WO2011071028A1 - Method for processing laminated electrode - Google Patents

Method for processing laminated electrode Download PDF

Info

Publication number
WO2011071028A1
WO2011071028A1 PCT/JP2010/071861 JP2010071861W WO2011071028A1 WO 2011071028 A1 WO2011071028 A1 WO 2011071028A1 JP 2010071861 W JP2010071861 W JP 2010071861W WO 2011071028 A1 WO2011071028 A1 WO 2011071028A1
Authority
WO
WIPO (PCT)
Prior art keywords
etching
electrode film
gas
intermediate layer
laminated
Prior art date
Application number
PCT/JP2010/071861
Other languages
French (fr)
Japanese (ja)
Inventor
一誠 東條
直志 山本
英男 大野
正二 池田
Original Assignee
株式会社 アルバック
国立大学法人 東北大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 アルバック, 国立大学法人 東北大学 filed Critical 株式会社 アルバック
Priority to JP2011545208A priority Critical patent/JP5587911B2/en
Publication of WO2011071028A1 publication Critical patent/WO2011071028A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • H01L21/3213Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer
    • H01L21/32133Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only
    • H01L21/32135Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only by vapour etching only
    • H01L21/32136Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only by vapour etching only using plasmas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F1/00Etching metallic material by chemical means
    • C23F1/10Etching compositions
    • C23F1/12Gaseous compositions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B61/00Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/01Manufacture or treatment

Definitions

  • the present invention relates to a method of processing a laminated electrode formed by laminating a plurality of conductive films, for example, a method of processing a lower electrode of a magnetoresistive element used in a magnetoresistive random access memory (MRAM).
  • MRAM magnetoresistive random access memory
  • magnetoresistive element is used as a magnetoresistive head for writing data to the hard disk and reading the written data from the hard disk, or as a storage medium of a magnetoresistive random access memory (MRAM) which is a storage element using magnetism. It is used.
  • MRAM magnetoresistive random access memory
  • a metal film serving as a lower electrode of the element is formed.
  • a free magnetic layer laminate having a three-layer structure in which a nonmagnetic layer is sandwiched between two free magnetic layers, a nonmagnetic layer, and a three layer in which a nonmagnetic layer is sandwiched between two pinned magnetic layers The pinned magnetic layer stack having the structure and the antiferromagnetic layer are stacked in this order. That is, a multilayer film structure is formed on the lower electrode.
  • a resist is applied to the upper surface of the multilayer film structure, and the resist is patterned according to a desired shape of the magnetoresistive element. Thereafter, the multilayer structure is sequentially etched downward by ion milling according to the patterned resist.
  • the lower electrode of the laminated structure electrically connected to the lower layer of the magnetoresistive element may be processed into a predetermined shape.
  • FIGS. 5A and 5B the processing steps of the lower electrode will be described.
  • the lower electrode E and the magnetoresistive element MR are formed on the support substrate SS.
  • the resist PR is applied to the whole.
  • the resist PR is patterned into a predetermined shape.
  • anisotropic etching is performed from above the resist PR. This etching is performed in the order of the upper layer electrode film Eu, the intermediate layer electrode film Em, and the lower layer electrode film Eb constituting the lower electrode E by ion milling in the same manner as the magnetoresistive element MR.
  • the etching by ion milling is to obtain a desired shape by physically scraping an object by causing an inert gas such as argon to collide with the object to be etched. Therefore, etching is possible regardless of the constituent material of the object to be etched.
  • ion milling is a method of physically removing an object to be etched in this way, when etching the lower electrode E, the metal material of the lower electrode E shaved by ion milling is released as metal particles.
  • the metal particles adhere to the upper surface of the lower electrode E, particularly to the side wall of the resist PR that covers the entire magnetoresistive element MR.
  • the amount of the metal particles adhering to the resist PR is increased by the progress of ion milling, and as shown in FIG. 5B, most of the resist PR covering the magnetoresistive element MR is formed by the film-like metal adhering Er. It will be covered.
  • Such metal deposit Er remains in a state of being connected to the lower electrode E even after the resist PR is removed along with the completion of ion milling. That is, the ion milling residue is attached to the lower electrode E. Therefore, an insulating film such as silicon dioxide is formed so as to cover the magnetoresistive element MR and the lower electrode E, and an upper electrode electrically connected to the upper layer of the magnetoresistive element MR is formed via this insulating film.
  • the upper electrode and the lower electrode E may be electrically connected by the metal deposit Er, that is, the residue. That is, the residue that short-circuits the upper electrode and the lower electrode may deteriorate the yield for manufacturing the magnetoresistive element.
  • the problem that the residue derived from the etching target adheres to the etching target is not limited to the case where the lower electrode included in the magnetoresistive random access memory as described above is etched by ion milling. Even when an electrode of an apparatus or the like is etched by ion milling, it is generally seen in common.
  • the present invention has been made in view of the above-described conventional situation, and an object of the present invention is to suppress generation of a residue derived from a material for forming an electrode when etching a laminated electrode made of a metal material.
  • An object of the present invention is to provide a method for processing a laminated electrode.
  • One aspect of the present invention is a lower electrode film made of any one of a metal selected from the group consisting of Ta, Ti, Mo, Ga, and W, an oxide of the metal, and a nitride of the metal;
  • a laminated electrode in which an intermediate layer electrode film made of any one selected from the group consisting of Ru and Cr and an upper layer electrode film made of the same constituent material as the lower layer electrode film are laminated in this order, the upper layer Provided is a laminated electrode processing method in which each electrode film is processed in order from the upper electrode film by reactive ion etching using a resist formed on the electrode film as a mask.
  • CF 4 , C 2 F 6 , C 3 F 6 , C 3 F 8 , C 4 F 6 , C 4 F 8 , C 5 are used.
  • any one of a mixed gas of a gas and the halogen-based gas is used as an etching gas, and a gas containing at least an oxygen gas is used as an etching gas.
  • ions generated from the etching gas react with the metal element constituting the electrode film to generate a highly volatile metal compound.
  • This metal compound is less adherent to the resist than the corresponding metal itself. Therefore, the residue derived from the etching of the laminated electrode can be suppressed.
  • the intermediate layer electrode film is made of Ru.
  • oxygen gas, CF 4 , C 2 F 6 , C 3 F 6 , C 3 F 8 , C 4 F 6 are used.
  • C 4 F 8 , C 5 F 8 , Cl 2 , BCl 3 , SiCl 4 a mixed gas of at least one halogen gas selected from the group consisting of HBr, and oxygen gas, the halogen gas, and N 2
  • Any one of a mixed gas with at least one inert gas selected from the group consisting of Ne, Ar, and Xe is used as an etching gas.
  • the intermediate layer electrode film is made of Cr, and in the step of etching the intermediate layer electrode film, oxygen gas, CF 4 , C 2 F 6 , C 3 F 6 , C 3 F 8 , C 4 F 6 are used. , C 4 F 8 , C 5 F 8 , Cl 2 , BCl 3 , SiCl 4 , a mixed gas of at least one halogen-based gas, and oxygen gas, the halogen-based gas, N 2 , Ne Any one of a mixed gas with at least one inert gas selected from the group consisting of Ar, Xe is used as an etching gas.
  • the resist used for processing the laminated electrode is generally made of an organic substance
  • the resist is also etched by reacting with an oxygen gas used as an etching gas during the etching process of the intermediate layer electrode film.
  • the etching selectivity with respect to the resist is larger than that in the process using the oxygen gas. Therefore, in the etching process of the intermediate layer electrode film, by using a mixed gas of oxygen gas and halogen-based gas or a mixed gas of oxygen gas, halogen-based gas and inert gas, the etching amount of the intermediate layer electrode film is reduced. The amount of resist etching can be further reduced. That is, the influence of the etching process on the laminated electrode can be suppressed.
  • the etching is terminated when a part of the lower layer electrode film is exposed, and in the step of etching the lower layer electrode film, the remaining on the lower layer electrode film The lower electrode film is etched together with a part of the intermediate electrode film.
  • the resist is used to control the electrode shape after etching, and is generally made of an organic material. Therefore, in the etching of the intermediate layer electrode film using oxygen gas, the etching of the resist proceeds significantly as compared to the etching of the upper layer electrode film and the lower layer electrode film, which is etching without using oxygen gas. If the etching time of the intermediate layer electrode film is lengthened, the amount of etching of the resist increases due to such oxygen, and the shape of the resist may be deteriorated in the etching of the lower layer electrode film performed following the etching of the intermediate layer electrode film. There is.
  • the intermediate layer electrode film by ending the etching of the intermediate layer electrode film when a part of the lower layer electrode film is exposed, it is possible to shorten the time during which the resist is exposed to oxygen gas. At this time, a part of the intermediate layer electrode film to be etched remains on the lower layer electrode film.
  • Such a small amount of the intermediate layer electrode film is formed of the halogen-based gas in the etching process of the lower layer electrode film. It can be removed by etching. Therefore, it is possible to suppress the shape failure of the laminated electrode after etching while suppressing the shape failure of the resist.
  • the step of etching the intermediate electrode film is performed at a pressure of 0.1 Pa or more and 10 Pa or less.
  • the resist etching rate may be higher than the intermediate layer electrode film etching rate depending on the conditions. That is, if the etching selectivity of the intermediate layer electrode film is 1 or less, the etching of the resist proceeds more than the intermediate layer electrode film, and most of the resist is etched before the completion of the etching of the intermediate layer electrode film. There is a possibility that the laminated electrode cannot be formed into a desired shape.
  • the inventors of the present application perform the step of etching the intermediate layer electrode film at a pressure set to 0.1 Pa or more and 10 Pa or less, thereby bringing the etching selectivity of the intermediate layer electrode film to the resist close to 1, and The selectivity of the interlayer electrode film to the resist during dry etching of the layer electrode film was improved. That is, according to the above method, resist etching during the etching of the intermediate layer electrode film can be suppressed.
  • the resist covers the entire magnetoresistive element formed on the upper electrode film, and the laminated electrode is a lower electrode of the magnetoresistive element.
  • the processing method can be employed as a method of processing the lower electrode of the magnetoresistive element. Therefore, if the residue of the material constituting the lower electrode can be suppressed during processing of the lower electrode, the lower electrode and the magnetoresistive element placed on the upper surface of the lower electrode are electrically connected in an unintended manner. In addition, it is possible to suppress a short circuit between the lower electrode and the upper electrode, and as a result, it is possible to suppress a deterioration in yield in manufacturing a device having a magnetoresistive element.
  • FIG. 3 is a cross-sectional view of the substrate of FIG. 2 taken along line 3-3.
  • FIG. 1 shows a schematic configuration of a plasma etching apparatus in which reactive ion etching is performed.
  • a quartz plate 12 that seals a plasma generation space 11 a that is an internal space of the chamber body 11 is attached to the upper opening of the chamber body 11 of the plasma etching apparatus 10.
  • 11 and the quartz plate 12 constitute a vacuum chamber.
  • the plasma generation space 11a is depressurized to a predetermined pressure by an exhaust unit such as a vacuum pump (not shown).
  • the chamber body 11 is connected to a chamber temperature adjustment mechanism 11b that adjusts the temperature of the chamber body 11 by supplying temperature adjustment water during the etching process.
  • a substrate stage 13 for supporting a processing substrate S that is an object of plasma etching processing is disposed.
  • the substrate stage 13 is electrically connected to a bias high frequency power source 21 via a bias matching circuit 20.
  • the high frequency power output from the bias high frequency power source 21 is impedance-matched by the bias matching circuit 20 so that the reflected wave from the load side becomes small, and is applied to the processing substrate S via the substrate stage 13.
  • the A ring-shaped protection member 14 that surrounds the outer periphery of the processing substrate S is disposed on the wafer mounting surface of the substrate stage 13.
  • the protective member 14 is made of, for example, glassy carbon having high resistance to chlorine-based or iodine-based plasma, and has a function of protecting the outer peripheral portion of the substrate stage 13 from the plasma generated in the plasma generation space 11a. is doing. Furthermore, a stage temperature adjustment mechanism 22 that adjusts the temperature of the processing substrate S placed thereon to a predetermined temperature is connected to the substrate stage 13. When the etching process is performed in the plasma etching apparatus 10, the temperature of the processing substrate S is adjusted through temperature control water supplied by the stage temperature control mechanism 22 according to the processing conditions. can do.
  • the structure of the processing substrate S will be described with reference to FIGS.
  • the support substrate SS that is a support base of the processing substrate S
  • a plurality of element regions C in which active elements and passive elements are provided are virtually divided.
  • a lower electrode E in which three layers of metal films are laminated so as to spread over the entire element region C is formed.
  • one magnetic tunnel junction element MTJ having a known structure is provided on the uppermost layer of the lower electrode E one by one.
  • the entire magnetic tunnel junction element MTJ is covered with the resist PR.
  • Each resist PR also covers a part of the corresponding element region C. More precisely, in the uppermost metal film in the lower electrode E in the element region C, a region other than the portion etched by the plasma etching apparatus 10 (FIG. 1) is covered with the resist PR.
  • a lower electrode E made of a three-layer metal film is stacked on the support substrate SS.
  • the lower electrode E includes a lowermost layer, that is, a lower electrode film Eb, an intermediate layer, that is, an intermediate layer electrode film Em, and an uppermost layer, that is, an upper layer electrode film Eu.
  • the lower electrode film Eb is a metal film made of a metal selected from the group consisting of tantalum (Ta), titanium (Ti), molybdenum (Mo), gallium (Ga), and tungsten (W), or a nitride of these metals.
  • a metal compound film made of a metal compound selected from the group consisting of oxides is made of ruthenium (Ru) or chromium (Cr).
  • the upper electrode film Eu is made of the same material as that of the lower electrode film Eb.
  • Each of these three metal films has a thickness of 2 nm to 30 nm.
  • the upper electrode film Eu and the lower electrode film Eb have the same thickness, and the intermediate electrode film Em is configured to be thinner than the upper electrode film Eu and the lower electrode film Eb.
  • the metal constituting the upper electrode film Eu and the lower electrode film Eb has reactivity with one or more halogen elements of fluorine (F), chlorine (Cl), bromine (Br), and iodine (I). .
  • the metal constituting the intermediate layer electrode film Em has reactivity with oxygen.
  • the lower electrode film Eb has a function of improving the adhesion with the support substrate SS and a function of improving the crystal orientation of the intermediate layer electrode film Em.
  • the intermediate layer electrode film Em has a function of reducing the electrical resistance of the entire lower electrode E and a function of improving the crystal orientation and flatness of the upper layer electrode film Eu.
  • the upper electrode film Eu has a function of improving the flatness and crystal orientation of the magnetic tunnel junction element MTJ and a function of improving the adhesion with the intermediate layer electrode film Em.
  • the magnetic tunnel junction element MTJ is formed on the upper surface of the upper electrode film Eu in the lower electrode E.
  • This magnetic tunnel junction element MTJ is an element having a known multilayer structure.
  • a plurality of layers for forming the magnetic tunnel junction element MTJ are stacked on the upper surface of the lower electrode E, and patterned into a predetermined shape by etching or milling to form the magnetic tunnel junction element MTJ.
  • the magnetic tunnel junction element MTJ is covered with a resist PR.
  • the resist PR is applied to the entire lower electrode E and then patterned in accordance with the final shape of the lower electrode E.
  • the resist PR functions as an etching mask for etching the lower electrode E into a predetermined shape.
  • the resist PR is appropriately selected according to the design rule of the magnetic tunnel junction element MTJ, and is made of a heat-resistant resin material such as phenol resin or imide resin.
  • the processing substrate S having such a configuration includes an upper electrode connected to the lower electrode E through a subsequent process, for example, the magnetic tunnel junction element MTJ.
  • a magnetoresistive element which is a memory element using magnetism, is formed in each of the element regions C through the forming process and the like, and a random access memory consisting of a plurality of element regions C, so-called MRAM is constructed. become.
  • a double-winding high-frequency loop antenna 30 is disposed above the quartz plate 12 shown in FIG. 1, and between the high-frequency loop antenna 30 and the quartz plate 12, the high-frequency loop antenna 30 and A coaxial loop-shaped permanent magnet 31 is disposed in parallel with the surface of the quartz plate 12.
  • the high-frequency loop antenna 30 is electrically connected to a discharging high-frequency power source 41 via a discharging matching circuit 40.
  • the high-frequency power output from the discharge high-frequency power supply 41 is impedance-matched by the discharge matching circuit 40 so that the reflected wave from the load side becomes small, similarly to the high-frequency power output from the bias high-frequency power supply 21. Applied to the high-frequency loop antenna 30.
  • the high frequency loop antenna 30 applies a high frequency electric field to the plasma generation space 11a.
  • the induction electric field generated by the high-frequency electric field generates an etching gas plasma in the plasma generation space 11a.
  • the permanent magnet 31 forms a static magnetic field in a direction substantially orthogonal to the current flowing through the high-frequency loop antenna 30 in the plasma generation space 11a.
  • a planar electrode 32 having substantially the same diameter as the quartz plate 12 is disposed in parallel with the surface of the quartz plate 12.
  • the planar electrode 32 is electrically connected to the discharging high-frequency power source 41 via the variable capacitor 42 and the discharging matching circuit 40.
  • Such a planar electrode 32 has a function of forming a uniform electric field on the inner surface of the quartz plate 12, and is made of, for example, a linear metal material.
  • a halogen-based gas supply unit 50, an inert gas supply unit 51, and an oxygen gas supply unit 52 are connected to the chamber body 11.
  • the halogen-based gas supply unit 50, the inert gas supply unit 51, and the oxygen gas supply unit 52 supply the halogen-based gas, the inert gas, and the oxygen gas to the plasma generation space 11a at controlled timings, respectively.
  • the halogen-based gas, the inert gas, and the oxygen gas are etching gases for the plasma etching process.
  • the halogen-based gas supplied from the halogen-based gas supply unit 50 is used alone or mixed with an inert gas supplied from the inert gas supply unit 51 to form the upper electrode film Eu and the lower electrode film Eb. Used in the etching process.
  • the oxygen gas supply unit 52 stops supplying oxygen gas.
  • the oxygen gas supplied from the oxygen gas supply unit 52 is mixed with the halogen-based gas supplied from the halogen-based gas supply unit 50 and used in the etching process of the intermediate layer electrode film Em.
  • oxygen gas, halogen-based gas, and inert gas supplied from the inert gas supply unit 51 may be used as etching gas.
  • the halogen-based gas reacts with a metal material that is a constituent material of the upper electrode film Eu and the lower electrode film Eb, that is, one selected from the group consisting of tantalum, titanium, molybdenum, gallium, and tungsten.
  • a gas that generates volatile metal halide is employed.
  • halogen-based gases are listed.
  • fluorine (F) carbon tetrafluoride (CF 4 ), tetrafluoroethylene (C 2 F 4 ), hexafluoroethane (C 2 F 6 ), hexafluoropropene (C 3 F) 6 ), octafluoropropane (C 3 F 8 ), hexafluorobutadiene (C 4 F 6 ), octafluorocyclobutane (C 4 F 8 ), and octafluorocyclopentene (C 5 F 8 ).
  • the chlorine (Cl) compound includes simple chlorine (Cl 2 ), boron trichloride (BCl 3 ), and silicon tetrachloride (SiCl 4 ).
  • the bromine (Br) compound includes hydrogen bromide ( Further, examples of the compound of HBr) and iodine (I) include hydrogen iodide (HI).
  • One or more halogen-based gases are supplied from the halogen-based gas supply unit 50.
  • the inert gas include nitrogen (N 2 ) gas, neon (Ne) gas, argon (Ar) gas, and xenon (Xe) gas.
  • One or more inert gases are supplied from the inert gas supply unit 51.
  • the plasma etching apparatus 10 is provided with a control unit 60 for controlling the plasma etching process.
  • the control unit 60 is connected to the substrate stage 13, the bias matching circuit 20, the bias high frequency power source 21, the discharge matching circuit 40, the discharge high frequency power source 41, and the variable capacitor 42, and the conditions for the plasma etching process Various control signals based on the above are supplied to each unit.
  • control unit 60 refers to the plasma etching processing conditions stored in the storage area of the control unit 60. Then, a temperature control signal corresponding to this processing condition is supplied to the stage temperature adjustment mechanism 22 of the substrate stage 13 to control the temperature of the processing substrate S.
  • the controller 60 supplies a bias high-frequency power control signal corresponding to the processing conditions to the bias high-frequency power supply 21 to control the bias high-frequency power applied to the processing substrate S.
  • the control unit 60 supplies a discharging high-frequency power control signal to the discharging high-frequency power source 41 based on the processing conditions, and applies the discharging high-frequency power from the discharging high-frequency power source 41 to the high-frequency loop antenna 30.
  • the frequency of the discharging high-frequency power is controlled to 13.56 MHz, for example.
  • the control unit 60 uses the halogen-based gas alone or the mixed gas of the halogen-based gas and the inert gas according to the processing conditions.
  • a flow rate control signal for supplying a flow rate suitable for the metal material of the electrode film Eb is supplied to the halogen-based gas supply unit 50 or to the halogen-based gas supply unit 50 and the inert gas supply unit 51.
  • the gas at the optimum flow rate is supplied from the halogen-based gas supply unit 50 or from the halogen-based gas supply unit 50 and the inert gas supply unit 51.
  • the controller 60 uses oxygen gas alone, a mixed gas of oxygen gas and halogen-based gas, or a mixed gas of oxygen gas, halogen-based gas, and inert gas.
  • a flow rate control signal for supplying a flow rate suitable for the metal material of the intermediate layer electrode film Em is supplied to the oxygen gas supply unit 52, or to the oxygen gas supply unit 52 and the halogen-based gas supply unit 50, or The oxygen gas supply unit 52, the halogen-based gas supply unit 50, and the inert gas supply unit 51 are supplied.
  • the oxygen gas supply unit 52, the oxygen gas supply unit 52 and the halogen-based gas supply unit 50 or alternatively, the oxygen gas supply unit 52, the halogen-based gas supply unit 50, and A gas having an optimum flow rate is supplied from the inert gas supply unit 51.
  • the controller 60 adjusts the capacitance of the variable capacitor 42 to an optimum value within the range of 10 pF to 100 pF, and the reaction product during etching adheres to the inner surface of the quartz plate 12 in a film form. Suppress. In addition, if it is the structure which expresses such a function, this variable capacitor 42 can also be changed into a variable choke.
  • the plasma etching apparatus 10 Under the control of the control unit 60, the plasma etching apparatus 10 first supplies an etching gas to the plasma generation space 11a according to various etching processing conditions, and then supplies a high frequency power for discharge according to the above conditions to the high frequency loop. A high frequency magnetic field corresponding to the high frequency power is applied to the antenna 30 to form the plasma generation space 11a. The induction electric field generated by the high frequency magnetic field turns the etching gas supplied to the plasma generation space 11a into plasma.
  • the high-frequency power source for bias 21 applies high-frequency power to the processing substrate S
  • a bias voltage corresponding to the high-frequency power is applied to the processing substrate S, so-called active species in plasma formed in the plasma generation space 11a, so-called A predetermined region of each layer of the lower electrode E is etched in the thickness direction of the processing substrate S by the etchant.
  • FIG. 4 shows only a single element region C on the processing substrate S as a representative.
  • the processing substrate S is carried into the plasma generation space 11 a of the plasma etching apparatus 10 from a carry-out / unload port (not shown) and placed on the substrate stage 13.
  • the temperature of the chamber main body 11 is maintained at 100 ° C. to 150 ° C. by the chamber temperature adjusting mechanism 11b.
  • the temperature of the substrate stage 13 is maintained at 20 ° C. to 100 ° C., for example, 20 ° C. by the stage temperature adjusting mechanism 22.
  • the chamber body 11 and the substrate stage 13 are maintained at the above temperatures from the start to the end of the etching process of the lower electrode E.
  • one or more halogen-based gases are supplied from the halogen-based gas supply unit 50 to the plasma generation space 11a, and one or more inert gases are supplied from the inert gas supply unit 51 to the plasma generation space 11a. Is done. Each flow rate of the halogen-based gas and the inert gas is adjusted to 2 sccm to 100 sccm. Thereafter, the internal pressure of the plasma generation space 11a is adjusted to 0.1 Pa to 10 Pa.
  • a bias power is applied to the processing substrate S placed on the substrate stage 13 by applying, for example, 50 W of power from the bias high-frequency power source 21 to the substrate stage 13.
  • the bias power is applied to the processing substrate S, as shown in FIG. 4A, the halogen-based gas GA containing ionized ions, dissociated active species, or molecules is moved to the processing substrate S side.
  • the surface region that is drawn and is not covered with the resist PR in the upper electrode film Eu of the lower electrode E is etched.
  • the metal constituting the upper electrode film Eu to be etched reacts with the halogen-based gas GA, and the metal halide shown in Table 1 is generated and released into the plasma generation space 11a.
  • the metal element constituting the upper electrode film Eu is Ta and the halogen-based gas GA is CF 4 , volatile tantalum pentafluoride ([TaF 5 ] 4 ) is generated.
  • volatile tantalum pentafluoride [TaF 5 ] 4
  • volatile titanium trifluoride TiF 3
  • titanium tetrafluoride TiF
  • the resist PR covering the magnetic tunnel junction element MTJ is also slightly etched.
  • the etching selectivity of the metal material of the upper electrode film Eu with respect to the resist PR is as high as 2.5. Therefore, reactive ion etching reduces the etching amount of the resist PR with respect to the etching amount of the upper electrode film Eu, compared with a method such as ion milling that shows almost the same etching selectivity regardless of the material. Can do.
  • the reactive ion etching can maintain the state in which the magnetic tunnel junction element MTJ is covered with the resist PR, and reliably suppress the etching of the magnetic tunnel junction element MTJ.
  • the inert gas is supplied to the plasma generation space 11a at the same time as the halogen-based gas GA mainly for the purpose of adjusting the pressure in the plasma generation space 11a and for stabilizing the plasma generated in the plasma generation space 11a. ing.
  • the etching rate of the upper electrode film Eu is about 5 nm / sec to about 15 nm / sec. If the thickness of the upper electrode film Eu is, for example, 30 nm and the etching rate is 5 nm / sec, it can be estimated that the etching of the upper electrode film Eu is completed in 6 seconds. In this embodiment mode, the etching amount of each layer is controlled by the etching time. In the etching process of the upper electrode film Eu, a longer time obtained by adding a time margin (also referred to as overetching time) to the estimated etching completion time obtained by the above division is set as the etching time of the upper electrode film Eu.
  • a time margin also referred to as overetching time
  • the etching time of the upper electrode film Eu is set to 7 seconds, which is longer than the estimated etching completion time.
  • the time margin is determined in advance by experiments or the like so that a portion of the upper electrode film Eu does not remain after etching due to the etching rate, film thickness non-uniformity, error, etc. in the processing substrate S surface. That is, the etching time of the upper electrode film Eu is determined so as to over-etch the upper electrode film Eu. When this etching time has elapsed, the etching of the upper electrode film Eu is completed.
  • oxygen gas is supplied from the oxygen gas supply unit 52 to the plasma generation space 11a.
  • the flow rate of this oxygen gas is adjusted to 2 sccm to 100 sccm, similar to the halogen-based gas GA and the inert gas.
  • the supply of the inert gas to the plasma generation space 11a may be stopped.
  • the internal pressure of the plasma generation space 11a is adjusted to 0.1 Pa to 10 Pa.
  • At least oxygen gas and halogen-based gas are supplied to the plasma generation space 11a. Then, as shown in FIG. 4B, the oxygen gas GB and the halogen-based gas GA are drawn into the processing substrate S side, and are covered with the upper electrode film Eu and the resist PR in the intermediate layer electrode film Em. Unexposed surface areas are etched. During this etching, the oxygen gas GB and the halogen-based gas GA react with the metal material constituting the intermediate layer electrode film Em, and as shown in Table 2, the metal element and the halogen-based gas constituting the intermediate layer electrode film Em.
  • a compound based on oxygen gas is generated.
  • the metal element constituting the intermediate layer electrode film Em is Ru and the halogen-based gas is CF 4
  • ruthenium dioxide (RuO 2 ) and ruthenium tetroxide (RuO 4 ) are generated in the plasma generation space 11a.
  • the metal element constituting the intermediate layer electrode film Em is Cr and the halogen-based gas is CF 4 , volatile chromium difluoride (CrF 2 ) or chromium pentafluoride ( CrF 5 ) and further chromium trioxide (CrO 3 ) are generated in the plasma generation space 11a.
  • the halogen-based gas is CF 4
  • volatile chromium difluoride (CrF 2 ) or chromium pentafluoride ( CrF 5 ) and further chromium trioxide (CrO 3 ) are generated in the plasma generation space 11a.
  • the resist PR covering the magnetic tunnel junction element MTJ is an organic substance
  • the resist PR can be etched by reacting with an oxygen gas supplied as an etching gas during the etching process of the intermediate layer electrode film Em.
  • the inventors of the present application measured the pressure dependency of the rate at which the resist PR is etched and the pressure dependency of the rate at which the intermediate layer electrode film Em is etched. If the pressure range is 0.1 Pa to 10 Pa, It has been found that the etching rate of the intermediate layer electrode film Em is higher than the etching rate of the resist PR regardless of the constituent material of the intermediate layer electrode film Em and the constituent material of the resist PR.
  • the etching selection ratio of the intermediate layer electrode film Em to the resist PR is further increased, and the resist PR Minimize removal.
  • the halogen-based gas GA having an etching selection ratio with respect to the resist PR larger than that of the oxygen gas GB is used as the etching gas for the intermediate layer electrode film Em
  • the resist PR with respect to the etching amount of the intermediate layer electrode film Em is used.
  • the amount of etching can be further reduced, and consequently the influence on the magnetic tunnel junction element MTJ can be suppressed.
  • both ruthenium and chromium have the same etching rate when the oxygen gas GB is used than the etching rate when the halogen-based gas GA is used when the conditions other than the etching gas are the same. Is double.
  • the etching gas in the etching process of the intermediate layer electrode film Em is a mixed gas of the halogen-based gas GA and the oxygen gas GB rather than the halogen-based gas GA alone in order to suppress the lengthening of the etching time. It is preferable.
  • the etching rate is about 1 nm / sec to 5 nm / sec. If the thickness of the intermediate layer electrode film Em is, for example, 10 nm and the etching rate is 2 nm / sec, it can be estimated that the etching of the intermediate layer electrode film Em is completed in 5 seconds. Similar to the etching process for the upper electrode film Eu, the etching amount of the intermediate electrode film Em is controlled by the etching time. However, the etching time of the intermediate layer electrode film Em is set to the same time as the estimated etching completion time described above.
  • this estimated etching completion time is set as the etching time of the intermediate layer electrode film Em. That is, no time margin is added to the estimated etching completion time. Therefore, when the etching time of the intermediate layer electrode film Em has elapsed, a part or all of the lower layer electrode film Eb is exposed, and the intermediate layer electrode film Em may partially remain on the processing substrate S. Thus, the amount of etching of the resist PR by oxygen gas is reduced as much as possible.
  • the lower electrode film Eb is etched under the same conditions as in the etching process of the upper electrode film Eu. That is, the halogen-based gas GA from the halogen-based gas supply unit 50 and the inert gas from the inert gas supply unit 51 are supplied to the plasma generation space 11a. Thereby, as in the etching process for the upper electrode film, the halogen-based gas GA is drawn into the processing substrate S side, whereby the lower electrode film Eb is etched as shown in FIG. By this etching, a volatile metal halide shown in Table 1 is generated, and the metal halide is released into the plasma generation space 11a.
  • plasma generation is performed as in the case of switching from the etching process for the upper layer electrode film Eu to the etching process for the intermediate layer electrode film Em. It is only necessary to change the gas type supplied to the space 11a and its internal pressure. However, if the oxygen gas used as the etching gas during the etching of the intermediate layer electrode film Em remains even during the etching of the lower layer electrode film Eb, the oxygen drawn into the processing substrate S side and the metal of the lower layer electrode film Eb Reacts to produce a metal oxide.
  • the volatility of these metal oxides is higher than the volatility of the corresponding metal, but lower than the volatility of metal halides. Therefore, the metal oxide may adhere to the processing substrate S, and may remain on the processing substrate S as a so-called etching residue after a series of etching processes on the lower electrode E is completed. If this residue remains as an impurity in the completed MRAM, the function of the MRAM may be impaired.
  • the supply of power to the processing substrate S is stopped, and further, the supply of power to the high-frequency loop antenna 30 is stopped. You may do it. That is, the supply of the high frequency power from the bias high frequency power supply 21 to the substrate stage 13 may be stopped, and the supply of the high frequency power from the discharge high frequency power supply 41 to the high frequency loop antenna 30 may be stopped. Thereby, it is possible to suppress the lower electrode film Eb from being oxidized by the oxygen gas and to suppress the generation of the residue.
  • the etching rate and the etched thickness are equal between the upper electrode film Eu and the lower electrode film Eb. . Therefore, originally, if the film thickness of the lower electrode film Eb is 30 nm and the etching rate is 10 nm / sec, for example, the etching time of the lower electrode film Eb is similar to the etching process of the upper electrode film Eu. If the estimated etching completion time is set to 4 seconds obtained by adding a time margin (overetching time), the lower electrode film Eb should also be etched completely.
  • the etching rate for the halogen-based gas GA used as the etching gas for the lower layer electrode film Eb is about 10% (2 nm / sec ⁇ 0.10) of the etching rate for the oxygen gas. And very small. Therefore, even if the thickness of the remaining intermediate layer electrode film Em is only about 10% of the initial thickness (for example, 3 nm), the remaining intermediate layer electrode film Em is completely removed by the halogen-based gas GA. It takes about 15 seconds to complete.
  • the etching time of the etching process for the lower electrode film Eb is set to 20 seconds, which is five times the etching time of the upper electrode film Eu.
  • the upper layer electrode film Eu, the intermediate layer electrode film Em, and the lower layer electrode film Eb are each etched by the reactive ion etching process, thereby covering the magnetic tunnel junction element MTJ as shown in FIG.
  • the lower electrode E can be processed into a desired shape without accompanying residues resulting from etching on the resist PR.
  • the three-layer metal film (upper electrode film Eu, intermediate electrode film Em, lower electrode film Eb) of the lower electrode E is etched by so-called reactive dry etching.
  • the metal constituting these metal films reacts with the corresponding etching gas to generate a volatile metal compound.
  • Any of the metal compounds thus produced has a higher volatility than a single metal constituting the metal film, or oxides or nitrides thereof, and therefore hardly adheres to the metal film or the processing substrate S. That is, the residue resulting from the etching of the lower electrode E can be suppressed.
  • the effects listed below can be obtained.
  • the etching process of the lower electrode E made of a three-layer metal film the upper electrode film Eu, the intermediate electrode film Em, and the lower electrode film Eb were used with various gases having reactivity with these metal films. Etching is performed by dry etching, so-called reactive dry etching. Thereby, even when any of these upper layer electrode film Eu, intermediate layer electrode film Em, and lower layer electrode film Eb is etched, the reaction between the various gases and the metal constituting these metal films proceeds, and these Is produced.
  • any of the metal compounds generated in this manner has higher volatility than the simple substance of the metal constituting the metal film, or its oxide or nitride itself, so that it may adhere to the metal film or the processing substrate S. Becomes lower. That is, the residue resulting from the etching of the lower electrode E can be suppressed.
  • the internal pressure of the plasma generation space 11a was set to 0.1 to 10 Pa. Thereby, the etching selectivity of the intermediate layer electrode film Em with respect to the resist PR can be further increased.
  • a mixed gas of the halogen-based gas GA and the oxygen gas GB is used as an etching gas. Thereby, prolonged etching time can be suppressed.
  • the oxygen gas used as the etching gas during the etching process is changed from the time when the etching time of the intermediate layer electrode film Em has elapsed.
  • the supply of power to the processing substrate S was stopped until the generation space 11a was completely exhausted.
  • the etching time for the intermediate layer electrode film Em is set as a time obtained by dividing the film thickness of the intermediate layer electrode film Em by the etching rate, and the etching time for the upper layer electrode film Eu is set as the etching time for the lower layer electrode film Eb. 10 times was set.
  • the etching of the lower layer electrode film Eb including the remaining intermediate layer electrode film Em can be completed from the state in which a part of the intermediate layer electrode film Em remains on the lower layer electrode film Eb layer. Therefore, it is possible to reduce the time during which the resist PR is exposed to oxygen gas, as compared with an aspect in which all of the intermediate layer electrode film Em to be etched is removed by the etching for the intermediate layer electrode film Em. . Therefore, it becomes possible to suppress the shape defect of the laminated electrode after etching while suppressing the shape defect of the resist PR.
  • the plasma etching apparatus 10 may not include the permanent magnet 31 and the planar electrode 32.
  • the plasma etching apparatus 10 may be configured such that the high-frequency loop antenna 30 is wound around the side wall of the chamber body 11 and the permanent magnet 31 is provided outside the high-frequency loop antenna 30. Even in such a plasma etching apparatus, a permanent magnet may not be provided.
  • the temperature of the processing substrate S during the etching process, the temperature of the chamber body 11, the high frequency power applied to the high frequency loop antenna 30 during the etching process, and the high frequency power applied to the processing substrate S are: Not limited to the above range, it is appropriately selected according to the thermal and electrical resistance of various elements constituting the processing substrate S.
  • the processed substrate S may be configured such that the pressures of various gases such as a halogen-based gas, an inert gas, and an oxygen gas are set in a range different from the above range.
  • the two metal films of the upper electrode film Eu and the lower electrode film Eb constituting the lower electrode E are formed to have the same thickness, and the intermediate electrode film Em is thinner than these two layers.
  • the upper layer electrode film Eu, the lower layer electrode film Eb, and the intermediate layer electrode film Em may have the same film thickness.
  • the oxygen gas used as the etching gas during the etching process is changed from the time when the etching time of the intermediate layer electrode film Em has elapsed.
  • the supply of power to the processing substrate S is stopped until the exhaust from 11a is completed, and further, the supply of power to the high-frequency loop antenna 30 is stopped.
  • the gas type supplied to the plasma generation space 11a and its internal pressure may only be changed in the same manner as when switching from the etching process for the upper electrode film Eu to the etching process for the intermediate electrode film Em. .
  • the plasma etching apparatus 10 includes two vacuum chambers, that is, a vacuum chamber in which the etching process for the upper electrode film Eu and the lower electrode film Eb is performed, and a vacuum chamber in which the etching process for the intermediate layer electrode film Em is performed. It is good also as an apparatus provided with what is called a multi-chamber apparatus.
  • the etching process for the upper electrode film Eu and the lower electrode film Eb and the etching process for the intermediate electrode film Em are separated. You may make it implement in a vacuum chamber.
  • the etching selection ratio of the intermediate layer electrode film Em to the resist PR can be made sufficiently high, or the thickness of the resist PR can be set even if the resist PR is etched.
  • the etching rate of the intermediate electrode film Em and its layer are the same as in the etching of the upper electrode film Eu. You may make it set as etching time more than the estimated etching completion time computed from thickness. As a result, when the lower layer electrode film Eb is etched, the upper layer intermediate layer electrode film Em is surely etched. Therefore, the etching time of the lower layer electrode film Eb is set equal to the etching time of the upper layer electrode film. Will be able to.
  • So-called organic resist PR made of organic material was used. Not limited to this, a so-called inorganic resist made of an inorganic material may be used. This makes the resist difficult to be etched by oxygen gas, so the etching time of the intermediate layer electrode film Em is set to a time longer than the estimated etching completion time calculated from the etching rate and the layer thickness. It is possible to ensure that the film Em is etched.
  • the lower electrode E has a structure in which a magnetic tunnel junction element MTJ which is a magnetoresistive element using a tunnel magnetoresistive effect is connected.
  • the structure is not limited to this, and a magnetoresistive element that does not use the magnetoresistive effect may be connected to the lower electrode E.
  • the method of the reactive ion etching process is not limited to the processing of the lower electrode of the MRAM, but may be used for processing of other stacked electrodes having the same configuration as the lower electrode E.

Abstract

Either at least one halogen gas selected from the group comprising CF4, C2F6, C3F6, C3F8, C4F6, C4F8, C5F8, Cl2, BCl3, SiCl4, HBr, and HI, or a mixed gas of the halogen gas and at least one inert gas selected from the group comprising N2­­, Ne, Ar, and Xe is used as an etching gas in a process for etching the upper electrode film layer (Eu) of a bottom electrode (E) and a process for etching the bottom electrode film layer (Eb) of the same. A gas comprising at least an oxygen gas is used as an etching gas in a process for etching the middle electrode film layer (Em) of the same.

Description

積層電極の加工方法Multilayer electrode processing method
 この発明は、複数の導電膜が積層されてなる積層電極を加工する方法に関し、例えば、磁気抵抗ランダムアクセスメモリ(MRAM)に用いられる磁気抵抗素子の下部電極を加工する方法に関する。 The present invention relates to a method of processing a laminated electrode formed by laminating a plurality of conductive films, for example, a method of processing a lower electrode of a magnetoresistive element used in a magnetoresistive random access memory (MRAM).
 従来から、トンネル磁気抵抗効果を有した多層膜構造の素子、いわゆる磁気抵抗素子が知られている。磁気抵抗素子は、ハードディスクへのデータの書き込みや書き込んだデータのハードディスクからの読み出しを行う磁気抵抗効果ヘッド、あるいは、磁気を利用した記憶素子である磁気抵抗ランダムアクセスメモリ(MRAM)の記憶媒体等として用いられている。 Conventionally, a multi-layered element having a tunnel magnetoresistive effect, a so-called magnetoresistive element is known. The magnetoresistive element is used as a magnetoresistive head for writing data to the hard disk and reading the written data from the hard disk, or as a storage medium of a magnetoresistive random access memory (MRAM) which is a storage element using magnetism. It is used.
 特許文献1に記載されている磁気抵抗素子の製造方法ではまず、該素子の下部電極となる金属膜が形成される。次いで、この金属膜上に、2つのフリー磁性層に非磁性層が挟まれた3層構造のフリー磁性層積層体、非磁性層、2つの固定磁性層に非磁性層が挟まれた3層構造の固定磁性層積層体、及び反強磁性層がこの順に積層される。すなわち、下部電極上に多層膜構造体が形成される。そして、こうした多層膜構造体の上面にレジストが塗布され、該レジストは所望とする磁気抵抗素子の形状に応じてパターニングされる。その後、このパターニングされたレジストに従って、上記多層膜構造体がイオンミリングにより下向きに順次エッチングされる。 In the method of manufacturing a magnetoresistive element described in Patent Document 1, first, a metal film serving as a lower electrode of the element is formed. Next, on this metal film, a free magnetic layer laminate having a three-layer structure in which a nonmagnetic layer is sandwiched between two free magnetic layers, a nonmagnetic layer, and a three layer in which a nonmagnetic layer is sandwiched between two pinned magnetic layers The pinned magnetic layer stack having the structure and the antiferromagnetic layer are stacked in this order. That is, a multilayer film structure is formed on the lower electrode. Then, a resist is applied to the upper surface of the multilayer film structure, and the resist is patterned according to a desired shape of the magnetoresistive element. Thereafter, the multilayer structure is sequentially etched downward by ion milling according to the patterned resist.
特開2003-101097号公報JP 2003-101097 A
 ところで、上述のような工程を経て磁気抵抗素子が形成された後、磁気抵抗素子の下層と電気的に接続された積層構造の下部電極が所定の形状に加工されることがある。図5(a)(b)を参照して、下部電極の加工工程を説明する。図5(a)に示されるように、支持基板SS上に下部電極Eと磁気抵抗素子MRが形成され、磁気抵抗素子MRの全体と、その磁気抵抗素子MRが積層された下部電極Eの上面の全体とにレジストPRが塗布される。そのレジストPRが所定の形状にパターニングされる。次いで、このレジストPRの上方から異方性エッチングを行う。このエッチングは、磁気抵抗素子MRと同様にイオンミリングにより下部電極Eを構成する上層電極膜Eu、中間層電極膜Em、下層電極膜Ebの順に実施される。 By the way, after the magnetoresistive element is formed through the above-described processes, the lower electrode of the laminated structure electrically connected to the lower layer of the magnetoresistive element may be processed into a predetermined shape. With reference to FIGS. 5A and 5B, the processing steps of the lower electrode will be described. As shown in FIG. 5A, the lower electrode E and the magnetoresistive element MR are formed on the support substrate SS. The entire magnetoresistive element MR and the upper surface of the lower electrode E on which the magnetoresistive element MR is laminated. The resist PR is applied to the whole. The resist PR is patterned into a predetermined shape. Next, anisotropic etching is performed from above the resist PR. This etching is performed in the order of the upper layer electrode film Eu, the intermediate layer electrode film Em, and the lower layer electrode film Eb constituting the lower electrode E by ion milling in the same manner as the magnetoresistive element MR.
 ここで、イオンミリングによるエッチングとは、例えばアルゴン等の不活性ガスをエッチング対象物に衝突させることにより、その対象物を物理的に削ることで所望の形状を得るものである。そのため、エッチング対象物の構成材料の如何を問わずエッチングが可能ではある。 Here, the etching by ion milling is to obtain a desired shape by physically scraping an object by causing an inert gas such as argon to collide with the object to be etched. Therefore, etching is possible regardless of the constituent material of the object to be etched.
 しかしながら、イオンミリングとはこのように、物理的にエッチング対象物を削る方法であることから、下部電極Eのエッチング時には、イオンミリングにより削られた下部電極Eの金属材料が、金属粒子として放出される。この金属粒子は、下部電極Eの上面に、特に磁気抵抗素子MRの全体を覆うレジストPRの側壁に付着する。レジストPRに付着する金属粒子の量は、イオンミリングの進行により増大し、図5(b)に示されるように、磁気抵抗素子MRを覆うレジストPRの大部分が膜状の金属付着物Erによって覆われてしまう。 However, since ion milling is a method of physically removing an object to be etched in this way, when etching the lower electrode E, the metal material of the lower electrode E shaved by ion milling is released as metal particles. The The metal particles adhere to the upper surface of the lower electrode E, particularly to the side wall of the resist PR that covers the entire magnetoresistive element MR. The amount of the metal particles adhering to the resist PR is increased by the progress of ion milling, and as shown in FIG. 5B, most of the resist PR covering the magnetoresistive element MR is formed by the film-like metal adhering Er. It will be covered.
 こうした金属付着物Erは、イオンミリングの完了に伴いレジストPRを除去した後でも、下部電極Eに接続された状態で残存する。つまり、イオンミリングの残渣が下部電極Eに付着した状態となる。そのため、磁気抵抗素子MRと下部電極Eとを覆う態様で二酸化ケイ素等の絶縁膜を形成し、この絶縁膜を介して磁気抵抗素子MRの上層と電気的に接続される上部電極を形成しても、金属付着物Erすなわち残渣によって上部電極と下部電極Eとが電気的に接続される虞がある。すなわち、上部電極と下部電極とを短絡させる上記残渣は、磁気抵抗素子の製造にかかる歩留りを悪化させることがある。 Such metal deposit Er remains in a state of being connected to the lower electrode E even after the resist PR is removed along with the completion of ion milling. That is, the ion milling residue is attached to the lower electrode E. Therefore, an insulating film such as silicon dioxide is formed so as to cover the magnetoresistive element MR and the lower electrode E, and an upper electrode electrically connected to the upper layer of the magnetoresistive element MR is formed via this insulating film. However, the upper electrode and the lower electrode E may be electrically connected by the metal deposit Er, that is, the residue. That is, the residue that short-circuits the upper electrode and the lower electrode may deteriorate the yield for manufacturing the magnetoresistive element.
 なおこのように、エッチング対象物由来の残渣が当該エッチング対象物上に付着する問題は、上述のような磁気抵抗ランダムアクセスメモリが備える下部電極をイオンミリングによってエッチングする場合に限らず、他の半導体装置等が有する電極をイオンミリングによってエッチングした場合であっても、概ね共通してみられるものである。 In addition, the problem that the residue derived from the etching target adheres to the etching target is not limited to the case where the lower electrode included in the magnetoresistive random access memory as described above is etched by ion milling. Even when an electrode of an apparatus or the like is etched by ion milling, it is generally seen in common.
 この発明は、上記従来の実情に鑑みてなされたものであり、その目的は、金属材料からなる積層電極をエッチング加工する際に、該電極の形成材料に由来する残渣の発生を抑制することの可能な積層電極の加工方法を提供することにある。 The present invention has been made in view of the above-described conventional situation, and an object of the present invention is to suppress generation of a residue derived from a material for forming an electrode when etching a laminated electrode made of a metal material. An object of the present invention is to provide a method for processing a laminated electrode.
 本発明の一局面は、Ta、Ti、Mo、Ga、及びWからなる群から選択された金属、該金属の酸化物、及び該金属の窒化物のいずれか1つからなる下層電極膜と、Ru及びCrからなる群から選択されたいずれか1つからなる中間層電極膜と、前記下層電極膜と同じ構成材料からなる上層電極膜とがこの順に積層されてなる積層電極に対し、前記上層電極膜上に形成されたレジストをマスクにする反応性イオンエッチングによって前記上層電極膜から順に各電極膜を加工する積層電極の加工方法を提供する。前記上層電極膜をエッチングする工程と前記下層電極膜をエッチングする工程とでは、CF、C、C、C、C、C、C、Cl、BCl、SiCl、HBr、HIからなる群から選択される少なくとも1つのハロゲン系ガス、及びN、Ne、Ar、Xeからなる群から選択される少なくとも1つの不活性ガスと前記ハロゲン系ガスとの混合ガスのいずれか1つをエッチングガスとして用い、前記中間層電極膜をエッチングする工程では、少なくとも酸素ガスを含むガスをエッチングガスとして用いる。 One aspect of the present invention is a lower electrode film made of any one of a metal selected from the group consisting of Ta, Ti, Mo, Ga, and W, an oxide of the metal, and a nitride of the metal; With respect to a laminated electrode in which an intermediate layer electrode film made of any one selected from the group consisting of Ru and Cr and an upper layer electrode film made of the same constituent material as the lower layer electrode film are laminated in this order, the upper layer Provided is a laminated electrode processing method in which each electrode film is processed in order from the upper electrode film by reactive ion etching using a resist formed on the electrode film as a mask. In the step of etching the upper electrode film and the step of etching the lower electrode film, CF 4 , C 2 F 6 , C 3 F 6 , C 3 F 8 , C 4 F 6 , C 4 F 8 , C 5 are used. At least one halogen-based gas selected from the group consisting of F 8 , Cl 2 , BCl 3 , SiCl 4 , HBr, HI, and at least one inert gas selected from the group consisting of N 2 , Ne, Ar, Xe In the step of etching the intermediate layer electrode film, any one of a mixed gas of a gas and the halogen-based gas is used as an etching gas, and a gas containing at least an oxygen gas is used as an etching gas.
 上記方法によれば、エッチングガスから生成されたイオンが電極膜を構成する金属元素と反応し、揮発性の高い金属化合物を生成する。この金属化合物は、対応する金属そのものよりもレジストに対する付着性が弱い。したがって、積層電極のエッチングに由来する残渣を抑制することができるようになる。 According to the above method, ions generated from the etching gas react with the metal element constituting the electrode film to generate a highly volatile metal compound. This metal compound is less adherent to the resist than the corresponding metal itself. Therefore, the residue derived from the etching of the laminated electrode can be suppressed.
 一例では、前記中間層電極膜がRuからなり、前記中間層電極膜をエッチングする工程では、酸素ガスと、CF、C、C、C、C、C、C、Cl、BCl、SiCl、HBrからなる群から選択される少なくとも1つのハロゲン系ガスとの混合ガス、及び酸素ガスと前記ハロゲン系ガスとN、Ne、Ar、Xeからなる群から選択される少なくとも1つの不活性ガスとの混合ガスのいずれか1つをエッチングガスとして用いる。 In one example, the intermediate layer electrode film is made of Ru. In the step of etching the intermediate layer electrode film, oxygen gas, CF 4 , C 2 F 6 , C 3 F 6 , C 3 F 8 , C 4 F 6 are used. , C 4 F 8 , C 5 F 8 , Cl 2 , BCl 3 , SiCl 4 , a mixed gas of at least one halogen gas selected from the group consisting of HBr, and oxygen gas, the halogen gas, and N 2 Any one of a mixed gas with at least one inert gas selected from the group consisting of Ne, Ar, and Xe is used as an etching gas.
 一例では、前記中間層電極膜がCrからなり、前記中間層電極膜をエッチングする工程では、酸素ガスと、CF、C、C、C、C、C、C、Cl、BCl、SiClからなる群から選択される少なくとも1つのハロゲン系ガスとの混合ガス、及び酸素ガスと前記ハロゲン系ガスとN、Ne、Ar、Xeからなる群から選択される少なくとも1つの不活性ガスとの混合ガスのいずれか1つをエッチングガスとして用いる。 In one example, the intermediate layer electrode film is made of Cr, and in the step of etching the intermediate layer electrode film, oxygen gas, CF 4 , C 2 F 6 , C 3 F 6 , C 3 F 8 , C 4 F 6 are used. , C 4 F 8 , C 5 F 8 , Cl 2 , BCl 3 , SiCl 4 , a mixed gas of at least one halogen-based gas, and oxygen gas, the halogen-based gas, N 2 , Ne Any one of a mixed gas with at least one inert gas selected from the group consisting of Ar, Xe is used as an etching gas.
 積層電極の加工に用いられるレジストは一般に、有機物からなるものであることから、中間層電極膜のエッチング処理時にエッチングガスとして用いられる酸素ガスと反応してレジストもエッチングされる。一方、上記ハロゲン系ガスを用いた中間層電極膜のエッチング処理では、レジストに対するエッチング選択比が酸素ガスを用いた処理よりも大きくなる。そのため、中間層電極膜のエッチング工程では、酸素ガスとハロゲン系ガスとの混合ガス、あるいは酸素ガスとハロゲン系ガスと不活性ガスとの混合ガスを用いることで、中間層電極膜のエッチング量に対するレジストのエッチング量をより低減することができる。つまり、積層電極に対するエッチング処理の影響を抑制することが可能となる。 Since the resist used for processing the laminated electrode is generally made of an organic substance, the resist is also etched by reacting with an oxygen gas used as an etching gas during the etching process of the intermediate layer electrode film. On the other hand, in the etching process of the intermediate layer electrode film using the halogen-based gas, the etching selectivity with respect to the resist is larger than that in the process using the oxygen gas. Therefore, in the etching process of the intermediate layer electrode film, by using a mixed gas of oxygen gas and halogen-based gas or a mixed gas of oxygen gas, halogen-based gas and inert gas, the etching amount of the intermediate layer electrode film is reduced. The amount of resist etching can be further reduced. That is, the influence of the etching process on the laminated electrode can be suppressed.
 一例では、前記中間層電極膜をエッチングする工程では、前記下層電極膜の一部が露出したときにエッチングを終了し、前記下層電極膜をエッチングする工程では、前記下層電極膜上に残存する前記中間層電極膜の一部と共に前記下層電極膜をエッチングする。 In one example, in the step of etching the intermediate layer electrode film, the etching is terminated when a part of the lower layer electrode film is exposed, and in the step of etching the lower layer electrode film, the remaining on the lower layer electrode film The lower electrode film is etched together with a part of the intermediate electrode film.
 レジストは、エッチング後の電極形状を制御するために用いられるものであって、一般に有機材料からなるものである。そのため、酸素ガスを用いる中間層電極膜のエッチングにおいては、酸素ガスを用いないエッチングである上層電極膜や下層電極膜のエッチングと比較して、レジストのエッチングが大幅に進行してしまう。そして中間層電極膜のエッチング時間が長くなると、こうした酸素によってレジストのエッチング量が多くなってしまい、中間層電極膜のエッチングに続いて実行される下層電極膜のエッチングにおいてレジストの形状不良を招く虞がある。 The resist is used to control the electrode shape after etching, and is generally made of an organic material. Therefore, in the etching of the intermediate layer electrode film using oxygen gas, the etching of the resist proceeds significantly as compared to the etching of the upper layer electrode film and the lower layer electrode film, which is etching without using oxygen gas. If the etching time of the intermediate layer electrode film is lengthened, the amount of etching of the resist increases due to such oxygen, and the shape of the resist may be deteriorated in the etching of the lower layer electrode film performed following the etching of the intermediate layer electrode film. There is.
 そこで、下層電極膜の一部が露出したときに中間層電極膜のエッチングを終了することにより、レジストが酸素ガスに曝される時間を短縮させることが可能となる。この際、エッチングされるべき中間層電極膜のうち、その一部が下層電極膜上に残存することとなるが、こうした少量の中間層電極膜は、下層電極膜のエッチング工程においてハロゲン系ガスのエッチングによって除去可能である。それゆえ、レジストの形状不良を抑えつつ、且つエッチング後における積層電極の形状不良も抑えることが可能となる。 Therefore, by ending the etching of the intermediate layer electrode film when a part of the lower layer electrode film is exposed, it is possible to shorten the time during which the resist is exposed to oxygen gas. At this time, a part of the intermediate layer electrode film to be etched remains on the lower layer electrode film. Such a small amount of the intermediate layer electrode film is formed of the halogen-based gas in the etching process of the lower layer electrode film. It can be removed by etching. Therefore, it is possible to suppress the shape failure of the laminated electrode after etching while suppressing the shape failure of the resist.
 一例では、前記中間層電極膜をエッチングする工程を0.1Pa以上且つ10Pa以下の圧力で行う。
 中間層電極膜のエッチング工程では、その条件によってはレジストのエッチングレートが中間層電極膜のエッチングレート以上になる虞がある。つまり、中間層電極膜のエッチング選択比が1以下であれば、中間層電極膜よりもレジストのエッチングが進行してしまい、中間層電極膜のエッチング終了以前にレジストのほとんどがエッチングされて、該積層電極を所望の形状とすることができない可能性がある。
In one example, the step of etching the intermediate electrode film is performed at a pressure of 0.1 Pa or more and 10 Pa or less.
In the intermediate layer electrode film etching step, the resist etching rate may be higher than the intermediate layer electrode film etching rate depending on the conditions. That is, if the etching selectivity of the intermediate layer electrode film is 1 or less, the etching of the resist proceeds more than the intermediate layer electrode film, and most of the resist is etched before the completion of the etching of the intermediate layer electrode film. There is a possibility that the laminated electrode cannot be formed into a desired shape.
 ここで本願発明者らは、中間層電極膜をエッチングする工程を0.1Pa以上且つ10Pa以下に設定した圧力で行うことにより、レジストに対する中間層電極膜のエッチング選択比を1に近づけ、該中間層電極膜のドライエッチング時におけるレジストに対する中間層電極膜の選択性を向上させた。つまり、上記方法によれば、中間層電極膜のエッチング時におけるレジストのエッチングを抑制することができるようになる。 Here, the inventors of the present application perform the step of etching the intermediate layer electrode film at a pressure set to 0.1 Pa or more and 10 Pa or less, thereby bringing the etching selectivity of the intermediate layer electrode film to the resist close to 1, and The selectivity of the interlayer electrode film to the resist during dry etching of the layer electrode film was improved. That is, according to the above method, resist etching during the etching of the intermediate layer electrode film can be suppressed.
 一例では、前記レジストは、前記上層電極膜上に形成された磁気抵抗素子の全体を覆い、前記積層電極は、前記磁気抵抗素子の下部電極である。
 上記方法によるように、当該加工方法は、磁気抵抗素子の下部電極を加工する方法として採用することができる。そのため、下部電極の加工時に、該下部電極を構成する材料の残渣が抑制可能となれば、下部電極とこれの上面に載置された磁気抵抗素子とが意図しない態様で電気的に接続されることや、下部電極と上部電極とが短絡することを抑制可能ともなり、ひいては、磁気抵抗素子を有したデバイスの製造にかかる歩留りの悪化を抑制できるようになる。
In one example, the resist covers the entire magnetoresistive element formed on the upper electrode film, and the laminated electrode is a lower electrode of the magnetoresistive element.
As in the above method, the processing method can be employed as a method of processing the lower electrode of the magnetoresistive element. Therefore, if the residue of the material constituting the lower electrode can be suppressed during processing of the lower electrode, the lower electrode and the magnetoresistive element placed on the upper surface of the lower electrode are electrically connected in an unintended manner. In addition, it is possible to suppress a short circuit between the lower electrode and the upper electrode, and as a result, it is possible to suppress a deterioration in yield in manufacturing a device having a magnetoresistive element.
積層電極を加工するためのプラズマエッチング装置の概略図。Schematic of the plasma etching apparatus for processing a laminated electrode. 上記プラズマエッチング装置において反応性イオンエッチングされる処理基板の部分破断平面図。The partially broken top view of the process board | substrate by which reactive ion etching is carried out in the said plasma etching apparatus. 図2の基板の3-3線に沿った断面図。FIG. 3 is a cross-sectional view of the substrate of FIG. 2 taken along line 3-3. (a)(b)(c)(d)実施の形態に係る積層電極の加工方法を示す断面図。(A) (b) (c) (d) Sectional drawing which shows the processing method of the laminated electrode which concerns on embodiment. (a)(b)従来の積層電極の加工方法を示す断面図。(A) (b) Sectional drawing which shows the processing method of the conventional laminated electrode.
 以下、本発明に係る積層電極の加工方法をプラズマエッチング装置にて実施される反応性イオンエッチングに適用した一実施の形態について、図1~図4を参照して説明する。
 図1は、反応性イオンエッチングが実施されるプラズマエッチング装置の概略構成を示している。図1に示されるように、プラズマエッチング装置10が有するチャンバ本体11の上側開口には、該チャンバ本体11の内部空間であるプラズマ生成空間11aを密封する石英板12が取付けられて、これらチャンバ本体11と石英板12とによって真空チャンバを構成している。プラズマ生成空間11aは、図示しない真空ポンプ等からなる排気部により所定の圧力に減圧されるようになっている。また、チャンバ本体11には、エッチング処理時に、該チャンバ本体11の温度を温調水の供給等によって調整するチャンバ温調機構11bが接続されている。
Hereinafter, an embodiment in which a method for processing a laminated electrode according to the present invention is applied to reactive ion etching performed in a plasma etching apparatus will be described with reference to FIGS.
FIG. 1 shows a schematic configuration of a plasma etching apparatus in which reactive ion etching is performed. As shown in FIG. 1, a quartz plate 12 that seals a plasma generation space 11 a that is an internal space of the chamber body 11 is attached to the upper opening of the chamber body 11 of the plasma etching apparatus 10. 11 and the quartz plate 12 constitute a vacuum chamber. The plasma generation space 11a is depressurized to a predetermined pressure by an exhaust unit such as a vacuum pump (not shown). The chamber body 11 is connected to a chamber temperature adjustment mechanism 11b that adjusts the temperature of the chamber body 11 by supplying temperature adjustment water during the etching process.
 上記プラズマ生成空間11aには、プラズマエッチング処理の対象物である処理基板Sを支持するための基板ステージ13が配設されている。この基板ステージ13はバイアス用マッチング回路20を介してバイアス用高周波電源21に電気的に接続されている。このバイアス用高周波電源21から出力される高周波電力は、負荷側からの反射波が小さくなるように上記バイアス用マッチング回路20によりインピーダンス整合されて、上記基板ステージ13を介して処理基板Sに印加される。また、基板ステージ13のウェハ載置面には、該処理基板Sの外周を囲うリング状の保護部材14が配設されている。この保護部材14は、例えば塩素系やヨウ素系のプラズマに対して高い耐性を有するグラッシーカーボンにより構成され、上記プラズマ生成空間11aに生成されたプラズマから基板ステージ13の外周部を保護する機能を有している。さらに、基板ステージ13には、これに載置される処理基板Sの温度を所定温度に調整するステージ温調機構22が接続されている。このプラズマエッチング装置10内にてエッチング処理が実施される際には、その処理条件に応じて、このステージ温調機構22によって供給される温調水等を介して上記処理基板Sの温度を調整することができる。 In the plasma generation space 11a, a substrate stage 13 for supporting a processing substrate S that is an object of plasma etching processing is disposed. The substrate stage 13 is electrically connected to a bias high frequency power source 21 via a bias matching circuit 20. The high frequency power output from the bias high frequency power source 21 is impedance-matched by the bias matching circuit 20 so that the reflected wave from the load side becomes small, and is applied to the processing substrate S via the substrate stage 13. The A ring-shaped protection member 14 that surrounds the outer periphery of the processing substrate S is disposed on the wafer mounting surface of the substrate stage 13. The protective member 14 is made of, for example, glassy carbon having high resistance to chlorine-based or iodine-based plasma, and has a function of protecting the outer peripheral portion of the substrate stage 13 from the plasma generated in the plasma generation space 11a. is doing. Furthermore, a stage temperature adjustment mechanism 22 that adjusts the temperature of the processing substrate S placed thereon to a predetermined temperature is connected to the substrate stage 13. When the etching process is performed in the plasma etching apparatus 10, the temperature of the processing substrate S is adjusted through temperature control water supplied by the stage temperature control mechanism 22 according to the processing conditions. can do.
 図2及び図3を参照して、処理基板Sの構造を説明する。処理基板Sの支持基体である支持基板SSには、能動素子や受動素子が内設されてなる複数の素子領域Cが仮想分割されている。こうした支持基板SSの上面には、複数の素子領域Cの全体に広がるように三層の金属膜が積層された下部電極Eが形成されている。また、各素子領域Cには、上記下部電極Eにおける最上層に、周知の構造を有する磁気トンネル接合素子MTJが1つずつ設けられている。各磁気トンネル接合素子MTJの全体がレジストPRによって覆われている。各レジストPRは、対応する素子領域Cの一部も覆う。より正確には、素子領域Cの下部電極Eにおける最上層の金属膜のうち、上記プラズマエッチング装置10(図1)によりエッチングする部位以外の領域がレジストPRによって覆われている。 The structure of the processing substrate S will be described with reference to FIGS. In the support substrate SS that is a support base of the processing substrate S, a plurality of element regions C in which active elements and passive elements are provided are virtually divided. On the upper surface of the support substrate SS, a lower electrode E in which three layers of metal films are laminated so as to spread over the entire element region C is formed. In each element region C, one magnetic tunnel junction element MTJ having a known structure is provided on the uppermost layer of the lower electrode E one by one. The entire magnetic tunnel junction element MTJ is covered with the resist PR. Each resist PR also covers a part of the corresponding element region C. More precisely, in the uppermost metal film in the lower electrode E in the element region C, a region other than the portion etched by the plasma etching apparatus 10 (FIG. 1) is covered with the resist PR.
 図3を参照して、処理基板Sの断面構造を説明する。支持基板SSには、三層の金属膜からなる下部電極Eが積層されている。図示した例では、該下部電極Eは、最下層すなわち下層電極膜Ebと、中間層すなわち中間層電極膜Emと、最上層すなわち上層電極膜Euとからなる。下層電極膜Ebは、タンタル(Ta)、チタン(Ti)、モリブデン(Mo)、ガリウム(Ga)、及びタングステン(W)からなる群から選択される金属からなる金属膜、あるいはこれら金属の窒化物若しくは酸化物からなる群から選択される金属化合物からなる金属化合物膜である。中間層電極膜Emは、ルテニウム(Ru)あるいはクロム(Cr)からなる。上層電極膜Euは、下層電極膜Ebと同様の構成材料からなる。これら3層の金属膜はそれぞれ、2nm~30nmの厚さである。上層電極膜Euと下層電極膜Ebの厚みは同じであり、中間層電極膜Emは上層電極膜Euと下層電極膜Ebよりも薄くなるように構成されている。上層電極膜Euと下層電極膜Ebを構成する金属は、フッ素(F)、塩素(Cl)、臭素(Br)、及びヨウ素(I)のうちの1つあるいは複数のハロゲン元素に対する反応性を有する。中間層電極膜Emを構成する金属は、酸素に対する反応性を有している。なお、下層電極膜Ebは、支持基板SSとの密着性を高める機能と、中間層電極膜Emの結晶配向性を向上する機能とを有している。また、中間層電極膜Emは、下部電極E全体の電気抵抗を低下させる機能と、上層電極膜Euの結晶配向性と平坦性を向上させる機能とを有する。そして、上層電極膜Euは、磁気トンネル接合素子MTJの平坦性と結晶配向性を向上させる機能と、中間層電極膜Emとの密着性を向上させる機能とを有する。 Referring to FIG. 3, the sectional structure of the processing substrate S will be described. A lower electrode E made of a three-layer metal film is stacked on the support substrate SS. In the illustrated example, the lower electrode E includes a lowermost layer, that is, a lower electrode film Eb, an intermediate layer, that is, an intermediate layer electrode film Em, and an uppermost layer, that is, an upper layer electrode film Eu. The lower electrode film Eb is a metal film made of a metal selected from the group consisting of tantalum (Ta), titanium (Ti), molybdenum (Mo), gallium (Ga), and tungsten (W), or a nitride of these metals. Alternatively, a metal compound film made of a metal compound selected from the group consisting of oxides. The intermediate layer electrode film Em is made of ruthenium (Ru) or chromium (Cr). The upper electrode film Eu is made of the same material as that of the lower electrode film Eb. Each of these three metal films has a thickness of 2 nm to 30 nm. The upper electrode film Eu and the lower electrode film Eb have the same thickness, and the intermediate electrode film Em is configured to be thinner than the upper electrode film Eu and the lower electrode film Eb. The metal constituting the upper electrode film Eu and the lower electrode film Eb has reactivity with one or more halogen elements of fluorine (F), chlorine (Cl), bromine (Br), and iodine (I). . The metal constituting the intermediate layer electrode film Em has reactivity with oxygen. Note that the lower electrode film Eb has a function of improving the adhesion with the support substrate SS and a function of improving the crystal orientation of the intermediate layer electrode film Em. Further, the intermediate layer electrode film Em has a function of reducing the electrical resistance of the entire lower electrode E and a function of improving the crystal orientation and flatness of the upper layer electrode film Eu. The upper electrode film Eu has a function of improving the flatness and crystal orientation of the magnetic tunnel junction element MTJ and a function of improving the adhesion with the intermediate layer electrode film Em.
 こうした下部電極Eにおける上層電極膜Euの上面には、磁気トンネル接合素子MTJが形成される。この磁気トンネル接合素子MTJは、周知の多層構造からなる素子である。磁気トンネル接合素子MTJを形成するための複数の層が下部電極Eの上面に積層され、エッチングあるいはミリングにより所定の形状にパターニングされることで磁気トンネル接合素子MTJが形成される。磁気トンネル接合素子MTJは、レジストPRにより覆われている。このレジストPRは、下部電極Eの全体に塗布された後、該下部電極Eの最終形状に合わせてパターニングされたものである。レジストPRは下部電極Eを所定の形状にエッチングするエッチングマスクとして機能する。また、該レジストPRは、磁気トンネル接合素子MTJのデザインルールに合わせて適宜選択されるものであって、例えばフェノール系樹脂やイミド系樹脂等の耐熱性樹脂材料からなる。 The magnetic tunnel junction element MTJ is formed on the upper surface of the upper electrode film Eu in the lower electrode E. This magnetic tunnel junction element MTJ is an element having a known multilayer structure. A plurality of layers for forming the magnetic tunnel junction element MTJ are stacked on the upper surface of the lower electrode E, and patterned into a predetermined shape by etching or milling to form the magnetic tunnel junction element MTJ. The magnetic tunnel junction element MTJ is covered with a resist PR. The resist PR is applied to the entire lower electrode E and then patterned in accordance with the final shape of the lower electrode E. The resist PR functions as an etching mask for etching the lower electrode E into a predetermined shape. The resist PR is appropriately selected according to the design rule of the magnetic tunnel junction element MTJ, and is made of a heat-resistant resin material such as phenol resin or imide resin.
 こうした構成を有する処理基板Sは、上記プラズマエッチング装置10(図1)でのエッチング処理の他、これに続く工程、例えば磁気トンネル接合素子MTJを介して上記下部電極Eに接続される上部電極を形成する工程等を経ることにより、上記素子領域Cのそれぞれに、磁気を利用した記憶素子である磁気抵抗素子が形成され、複数の素子領域Cからなるランダムアクセスメモリ、いわゆるMRAMが構築されることになる。 In addition to the etching process in the plasma etching apparatus 10 (FIG. 1), the processing substrate S having such a configuration includes an upper electrode connected to the lower electrode E through a subsequent process, for example, the magnetic tunnel junction element MTJ. A magnetoresistive element, which is a memory element using magnetism, is formed in each of the element regions C through the forming process and the like, and a random access memory consisting of a plurality of element regions C, so-called MRAM is constructed. become.
 他方、図1に示される石英板12の上方には、二重巻の高周波ループアンテナ30が配設されており、この高周波ループアンテナ30と石英板12との間には、高周波ループアンテナ30と同軸のループ状の永久磁石31が石英板12の表面と平行に配設されている。該高周波ループアンテナ30は、放電用マッチング回路40を介して放電用高周波電源41に電気的に接続されている。この放電用高周波電源41から出力される高周波電力は、上記バイアス用高周波電源21から出力される高周波電力と同様、負荷側からの反射波が小さくなるように放電用マッチング回路40によってインピーダンス整合され、高周波ループアンテナ30に印加される。高周波ループアンテナ30は、高周波電場をプラズマ生成空間11aに印加する。この高周波電場により生起された誘導電場により、プラズマ生成空間11a内のエッチングガスのプラズマが生成する。このとき、上記永久磁石31は、高周波ループアンテナ30に流れる電流と略直交する方向の静磁場をプラズマ生成空間11aに形成する。また、上記石英板12と永久磁石31との間には、石英板12と略同径の平面状電極32が石英板12の表面と平行に配設されている。この平面状電極32は、可変コンデンサ42及び前記放電用マッチング回路40を介して前記放電用高周波電源41に電気的に接続されている。こうした平面状電極32は、上記石英板12の内表面上に一様な電界を形成する機能を有しており、例えば線状金属材料により構成されている。 On the other hand, a double-winding high-frequency loop antenna 30 is disposed above the quartz plate 12 shown in FIG. 1, and between the high-frequency loop antenna 30 and the quartz plate 12, the high-frequency loop antenna 30 and A coaxial loop-shaped permanent magnet 31 is disposed in parallel with the surface of the quartz plate 12. The high-frequency loop antenna 30 is electrically connected to a discharging high-frequency power source 41 via a discharging matching circuit 40. The high-frequency power output from the discharge high-frequency power supply 41 is impedance-matched by the discharge matching circuit 40 so that the reflected wave from the load side becomes small, similarly to the high-frequency power output from the bias high-frequency power supply 21. Applied to the high-frequency loop antenna 30. The high frequency loop antenna 30 applies a high frequency electric field to the plasma generation space 11a. The induction electric field generated by the high-frequency electric field generates an etching gas plasma in the plasma generation space 11a. At this time, the permanent magnet 31 forms a static magnetic field in a direction substantially orthogonal to the current flowing through the high-frequency loop antenna 30 in the plasma generation space 11a. Further, between the quartz plate 12 and the permanent magnet 31, a planar electrode 32 having substantially the same diameter as the quartz plate 12 is disposed in parallel with the surface of the quartz plate 12. The planar electrode 32 is electrically connected to the discharging high-frequency power source 41 via the variable capacitor 42 and the discharging matching circuit 40. Such a planar electrode 32 has a function of forming a uniform electric field on the inner surface of the quartz plate 12, and is made of, for example, a linear metal material.
 上記チャンバ本体11には、ハロゲン系ガス供給部50、不活性ガス供給部51、及び酸素ガス供給部52が接続されている。これらハロゲン系ガス供給部50、不活性ガス供給部51、及び酸素ガス供給部52は、制御されたタイミングで、プラズマ生成空間11aにハロゲン系ガス、不活性ガス、及び酸素ガスをそれぞれ供給する。ハロゲン系ガス、不活性ガス、及び酸素ガスはプラズマエッチング処理のエッチングガスである。 A halogen-based gas supply unit 50, an inert gas supply unit 51, and an oxygen gas supply unit 52 are connected to the chamber body 11. The halogen-based gas supply unit 50, the inert gas supply unit 51, and the oxygen gas supply unit 52 supply the halogen-based gas, the inert gas, and the oxygen gas to the plasma generation space 11a at controlled timings, respectively. The halogen-based gas, the inert gas, and the oxygen gas are etching gases for the plasma etching process.
 なお、上記ハロゲン系ガス供給部50から供給されるハロゲン系ガスは、単独で、あるいは不活性ガス供給部51から供給される不活性ガスと混合されて、上層電極膜Euと下層電極膜Ebのエッチング工程で用いられる。一例では、上層電極膜Euと下層電極膜Ebのエッチング工程では、酸素ガス供給部52は酸素ガスの供給を停止する。 Note that the halogen-based gas supplied from the halogen-based gas supply unit 50 is used alone or mixed with an inert gas supplied from the inert gas supply unit 51 to form the upper electrode film Eu and the lower electrode film Eb. Used in the etching process. In one example, in the etching process of the upper electrode film Eu and the lower electrode film Eb, the oxygen gas supply unit 52 stops supplying oxygen gas.
 上記酸素ガス供給部52から供給される酸素ガスは、ハロゲン系ガス供給部50から供給されるハロゲン系ガスと混合されて、中間層電極膜Emのエッチング工程で用いられる。中間層電極膜Emのエッチング工程では、酸素ガスとハロゲン系ガスと上記不活性ガス供給部51から供給される不活性ガスとをエッチングガスとして用いるようにしてもよい。 The oxygen gas supplied from the oxygen gas supply unit 52 is mixed with the halogen-based gas supplied from the halogen-based gas supply unit 50 and used in the etching process of the intermediate layer electrode film Em. In the etching process of the intermediate layer electrode film Em, oxygen gas, halogen-based gas, and inert gas supplied from the inert gas supply unit 51 may be used as etching gas.
 ちなみに、上記ハロゲン系ガスとしては、上層電極膜Euと下層電極膜Ebの構成材料である金属材料、つまりタンタル、チタン、モリブデン、ガリウム、及びタングステンからなる群から選択される1つ、と反応して揮発性のハロゲン化金属を生成するガスが採用される。 Incidentally, the halogen-based gas reacts with a metal material that is a constituent material of the upper electrode film Eu and the lower electrode film Eb, that is, one selected from the group consisting of tantalum, titanium, molybdenum, gallium, and tungsten. A gas that generates volatile metal halide is employed.
 好ましいハロゲン系ガスを列記する。例えば、フッ素(F)の化合物としては、四フッ化炭素(CF)、四フッ化エチレン(C)、六フッ化エタン(C)、六フッ化プロペン(C)、八フッ化プロパン(C)、六フッ化ブタジエン(C)、八フッ化シクロブタン(C)、及び八フッ化シクロペンテン(C)が挙げられる。また、塩素(Cl)の化合物としては、単体の塩素(Cl)、三塩化ホウ素(BCl)、四塩化ケイ素(SiCl)が、そして、臭素(Br)の化合物としては臭化水素(HBr)が、さらに、ヨウ素(I)の化合物としてはヨウ化水素(HI)が挙げられる。1つまたは複数のハロゲン系ガスがハロゲン系ガス供給部50から供給される。また、上記不活性ガスとしては窒素(N)ガス、ネオン(Ne)ガス、アルゴン(Ar)ガス、及びキセノン(Xe)ガスが挙げられる。1つまたは複数の不活性ガスが不活性ガス供給部51から供給される。 Preferred halogen-based gases are listed. For example, as a compound of fluorine (F), carbon tetrafluoride (CF 4 ), tetrafluoroethylene (C 2 F 4 ), hexafluoroethane (C 2 F 6 ), hexafluoropropene (C 3 F) 6 ), octafluoropropane (C 3 F 8 ), hexafluorobutadiene (C 4 F 6 ), octafluorocyclobutane (C 4 F 8 ), and octafluorocyclopentene (C 5 F 8 ). . The chlorine (Cl) compound includes simple chlorine (Cl 2 ), boron trichloride (BCl 3 ), and silicon tetrachloride (SiCl 4 ). The bromine (Br) compound includes hydrogen bromide ( Further, examples of the compound of HBr) and iodine (I) include hydrogen iodide (HI). One or more halogen-based gases are supplied from the halogen-based gas supply unit 50. Examples of the inert gas include nitrogen (N 2 ) gas, neon (Ne) gas, argon (Ar) gas, and xenon (Xe) gas. One or more inert gases are supplied from the inert gas supply unit 51.
 当該プラズマエッチング装置10には、プラズマエッチング処理を制御する制御部60が設けられている。制御部60は、上記基板ステージ13、バイアス用マッチング回路20、バイアス用高周波電源21、放電用マッチング回路40、及び放電用高周波電源41、及び可変コンデンサ42と接続されており、プラズマエッチング処理の条件に基づく各種制御信号を各部へ供給する。 The plasma etching apparatus 10 is provided with a control unit 60 for controlling the plasma etching process. The control unit 60 is connected to the substrate stage 13, the bias matching circuit 20, the bias high frequency power source 21, the discharge matching circuit 40, the discharge high frequency power source 41, and the variable capacitor 42, and the conditions for the plasma etching process Various control signals based on the above are supplied to each unit.
 例えば制御部60は、該制御部60の記憶領域に格納されたプラズマエッチング処理条件を参照する。そして、この処理条件に応じた温度制御信号を基板ステージ13のステージ温調機構22に供給して、処理基板Sの温度を制御する。 For example, the control unit 60 refers to the plasma etching processing conditions stored in the storage area of the control unit 60. Then, a temperature control signal corresponding to this processing condition is supplied to the stage temperature adjustment mechanism 22 of the substrate stage 13 to control the temperature of the processing substrate S.
 制御部60は、処理条件に応じたバイアス用高周波電力制御信号をバイアス用高周波電源21に供給して、処理基板Sに印加するバイアス用高周波電力を制御する。
 制御部60は、処理条件に基づいて、放電用高周波電力制御信号を放電用高周波電源41に供給し、放電用高周波電源41から高周波ループアンテナ30に放電用高周波電力を印加する。この放電用高周波電力の周波数は例えば13.56MHzに制御される。
The controller 60 supplies a bias high-frequency power control signal corresponding to the processing conditions to the bias high-frequency power supply 21 to control the bias high-frequency power applied to the processing substrate S.
The control unit 60 supplies a discharging high-frequency power control signal to the discharging high-frequency power source 41 based on the processing conditions, and applies the discharging high-frequency power from the discharging high-frequency power source 41 to the high-frequency loop antenna 30. The frequency of the discharging high-frequency power is controlled to 13.56 MHz, for example.
 上層電極膜Euと下層電極膜Ebのエッチング工程では、制御部60は、ハロゲン系ガス単独を、あるいは、ハロゲン系ガスと不活性ガスとの混合ガスを、処理条件に従い、上層電極膜Euと下層電極膜Ebの金属材料に適合した流量で供給するための流量制御信号をハロゲン系ガス供給部50に、あるいはハロゲン系ガス供給部50と不活性ガス供給部51とに供給する。こうして上層電極膜Euと下層電極膜Ebのエッチング工程では、ハロゲン系ガス供給部50から、あるいはハロゲン系ガス供給部50と不活性ガス供給部51とから至適流量のガスが供給される。中間層電極膜Emのエッチング工程では、制御部60は、酸素ガス単独を、あるいは、酸素ガスとハロゲン系ガスとの混合ガスを、あるいは酸素ガス、ハロゲン系ガス、及び不活性ガスの混合ガスを、処理条件に従い、中間層電極膜Emの金属材料に適合した流量で供給するための流量制御信号を酸素ガス供給部52に、あるいは酸素ガス供給部52とハロゲン系ガス供給部50とに、あるいは、酸素ガス供給部52、ハロゲン系ガス供給部50、及び不活性ガス供給部51に供給する。こうして中間層電極膜Emのエッチング工程では、酸素ガス供給部52に、あるいは酸素ガス供給部52とハロゲン系ガス供給部50とに、またあるいは酸素ガス供給部52、ハロゲン系ガス供給部50、及び不活性ガス供給部51から至適流量のガスが供給される。 In the etching process of the upper electrode film Eu and the lower electrode film Eb, the control unit 60 uses the halogen-based gas alone or the mixed gas of the halogen-based gas and the inert gas according to the processing conditions. A flow rate control signal for supplying a flow rate suitable for the metal material of the electrode film Eb is supplied to the halogen-based gas supply unit 50 or to the halogen-based gas supply unit 50 and the inert gas supply unit 51. In this way, in the etching process of the upper electrode film Eu and the lower electrode film Eb, the gas at the optimum flow rate is supplied from the halogen-based gas supply unit 50 or from the halogen-based gas supply unit 50 and the inert gas supply unit 51. In the etching process of the intermediate layer electrode film Em, the controller 60 uses oxygen gas alone, a mixed gas of oxygen gas and halogen-based gas, or a mixed gas of oxygen gas, halogen-based gas, and inert gas. Depending on the processing conditions, a flow rate control signal for supplying a flow rate suitable for the metal material of the intermediate layer electrode film Em is supplied to the oxygen gas supply unit 52, or to the oxygen gas supply unit 52 and the halogen-based gas supply unit 50, or The oxygen gas supply unit 52, the halogen-based gas supply unit 50, and the inert gas supply unit 51 are supplied. Thus, in the etching process of the intermediate layer electrode film Em, the oxygen gas supply unit 52, the oxygen gas supply unit 52 and the halogen-based gas supply unit 50, or alternatively, the oxygen gas supply unit 52, the halogen-based gas supply unit 50, and A gas having an optimum flow rate is supplied from the inert gas supply unit 51.
 制御部60は、上記可変コンデンサ42の静電容量を10pF~100pFの範囲内における最適な値に調整し、上記石英板12の内表面にエッチング時の反応生成物が膜状に付着することを抑制する。なお、こうした機能を発現する構成であれば、この可変コンデンサ42を可変チョークに変更することもできる。 The controller 60 adjusts the capacitance of the variable capacitor 42 to an optimum value within the range of 10 pF to 100 pF, and the reaction product during etching adheres to the inner surface of the quartz plate 12 in a film form. Suppress. In addition, if it is the structure which expresses such a function, this variable capacitor 42 can also be changed into a variable choke.
 こうした制御部60の制御下でプラズマエッチング装置10はまず、各種エッチング処理の条件に応じてエッチングガスをプラズマ生成空間11aに供給し、次いで、上記条件に応じて放電用の高周波電力を上記高周波ループアンテナ30に印加し、高周波電力に応じた高周波磁場をプラズマ生成空間11aに形成する。この高周波磁場により生起される誘導電場がプラズマ生成空間11aに供給されたエッチングガスをプラズマ化する。その後、上記バイアス用高周波電源21が高周波電力を処理基板Sに印加すると、この高周波電力に応じたバイアス電圧が処理基板Sに印加され、プラズマ生成空間11aに形成されたプラズマ中の活性種、いわゆるエッチャントにより、下部電極Eの各層の所定の領域が処理基板Sの厚さ方向にエッチングされる。 Under the control of the control unit 60, the plasma etching apparatus 10 first supplies an etching gas to the plasma generation space 11a according to various etching processing conditions, and then supplies a high frequency power for discharge according to the above conditions to the high frequency loop. A high frequency magnetic field corresponding to the high frequency power is applied to the antenna 30 to form the plasma generation space 11a. The induction electric field generated by the high frequency magnetic field turns the etching gas supplied to the plasma generation space 11a into plasma. Thereafter, when the high-frequency power source for bias 21 applies high-frequency power to the processing substrate S, a bias voltage corresponding to the high-frequency power is applied to the processing substrate S, so-called active species in plasma formed in the plasma generation space 11a, so-called A predetermined region of each layer of the lower electrode E is etched in the thickness direction of the processing substrate S by the etchant.
 次に、図4、及び表1、表2を参照して、下部電極E(図2、図3)のエッチングについて詳述する。図4は、処理基板Sにおける単一の素子領域Cのみを代表として示す。
 まず、処理基板Sがプラズマエッチング装置10のプラズマ生成空間11aに、図示しない搬出・搬入口から搬入され、上記基板ステージ13上に載置される。チャンバ温調機構11bにより、チャンバ本体11の温度は100℃~150℃に維持されている。基板ステージ13の温度はステージ温調機構22により20℃~100℃、例えば20℃に維持されている。これらチャンバ本体11及び基板ステージ13は、下部電極Eのエッチング処理の開始時から終了時まで上記温度に維持される。
Next, etching of the lower electrode E (FIGS. 2 and 3) will be described in detail with reference to FIG. FIG. 4 shows only a single element region C on the processing substrate S as a representative.
First, the processing substrate S is carried into the plasma generation space 11 a of the plasma etching apparatus 10 from a carry-out / unload port (not shown) and placed on the substrate stage 13. The temperature of the chamber main body 11 is maintained at 100 ° C. to 150 ° C. by the chamber temperature adjusting mechanism 11b. The temperature of the substrate stage 13 is maintained at 20 ° C. to 100 ° C., for example, 20 ° C. by the stage temperature adjusting mechanism 22. The chamber body 11 and the substrate stage 13 are maintained at the above temperatures from the start to the end of the etching process of the lower electrode E.
 次いで、上記ハロゲン系ガス供給部50から1またはそれ以上のハロゲン系ガスがプラズマ生成空間11aに供給され、上記不活性ガス供給部51から1またはそれ以上の不活性ガスがプラズマ生成空間11aに供給される。ハロゲン系ガスと不活性ガスの各流量は、2sccm~100sccmに調量されている。その後、プラズマ生成空間11aの内圧が0.1Pa~10Paに調圧される。 Next, one or more halogen-based gases are supplied from the halogen-based gas supply unit 50 to the plasma generation space 11a, and one or more inert gases are supplied from the inert gas supply unit 51 to the plasma generation space 11a. Is done. Each flow rate of the halogen-based gas and the inert gas is adjusted to 2 sccm to 100 sccm. Thereafter, the internal pressure of the plasma generation space 11a is adjusted to 0.1 Pa to 10 Pa.
 その後、上記放電用高周波電源41から高周波ループアンテナ30に例えば800Wの電力が印加される。これにより、特にハロゲン系ガスに由来するプラズマがプラズマ生成空間11aに誘起される。 Then, for example, 800 W of power is applied to the high-frequency loop antenna 30 from the discharge high-frequency power source 41. Thereby, plasma derived from the halogen-based gas is induced in the plasma generation space 11a.
 その後、上記バイアス用高周波電源21から基板ステージ13に例えば50Wの電力が印加されることにより、この基板ステージ13上に載置された処理基板Sにバイアス電力が印加される。このように、処理基板Sにバイアス電力が印加されると、図4(a)に示されるように、電離したイオンや乖離した活性種、あるいは分子を含むハロゲン系ガスGAが処理基板S側に引き込まれ、下部電極Eの上層電極膜EuのうちレジストPRによって覆われていない表面領域をエッチングする。このエッチングされる上層電極膜Euを構成する金属とハロゲン系ガスGAとが反応し、表1に示すハロゲン化金属が生成され、プラズマ生成空間11aに放出される。例えば、上層電極膜Euを構成する金属元素がTaであって、ハロゲン系ガスGAがCFである場合には、揮発性を有した五フッ化タンタル([TaF)が生成する。例えば、上層電極膜Euを構成する金属元素がTiであって、ハロゲン系ガスGAがCFである場合には、揮発性を有した三フッ化チタン(TiF)や四フッ化チタン(TiF)が生成する。 Thereafter, a bias power is applied to the processing substrate S placed on the substrate stage 13 by applying, for example, 50 W of power from the bias high-frequency power source 21 to the substrate stage 13. As described above, when the bias power is applied to the processing substrate S, as shown in FIG. 4A, the halogen-based gas GA containing ionized ions, dissociated active species, or molecules is moved to the processing substrate S side. The surface region that is drawn and is not covered with the resist PR in the upper electrode film Eu of the lower electrode E is etched. The metal constituting the upper electrode film Eu to be etched reacts with the halogen-based gas GA, and the metal halide shown in Table 1 is generated and released into the plasma generation space 11a. For example, when the metal element constituting the upper electrode film Eu is Ta and the halogen-based gas GA is CF 4 , volatile tantalum pentafluoride ([TaF 5 ] 4 ) is generated. For example, when the metal element constituting the upper electrode film Eu is Ti and the halogen gas GA is CF 4 , volatile titanium trifluoride (TiF 3 ) or titanium tetrafluoride (TiF) 4 ) is generated.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 これらハロゲン化金属は、対応する金属の単体と比較して揮発性が高いため処理基板Sに付着し難い。また、上層電極膜Euのエッチング工程では、磁気トンネル接合素子MTJを覆うレジストPRもわずかにエッチングされる。しかし、レジストPRに対する上層電極膜Euの金属材料のエッチング選択比は2.5と高い。そのため、イオンミリングのように材料の如何を問わずほぼ同一のエッチング選択比を示す方法と比較して、反応性イオンエッチングは、上層電極膜Euのエッチング量に対するレジストPRのエッチング量を低減させることができる。つまり、反応性イオンエッチングは、レジストPRによって磁気トンネル接合素子MTJが覆われた状態を維持して、磁気トンネル接合素子MTJがエッチングされることを確実に抑制することができる。なお、不活性ガスは、主にプラズマ生成空間11a内の圧力を調圧する目的やプラズマ生成空間11aに生成するプラズマの安定化を図る目的で上記ハロゲン系ガスGAと同時にプラズマ生成空間11aに供給されている。 Since these metal halides are more volatile than the corresponding metal single substance, they are difficult to adhere to the processing substrate S. In the etching process of the upper electrode film Eu, the resist PR covering the magnetic tunnel junction element MTJ is also slightly etched. However, the etching selectivity of the metal material of the upper electrode film Eu with respect to the resist PR is as high as 2.5. Therefore, reactive ion etching reduces the etching amount of the resist PR with respect to the etching amount of the upper electrode film Eu, compared with a method such as ion milling that shows almost the same etching selectivity regardless of the material. Can do. That is, the reactive ion etching can maintain the state in which the magnetic tunnel junction element MTJ is covered with the resist PR, and reliably suppress the etching of the magnetic tunnel junction element MTJ. The inert gas is supplied to the plasma generation space 11a at the same time as the halogen-based gas GA mainly for the purpose of adjusting the pressure in the plasma generation space 11a and for stabilizing the plasma generated in the plasma generation space 11a. ing.
 また、上記条件にてエッチング処理を実施すると、上層電極膜Euのエッチングレートは約5nm/sec~約15nm/secである。上層電極膜Euの厚さが例えば30nmであり、エッチングレートが5nm/secであれば、上層電極膜Euのエッチングは6秒で完了すると推定できる。なお、本実施の形態においては、エッチング時間によって各層のエッチング量を制御する。上層電極膜Euのエッチング工程は、上述の除算により得られる推定エッチング完了時間に時間的マージン(オーバーエッチング時間ともいう)を加算したより長い時間が上層電極膜Euのエッチング時間として設定される。例えば、膜厚をエッチングレートで除算した推定エッチング完了時間が6秒である場合には、上層電極膜Euのエッチング時間は、この推定エッチング完了時間よりも長い7秒に設定されている。時間的マージンは、処理基板S面内でのエッチングレートや膜厚の不均一性や誤差等により、上層電極膜Euの一部分がエッチング後に残らないように予め実験等により決められる。すなわち上層電極膜Euをオーバーエッチングするように上層電極膜Euのエッチング時間は決められる。このエッチング時間が経過した時点で、上層電極膜Euのエッチングは終了する。 When the etching process is performed under the above conditions, the etching rate of the upper electrode film Eu is about 5 nm / sec to about 15 nm / sec. If the thickness of the upper electrode film Eu is, for example, 30 nm and the etching rate is 5 nm / sec, it can be estimated that the etching of the upper electrode film Eu is completed in 6 seconds. In this embodiment mode, the etching amount of each layer is controlled by the etching time. In the etching process of the upper electrode film Eu, a longer time obtained by adding a time margin (also referred to as overetching time) to the estimated etching completion time obtained by the above division is set as the etching time of the upper electrode film Eu. For example, when the estimated etching completion time obtained by dividing the film thickness by the etching rate is 6 seconds, the etching time of the upper electrode film Eu is set to 7 seconds, which is longer than the estimated etching completion time. The time margin is determined in advance by experiments or the like so that a portion of the upper electrode film Eu does not remain after etching due to the etching rate, film thickness non-uniformity, error, etc. in the processing substrate S surface. That is, the etching time of the upper electrode film Eu is determined so as to over-etch the upper electrode film Eu. When this etching time has elapsed, the etching of the upper electrode film Eu is completed.
 次に、プラズマ生成空間11aには、上記酸素ガス供給部52から酸素ガスが供給される。この酸素ガスの流量は、上記ハロゲン系ガスGA及び不活性ガスと同様、2sccm~100sccmに調量されている。このとき、プラズマ生成空間11aへの不活性ガスの供給を停止してもよい。その後、プラズマ生成空間11aの内圧が0.1Pa~10Paに調圧される。 Next, oxygen gas is supplied from the oxygen gas supply unit 52 to the plasma generation space 11a. The flow rate of this oxygen gas is adjusted to 2 sccm to 100 sccm, similar to the halogen-based gas GA and the inert gas. At this time, the supply of the inert gas to the plasma generation space 11a may be stopped. Thereafter, the internal pressure of the plasma generation space 11a is adjusted to 0.1 Pa to 10 Pa.
 高周波ループアンテナ30と処理基板Sとには上層電極膜Euのエッチング処理時と同様の条件での電力の印加が継続されているため、少なくとも酸素ガスとハロゲン系ガスとがプラズマ生成空間11aに供給されると、図4(b)に示されるように、酸素ガスGBとハロゲン系ガスGAとが処理基板S側に引き込まれ、中間層電極膜Emのうち上層電極膜Eu及びレジストPRによって覆われていない表面領域がエッチングされる。このエッチング時には、上記酸素ガスGB及びハロゲン系ガスGAが中間層電極膜Emを構成する金属材料と反応し、表2に示されるように、中間層電極膜Emを構成する金属元素とハロゲン系ガスあるいは酸素ガスとに基づく化合物が生成される。例えば、中間層電極膜Emを構成する金属元素がRuであって、ハロゲン系ガスがCFである場合には、揮発性を有した三フッ化ルテニウム(RuF)や六フッ化ルテニウム(RuF)、さらには二酸化ルテニウム(RuO)や四酸化ルテニウム(RuO)がプラズマ生成空間11aで生成されることとなる。また例えば、中間層電極膜Emを構成する金属元素がCrであって、ハロゲン系ガスがCFである場合には、揮発性を有した二フッ化クロム(CrF)や五フッ化クロム(CrF)、さらには三酸化クロム(CrO)がプラズマ生成空間11aで生成されることとなる。 Since application of electric power to the high-frequency loop antenna 30 and the processing substrate S is continued under the same conditions as in the etching process of the upper electrode film Eu, at least oxygen gas and halogen-based gas are supplied to the plasma generation space 11a. Then, as shown in FIG. 4B, the oxygen gas GB and the halogen-based gas GA are drawn into the processing substrate S side, and are covered with the upper electrode film Eu and the resist PR in the intermediate layer electrode film Em. Unexposed surface areas are etched. During this etching, the oxygen gas GB and the halogen-based gas GA react with the metal material constituting the intermediate layer electrode film Em, and as shown in Table 2, the metal element and the halogen-based gas constituting the intermediate layer electrode film Em. Alternatively, a compound based on oxygen gas is generated. For example, when the metal element constituting the intermediate layer electrode film Em is Ru and the halogen-based gas is CF 4 , volatile ruthenium trifluoride (RuF 3 ) or ruthenium hexafluoride (RuF). 6 ) Furthermore, ruthenium dioxide (RuO 2 ) and ruthenium tetroxide (RuO 4 ) are generated in the plasma generation space 11a. In addition, for example, when the metal element constituting the intermediate layer electrode film Em is Cr and the halogen-based gas is CF 4 , volatile chromium difluoride (CrF 2 ) or chromium pentafluoride ( CrF 5 ) and further chromium trioxide (CrO 3 ) are generated in the plasma generation space 11a.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 この表2に示されるように、酸素ガスGBとハロゲン系ガスGAとによる中間層電極膜Emのエッチングにより、各種ハロゲン化金属及び金属酸化物が生成され、プラズマ生成空間11aに放出される。しかしながら、これらハロゲン化金属及び金属酸化物は、対応する金属の単体と比較して揮発性が高いため処理基板Sに付着し難い。 As shown in Table 2, by etching the intermediate layer electrode film Em with the oxygen gas GB and the halogen-based gas GA, various metal halides and metal oxides are generated and released into the plasma generation space 11a. However, since these metal halides and metal oxides are more volatile than the corresponding single metal, they are difficult to adhere to the processing substrate S.
 ここで、上記磁気トンネル接合素子MTJを覆うレジストPRは有機物であることから、レジストPRは中間層電極膜Emのエッチング処理時にエッチングガスとして供給された酸素ガスと反応し、エッチングされ得る。本願発明者らは、レジストPRがエッチングされる速度の圧力依存性と、中間層電極膜Emがエッチングされる速度の圧力依存性とを測定し、0.1Pa~10Paの圧力範囲であれば、中間層電極膜Emの構成材料やレジストPRの構成材料に拘わらず、中間層電極膜Emのエッチング速度がレジストPRのエッチング速度よりも高くなることを見出した。そこで、この中間層電極膜Emのエッチング工程では、プラズマ生成空間11aの内圧を0.1Pa~10Paに調整することで、レジストPRに対する中間層電極膜Emのエッチング選択比をより高くし、レジストPRの除去を最少化させる。 Here, since the resist PR covering the magnetic tunnel junction element MTJ is an organic substance, the resist PR can be etched by reacting with an oxygen gas supplied as an etching gas during the etching process of the intermediate layer electrode film Em. The inventors of the present application measured the pressure dependency of the rate at which the resist PR is etched and the pressure dependency of the rate at which the intermediate layer electrode film Em is etched. If the pressure range is 0.1 Pa to 10 Pa, It has been found that the etching rate of the intermediate layer electrode film Em is higher than the etching rate of the resist PR regardless of the constituent material of the intermediate layer electrode film Em and the constituent material of the resist PR. Therefore, in this etching process of the intermediate layer electrode film Em, by adjusting the internal pressure of the plasma generation space 11a to 0.1 Pa to 10 Pa, the etching selection ratio of the intermediate layer electrode film Em to the resist PR is further increased, and the resist PR Minimize removal.
 また、中間層電極膜Emに対するエッチングガスとして、酸素ガスGBよりもレジストPRに対するエッチング選択比が大きいハロゲン系ガスGAも用いるようにしていることから、中間層電極膜Emのエッチング量に対するレジストPRのエッチング量をより低減することができ、ひいては、磁気トンネル接合素子MTJに対する影響を抑制することが可能となる。しかしながら、ルテニウム及びクロムはいずれも、エッチングガス以外の条件を同一とした場合、ハロゲン系ガスGAを用いたときのエッチングレートよりも酸素ガスGBを用いたときのエッチングレートの方が大きく、約10倍である。そのため、中間層電極膜Emのエッチング工程のエッチングガスは、そのエッチング時間の長期化を抑制するためにも、ハロゲン系ガスGA単独よりも、ハロゲン系ガスGAと酸素ガスGBとの混合ガスであることが好ましい。 Further, since the halogen-based gas GA having an etching selection ratio with respect to the resist PR larger than that of the oxygen gas GB is used as the etching gas for the intermediate layer electrode film Em, the resist PR with respect to the etching amount of the intermediate layer electrode film Em is used. The amount of etching can be further reduced, and consequently the influence on the magnetic tunnel junction element MTJ can be suppressed. However, both ruthenium and chromium have the same etching rate when the oxygen gas GB is used than the etching rate when the halogen-based gas GA is used when the conditions other than the etching gas are the same. Is double. Therefore, the etching gas in the etching process of the intermediate layer electrode film Em is a mixed gas of the halogen-based gas GA and the oxygen gas GB rather than the halogen-based gas GA alone in order to suppress the lengthening of the etching time. It is preferable.
 また、上記条件にて中間層電極膜Emのエッチング処理を実施するとそのエッチングレートは約1nm/sec~5nm/secである。中間層電極膜Emの厚さが例えば10nmであり、エッチングレートが2nm/secであれば、中間層電極膜Emのエッチングは5秒で完了すると推定できる。上記上層電極膜Euに対するエッチング処理と同様、エッチング時間によって中間層電極膜Emのエッチング量を制御する。しかし、中間層電極膜Emのエッチング時間は、上述の推定エッチング完了時間と同じ時間に設定されている。例えば、膜厚をエッチングレートで除算して得られる推定エッチング完了時間が5秒である場合には、この推定エッチング完了時間が中間層電極膜Emのエッチング時間として設定されている。つまり、推定エッチング完了時間に時間的マージンは加算されない。従って、中間層電極膜Emのエッチング時間が経過した時点では、下層電極膜Ebの一部または全部が露出され、中間層電極膜Emが部分的に処理基板Sに残り得る。こうして、酸素ガスによってレジストPRがエッチングされる量を可能な限り少なくする。 Further, when the etching process of the intermediate layer electrode film Em is performed under the above conditions, the etching rate is about 1 nm / sec to 5 nm / sec. If the thickness of the intermediate layer electrode film Em is, for example, 10 nm and the etching rate is 2 nm / sec, it can be estimated that the etching of the intermediate layer electrode film Em is completed in 5 seconds. Similar to the etching process for the upper electrode film Eu, the etching amount of the intermediate electrode film Em is controlled by the etching time. However, the etching time of the intermediate layer electrode film Em is set to the same time as the estimated etching completion time described above. For example, when the estimated etching completion time obtained by dividing the film thickness by the etching rate is 5 seconds, this estimated etching completion time is set as the etching time of the intermediate layer electrode film Em. That is, no time margin is added to the estimated etching completion time. Therefore, when the etching time of the intermediate layer electrode film Em has elapsed, a part or all of the lower layer electrode film Eb is exposed, and the intermediate layer electrode film Em may partially remain on the processing substrate S. Thus, the amount of etching of the resist PR by oxygen gas is reduced as much as possible.
 こうして、中間層電極膜Emのエッチング処理時間が経過すると、上記上層電極膜Euのエッチング処理時と同様の条件で下層電極膜Ebのエッチングが行われる。すなわち、ハロゲン系ガス供給部50からのハロゲン系ガスGAと、不活性ガス供給部51からの不活性ガスとがプラズマ生成空間11aに供給される。これにより、上層電極膜に対するエッチング処理と同様、処理基板S側にハロゲン系ガスGAが引き込まれることにより、図4(c)に記載のように、下層電極膜Ebがエッチングされる。このエッチングにより、表1に示される揮発性のハロゲン化金属が生成し、そのハロゲン化金属がプラズマ生成空間11aに放出される。 Thus, when the etching process time of the intermediate electrode film Em elapses, the lower electrode film Eb is etched under the same conditions as in the etching process of the upper electrode film Eu. That is, the halogen-based gas GA from the halogen-based gas supply unit 50 and the inert gas from the inert gas supply unit 51 are supplied to the plasma generation space 11a. Thereby, as in the etching process for the upper electrode film, the halogen-based gas GA is drawn into the processing substrate S side, whereby the lower electrode film Eb is etched as shown in FIG. By this etching, a volatile metal halide shown in Table 1 is generated, and the metal halide is released into the plasma generation space 11a.
 なお、中間層電極膜Emに対するエッチング処理から下層電極膜Ebに対するエッチング処理への切り替え時には、上述の上層電極膜Euに対するエッチング処理から中間層電極膜Emに対するエッチング処理への切り替え時と同様、プラズマ生成空間11aに供給されるガス種、及びその内圧の変更を実施するのみでもよい。しかしながら、中間層電極膜Emのエッチング時にエッチングガスとして用いられた酸素ガスが、下層電極膜Ebのエッチング時にも残存していると、処理基板S側に引き込まれた酸素と下層電極膜Ebの金属とが反応して、金属酸化物が生成される。 When switching from the etching process for the intermediate layer electrode film Em to the etching process for the lower layer electrode film Eb, plasma generation is performed as in the case of switching from the etching process for the upper layer electrode film Eu to the etching process for the intermediate layer electrode film Em. It is only necessary to change the gas type supplied to the space 11a and its internal pressure. However, if the oxygen gas used as the etching gas during the etching of the intermediate layer electrode film Em remains even during the etching of the lower layer electrode film Eb, the oxygen drawn into the processing substrate S side and the metal of the lower layer electrode film Eb Reacts to produce a metal oxide.
 こうした金属酸化物の揮発性は、対応する金属の単体の揮発性より高いものの、ハロゲン化金属の揮発性よりは低い。故に、該金属酸化物は、処理基板Sに付着する可能性があり、下部電極Eに対する一連のエッチング処理が完了した後にいわゆるエッチングの残渣として処理基板S上に残り得る。この残渣が完成したMRAMの内部に不純物として残留すると、該MRAMの機能を損なう虞もある。 The volatility of these metal oxides is higher than the volatility of the corresponding metal, but lower than the volatility of metal halides. Therefore, the metal oxide may adhere to the processing substrate S, and may remain on the processing substrate S as a so-called etching residue after a series of etching processes on the lower electrode E is completed. If this residue remains as an impurity in the completed MRAM, the function of the MRAM may be impaired.
 そこで、このような金属酸化物の残渣を抑制するために、中間層電極膜Emに対するエッチング処理から下層電極膜Ebに対するエッチング処理への切り替え時には、中間層電極膜Emのエッチング時間の経過時から、エッチング処理時にエッチングガスとして使用した酸素ガスが、プラズマ生成空間11aから完全に排気されるまで、処理基板Sへの電力の供給を停止する、さらには高周波ループアンテナ30への電力の供給を停止するようにしてもよい。つまり、上記バイアス用高周波電源21から基板ステージ13への高周波電力の供給を停止する、さらには放電用高周波電源41から高周波ループアンテナ30への高周波電力の供給を停止するようにしてもよい。これにより、下層電極膜Ebが酸素ガスにより酸化されることを抑制し、ひいては、上記残渣の発生を抑制することができるようにもなる。 Therefore, in order to suppress such a metal oxide residue, when switching from the etching process for the intermediate layer electrode film Em to the etching process for the lower layer electrode film Eb, from the time of the etching time of the intermediate layer electrode film Em, Until the oxygen gas used as the etching gas during the etching process is completely exhausted from the plasma generation space 11a, the supply of power to the processing substrate S is stopped, and further, the supply of power to the high-frequency loop antenna 30 is stopped. You may do it. That is, the supply of the high frequency power from the bias high frequency power supply 21 to the substrate stage 13 may be stopped, and the supply of the high frequency power from the discharge high frequency power supply 41 to the high frequency loop antenna 30 may be stopped. Thereby, it is possible to suppress the lower electrode film Eb from being oxidized by the oxygen gas and to suppress the generation of the residue.
 また、上記上層電極膜Euに対するエッチング処理と同条件にて該下層電極膜Ebのエッチング処理を実施すると、エッチングレートとエッチングされる厚さは、上層電極膜Euと下層電極膜Ebとで等しくなる。そのため、本来であれば、上層電極膜Euのエッチング処理と同様に、例えば下層電極膜Ebの膜厚が30nmであって、エッチングレートが10nm/secであれば、下層電極膜Ebのエッチング時間は推定エッチング完了時間に時間的マージン(オーバーエッチング時間)を加算した4秒に設定すれば、該下層電極膜Ebも完全にエッチングされるはずである。しかしながら上述のように、下層電極膜Ebに対するエッチング処理の開始時には、該下層電極膜Eb上にエッチングされていない中間層電極膜Emが残存している可能性がある。しかも、中間層電極膜Emのルテニウムあるいはクロムについては、下層電極膜Ebのエッチングガスとして用いられるハロゲン系ガスGAに対するエッチングレートは酸素ガスに対するエッチングレートの約10%(2nm/sec×0.10)と非常に小さい。そのため、残存する中間層電極膜Emの厚さが、その初期の厚さのわずか10%程度(例えば3nm)であっても、その残存する中間層電極膜Emをハロゲン系ガスGAによって完全に除去するには15秒程度要することになる。そこで、この下層電極膜Ebに対するエッチング処理のエッチング時間は、上記上層電極膜Euのエッチング時間の5倍である20秒に設定される。これにより、中間層電極膜Emのエッチングが完全になされていなくとも、この残存する中間層電極膜Em含め、下層電極膜Ebのエッチングを完了することができる。 When the etching process of the lower electrode film Eb is performed under the same conditions as the etching process for the upper electrode film Eu, the etching rate and the etched thickness are equal between the upper electrode film Eu and the lower electrode film Eb. . Therefore, originally, if the film thickness of the lower electrode film Eb is 30 nm and the etching rate is 10 nm / sec, for example, the etching time of the lower electrode film Eb is similar to the etching process of the upper electrode film Eu. If the estimated etching completion time is set to 4 seconds obtained by adding a time margin (overetching time), the lower electrode film Eb should also be etched completely. However, as described above, at the start of the etching process for the lower electrode film Eb, there is a possibility that the unetched intermediate electrode film Em remains on the lower electrode film Eb. Moreover, for the ruthenium or chromium of the intermediate layer electrode film Em, the etching rate for the halogen-based gas GA used as the etching gas for the lower layer electrode film Eb is about 10% (2 nm / sec × 0.10) of the etching rate for the oxygen gas. And very small. Therefore, even if the thickness of the remaining intermediate layer electrode film Em is only about 10% of the initial thickness (for example, 3 nm), the remaining intermediate layer electrode film Em is completely removed by the halogen-based gas GA. It takes about 15 seconds to complete. Therefore, the etching time of the etching process for the lower electrode film Eb is set to 20 seconds, which is five times the etching time of the upper electrode film Eu. Thereby, even if the intermediate layer electrode film Em is not completely etched, the etching of the lower layer electrode film Eb including the remaining intermediate layer electrode film Em can be completed.
 こうして、上層電極膜Eu、中間層電極膜Em、及び下層電極膜Ebをそれぞれ、反応性イオンエッチング処理によってエッチングすることにより、図4(d)に示されるように、磁気トンネル接合素子MTJを覆うレジストPRへのエッチングに由来する残渣の付着を伴うことなく、下部電極Eを所望の形状に加工することができる。 Thus, the upper layer electrode film Eu, the intermediate layer electrode film Em, and the lower layer electrode film Eb are each etched by the reactive ion etching process, thereby covering the magnetic tunnel junction element MTJ as shown in FIG. The lower electrode E can be processed into a desired shape without accompanying residues resulting from etching on the resist PR.
 このように、下部電極Eの三層の金属膜(上層電極膜Eu、中間層電極膜Em、下層電極膜Eb)は、いわゆる反応性ドライエッチングによりエッチングされる。これら金属膜を構成する金属は、対応するエッチングガスと反応し、揮発性の金属化合物を生成する。こうして生成された金属化合物はいずれも、上記金属膜を構成する金属の単体、あるいはその酸化物や窒化物よりも高い揮発性を有することから、上記金属膜上や処理基板Sに付着しにくい。すなわち、下部電極Eのエッチングに由来する残渣を抑制することができるようになる。 Thus, the three-layer metal film (upper electrode film Eu, intermediate electrode film Em, lower electrode film Eb) of the lower electrode E is etched by so-called reactive dry etching. The metal constituting these metal films reacts with the corresponding etching gas to generate a volatile metal compound. Any of the metal compounds thus produced has a higher volatility than a single metal constituting the metal film, or oxides or nitrides thereof, and therefore hardly adheres to the metal film or the processing substrate S. That is, the residue resulting from the etching of the lower electrode E can be suppressed.
 以上説明したように、本実施の形態に係る積層電極の加工方法によれば、以下に列挙する効果が得られるようになる。
 (1)三層の金属膜からなる下部電極Eのエッチング処理に際し、上層電極膜Eu、中間層電極膜Em、及び下層電極膜Ebを、これら金属膜との反応性を有する各種ガスを用いたドライエッチング、いわゆる反応性ドライエッチングによりエッチングするようにした。これにより、これら上層電極膜Eu、中間層電極膜Em、及び下層電極膜Ebのいずれをエッチングした場合であっても、上記各種ガスとこれら金属膜を構成する金属との反応が進行し、これらの化合物が生成されるようになる。こうして生成された金属化合物はいずれも、上記金属膜を構成する金属の単体、あるいはその酸化物や窒化物そのものよりも揮発性が高いことから、上記金属膜上や処理基板Sに付着する可能性が低くなる。すなわち、下部電極Eのエッチングに由来する残渣を抑制することができるようになる。
As described above, according to the laminated electrode processing method of the present embodiment, the effects listed below can be obtained.
(1) During the etching process of the lower electrode E made of a three-layer metal film, the upper electrode film Eu, the intermediate electrode film Em, and the lower electrode film Eb were used with various gases having reactivity with these metal films. Etching is performed by dry etching, so-called reactive dry etching. Thereby, even when any of these upper layer electrode film Eu, intermediate layer electrode film Em, and lower layer electrode film Eb is etched, the reaction between the various gases and the metal constituting these metal films proceeds, and these Is produced. Any of the metal compounds generated in this manner has higher volatility than the simple substance of the metal constituting the metal film, or its oxide or nitride itself, so that it may adhere to the metal film or the processing substrate S. Becomes lower. That is, the residue resulting from the etching of the lower electrode E can be suppressed.
 (2)中間層電極膜Emに対するエッチング処理時には、プラズマ生成空間11aの内圧を0.1~10Paとした。これにより、レジストPRに対する中間層電極膜Emのエッチング選択比をより高くすることが可能となる。 (2) During the etching process for the intermediate layer electrode film Em, the internal pressure of the plasma generation space 11a was set to 0.1 to 10 Pa. Thereby, the etching selectivity of the intermediate layer electrode film Em with respect to the resist PR can be further increased.
 (3)中間層電極膜Emのエッチング処理を実施する際には、ハロゲン系ガスGAと酸素ガスGBとの混合ガスをエッチングガスとして用いるようにした。これにより、そのエッチング時間の長期化を抑制することができる。 (3) When performing the etching process of the intermediate layer electrode film Em, a mixed gas of the halogen-based gas GA and the oxygen gas GB is used as an etching gas. Thereby, prolonged etching time can be suppressed.
 (4)中間層電極膜Emに対するエッチング処理から下層電極膜Ebに対するエッチング処理への切り替え時には、中間層電極膜Emのエッチング時間の経過時から、エッチング処理時にエッチングガスとして使用した酸素ガスが、プラズマ生成空間11aから完全に排気されるまで、処理基板Sへの電力の供給を停止するようにした。これにより、下層電極膜Ebが酸素ガスにより酸化されることを抑制し、ひいては、処理基板Sへの金属酸化物の付着、換言すればエッチング残渣の発生を抑制することができるようにもなる。 (4) At the time of switching from the etching process for the intermediate layer electrode film Em to the etching process for the lower layer electrode film Eb, the oxygen gas used as the etching gas during the etching process is changed from the time when the etching time of the intermediate layer electrode film Em has elapsed. The supply of power to the processing substrate S was stopped until the generation space 11a was completely exhausted. As a result, it is possible to suppress the lower electrode film Eb from being oxidized by the oxygen gas, and consequently to suppress the adhesion of the metal oxide to the processing substrate S, in other words, the generation of etching residues.
 (5)中間層電極膜Emに対するエッチング時間として、中間層電極膜Emの膜厚をエッチングレートで除算した時間を設定し、且つ下層電極膜Ebに対するエッチング時間として、上層電極膜Euのエッチング時間の10倍を設定するようにした。これにより、中間層電極膜Emの一部が下層電極膜Eb層上に残存する状態から、この残存する中間層電極膜Emも含め、下層電極膜Ebのエッチングを完了することができる。そのため、エッチングされるべき中間層電極膜Emの全てが中間層電極膜Em用のエッチングによって取り除かれるという態様と比較して、レジストPRが酸素ガスに曝される時間を短縮させることが可能となる。しがたって、レジストPRの形状不良を抑えつつ、且つエッチング後における積層電極の形状不良も抑えることが可能となる。 (5) The etching time for the intermediate layer electrode film Em is set as a time obtained by dividing the film thickness of the intermediate layer electrode film Em by the etching rate, and the etching time for the upper layer electrode film Eu is set as the etching time for the lower layer electrode film Eb. 10 times was set. Thereby, the etching of the lower layer electrode film Eb including the remaining intermediate layer electrode film Em can be completed from the state in which a part of the intermediate layer electrode film Em remains on the lower layer electrode film Eb layer. Therefore, it is possible to reduce the time during which the resist PR is exposed to oxygen gas, as compared with an aspect in which all of the intermediate layer electrode film Em to be etched is removed by the etching for the intermediate layer electrode film Em. . Therefore, it becomes possible to suppress the shape defect of the laminated electrode after etching while suppressing the shape defect of the resist PR.
 なお、上記実施の形態は以下のように適宜変更して実施することもできる。
 ・上記プラズマエッチング装置10は、永久磁石31と平面状電極32とを有していなくともよい。また、プラズマエッチング装置10は、その高周波ループアンテナ30がチャンバ本体11の側壁に巻回されて且つ、永久磁石31が高周波ループアンテナ30の外側に設けられるようにしてもよい。なお、こうしたプラズマエッチング装置にあっても、永久磁石を有しないようにしてもよい。
In addition, the said embodiment can also be suitably changed and implemented as follows.
The plasma etching apparatus 10 may not include the permanent magnet 31 and the planar electrode 32. The plasma etching apparatus 10 may be configured such that the high-frequency loop antenna 30 is wound around the side wall of the chamber body 11 and the permanent magnet 31 is provided outside the high-frequency loop antenna 30. Even in such a plasma etching apparatus, a permanent magnet may not be provided.
 ・上記各種温度、正確にはエッチング処理時の処理基板Sの温度、及びチャンバ本体11の温度、エッチング処理時に高周波ループアンテナ30に印加される高周波電力、及び処理基板Sに印加される高周波電力は、上記範囲に限らず、処理基板Sを構成する各種素子の熱的及び電気的耐性に応じて適宜選択されるものである。 The above various temperatures, more precisely, the temperature of the processing substrate S during the etching process, the temperature of the chamber body 11, the high frequency power applied to the high frequency loop antenna 30 during the etching process, and the high frequency power applied to the processing substrate S are: Not limited to the above range, it is appropriately selected according to the thermal and electrical resistance of various elements constituting the processing substrate S.
 ・レジストPRに対する上層電極膜Eu及び下層電極膜Ebのエッチング選択比、及びレジストPRに対する中間層電極膜Emのエッチング選択比が小さくとも、これを補うかたちでレジストPRの膜厚が十分に厚く構成される処理基板Sに対しては、ハロゲン系ガス、不活性ガス、及び酸素ガス等の各種ガスの圧力が上記範囲と異なる範囲に設定される構成であってもよい。 -Even if the etching selectivity of the upper electrode film Eu and the lower electrode film Eb with respect to the resist PR and the etching selectivity of the intermediate layer electrode film Em with respect to the resist PR are small, the film thickness of the resist PR is sufficiently thick to compensate for this. The processed substrate S may be configured such that the pressures of various gases such as a halogen-based gas, an inert gas, and an oxygen gas are set in a range different from the above range.
 ・下部電極Eを構成する上層電極膜Euと下層電極膜Ebとの2つの金属膜は同一の厚さに形成されるものとし、中間層電極膜Emは、これら2層よりも薄い膜厚を有するようにした。これに限らず、これら上層電極膜Eu、下層電極膜Eb、及び中間層電極膜Emとを同一の膜厚としてもよい。 The two metal films of the upper electrode film Eu and the lower electrode film Eb constituting the lower electrode E are formed to have the same thickness, and the intermediate electrode film Em is thinner than these two layers. To have. However, the upper layer electrode film Eu, the lower layer electrode film Eb, and the intermediate layer electrode film Em may have the same film thickness.
 ・中間層電極膜Emに対するエッチング処理から下層電極膜Ebに対するエッチング処理への切り替え時には、中間層電極膜Emのエッチング時間の経過時から、エッチング処理時にエッチングガスとして使用した酸素ガスが、プラズマ生成空間11aから完全に排気されるまで、処理基板Sへの電力の供給を停止する、さらには高周波ループアンテナ30への電力の供給を停止するようにした。これに限らず、上層電極膜Euに対するエッチング処理から中間層電極膜Emに対するエッチング処理への切り替え時と同様、プラズマ生成空間11aに供給されるガス種、及びその内圧の変更を実施するのみでもよい。 At the time of switching from the etching process for the intermediate layer electrode film Em to the etching process for the lower layer electrode film Eb, the oxygen gas used as the etching gas during the etching process is changed from the time when the etching time of the intermediate layer electrode film Em has elapsed. The supply of power to the processing substrate S is stopped until the exhaust from 11a is completed, and further, the supply of power to the high-frequency loop antenna 30 is stopped. Not limited to this, the gas type supplied to the plasma generation space 11a and its internal pressure may only be changed in the same manner as when switching from the etching process for the upper electrode film Eu to the etching process for the intermediate electrode film Em. .
 ・下部電極Eが有する三層の金属膜は全て単一の真空チャンバ内にてエッチング処理されるようにした。これに限らず、上層電極膜Euと下層電極膜Ebのエッチングと中間層電極膜Emのエッチングとを別の真空チャンバ内にて行ってもよい。この場合、上記プラズマエッチング装置10を、上層電極膜Euと下層電極膜Ebのエッチング処理が実施される真空チャンバと、中間層電極膜Emのエッチング処理が実施される真空チャンバとの2つの真空チャンバを備える装置、いわゆるマルチチャンバ装置としてもよい。また、上記プラズマエッチング装置10のように、単一の真空チャンバを備える装置を2つ用いることによって、上層電極膜Euと下層電極膜Ebのエッチング処理と中間層電極膜Emのエッチング処理とを別の真空チャンバにて実施するようにしてもよい。 ・ Each of the three layers of metal film of the lower electrode E was etched in a single vacuum chamber. However, the etching is not limited to this, and the etching of the upper electrode film Eu and the lower electrode film Eb and the etching of the intermediate electrode film Em may be performed in separate vacuum chambers. In this case, the plasma etching apparatus 10 includes two vacuum chambers, that is, a vacuum chamber in which the etching process for the upper electrode film Eu and the lower electrode film Eb is performed, and a vacuum chamber in which the etching process for the intermediate layer electrode film Em is performed. It is good also as an apparatus provided with what is called a multi-chamber apparatus. Further, by using two apparatuses having a single vacuum chamber, such as the plasma etching apparatus 10, the etching process for the upper electrode film Eu and the lower electrode film Eb and the etching process for the intermediate electrode film Em are separated. You may make it implement in a vacuum chamber.
 ・中間層電極膜Emのエッチング処理に際し、レジストPRに対する中間層電極膜Emのエッチング選択比を十分に高くすることができる、あるいは、レジストPRの厚さを、たとえレジストPRがエッチングされたとしても、これにより覆われた磁気トンネル接合素子MTJに影響しない程度に厚くすることが可能である等の場合には、上層電極膜Euのエッチング時と同様、中間層電極膜Emのエッチングレートとその層厚とから算出される推定エッチング完了時間以上のエッチング時間として設定するようにしてもよい。これにより下層電極膜Ebエッチング時にはその上層である中間層電極膜Emが確実にエッチングされることになるため、該下層電極膜Ebのエッチング時間は上層電極膜のエッチング時間と等しい長さにて実施することができるようになる。 In the etching process of the intermediate layer electrode film Em, the etching selection ratio of the intermediate layer electrode film Em to the resist PR can be made sufficiently high, or the thickness of the resist PR can be set even if the resist PR is etched. In the case where it is possible to increase the thickness so as not to affect the magnetic tunnel junction element MTJ covered thereby, the etching rate of the intermediate electrode film Em and its layer are the same as in the etching of the upper electrode film Eu. You may make it set as etching time more than the estimated etching completion time computed from thickness. As a result, when the lower layer electrode film Eb is etched, the upper layer intermediate layer electrode film Em is surely etched. Therefore, the etching time of the lower layer electrode film Eb is set equal to the etching time of the upper layer electrode film. Will be able to.
 ・有機物からなるいわゆる有機系のレジストPRを用いるようにした。これに限らず、無機物からなるいわゆる無機系のレジストを用いるようにしてもよい。これにより、レジストが酸素ガスによってエッチングされ難くなるため、中間層電極膜Emのエッチング時間を、そのエッチングレートと層厚とから算出される推定エッチング完了時間よりも長い時間に設定し、中間層電極膜Emが確実にエッチングされるようにすることができる。 ・ So-called organic resist PR made of organic material was used. Not limited to this, a so-called inorganic resist made of an inorganic material may be used. This makes the resist difficult to be etched by oxygen gas, so the etching time of the intermediate layer electrode film Em is set to a time longer than the estimated etching completion time calculated from the etching rate and the layer thickness. It is possible to ensure that the film Em is etched.
 ・上記下部電極Eには、トンネル磁気抵抗効果を用いた磁気抵抗素子である磁気トンネル接合素子MTJが接続される構造とした。これに限らず、磁気抵抗効果を用いない磁気抵抗素子が下部電極Eに接続された構造としてもよい。 · The lower electrode E has a structure in which a magnetic tunnel junction element MTJ which is a magnetoresistive element using a tunnel magnetoresistive effect is connected. The structure is not limited to this, and a magnetoresistive element that does not use the magnetoresistive effect may be connected to the lower electrode E.
 ・上記反応性イオンエッチング処理の方法は、MRAMの下部電極の加工に限らず、上記下部電極Eと同様の構成を有する他の積層電極の加工に用いるようにしてもよい。 The method of the reactive ion etching process is not limited to the processing of the lower electrode of the MRAM, but may be used for processing of other stacked electrodes having the same configuration as the lower electrode E.

Claims (10)

  1.  Ta、Ti、Mo、Ga、及びWからなる群から選択された金属、該金属の酸化物、及び該金属の窒化物のいずれか1つからなる下層電極膜と、Ru及びCrからなる群から選択されたいずれか1つからなる中間層電極膜と、前記下層電極膜と同じ構成材料からなる上層電極膜とがこの順に積層されてなる積層電極に対し、前記上層電極膜上に形成されたレジストをマスクにする反応性イオンエッチングによって前記上層電極膜から順に各電極膜を加工する積層電極の加工方法であって、
     前記上層電極膜をエッチングする工程と前記下層電極膜をエッチングする工程とでは、CF、C、C、C、C、C、C、Cl、BCl、SiCl、HBr、HIからなる群から選択される少なくとも1つのハロゲン系ガス、及びN、Ne、Ar、Xeからなる群から選択される少なくとも1つの不活性ガスと前記ハロゲン系ガスとの混合ガスのいずれか1つをエッチングガスとして用い、
     前記中間層電極膜をエッチングする工程では、少なくとも酸素ガスを含むガスをエッチングガスとして用いる
    ことを特徴とする積層電極の加工方法。
    A lower electrode film made of any one of a metal selected from the group consisting of Ta, Ti, Mo, Ga, and W, an oxide of the metal, and a nitride of the metal, and a group made of Ru and Cr A laminated electrode formed by laminating any one of the selected intermediate layer electrode film and the upper layer electrode film made of the same constituent material as the lower layer electrode film in this order was formed on the upper layer electrode film. A method of processing a laminated electrode in which each electrode film is processed in order from the upper electrode film by reactive ion etching using a resist as a mask,
    In the step of etching the upper electrode film and the step of etching the lower electrode film, CF 4 , C 2 F 6 , C 3 F 6 , C 3 F 8 , C 4 F 6 , C 4 F 8 , C 5 are used. At least one halogen-based gas selected from the group consisting of F 8 , Cl 2 , BCl 3 , SiCl 4 , HBr, HI, and at least one inert gas selected from the group consisting of N 2 , Ne, Ar, Xe Any one of a mixed gas of a gas and the halogen-based gas is used as an etching gas,
    A method for processing a laminated electrode, wherein in the step of etching the intermediate layer electrode film, a gas containing at least an oxygen gas is used as an etching gas.
  2.  請求項1に記載の積層電極の加工方法において、
     前記中間層電極膜がRuからなり、
     前記中間層電極膜をエッチングする工程では、酸素ガスと、CF、C、C、C、C、C、C、Cl、BCl、SiCl、HBrからなる群から選択される少なくとも1つのハロゲン系ガスとの混合ガス、及び酸素ガスと前記ハロゲン系ガスとN、Ne、Ar、Xeからなる群から選択される少なくとも1つの不活性ガスとの混合ガスのいずれか1つをエッチングガスとして用いる
    ことを特徴とする積層電極の加工方法。
    In the processing method of the laminated electrode of Claim 1,
    The intermediate electrode film is made of Ru;
    In the step of etching the intermediate layer electrode film, oxygen gas, CF 4 , C 2 F 6 , C 3 F 6 , C 3 F 8 , C 4 F 6 , C 4 F 8 , C 5 F 8 , Cl 2 are used. , BCl 3 , SiCl 4 , or a mixed gas of at least one halogen-based gas selected from the group consisting of HBr, and an oxygen gas, the halogen-based gas, and a group consisting of N 2 , Ne, Ar, and Xe A method for processing a laminated electrode, wherein any one of a mixed gas with at least one inert gas is used as an etching gas.
  3.  請求項1に記載の積層電極の加工方法において、
     前記中間層電極膜がCrからなり、
     前記中間層電極膜をエッチングする工程では、酸素ガスと、CF、C、C、C、C、C、C、Cl、BCl、SiClからなる群から選択される少なくとも1つのハロゲン系ガスとの混合ガス、及び酸素ガスと前記ハロゲン系ガスとN、Ne、Ar、Xeからなる群から選択される少なくとも1つの不活性ガスとの混合ガスのいずれか1つをエッチングガスとして用いる
    ことを特徴とする積層電極の加工方法。
    In the processing method of the laminated electrode of Claim 1,
    The intermediate layer electrode film is made of Cr,
    In the step of etching the intermediate layer electrode film, oxygen gas, CF 4 , C 2 F 6 , C 3 F 6 , C 3 F 8 , C 4 F 6 , C 4 F 8 , C 5 F 8 , Cl 2 are used. , BCl 3 , SiCl 4 and at least one gas selected from the group consisting of oxygen gas, the halogen gas, N 2 , Ne, Ar, and Xe. A method for processing a laminated electrode, wherein any one of a mixed gas with two inert gases is used as an etching gas.
  4.  請求項1~3のいずれか一項に記載の積層電極の加工方法において、
     前記中間層電極膜をエッチングする工程は、前記下層電極膜の一部が露出したときに終了し、
     前記下層電極膜をエッチングする工程は、前記下層電極膜上に残存する前記中間層電極膜の一部と共に前記下層電極膜をエッチングする
    ことを特徴とする積層電極の加工方法。
    In the processing method of the laminated electrode according to any one of claims 1 to 3,
    The step of etching the intermediate layer electrode film ends when a part of the lower layer electrode film is exposed,
    The step of etching the lower layer electrode film comprises etching the lower layer electrode film together with a part of the intermediate layer electrode film remaining on the lower layer electrode film.
  5.  請求項1~4のいずれか一項に記載の積層電極の加工方法において、
     前記中間層電極膜をエッチングする工程を0.1Pa以上且つ10Pa以下の圧力で行う
    ことを特徴とする積層電極の加工方法。
    In the processing method of the laminated electrode according to any one of claims 1 to 4,
    A method of processing a laminated electrode, wherein the step of etching the intermediate layer electrode film is performed at a pressure of 0.1 Pa or more and 10 Pa or less.
  6.  請求項1~5のいずれか一項に記載の積層電極の加工方法において、
     前記レジストは、前記上層電極膜上に形成された磁気抵抗素子の全体を覆い、
     前記積層電極は、前記磁気抵抗素子の下部電極である
    ことを特徴とする積層電極の加工方法。
    In the processing method of the laminated electrode according to any one of claims 1 to 5,
    The resist covers the entire magnetoresistive element formed on the upper electrode film,
    The method for processing a laminated electrode, wherein the laminated electrode is a lower electrode of the magnetoresistive element.
  7.  請求項1に記載の積層電極の加工方法において、
     前記上層電極膜をエッチングする工程と前記下層電極膜をエッチングする工程の各工程は、酸素ガスの供給を停止し、CF、C、C、C、C、C、C、Cl、BCl、SiCl、HBr、HIからなる群から選択される少なくとも1つのハロゲン系ガスをチャンバに供給することを含み、
     前記中間層電極膜をエッチングする工程は、少なくとも酸素ガスを前記チャンバに供給することを含む積層電極の加工方法。
    In the processing method of the laminated electrode of Claim 1,
    In each step of etching the upper electrode film and etching the lower electrode film, supply of oxygen gas is stopped and CF 4 , C 2 F 6 , C 3 F 6 , C 3 F 8 , C 4 are stopped. Supplying at least one halogen-based gas selected from the group consisting of F 6 , C 4 F 8 , C 5 F 8 , Cl 2 , BCl 3 , SiCl 4 , HBr, HI to the chamber;
    The method of processing a laminated electrode, wherein the step of etching the intermediate layer electrode film includes supplying at least oxygen gas to the chamber.
  8.  請求項7に記載の積層電極の加工方法において、
     前記上層電極膜をエッチングする工程と前記下層電極膜をエッチングする工程の各工程は、N、Ne、Ar、Xeからなる群から選択される少なくとも1つの不活性ガスとを前記チャンバに供給することを更に含む積層電極の加工方法。
    In the processing method of the laminated electrode of Claim 7,
    Each of the process of etching the upper electrode film and the process of etching the lower electrode film supplies at least one inert gas selected from the group consisting of N 2 , Ne, Ar, and Xe to the chamber. The processing method of the laminated electrode further including this.
  9.  請求項7に記載の積層電極の加工方法において、
     前記上層電極膜をエッチングする工程と前記下層電極膜をエッチングする工程のエッチング条件は、エッチング時間を除き同じである積層電極の加工方法。
    In the processing method of the laminated electrode of Claim 7,
    The method for processing a laminated electrode, wherein the etching conditions of the step of etching the upper electrode film and the step of etching the lower electrode film are the same except for the etching time.
  10.  請求項9に記載の積層電極の加工方法において、
     前記上層電極膜をエッチングする工程は、前記上層電極膜の厚みを前記上層電極膜のエッチングレートで除算して得られる推定エッチング完了時間に時間的マージンを加算したエッチング時間だけ実施され、
     前記中間電極膜をエッチングする工程は、前記中間電極膜の厚みを前記中間電極膜のエッチングレートで除算して得られる推定エッチング完了時間と同じエッチング時間だけ実施され、
     前記下層電極膜をエッチングする工程は、前記上層電極膜のエッチング時間よりも長い時間だけ実施される積層電極の加工方法。
    In the processing method of the laminated electrode according to claim 9,
    The step of etching the upper electrode film is performed for an etching time obtained by adding a time margin to an estimated etching completion time obtained by dividing the thickness of the upper electrode film by the etching rate of the upper electrode film,
    The step of etching the intermediate electrode film is performed for the same etching time as the estimated etching completion time obtained by dividing the thickness of the intermediate electrode film by the etching rate of the intermediate electrode film,
    The step of etching the lower electrode film is a method for processing a laminated electrode, which is performed for a time longer than an etching time of the upper electrode film.
PCT/JP2010/071861 2009-12-08 2010-12-07 Method for processing laminated electrode WO2011071028A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011545208A JP5587911B2 (en) 2009-12-08 2010-12-07 Multilayer electrode processing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-278724 2009-12-08
JP2009278724 2009-12-08

Publications (1)

Publication Number Publication Date
WO2011071028A1 true WO2011071028A1 (en) 2011-06-16

Family

ID=44145572

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/071861 WO2011071028A1 (en) 2009-12-08 2010-12-07 Method for processing laminated electrode

Country Status (3)

Country Link
JP (1) JP5587911B2 (en)
TW (1) TW201131644A (en)
WO (1) WO2011071028A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2012176747A1 (en) * 2011-06-24 2015-02-23 キヤノンアネルバ株式会社 Method for manufacturing magnetoresistive element
US11502246B2 (en) 2020-06-04 2022-11-15 Samsung Electronics Co., Ltd. Magnetoresistive device, magnetic memory, and method of fabricating a magnetoresistive device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004349687A (en) * 2003-04-17 2004-12-09 Applied Materials Inc Method of fabricating magnetoresistive random access memory (mram) device
JP2008227499A (en) * 2007-03-08 2008-09-25 Magic Technologies Inc Magnetic tunnel junction element, method for manufacturing same, and magnetic random access memory
WO2009096328A1 (en) * 2008-01-29 2009-08-06 Ulvac, Inc. Magnetic device manufacturing method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004349687A (en) * 2003-04-17 2004-12-09 Applied Materials Inc Method of fabricating magnetoresistive random access memory (mram) device
JP2008227499A (en) * 2007-03-08 2008-09-25 Magic Technologies Inc Magnetic tunnel junction element, method for manufacturing same, and magnetic random access memory
WO2009096328A1 (en) * 2008-01-29 2009-08-06 Ulvac, Inc. Magnetic device manufacturing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2012176747A1 (en) * 2011-06-24 2015-02-23 キヤノンアネルバ株式会社 Method for manufacturing magnetoresistive element
US11502246B2 (en) 2020-06-04 2022-11-15 Samsung Electronics Co., Ltd. Magnetoresistive device, magnetic memory, and method of fabricating a magnetoresistive device

Also Published As

Publication number Publication date
JP5587911B2 (en) 2014-09-10
TW201131644A (en) 2011-09-16
JPWO2011071028A1 (en) 2013-04-22

Similar Documents

Publication Publication Date Title
US6893893B2 (en) Method of preventing short circuits in magnetic film stacks
US8546263B2 (en) Method of patterning of magnetic tunnel junctions
JP4579611B2 (en) Dry etching method
US6841484B2 (en) Method of fabricating a magneto-resistive random access memory (MRAM) device
US6759263B2 (en) Method of patterning a layer of magnetic material
US20040171272A1 (en) Method of etching metallic materials to form a tapered profile
US7105361B2 (en) Method of etching a magnetic material
US20040026369A1 (en) Method of etching magnetic materials
US20040137749A1 (en) Method for removing conductive residue
US6911346B2 (en) Method of etching a magnetic material
JP2014528642A (en) Dry cleaning method to recover etching process conditions
US20090078676A1 (en) METHOD FOR DRY ETCHING Al2O3 FILM
JP5085637B2 (en) Dry etch stop process to eliminate electrical shorts in MRAM device structure
TW201619418A (en) Physical vapor deposition of low-stress nitrogen-doped tungsten films
TW201421581A (en) Plasma etching method
JP5048611B2 (en) Semiconductor device manufacturing apparatus and semiconductor device manufacturing method
US9449842B2 (en) Plasma etching method
JP2006108268A (en) Ferroelectric capacitor structure and its manufacturing method
JP5587911B2 (en) Multilayer electrode processing method
JP7261159B2 (en) Etching method
US20030181056A1 (en) Method of etching a magnetic material film stack using a hard mask
JP2010521062A (en) Method for plasma etching transition metal oxides
JP6040314B2 (en) Plasma processing method
JP2006005152A (en) Ferroelectric capacitor, method for manufacturing the same and method for manufacturing ferroelectric memory
KR20180063439A (en) Method for Etching of Palladium Thin Films

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10835948

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011545208

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10835948

Country of ref document: EP

Kind code of ref document: A1