WO2011074041A1 - 成形方法および成形品の製造方法 - Google Patents

成形方法および成形品の製造方法 Download PDF

Info

Publication number
WO2011074041A1
WO2011074041A1 PCT/JP2009/006989 JP2009006989W WO2011074041A1 WO 2011074041 A1 WO2011074041 A1 WO 2011074041A1 JP 2009006989 W JP2009006989 W JP 2009006989W WO 2011074041 A1 WO2011074041 A1 WO 2011074041A1
Authority
WO
WIPO (PCT)
Prior art keywords
mold
temperature
resin
transparent resin
injection molding
Prior art date
Application number
PCT/JP2009/006989
Other languages
English (en)
French (fr)
Inventor
苅谷俊彦
Original Assignee
三菱重工プラスチックテクノロジー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工プラスチックテクノロジー株式会社 filed Critical 三菱重工プラスチックテクノロジー株式会社
Priority to JP2011545854A priority Critical patent/JP5598868B2/ja
Priority to US13/387,570 priority patent/US20120119403A1/en
Priority to PCT/JP2009/006989 priority patent/WO2011074041A1/ja
Priority to CN200980160681.5A priority patent/CN102725117B/zh
Publication of WO2011074041A1 publication Critical patent/WO2011074041A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/16Making multilayered or multicoloured articles
    • B29C45/1615The materials being injected at different moulding stations
    • B29C45/1628The materials being injected at different moulding stations using a mould carrier rotatable about an axis perpendicular to the opening and closing axis of the moulding stations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/1701Component parts, details or accessories; Auxiliary operations using a particular environment during moulding, e.g. moisture-free or dust-free
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/04Condition, form or state of moulded material or of the material to be shaped cellular or porous
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0018Properties of moulding materials, reinforcements, fillers, preformed parts or moulds having particular optical properties, e.g. fluorescent or phosphorescent
    • B29K2995/0025Opaque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0018Properties of moulding materials, reinforcements, fillers, preformed parts or moulds having particular optical properties, e.g. fluorescent or phosphorescent
    • B29K2995/0026Transparent

Definitions

  • the present invention relates to a molding method of molding using a foamable resin as a material and a method of manufacturing a molded article.
  • the surface temperature of the mold in contact with the visible surface of the molded article is controlled to be near the glass transition temperature of the resin from the start to the completion of the resin filling.
  • the resin is made to have fluidity by controlling the surface temperature of the mold close to the glass transition temperature of the resin. Even if there is, the resin in the portion where the air bubbles burst is pushed up to the mold surface by the resin pressure and retransferred to the mold surface, thereby eliminating the silver factor on the visible surface of the molded article.
  • a heat insulating layer and a surface thin metal layer are provided on the inner surface of the mold. This thermally insulates the mold surface, suppresses the temperature decrease of the molten resin due to the heat of the filled molten resin being taken by the mold by the heat insulation, and suppresses the decrease in the fluidity of the resin, and the transferability of the mold surface Improve.
  • the mold By configuring the mold in this manner, it is possible to significantly improve the occurrence of silver and the like in the product appearance.
  • the film is a heat-resistant resin
  • the processability of the film is poor and the durability is low, so there is a problem that heat insulation can not be performed stably.
  • the film needs to be sintered in a furnace, such as ceramic
  • a huge furnace is required, which is not practical.
  • the heat insulation material is worn out by resin molding containing a high hardness material, the above mold failure must be remedied to repair the above heat insulation mold for prolonging the life of the mold, and the mold must be repaired. Cost and time will be incurred.
  • the present invention has been made in view of such problems, and the foamable resin filled in the mold at the time of molding suppresses the temperature drop of the resin when the mold comes in contact with the metal. It does not require the energy to heat the mold, and it does not use the heat / cooling mold which is a special mold by obtaining the same effect as the heat insulation mold for large molded products, and does not use the heat insulation mold. It is an object of the present invention to provide a molding method and a method for producing a molded product which can improve the appearance of a molded resin product.
  • this invention proposes the following means.
  • the method for producing a molded article according to the present invention is a method for producing a molded article for producing a molded article comprising a transparent resin and a foamable resin, and the primary injection for molding the transparent resin in a first mold. And a secondary injection molding step of molding a foamable resin between the molded transparent resin and a second mold.
  • the transparent resin is generally formed of a material having a thermal conductivity smaller than that of the mold, the first mold side is easily thermally insulated with the transparent resin when molding the foamable resin. Heating energy for preventing appearance defects such as silver of the foamable resin can be omitted.
  • the transparent resin is integrally taken out with the foamable resin each time the foamable resin is molded, and is taken out as a molded article, and is always newly molded before the foamable resin is molded. Therefore, as in conventional coatings formed on the surface of molds and used repeatedly, there is no need to worry about durability and life, or to use molds periodically or irregularly for life extension repair.
  • the transparent resin transmits light, the surface on the transparent resin side of the foamable resin can be viewed visually, and it becomes a substantially molded product appearance surface, but the transparent resin is the foamable resin and the first mold.
  • silver does not occur on the molded product appearance surface (surface on the transparent resin side) of the foamable resin without using a heating and cooling mold which is a special mold and a heat insulation mold. It can prevent and the external appearance of a foamable resin molded product can be improved.
  • the wall temperature of the second mold is within a predetermined temperature difference with respect to the temperature of the surface of the transparent resin on the second mold side in the secondary injection molding step. It is more preferable to perform cooling control so that According to the present invention, the transparent resin side and the second mold side of the foamable resin can be substantially equally shrunk to suppress the occurrence of warpage in the foamable resin.
  • the wall temperature of the second mold and the temperature of the surface of the transparent resin on the second mold side are within the predetermined temperature difference. It is more preferable to perform cooling control so that each temperature when it becomes becomes below the glass transition temperature of the said foamable resin and / or below flow start temperature.
  • the side surface of the transparent resin of the foamable resin and the side surface of the second mold shrink substantially equally, and the foamable resin solidifies in a desired shape. It is possible to more reliably suppress the occurrence of the warping.
  • the wall temperature of the second mold and the temperature of the surface of the transparent resin on the second mold side are within the predetermined temperature difference. More preferably, the cooling rate of the second mold is increased after it has become. According to this invention, it is possible to suppress the occurrence of warpage in the foamable resin, and to shorten the time (tact time) required to produce a molded article.
  • the wall surface temperature of the second mold and the temperature of the surface of the transparent resin on the second mold side are within the predetermined temperature difference
  • the wall temperature of the second mold and the temperature of the surface of the transparent resin on the second mold side are set within the predetermined temperature difference. It is more preferable to maintain the time of
  • the resin in the step of solidifying and shrinking the resin, the resin is sufficiently solidified by maintaining the resin at a predetermined temperature difference such that the difference in the amount of contraction does not increase, thereby causing the difference in the amount of contraction to the foamable resin. As a result, it is possible to more reliably suppress the occurrence of the warpage caused by and to reduce the time required to manufacture a molded article.
  • the absolute value of the temperature difference is set to 10 ° C. According to the present invention, it is possible to suppress the time difference when the transparent resin side and the second mold side of the foamable resin solidify, and it is difficult to make a difference in the solidified form of the resin within the range of general resin physical property variation. By setting the temperature difference to 10 ° C. or less, generation of warpage in the foamable resin can be further prevented with high reproducibility.
  • the cooling control is performed so that the wall surface temperature of the second mold matches the temperature of the surface of the transparent resin on the second mold side. It is more preferable to do.
  • the transparent resin side and the second mold side of the foamable resin can be substantially equally shrunk to suppress the occurrence of warpage in the foamable resin.
  • the temperature at which the wall surface temperature of the second mold and the temperature of the surface of the transparent resin on the second mold side coincide with each other is the foam. It is more preferable to control cooling so as to be equal to or higher than the glass transition temperature of the base resin and / or lower than the flow start temperature.
  • the side surface of the transparent resin of the foamable resin and the side surface of the second mold shrink substantially equally, and the foamable resin solidifies in a desired shape. It is possible to more reliably suppress the occurrence of the warping.
  • the second injection molding step may be performed after the wall surface temperature of the second mold and the temperature of the surface of the transparent resin on the second mold side coincide with each other. More preferably, the cooling rate of the mold is increased. According to the present invention, it is possible to suppress the occurrence of warpage in the foamable resin, and to shorten the time required to produce a molded article.
  • the cooling of the second mold is performed after the wall surface temperature of the second mold and the temperature of the surface of the transparent resin on the second mold side coincide with each other.
  • the wall temperature of the second mold and the temperature of the surface of the transparent resin on the second mold side may be maintained within the predetermined temperature difference for a predetermined time before the speed is increased. preferable.
  • the resin in the step of solidifying and shrinking the resin, the resin is sufficiently solidified by maintaining the resin at a predetermined temperature difference such that the difference in the amount of contraction does not increase, thereby causing the difference in the amount of contraction to the foamable resin. As a result, it is possible to more reliably suppress the occurrence of the warpage caused by and to reduce the time required to manufacture a molded article.
  • the second injection molding step may include the step of injecting the foamable resin to the time when the foamable resin is filled over the entire contact surface of the molded article with the transparent resin. It is more preferable to stop the supply of the cooling medium for cooling one mold. According to the present invention, when the heat insulating effect of the transparent resin is low, it is possible to suppress the heat of the filled molten resin from escaping through the transparent resin to the first mold, and the foamable resin And transparent resin can be connected reliably.
  • the cooling medium to the first mold after the foamable resin is filled over the entire contact surface with the transparent resin in the molded product in the secondary injection molding step It is more preferable to start the supply of According to the present invention, it is possible to shorten the time required to manufacture a molded article.
  • the temperature of the cooling medium supplied to the second mold is switched in multiple stages or in a stepless manner in the secondary injection molding step to set the cavity surface temperature of the stationary mold. It is preferable to control the cooling.
  • the accuracy of controlling the wall surface temperature of the second mold within a predetermined temperature difference with respect to the temperature of the surface of the transparent resin on the second mold side is improved, and the foam resin is transparent
  • the resin side surface and the second mold side can be substantially equally shrunk to improve the reproducibility of suppressing the occurrence of warpage in the foamable resin.
  • the mold is heated by suppressing the decrease in resin temperature when the foamable resin filled in the mold at the time of molding contacts the mold. It does not require energy and achieves the same effect as a heat insulation mold even on large-sized molded articles, so that it does not use a special mold such as a heating / cooling mold or a heat insulation mold to form a foamable resin.
  • the appearance of the product can be improved.
  • the molding machine of the present embodiment is an example of a molding machine for carrying out the molding method of the present invention, and is an apparatus for molding two types of resin materials while rotating a mold described later.
  • a fixed die plate 2 to which a fixed side mold (second mold) 4 is attached is provided in a fixed state.
  • a rotary die A (first die) (6A) and a rotary die B (first die) (6B) are mounted on the base 1 so as to face the fixed die plate 2
  • the die plate 9 and the movable die plate 3 to which the movable side mold 5 is attached are movably mounted.
  • the stationary mold 4 and the movable mold 5 are disposed to face each other in the X direction with the rotary die plate 9 interposed therebetween.
  • the tip portions 4a and 5a which are opposed portions of the fixed side mold 4 and the movable side mold 5 have the same cross-sectional shape in a plane orthogonal to the X direction, and the length of the tip portion 4a in the X direction
  • the length L2 of the tip 5a in the X direction is set to be longer than L1.
  • the reversing table 7 on which the movable die plate 3 and the rotating die plate 9 are mounted is guided by a guide rail 19 fixed to the base 1 so as to be movable in the X direction on the base 1.
  • the cavity shape will be described as a planar shape for the sake of simplicity, but there is no problem even if it is not a flat surface but a 3D shape.
  • a pair of movable die plate opening / closing means 14 symmetrically installed on both sides of the center axis C in the molding machine 10 is a servomotor A (21) fixed to the fixed die plate 2 and a ball screw axis A (22) And a support base 26 fixed to the fixed die plate 2 and axially axially restraining the ball screw axis A (22) rotatably freely, and a ball screwing with the ball screw 22a of the ball screw axis A (22)
  • a power transmission mechanism 23 for transmitting the information.
  • the pair of servomotors A (21) are synchronously operated, and the movable die plate 3 can be moved in the X direction while being maintained parallel to the fixed die plate 2.
  • a pair of rotary die plate opening / closing means 15 symmetrically installed on both sides of the center axis C in the molding machine 10 are a servomotor B (31) fixed on the base 1 and a ball screw shaft B (32) A support 34 fixed to the base 1 and rotatably supporting the ball screw shaft B (32), and a ball screw nut B (33) screwed with the ball screw 32a of the ball screw shaft B (32);
  • the ball screw nut B (33) is attached and configured by the nut support base 35 fixed to the reversing base 7 and the power transmission mechanism 36 for transmitting the rotational force of the servomotor B (31) to the ball screw shaft B (32) It is done.
  • the pair of servomotors B (31) are synchronously operated, and the reversing table 7 can be moved in the opening and closing direction in parallel with the fixed die plate 2.
  • the rotary die plate 9 is mounted on a reversing base 7 and is rotatable around an axis perpendicular to the surface of the base 1 as shown in FIG.
  • the rotary die plate rotating means 16 is a rotary drive means for rotating the rotary die plate 9 by half rotation or one direction in the forward and reverse directions, and the rotary metal provided on both sides of the rotary die plate 9.
  • the mold A (6A) and the rotary mold B (6B) can be made to face the fixed mold 4 and the movable mold 5 alternately.
  • the rotating die plate rotating means 16 meshes with the servomotor C (41) attached to the reversing base 7, the pinion 42 attached to the servomotor C (41), and the pinion 42, and is integrally provided to the rotating die plate 9.
  • the positioning pin 44 positioned at a position where a predetermined surface of the rotary die plate 9 faces the fixed die plate 2 (or the movable die plate 3) and a position rotated 180 degrees from that position. It consists of
  • the lower shaft 8 integral with the rotary die plate 9 is rotatable relative to the reversing base 7 via a bearing (not shown). Thereby, the rotary die plate 9 can be positioned with respect to the reversing table 7 with high accuracy.
  • the hydraulic clamping means simultaneously clamps the three sets of die plates 2, 9 and 3 and is coupled to four hydraulic cylinders 2 a built in the fixed die plate 2 and a ram 18 b of the cylinders 2 a, Four tie bars 18 provided to pierce the movable die plate 3 and four sets of split nuts 17 provided on the outside of the movable die plate 3 and engageable with ring grooves 18 a formed at the tip of the tie bars 18. And consists of.
  • the rotary mold A (6A) and the rotary mold B (6B) attached to both sides of the rotary die plate 9 have the same shape, and the rotary mold A (6A) or the rotary mold B (6B) is the stationary mold 4 and the first cavity is formed between these dies, and the rotation die A (6A) or the rotation die B (6B) is engaged with the movable side die 5 A second cavity is formed between the two molds. Since the length in the X direction is set so that the end 5 a of the movable side mold 5 is longer than the end 4 a of the fixed side mold 4, the first cavity is the second cavity It is widely configured in the X direction.
  • the first injection unit 11 is installed on the fixed die plate 2 side, and the second injection unit 12 is installed on the movable die plate 3 side so as to move along with the opening and closing movement of the movable die plate 3. Then, when the fixed die plate 2, the rotary die plate 9, and the movable die plate 3 are simultaneously clamped by the hydraulic clamping means, the first injection unit 11 uses the colored foamable resin material in the first cavity.
  • the second injection unit 12 injects and fills the material for the transparent resin in the second cavity in a plasticized state.
  • the second injection unit 12 can be moved along with the movable die plate 3 with a large stroke, and the second injection unit 12 is connected and fixed to the movable die plate 3 via the connection fixing member 63. It is placed on a sliding base 64. By moving the sliding base 64 guided by the guide rails 19, the second injection unit 12 can be moved following the movement of the movable die plate 3 without being delayed.
  • nozzle touch cylinders 61 and 62 are provided in the first injection unit 11 and the second injection unit 12.
  • the nozzle touch cylinder 61 is provided to connect the first injection unit 11 and the fixed die plate 2
  • the nozzle touch cylinder 62 is provided to connect the second injection unit 12 and the movable die plate 3. Then, the nozzle touch cylinders 61 and 62 are shortened and the first injection unit 11 and the second injection unit 12 are pulled toward the fixed die plate 2 and the movable die plate 3 to obtain the first injection unit 11 and the second injection.
  • the tip nozzle of the unit 12 is pressed against the fixed die plate 2, the fixed side mold 4 attached to the movable die plate 3, and the movable side mold 5.
  • the nozzle touch cylinder 62 is slidably provided on the sliding base 64 of the second injection unit 12.
  • the nozzle 12 a is in contact with the movable mold 5, and the nozzle is always touched at the time of mold opening and closing. As a result, the resin can be injected from the nozzle 12a simultaneously with completion of mold closing and boosting, and high cycle can be realized.
  • the heat medium passage for heating and cooling the mold surface is fixed to the fixed side mold 4, the rotary mold A (6A), the rotary mold B (6B), and the movable side mold 5.
  • 100, 101A, 101B, 102 (hereinafter, referred to as "heat medium passage 100 and the like") are formed.
  • the heat medium passage 100 and the like are formed as close as possible to the mold cavity.
  • the movable side mold 5 is heated and cooled in order to improve appearance of the transparent resin which is a primary molded article, to add surface function, and to add high value added by mold transferability. If the product does not require a high appearance, it may not be necessary to carry out heating and cooling.
  • insert molding may be performed using a high function film for enhancing the appearance or hardness of the transparent resin.
  • a heating medium supply device (not shown) for supplying a heating medium and a cooling medium supply device (not shown) for supplying a cooling medium are connected to the heat medium passage 100 and the like.
  • steam or water is used as the heating medium and the cooling medium
  • the heating medium supply device and the cooling medium supply device supply the heating medium and the cooling medium adjusted to a predetermined temperature.
  • steam and water were shown as a heating medium and a cooling medium here, pressurized hot water, oil etc. are used as a heating medium, and fluorocarbon, liquid nitrogen etc. is used as a cooling medium. It is also possible.
  • an electric or electromagnetic induction heater may be used instead of using a heating medium as the heating means.
  • heat medium supply pipes 103i and 103o are connected to the heat medium passage 100 and the like, respectively.
  • One end of each of the heat medium supply pipes 103i and 103o is directly connected to the fixed mold 4, the rotary mold A (6A), the rotary mold B (6B), and the movable mold 5, as shown in FIG. However, they may be connected via a mounting adapter or the like.
  • the heat medium supply pipes 103i and 103o connected to the heat medium passages 101A and 101B of the rotary mold A (6A) and the rotary mold B (6B) are held fixed to the reversing table 7.
  • the heating medium supply device feeds the heating medium into the heat medium passage 100 by a pump (not shown), and the fixed side mold 4, the rotary mold A (6 A), the rotary mold B (6 B), the movable side mold 5 And circulate the heating medium that has passed through the heat medium passage 100 and the like.
  • the cooling medium supply device feeds the cooling medium into the heat medium passage 100 by a pump (not shown), and the fixed mold 4, the rotary mold A (6A), the rotary mold B (6B), the movable mold 5 Is cooled, and the cooling medium passed through the heat medium passage 100 and the like is circulated.
  • the heating medium supply device and the cooling medium supply device control the supply of the heating medium and the cooling medium by opening and closing an on-off valve (not shown).
  • the on-off valve is controlled by the control device 105 (see FIG. 1) of the molding machine 10 based on a predetermined program.
  • the temperature of the cavity surface is measured at the fixed side mold 4, the rotary mold A (6 A), the rotary mold B (6 B), and the movable side mold 5.
  • Sensors 103, 103A, 103B, and 104 are disposed, respectively. That is, for example, the temperature measured by the mold temperature sensor 103 is the cavity surface temperature of the fixed side mold 4 or the like. Signals of temperatures detected by the mold temperature sensors 103, 103A, 103B, and 104 are sent to the control device 105 of the molding machine 10.
  • the control device 105 performs control based on a predetermined computer program, opens and closes an on-off valve (not shown) in accordance with the temperatures detected by the mold temperature sensors 103, 103A, 103B and 104, and heat medium passage Control the supply of heating medium and cooling medium to 100 grade.
  • a molding method (a method of manufacturing a molded product) by the molding machine 10 of the present embodiment will be described.
  • die B (6B) of the rotation die plate 9 is arrange
  • the shaded molds and the unshaded molds are paired at corresponding times to form a cavity.
  • a preliminary test is performed in which a primary injection molding process is performed in advance as described below, and a temperature sensor is attached to the molded transparent resin and then a secondary injection molding process is performed.
  • a transparent resin is molded in a second cavity formed by fitting the rotary mold B (6B) and the movable mold 5 according to the procedure described in detail below.
  • the transparent resin used in the present invention is polycarbonate having high light transmittance, polymethyl methacrylate, polystyrene, polyethylene terephthalate, polyether sulfone, polyether sulfone, alicyclic olefin resin, alicyclic acrylic resin, norbornene heat resistant transparent resin, cyclic
  • the aforementioned resin of any of an olefin copolymer, a polymethacrylic acid ester resin, an epoxy resin and a vinyl chloride is preferable.
  • the control device 105 performs clamping by the hydraulic cylinder 2a. Further, the on-off valve is opened and closed, the heating medium is supplied to the heating medium passages 101B and 102 by the heating medium supply device, and the rotary mold B (6B) and the movable side mold 5 are heated in advance to predetermined temperatures.
  • the state in which a constant pressure is applied to the material P0 is maintained for a certain period of time.
  • the cooling medium is supplied to the heat medium passages 101B and 102 by the cooling medium supply device to cool the rotary mold B (6B) and the movable side mold 5 to the flow start temperature of the material P0 or less, and the material P0 is solidified.
  • the transparent resin P1 is molded. After this, the supply of the cooling medium to the heat medium passages 101B and 102 is stopped.
  • the flow start temperature of the resin is a temperature at which the flowability is shown by an external force when the resin is heated and heated, for example, by using Shimadzu Corporation high-rise type flow tester CFT-500 type,
  • the melt viscosity is 48,000 poise (4800 Pa) when a resin heated at a temperature rising rate of 4 ° C./min is extruded from a nozzle with an inner diameter of 1 mm and a length of 10 mm under a load of 100 kgf / cm 2 (9.81 MPa). ⁇ It refers to the temperature which shows s).
  • the movable die plate 3 and the reversing table 7 on which the rotary die plate 9 is loaded are opened and the distance between the die plates 2, 9 and 3 is sufficient.
  • the rotary die plate 9 to which the rotary mold B (6B) is attached is rotated 180 degrees.
  • the temperature sensor U is attached to the surface of the transparent resin P1 on the side separated from the rotary mold B (6B), and the temperature of this surface is measured.
  • the movable die plate 3 and the rotary die plate 9 are closed again.
  • the expandable resin is formed in the first cavity formed by fitting the rotary mold B (6B) and the fixed side mold 4 in the procedure shown in detail below. Do.
  • blowing agent used in the present invention various known blowing agents can be used.
  • the blowing agent may be either a solvent type blowing agent, a degradable blowing agent, or a physical blowing agent.
  • the solvent-type foaming agent is a substance that is generally injected from the hopper or cylinder portion of an injection molding machine, dissolves or absorbs into the molten thermoplastic resin, and then volatilizes in the mold cavity to function as a foaming agent. .
  • low-boiling aliphatic hydrocarbons such as propane, butane, neopentane, heptane, isohexane, hexane, isoheptane and heptane, and low-boiling fluorine-containing hydrocarbons represented by fluorocarbon can be used.
  • the decomposition type foaming agent is a compound which is compounded in advance to the above thermoplastic resin and supplied to the injection molding machine, and is decomposed under cylinder temperature conditions of the injection molding machine to generate gas such as carbon dioxide gas, nitrogen gas and the like. is there.
  • the decomposition type foaming agent may be an inorganic type foaming agent or an organic type foaming agent, and an organic acid such as citric acid or an organic acid such as sodium citrate which promotes generation of gas.
  • a metal salt or the like may be added in combination as a foaming aid.
  • Inorganic blowing agents sodium bicarbonate, sodium carbonate, ammonium bicarbonate, ammonium carbonate, ammonium nitrite
  • organic blowing agents (A) N-nitroso compound: N, N'-dinitrosotephthalamide, N, N'-dinitrosopentamethylenetetramine 40
  • Azo compounds azodicarbonamide, azobisisobutyronitrile, azocyclohexylnitrile, azodiaminobenzene, barium azodicarboxylate
  • sulfonylhydrazide compounds benzenesulfonylhydrazide, toluenesulfonylhydrazide, p, p'- Oxybis (benzenesulfonyl hydrazide), diphenyl sulfone-3,3'-disul
  • an inert gas such as carbon dioxide, nitrogen, argon, helium or neon can be used without any problem.
  • carbon dioxide, nitrogen and argon which are inexpensive and have very little risk of environmental pollution and fire are most preferable.
  • the physical blowing agent may be used in liquid state, supercritical state, and gaseous state.
  • foaming agents may be used singly or in combination of two or more.
  • a foaming agent may be beforehand mix
  • the above-mentioned foaming agent and foaming assistant may be blended beforehand to prepare a masterbatch, which may be blended into the thermoplastic resin.
  • the addition amount of the foaming agent is selected in consideration of the amount of gas generated from the foaming agent and the desired expansion ratio according to the required physical properties of the foamed molded product, it is usually selected with respect to 100 parts by weight of the thermoplastic resin. It is in the range of 0.1 to 6 parts by weight, preferably 0.5 to 3 parts by weight. When the content of the foaming agent is in the above-mentioned range, it is possible to obtain a foam molded article having uniform cell diameter, uniform dispersion of the cells, and high appearance.
  • the material P2 for the conductive resin is heated to a temperature higher than the flow start temperature of the foamable resin and then injected.
  • the bubble B in the material P2 bursts.
  • the air bubble B is also generated on the surface of the material P2, but when the melted material P2 is pressed against the cavity surface of the molded product appearance surface on the fixed side mold 4 side of the transparent resin P1 by the injection pressure of the first injection unit 11.
  • the heat insulation effect of the transparent resin suppresses the temperature drop of the material P2, slows the decrease of the fluidity of the material P2, slows the material P2 to deform by the injection pressure, and the bubbles B disappear, and the silver on the surface of the material P2. Is prevented from occurring. At this time, as shown in FIG.
  • the temperature V1 of the temperature sensor U attached to the transparent resin P1 and the temperature V2 of the mold temperature sensor 103 are measured.
  • the thermal conductivity of the transparent resin P1 is smaller than the thermal conductivity of the fixed mold 4, so the temperature V2 drops faster than the temperature V1.
  • the entire surface P3 of contact with the transparent resin P1 is filled with the material P2 of the foamable resin, and the transparent resin P1 and the material are formed on the contact surface P3. P2 is connected.
  • mold may be opened is performed.
  • the supply of the cooling medium to the heat medium passages 101B and 100 is started by the cooling medium supply device, and the rotary mold B (6B)
  • the material P2 is solidified by cooling the stationary mold 4 to the flow start temperature of the foamable resin P4 or less, and the foamable resin P4 is formed.
  • a molded article (two-component molded article) P configured by connecting the transparent resin P1 and the foamable resin P4 is molded.
  • the resin used in the primary injection molding step of the preliminary test is most preferably the same resin as the transparent resin used in actual production, but the resin used in the primary injection molding step of the preliminary test is the secondary of the preliminary test.
  • the resin used in the primary injection molding step of the preliminary test is the secondary of the preliminary test.
  • the transparent resin when it is softened by the high temperature foamable resin and the temperature sensor U can not be held and temperature measurement is difficult, not only the transparent resin but also a high heat resistant resin may be used.
  • the controller 105 controls the expandable resin from the first injection unit 11 to the first cavity at timing T6 in the secondary injection molding process.
  • the temperature V2 measured by the mold temperature sensor 103 is predetermined from the timing T6 with respect to the temperature V1 of the temperature sensor U measured in advance.
  • the cooling control is performed so as to be within the temperature difference ⁇ D1 within the time ⁇ T11.
  • the cooling control by the controller 105 is performed by controlling the cooling speed of the stationary mold 4 by supplying a cooling medium having a suitable temperature to the heat medium passage 100 of the stationary mold 4 at an appropriate flow rate. Meanwhile, during this time, the cooling medium may not be supplied to the heat medium passage 101B.
  • the predetermined time ⁇ T11 is appropriately determined in accordance with the tact time or the like for manufacturing the molded article P. Also, after the temperature difference ⁇ D1 is reached, the temperature V2 measured by the mold temperature sensor 103 is controlled within the temperature difference ⁇ D1 with respect to the temperature V1 of the temperature sensor U measured in advance for a predetermined time ⁇ T13. It is preferable to do. Further, the absolute value of the temperature difference ⁇ D1 is preferably set to 10 ° C.
  • the movable die plate 3 and the reversing table 7 on which the rotary die plate 9 is loaded are opened and the distance between the die plates 2, 9 and 3 is When it is fully opened, the molded article P stuck to the rotary mold B (6B) is taken out by an ejector (not shown). Then, at timing T8, the rotary die plate 9 is rotated 180 degrees. Further, as shown in FIG. 6, at timing T9 between timing T5 and timing T6, the second injection unit 12 forms the rotary mold A (6A) and the movable side mold 5 by fitting. The material P0 of the transparent resin P1 is injected into the second cavity.
  • the molding machine 10 continuously manufactures the molded article P while rotating the rotary die plate 9 and replacing the rotary molds 6A and 6B constituting the second cavity and the first cavity.
  • the temperature of the surface of the transparent resin P1 on the stationary-side mold 4 side when it is actually produced changes by controlling the cooling of the stationary-side mold 4 in the secondary injection molding process.
  • the temperature of the surface of the transparent resin P1 on the stationary-side mold 4 side is newly measured in the secondary injection molding step in the state where the stationary-side mold 4 is subjected to the above-described cooling control.
  • the fixed side mold 4 may be cooled and controlled with the measured temperature as the above temperature V1. Also, the above temperature measurement may be repeated as necessary.
  • the transparent resin is generally formed of a material having a thermal conductivity smaller than that of the mold
  • the foamable resin P4 In the process of molding, the rotary mold B (6B) side is easily thermally insulated with the transparent resin P1, and the foamable resin P4 suppresses the temperature drop of the resin when it contacts the mold, thereby energy for heating the mold
  • the same effect as the heat insulation mold can be obtained with respect to a large size molded product without the need.
  • the transparent resin P1 is integrated with the foamable resin P4 every time the foamable resin P4 is molded and taken out as a molded article P, and is always molded again before the foamable resin P4 is molded.
  • the foamable resin P4 is not required to be durable and have a long service life as in the case of a conventional coating formed on the surface of a mold and used repeatedly, and requiring regular or irregular extension of the life of the mold. It becomes possible to stably thermally insulate the side of the rotary mold B (6B) of the foamable resin P4 by the transparent resin P1 at the time of molding. Furthermore, the surface on the transparent resin P1 side of the foamable resin P4 is visible because the transparent resin P1 transmits light, but the transparent resin P1 is visible between the foamable resin P4 and the rotary mold B (6B). As a result, the appearance of the foamable resin P4 can be improved by preventing generation of silver on the surface of the foamable resin P4 on the transparent resin P1 side.
  • the temperature of the cavity surface of the stationary mold 4 is controlled to be within the temperature difference ⁇ D1 with respect to the temperature of the surface of the transparent resin P1 on the stationary mold 4 side.
  • the transparent resin P1 side of the foamable resin P4 and the fixed side mold 4 side can be substantially equally shrunk to suppress warpage of the foamable resin P4.
  • the temperature of the cavity surface of the fixed side mold 4 is further set within the temperature difference ⁇ D1 for the predetermined time ⁇ T13 with respect to the temperature of the surface of the transparent resin P1 on the fixed side mold 4 side.
  • the resin is sufficiently solidified by maintaining the resin at a predetermined temperature difference such that the difference in shrinkage does not increase. It is possible to suppress the occurrence of warpage caused by Further, by setting the absolute value of the temperature difference ⁇ D1 to 10 ° C., it is possible to further suppress the time difference when the transparent resin P1 side of the foamable resin P4 and the stationary mold 4 side solidify, and general resin physical properties. By setting the temperature difference to within 10 ° C., which hardly causes a difference in the solidified form of the resin, within the range of the variation, it is possible to reliably prevent the foamable resin P4 from being warped with high reproducibility.
  • the amount of supply of the cooling medium to the stationary mold 4 is increased, or cooling at a lower temperature is performed.
  • the transparent resin P1 is formed by injection molding, even if the surface of the foamable resin P4 connected to the transparent resin P1 is a surface having a complicated shape such as a free curved surface, the transparent resin P1 corresponds to that surface It can be made into a shape.
  • the foamable resin P4 may be molded in a state where the temperature is lowered until the molded transparent resin P1 is solidified to the extent that the transparent resin P1 can be maintained without lowering the temperature to the normal temperature. By doing this, the temperature of the transparent resin P1 itself is raised to a high temperature, and the effect of suppressing the temperature drop of the material P2 (heat insulation effect) is improved, and generation of silver on the transparent resin P1 side of the foamable resin P4 is prevented.
  • the appearance of the foamable resin P4 can be further improved, and the compatibility between the transparent resin P1 and the foamable resin P2 can be enhanced to improve the adhesion. Since the molded article P has the transparent resin P1 on the surface of the foamable resin P4, the appearance of the molded article P on the transparent resin P1 side is the same as when the surface of the foamable resin P4 is clear-painted. It can further enhance the sense of luxury.
  • the cavity surface temperature (the temperature measured by the mold temperature sensor 103) of the fixed mold 4 in the secondary injection molding process may be variously controlled.
  • the cavity surface temperature of stationary side mold 4 temperature V2 measured by mold temperature sensor 103
  • the temperature of the surface of transparent resin P1 measured on the stationary side mold 4 side measured in advance.
  • the temperatures V6 and V7 when the temperature V1 measured by the temperature sensor U falls within the above-mentioned temperature difference ⁇ D1 are higher than the glass transition temperature V9 of the foamable resin P4 or the flow start temperature V5
  • the cooling control may be performed so as to be low.
  • the transparent resin P1 side of the foamable resin P4 and the fixed-side mold 4 side are substantially equally shrunk in a temperature range above the glass transition temperature where the resin shrinks and below the flow start temperature. Since the foamable resin P4 is solidified into a desired shape, it is possible to more reliably suppress the occurrence of warpage in the foamable resin P4.
  • the heat medium passage 100 is supplied.
  • the cooling rate of the stationary mold 4 is increased by, for example, increasing the flow rate of the cooling medium or by starting the supply of the cooling medium at a lower temperature, and as shown by the temperature V8 in FIG.
  • the cavity surface temperature may be rapidly reduced from the temperature V2.
  • the cavity surface temperature of the fixed side metal mold 4 and the transparent resin measured beforehand.
  • the temperature of the surface on the stationary mold 4 side of P1 may be controlled to be within the temperature difference ⁇ D1 between the respective temperatures reaching room temperature.
  • the cavity surface temperature (temperature V2 measured by the mold temperature sensor 103) of the fixed side mold 4 is measured in advance.
  • the cooling control may be performed so that the temperature of the surface on the fixed side mold 4 side of the resin P1 (the temperature V1 measured by the temperature sensor U) coincides with the temperature V11 within a predetermined time ⁇ T12.
  • cooling may be controlled so that the temperature V11 is higher than the glass transition temperature V9 of the foamable resin P4 or lower than the flow start temperature V5. Furthermore, it is further preferable to perform cooling control so that the temperature V11 is higher than the glass transition temperature V9 of the foamable resin P4 and lower than the flow start temperature V5.
  • the cooling speed of the stationary mold 4 is increased.
  • the cavity surface temperature of the stationary mold 4 may be rapidly lowered from the temperature V2 as indicated by the temperature V12.
  • the temperature of the cavity surface of the stationary mold 4 is further By maintaining the temperature difference ⁇ D1 within the temperature difference ⁇ D1 for the predetermined time ⁇ T14 with respect to the temperature of the surface of the transparent resin P1 on the fixed side mold 4 side, in the process of shrinkage and solidification of the resin By solidifying the resin while maintaining the temperature difference for a predetermined time, it is possible to suppress the occurrence of warpage due to the difference in the amount of contraction in the foamable resin.
  • the temperature of the surface of the transparent resin P1 on the stationary mold 4 side is determined by performing a preliminary test before repeatedly producing the molded article P.
  • this temperature may be obtained by analysis using thermal fluid simulation by a computer or the like.
  • the fixed side of the transparent resin P1 is in a state in which the supply of the heating medium and the cooling medium to the heating medium passage 100 and 101B is stopped at timing T6 after mold clamping in the secondary injection molding process of the preliminary test.
  • the temperature V1 of the surface on the mold 4 side was measured, and the cavity surface temperature of the stationary mold 4 was controlled to be cooled according to the temperature V1 when actually producing the molded article P.
  • the temperature of the stationary mold 4 is determined by preliminary testing or analysis.
  • the cavity surface of the stationary mold 4 by switching the temperature of the cooling medium supplied to the stationary mold 4 in multiple stages or in a stepless manner by a cooling control device (not shown) so as to correspond to the temperature change of the mold surface.
  • the temperature may be controlled by cooling.
  • the appearance of the foamable resin molded product can be improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

成形方法は、第一の金型(6B)に透明樹脂を成形する一次射出成形工程と、成形された透明樹脂と第二の金型(4)との間に発泡性樹脂を成形する二次射出成形工程と、を備える。

Description

成形方法および成形品の製造方法
本発明は、発泡性樹脂を材料に用いて成形を行う成形方法および成形品の製造方法に関する。
従来、樹脂製の成形品の重量を軽くすること等を目的として、樹脂に発泡剤を混合し発泡性樹脂として成形することが行われている。このとき、成型品の表面に、細長く延びる線状の形状が束になって形成される銀状現象(以下、「シルバー」と称する。)が発生し、成形品の外観不良となっている。このシルバーの発生を防止するために様々な方法が検討されている。
たとえば特許文献1に示す射出成型方法では、樹脂の充填開始から完了までの間、成形品の可視面と接する金型の表面温度を、樹脂のガラス転移温度近傍に制御している。この射出成型方法によれば、金型の表面温度を樹脂のガラス転移温度近傍に制御することにより樹脂が流動性を有するようになっているので、成形品の可視面で気泡が破裂した場合であっても、気泡が破裂した部分の樹脂が樹脂圧力によって金型表面に押し上げられて金型表面に再転写され、成形品の可視面におけるシルバー要因を消滅させるという。
また、特許文献2に示す成形方法では、特許文献1に示した金型の表面を加熱制御する代わりに、金型の内表面に断熱層と表面薄肉金属層とを設けている。これは金型表面を断熱し、充填された溶融樹脂の熱が金型に奪われることによる溶融樹脂の温度低下を断熱により抑制して、樹脂の流動性低下を抑え、金型表面の転写性を向上させている。金型をこのように構成することにより、製品外観にシルバー等が生じるのを大幅に改善することができるとされる。
特開平10-80932号公報 特開2000-33635号公報
しかしながら、特許文献1に示す射出成型方法では、一般的に熱容量の大きい金型を加熱する必要があるため、金型の加熱に大容量の熱量が必要である。また3D形状の成形品用の加熱冷却金型は、キャビティ表面を効率よく加熱あるいは冷却するために、キャビティ表面近傍に設けられるような複雑な加熱媒体流路が必要であり、金型製作が容易ではない。また大物成形の場合、成形品外観のシルバー不良を防止するために、ガラス転移温度以上などの高温に加熱する必要があるが、金型のサイズも大きく熱容量が大きいので加熱時間が長く生産性が悪い。
また、特許文献2の成形方法では、一般的に、耐熱樹脂やセラミックで表面に被膜を形成する必要がある。しかし、被膜が耐熱樹脂の場合は、被膜の加工性が悪いうえに耐久性が低いので安定して断熱できないという問題がある。一方で、被膜がセラミックなどの、炉内で焼結する必要がある場合は、金型が大型化したときには巨大な炉が必要となり現実的ではない。
また高硬度素材を含有した樹脂成形によって断熱素材が摩滅した場合など、金型の延命のために上記の断熱金型製作上の不具合に再び対策して、金型を改修しなければならず多大なコストや時間が発生してしまう。
本発明は、このような問題点に鑑みてなされたものであって、成型時に金型内に充填された発泡性樹脂が、金型に接触した時の樹脂温度低下を抑制することで、金型を加熱するエネルギーを必要とせず、且つ大物成形品に対しても断熱金型と同様の効果を得ることで特殊な金型である加熱冷却金型や、断熱金型を用いることなく、発泡性樹脂成形品の外観を向上させることができる成形方法および成形品の製造方法を提供することを目的とする。
上記課題を解決するために、この発明は以下の手段を提案している。
本発明の成形方法は、第一の金型に透明樹脂を充填して成形する一次射出成形工程と、成形された前記透明樹脂と第二の金型との間に発泡性樹脂を充填して成形する二次射出成形工程と、を備える。
また、本発明の成形品の製造方法は、透明樹脂と発泡性樹脂とで構成される成形品を製造する成形品の製造方法であって、第一の金型に透明樹脂を成形する一次射出成形工程と、成形された前記透明樹脂と第二の金型との間に発泡性樹脂を成形する二次射出成形工程と、を備える。
この発明によれば、一般的に、透明樹脂は金型よりも熱伝導率の小さい材料で形成されているので、発泡性樹脂の成形時に第一の金型側を透明樹脂で容易に断熱し、発泡性樹脂のシルバーなどの外観不良を防止するための加熱エネルギーを省くことができる。
また、透明樹脂は、発泡性樹脂を成形する度に発泡性樹脂と一体となって成形品として取出され、発泡性樹脂を成形する前に常に新たに成形される。したがって、金型の表面に形成され繰返して使用される従来の被膜のように耐久性、寿命の心配や、金型の定期的あるいは不定期な延命改修を必要とすることなく、発泡性樹脂の成形時に透明樹脂により発泡性樹脂の第一の金型側を安定して断熱することが可能となる。
さらに、透明樹脂が光を透過させるので、発泡性樹脂の透明樹脂側の面は目視することができ、実質上の成形品外観面となるが、透明樹脂が発泡性樹脂と第一の金型との間を断熱するので、特殊な金型である加熱冷却金型や、断熱金型を用いることなく、発泡性樹脂の成形品外観面(透明樹脂側の面)にシルバーが発生することを防止して発泡性樹脂成形品の外観を向上させることができる。
また、上記の成形方法では、前記二次射出成形工程において、前記第二の金型の壁面温度を前記透明樹脂の前記第二の金型側の面の温度に対し、所定の温度差以内にするように冷却制御することがより好ましい。
この発明によれば、発泡性樹脂の透明樹脂側および第二の金型側をほぼ等しく収縮させ、発泡性樹脂に反りが生じるのを抑えることができる。
また、上記の成形方法では、前記二次射出成形工程において、前記第二の金型の壁面温度、および前記透明樹脂の前記第二の金型側の面の温度が、前記所定の温度差以内になったときのそれぞれの温度が、前記発泡性樹脂のガラス転移温度以上および/または流動開始温度以下になるように冷却制御することがより好ましい。
この発明によれば、発泡性樹脂の透明樹脂側面および第二の金型側面がほぼ等しく収縮し、発泡性樹脂が所望の形状に固化するので、発泡性樹脂の両面の収縮量の差に起因した反りが生じるのをより確実に抑えることができる。
また、上記の成形方法では、前記二次射出成形工程において、前記第二の金型の壁面温度、および前記透明樹脂の前記第二の金型側の面の温度が、前記所定の温度差以内になった後に、前記第二の金型の冷却速度を増加させることがより好ましい。
この発明によれば、発泡性樹脂に反りが生じるのを抑えるとともに、成形品を製造するのに要する時間(タクトタイム)を短縮させることができる。
また、上記の成形方法では、前記第二の金型の壁面温度、および前記透明樹脂の前記第二の金型側の面の温度が、前記所定の温度差以内なった後であって、前記第二の金型の冷却速度を増加させる前に、前記第二の金型の壁面温度、および前記透明樹脂の前記第二の金型側の面の温度を、前記所定の温度差以内に所定の時間維持させることがより好ましい。
この発明によれば、樹脂が収縮固化する工程において、収縮量の差が大きくならないような所定の温度差に所定の時間維持して樹脂を十分固化させることにより、発泡性樹脂に収縮量の差に起因する反りが生じるのを、より確実に抑えるとともに、成形品を製造するのに要する時間を短縮させることができる。
また、上記の成形方法では、前記温度差の絶対値は、10℃に設定されていることがより好ましい。
この発明によれば、発泡性樹脂の透明樹脂側および第二の金型側が固化するときの時間差を抑えられる上、一般的な樹脂物性のバラツキの範囲で、樹脂の固化形態に差が出にくい温度差10℃以内にすることにより、発泡性樹脂に反りが生じるのを更に再現性高く防止することができる。
また、上記の成形方法では、前記二次射出成形工程において、前記第二の金型の壁面温度を前記透明樹脂の前記第二の金型側の面の温度に対し、一致するように冷却制御することがより好ましい。
この発明によれば、発泡性樹脂の透明樹脂側および第二の金型側をほぼ等しく収縮させ、発泡性樹脂に反りが生じるのを抑えることができる。
また、上記の成形方法では、前記二次射出成形工程において、前記第二の金型の壁面温度、および前記透明樹脂の前記第二の金型側の面の温度が一致する温度が、前記発泡性樹脂のガラス転移温度以上および/または流動開始温度以下になるように冷却制御することがより好ましい。
この発明によれば、発泡性樹脂の透明樹脂側面および第二の金型側面がほぼ等しく収縮し、発泡性樹脂が所望の形状に固化するので、発泡性樹脂の両面の収縮量の差に起因した反りが生じるのをより確実に抑えることができる。
また、上記の成形方法では、前記二次射出成形工程において、前記第二の金型の壁面温度、および前記透明樹脂の前記第二の金型側の面の温度が一致した後に、前記第二の金型の冷却速度を増加させることがより好ましい。
この発明によれば、発泡性樹脂に反りが生じるのを抑えるとともに、成形品を製造するのに要する時間を短縮させることができる。
また、上記の成形方法では、前記第二の金型の壁面温度、および前記透明樹脂の前記第二の金型側の面の温度が一致した後であって、前記第二の金型の冷却速度を増加させる前に、前記第二の金型の壁面温度、および前記透明樹脂の前記第二の金型側の面の温度を、前記所定の温度差以内に所定の時間維持させることがより好ましい。
この発明によれば、樹脂が収縮固化する工程において、収縮量の差が大きくならないような所定の温度差に所定の時間維持して樹脂を十分固化させることにより、発泡性樹脂に収縮量の差に起因する反りが生じるのを、より確実に抑えるとともに、成形品を製造するのに要する時間を短縮させることができる。
また、上記の成形方法では、前記二次射出成形工程において、前記発泡性樹脂を射出するときから成型品における前記透明樹脂との接触面全体に前記発泡性樹脂が充填されるときまで、前記第一の金型を冷却する冷却媒体の供給を停止することがより好ましい。
この発明によれば、透明樹脂の断熱効果が低い場合などに、充填された溶融樹脂の熱が透明樹脂を通って前記第一の金型に逃げるのを抑制することができるとともに、発泡性樹脂および透明樹脂を確実に接続させることができる。
また、上記の成形方法では、前記二次射出成形工程において、前記成型品における前記透明樹脂との接触面全体に前記発泡性樹脂が充填された後に、前記第一の金型への前記冷却媒体の供給を開始することがより好ましい。
この発明によれば、成形品を製造するのに要する時間を短縮させることができる。
また、上記の成形方法では、前記二次射出成形工程において、前記第二の金型に供給する冷却媒体の温度を、多段に、あるいは無段階に切り替えて、固定側金型のキャビティ面温度を冷却制御することが好ましい。
この発明によれば、第二の金型の壁面温度を、透明樹脂の第二の金型側の面の温度に対し、所定の温度差以内に制御する精度が向上し、発泡性樹脂の透明樹脂側面および第二の金型側をほぼ等しく収縮させ、発泡性樹脂に反りが生じるのを抑えることの再現性を向上できる。
本発明の成形方法および成形品の製造方法によれば、成型時に金型内に充填された発泡性樹脂が、金型に接触した時の樹脂温度低下を抑制することで、金型を加熱するエネルギーを必要とせず、且つ大物成形品に対しても断熱金型と同様の効果を得ることで、特殊な金型である加熱冷却金型や、断熱金型を用いることなく、発泡性樹脂成形品の外観を向上させることができる。
本発明の実施形態の成形機の側面図である。 同成形機の平面模式図である。 同成形機の回転ダイプレートの回転動作を示す図である。 同成形機の第二射出ユニットの説明図である。 同成形機の金型を加熱・冷却するための構成を示す図である。 同成形機による成形方法の射出成型動作および温度制御例を示す図である。 同成形機で透明樹脂を成形した状態を示す模式図である。 同成形機の回転ダイプレートを180度回転させた状態を示す模式図である。 同成形機に発泡性樹脂の材料を射出したときの状態を示す模式図である。 経過時間に対する透明樹脂に取付けた温度センサの温度と固定側金型のキャビティ面の温度の変化を示す図である。 同成形機に発泡性樹脂の材料を充填したときの状態を示す模式図である。 同成形機に発泡性樹脂を射出してからの経過時間に対する各部位の温度の変化を示す図である。 同成形機による成形方法の変形例における発泡性樹脂を射出してからの経過時間に対する各部位の温度の変化を示す図である。 同成形機による成形方法の変形例における発泡性樹脂を射出してからの経過時間に対する各部位の温度の変化を示す図である。
以下、本発明に係る成形機の実施形態を、図1から図14を参照しながら説明する。本実施形態の成形機は本発明の成形方法を実行する成形機の一例であり、後述する金型を回転させながら2種類の樹脂材料を成形する装置である。
図1に示すように、成形機10の基台1の一端には、固定側金型(第二の金型)4を取付けた固定ダイプレート2が固定状態で設けられている。基台1の上には、固定ダイプレート2に対向して、回転金型A(第一の金型)(6A)、回転金型B(第一の金型)(6B)を取付けた回転ダイプレート9と、可動側金型5を取付けた可動ダイプレート3とが、移動可能に載置されている。
固定側金型4と可動側金型5は、間に回転ダイプレート9を挟んでX方向に対向するように配置されている。そして、固定側金型4、可動側金型5の対向する部分である先端部4a、5aは、X方向に直交する平面による断面の形状が等しくなるとともに、先端部4aのX方向の長さL1より、先端部5aのX方向の長さL2の方が長くなるように設定されている。
可動ダイプレート3と、回転ダイプレート9とが載っている反転台7は、基台1に固設されたガイドレール19にガイドされて基台1上をX方向に移動可能とされている。
ここではキャビティ形状を簡単のため平面形状で説明するが、平面でなく3D形状であっても支障ない。
次に、可動ダイプレート3、回転ダイプレート9との開閉手段と、回転ダイプレート9の回転手段を説明する。なお、以下の説明において、図2に示す平面図において、成形機10において、X方向に平行に設定された中心軸線Cを基準として左右対称に設けられている部材については、図中において符号を一方の側のみに付すことがある。
成形機10に中心軸線Cを挟んで両側に対称に一対設置される可動ダイプレート開閉手段14は、固定ダイプレート2に固設されたサーボモータA(21)と、ボールねじ軸A(22)と、固定ダイプレート2に固設され且つボールねじ軸A(22)を回転自在に軸方向を拘束して支える支え台26と、ボールねじ軸A(22)のボールねじ22aと螺合するボールねじナットA(24)と、ボールねじナットA(24)を取付け且つ可動ダイプレート3に固設されたナット支持台25と、サーボモータA(21)の回転力をボールねじ軸A(22)に伝える動力伝達機構23とにより構成されている。一対のサーボモータA(21)は同調運転され、可動ダイプレート3は固定ダイプレート2と平行な状態を保ちつつX方向に開閉移動することができる。
成形機10に中心軸線Cを挟んで両側に対称に一対設置される回転ダイプレート開閉手段15は、基台1に固設されたサーボモータB(31)と、ボールねじ軸B(32)と、基台1に固設され且つボールねじ軸B(32)を回転自在に支える支え台34と、ボールねじ軸B(32)のボールねじ32aと螺合するボールねじナットB(33)と、ボールねじナットB(33)を取付け且つ反転台7に固設されたナット支持台35と、サーボモータB(31)の回転力をボールねじ軸B(32)に伝える動力伝達機構36とにより構成されている。一対のサーボモータB(31)は同調運転され、反転台7は固定ダイプレート2に平行に開閉移動することができる。
回転ダイプレート9は反転台7上に載せられ、図3に示すように、基台1の表面に直交する軸線周りに回転可能とされている。
図2に示すように、回転ダイプレート回転手段16は、回転ダイプレート9を正逆方向に半回転あるいは一方向に回転させる回転駆動手段であり、回転ダイプレート9の両面に設けられた回転金型A(6A)と回転金型B(6B)とを、固定側金型4、可動側金型5に交互に正対させることができる。
回転ダイプレート回転手段16は、反転台7に取付けられたサーボモータC(41)と、サーボモータC(41)に取付けられたピニオン42と、ピニオン42と噛み合い、回転ダイプレート9に一体に設けられた大歯車43と、回転ダイプレート9の所定の面が固定ダイプレート2(または、可動ダイプレート3)と対向した位置と、その位置から180度回転した位置とで位置決めする位置決めピン44とで構成される。なお、回転ダイプレート9と一体の下軸8は、軸受(図示無し)を介して反転台7に対して回転可能となっている。
これにより、回転ダイプレート9を反転台7に対して高い精度で位置決めすることができる。
油圧型締手段は、3組のダイプレート2、9、3を同時に型締めするものであり、固定ダイプレート2に内蔵する4個の油圧シリンダ2aと、同シリンダ2aのラム18bに結合され、可動ダイプレート3を突き通すように設けられた4個のタイバー18と、可動ダイプレート3の外側に備えられ、タイバー18の先端部に形成されたリング溝18aと係合できる4組の割ナット17とで構成されている。
回転ダイプレート9の両面に取り付けられる回転金型A(6A)、回転金型B(6B)は同一形状であり、回転金型A(6A)または回転金型B(6B)が固定側金型4と嵌合して、これらの金型の間に第一のキャビティが形成され、回転金型A(6A)または回転金型B(6B)が可動側金型5と嵌合して、これらの金型の間に第二のキャビティが形成される。X方向の長さは、固定側金型4の先端部4aより可動側金型5の先端部5aの方が長くなるように設定されているので、第一のキャビティの方が第二のキャビティよりX方向に広く構成されている。
第一射出ユニット11は固定ダイプレート2側に設置され、第二射出ユニット12は可動ダイプレート3側に、可動ダイプレート3の開閉移動に伴って移動するように設置される。
そして、油圧型締手段により固定ダイプレート2、回転ダイプレート9、可動ダイプレート3を同時に型締めしたときに、第一射出ユニット11は第一のキャビティ内に有色の発泡性樹脂用の材料を、第二射出ユニット12は第二のキャビティ内に透明樹脂用の材料を、可塑化した状態でそれぞれ射出充填する。
図1に示したように、第二射出ユニット12は、可動ダイプレート3とともに大ストローク移動可能であり、第二射出ユニット12は連結固定部材63を介して、可動ダイプレート3に連結固定された摺動式基台64の上に載置されている。摺動式基台64がガイドレール19にガイドされて移動することにより、第二射出ユニット12は可動ダイプレート3の動作に遅れることなく、追従して移動できるようになっている。
また、第一射出ユニット11、第二射出ユニット12には、ノズルタッチシリンダ61、62が設けられている。ノズルタッチシリンダ61は第一射出ユニット11と固定ダイプレート2とを、ノズルタッチシリンダ62は第二射出ユニット12と可動ダイプレート3とを、それぞれ連結するように設けられている。そして、ノズルタッチシリンダ61、62を短縮させて、第一射出ユニット11、第二射出ユニット12を、固定ダイプレート2、可動ダイプレート3側に引き寄せることで、第一射出ユニット11、第二射出ユニット12の先端ノズルを、固定ダイプレート2、可動ダイプレート3に取り付けられている固定側金型4、可動側金型5に押し当てる。なお、ノズルタッチシリンダ62は、第二射出ユニット12の摺動式基台64上で摺動可能に設けられている。
図4に示すように、第二射出ユニット12は、ノズル12aが可動側金型5に接しており、型開閉時において常にノズルタッチした状態とされる。これにより、型閉、昇圧の完了と同時に、ノズル12aから樹脂を射出することができ、ハイサイクル化が可能となる。
図5に示すように、固定側金型4、回転金型A(6A)、回転金型B(6B)、可動側金型5には、金型表面を加熱、冷却するための熱媒体通路100、101A、101B、102(以下、「熱媒体通路100等」と称する。)が形成されている。熱を早く伝達して金型キャビティ面を急速に加熱冷却するため、熱媒体通路100等は金型キャビティにできるだけ近い位置に形成されている。本実施例では一次成形品である透明樹脂の外観向上、表面機能追加、および金型転写性向上による高付加価値成形のために、可動側金型5を加熱冷却した例を示すが、一次成形品が高外観を必要としない場合は、加熱冷却成形を行わなくてもよい。
 また、加熱冷却成形の代わりに、透明樹脂の高外観化又は高硬度化などの為の高機能フィルムによるインサート成形を行ってもよい。
熱媒体通路100等には、加熱媒体を供給する加熱媒体供給装置(図示無し)と、冷却媒体を供給する冷却媒体供給装置(図示無し)とが接続されている。本実施形態においては、加熱媒体、冷却媒体には、スチームや水が用いられ、加熱媒体供給装置、冷却媒体供給装置は、予め定められた温度に調整された加熱媒体、冷却媒体を供給する。
なお、ここでは、加熱媒体、冷却媒体として、スチームと水を示したが、これ以外にも、加熱媒体には、加圧熱水、油等を、冷却媒体にはフロン、液体窒素等を用いることも可能である。また加熱手段として加熱媒体を用いる代わりに、電気式または電磁誘導式のヒータを用いてもよい。
なおここで、熱媒体通路100等に加熱媒体や冷却媒体を送り込むとともに排出するため、熱媒体通路100等には、それぞれ熱媒体供給管103i、103oが接続されている。
熱媒体供給管103i、103oの一端は、図5に示すように、固定側金型4、回転金型A(6A)、回転金型B(6B)、可動側金型5に直接接続されているが、取付アダプタなどを介して接続してもよい。回転金型A(6A)、回転金型B(6B)の熱媒体通路101A、101Bに接続される熱媒体供給管103i、103oは、反転台7に固定状態に保持されている。
加熱媒体供給装置は、加熱媒体をポンプ(図示無し)によって熱媒体通路100等に送り込んで固定側金型4、回転金型A(6A)、回転金型B(6B)、可動側金型5を加熱し、熱媒体通路100等を経た加熱媒体を循環させる。冷却媒体供給装置は、冷却媒体をポンプ(図示無し)によって熱媒体通路100等に送り込んで固定側金型4、回転金型A(6A)、回転金型B(6B)、可動側金型5を冷却し、熱媒体通路100等を経た冷却媒体を循環させる。これら加熱媒体供給装置および冷却媒体供給装置は、図示しない開閉弁を開閉することで、加熱媒体、冷却媒体の供給を制御する。開閉弁は、成形機10の制御装置105(図1参照)により、予め定められたプログラムに基づいてその開閉が制御される。
図2に示すように、固定側金型4、回転金型A(6A)、回転金型B(6B)、可動側金型5には、キャビティ面(壁面)の温度を測定する金型温度センサ103、103A、103B、104がそれぞれ配置されている。すなわち、たとえば、金型温度センサ103で測定される温度が固定側金型4のキャビティ面温度等となる。
金型温度センサ103、103A、103B、104で検出した温度の信号は成形機10の制御装置105に送られる。制御装置105では、予め定められたコンピュータプログラムに基づいて制御を行い、金型温度センサ103、103A、103B、104で検出された温度に応じて開閉弁(図示無し)を開閉させ、熱媒体通路100等への加熱媒体、冷却媒体の供給を制御する。
次に、図6を参照して、本実施形態の成形機10による成形方法(成形品の製造方法)の工程を説明する。この成形方法は、第二射出ユニット12側の第二のキャビティで透明樹脂の射出成形を行う一次射出成形工程と、第一射出ユニット11側の第一のキャビティで発泡性樹脂の射出成形を行う二次射出成形工程と、を備え、両工程を順次繰返して行うものである。
以下では、回転ダイプレート9の回転金型B(6B)が可動側金型5側に配置されている状態から説明を行う。なお、図6の温度の欄において、網掛けを施した金型同士と、網掛けを施していない金型同士とは、対応する時間においてそれぞれ組になり、キャビティを形成している。
成形品の製造を行うにあたって、以下に示すような、予め一次射出成形工程を行い、成形した透明樹脂に温度センサを取付けてから二次射出成形工程を行う予備試験を行う。
まず、一次射出成形工程において、以下に詳しく示すような手順で、回転金型B(6B)と可動側金型5とが勘合して形成される第二のキャビティに透明樹脂を成形する。
なお本発明に用いる透明樹脂は、光透過率の高いポリカーボネイト、ポリメタクリル酸メチル、ポリスチレン、ポリエチレンテレフタレート、ポリエーテルサルフォン、脂環式オレフィン樹脂、脂環式アクリル樹脂、ノルボルネン系耐熱透明樹脂、環状オレフィンコポリマー、ポリメタクリル酸エステル樹脂、エポキシ樹脂、塩化ビニールのいずれかの前記樹脂が好ましい。
制御装置105は、タイミングT1において、回転ダイプレート9と可動ダイプレート3とを固定ダイプレート2に接近させて型を閉じた後で、油圧シリンダ2aによる型締めを行う。また開閉弁を開閉して加熱媒体供給装置により熱媒体通路101B、102に加熱媒体を供給し、回転金型B(6B)と可動側金型5をそれぞれ予め所定の温度に加熱しておく。
型締め完了後のタイミングT2において、図7に示すように、回転金型B(6B)と可動側金型5とで形成する第二のキャビティに第二射出ユニット12から溶融した透明樹脂P1用の材料P0を射出充填する。射出充填の完了後、材料P0に一定の圧力を作用させた状態を一定時間保持する。そして、冷却媒体供給装置により熱媒体通路101B、102に冷却媒体を供給して回転金型B(6B)と可動側金型5を材料P0の流動開始温度以下に冷却することで材料P0が固化され、透明樹脂P1が成形される。この後で、熱媒体通路101B、102への冷却媒体の供給を停止する。
尚、樹脂の流動開始温度とは、樹脂を加熱昇温させていった際に、外力によって流動性を示す温度であり、例えば、島津社製高化式フローテスターCFT-500型を用いて、4℃/分の昇温速度で加熱された樹脂を、荷重100kgf/cm2(9.81MPa)のもとで、内径1mm、長さ10mmのノズルから押し出すときに、溶融粘度が48000ポイズ(4800Pa・s)を示す温度のことをいう。
透明樹脂P1が固化する時間の経過後のタイミングT3において、可動ダイプレート3と、回転ダイプレート9を積載する反転台7とを型開移動し、各ダイプレート2、9、3の間隔を充分に開き、タイミングT4において、図8に示すように、回転金型B(6B)が取付けられた回転ダイプレート9を180度回転させる。このとき、透明樹脂P1の回転金型B(6B)から離間した側の面に温度センサUを取付け、この面の温度を測定していく。
続いて、タイミングT5において、可動ダイプレート3と回転ダイプレート9とを再型閉する。
次に、二次射出成形工程において、以下に詳しく示すような手順で、回転金型B(6B)と固定側金型4とが勘合して形成される第一のキャビティに発泡性樹脂を成形する。
なお本発明に用いる発泡剤は公知の各種発泡剤が使用できる。発泡剤は溶剤型発泡剤、分解型発泡剤、または物理発泡剤のいずれであってもよい。
溶剤型発泡剤は、射出成形機のホッパーまたはシリンダ部分から一般に注入され、溶融させた上記熱可塑性樹脂に溶解または吸収して、その後金型キャビティ中で揮発して発泡剤として機能する物質である。例えば、プロパン、ブタン、ネオペンタン、ヘプタン、イソヘキサン、ヘキサン、イソヘプタン、ヘプタンなどの低沸点の脂肪族炭化水素や、フロンガスで代表される低沸点のフッ素含有炭化水素などが使用できる。
分解型発泡剤は、上記熱可塑性樹脂に予め配合してから射出成形機へと供給し、射出成形機のシリンダ温度条件下で分解して、炭酸ガス、窒素ガスなどの気体を発生する化合物である。分解型発泡剤は、無機系の発泡剤であってもよいし有機系の発泡剤であってもよく、また気体の発生を促すクエン酸のような有機酸やクエン酸ナトリウムのような有機酸金属塩などを発泡助剤として併用添加してもよい。
分解型発泡剤の例として、次の挙げる化合物が使用できる。
(i)無機系発泡剤:重炭酸ナトリウム、炭酸ナトリウム、重炭酸アンモニウム、炭酸アンモニウム、亜硝酸アンモニウム
(ii)有機系発泡剤:
(a)N-ニトロソ化合物:N,N’-ジニトロソテレフタルアミド、N,N’-ジニトロソペンタメチレンテトラミン40
(b)アゾ化合物:アゾジカルボンアミド、アゾビスイソブチロニトリル、アゾシクロヘキシルニトリル、アゾジアミノベンゼン、バリウムアゾジカルボキシレート
(c)スルフォニルヒドラジド化合物:ベンゼンスルフォニルヒドラジド、トルエンスルフォニルヒドラジド、p,p’-オキシビス(ベンゼンスルフォニルヒドラジド)、ジフェニルスルフォン-3,3’-ジスルフォニルヒドラジド
(d)アジド化合物:カルシウムアジド、4,4’-ジフェニルジスルフォニルアジド、p-トルエンスルフォニルアジド。
物理発泡剤としては、一般的な物理発泡剤であれば特に問題なく、二酸化炭素、窒素、アルゴン、ヘリウム、ネオンなどの不活性ガスを用いることができる。これらの中では、安価で、環境汚染、火災の危険性が極めて少ない二酸化炭素、窒素、アルゴンが最も好ましい。また、物理発泡剤は、液体状態、超臨界状態、および気体状態のいずれも使用可能である。
これらの発泡剤は、1種単独で用いてもよく、または2種以上を組み合わせて使用してもよい。そして、発泡剤は、上記熱可塑性樹脂に予め配合しておいてもよいし、射出成形する際にシリンダの途中から注入してもよい。また、上記発泡剤と発泡助剤などとを予め配合してマスターバッチを作っておき、それを熱可塑性樹脂に配合してもよい。
発泡剤の添加量は、発泡成形体の要求物性に応じて、発泡剤からの発生ガス量および望ましい発泡倍率などを考慮して選定されるが、上記熱可塑性樹脂100重量部に対して、通常0.1~6重量部、好ましくは0.5~3重量部の範囲にある。発泡剤の含有量が前記範囲にあると、気泡径が揃い、かつ気泡が均一分散し、しかも高外観な発泡成形体を得ることができる。
図9に示すように、既に成形され回転金型B(6B)に貼り付いている透明樹脂P1と固定側金型4とで形成する第一のキャビティに、第一射出ユニット11から溶融した発泡性樹脂用の材料P2を、発泡性樹脂の流動開始温度より高い温度に加熱してから射出させる。
射出された材料P2の先端部では圧力が低下しているので、材料P2中の気泡Bが破裂する。この気泡Bは材料P2の表面にも生じるが、溶融した材料P2が第一射出ユニット11の射出圧力により透明樹脂P1の固定側金型4側の成形品外観面のキャビティ面に押し付けられたときに、透明樹脂の断熱効果によって、材料P2の温度低下が抑制され、材料P2の流動性の低下が遅くなり、射出圧力によって材料P2が変形して気泡Bが消滅し、材料P2の表面にシルバーが生じることが防止される。
このとき、図10に示すように、透明樹脂P1に取付けた温度センサUの温度V1と金型温度センサ103の温度V2がそれぞれ測定される。一般的に、透明樹脂P1の熱伝導率は固定側金型4の熱伝導率より小さいので、温度V1より温度V2の方が早く低下する。
さらに、第一射出ユニット11から射出を続けると、図11に示すように、透明樹脂P1との接触面P3全体に発泡性樹脂の材料P2が充填され、接触面P3において、透明樹脂P1と材料P2とが接続される。なお、発泡性樹脂の成形時には、固定側金型4に対して回転ダイプレート9を型を開くように移動させる公知のコアバック工程が行われる。
ここで、材料P2に一定の圧力を作用させた状態を一定時間保持した後で、冷却媒体供給装置により熱媒体通路101B、100への冷却媒体の供給を開始して回転金型B(6B)と固定側金型4を発泡性樹脂P4の流動開始温度以下に冷却することで材料P2が固化され、発泡性樹脂P4が成形される。
これにより、透明樹脂P1と発泡性樹脂P4とを接続して構成された成形品(二材成形品)Pが成形される。
上記のように、温度センサUの温度V1を測定した後で、成形品Pの実際の生産を行う。以下の工程は、透明樹脂P1に温度センサUを取付けることなく、一次射出成形工程と二次射出成形工程とが繰返して行われることと、測定した温度V1に基づいて固定側金型4の温度が制御されること以外は、上記の予備試験と同一の工程である。
なお予備試験の一次射出成形工程に用いる樹脂は、実際の生産時に用いる透明樹脂と同一の樹脂を用いることが最も好ましいが、予備試験の一次射出成形工程に用いる樹脂が、該予備試験の二次射出成形工程において、高温の発泡性樹脂により軟化してしまい、温度センサUの保持ができず温度測定が困難な場合は、透明樹脂に限らず耐熱性の高い樹脂を用いてもよい。
成形品Pの実際の生産時の工程において予備試験と異なる工程だけ説明すると、二次射出成形工程において、制御装置105は、タイミングT6において、第一射出ユニット11から第一のキャビティに発泡性樹脂P4用の材料P2を出射させた後で、図12に示すように、金型温度センサ103で測定される温度V2が、予め測定された温度センサUの温度V1に対して、タイミングT6から所定時間△T11内に温度差△D1以内にするように冷却制御する。
制御装置105による冷却制御は、固定側金型4の熱媒体通路100に適切な温度の冷却媒体を適切な流量供給することで固定側金型4の冷却速度の制御が行われる。一方で、この間に、熱媒体通路101Bには冷却媒体は供給されなくてもよい。
所定時間△T11は、成形品Pを製造するタクトタイム等に応じて適宜決められるものである。また、温度差ΔD1に達した後、所定時間ΔT13の間、金型温度センサ103で測定される温度V2が、予め測定された温度センサUの温度V1に対して、温度差ΔD1以内に冷却制御することが好ましい。また、温度差△D1の絶対値は10℃に設定されていることが好ましい。
発泡性樹脂P4の材料P2が固化した後のタイミングT7において、可動ダイプレート3と、回転ダイプレート9を積載する反転台7とを型開移動し、各ダイプレート2、9、3の間隔を充分に開いたときに、図示しないエジェクタにより回転金型B(6B)に貼り付いている成形品Pを取り出す。そして、タイミングT8において回転ダイプレート9を180度回転させる。
また、図6に示すように、タイミングT5とタイミングT6との間のタイミングT9において、第二射出ユニット12により、回転金型A(6A)と可動側金型5とが勘合して形成される第二のキャビティに透明樹脂P1の材料P0が射出される。
このように、成形機10は、回転ダイプレート9を回転させて第二のキャビティおよび第一のキャビティを構成する回転金型6A、6Bを入替えながら、成形品Pを連続して製造する。
なお、二次射出成形工程において固定側金型4を冷却制御することにより、実際に生産されるときの透明樹脂P1の固定側金型4側の面の温度が変化することが考えられる。その場合は、固定側金型4が上記の冷却制御をされている状態における二次射出成形工程での透明樹脂P1の固定側金型4側の面の温度を新たに測定し、この新たに測定した温度を上記の温度V1として、固定側金型4を冷却制御すればよい。
また必要に応じて、上記の温度測定を繰返して行ってもよい。
以上説明したように、本実施形態の成形方法および成形品の製造方法によれば、一般的に、透明樹脂は金型よりも熱伝導率の小さい材料で形成されているので、発泡性樹脂P4の成形時に回転金型B(6B)側を透明樹脂P1で容易に断熱し、発泡性樹脂P4が、金型に接触した時の樹脂温度低下を抑制することで、金型を加熱するエネルギーを必要とせず、且つ大物成形品に対して断熱金型と同様の効果を得ることができる。
また、透明樹脂P1は、発泡性樹脂P4を成形する度に発泡性樹脂P4と一体となって成形品Pとして取出され、発泡性樹脂P4を成形する前に常に新たに成形される。したがって、金型の表面に形成され繰返して使用される従来の被膜のように耐久性、寿命の心配や、金型の定期的あるいは不定期な延命改修を必要とすることなく、発泡性樹脂P4の成形時に透明樹脂P1により発泡性樹脂P4の回転金型B(6B)側を安定して断熱することが可能となる。
さらに、発泡性樹脂P4の透明樹脂P1側の面は、透明樹脂P1が光を透過させるので目視することができるが、透明樹脂P1が発泡性樹脂P4と回転金型B(6B)との間を断熱するので、発泡性樹脂P4の透明樹脂P1側の面にシルバーが発生することを防止して発泡性樹脂P4の外観を向上させることができる。
そして、二次射出成形工程において、固定側金型4のキャビティ面の温度を透明樹脂P1の固定側金型4側の面の温度に対し、温度差△D1以内にするように冷却制御するので、発泡性樹脂P4の透明樹脂P1側および固定側金型4側をほぼ等しく収縮させ、発泡性樹脂P4に反りが生じるのを抑えることができる。
また、温度差△D1に達した後に、さらに固定側金型4のキャビティ面の温度を透明樹脂P1の固定側金型4側の面の温度に対し、所定時間ΔT13の間、温度差ΔD1内に維持することで、樹脂が収縮固化する工程において、収縮量の差が大きくならないような所定の温度差に所定の時間維持して樹脂を十分固化させることにより、発泡性樹脂に収縮量の差に起因する反りが生じるのを抑えることができる。
また、温度差△D1の絶対値を10℃に設定することで、発泡性樹脂P4の透明樹脂P1側および固定側金型4側が固化するときの時間差をさらに抑えられる上、一般的な樹脂物性のバラツキの範囲で、樹脂の固化形態に差が出にくい温度差10℃以内にすることにより、発泡性樹脂P4に反りが生じるのを更に再現性高く確実に防止することができる。
また、成型品Pにおける透明樹脂P1との接触面P3全体に発泡性樹脂P4の材料P2が充填された後に、固定側金型4への冷却媒体の供給量を増加させる、あるいは更に低温の冷却媒体の供給を開始させることで、成形品Pを取り出し可能な温度まで冷却するのに必要な時間を短縮し、成形品Pを製造するのに要する時間を短縮させることができる。
そして、透明樹脂P1は射出成形により形成するので、発泡性樹脂P4の透明樹脂P1に接続される面が自由曲面等の形状が複雑な面であっても、透明樹脂P1をその面に対応する形状とすることがきる。
また、成形した透明樹脂P1を常温まで低下させず、透明樹脂P1の形状を保てる程度に固化するまで温度低下させた状態で発泡性樹脂P4を成形してもよい。こうすることで、透明樹脂P1自体の温度を高温にして材料P2の温度低下の抑制効果(断熱効果)を向上させ、発泡性樹脂P4の透明樹脂P1側の面にシルバーが発生することを防止して発泡性樹脂P4の外観を更に向上させることができるとともに、透明樹脂P1と発泡性樹脂P2の相溶性を助け密着性を向上させることができる。
成形品Pは、発泡性樹脂P4の表面に透明樹脂P1を備えているので、発泡性樹脂P4の表面にクリア塗装がなされている場合と同様に、成形品Pの透明樹脂P1側の外観における高級感をさらに高めることができる。
なお、本実施形態においては、以下に説明するように、二次射出成形工程における固定側金型4のキャビティ面温度(金型温度センサ103で測定される温度)を様々に制御してもよい。
たとえば、図12に示すように、固定側金型4のキャビティ面温度(金型温度センサ103で測定される温度V2)、および予め測定した透明樹脂P1の固定側金型4側の面の温度(温度センサUで測定した温度V1)が、前述の温度差△D1以内になったときのそれぞれの温度V6、V7が、発泡性樹脂P4のガラス転移温度V9より高く、または流動開始温度V5より低くなるように冷却制御してもよい。更には前述の温度差△D1以内になったときのそれぞれの温度V6、V7が、発泡性樹脂P4のガラス転移温度V9より高く、且つ流動開始温度V5より低くなるように冷却制御することが更に好ましい。
このように制御することで、樹脂が収縮する温度領域であるガラス転移温度以上、流動開始温度以下の温度領域で、発泡性樹脂P4の透明樹脂P1側および固定側金型4側がほぼ等しく収縮し、発泡性樹脂P4が所望の形状に固化するので、発泡性樹脂P4に反りが生じるのをより確実に抑えることができる。
また、固定側金型4のキャビティ面温度および予め測定した透明樹脂P1の固定側金型4側の面の温度が、前述の温度差△D1以内になった後に、熱媒体通路100に供給する冷却媒体の流量を増加させる、あるいは更に低温の冷却媒体の供給を開始すること等により固定側金型4の冷却速度を増加させ、図12中に温度V8で示すように固定側金型4のキャビティ面温度を温度V2から急速に低下させてもよい。
このように制御することで、発泡性樹脂P4に反りが生じるのを抑えるとともに、成形品Pを製造するのに要する時間を短縮させることができる。
そして、本実施形態においては、図13に示すように、第一射出ユニット11から射出するタイミングT6以降の二次射出成形工程において、固定側金型4のキャビティ面温度、および予め測定した透明樹脂P1の固定側金型4側の面の温度が、たとえばそれぞれの温度が室温となるまでの間において、温度差△D1以内になるように制御してもよい。
このように制御することで、発泡性樹脂P4に反りが生じるのをより確実に抑えることができる。
また、本実施形態においては、図14に示すように、二次射出成形工程において、固定側金型4のキャビティ面温度(金型温度センサ103で測定される温度V2)を、予め測定した透明樹脂P1の固定側金型4側の面の温度(温度センサUで測定した温度V1)に対し、所定時間△T12内に温度V11で一致するように冷却制御してもよい。
このように制御することで、発泡性樹脂P4の透明樹脂P1側および固定側金型4側をほぼ等しく収縮させ、発泡性樹脂P4に反りが生じるのを抑えることができる。
さらに、上記の温度V11が、発泡性樹脂P4のガラス転移温度V9より高く、または流動開始温度V5より低くなるように冷却制御してもよい。更には上記の温度V11が、発泡性樹脂P4のガラス転移温度V9より高く、且つ流動開始温度V5より低くなるように冷却制御することが更に好ましい。
このように制御することで、発泡性樹脂P4の透明樹脂P1側および固定側金型4側がほぼ等しく収縮し、発泡性樹脂P4が所望の形状に固化するので、発泡性樹脂に反りが生じるのをより確実に抑えることができる。
そして、固定側金型4のキャビティ面温度および予め測定した透明樹脂P1の固定側金型4側の面の温度が温度V11で一致した後に、固定側金型4の冷却速度を増加させ、図中に温度V12で示すように固定側金型4のキャビティ面温度を温度V2から急速に低下させてもよい。
このように制御することで、発泡性樹脂P4に反りが生じるのを抑えるとともに、成形品Pを製造するのに要する時間を短縮させることができる。
また、固定側金型4のキャビティ面温度が、予め測定した透明樹脂P1の固定側金型4側の面の温度と温度V11で一致した後に、さらに固定側金型4のキャビティ面の温度を透明樹脂P1の固定側金型4側の面の温度に対し、所定時間ΔT14の間、温度差ΔD1内に維持することで、樹脂が収縮固化する工程において、収縮量の差が大きくならないような所定の温度差に所定の時間維持して樹脂を固化させることにより、発泡性樹脂に収縮量の差に起因する反りが生じるのを抑えることができる。
以上、本発明の実施形態について図面を参照して詳述したが、具体的な構成はこの実施形態に限られるものではなく、本発明の要旨を逸脱しない範囲の構成の変更等も含まれる。
また、上記実施形態では、成形品Pを繰返して生産する前に、透明樹脂P1の固定側金型4側の面の温度を予備試験を行うことにより求めるとした。しかし、この温度を、コンピュータによる熱流体シミュレーション等を利用して解析により求めてもよい。
また、上記実施形態では、予備試験の二次射出成形工程の型締め後のタイミングT6において、熱媒体通路100、101Bへの加熱媒体および冷却媒体の供給を停止した状態で透明樹脂P1の固定側金型4側の面の温度V1を測定し、成形品Pの生産を実際に行うときに固定側金型4のキャビティ面温度を温度V1に従って冷却制御した。しかし、透明樹脂P1が薄い場合等、透明樹脂P1による断熱効果が比較的低いと考えられる場合には、固定側金型4の温度が、予備試験あるいは解析によって把握した透明樹脂P1の固定側金型の面の温度変化に対応するように、図示しない冷却制御装置により固定側金型4に供給する冷却媒体の温度を多段に、あるいは無段階に切り替えるなどにより、固定側金型4のキャビティ面温度を冷却制御してもよい。
本発明は、第一の金型に透明樹脂を充填して成形する一次射出成形工程と、成形された前記透明樹脂と第二の金型との間に発泡性樹脂を充填して成形する二次射出成形工程と、を備える成形方法に関する。本発明によれば、発泡性樹脂成形品の外観を向上させることができる。
4  固定側金型(第二の金型)
6A 回転金型A(第一の金型)
6B 回転金型B(第一の金型)
△D1 温度差
P  成形品
P1 透明樹脂
P3 接触面
P4 発泡性樹脂

Claims (14)

  1. 第一の金型に透明樹脂を充填して成形する一次射出成形工程と、
    成形された前記透明樹脂と第二の金型との間に発泡性樹脂を充填して成形する二次射出成形工程と、を備える成形方法。
  2. 前記二次射出成形工程において、
    前記第二の金型の壁面温度を前記透明樹脂の前記第二の金型側の面の温度に対し、所定の温度差以内にするように冷却制御する請求項1記載の成形方法。
  3. 前記二次射出成形工程において、
    前記第二の金型の壁面温度、および前記透明樹脂の前記第二の金型側の面の温度が、前記所定の温度差以内になったときのそれぞれの温度が、前記発泡性樹脂のガラス転移温度以上および/または流動開始温度以下になるように冷却制御する請求項2記載の成形方法。
  4. 前記二次射出成形工程において、
    前記第二の金型の壁面温度、および前記透明樹脂の前記第二の金型側の面の温度が、前記所定の温度差以内になった後に、前記第二の金型の冷却速度を増加させる請求項2または請求項3に記載の成形方法。
  5. 前記第二の金型の壁面温度、および前記透明樹脂の前記第二の金型側の面の温度が、前記所定の温度差以内なった後であって、前記第二の金型の冷却速度を増加させる前に、前記第二の金型の壁面温度、および前記透明樹脂の前記第二の金型側の面の温度を、前記所定の温度差以内に所定の時間維持させる請求項4に記載の成形方法。
  6. 前記温度差の絶対値は、10℃に設定されている請求項2から請求項5のいずれかに記載の成形方法。
  7. 前記二次射出成形工程において、
    前記第二の金型の壁面温度を前記透明樹脂の前記第二の金型側の面の温度に対し、一致するように冷却制御する請求項1記載の成形方法。
  8. 前記二次射出成形工程において、
    前記第二の金型の壁面温度、および前記透明樹脂の前記第二の金型側の面の温度が一致する温度が、前記発泡性樹脂のガラス転移温度以上および/または流動開始温度以下になるように冷却制御する請求項7記載の成形方法。
  9. 前記二次射出成形工程において、
    前記第二の金型の壁面温度、および前記透明樹脂の前記第二の金型側の面の温度が一致した後に、前記第二の金型の冷却速度を増加させる請求項7または請求項8に記載の成形方法。
  10. 前記第二の金型の壁面温度、および前記透明樹脂の前記第二の金型側の面の温度が一致した後であって、前記第二の金型の冷却速度を増加させる前に、前記第二の金型の壁面温度、および前記透明樹脂の前記第二の金型側の面の温度を、前記所定の温度差以内に所定の時間維持させる請求項9に記載の成形方法。
  11. 前記二次射出成形工程において、
    前記発泡性樹脂を射出するときから成型品における前記透明樹脂との接触面全体に前記発泡性樹脂が充填されるときまで、前記第一の金型を冷却する冷却媒体の供給を停止する請求項1に記載の成形方法。
  12. 前記二次射出成形工程において、
    前記成型品における前記透明樹脂との接触面全体に前記発泡性樹脂が充填された後に、前記第一の金型への前記冷却媒体の供給を開始する請求項11記載の成形方法。
  13. 前記二次射出成形工程において、
    前記第二の金型に供給する冷却媒体の温度を、多段に、あるいは無段階に切り替えて、前記第二の金型の壁面温度を冷却制御する請求項1から請求項12のいずれかに記載の成形方法。
  14. 透明樹脂と発泡性樹脂とで構成される成形品を製造する成形品の製造方法であって、
    第一の金型に透明樹脂を成形する一次射出成形工程と、
    成形された前記透明樹脂と第二の金型との間に発泡性樹脂を成形する二次射出成形工程と、を備える成形品の製造方法。
PCT/JP2009/006989 2009-12-17 2009-12-17 成形方法および成形品の製造方法 WO2011074041A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2011545854A JP5598868B2 (ja) 2009-12-17 2009-12-17 成形方法
US13/387,570 US20120119403A1 (en) 2009-12-17 2009-12-17 Molding method and method for manufacturing molding product
PCT/JP2009/006989 WO2011074041A1 (ja) 2009-12-17 2009-12-17 成形方法および成形品の製造方法
CN200980160681.5A CN102725117B (zh) 2009-12-17 2009-12-17 成型方法及成型品的制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/006989 WO2011074041A1 (ja) 2009-12-17 2009-12-17 成形方法および成形品の製造方法

Publications (1)

Publication Number Publication Date
WO2011074041A1 true WO2011074041A1 (ja) 2011-06-23

Family

ID=44166845

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/006989 WO2011074041A1 (ja) 2009-12-17 2009-12-17 成形方法および成形品の製造方法

Country Status (4)

Country Link
US (1) US20120119403A1 (ja)
JP (1) JP5598868B2 (ja)
CN (1) CN102725117B (ja)
WO (1) WO2011074041A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT13306U1 (de) * 2012-03-02 2013-10-15 Engel Austria Gmbh Schließeinheit für eine Spritzgießmaschine
JP2018192701A (ja) * 2017-05-17 2018-12-06 株式会社名機製作所 複合成形品用の射出成形機および複合成形品用の射出成形機の制御方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10946570B2 (en) * 2014-06-06 2021-03-16 Mitsubishi Heavy Industries Plastic Technology Co., Ltd. Injection molding method and injection molding machine
KR102324763B1 (ko) * 2017-06-27 2021-11-10 현대자동차주식회사 차량 시트용 폼패드의 제조방법
CN107458475B (zh) * 2017-09-01 2020-05-22 成都一汽富晟长泰汽车塑料制品有限公司 一种新型汽车轮罩、轮罩模具及轮罩生产方法
US11472076B2 (en) 2018-01-23 2022-10-18 Foboha (Germany) Gmbh Injection molding device
CN110722749A (zh) * 2019-10-10 2020-01-24 Oppo广东移动通信有限公司 用于制作壳体的模具、壳体及其制作方法、电子设备
WO2022215089A1 (en) * 2021-04-07 2022-10-13 Chhatrala Dr Pankajkumar Kumanbhai An apparatus to manufacture complex cavity with interconnected hollow space and method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5486550A (en) * 1977-12-22 1979-07-10 Asahi Chem Ind Co Ltd Molding of multi-layered molded article
JP2008044282A (ja) * 2006-08-18 2008-02-28 Sabic Innovative Plastics Japan Kk 多層成形品を製造する成形法
JP2009101595A (ja) * 2007-10-23 2009-05-14 Ube Machinery Corporation Ltd 積層成形品の成形方法及び成形用金型

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3307721B2 (ja) * 1993-06-23 2002-07-24 三菱化学株式会社 複合成形体よりなる自動車用内装部品の製造方法
US6319436B1 (en) * 1997-10-27 2001-11-20 Trw Inc. Method for making floor fan seal plug with thermoexpanding seal ring and axial guide members
CN1864978A (zh) * 2005-05-17 2006-11-22 昆山渝榕电子有限公司 笔记本电脑外壳的注塑成型方法
CN101134357A (zh) * 2006-08-29 2008-03-05 丹阳市华东电器制造有限公司 多物料多色无胶道成型工艺

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5486550A (en) * 1977-12-22 1979-07-10 Asahi Chem Ind Co Ltd Molding of multi-layered molded article
JP2008044282A (ja) * 2006-08-18 2008-02-28 Sabic Innovative Plastics Japan Kk 多層成形品を製造する成形法
JP2009101595A (ja) * 2007-10-23 2009-05-14 Ube Machinery Corporation Ltd 積層成形品の成形方法及び成形用金型

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT13306U1 (de) * 2012-03-02 2013-10-15 Engel Austria Gmbh Schließeinheit für eine Spritzgießmaschine
JP2018192701A (ja) * 2017-05-17 2018-12-06 株式会社名機製作所 複合成形品用の射出成形機および複合成形品用の射出成形機の制御方法

Also Published As

Publication number Publication date
CN102725117A (zh) 2012-10-10
JP5598868B2 (ja) 2014-10-01
JPWO2011074041A1 (ja) 2013-04-25
CN102725117B (zh) 2014-10-22
US20120119403A1 (en) 2012-05-17

Similar Documents

Publication Publication Date Title
WO2011074041A1 (ja) 成形方法および成形品の製造方法
Xiao et al. Development and application of rapid thermal cycling molding with electric heating for improving surface quality of microcellular injection molded parts
WO2003072335A1 (fr) Procede de moulage par injection et a dilatation
JPWO2002053347A1 (ja) 発泡射出成形方法
CN110142911B (zh) 一种聚合物微孔发泡材料的注塑成型装置和工艺及其应用
JP2008018677A (ja) 発泡樹脂成形品の成形方法及び成形装置
JPS6169421A (ja) 発泡成形体の成形方法
KR950012850B1 (ko) 사출성형법
JP4743595B2 (ja) 発泡成形品の射出成形装置
KR100711544B1 (ko) 고체 표면과 저발포 내부를 갖는 플라스틱 사출물의사출성형 방법
JP4515694B2 (ja) 発泡射出成形方法
JP2006281698A (ja) 発泡成形品の成形方法及び発泡成形品の成形装置
KR102053459B1 (ko) 성형품 및 초미세 발포용 성형 장치
JPH06198668A (ja) 高発泡体の射出成形方法
JP4162662B2 (ja) 射出含浸発泡成形方法
JP2002192549A (ja) 発泡射出成形品
KR100550528B1 (ko) 초미세 발포 플라스틱 사출물과, 그 성형 장치 및 방법
JP2001062862A (ja) 非晶性熱可塑性樹脂の射出成形法
KR20020038378A (ko) 발포수지 사출 성형장치 및 그 방법
JP2010162765A (ja) 熱硬化性樹脂発泡成形体の製造方法およびそれにより得られる発泡成形体
CN105835293B (zh) 一种用于微孔发泡注塑的叠层模具及工艺方法
JP2009018470A (ja) 樹脂成形品の成形方法及び成形装置
JP2010241085A (ja) 射出発泡成形方法
JPS5922662B2 (ja) 射出成形方法及び装置
KR20180034995A (ko) 사출 성형용 발포 성형장치 및 이를 이용한 발포 성형방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980160681.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09852238

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2011545854

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13387570

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09852238

Country of ref document: EP

Kind code of ref document: A1