WO2011073017A1 - Non-caking potassium chloride composition, preparation process and use thereof - Google Patents
Non-caking potassium chloride composition, preparation process and use thereof Download PDFInfo
- Publication number
- WO2011073017A1 WO2011073017A1 PCT/EP2010/068357 EP2010068357W WO2011073017A1 WO 2011073017 A1 WO2011073017 A1 WO 2011073017A1 EP 2010068357 W EP2010068357 W EP 2010068357W WO 2011073017 A1 WO2011073017 A1 WO 2011073017A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- tartaric acid
- potassium chloride
- chloride composition
- acid
- iron
- Prior art date
Links
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 title claims abstract description 144
- 239000000203 mixture Substances 0.000 title claims abstract description 124
- 239000001103 potassium chloride Substances 0.000 title claims abstract description 71
- 235000011164 potassium chloride Nutrition 0.000 title claims abstract description 71
- 238000002360 preparation method Methods 0.000 title claims description 19
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric acid Natural products [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 claims abstract description 190
- 235000002906 tartaric acid Nutrition 0.000 claims abstract description 93
- 239000011975 tartaric acid Substances 0.000 claims abstract description 86
- FEWJPZIEWOKRBE-XIXRPRMCSA-N Mesotartaric acid Chemical compound OC(=O)[C@@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-XIXRPRMCSA-N 0.000 claims abstract description 75
- 238000000034 method Methods 0.000 claims abstract description 36
- 150000004698 iron complex Chemical class 0.000 claims abstract description 11
- 239000007864 aqueous solution Substances 0.000 claims abstract description 10
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 97
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical group [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 78
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 claims description 72
- 229960001367 tartaric acid Drugs 0.000 claims description 59
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 47
- 239000000243 solution Substances 0.000 claims description 46
- 229910052742 iron Inorganic materials 0.000 claims description 40
- 150000003839 salts Chemical class 0.000 claims description 25
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 claims description 19
- 238000009835 boiling Methods 0.000 claims description 16
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 claims description 12
- 229910052783 alkali metal Inorganic materials 0.000 claims description 12
- 238000003756 stirring Methods 0.000 claims description 10
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 claims description 9
- 239000002253 acid Substances 0.000 claims description 8
- 150000004692 metal hydroxides Chemical class 0.000 claims description 6
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 claims description 6
- 239000011780 sodium chloride Substances 0.000 claims description 6
- 150000001340 alkali metals Chemical class 0.000 claims description 5
- 229960001270 d- tartaric acid Drugs 0.000 claims description 5
- 150000002505 iron Chemical class 0.000 claims description 5
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 claims description 4
- 229910000000 metal hydroxide Inorganic materials 0.000 claims description 4
- 229910052708 sodium Inorganic materials 0.000 claims description 4
- 239000011734 sodium Substances 0.000 claims description 4
- 238000005507 spraying Methods 0.000 claims description 4
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 claims description 3
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 claims description 3
- 235000019253 formic acid Nutrition 0.000 claims description 3
- 235000006408 oxalic acid Nutrition 0.000 claims description 3
- 239000000126 substance Substances 0.000 claims description 3
- 239000001117 sulphuric acid Substances 0.000 claims description 3
- 235000011149 sulphuric acid Nutrition 0.000 claims description 3
- XMIIGOLPHOKFCH-UHFFFAOYSA-N 3-phenylpropionic acid Chemical compound OC(=O)CCC1=CC=CC=C1 XMIIGOLPHOKFCH-UHFFFAOYSA-N 0.000 claims description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical group C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 claims description 2
- 238000001816 cooling Methods 0.000 claims description 2
- 239000003814 drug Substances 0.000 claims description 2
- 239000003337 fertilizer Substances 0.000 claims description 2
- 235000013305 food Nutrition 0.000 claims description 2
- 238000010438 heat treatment Methods 0.000 claims description 2
- 238000004519 manufacturing process Methods 0.000 claims description 2
- 239000011591 potassium Substances 0.000 claims description 2
- 229910052700 potassium Inorganic materials 0.000 claims description 2
- 150000008044 alkali metal hydroxides Chemical class 0.000 claims 1
- 150000003892 tartrate salts Chemical class 0.000 claims 1
- 239000000654 additive Substances 0.000 description 36
- 230000000996 additive effect Effects 0.000 description 35
- 239000003795 chemical substances by application Substances 0.000 description 23
- 238000006243 chemical reaction Methods 0.000 description 20
- FEWJPZIEWOKRBE-LWMBPPNESA-N levotartaric acid Chemical compound OC(=O)[C@@H](O)[C@H](O)C(O)=O FEWJPZIEWOKRBE-LWMBPPNESA-N 0.000 description 20
- 230000000694 effects Effects 0.000 description 18
- 229940048879 dl tartaric acid Drugs 0.000 description 14
- 238000012360 testing method Methods 0.000 description 14
- 238000005160 1H NMR spectroscopy Methods 0.000 description 12
- 238000002474 experimental method Methods 0.000 description 12
- HELHAJAZNSDZJO-OLXYHTOASA-L sodium L-tartrate Chemical compound [Na+].[Na+].[O-]C(=O)[C@H](O)[C@@H](O)C([O-])=O HELHAJAZNSDZJO-OLXYHTOASA-L 0.000 description 12
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 9
- 239000007858 starting material Substances 0.000 description 9
- 238000005481 NMR spectroscopy Methods 0.000 description 8
- 238000001035 drying Methods 0.000 description 7
- 239000007787 solid Substances 0.000 description 7
- 238000004458 analytical method Methods 0.000 description 6
- 238000010992 reflux Methods 0.000 description 6
- 239000002585 base Substances 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 5
- 239000006227 byproduct Substances 0.000 description 5
- 239000011541 reaction mixture Substances 0.000 description 5
- 239000001433 sodium tartrate Substances 0.000 description 5
- 229940022663 acetate Drugs 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 239000003480 eluent Substances 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 238000001179 sorption measurement Methods 0.000 description 4
- IVWWFWFVSWOTLP-YVZVNANGSA-N (3'as,4r,7'as)-2,2,2',2'-tetramethylspiro[1,3-dioxolane-4,6'-4,7a-dihydro-3ah-[1,3]dioxolo[4,5-c]pyran]-7'-one Chemical compound C([C@@H]1OC(O[C@@H]1C1=O)(C)C)O[C@]21COC(C)(C)O2 IVWWFWFVSWOTLP-YVZVNANGSA-N 0.000 description 3
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- 238000004296 chiral HPLC Methods 0.000 description 3
- 235000014113 dietary fatty acids Nutrition 0.000 description 3
- 235000019524 disodium tartrate Nutrition 0.000 description 3
- 239000000194 fatty acid Substances 0.000 description 3
- 229930195729 fatty acid Natural products 0.000 description 3
- 150000004665 fatty acids Chemical class 0.000 description 3
- 238000011065 in-situ storage Methods 0.000 description 3
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Substances [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 3
- FEWJPZIEWOKRBE-UHFFFAOYSA-M 3-carboxy-2,3-dihydroxypropanoate Chemical compound OC(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-M 0.000 description 2
- VVNCNSJFMMFHPL-VKHMYHEASA-N D-penicillamine Chemical compound CC(C)(S)[C@@H](N)C(O)=O VVNCNSJFMMFHPL-VKHMYHEASA-N 0.000 description 2
- QXNVGIXVLWOKEQ-UHFFFAOYSA-N Disodium Chemical class [Na][Na] QXNVGIXVLWOKEQ-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- FEWJPZIEWOKRBE-JCYAYHJZSA-L L-tartrate(2-) Chemical compound [O-]C(=O)[C@H](O)[C@@H](O)C([O-])=O FEWJPZIEWOKRBE-JCYAYHJZSA-L 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- 230000002378 acidificating effect Effects 0.000 description 2
- -1 amine salt Chemical class 0.000 description 2
- 150000001412 amines Chemical class 0.000 description 2
- OPQARKPSCNTWTJ-UHFFFAOYSA-L copper(ii) acetate Chemical compound [Cu+2].CC([O-])=O.CC([O-])=O OPQARKPSCNTWTJ-UHFFFAOYSA-L 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 239000007857 degradation product Substances 0.000 description 2
- 239000000428 dust Substances 0.000 description 2
- 238000004128 high performance liquid chromatography Methods 0.000 description 2
- 239000003446 ligand Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 238000000655 nuclear magnetic resonance spectrum Methods 0.000 description 2
- 230000001376 precipitating effect Effects 0.000 description 2
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 239000002002 slurry Substances 0.000 description 2
- ZNCPFRVNHGOPAG-UHFFFAOYSA-L sodium oxalate Chemical compound [Na+].[Na+].[O-]C(=O)C([O-])=O ZNCPFRVNHGOPAG-UHFFFAOYSA-L 0.000 description 2
- 229940039790 sodium oxalate Drugs 0.000 description 2
- 229960002167 sodium tartrate Drugs 0.000 description 2
- 235000011004 sodium tartrates Nutrition 0.000 description 2
- 229940095064 tartrate Drugs 0.000 description 2
- 230000004580 weight loss Effects 0.000 description 2
- USFZMSVCRYTOJT-UHFFFAOYSA-N Ammonium acetate Chemical compound N.CC(O)=O USFZMSVCRYTOJT-UHFFFAOYSA-N 0.000 description 1
- 239000005695 Ammonium acetate Substances 0.000 description 1
- FEWJPZIEWOKRBE-LWMBPPNESA-L D-tartrate(2-) Chemical compound [O-]C(=O)[C@@H](O)[C@H](O)C([O-])=O FEWJPZIEWOKRBE-LWMBPPNESA-L 0.000 description 1
- 239000001358 L(+)-tartaric acid Substances 0.000 description 1
- 235000011002 L(+)-tartaric acid Nutrition 0.000 description 1
- AFVFQIVMOAPDHO-UHFFFAOYSA-N Methanesulfonic acid Chemical compound CS(O)(=O)=O AFVFQIVMOAPDHO-UHFFFAOYSA-N 0.000 description 1
- 238000013494 PH determination Methods 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 229940043376 ammonium acetate Drugs 0.000 description 1
- 235000019257 ammonium acetate Nutrition 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 150000001732 carboxylic acid derivatives Chemical group 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 235000021588 free fatty acids Nutrition 0.000 description 1
- 235000011167 hydrochloric acid Nutrition 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- NKAAEMMYHLFEFN-UHFFFAOYSA-M monosodium tartrate Chemical compound [Na+].OC(=O)C(O)C(O)C([O-])=O NKAAEMMYHLFEFN-UHFFFAOYSA-M 0.000 description 1
- 238000006386 neutralization reaction Methods 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 229940072033 potash Drugs 0.000 description 1
- 235000015320 potassium carbonate Nutrition 0.000 description 1
- 229910000027 potassium carbonate Inorganic materials 0.000 description 1
- 235000011181 potassium carbonates Nutrition 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 238000010926 purge Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- HELHAJAZNSDZJO-UHFFFAOYSA-L sodium tartrate Chemical compound [Na+].[Na+].[O-]C(=O)C(O)C(O)C([O-])=O HELHAJAZNSDZJO-UHFFFAOYSA-L 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
- 238000010626 work up procedure Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01D—COMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
- C01D3/00—Halides of sodium, potassium or alkali metals in general
- C01D3/26—Preventing the absorption of moisture or caking of the crystals
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23L—FOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
- A23L27/00—Spices; Flavouring agents or condiments; Artificial sweetening agents; Table salts; Dietetic salt substitutes; Preparation or treatment thereof
- A23L27/40—Table salts; Dietetic salt substitutes
- A23L27/45—Salt substitutes completely devoid of sodium chloride
-
- C—CHEMISTRY; METALLURGY
- C05—FERTILISERS; MANUFACTURE THEREOF
- C05D—INORGANIC FERTILISERS NOT COVERED BY SUBCLASSES C05B, C05C; FERTILISERS PRODUCING CARBON DIOXIDE
- C05D1/00—Fertilisers containing potassium
- C05D1/005—Fertilisers containing potassium post-treatment
-
- C—CHEMISTRY; METALLURGY
- C05—FERTILISERS; MANUFACTURE THEREOF
- C05D—INORGANIC FERTILISERS NOT COVERED BY SUBCLASSES C05B, C05C; FERTILISERS PRODUCING CARBON DIOXIDE
- C05D1/00—Fertilisers containing potassium
- C05D1/02—Manufacture from potassium chloride or sulfate or double or mixed salts thereof
-
- C—CHEMISTRY; METALLURGY
- C05—FERTILISERS; MANUFACTURE THEREOF
- C05G—MIXTURES OF FERTILISERS COVERED INDIVIDUALLY BY DIFFERENT SUBCLASSES OF CLASS C05; MIXTURES OF ONE OR MORE FERTILISERS WITH MATERIALS NOT HAVING A SPECIFIC FERTILISING ACTIVITY, e.g. PESTICIDES, SOIL-CONDITIONERS, WETTING AGENTS; FERTILISERS CHARACTERISED BY THEIR FORM
- C05G3/00—Mixtures of one or more fertilisers with additives not having a specially fertilising activity
- C05G3/20—Mixtures of one or more fertilisers with additives not having a specially fertilising activity for preventing the fertilisers being reduced to powder; Anti-dusting additives
-
- C—CHEMISTRY; METALLURGY
- C05—FERTILISERS; MANUFACTURE THEREOF
- C05G—MIXTURES OF FERTILISERS COVERED INDIVIDUALLY BY DIFFERENT SUBCLASSES OF CLASS C05; MIXTURES OF ONE OR MORE FERTILISERS WITH MATERIALS NOT HAVING A SPECIFIC FERTILISING ACTIVITY, e.g. PESTICIDES, SOIL-CONDITIONERS, WETTING AGENTS; FERTILISERS CHARACTERISED BY THEIR FORM
- C05G3/00—Mixtures of one or more fertilisers with additives not having a specially fertilising activity
- C05G3/30—Anti-agglomerating additives; Anti-solidifying additives
Definitions
- the present invention relates to a potassium chloride composition comprising iron complexes of (meso)tartaric acid, to a process to make such a potassium chloride composition, and to the use of such potassium chloride compositions.
- Potassium chloride tends to form large, agglomerated masses upon exposure to moisture and varying temperatures. These hardened masses are generally referred to as cakes.
- a non-caking agent is often added to the potassium chloride to prevent the formation of cakes, and thus to improve its handling characteristics.
- Amines or oils are often used as a non-caking additive.
- US 3,305,491 relates to a composition being constituted by an amino component comprising a fatty amine salt of fatty acid, and another component comprising at least one free fatty acid which in addition to the fatty acid is employed in forming said amino component, said composition being a mixture of the formula:
- R n and R p are radicals having from 8 to 22 carbon atoms.
- KCI potassium chloride
- a non-caking potassium chloride composition comprising an iron complex of tartaric acid as non-caking additive wherein at least 5% by weight of the tartaric acid is the meso isomer.
- the tartaric acid is the meso isomer.
- a 10% by weight aqueous solution of said non-caking potassium chloride composition has a pH value of between 6 and 1 1 , and more preferably between 6 and 9.
- potassium chloride composition is meant to denominate all compositions of which more than 75% by weight consists of KCI.
- a potassium chloride composition contains more than 90% by weight of KCI. More preferably, the potassium chloride composition contains more than weight KCI is most preferred.
- the potassium chloride composition will contain a few percent of water.
- the non-caking potassium chloride composition according to the present invention comprises a non-caking additive comprising an iron complex of tartaric acid wherein at least 5% by weight of the tartaric acid is mesotartaric acid and more preferably, wherein between 55 and 90% by weight of said tartaric acid is mesotartaric acid. Most preferably, between 60 and 80% by weight of the tartaric acid is mesotartaric acid as in that case the non-caking activity of the non-caking additive is at its optimum so that the lowest possible amount of iron and organics is introduced into the potassium chloride composition.
- both di- and trivalent iron sources can be used to prepare the additive according to the present invention.
- an iron(lll) source is most preferred.
- the iron(lll) source is preferably FeCh or FeCI(SO 4 ). FeC is most preferred.
- the molar ratio between iron and the total amount of tartaric acid in the non- caking composition is preferably between 0.1 and 2, more preferably between 0.5 and 1 .5, and most preferably between 0.8 and 1 .2.
- the iron complexes of tartaric acid are preferably used in an amount such that the non-caking potassium chloride composition comprises a concentration of at least 1 ppm and preferably of at least 1 .2 ppm, most preferably of at least 1 .5 ppm, of the non-caking additive, based on iron.
- the non-caking potassium chloride composition Preferably, no more than 500 ppm, more preferably 200 ppm, based on iron, of the non-caking additive is present in the non-caking potassium chloride composition.
- the pH of the non-caking potassium chloride composition is measured by preparing an aqueous solution comprising 10% by weight of the potassium chloride composition via a conventional pH determination method, such as a pH meter.
- the pH of the potassium chloride composition may be adjusted, if so desired, by means of any conventional acid or base.
- Suitable acids include hydrochloric acid, sulphuric acid, formic acid, and oxalic acid.
- Suitable bases include sodium hydroxide, potassium hydroxide, sodium carbonate, and potassium carbonate. The acid or base can be added separately or together with the non-caking additive to the potassium chloride composition.
- the pH of a potassium chloride composition may be adjusted to the desired level, prior to addition of the non-caking additive according to the present invention.
- the way the acid or base is introduced depends on the desired water content of the resulting potassium chloride composition and the water content of the potassium chloride composition to be treated.
- a concentrated solution of the acid or base is sprayed onto the potassium chloride composition.
- the present invention furthermore relates to a process for the preparation of said non-caking potassium chloride composition.
- a process for the preparation of a non-caking potassium chloride composition comprising the step of spraying an aqueous treatment solution comprising an iron complex of tartaric acid, with at least 5% by weight of said tartaric acid and preferably with between 55 and 90% by weight of said tartaric acid being mesotartaric acid, and having a pH of between 1 and 8, preferably between 2 and 7, more preferably between 3 and 6, and most preferably between 4 and 4.5, onto a potassium chloride composition.
- the iron complex of tartaric acid, with at least 5% by weight and preferably between 55 and 90% by weight of the tartaric acid being mesotartaric acid can be introduced or formed in and on the potassium chloride composition in various conventional ways.
- a preferred way is to dissolve the iron source, the tartaric acid, and optionally further components such as potassium chloride and/or pH controlling agents, in water and spray said solution onto a potassium chloride composition.
- an aqueous treatment solution comprising the iron source and tartaric acid with at least 5% by weight and preferably between 55 to 90% by weight of said tartaric acid being mesotartaric acid and optionally comprising potassium chloride, is prepared.
- the pH of said aqueous solution is adjusted and/or buffered by addition of an acid such as HCI, formic acid, oxalic acid, sulphuric acid, or a combination thereof.
- the potassium chloride concentration may range from 0% by weight to saturated. Said aqueous solution is hereinafter denoted as treatment solution.
- the treatment solution preferably comprises between 0.5 and 25% by weight of tartaric acid, with at least 5% by weight and preferably between 55 and 90% by weight of said tartaric acid being mesotartaric acid.
- An iron source is preferably present in an amount such that the molar ratio between iron and the total amount of tartaric acid in the treatment solution is between 0.1 and 2, and more preferably between 0.5 and 1 .5, and most preferably between 0.8 and 1 .2.
- droplets of this treatment solution are brought into contact with the potassium chloride composition, e.g by spraying or dripping the solution onto the composition.
- the treatment solution is brought into contact with the potassium chloride composition in such an amount as to obtain a concentration of at least 1 , more preferably at least 1 .2, and most preferably at least 1 .5 ppm, of iron in the potassium chloride composition.
- it is brought into contact with the potassium chloride composition in such an amount that no more than 500 ppm of iron, more preferably 200 ppm of iron, and most preferably 50 ppm or iron is introduced onto the non-caking potassium chloride composition.
- compositions comprising a higher amount of mesotartaric acid cannot be obtained via this manner.
- the present invention therefore relates to a process for the preparation of the non-caking potassium chloride composition according to the present invention wherein the aqueous treatment solution comprising iron complex of tartaric acid is obtained by (i) preparing an aqueous mixture comprising between 35 and 65% by weight of a di-alkali metal salt of L-tartaric acid, a di-alkali metal salt of D-tartaric acid, a mixture of di-alkali metal salts of L-tartaric acid, D-tartaric acid, and optionally mesotartaric acid, and between 2 and 15% by weight of an alkali metal or alkaline metal hydroxide, (ii) stirring and heating the aqueous mixture to a temperature of between 100°C and its boiling point and until at least 5% by weight and preferably between 55 and 90% by weight of the tartaric acid has been converted to mesotartaric acid, (iii) cooling and optionally adding water, (iv) optionally adjusting the pH to
- step (i) of the process according to the present invention the solubility limit of meso- tartaric acid will be exceeded, which will result in mesotartaric acid precipitating from the reaction mixture.
- aqueous mixture as used throughout the description is used in relation to clear aqueous solutions, but also in relation to water-based slurries.
- step (iii) of the process according to the present invention the mixture is preferably cooled to a temperature of 90°C or lower, and more preferably to a temperature of 70°C or lower, and most preferably to a temperature of 60°C or lower.
- step (ii) water is added to the mixture obtained in step (ii) (typically a small amount), e.g. during step (iii).
- step (vi) it is also possible to add water, in order to prepare a treatment solution having the required concentration.
- the reaction mixture obtained in step (iii) is admixed with the iron(l l) and/or iron(l l l) salts by adding it to an aqueous solution of said iron(l l) and/or iron(l l l) salts.
- an aqueous solution of the iron(l l) and/or iron(l l l) salts is used in step (v), although it is also possible to add said iron salt(s) in the solid form.
- the mixture is preferably cooled, as this is an exothermic reaction step.
- step (vi) wherein the pH is adjusted to a pH of between 3 and 6 if it is outside said range, the mixture is preferably cooled to at most 30°C.
- the alkali metal in the di-alkali metal salts of the tartaric acids used in this process is preferably sodium or potassium.
- the alkali metal or alkaline metal hydroxide used in this process is preferably sodium hydroxide or potassium hydroxide.
- L(+)-tartaric acid disodium salt also denoted as bisodium L-tartrate, is commercially available, e.g. from Sigma-Aldrich (CAS Number 6106-24-7). It is noted that instead of L(+)-tartaric acid disodium salt, it is also possible to use L(+)-tartaric acid (commercially available from e.g. Sigma-Aldrich, CAS Number 87-69-4), and prepare the L(+)-tartaric acid disodium salt in situ, by addition of additional NaOH. The same holds for the other potential starting material, DL- tartaric acid disodium salt: it may be purchased from e.g.
- DL-tartaric acid CAS Number 133-37-9
- DL-tartaric acid monosodium salt and NaOH any tartaric acid source containing D,L,meso in any proportion and in the acidic or salt form can be used for this process.
- D-tartaric acid can also be used as starting material, but this is less preferred because it is relatively expensive.
- L-tartaric acid disodium salt is preferred, because these starting materials are relatively cheap and the process to prepare a composition with between 55 and 90% by weight of mesotartaric acid is faster than when a mixture of D- and L-tartaric acid is used as starting material.
- step (ii) of the preparation process the period of time the mixture needs to be stirred and heated (i.e. step (ii) of the preparation process) to obtain the desired amount of mesotartaric acid is dependent on the concentration of tartaric acid in the aqueous mixture and the amount of alkali or alkaline metal hydroxide present.
- step (ii) the mixture is stirred and heated for between 3 and 200 hours, if the process is performed at atmospheric pressure.
- the amount of mesotartaric acid in the mixture in step (ii) can be determined by conventional methods, such as by 1 H-NMR (e.g. in D 2 O/KOH solution using methanesulphonic acid as internal standard).
- the NMR-spectrum of mesotartaric acid is slightly different from the NMR-spectrum of DL-tartaric acid.
- NMR is used to determine the DL:meso ratio in a reaction sample or optionally to quantify the DL or meso isomer concentration by using an internal or external standard.
- D- and L- tartaric acid cannot be distinguished by NMR directly.
- chiral HPLC is a suitable method.
- tartaric acid is present in an aqueous solution in the carboxylic acid form or in the form of a salt (bitartrate or tartrate).
- a salt for example, it is present as the disodium salt if sodium hydroxide is present in a sufficiently high amount.
- tartaric acid is used throughout the description for the acidic form as well as for the tartrate and the bitartrate form.
- the non-caking potassium chloride composition according to the present invention can be used in fertilizers, as a chemical feedstock for the manufacture of potassium hydroxide and potassium metal, in medicine, as road salt, for and in a low-sodium substitute for NaCI in food and feed applications.
- Demineralized water is added in order to initiate caking and the samples are dried until 100% of the water (measured by weight loss) has evaporated. Depending on the concentration of the added non-caking agent, this takes 2-24 hours at 35°C and 40% relative humidity.
- Caking is measured in triplicate in a Powder Flow Analyzer or, for short, rheometer (type TA-XT21 , Stable Micro Systems).
- the containers are filled with ⁇ 50 g salt sample and preconditioned by compressing with 1 kg weight and purging with dry air for 2 hours. After that a screw-like moving blade is entered into the salt.
- the rheometer continuously measures the force and torque imposed on the salt by the moving blade. When the force is plotted against the traveling depth in the product, the integral underneath the curve equals the amount of consumed energy.
- the CE4 value is the caking energy in N.mm measured over a distinct range of 4 mm bed height after approximately 4 mm blade travel.
- CE20 value is the caking energy in N.mm measured over a distinct range of 20 mm bed height after approximately 4 mm blade travel.
- KCI (>99% pure) salt was weighed at 48.75 ⁇ 0.5 g with the addition of 1 g water, thus reaching 2.5 wt% water on the salt. Then the desired amount of anti-caking agent was added.
- the salt with anti-caking agent was mixed well by rotation of the salt on a rotation drum in a small plastic bag for approximately 10 minutes.
- the sample was compressed with 1 kg weight on the rheometer and released.
- the sample was purged with dry air that was introduced through the bottom (90 l/h) for at least 2 hours.
- the amount of evaporated water was measured by weighing.
- the caking energy in N.mm was measured by the rheometer.
- mTA as anti-caking agent was standardized in the following way: On 49.75 g of KCI, 1 g of H 2 O was added containing 25 ⁇ tartaric acid (TA) solution. As a standard for the TA solution a ratio of 67:33 mTA:DL- TA, a ratio of 1 :1 Fe:mTA and 3 ppm of Fe in mTA at a pH of 4-4.4 was used. In each of the Examples 1 -6, one of the parameters was varied. It should be noted that x ppm mTA means the concentration of iron in mTA.
- the caking energy was measured using the standardized test as described above. As explained, the lower the caking energy, the better the anti-caking agent works.
- Table 1 Effect of the iron concentration in non-caking additive on the relative caking energy (the lower, the better).
- non-caking additive according to the present invention is a good non-caking additive for KCI, as a much lower caking energy is measured with the non-caking agent according to the present invention than without non-caking agent.
- the use of approximately 6 ppm of Fe gives the best results.
- Example 2 Effect of the percentage of mesotartaric acid in the total amount of tartaric acids on the caking energy
- Table 2 Effect of the percentage of mTA in the total amount of TA on the relative caking energy (the lower, the better).
- non-caking additive according to the present invention having either a low percentage of mTA or a higher percentage of mTA to KCI resulted in a reduced caking energy compared to the blank where no non-caking additive was added.
- the non-caking additive wherein between 60 and 80% is mTA has even better non-caking properties than non-caking additives comprising a percentage of mTA which is outside that range. Optimum results were obtained with an additive of which about 67% was mTA (and thus 33% was (DL)-TA).
- Example 4 Effect of the type of TA on the caking energy
- ⁇ the isomeric ratio of tartaric acids (TA) being mTA:(DL)TA is 67:33.
- FIG 4 the adsorption of water by the KCI composition is shown. At a relative humidity of 85% the KCI starts to take up water. Here the samples treated with mTA take up water less rapidly compared to blank KCI. Both processes (drying and adsorption) reveal that the use of a non-caking additive comprising mTA according to the present invention on KCI results in a dryer product.
- Figure 4 represents 3 ppm Fe mTA, — ⁇ — represents 3 ppm Fe mTA (duplo measurement), and - -x- - represents the blank.
- a non-caking treatment solution suitable for spraying onto a sodium chloride composition in order to render it non-caking was prepared as follows: To 40.126 kg of the reaction product of Example 7a, 15.241 kg of demineralized water and 3.00 kg of L-tartaric acid were added to get a clear solution with a meso-tartaric acid content of 66% of the total amount of tartaric acid. To 99.98 g of this mixture, 49.55 g of a 40 wt% FeCl3-solution in water were added. Using 16.6 g of a 50 wt% of sodium hydroxide solution in water, the pH was set to 4.35. Finally, 1 163.6 g of demineralized water were added to obtain the desired final iron concentration.
- This resulting non-caking treatment solution consisted of 0.56 wt% of Fe(lll), 1 .55 wt% of meso-tartaric acid and 0.79 wt% of DL-tartaric acid.
- a sodium chloride composition in an amount of 0.5 litres per ton of the sodium chloride composition, 3 ppm of iron and 12 ppm of tartaric acid were present in the resulting non-caking sodium chloride composition.
- Example 7b Preparation of a non-caking additive via DL-tartaric acid
- Table 8 Relative conversion in time according to Example A(i).
- Example A(i) In an experiment similar to Example A(i), 1 ,616 g of NaOH solution (containing 50 wt% NaOH and 50 wt% water) were mixed with 2,964.5 g water and 759.5 g L-tartaric acid. Upon mixing, the acid was neutralized, leading to a mixture containing 18.4 wt% disodium L-tartrate, 7.5 wt% NaOH, and 74.1 wt% water. The mixture was heated and was kept at atmospheric boiling conditions under reflux for 46 hours (T b0 ii ⁇ 1 10°C), under continuous stirring. A clear solution was obtained.
- Example B(ii) A mixture of mesotartrate and DL-tartarate as starting material:
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Pest Control & Pesticides (AREA)
- Materials Engineering (AREA)
- Nutrition Science (AREA)
- Food Science & Technology (AREA)
- Polymers & Plastics (AREA)
- Health & Medical Sciences (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Medicinal Preparation (AREA)
- Preventing Corrosion Or Incrustation Of Metals (AREA)
- Materials Applied To Surfaces To Minimize Adherence Of Mist Or Water (AREA)
- Paints Or Removers (AREA)
Abstract
Description
Claims
Priority Applications (11)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EA201290468A EA025469B1 (en) | 2009-12-16 | 2010-11-29 | Non-caking potassium chloride composition, preparation process and use thereof |
CN201080055437.5A CN102652111B (en) | 2009-12-16 | 2010-11-29 | Agglomeration resistance potassium chloride composition and preparation method thereof and purposes |
BR112012013308-0A BR112012013308A2 (en) | 2009-12-16 | 2010-11-29 | potassium chloride composition comprising an iron complex of tartaric acid, process for repairing a potassium chloride composition and use of a non-binding potassium chloride composition |
ES10782315.5T ES2618427T3 (en) | 2009-12-16 | 2010-11-29 | Composition of non-caking potassium chloride, preparation procedure and use thereof |
US13/514,655 US20120244231A1 (en) | 2009-12-16 | 2010-11-29 | Non-caking potassium chloride compostion, preparation process and use thereof |
UAA201208322A UA109269C2 (en) | 2009-12-16 | 2010-11-29 | UNCLEANED POTASSIUM CHLORIDE COMPOSITION, METHOD OF ITS RECEIVING AND APPLICATION |
CA2780582A CA2780582A1 (en) | 2009-12-16 | 2010-11-29 | Non-caking potassium chloride composition, preparation process and use thereof |
DK10782315.5T DK2512989T3 (en) | 2009-12-16 | 2010-11-29 | NON-CONSUMPTIONAL POTASSIUM CHLORIDE COMPOSITION, PROCEDURE FOR ITS PREPARATION AND APPLICATION |
EP10782315.5A EP2512989B1 (en) | 2009-12-16 | 2010-11-29 | Non-caking potassium chloride composition, preparation process and use thereof |
IL219716A IL219716A (en) | 2009-12-16 | 2012-05-10 | Potassium chloride composition comprising an iron complex of tartaric acid, a process for preparation of the composition and uses thereof |
US14/019,749 US20140072718A1 (en) | 2009-12-16 | 2013-09-06 | Non-caking potassium chloride composition, preparation process and use thereof |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP09179480 | 2009-12-16 | ||
EP09179480.0 | 2009-12-16 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/514,655 A-371-Of-International US20120244231A1 (en) | 2009-12-16 | 2010-11-29 | Non-caking potassium chloride compostion, preparation process and use thereof |
US14/019,749 Division US20140072718A1 (en) | 2009-12-16 | 2013-09-06 | Non-caking potassium chloride composition, preparation process and use thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011073017A1 true WO2011073017A1 (en) | 2011-06-23 |
Family
ID=42077914
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2010/068357 WO2011073017A1 (en) | 2009-12-16 | 2010-11-29 | Non-caking potassium chloride composition, preparation process and use thereof |
Country Status (14)
Country | Link |
---|---|
US (2) | US20120244231A1 (en) |
EP (1) | EP2512989B1 (en) |
CN (1) | CN102652111B (en) |
BR (1) | BR112012013308A2 (en) |
CA (1) | CA2780582A1 (en) |
CL (1) | CL2012001604A1 (en) |
DK (1) | DK2512989T3 (en) |
EA (1) | EA025469B1 (en) |
ES (1) | ES2618427T3 (en) |
IL (1) | IL219716A (en) |
PT (1) | PT2512989T (en) |
TW (1) | TW201136838A (en) |
UA (1) | UA109269C2 (en) |
WO (1) | WO2011073017A1 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013083503A1 (en) | 2011-12-05 | 2013-06-13 | Akzo Nobel Chemicals International B.V. | Device for dosing an additive solution |
WO2014039541A1 (en) | 2012-09-05 | 2014-03-13 | North American Salt Company | Methods and compositions to prevent caking of sodium chloride and prevent transition metal stains |
JP2016531830A (en) * | 2013-08-19 | 2016-10-13 | ザ・モザイク・カンパニー | Systems and methods for adding agricultural additives, biological additives and dust control additives to granular fertilizers |
TWI594948B (en) * | 2012-03-30 | 2017-08-11 | 安科智諾貝爾化學國際公司 | Preparation method and station for non-caking agent solutions |
US10487016B2 (en) | 2015-08-12 | 2019-11-26 | The Mosaic Company | Acid treatment for fertilizers to increase zinc solubility and availability |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103382151B (en) * | 2013-07-04 | 2015-03-25 | 湖南雪天精细化工股份有限公司 | Preparation method of iron-tartaric acid-sodium complex |
CN104743581B (en) * | 2015-04-01 | 2017-04-26 | 化工部长沙设计研究院 | Preparation technique of high-purity potassium chloride |
CN110357127A (en) * | 2019-06-28 | 2019-10-22 | 孝感广盐华源制盐有限公司 | A kind of anti-caking eats the production method of sodium chloride |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1198662B (en) * | 1960-01-18 | 1965-08-12 | Solvay Werke Gmbh | Method to prevent caking of sodium chloride used as table salt |
US3305491A (en) | 1963-05-23 | 1967-02-21 | Prod Chim D Auby Soc D | Anti-caking agent |
DE1909564A1 (en) * | 1969-02-26 | 1970-12-17 | Wintershall Ag | Dust-free, non-caking alkali chlorides |
US3953504A (en) * | 1975-03-18 | 1976-04-27 | Nippon Peroxide Co., Ltd. | Racemization of optically active tartaric acid |
US4048225A (en) * | 1975-09-29 | 1977-09-13 | Deutsche Gold- Und Silber-Scheideanstalt Vormals Roessler | Process for the production of pure racemic acid and mesotartaric acid |
US4051228A (en) * | 1974-11-29 | 1977-09-27 | Deutsch Gold-Und Silber-Scheideanstalt | Preventing caking and obtaining flowability of alkali chlorides and salt mixtures thereof |
SU1650648A1 (en) | 1988-10-24 | 1991-05-23 | Институт общей и неорганической химии АН БССР | Method for depressing caking of potassium chloride |
WO2000059828A1 (en) | 1999-04-02 | 2000-10-12 | Akzo Nobel N.V. | Non-caking sodium chloride crystals, a process to make them, and their use in an electrolysis process |
WO2000073208A1 (en) * | 1999-05-27 | 2000-12-07 | Akzo Nobel N.V. | Pressed products of non-caking salt |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004018362A1 (en) * | 2002-08-08 | 2004-03-04 | Akzo Nobel N.V. | Use of carbohydrate-based metal complexes in non-caking salt compositions |
NL1035576C2 (en) * | 2008-06-13 | 2009-12-15 | Holland Novochem B V | Composition and method for the production of mineral oil-free, free-flowing granulate particles from a plant aid. |
ES2483115T3 (en) * | 2009-06-02 | 2014-08-05 | Akzo Nobel Chemicals International B.V. | Process for the preparation of a composition comprising meso-tartaric acid |
-
2010
- 2010-11-29 DK DK10782315.5T patent/DK2512989T3/en active
- 2010-11-29 US US13/514,655 patent/US20120244231A1/en not_active Abandoned
- 2010-11-29 WO PCT/EP2010/068357 patent/WO2011073017A1/en active Application Filing
- 2010-11-29 BR BR112012013308-0A patent/BR112012013308A2/en not_active Application Discontinuation
- 2010-11-29 PT PT107823155T patent/PT2512989T/en unknown
- 2010-11-29 ES ES10782315.5T patent/ES2618427T3/en active Active
- 2010-11-29 EA EA201290468A patent/EA025469B1/en not_active IP Right Cessation
- 2010-11-29 UA UAA201208322A patent/UA109269C2/en unknown
- 2010-11-29 EP EP10782315.5A patent/EP2512989B1/en not_active Not-in-force
- 2010-11-29 CA CA2780582A patent/CA2780582A1/en not_active Abandoned
- 2010-11-29 CN CN201080055437.5A patent/CN102652111B/en not_active Expired - Fee Related
- 2010-12-01 TW TW099141767A patent/TW201136838A/en unknown
-
2012
- 2012-05-10 IL IL219716A patent/IL219716A/en not_active IP Right Cessation
- 2012-06-14 CL CL2012001604A patent/CL2012001604A1/en unknown
-
2013
- 2013-09-06 US US14/019,749 patent/US20140072718A1/en not_active Abandoned
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1198662B (en) * | 1960-01-18 | 1965-08-12 | Solvay Werke Gmbh | Method to prevent caking of sodium chloride used as table salt |
US3305491A (en) | 1963-05-23 | 1967-02-21 | Prod Chim D Auby Soc D | Anti-caking agent |
DE1909564A1 (en) * | 1969-02-26 | 1970-12-17 | Wintershall Ag | Dust-free, non-caking alkali chlorides |
US4051228A (en) * | 1974-11-29 | 1977-09-27 | Deutsch Gold-Und Silber-Scheideanstalt | Preventing caking and obtaining flowability of alkali chlorides and salt mixtures thereof |
US3953504A (en) * | 1975-03-18 | 1976-04-27 | Nippon Peroxide Co., Ltd. | Racemization of optically active tartaric acid |
US4048225A (en) * | 1975-09-29 | 1977-09-13 | Deutsche Gold- Und Silber-Scheideanstalt Vormals Roessler | Process for the production of pure racemic acid and mesotartaric acid |
SU1650648A1 (en) | 1988-10-24 | 1991-05-23 | Институт общей и неорганической химии АН БССР | Method for depressing caking of potassium chloride |
WO2000059828A1 (en) | 1999-04-02 | 2000-10-12 | Akzo Nobel N.V. | Non-caking sodium chloride crystals, a process to make them, and their use in an electrolysis process |
WO2000073208A1 (en) * | 1999-05-27 | 2000-12-07 | Akzo Nobel N.V. | Pressed products of non-caking salt |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EA027205B1 (en) * | 2011-12-05 | 2017-06-30 | Акцо Нобель Кемикалз Интернэшнл Б.В. | Device for dosing an additive solution |
WO2013083503A1 (en) | 2011-12-05 | 2013-06-13 | Akzo Nobel Chemicals International B.V. | Device for dosing an additive solution |
AU2012348604B2 (en) * | 2011-12-05 | 2015-07-30 | Akzo Nobel Chemicals International B.V. | Device for dosing an additive solution |
US9981285B2 (en) | 2011-12-05 | 2018-05-29 | Akzo Nobel Chemicals International B.V. | Device for dosing an additive solution |
US9982193B2 (en) | 2012-03-30 | 2018-05-29 | Akzo Nobel Chemicals International B.V. | Preparation method and station for non-caking agent solutions |
TWI594948B (en) * | 2012-03-30 | 2017-08-11 | 安科智諾貝爾化學國際公司 | Preparation method and station for non-caking agent solutions |
US9988574B2 (en) | 2012-03-30 | 2018-06-05 | Akzo Nobel Chemicals International B.V. | Stabilization of an aqueous solution of an organic iron salt |
WO2014039541A1 (en) | 2012-09-05 | 2014-03-13 | North American Salt Company | Methods and compositions to prevent caking of sodium chloride and prevent transition metal stains |
US10745286B2 (en) | 2012-09-05 | 2020-08-18 | Compass Minerals America Inc. | Methods and compositions to prevent caking of sodium chloride and prevent transition metal stains |
EP3036207A4 (en) * | 2013-08-19 | 2017-08-02 | The Mosaic Company | System and methods for addition of beneficial agricultural, biological, and/or dedusting additives to granular fertilizers |
JP2016531830A (en) * | 2013-08-19 | 2016-10-13 | ザ・モザイク・カンパニー | Systems and methods for adding agricultural additives, biological additives and dust control additives to granular fertilizers |
US10654759B2 (en) | 2013-08-19 | 2020-05-19 | The Mosaic Company | System and methods for addition of beneficial agricultural, biological, and/or dedusting additives to granular fertilizers |
AU2019264632B2 (en) * | 2013-08-19 | 2021-07-08 | The Mosaic Company | System and methods for addition of beneficial agricultural, biological, and/or dedusting additives to granular fertilizers |
US11084762B2 (en) | 2013-08-19 | 2021-08-10 | The Mosaic Company | System and methods for addition of beneficial agricultural, biological, and/or dedusting additives to granular fertilizers |
US10487016B2 (en) | 2015-08-12 | 2019-11-26 | The Mosaic Company | Acid treatment for fertilizers to increase zinc solubility and availability |
US11807587B2 (en) | 2015-08-12 | 2023-11-07 | The Mosaic Company, Inc. | Acid treatment for fertilizers to increase zinc solubility and availability |
Also Published As
Publication number | Publication date |
---|---|
US20140072718A1 (en) | 2014-03-13 |
CN102652111B (en) | 2015-08-19 |
DK2512989T3 (en) | 2017-04-03 |
EP2512989A1 (en) | 2012-10-24 |
UA109269C2 (en) | 2015-08-10 |
US20120244231A1 (en) | 2012-09-27 |
PT2512989T (en) | 2017-03-31 |
CN102652111A (en) | 2012-08-29 |
EA025469B1 (en) | 2016-12-30 |
EP2512989B1 (en) | 2017-01-04 |
EA201290468A1 (en) | 2012-11-30 |
CA2780582A1 (en) | 2011-06-23 |
IL219716A (en) | 2016-06-30 |
CL2012001604A1 (en) | 2012-12-14 |
ES2618427T3 (en) | 2017-06-21 |
BR112012013308A2 (en) | 2020-08-25 |
IL219716A0 (en) | 2012-07-31 |
TW201136838A (en) | 2011-11-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20140072718A1 (en) | Non-caking potassium chloride composition, preparation process and use thereof | |
US9745203B2 (en) | Non-caking salt composition, preparation process and use thereof | |
AU2010255850B2 (en) | Process for the preparation of a composition comprising meso-tartaric acid | |
DK2438011T3 (en) | COMPOSITION OF NON-CONSUMPTION SALT, PROCEDURE FOR ITS PREPARATION AND ITS USE |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201080055437.5 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10782315 Country of ref document: EP Kind code of ref document: A1 |
|
DPE1 | Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101) | ||
REEP | Request for entry into the european phase |
Ref document number: 2010782315 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010782315 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2780582 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 219716 Country of ref document: IL |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13514655 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012001604 Country of ref document: CL |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 201290468 Country of ref document: EA |
|
WWE | Wipo information: entry into national phase |
Ref document number: A201208322 Country of ref document: UA |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112012013308 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: 112012013308 Country of ref document: BR Kind code of ref document: A2 Effective date: 20120601 |