethylene sorbitan monolaurate Substances 0.000 description 1
- 235000010486 polyoxyethylene sorbitan monolaurate Nutrition 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000002062 proliferating effect Effects 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 238000000751 protein extraction Methods 0.000 description 1
- 210000001938 protoplast Anatomy 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 230000010076 replication Effects 0.000 description 1
- 108091008146 restriction endonucleases Proteins 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000006152 selective media Substances 0.000 description 1
- 238000002741 site-directed mutagenesis Methods 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- 235000009518 sodium iodide Nutrition 0.000 description 1
- 239000001488 sodium phosphate Substances 0.000 description 1
- 229910000162 sodium phosphate Inorganic materials 0.000 description 1
- RWVGQQGBQSJDQV-UHFFFAOYSA-M sodium;3-[[4-[(e)-[4-(4-ethoxyanilino)phenyl]-[4-[ethyl-[(3-sulfonatophenyl)methyl]azaniumylidene]-2-methylcyclohexa-2,5-dien-1-ylidene]methyl]-n-ethyl-3-methylanilino]methyl]benzenesulfonate Chemical compound [Na+].C1=CC(OCC)=CC=C1NC1=CC=C(C(=C2C(=CC(C=C2)=[N+](CC)CC=2C=C(C=CC=2)S([O-])(=O)=O)C)C=2C(=CC(=CC=2)N(CC)CC=2C=C(C=CC=2)S([O-])(=O)=O)C)C=C1 RWVGQQGBQSJDQV-UHFFFAOYSA-M 0.000 description 1
- ALZJERAWTOKHNO-UHFFFAOYSA-M sodium;dodecyl sulfate;3-morpholin-4-ylpropane-1-sulfonic acid Chemical compound [Na+].OS(=O)(=O)CCCN1CCOCC1.CCCCCCCCCCCCOS([O-])(=O)=O ALZJERAWTOKHNO-UHFFFAOYSA-M 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000011877 solvent mixture Substances 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 230000009870 specific binding Effects 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 238000010186 staining Methods 0.000 description 1
- 239000011550 stock solution Substances 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- 230000004083 survival effect Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000010257 thawing Methods 0.000 description 1
- 239000003440 toxic substance Substances 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 230000007888 toxin activity Effects 0.000 description 1
- RYFMWSXOAZQYPI-UHFFFAOYSA-K trisodium phosphate Chemical compound [Na+].[Na+].[Na+].[O-]P([O-])([O-])=O RYFMWSXOAZQYPI-UHFFFAOYSA-K 0.000 description 1
- 238000009281 ultraviolet germicidal irradiation Methods 0.000 description 1
- 235000020234 walnut Nutrition 0.000 description 1
- 239000004563 wettable powder Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8241—Phenotypically and genetically modified plants via recombinant DNA technology
- C12N15/8261—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
- C12N15/8271—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
- C12N15/8279—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance
- C12N15/8286—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance for insect resistance
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01H—NEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
- A01H5/00—Angiosperms, i.e. flowering plants, characterised by their plant parts; Angiosperms characterised otherwise than by their botanic taxonomy
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01H—NEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
- A01H5/00—Angiosperms, i.e. flowering plants, characterised by their plant parts; Angiosperms characterised otherwise than by their botanic taxonomy
- A01H5/10—Seeds
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01N—PRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
- A01N63/00—Biocides, pest repellants or attractants, or plant growth regulators containing microorganisms, viruses, microbial fungi, animals or substances produced by, or obtained from, microorganisms, viruses, microbial fungi or animals, e.g. enzymes or fermentates
- A01N63/50—Isolated enzymes; Isolated proteins
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P7/00—Drugs for disorders of the blood or the extracellular fluid
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/195—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
- C07K14/32—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Bacillus (G)
- C07K14/325—Bacillus thuringiensis crystal peptides, i.e. delta-endotoxins
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A40/00—Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
- Y02A40/10—Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
- Y02A40/146—Genetically Modified [GMO] plants, e.g. transgenic plants
Definitions
- Bt proteins have been used to create the insect-resistant transgenic plants that have been successfully registered and commercialized to date. These include CrylAb, CrylAc, CrylF and Cry3Bb in corn, CrylAc and Cry2Ab in cotton, and Cry3A in potato.
- the commercial products expressing these proteins express a single protein except in cases where the combined insecticidal spectrum of 2 proteins is desired (e.g., CrylAb and Cry3Bb in corn combined to provide resistance to lepidopteran pests and rootworm, respectively) or where the independent action of the proteins makes them useful as a tool for delaying the development of resistance in susceptible insect populations (e.g., CrylAc and Cry2Ab in cotton combined to provide resistance management for tobacco budworm).
- CrylAb and Cry3Bb in corn combined to provide resistance to lepidopteran pests and rootworm, respectively
- the independent action of the proteins makes them useful as a tool for delaying the development of resistance in susceptible insect populations (e.g., CrylAc and Cry2Ab in cotton combined to provide resistance management for tobacco budworm).
- the proteins selected for use in an IRM stack need to exert their insecticidal effect independently so that resistance developed to one protein does not confer resistance to the second protein (i.e., there is not cross resistance to the proteins). If, for example, a pest population selected for resistance to "Protein A” is sensitive to "Protein B", one would conclude that there is not cross resistance and that a combination of Protein A and Protein B would be effective in delaying resistance to Protein A alone.
- Cry 1 Fa is useful in controlling many lepidopteran pests species including the European corn borer (ECB; Ostrinia nubilalis (Hubner)) and the fall armyworm (FAW; Spodoptera frugiperda), and is active against the sugarcane borer (SCB; Diatraea saccharalis).
- EB European corn borer
- FAW fall armyworm
- SCB Diatraea saccharalis
- the CrylFa protein as produced in corn plants containing event TC1507, is responsible for an industry-leading insect resistance trait for FAW control.
- CrylFa is further deployed in the Herculex ® , SmartStaxTM, and WideStrikeTM products.
- Cry toxins are listed at the website of the official B.t. nomenclature committee (Crickmore et al; lifesci.sussex.ac.uk/home/Neil_Crickmore/Bt/). See Appendix A, attached. There are currently nearly 60 main groups of "Cry" toxins (Cryl-Cry59), with additional Cyt toxins and VIP toxins and the like. Many of each numeric group have capital-letter subgroups, and the capital letter subgroups have lower-cased letter sub- subgroups. (Cryl has A-L, and CrylA has a-i, for example). Brief Summary of the Invention
- the subject invention relates in part to the surprising discovery that a fall armyworm (Spodoptera frugiperda; FAW) population selected for resistance to the insecticidal activity of the CrylFa protein is not resistant to the insecticidal activity of the CrylDa protein.
- FAW fall armyworm
- plants expressing these two insecticidal proteins, or insecticidal portions thereof, will be useful in delaying or preventing the development of resistance to either of these insecticidal proteins alone.
- the subject invention is also supported by the discovery that CrylFa and CrylDa do not compete with each other for binding gut receptors from FAW.
- the subject invention also relates in part to triple stacks or "pyramids" of three (or more) toxins, with CrylFa and CrylDa toxins being the base pair.
- One preferred pyramid provides at least two proteins providing non-cross-resistant activity against two pests - the FAW and the ECB (European corn borer; Ostrinia nubilalis): CrylFa plus CrylDa plus one or more anti-ECB toxins such as CrylAb.
- the selected toxins have three separate modes of action against FAW.
- These preferred "three modes of action" pyramid combinations are CrylFa plus CrylD plus another toxin/gene selected from the group consisting of Vip3Ab, CrylC, CrylBe, and CrylE. Plants (and acreage planted with such plants) that produce these three toxins are included within the scope of the subject invention. Additional toxins/genes can also be added, but these particular triple stacks would, according to the subject invention, advantageously and surprisingly provide three modes of action against FAW. This can help to reduce or eliminate the requirement for refuge acreage.
- the subject invention also relates generally to the use of three insecticidal proteins (Cry proteins in some preferred embodiments) that do not compete with each other against a single target pest.
- CrylDa could be used as in the 3 gene combination for corn and other plants (cotton and soybeans, for example).
- a crylDa gene could be combined into, for example, a CrylFa product such as Herculex ® , Smarts taxTM, and Wides StrikeTM. Accordingly, use of CrylDa could be significant in reducing the selection pressure on other commercialized proteins.
- Figure 1 Damage (mean % leaf damage + SEM) to corn leaf segments infested with FAW (blue bars) or rFAW (purple bars). All treatments preceded by the numbers "5163" are leaf segments from plants transformed with a construct containing Cry IDa. Plants in which no Cry IDa expression was detected are grouped on the far left of the graph. Plants in which Cry IDa expression was detected are grouped in the center of the graph. Non-transgenic (i.e., negative) controls are on the far right of the graph and are labeled "B104", "Hill", and "Isoline”. A commercial inbred containing CrylFa is the first treatment on right (labeled "Herculex I”) and is the same genetic background as the non- transgenic control labeled "Isoline”.
- Figure 2 Competition for binding to Spodoptera frugiperda BBMV's by CrylFa core toxin, CrylDa core toxin, and 1251-labeled CrylDa core toxin protein
- CrylDa toxin produced in transgenic corn is very effective in controlling fall armyworm (FAW; Spodoptera frugiperda) that have developed resistance to CrylFa activity.
- FAW fall armyworm
- Spodoptera frugiperda fall armyworm
- the subject invention relates in part to the surprising discovery that fall armyworm resistant to CrylFa are susceptible (i.e., are not cross-resistant) to CrylDa.
- the subject invention also relates in part to the surprising discovery that CrylDa toxin is effective at protecting plants (such as maize plants) from damage by Cry 1 Fa- resistant fall armyworm.
- CrylDa toxin is effective at protecting plants (such as maize plants) from damage by Cry 1 Fa- resistant fall armyworm.
- the subject invention includes the use of CrylDa toxin to protect corn and other economically important plant species from damage and yield loss caused by fall armyworm feeding or to fall armyworm populations that have developed resistance to CrylFa.
- the subject invention thus teaches an IRM stack to prevent or mitigate the development of resistance by fall armyworm to CrylFa and/or CrylDa.
- the present invention provides compositions for controlling lepidopteran pests comprising cells that produce a CrylFa core toxin-containing protein and a CrylDa core toxin-containing protein.
- the invention further comprises a host transformed to produce both a CrylFa core toxin-containing protein and a CrylDa core toxin-containing protein, wherein said host is a microorganism or a plant cell.
- the subject cry 1 Fa polynucleotide and the subject cry 1 Da polynucleotide are preferably in a genetic construct under control of (operably linked to / comprising) a non-Bacillus-thuringiensis promoter(s).
- the subject polynucleotides can comprise codon usage for enhanced expression in a plant.
- the invention provides a method of controlling lepidopteran pests comprising contacting said pests or the environment of said pests with an effective amount of a composition that contains a CrylFa core toxin-containing protein and further contains a CrylDa core toxin-containing protein.
- An embodiment of the invention comprises a maize plant comprising a plant- expressible gene encoding a CrylDa core toxin-containing protein and a plant-expressible gene encoding a CrylFa core toxin-containing protein, and seed of such a plant.
- a further embodiment of the invention comprises a maize plant wherein a plant- expressible gene encoding a CrylDa core toxin-containing protein and a plant-expressible gene encoding a CrylFa core toxin-containing protein have been introgressed into said maize plant, and seed of such a plant.
- Insect receptors As described in the Examples, competitive receptor binding studies using radiolabeled CrylDa core toxin protein show that the CrylFa core toxin protein does not compete for the high affinity binding site present in FAW insect tissues to which CrylDa binds. These results indicate that the combination of CrylFa and CrylDa proteins is an effective means to mitigate the development of resistance in FAW populations to CrylFa (and likewise, the development of resistance to CrylDa), and would likely increase the level of resistance to this pest in corn plants expressing both proteins.
- the subject invention also relates in part to triple stacks or "pyramids" of three (or more) toxins, with CrylFa and CrylDa toxins being the base pair.
- One preferred pyramid provides at least two proteins providing non-cross-resistant activity against two pests - the FAW and the ECB (European corn borer; Ostrinia nubilalis) CrylFa plus CrylDa plus one or more ECB toxins such as CrylAb (see US 2008 031 1096), as Cry IF is active against both insects.
- ECB toxins include CrylBe (see USSN 61/284,290; filed December 16, 2009), Cryll (see USSN 61/284,278; filed December 16, 2009), Cry2Aa (see USSN 61/284,278; filed December 16, 2009) and DIG-3 (see US 2010 00269223).
- the selected toxins have three separate modes of action against FAW. These preferred "three modes of action" pyramid combinations are CrylFa plus Cry ID plus another toxin/gene selected from the group consisting of Vip3Ab, CrylC (see USSN
- Plants (and acreage planted with such plants) that produce these three toxins are included within the scope of the subject invention. Additional toxins/genes can also be added, but these particular triple stacks would, according to the subject invention, advantageously and surprisingly provide three modes of action against FAW. This can help to reduce or eliminate the requirement for refuge acreage. A field thus planted of over 10 acres is thus included within the subject invention.
- CrylDa could be used as in the 3 gene combination for corn that currently in the Development I of the new Trait Development process.
- CrylFa is in the Herculex ® , SmartStaxTM, and WidesStrikeTM products. Accordingly, use of CrylDa could be significant in reducing the selection pressure on other commercialized proteins.
- Vip3 toxins for example, are listed in the attached Appendix A. Those GENBANK numbers can also be used to obtain the sequences for any of the genes and proteins disclosed or mentioned herein.
- U.S. Patent No. 5, 188,960 and U.S. Patent No. 5,827,514 describe CrylFa core toxin containing proteins suitable for use in carrying out the present invention.
- U.S. Patent No. 6,218, 188 describes plant-optimized DNA sequences encoding CrylFa core toxin- containing proteins that are suitable for use in the present invention.
- Combinations of the toxins described in the subject invention can be used to control lepidopteran pests.
- Adult lepidopterans for example, butterflies and moths, primarily feed on flower nectar and are a significant effector of pollination.
- Caterpillars feed on or inside foliage or on the roots or stem of a plant, depriving the plant of nutrients and often destroying the plant's physical support structure.
- caterpillars feed on fruit, fabrics, and stored grains and flours, ruining these products for sale or severely diminishing their value.
- reference to lepidopteran pests refers to various life stages of the pest, including larval stages.
- Some chimeric toxins of the subject invention comprise a full N-terminal core toxin portion of a Bt toxin and, at some point past the end of the core toxin portion, the protein has a transition to a heterologous protoxin sequence.
- the N-terminal, insecticidally active, toxin portion of a Bt toxin is referred to as the "core" toxin.
- the transition from the core toxin segment to the heterologous protoxin segment can occur at approximately the toxin/protoxin junction or, in the alternative, a portion of the native protoxin (extending past the core toxin portion) can be retained, with the transition to the heterologous protoxin portion occurring downstream.
- one chimeric toxin of the subject invention is a full core toxin portion of CrylFa (amino acids 1 to 601) and a heterologous protoxin (amino acids 602 to the C-terminus).
- the portion of a chimeric toxin comprising the protoxin is derived from a CrylAb protein toxin.
- a second chimeric toxin of the subject invention has the full core toxin portion of Cry 1 Da (amino acids 1 to 619) and a heterologous protoxin (amino acids 620 to the C-terminus).
- the portion of a chimeric toxin comprising the protoxin is derived from a CrylAb protein toxin.
- Bt toxins even within a certain class such as Cry IF, will vary to some extent in length and the precise location of the transition from core toxin portion to protoxin portion.
- the CrylDa and CrylFa toxins are about 1 150 to about 1200 amino acids in length.
- the transition from core toxin portion to protoxin portion will typically occur at between about 50% to about 60% of the full length toxin.
- the chimeric toxin of the subject invention will include the full expanse of this N- terminal core toxin portion.
- the chimeric toxin will comprise at least about 50% of the full length of the CrylFa Bt toxin protein or at least about 50% of the full length of the Cry IDa Bt toxin protein. This will typically be at least about 590 amino acids.
- the full expanse of the CrylAb protoxin portion extends from the end of the core toxin portion to the C-terminus of the molecule.
- genes and toxins useful according to the subject invention include not only the full length sequences disclosed but also fragments of these sequences, variants, mutants, and fusion proteins which retain the characteristic pesticidal activity of the toxins specifically exemplified herein.
- variants or mutants
- variants of genes refer to nucleotide sequences which encode the same toxins or which encode equivalent toxins having pesticidal activity.
- equivalent toxins refers to toxins having the same or essentially the same biological activity against the target pests as the claimed toxins.
- the boundaries represent approximately 95% (Cry 1 Fa's and IDa's), 78% (CrylF's and CrylD's), and 45% (Cryl 's) sequence identity, per "Revision of the Nomenclature for the Bacillus thuringiensis Pesticidal Crystal Proteins," N. Crickmore, D.R. Zeigler, J. Feitelson, E. Schnepf, J. Van Rie, D. Lereclus, J. Baum, and D.H. Dean.
- genes encoding active toxins can be identified and obtained through several means.
- the specific genes or gene portions exemplified herein may be obtained from the isolates deposited at a culture depository. These genes, or portions or variants thereof, may also be constructed synthetically, for example, by use of a gene synthesizer. Variations of genes may be readily constructed using standard techniques for making point mutations. Also, fragments of these genes can be made using commercially available exonucleases or endonucleases according to standard procedures. For example, enzymes such as Bal31 or site-directed mutagenesis can be used to systematically cut off nucleotides from the ends of these genes. Genes that encode active fragments may also be obtained using a variety of restriction enzymes. Proteases may be used to directly obtain active fragments of these protein toxins.
- a further method for identifying the genes encoding the toxins and gene portions useful according to the subject invention is through the use of oligonucleotide probes. These probes are detectable nucleotide sequences. These sequences may be detectable by virtue of an appropriate label or may be made inherently fluorescent as described in International Application No. WO93/16094. As is well known in the art, if the probe molecule and nucleic acid sample hybridize by forming a strong bond between the two molecules, it can be reasonably assumed that the probe and sample have substantial homology. Preferably, hybridization is conducted under stringent conditions by techniques well-known in the art, as described, for example, in Keller, G. FL, M. M.
- DNA Probes Stockton Press, New York, N.Y., pp. 169-170.
- salt concentrations and temperature combinations are as follows (in order of increasing stringency): 2X SSPE or SSC at room temperature; IX SSPE or SSC at 42° C; 0.1X SSPE or SSC at 42° C; 0. IX SSPE or SSC at 65° C.
- Detection of the probe provides a means for determining in a known manner whether hybridization has occurred.
- Such a probe analysis provides a rapid method for identifying toxin-encoding genes of the subject invention.
- the nucleotide segments which are used as probes according to the invention can be synthesized using a DNA synthesizer and standard procedures. These nucleotide sequences can also be used as PCR primers to amplify genes of the subject invention.
- Variant toxins Certain toxins of the subject invention have been specifically exemplified herein. Since these toxins are merely exemplary of the toxins of the subject invention, it should be readily apparent that the subject invention comprises variant or equivalent toxins (and nucleotide sequences coding for equivalent toxins) having the same or similar pesticidal activity of the exemplified toxin.
- Equivalent toxins will have amino acid homology with an exemplified toxin. This amino acid homology will typically be greater than 75%, preferably be greater than 90%, and most preferably be greater than 95%. The amino acid homology will be highest in critical regions of the toxin which account for biological activity or are involved in the determination of three-dimensional configuration which ultimately is responsible for the biological activity.
- amino acids may be placed in the following classes: non-polar, uncharged polar, basic, and acidic. Conservative substitutions whereby an amino acid of one class is replaced with another amino acid of the same type fall within the scope of the subject invention so long as the substitution does not materially alter the biological activity of the compound. Below is a listing of examples of amino acids belonging to each class.
- non-conservative substitutions can also be made.
- the critical factor is that these substitutions must not significantly detract from the biological activity of the toxin.
- Recombinant hosts The genes encoding the toxins of the subject invention can be introduced into a wide variety of microbial or plant hosts. Expression of the toxin gene results, directly or indirectly, in the intracellular production and maintenance of the pesticide. Conjugal transfer and recombinant transfer can be used to create a Bt strain that expresses both toxins of the subject invention. Other host organisms may also be transformed with one or both of the toxin genes then used to accomplish the synergistic effect. With suitable microbial hosts, e.g., Pseudomonas, the microbes can be applied to the situs of the pest, where they will proliferate and be ingested. The result is control of the pest. Alternatively, the microbe hosting the toxin gene can be treated under conditions that prolong the activity of the toxin and stabilize the cell. The treated cell, which retains the toxic activity, then can be applied to the environment of the target pest.
- suitable microbial hosts e.g., Pseudomonas
- Bt toxin gene is introduced via a suitable vector into a microbial host, and said host is applied to the environment in a living state, it is essential that certain host microbes be used.
- Microorganism hosts are selected which are known to occupy the
- phytosphere (phylloplane, phyllosphere, rhizosphere, and/or rhizoplane) of one or more crops of interest.
- These microorganisms are selected so as to be capable of successfully competing in the particular environment (crop and other insect habitats) with the wild-type microorganisms, provide for stable maintenance and expression of the gene expressing the polypeptide pesticide, and, desirably, provide for improved protection of the pesticide from environmental degradation and inactivation.
- microorganisms are known to inhabit the phylloplane (the surface of the plant leaves) and/or the rhizosphere (the soil surrounding plant roots) of a wide variety of important crops. These microorganisms include bacteria, algae, and fungi. Of particular interest are microorganisms, such as bacteria, e.g., genera Pseudomonas, Erwinia, Serratia, Klebsiella, Xanthomonas, Streptomyces, Rhizobium, Rhodopseudomonas,
- yeast e.g., genera Saccharomyces, Cryptococcus, Kluyveromyces, Sporobolomyces, Rhodotorula, and Aureobasidium.
- phytosphere bacterial species are Pseudomonas syringae,
- Pseudomonas fluorescens Serratia marcescens, Acetobacter xylinum, Agrobactenium tumefaciens, Rhodopseudomonas spheroides, Xanthomonas campestris, Rhizobium melioti, Alcaligenes entrophus, and Azotobacter vinlandii; and phytosphere yeast species such as Rhodotorula rubra, R. glutinis, R. marina, R. aurantiaca, Cryptococcus albidus, C. diffluens, C. laurentii, Saccharomyces rosei, S. pretoriensis, S. cerevisiae, Sporobolomyces roseus, S. odorus, Kluyveromyces veronae, and Aureobasidium pollulans.
- Rhodotorula rubra R. glutinis, R. marina, R. auranti
- Bacillus thuringiensis or recombinant cells expressing the Bt toxins can be treated to prolong the toxin activity and stabilize the cell.
- the pesticide microcapsule that is formed comprises the Bt toxin or toxins within a cellular structure that has been stabilized and will protect the toxin when the microcapsule is applied to the environment of the target pest.
- Suitable host cells may include either prokaryotes or eukaryotes, normally being limited to those cells which do not produce substances toxic to higher organisms, such as mammals. However, organisms which produce substances toxic to higher organisms could be used, where the toxic substances are unstable or the level of application sufficiently low as to avoid any possibility of toxicity to a mammalian host.
- hosts of particular interest will be the prokaryotes and the lower eukaryotes, such as fungi.
- the cell will usually be intact and be substantially in the proliferative form when treated, rather than in a spore form, although in some instances spores may be employed.
- Treatment of the microbial cell can be by chemical or physical means, or by a combination of chemical and/or physical means, so long as the technique does not deleteriously affect the properties of the toxin, nor diminish the cellular capability of protecting the toxin.
- chemical reagents are halogenating agents, particularly halogens of atomic no. 17-80. More particularly, iodine can be used under mild conditions and for sufficient time to achieve the desired results.
- aldehydes such as glutaraldehyde
- anti-infectives such as zephiran chloride and cetylpyridinium chloride
- alcohols such as isopropyl and ethanol
- histologic fixatives such as Lugol iodine, Bouin's fixative, various acids and Helly's fixative (See: Humason, Gretchen L., Animal Tissue Techniques, W. H. Freeman and Company, 1967); or a combination of physical (heat) and chemical agents that preserve and prolong the activity of the toxin produced in the cell when the cell is administered to the host environment.
- Examples of physical means are short wavelength radiation such as gamma-radiation and X-radiation, freezing, UV irradiation, lyophilization, and the like.
- Methods for treatment of microbial cells are disclosed in U.S. Pat. Nos. 4,695,455 and 4,695,462, which are incorporated herein by reference.
- the cells generally will have enhanced structural stability which will enhance resistance to environmental conditions.
- the method of cell treatment should be selected so as not to inhibit processing of the proform to the mature form of the pesticide by the target pest pathogen.
- formaldehyde will crosslink proteins and could inhibit processing of the proform of a polypeptide pesticide.
- the method of treatment should retain at least a substantial portion of the bio-availability or bioactivity of the toxin.
- Characteristics of particular interest in selecting a host cell for purposes of production include ease of introducing the B.t. gene or genes into the host, availability of expression systems, efficiency of expression, stability of the pesticide in the host, and the presence of auxiliary genetic capabilities.
- Characteristics of interest for use as a pesticide microcapsule include protective qualities for the pesticide, such as thick cell walls, pigmentation, and intracellular packaging or formation of inclusion bodies; survival in aqueous environments; lack of mammalian toxicity; attractiveness to pests for ingestion; ease of killing and fixing without damage to the toxin; and the like. Other considerations include ease of formulation and handling, economics, storage stability, and the like.
- the cellular host containing the B.t. insecticidal gene or genes may be grown in any convenient nutrient medium, where the DNA construct provides a selective advantage, providing for a selective medium so that substantially all or all of the cells retain the B.t. gene. These cells may then be harvested in accordance with conventional ways. Alternatively, the cells can be treated prior to harvesting.
- the B.t. cells producing the toxins of the invention can be cultured using standard art media and fermentation techniques. Upon completion of the fermentation cycle the bacteria can be harvested by first separating the B.t. spores and crystals from the fermentation broth by means well known in the art. The recovered B.t. spores and crystals can be formulated into a wettable powder, liquid concentrate, granules or other formulations by the addition of surfactants, dispersants, inert carriers, and other components to facilitate handling and application for particular target pests. These formulations and application procedures are all well known in the art.
- Formulated bait granules containing an attractant and spores, crystals, and toxins of the B.t. isolates, or recombinant microbes comprising the genes obtainable from the B.t. isolates disclosed herein can be applied to the soil.
- Formulated product can also be applied as a seed-coating or root treatment or total plant treatment at later stages of the crop cycle. Plant and soil treatments of B.t.
- cells may be employed as wettable powders, granules or dusts, by mixing with various inert materials, such as inorganic minerals (phyllosilicates, carbonates, sulfates, phosphates, and the like) or botanical materials (powdered corncobs, rice hulls, walnut shells, and the like).
- the formulations may include spreader-sticker adjuvants, stabilizing agents, other pesticidal additives, or surfactants.
- Liquid formulations may be aqueous-based or non-aqueous and employed as foams, gels, suspensions, emulsifiable concentrates, or the like.
- the ingredients may include rheological agents, surfactants, emulsifiers, dispersants, or polymers.
- the pesticidal concentration will vary widely depending upon the nature of the particular formulation, particularly whether it is a concentrate or to be used directly.
- the pesticide will be present in at least 1% by weight and may be 100% by weight.
- the dry formulations will have from about 1-95% by weight of the pesticide while the liquid formulations will generally be from about 1 -60% by weight of the solids in the liquid phase.
- the formulations will generally have from about 10 2 to about 10 4 cells/mg. These formulations will be administered at about 50 mg (liquid or dry) to 1 kg or more per hectare.
- the formulations can be applied to the environment of the lepidopteran pest, e.g., foliage or soil, by spraying, dusting, sprinkling, or the like.
- a preferred recombinant host for production of the insecticidal proteins of the subject invention is a transformed plant.
- Genes encoding Bt toxin proteins, as disclosed herein, can be inserted into plant cells using a variety of techniques which are well known in the art. For example, a large number of cloning vectors comprising a replication system in Escherichia coli and a marker that permits selection of the transformed cells are available for preparation for the insertion of foreign genes into higher plants.
- the vectors comprise, for example, pBR322, pUC series, M13mp series, pACYC184, inter alia.
- the DNA fragment having the sequence encoding the Bt toxin protein can be inserted into the vector at a suitable restriction site.
- the resulting plasmid is used for transformation into E. coli.
- the E. coli cells are cultivated in a suitable nutrient medium, then harvested and lysed.
- the plasmid is recovered. Sequence analysis, restriction analysis, electrophoresis, and other biochemical-molecular biological methods are generally carried out as methods of analysis.
- the DNA sequence used can be cleaved and joined to the next DNA sequence.
- Each plasmid sequence can be cloned in the same or other plasmids. Depending on the method of inserting desired genes into the plant, other DNA sequences may be necessary.
- the Ti or Ri plasmid is used for the transformation of the plant cell, then at least the right border, but often the right and the left border of the Ti or Ri plasmid T-DNA, has to be joined as the flanking region of the genes to be inserted.
- T-DNA for the transformation of plant cells has been intensively researched and sufficiently described in EP 120 516, Lee and Gelvin (2008), Hoekema (1985), Fraley et al, (1986), and An et al, (1985), and is well established in the art.
- the transformation vector normally contains a selectable marker that confers on the transformed plant cells resistance to a biocide or an antibiotic, such as Bialaphos,
- Kanamycin, G418, Bleomycin, or Hygromycin inter alia.
- the individually employed marker should accordingly permit the selection of transformed cells rather than cells that do not contain the inserted DNA.
- a large number of techniques is available for inserting DNA into a plant host cell. Those techniques include transformation with T-DNA using Agrobacterium tumefaciens or Agrobacterium rhizogenes as transformation agent, fusion, injection, biolistics
- the DNA to be inserted has to be cloned into special plasmids, namely either into an intermediate vector or into a binary vector.
- the intermediate vectors can be integrated into the Ti or Ri plasmid by homologous
- the Ti or Ri plasmid also comprises the vir region necessary for the transfer of the T-DNA.
- intermediate vectors cannot replicate themselves in Agrobacteria.
- the intermediate vector can be transferred into Agrobacterium tumefaciens by means of a helper plasmid
- Binary vectors can replicate themselves both in E. coli and in Agrobacteria. They comprise a selection marker gene and a linker or polylinker which are framed by the Right and Left T-DNA border regions. They can be transformed directly into Agrobacteria (Holsters et ah, 1978).
- the Agrobacterium used as host cell is to comprise a plasmid carrying a vir region. The vir region is necessary for the transfer of the T-DNA into the plant cell. Additional T-DNA may be contained. The bacterium so transformed is used for the transformation of plant cells.
- Plant explants can advantageously be cultivated with Agrobacterium tumefaciens ox Agrobacterium rhizogenes for the transfer of the DNA into the plant cell.
- Whole plants can then be regenerated from the infected plant material (for example, pieces of leaf, segments of stalk, roots, but also protoplasts or suspension- cultivated cells) in a suitable medium, which may contain antibiotics or biocides for selection.
- the plants so obtained can then be tested for the presence of the inserted DNA.
- No special demands are made of the plasmids in the case of injection and electroporation. It is possible to use ordinary plasmids, such as, for example, pUC derivatives.
- the transformed cells grow inside the plants in the usual manner. They can form germ cells and transmit the transformed trait(s) to progeny plants. Such plants can be grown in the normal manner and crossed with plants that have the same transformed hereditary factors or other hereditary factors. The resulting hybrid individuals have the corresponding phenotypic properties.
- plants will be transformed with genes wherein the codon usage has been optimized for plants. See, for example, US Patent No. 5380831, which is hereby incorporated by reference. While some truncated toxins are exemplified herein, it is well-known in the Bt art that 130 kDa-type (full-length) toxins have an N-terminal half that is the core toxin, and a C-terminal half that is the protoxin "tail.” Thus, appropriate "tails" can be used with truncated / core toxins of the subject invention. See e.g. US Patent No. 6218188 and US Patent No. 6673990.
- a preferred transformed plant is a fertile maize plant comprising a plant expressible gene encoding a CrylFa protein, and further comprising a second plant expressible gene encoding a Cry 1 Da protein.
- Transfer (or introgression) of the CrylFa- and Cry 1 Da-determined trait(s) into inbred maize lines can be achieved by recurrent selection breeding, for example by backcrossing.
- a desired recurrent parent is first crossed to a donor inbred (the non-recurrent parent) that carries the appropriate gene(s) for the CrylF- and CrylD- determined traits.
- the progeny of this cross is then mated back to the recurrent parent followed by selection in the resultant progeny for the desired trait(s) to be transferred from the non-recurrent parent.
- the progeny will be heterozygous for loci controlling the trait(s) being transferred, but will be like the recurrent parent for most or almost all other genes (see, for example, Poehlman & Sleper (1995) Breeding Field Crops, 4th Ed., 172-175; Fehr (1987) Principles of Cultivar Development, Vol. 1 : Theory and Technique, 360-376).
- IRM Insect Resistance Management
- Structured refuges 20% non-Lepidopteran Bt corn refuge in Corn Belt;
- Strips must be at least 4 rows wide (preferably 6 rows) to reduce
- the refuge strips can be planted as strips within the Bt field; the refuge strips must be at least 4 rows wide
- CrylDa expressed in transgenic corn provides protection from feeding by fall armyworm (FAW), Spodoptera frugiperda (J.E. Smith).
- FAW fall armyworm
- Spodoptera frugiperda J.E. Smith
- the same events are more effective in controlling FAW that have developed resistance to CrylFa and are clearly superior to corn plants containing event TCI 507, which is arguably the industry-leading insect resistance trait for FAW control.
- CrylFa protein from recombinant Pseudomonas fluorescens strain DR1649; plasmid pDAB 1817
- CrylDa protein from recombinant Pseudomonas fluorescens strain DC782
- CrylDa and CrylFa can produce a high dose IRM stack for FAW, other important Spodoptera species, and perhaps other lepidopteran pests.
- Other proteins can be added to this combination to add spectrum.
- CrylAb would create an IRM stack for European corn borer (ECB), Ostrinia nubilalis (Hubner).
- EAB European corn borer
- Hubner Ostrinia nubilalis
- Plants in which no Cry IDa expression was detected are grouped on the far left of the graph. Plants in which Cry IDa expression was detected are grouped in the center of the graph.
- Non-trans genie (i.e., negative) controls are on the far right of the graph and are labeled "B104", “Hill”, and "Isoline”.
- a commercial inbred containing Cry 1 Fa is the first treatment on right (labeled "Herculex I”) and is the same genetic background as the non- transgenic control labeled "Isoline”.
- a protoxin chimera consisting of the coding sequence for the trypsin cleaved limit toxin of Cry IDa and the coding sequence for the c-terminal protoxin region of Cry lAb was created and engineered into an expression cassette capable of directing expression in corn (pDAS5163).
- Corn was transformed using Agrobacterium tumefacians and events containing the Cry lDa/1 Ab chimera were identified.
- CrylDa/lAb transformed plants did reduce feeding of FAW but were not as effective as the inbred containing 2 copies of CrylFa ( Figure 1).
- the CrylDa events tested were hemizygous for the transgene while the converted inbred was homozygous for event TCI 507.
- the same events containing Cry 1 Da/1 Ab were generally much more effective in reducing the feeding of rFAW than the inbred containing CrylFa ( Figure 1).
- CrylFa protein from recombinant Pseudomonas fluorescens strain DR1649; plasmid pDAB 1817), CrylDa (protein from recombinant P. fluorescens strain DC782), and a 1 : 1 (w:w) combination of the 2 was tested in standard, artificial diet bioassays used to assess potency. Potency estimates were made using LOGIT analysis (JMP ® 8.0, SAS Inc. 2008) which produced LC50 estimates and upper and lower limits (95%) for the LC5 0 .
- a test for synergism was conducted using the method described by Tabashnik (1992) by which an expected value for the potency of a combination is calculated using the potencies of each component alone.
- a combination is considered synergistic when the estimated upper confidence limit of the combination is lower than the calculated expected potency.
- FAW fall armyworm
- rFAW a population of fall armyworm that was resistant to CrylFa
- the upper confidence limits for the LC5 0 S of the combination were lower than the estimated potencies (Tables 1 & 2) thereby leading to the conclusion that the combination of Cry lFa and Cry IDa on these 2 populations is synergistic.
- Table 1 Potency estimates, upper and lower limits of the 95% confidence interval (LCL and UCL, respectively), for CrylFa, Cry IDa, and the 1 : 1 (w;w) combination of the 2 on wild type fall armyworm (FAW), Spodoptera frugiperda.
- the last column contains the expected LC5 0 value based on the potency of each protein alone using the formula described by Tabashnik (1992).
- Tabashnik BE Evaluation of synergism among Bacillus
- a combination is considered synergistic when the expected value is higher than the upper confidence limit for the combination.
- Table 2 Potency estimates, upper and lower limits of the 95% confidence interval (LCL and UCL, respectively), for CrylFa, Cry IDa, and the 1 : 1 (w;w) combination of the 2 on CrylFa-resistant fall armyworm (rFAW), Spodoptera frugiperda.
- the last column contains the expected LC5 0 value based on the potency of each protein alone using the formula described by Tabashnik (1992). A combination is considered synergistic when the expected value is higher than the upper confidence limit for the combination.
- Receptor binding assays show that 1251 CrylDa binds tightly to its receptor(s), and can be effectively competed off by unlabeled CrylDa.
- CrylAb, CrylFa or Cry 1 Be can compete off 1251 CrylDa from its receptor site(s) in FAW BBMV's, indicating that CrylDa has a unique binding site in the midgut of FAW that CrylAb, CrylF and CrylBe do not compete with.
- rFAW are as sensitive to CrylDa as wild type FAW, this indicates that the putative receptor site that is altered in rFAW insects is not the receptor site that CrylDa binds to.
- CrylDa is an excellent stacking partner for CrylFa since it interacts at a different target site which is responsible for its biological activity.
- Chimeric Toxins Chimeric proteins utilizing the core toxin domain of one Cry toxin fused to the protoxin segment of another Cry toxin have previously been reported, for example, in US Patent No. 5593881 and US Patent No. 5932209.
- CrylDa chimeric protein variants of this invention include chimeric toxins comprising an N-terminal core toxin segment derived from a CrylDa insecticidal toxin fused to a heterologous delta endotoxin protoxin segment at some point past the end of the core toxin segment.
- the transition from the core toxin to the heterologous protoxin segment can occur at approximately the native core toxin/protoxin junction or, in the alternative, a portion of the native protoxin (extending past the core toxin segment) can be retained, with the transition to the heterologous protoxin occurring downstream.
- the core toxin and protoxin segments may comprise exactly the amino acid sequence of the native toxins from which they are derived, or may include amino acid additions, deletions, or substitutions that do not diminish, and may enhance, the biological function of the segments when fused to one another.
- a chimeric toxin of the subject invention comprises a core toxin segment derived from CrylDa and a heterologous protoxin.
- the core toxin segment derived from CrylDa2 (594 amino acids) is fused to a heterologous segment comprising a protoxin segment derived from a CrylAb delta- endotoxin (545 amino acids).
- CrylDa The 1139 amino acid sequence of the chimeric protein, herein referred to as CrylDa. It is to be understood that other chimeric fusions comprising CrylDa2 core toxin variants and protoxins derived from CrylAb are within the scope of this invention.
- a second chimeric protein of the invention comprises a core toxin segment derived from CrylFa (603 amino acids) fused to a heterologous segment comprising a protoxin segment derived from a CrylAb delta-endotoxin (545 amino acids).
- CrylFa The 1148 amino acid sequence of the chimeric protein, herein called CrylFa.
- the basic cloning strategy entailed subcloning a DNA fragment encoding the CrylDa protein into plasmid vectors, whereby it is placed under the expression control of the Ptac promoter and the rrnBTlT2 terminator from plasmid pKK223-3 (PL Pharmacia, Milwaukee, WI).
- plasmid pKK223-3 PL Pharmacia, Milwaukee, WI.
- One such plasmid was named pDOW2848 and the MB214 isolate harboring this plasmid is named Dpfl50.
- Soluble and insoluble fractions from frozen shake flask cell pellet samples were generated using EasyLyseTM Bacterial Protein Extraction Solution (EPICENTRE® Biotechnologies, Madison, WI). Each cell pellet was resuspended in 1 mL EasyLyseTM solution and further diluted 1 :4 in lysis buffer and incubated with shaking at room temperature for 30 minutes. The lysate was centrifuged at 14,000 rpm for 20 minutes at 4° and the supernatant was recovered as the soluble fraction.
- pellet insoluble fraction was then resuspended in an equal volume of phosphate buffered saline (PBS; 11.9 mM Na 2 HP0 4 , 137 mM NaCl, 2.7 mM KC1, pH7.4).
- PBS phosphate buffered saline
- Samples were mixed 1 : 1 with 2X Laemmli sample buffer containing ⁇ - mercaptoethanol (Sambrook et ah, supra.) and boiled for 5 minutes prior to loading onto Criterion XT Bis-Tris 12% gels (Bio-Rad Inc., Hercules, CA). Electrophoresis was performed in the recommended XT MOPS buffer. Gels were stained with Bio-Safe Coomassie Stain according to the manufacturer's (Bio-Rad) protocol and imaged using the Alpha Innotech Imaging system (San Leandro, CA).
- Inclusion body preparation Cry 1 Da protein inclusion body (IB) preparations were performed on cells from P. fluorescens fermentations that produced insoluble Bt insecticidal protein, as demonstrated by SDS-PAGE and MALDI-MS (Matrix Assisted Laser Desorption/Ionization Mass Spectrometry). P. fluorescens fermentation pellets were thawed in a 37° water bath.
- the cells were resuspended to 25% w/v in lysis buffer [50 mM Tris, pH 7.5, 200 mM NaCl, 20 mM EDTA disodium salt (Ethylenediaminetetraacetic acid), 1% Triton X-100, and 5 mM Dithiothreitol (DTT); 5 mL/L of bacterial protease inhibitor cocktail (Catalog # P8465; Sigma-Aldrich, St. Louis, MO) were added just prior to use].
- the cells were suspended using a hand-held homogenizer at lowest setting (Tissue Tearor, BioSpec Products, Inc., Bartlesville, OK).
- Lysozyme 25 mg of Sigma L7651, from chicken egg white was added to the cell suspension by mixing with a metal spatula, and the suspension was incubated at room temperature for one hour. The suspension was cooled on ice for 15 minutes, then sonicated using a Branson Sonifier 250 (two 1- minute sessions, at 50% duty cycle, 30% output). Cell lysis was checked by microscopy. An additional 25 mg of lysozyme were added if necessary, and the incubation and sonication were repeated. Following confirmation of cell lysis via microscopy, the lysate was centrifuged at 11,500 x g for 25 minutes (4°) to form the IB pellet, and the supernatant was discarded.
- the IB pellet was resuspended with 100 mL lysis buffer, homogenized with the hand-held mixer and centrifuged as above. The IB pellet was repeatedly washed by resuspension (in 50 mL lysis buffer), homogenization, sonication, and centrifugation until the supernatant became colorless and the IB pellet became firm and off-white in color. For the final wash, the IB pellet was resuspended in sterile-filtered (0.22 ⁇ ) distilled water containing 2 mM EDTA, and centrifuged. The final pellet was resuspended in sterile- filtered distilled water containing 2 mM EDTA, and stored in 1 mL aliquots at -80°.
- the gel was run for 60 min at 200 volts then stained with Coomassie Blue (50% G-250/50% R-250 in 45% methanol, 10% acetic acid), and destained with 7% acetic acid, 5% methanol in distilled water.
- the extract was centrifuged at 30,000 x g for 30 min at 4°, and the resulting supernatant was concentrated 5-fold using an Amicon Ultra- 15 regenerated cellulose centrifugal filter device (30,000 Molecular Weight Cutoff; Millipore).
- the sample buffer was then changed to 10 mM CAPS [3-(cyclohexamino)l-propanesulfonic acid] pH 10 using disposable PD-10 columns (GE Healthcare, Piscataway, NJ).
- Cry 1 Da inclusion body suspension from Pf clone DPfl50 was centrifuged on the highest setting of an Eppendorf model 5415C microfuge (approximately 14,000 x g) to pellet the inclusions.
- the storage buffer supernatant was removed and replaced with 100 mM CAPS, pH 1 1 to provide a protein concentration of approximately 50 mg/mL.
- the tube was rocked at room temperature for three hours to completely solubilize the protein.
- Trypsin was added at an amount equal to 5% to 10% (w:w, based on the initial weight of IB powder) and digestion was accomplished by incubation while rocking overnight at 4° or by rocking 90- 120 minutes at room temperature. Insoluble material was removed by centrifugation at 10,000 x g for 15 minutes, and the supernatant was applied to a MonoQ anion exchange column (10 mm by 10 cm). Activated CrylDa protein was eluted (as determined by SDS- PAGE, see below) by a 0% to 100% 1 M NaCl gradient over 25 column volumes.
- Fractions containing the activated protein were pooled and, when necessary, concentrated to less than 10 mL using an Amicon Ultra- 15 regenerated cellulose centrifugal filter device as above. The material was then passed through a Superdex 200 column (16 mm by 60 cm) in buffer containing 100 mM NaCl. 10% glycerol, 0.5% Tween-20 and 1 mM EDTA. It was determined by SDS-PAGE analysis that the activated (enzymatically truncated) protein elutes at 65 to 70 mL. Fractions containing the activated protein were pooled and concentrated using the centrifugal concentrator as above.
- the gel was stained with 0.2% Coomassie Blue G-250 in 45% methanol, 10% acetic acid, and destained, first briefly with 45% methanol, 10% acetic acid, and then at length with 7% acetic acid, 5% methanol until the background cleared. Following destaining, the gel was scanned with a BioRad Fluor-S Multilmager. The instrument's Quantity One Software v.4.5.2 was used to obtain background-subtracted volumes of the stained protein bands and to generate the BSA standard curve that was used to calculate the concentration of chimeric CrylDa protein in the stock solution.
- the proteins were purified by the methods of Example 4, and trypsin digestion to produce activated core toxins from the full- length proteins was then performed, and the products were purified by the methods described in Example 4.
- Preparations of the trypsin processed (activated core toxin) proteins were >95% pure and had a molecular weight of approximately 65 kDa as determined experimentally by SDS-PAGE.
- the activated core toxin prepared from the CrylDa protein is called the CrylDa core toxin protein
- the activated core toxin prepared from the CrylFa protein is called the CrylFa core toxin protein.
- Last instar S. frugiperda larvae were fasted overnight and then dissected after chilling on ice for 15 minutes.
- the midgut tissue was removed from the body cavity, leaving behind the hindgut attached to the integument.
- the midgut was placed in a 9X volume of ice cold homogenization buffer (300 mM mannitol, 5 mM EGTA, 17 mM Tris base, pH7.5), supplemented with Protease Inhibitor Cocktail (Sigma-Aldrich P-2714) diluted as recommended by the supplier.
- the tissue was homogenized with 15 strokes of a glass tissue homogenizer.
- BBMV's were prepared by the MgC3 ⁇ 4 precipitation method of Wolfersberger (1993).
- Protein concentration was determined using Bovine Serum Albumin (BSA) as the standard.
- Alkaline phosphatase determination (a marker enzyme for the BBMV fraction) was made prior to freezing the samples using the QuantiChromTM DALP-250 Alkaline Phosphatase Assay Kit (Gentaur Molecular Products, Kampenhout, BE) following the manufacturer's instructions. The specific activity of this enzyme typically increased 7-fold compared to that found in the starting midgut homogenate fraction.
- the BBMV's were aliquoted into 250 ⁇ ⁇ samples, flash frozen in liquid nitrogen and stored at -80°.
- Electrophoresis Analysis of proteins by SDS-PAGE was conducted under reducing (i.e. in 5% ⁇ -mercaptoethanol, BME) and denaturing (i.e. heated 5 minutes at 90° in the presence of 2% SDS) conditions. Proteins were loaded into wells of a 4% to 20% Tris- Glycine polyacrylamide gel (BioRad; Hercules, CA) and separated at 200 volts for 60 minutes. Protein bands were detected by staining with Coomassie Brilliant Blue R-250 (BioRad) for one hour, and destained with a solution of 5% methanol in 7% acetic acid. The gels were imaged and analyzed using a BioRad Fluro-S Multi ImagerTM. Relative molecular weights of the protein bands were determined by comparison to the mobilities of known molecular weight proteins observed in a sample of BenchMarkTM Protein Ladder (Life Technologies, Rockville, MD) loaded into one well of the gel.
- BME Tris- Glycine
- the reaction was terminated by pipetting the solution from the Iodination Beads and applying it to a ZebaTM spin column (Invitrogen) equilibrated in 50 mM CAPS, pHlO.O, 1 mM DTT (dithiothreitol), 1 mM EDTA, and 5% glycerol.
- the Iodination Beads were washed twice with 10 ⁇ , of PBS and the wash solution was also applied to the ZebaTM desalting column.
- the radioactive solution was eluted through the spin column by centrifuging at 1,000 x g for 2 min. 1251- radiolabeled CrylDa core toxin protein was then dialyzed against 50 mM CAPS, pHlO.O, 1 mM DTT, 1 mM EDTA, and 5% glycerol.
- Radio-purity of the iodinated CrylDa core toxin protein was determined by SDS-PAGE and phosphorimaging. Briefly, SDS-PAGE gels were dried using a BioRad gel drying apparatus following the manufacturer's instructions. The dried gels were imaged by wrapping them in Mylar film (12 ⁇ thick) and exposing them under a Molecular Dynamics storage phosphor screen (35 cm x 43 cm) for 1 hour. The plates were developed using a Molecular Dynamics Storm 820 phosphorimager and the image was analyzed using ImageQuantTM software.
- a saturation curve was generated to determine the optimal amount of BBMV protein to use in the binding assays with CrylDa and CrylFa core toxin proteins.
- 0.5 nM of 1251- radiolabeled Cryl core toxin protein was incubated for 1 hr at 28° in binding buffer (8 mM NaHPC-4, 2 mM KH 2 P0 4 , 150 mM NaCl, 0.1% BSA, pH7.4) with amounts of BBMV protein ranging from 0 ⁇ g/mL to 500 ⁇ g/mL (total volume of 0.5 mL).
- Homologous and heterologous competition binding assays were conducted using 150 ⁇ g/mL of S. frugiperda BBMV protein and 0.5 nM of the 1251-radiolabeled CrylDa core toxin protein. Concentrations of the competitive non-radiolabeled CrylFa core toxin protein added to the reaction mixture ranged from 0.045 nM to 1000 nM and were added at the same time as the radioactive CrylDa core toxin protein, to assure true binding competition. Incubations were carried out for 1 hr at 28° and the amount of 1251-labeled CrylDa core toxin protein bound to the BBMV (specific binding) was measured as described above.
- Non-specific binding was represented by the counts obtained in the presence of 1,000 nM of non-radiolabeled CrylDa core toxin protein. One hundred percent total binding was considered to be the amount of binding in the absence of any competitor CrylFa core toxin protein.
- Receptor binding assays using 1251-labeled CrylDa core toxin protein determined the ability of the CrylFa core toxin protein to displace this radiolabeled ligand from its binding site on BBMV's from 5 * . frugiperda.
- the results show that the CrylFa core toxin protein did not displace bound 1251-labeled CrylDa core toxin protein from its receptor protein(s) at concentrations as high as 1000 nM (2000 times the concentration of the radioactive binding ligand).
- unlabeled CrylDa core toxin protein was able to displace radiolabeled CrylDa core toxin protein from its binding protein(s), exhibiting a sigmoidal dose response curve with 50% displacement occurring at 5 nM.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Zoology (AREA)
- General Health & Medical Sciences (AREA)
- Biotechnology (AREA)
- Wood Science & Technology (AREA)
- Molecular Biology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Microbiology (AREA)
- Plant Pathology (AREA)
- Pest Control & Pesticides (AREA)
- Biochemistry (AREA)
- Biophysics (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Environmental Sciences (AREA)
- Physics & Mathematics (AREA)
- Insects & Arthropods (AREA)
- Medicinal Chemistry (AREA)
- Cell Biology (AREA)
- Virology (AREA)
- Agronomy & Crop Science (AREA)
- Gastroenterology & Hepatology (AREA)
- Botany (AREA)
- Crystallography & Structural Chemistry (AREA)
- Physiology (AREA)
- Developmental Biology & Embryology (AREA)
- Dentistry (AREA)
- Public Health (AREA)
- Pharmacology & Pharmacy (AREA)
- Veterinary Medicine (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Hematology (AREA)
- Diabetes (AREA)
- Animal Behavior & Ethology (AREA)
Abstract
Description
Claims
Priority Applications (16)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/516,604 US20120331589A1 (en) | 2009-12-16 | 2010-12-16 | COMBINED USE OF CRY1Da AND CRY1Fa PROTEINS FOR INSECT RESISTANCE MANAGEMENT |
CA2782546A CA2782546C (en) | 2009-12-16 | 2010-12-16 | Combined use of cry1da and cry1fa proteins for insect resistance management |
RU2012129906/10A RU2603257C2 (en) | 2009-12-16 | 2010-12-16 | COMBINED APPLICATION OF PROTEINS Cry1Da AND Cry1Fa TO GENERATE INSECT RESISTANCE |
ES10838259T ES2704652T3 (en) | 2009-12-16 | 2010-12-16 | Combined use of CRY1Da and CRY1Fa proteins to manage the resistance of insects |
MX2012007138A MX358710B (en) | 2009-12-16 | 2010-12-16 | Combined use of cry1da and cry1fa proteins for insect resistance management. |
BR112012014575-4A BR112012014575B1 (en) | 2009-12-16 | 2010-12-16 | METHODS FOR CONTROLLING THE DEVELOPMENT OF RESISTANCE OF A LEPIDOPTERA PEST TO A CRY1DA INSECTICID PROTEIN AND A CRY1FA INSECTICID PROTEIN AND COMPOSITION FOR CONTROLLING LEPIDOPTERA PESTS |
JP2012544839A JP5908409B2 (en) | 2009-12-16 | 2010-12-16 | Combination of CRY1Da and CRY1Fa proteins for insect resistance management |
CN201080064010.1A CN102843903B (en) | 2009-12-16 | 2010-12-16 | CRY1Da and CRY1Fa albumen is used for the combined use of insect-resistant management |
KR1020127018424A KR101841298B1 (en) | 2009-12-16 | 2010-12-16 | Combined use of cry1da and cry1fa proteins for insect resistance management |
UAA201208557A UA113273C2 (en) | 2009-12-16 | 2010-12-16 | A TRANSGENIC PLANT CONTAINING DNA that encodes and expresses the Cry1Da insecticidal protein, and DNA that encodes and expresses the Cry1Fa insecticidal protein for fight |
EP10838259.9A EP2512221B1 (en) | 2009-12-16 | 2010-12-16 | Combined use of cry1da and cry1fa proteins for insect resistance management |
AU2010330916A AU2010330916B2 (en) | 2009-12-16 | 2010-12-16 | Combined use of Cry1Da and Cry1Fa proteins for insect resistance management |
BR122019001711A BR122019001711B8 (en) | 2009-12-16 | 2010-12-16 | COMPOSITION AND METHOD FOR CONTROLLING LEPIDOPTERS PESTS |
NZ601096A NZ601096A (en) | 2009-12-16 | 2010-12-16 | Combined use of cry1da and cry1fa proteins for insect resistance management |
IL220333A IL220333A (en) | 2009-12-16 | 2012-06-12 | Combined use of cry1da and cry1fa proteins for insect resistance management |
ZA2012/04914A ZA201204914B (en) | 2009-12-16 | 2012-07-02 | Combined use of cry1da and cry1fa proteins for insect resistance management |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US28425209P | 2009-12-16 | 2009-12-16 | |
US61/284,252 | 2009-12-16 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011075587A1 true WO2011075587A1 (en) | 2011-06-23 |
Family
ID=44167703
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2010/060815 WO2011075587A1 (en) | 2009-12-16 | 2010-12-16 | Combined use of cry1da and cry1fa proteins for insect resistance management |
Country Status (19)
Country | Link |
---|---|
US (1) | US20120331589A1 (en) |
EP (1) | EP2512221B1 (en) |
JP (1) | JP5908409B2 (en) |
KR (1) | KR101841298B1 (en) |
CN (1) | CN102843903B (en) |
AR (1) | AR079499A1 (en) |
AU (1) | AU2010330916B2 (en) |
BR (1) | BR122019001711B8 (en) |
CA (1) | CA2782546C (en) |
CL (1) | CL2012001622A1 (en) |
CO (1) | CO6602146A2 (en) |
ES (1) | ES2704652T3 (en) |
IL (1) | IL220333A (en) |
MX (1) | MX358710B (en) |
NZ (1) | NZ601096A (en) |
RU (1) | RU2603257C2 (en) |
UA (3) | UA113273C2 (en) |
WO (1) | WO2011075587A1 (en) |
ZA (1) | ZA201204914B (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016501511A (en) * | 2012-10-05 | 2016-01-21 | ダウ アグロサイエンシィズ エルエルシー | Use of combined Cry1Ea for the management of resistant fall army worm insects |
US9796982B2 (en) | 2009-12-16 | 2017-10-24 | Dow Agrosciences Llc | Use of Cry1Da in combination with Cry1Ca for management of resistant insects |
EP3550961A4 (en) * | 2016-12-12 | 2020-11-04 | Syngenta Participations AG | Engineered pesticidal proteins and methods of controlling plant pests |
US20210340558A1 (en) * | 2018-05-07 | 2021-11-04 | Empresa Brasileira De Pesquisa Agropecuária - Embrapa | Codon-optimised cryida nucleic acid molecule, nucleic acid construct, vector, host cell, plant cell, transgenic plant, method for transforming a cell, method for producing a transgenic plant, method for controlling invertebrate pests of crop plants, and uses of the nucleic acid molecule |
Families Citing this family (57)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2782548A1 (en) * | 2009-12-16 | 2011-06-23 | Dow Agrosciences Llc | Combined use of cry1ca and cry1fa proteins for insect resistance management |
WO2014071182A1 (en) | 2012-11-01 | 2014-05-08 | Massachusetts Institute Of Technology | Directed evolution of synthetic gene cluster |
EP2971000A4 (en) | 2013-03-15 | 2016-11-23 | Pioneer Hi Bred Int | Phi-4 polypeptides and methods for their use |
EA030896B1 (en) | 2013-08-16 | 2018-10-31 | Пайонир Хай-Бред Интернэшнл, Инк. | Insecticidal proteins and methods for their use |
MX359027B (en) | 2013-09-13 | 2018-09-12 | Pioneer Hi Bred Int | INSECTICIDAL PROTEINS and METHODS FOR THEIR USE. |
CN103719137B (en) * | 2013-11-15 | 2015-05-13 | 北京大北农科技集团股份有限公司 | Pest control method |
CN103718895B (en) * | 2013-11-18 | 2016-05-18 | 北京大北农科技集团股份有限公司 | The method of Control pests |
EP3102684B1 (en) | 2014-02-07 | 2020-05-06 | Pioneer Hi-Bred International, Inc. | Insecticidal proteins and methods for their use |
EP3102592B1 (en) | 2014-02-07 | 2020-05-20 | Pioneer Hi-Bred International, Inc. | Insecticidal proteins and methods for their use |
TW201542093A (en) * | 2014-03-21 | 2015-11-16 | 艾格里遺傳學股份有限公司 | Cry1D for controlling corn earworm |
WO2016000237A1 (en) | 2014-07-03 | 2016-01-07 | Pioneer Overseas Corporation | Plants having enhanced tolerance to insect pests and related constructs and methods involving insect tolerance genes |
EP3207143B1 (en) | 2014-10-16 | 2023-11-22 | Pioneer Hi-Bred International, Inc. | Insecticidal proteins and methods for their use |
BR112017015341A2 (en) * | 2015-01-15 | 2018-01-09 | Pioneer Hi Bred Int | insecticide polypeptide and its use, insecticidal composition, recombinant polynucleotide, dna construct, transgenic plant or plant cell, method for inhibiting growth, method for controlling insect infestation |
EP3267796B1 (en) | 2015-03-11 | 2023-08-09 | Pioneer Hi-Bred International, Inc. | Insecticidal combinations of pip-72 and methods of use |
CN108064233B (en) | 2015-05-19 | 2022-07-15 | 先锋国际良种公司 | Insecticidal proteins and methods of use thereof |
EP3310803A1 (en) | 2015-06-16 | 2018-04-25 | Pioneer Hi-Bred International, Inc. | Compositions and methods to control insect pests |
EP3322679A4 (en) | 2015-07-13 | 2019-07-10 | Pivot Bio, Inc. | Methods and compositions for improving plant traits |
CN109475096B (en) | 2015-08-06 | 2022-08-23 | 先锋国际良种公司 | Plant-derived insecticidal proteins and methods of use thereof |
US11236347B2 (en) | 2015-08-28 | 2022-02-01 | Pioneer Hi-Bred International, Inc. | Ochrobactrum-mediated transformation of plants |
EP3359664A4 (en) | 2015-10-05 | 2019-03-20 | Massachusetts Institute Of Technology | Nitrogen fixation using refactored nif clusters |
EP3390431A1 (en) | 2015-12-18 | 2018-10-24 | Pioneer Hi-Bred International, Inc. | Insecticidal proteins and methods for their use |
US11781151B2 (en) | 2016-04-14 | 2023-10-10 | Pioneer Hi-Bred International, Inc. | Insecticidal CRY1B variants having improved activity spectrum and uses thereof |
AR108284A1 (en) | 2016-04-19 | 2018-08-08 | Pioneer Hi Bred Int | INSECTICIDE COMBINATIONS OF POLYPEPTIDES THAT HAVE ENHANCED SPECTRUM OF ACTIVITY AND USES OF THESE |
EP3960863A1 (en) | 2016-05-04 | 2022-03-02 | Pioneer Hi-Bred International, Inc. | Insecticidal proteins and methods for their use |
CA3022858A1 (en) | 2016-06-16 | 2017-12-21 | Pioneer Hi-Bred International, Inc. | Compositions and methods to control insect pests |
EP4083215A1 (en) | 2016-06-24 | 2022-11-02 | Pioneer Hi-Bred International, Inc. | Plant regulatory elements and methods of use thereof |
US11155829B2 (en) | 2016-07-01 | 2021-10-26 | Pioneer Hi-Bred International, Inc. | Insecticidal proteins from plants and methods for their use |
WO2018013333A1 (en) | 2016-07-12 | 2018-01-18 | Pioneer Hi-Bred International, Inc. | Compositions and methods to control insect pests |
EP3535285B1 (en) | 2016-11-01 | 2022-04-06 | Pioneer Hi-Bred International, Inc. | Insecticidal proteins and methods for their use |
US11129906B1 (en) | 2016-12-07 | 2021-09-28 | David Gordon Bermudes | Chimeric protein toxins for expression by therapeutic bacteria |
CA3044404A1 (en) | 2016-12-14 | 2018-06-21 | Pioneer Hi-Bred International, Inc. | Insecticidal proteins and methods for their use |
CA3046226A1 (en) | 2016-12-22 | 2018-06-28 | Pioneer Hi-Bred International, Inc. | Insecticidal proteins and methods for their use |
CN110799474B (en) | 2017-01-12 | 2022-07-26 | 皮沃特生物公司 | Methods and compositions for improving plant traits |
WO2018140214A1 (en) | 2017-01-24 | 2018-08-02 | Pioneer Hi-Bred International, Inc. | Nematicidal protein from pseudomonas |
US20190390219A1 (en) | 2017-02-08 | 2019-12-26 | Pioneer Hi-Bred International, Inc. | Insecticidal combinations of plant derived insecticidal proteins and methods for their use |
EP3622076A1 (en) | 2017-05-11 | 2020-03-18 | Pioneer Hi-Bred International, Inc. | Insecticidal proteins and methods for their use |
BR112019024827A2 (en) | 2017-05-26 | 2020-06-16 | Pioneer Hi-Bred International, Inc. | DNA CONSTRUCTION, TRANSGENIC PLANT OR PROGENY OF THE SAME, COMPOSITION AND METHOD TO CONTROL A POPULATION OF INSECT PEST |
US20200165626A1 (en) | 2017-10-13 | 2020-05-28 | Pioneer Hi-Bred International, Inc. | Virus-induced gene silencing technology for insect control in maize |
CN111587287A (en) | 2017-10-25 | 2020-08-25 | 皮沃特生物股份有限公司 | Methods and compositions for improved nitrogen-fixing engineered microorganisms |
KR20200123144A (en) | 2018-02-22 | 2020-10-28 | 지머젠 인코포레이티드 | Method for generating a genomic library enriched with Bacillus and identifying new CRY toxins |
US20210002657A1 (en) | 2018-03-02 | 2021-01-07 | Pioneer Hi-Bred International, Inc. | Plant health assay |
BR112020017975A2 (en) | 2018-03-02 | 2020-12-29 | Zymergen Inc. | PLATFORM FOR THE DISCOVERY OF INSECTICID PROTEIN AND INSECTICID PROTEINS DISCOVERED FROM THE SAME |
EP3764796A4 (en) | 2018-03-14 | 2021-12-22 | Pioneer Hi-Bred International, Inc. | Insecticidal proteins from plants and methods for their use |
WO2019178042A1 (en) | 2018-03-14 | 2019-09-19 | Pioneer Hi-Bred International, Inc. | Insecticidal proteins from plants and methods for their use |
BR112020023800A2 (en) | 2018-05-22 | 2021-02-23 | Pioneer Hi-Bred International, Inc. | plant regulatory elements and methods of using them |
CN112739668A (en) | 2018-06-27 | 2021-04-30 | 皮沃特生物股份有限公司 | Agricultural compositions comprising reconstituted nitrogen-fixing microorganisms |
WO2020046701A1 (en) | 2018-08-29 | 2020-03-05 | Pioneer Hi-Bred International, Inc. | Insecticidal proteins and methods for their use |
WO2021076346A1 (en) | 2019-10-18 | 2021-04-22 | Pioneer Hi-Bred International, Inc. | Maize event dp-202216-6 and dp-023211-2 stack |
BR102019023319A2 (en) * | 2019-11-06 | 2021-05-18 | Embrapa-Empresa Brasileira De Pesquisa Agropecuaria | nucleic acid molecule of the transgenic event from maize me240913 expressing the protein cry1da, transgenic cell, plant and seed, uses thereof, plant product, method, kit and amplicon for event detection, and methods to produce a transgenic and control plant of lepidopteran pests |
WO2021221690A1 (en) | 2020-05-01 | 2021-11-04 | Pivot Bio, Inc. | Modified bacterial strains for improved fixation of nitrogen |
TW202142114A (en) | 2020-02-04 | 2021-11-16 | 美商陶氏農業科學公司 | Compositions having pesticidal utility and processes related thereto |
WO2021222567A2 (en) | 2020-05-01 | 2021-11-04 | Pivot Bio, Inc. | Modified bacterial strains for improved fixation of nitrogen |
EP4182466A2 (en) | 2020-07-14 | 2023-05-24 | Pioneer Hi-Bred International, Inc. | Insecticidal proteins and methods for their use |
CN112390893B (en) * | 2020-07-16 | 2022-06-28 | 杭州瑞丰生物科技有限公司 | Efficient Spodoptera frugiperda-resistant fusion protein and application thereof |
CN116096903A (en) | 2020-08-10 | 2023-05-09 | 先锋国际良种公司 | Plant regulating element and method of use thereof |
MX2024000026A (en) | 2021-07-02 | 2024-02-20 | Pivot Bio Inc | Genetically-engineered bacterial strains for improved fixation of nitrogen. |
TW202345696A (en) | 2022-05-18 | 2023-12-01 | 美商科迪華農業科技有限責任公司 | Compositions having pesticidal utility and processes related thereto |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030084606A1 (en) * | 2001-10-04 | 2003-05-08 | Parker Charles D. | Insect resistance management in agriculture applications |
US20040133942A1 (en) * | 2001-03-30 | 2004-07-08 | Paul Miles | Novel pesticidal toxins |
US20050155103A1 (en) * | 1996-11-27 | 2005-07-14 | Monsanto Technology Llc | Transgenic plants expressing lepidopteran-active delta-endotoxins |
US20050216969A1 (en) * | 2004-03-26 | 2005-09-29 | Dow Agrosciences Llc | Cry1F and Cry1AC transgenic cotton lines and event-specific identification thereof |
US20100235951A1 (en) * | 2006-03-21 | 2010-09-16 | Bayer Bioscience N.V. | Novel genes encoding insecticidal proteins |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0400246A1 (en) * | 1989-05-31 | 1990-12-05 | Plant Genetic Systems, N.V. | Prevention of Bt resistance development |
GB9318207D0 (en) * | 1993-09-02 | 1993-10-20 | Sandoz Ltd | Improvements in or relating to organic compounds |
WO1998044137A2 (en) * | 1997-04-03 | 1998-10-08 | Novartis Ag | Plant pest control |
US6218188B1 (en) * | 1997-11-12 | 2001-04-17 | Mycogen Corporation | Plant-optimized genes encoding pesticidal toxins |
BR9910174A (en) * | 1998-05-01 | 2001-03-06 | Maxygen Inc | Process for obtaining an optimized recombinant gene for pest resistance, library, and process for obtaining an organism that is pathogenic to a vegetable pest |
AU6702300A (en) * | 1999-08-19 | 2001-03-19 | Syngenta Participations Ag | Hybrid insecticidal toxins and nucleic acid sequences coding therefor |
MXPA05011795A (en) * | 2003-05-02 | 2006-02-17 | Dow Agrosciences Llc | Corn event tc1507 and methods for detection thereof. |
MXPA05002541A (en) * | 2004-03-05 | 2006-04-27 | Agrigenetics Inc | Combinations of crylab and crylfa as an insect resistance management tool. |
TWI349526B (en) * | 2007-12-31 | 2011-10-01 | Taiwan Agricultural Chemicals And Toxic Substances Res Inst Council Of Agricult | Novel bacillus thuringiensis strain for inhibiting insect pests |
CA2723188A1 (en) * | 2008-05-01 | 2009-11-05 | Bayer Bioscience N.V. | Armyworm insect resistance management in transgenic plants |
ES2532145T3 (en) * | 2009-04-17 | 2015-03-24 | Dow Agrosciences Llc | Cry toxins insecticides DIG-3 |
CA2782548A1 (en) * | 2009-12-16 | 2011-06-23 | Dow Agrosciences Llc | Combined use of cry1ca and cry1fa proteins for insect resistance management |
AR084293A1 (en) * | 2010-12-16 | 2013-05-08 | Dow Agrosciences Llc | Cry1FA RADIOMARCADA, BIOLOGICALLY ACTIVE AND TEST METHODS OF UNION TO THE RECEIVER |
-
2010
- 2010-12-16 BR BR122019001711A patent/BR122019001711B8/en active IP Right Grant
- 2010-12-16 AU AU2010330916A patent/AU2010330916B2/en not_active Ceased
- 2010-12-16 EP EP10838259.9A patent/EP2512221B1/en active Active
- 2010-12-16 NZ NZ601096A patent/NZ601096A/en not_active IP Right Cessation
- 2010-12-16 UA UAA201208557A patent/UA113273C2/en unknown
- 2010-12-16 UA UAA201208628A patent/UA112409C2/en unknown
- 2010-12-16 JP JP2012544839A patent/JP5908409B2/en active Active
- 2010-12-16 MX MX2012007138A patent/MX358710B/en active IP Right Grant
- 2010-12-16 WO PCT/US2010/060815 patent/WO2011075587A1/en active Application Filing
- 2010-12-16 UA UAA201208657A patent/UA111710C2/en unknown
- 2010-12-16 US US13/516,604 patent/US20120331589A1/en not_active Abandoned
- 2010-12-16 AR ARP100104672A patent/AR079499A1/en not_active Application Discontinuation
- 2010-12-16 RU RU2012129906/10A patent/RU2603257C2/en not_active IP Right Cessation
- 2010-12-16 ES ES10838259T patent/ES2704652T3/en active Active
- 2010-12-16 CA CA2782546A patent/CA2782546C/en active Active
- 2010-12-16 KR KR1020127018424A patent/KR101841298B1/en active IP Right Grant
- 2010-12-16 CN CN201080064010.1A patent/CN102843903B/en active Active
-
2012
- 2012-06-12 IL IL220333A patent/IL220333A/en not_active IP Right Cessation
- 2012-06-15 CL CL2012001622A patent/CL2012001622A1/en unknown
- 2012-07-02 ZA ZA2012/04914A patent/ZA201204914B/en unknown
- 2012-07-16 CO CO12119367A patent/CO6602146A2/en not_active Application Discontinuation
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050155103A1 (en) * | 1996-11-27 | 2005-07-14 | Monsanto Technology Llc | Transgenic plants expressing lepidopteran-active delta-endotoxins |
US20040133942A1 (en) * | 2001-03-30 | 2004-07-08 | Paul Miles | Novel pesticidal toxins |
US20030084606A1 (en) * | 2001-10-04 | 2003-05-08 | Parker Charles D. | Insect resistance management in agriculture applications |
US20050216969A1 (en) * | 2004-03-26 | 2005-09-29 | Dow Agrosciences Llc | Cry1F and Cry1AC transgenic cotton lines and event-specific identification thereof |
US20100235951A1 (en) * | 2006-03-21 | 2010-09-16 | Bayer Bioscience N.V. | Novel genes encoding insecticidal proteins |
Non-Patent Citations (2)
Title |
---|
GUTIERREZ ET AL.: "Physiologically based demographics of Bt cotton-pest interactions I. Pink bollworm resistance, refuge and risk", ECOLOGICAL MODELLING, vol. 191, no. 3-4, 5 February 2006 (2006-02-05), pages 346 - 359, XP005239868 * |
See also references of EP2512221A4 * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9796982B2 (en) | 2009-12-16 | 2017-10-24 | Dow Agrosciences Llc | Use of Cry1Da in combination with Cry1Ca for management of resistant insects |
JP2016501511A (en) * | 2012-10-05 | 2016-01-21 | ダウ アグロサイエンシィズ エルエルシー | Use of combined Cry1Ea for the management of resistant fall army worm insects |
EP3550961A4 (en) * | 2016-12-12 | 2020-11-04 | Syngenta Participations AG | Engineered pesticidal proteins and methods of controlling plant pests |
US11535862B2 (en) | 2016-12-12 | 2022-12-27 | Syngenta Participations Ag | Engineered pesticidal proteins and methods of controlling plant pests |
US20210340558A1 (en) * | 2018-05-07 | 2021-11-04 | Empresa Brasileira De Pesquisa Agropecuária - Embrapa | Codon-optimised cryida nucleic acid molecule, nucleic acid construct, vector, host cell, plant cell, transgenic plant, method for transforming a cell, method for producing a transgenic plant, method for controlling invertebrate pests of crop plants, and uses of the nucleic acid molecule |
Also Published As
Publication number | Publication date |
---|---|
NZ601096A (en) | 2014-10-31 |
CN102843903B (en) | 2016-02-10 |
IL220333A (en) | 2016-07-31 |
CA2782546A1 (en) | 2011-06-23 |
ZA201204914B (en) | 2013-02-27 |
CL2012001622A1 (en) | 2013-01-25 |
US20120331589A1 (en) | 2012-12-27 |
AU2010330916A1 (en) | 2012-07-12 |
JP5908409B2 (en) | 2016-04-26 |
MX2012007138A (en) | 2012-10-09 |
KR101841298B1 (en) | 2018-03-22 |
EP2512221B1 (en) | 2018-11-07 |
UA111710C2 (en) | 2016-06-10 |
BR112012014575A2 (en) | 2017-06-20 |
JP2013514768A (en) | 2013-05-02 |
AU2010330916B2 (en) | 2015-07-16 |
CO6602146A2 (en) | 2013-01-18 |
UA112409C2 (en) | 2016-09-12 |
MX358710B (en) | 2018-08-31 |
CA2782546C (en) | 2023-03-21 |
EP2512221A4 (en) | 2013-10-09 |
RU2012129906A (en) | 2014-01-27 |
BR122019001711B1 (en) | 2020-03-31 |
EP2512221A1 (en) | 2012-10-24 |
UA113273C2 (en) | 2017-01-10 |
ES2704652T3 (en) | 2019-03-19 |
KR20120096574A (en) | 2012-08-30 |
BR122019001711B8 (en) | 2022-10-11 |
CN102843903A (en) | 2012-12-26 |
AR079499A1 (en) | 2012-02-01 |
RU2603257C2 (en) | 2016-11-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2782546C (en) | Combined use of cry1da and cry1fa proteins for insect resistance management | |
US9139844B2 (en) | Combined use of Cry1Ca and Cry1Ab proteins for insect resistance management | |
AU2010330917B2 (en) | Combined use of Cry1Ca and Cry1Fa proteins for insect resistance management | |
AU2013326885B2 (en) | Use of Cry1Ea in combinations for management of resistant fall armyworm insects | |
US9045766B2 (en) | Combined use of Vip3Ab and Cry1Ab for management of resistant insects | |
EP2513316A1 (en) | Use of cry1da in combination with cry1ca for management of resistant insects | |
AU2012294678B2 (en) | Use of DIG3 insecticidal crystal protein in combination with Cry1Ab | |
US10119149B2 (en) | Use of DIG3 insecticidal crystal protein in combination with cry1Ab for management of resistance in european cornborer | |
EP3445160A1 (en) | Combination of four vip and cry protein toxins for management of insect pests in plants |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201080064010.1 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10838259 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2782546 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 220333 Country of ref document: IL |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012001622 Country of ref document: CL |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1201002905 Country of ref document: TH |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012544839 Country of ref document: JP Ref document number: MX/A/2012/007138 Country of ref document: MX |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010330916 Country of ref document: AU |
|
WWE | Wipo information: entry into national phase |
Ref document number: 5946/DELNP/2012 Country of ref document: IN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010838259 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: A201208557 Country of ref document: UA |
|
ENP | Entry into the national phase |
Ref document number: 2010330916 Country of ref document: AU Date of ref document: 20101216 Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20127018424 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 12012501436 Country of ref document: PH |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012129906 Country of ref document: RU Ref document number: 12119367 Country of ref document: CO |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13516604 Country of ref document: US |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112012014575 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: 112012014575 Country of ref document: BR Kind code of ref document: A2 Effective date: 20120615 |