WO2011065093A1 - Electronic component mounting structure and method for producing same - Google Patents

Electronic component mounting structure and method for producing same Download PDF

Info

Publication number
WO2011065093A1
WO2011065093A1 PCT/JP2010/065436 JP2010065436W WO2011065093A1 WO 2011065093 A1 WO2011065093 A1 WO 2011065093A1 JP 2010065436 W JP2010065436 W JP 2010065436W WO 2011065093 A1 WO2011065093 A1 WO 2011065093A1
Authority
WO
WIPO (PCT)
Prior art keywords
electronic component
component mounting
alignment mark
mounting structure
particle
Prior art date
Application number
PCT/JP2010/065436
Other languages
French (fr)
Japanese (ja)
Inventor
和隆 古田
Original Assignee
ソニーケミカル&インフォメーションデバイス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーケミカル&インフォメーションデバイス株式会社 filed Critical ソニーケミカル&インフォメーションデバイス株式会社
Publication of WO2011065093A1 publication Critical patent/WO2011065093A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0266Marks, test patterns or identification means
    • H05K1/0269Marks, test patterns or identification means for visual or optical inspection
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09818Shape or layout details not covered by a single group of H05K2201/09009 - H05K2201/09809
    • H05K2201/09918Optically detected marks used for aligning tool relative to the PCB, e.g. for mounting of components
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/01Tools for processing; Objects used during processing
    • H05K2203/0195Tool for a process not provided for in H05K3/00, e.g. tool for handling objects using suction, for deforming objects, for applying local pressure
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/11Treatments characterised by their effect, e.g. heating, cooling, roughening
    • H05K2203/1189Pressing leads, bumps or a die through an insulating layer
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/303Surface mounted components, e.g. affixing before soldering, aligning means, spacing means
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/321Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by conductive adhesives
    • H05K3/323Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by conductive adhesives by applying an anisotropic conductive adhesive layer over an array of pads

Definitions

  • the present invention relates to a method for manufacturing an electronic component mounting structure and an electronic component mounting structure manufactured by the method.
  • the anisotropic conductive film 10 is adjusted to the size of each IC chip 30 so that the anisotropic conductive film 10 does not overlap the alignment mark 20 as shown in FIG.
  • the anisotropic conductive film 10 is banded according to the width of the IC chip 30 as shown in FIG. Therefore, it is necessary to attach the anisotropic conductive film in conformity with each shape, and the productivity is low, and a highly accurate film sticking apparatus is required.
  • an object of the present invention is to provide a method for manufacturing an electronic component mounting structure in which an alignment mark can be recognized through a particle-containing film, and an electronic component mounting structure manufactured by the method.
  • a film placement step of placing a particle-containing film on a substrate having an alignment mark, and a particle-containing film in a region immediately above the alignment mark are pressed using a pressing member, and the thickness of the particle-containing film is determined.
  • An electronic component mounting structure comprising: an electronic component mounting step for mounting.
  • ⁇ 2> The method for manufacturing an electronic component mounting structure according to ⁇ 1>, wherein the pressing member has a hemispherical pressing portion.
  • ⁇ 3> The method for manufacturing an electronic component mounting structure according to any one of ⁇ 1> to ⁇ 2>, wherein the pressing member can be pressed so as to cover the alignment mark.
  • ⁇ 4> The method for manufacturing an electronic component mounting structure according to any one of ⁇ 1> to ⁇ 3>, wherein the pressing member includes polytetrafluoroethylene.
  • the particle-containing film includes a thermosetting resin, and in the electronic component mounting step, the substrate and the electronic component are thermocompression bonded via the particle-containing film, according to any one of ⁇ 1> to ⁇ 4>.
  • ⁇ 6> The method for manufacturing an electronic component mounting structure according to any one of ⁇ 1> to ⁇ 5>, wherein the alignment mark is located in a mounting region.
  • ⁇ 7> The method for manufacturing an electronic component mounting structure according to any one of ⁇ 1> to ⁇ 6>, wherein an elastic head including an elastomer is used in the electronic component mounting step.
  • ⁇ 8> An electronic component mounting structure manufactured by the method for manufacturing an electronic component mounting structure according to any one of ⁇ 1> to ⁇ 7>.
  • a method for manufacturing an electronic component mounting structure capable of solving the above-described problems and achieving the object, and recognizing an alignment mark via a particle-containing film, and the method
  • the electronic component mounting structure manufactured by the above can be provided.
  • FIG. 1 is a diagram showing an arrangement of anisotropic conductive films in a conventional wiring board (No. 1).
  • FIG. 2 is a view showing the arrangement of an anisotropic conductive film in a conventional wiring board (No. 2).
  • FIG. 3 is a view for explaining a method for manufacturing an electronic component mounting structure according to the present invention (part 1).
  • FIG. 4 is a drawing for explaining the method for manufacturing an electronic component mounting structure according to the present invention (No. 2).
  • FIG. 5 is a view for explaining the method for manufacturing an electronic component mounting structure according to the present invention (No. 3).
  • FIG. 6 is a diagram showing an example of alignment marks used in the method for manufacturing an electronic component mounting structure according to the present invention.
  • FIG. 7 is a diagram showing another example of alignment marks used in the method for manufacturing an electronic component mounting structure according to the present invention.
  • the method for manufacturing an electronic component mounting structure according to the present invention includes at least a film arranging step, a pressing step, a mounting area defining step, and an electronic component mounting step, and further selecting other steps as necessary.
  • the electronic component mounting structure of the present invention is an electronic component mounting structure manufactured by the method of manufacturing an electronic component mounting structure of the present invention, and is formed on a base material having an alignment mark and the base material A particle-containing film and an electronic component mounted on a mounting region based on the position of the alignment mark.
  • the film disposing step is a step of disposing a particle-containing film on a substrate having an alignment mark.
  • the alignment mark is not particularly limited as long as it can be used for alignment between the base material and the electronic component, and can be appropriately selected according to the purpose.
  • the size of the alignment mark is not particularly limited and may be appropriately selected according to the purpose.
  • the maximum length of the cross-sectional shape (for example, the diameter of the circle of the circular column in the case of a cylindrical shape) is 0. It is preferably 0.05 mm to 1 mm, more preferably 0.1 mm to 0.6 mm, and particularly preferably 0.2 mm to 0.5 mm. If the maximum length is less than 0.05 mm, the mark may not be read. If the maximum length exceeds 1 mm, the mark may not fit in the field of view when the alignment mark is recognized. On the other hand, if the maximum length is within the particularly preferable range, it is advantageous in terms of mark readability.
  • the maximum length means the diameter or diagonal of the alignment mark (region where the alignment mark exists).
  • the height of the alignment mark is substantially equal to the thickness of the circuit on the substrate.
  • the material of the alignment mark is not particularly limited and can be appropriately selected depending on the purpose.
  • the core material is plated with Ni / Au on copper, the core material is plated with Au, Etc.
  • the substrate is not particularly limited and can be appropriately selected depending on the purpose. Examples include a glass epoxy substrate, a polyimide substrate, a ceramic substrate, a paper phenol substrate, and a PET substrate.
  • the particle-containing film is not particularly limited as long as it is a film containing particles, and can be appropriately selected according to the purpose.
  • non-conductive including an anisotropic conductive film (ACF), silica particles, and the like.
  • ACF anisotropic conductive film
  • NCF adhesive film
  • ACF Anisotropic conductive film
  • ACF is not particularly limited as long as it is a film containing at least conductive particles and a binder, and can be appropriately selected depending on the purpose.
  • Conductive particles-- The conductive particles are not particularly limited and may be appropriately selected depending on the purpose.
  • the number average particle diameter of the same configuration as that used in conventional anisotropic conductive adhesive is 1 ⁇ m to 50 ⁇ m.
  • Metal particles or metal-coated resin particles can be used. There is no restriction
  • binder--- There is no restriction
  • Non-conductive film (NCF)- The non-conductive film (NCF) is not particularly limited as long as it contains silica particles and the like, and can be appropriately selected according to the purpose. Examples thereof include a silica-containing thermosetting epoxy resin film. .
  • silica particles are not particularly limited and may be appropriately selected depending on the intended purpose. However, silica particles having a number average particle diameter of 0.01 ⁇ m to 0.5 ⁇ m are preferable.
  • the pressing step is a step of reducing the thickness of the particle-containing film by pressing the particle-containing film in the region immediately above the alignment mark using a pressing member.
  • the particle-containing film in the region immediately above the plurality of alignment marks may be pressed in a lump using a plurality of pressing members.
  • the pressing force in the pressing is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 1 MPa to 100 MPa, more preferably 5 MPa to 75 MPa, and particularly preferably 10 MPa to 50 MPa. If the pressing force is less than 1 MPa, the pressing effect may not be obtained, and if it exceeds 100 MPa, the substrate may be damaged. On the other hand, when the pressing force is within the particularly preferable range, it is advantageous in terms of the balance between the pressure and the readability.
  • the pressing time in the pressing is not particularly limited and may be appropriately selected depending on the purpose, but is preferably 0.01 seconds to 3 seconds, more preferably 0.05 seconds to 2 seconds, and more preferably 0.1 seconds. ⁇ 1 second is particularly preferred.
  • the pressing time is less than 0.01 seconds, the pressing effect may not be obtained, and if it exceeds 3 seconds, productivity may be reduced.
  • the pressing time is within the particularly preferable range, it is advantageous in terms of a balance between productivity and readability.
  • the particles When the particle-containing film in the region immediately above the alignment mark is pressed, the particles are pushed away by the pressing (the particles do not move in the same direction as the pressing direction, but move in a direction substantially perpendicular to the pressing direction), and are thinned by pressing. Also in the particle-containing film portion, particles exist with a particle density substantially equal to the particle density in the particle-containing film before pressing. Accordingly, it is considered that the alignment mark can be easily recognized and the pattern recognition coincidence described later is improved because the particle-containing film is thin.
  • the region directly above is a region including at least a part of a region (region A in FIG. 3) located on the top of the alignment mark when viewed from the orthogonal direction of the base material on which the alignment mark is formed.
  • the region located on the center of gravity (center) of the alignment when viewed from the orthogonal direction of the substrate on which the alignment mark is formed is a region including all the region (region A in FIG. 3) located on the top of the alignment mark when viewed from the orthogonal direction of the substrate on which the alignment mark is formed.
  • a pressing member that can be pressed so as to cover the alignment mark is used.
  • the pressing member is not particularly limited as long as the particle-containing film can be pressed, and can be appropriately selected according to the purpose.
  • a shape in which a hemisphere is formed on one bottom surface of a cylinder is preferable in that incident light can be scattered to suppress the “light” and improve pattern recognition coincidence described later.
  • size which can be pressed so that an alignment mark may be covered is preferable.
  • the material of the pressing member is not particularly limited and may be appropriately selected according to the purpose. However, the surface of the particle-containing film is coated with polytetrafluoroethylene in order to prevent adhesion of the binder (adhesive component) in the particle-containing film. Are preferred.
  • the pressing member preferably includes a spring mechanism that can absorb the difference in height between the alignment marks and a heating mechanism that facilitates reducing the thickness of the particle-containing film (easily forming a recess).
  • the mounting region defining step is a step of defining a mounting region of an electronic component based on the position of an alignment mark in which the thin part of the particle-containing film is formed in the region directly above.
  • a method for recognizing the alignment mark is not particularly limited and may be appropriately selected depending on the purpose.
  • a conventionally used method for example, an alignment mark And a method of detecting light reflected by the alignment mark.
  • a round alignment mark and a cross alignment mark as shown in FIGS. 6 and 7 are arranged on the IC and the substrate.
  • “+” in the center of the alignment mark means the center coordinate C for alignment
  • the alignment mark (the outer periphery of +) is set so as to correspond to the center coordinate C.
  • the alignment mark (circle or cross) on the outer periphery of the camera is read, the center coordinate C is naturally derived and alignment can be performed.
  • An alignment mark is set to match the center coordinate C.
  • the mounting area is not particularly limited as long as it is based on the position of the alignment mark, and can be appropriately selected according to the purpose. However, the mounting area (FIG. 5) in which the alignment mark is located is preferable. Thereby, a mounting board can be reduced in size.
  • the electronic component mounting step is a step of mounting an electronic component in the mounting region.
  • the electronic component is mounted on the mounting region by thermocompression bonding the base material and the electronic component through the particle-containing film.
  • the pressure in the thermocompression bonding is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 0.1 MPa to 10 MPa, more preferably 0.5 MPa to 7 MPa, and particularly preferably 1 MPa to 5 MPa. If the pressure is less than 0.1 MPa, conduction may not be obtained due to insufficient pressing, and if it exceeds 10 MPa, conduction may not be obtained due to springback. On the other hand, when the pressure is within the particularly preferable range, it is advantageous in terms of stability of conduction.
  • the heating temperature in the thermocompression bonding is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 90 ° C to 280 ° C, more preferably 100 ° C to 240 ° C, and particularly preferably 110 ° C to 200 ° C. preferable. If the heating temperature is less than 90 ° C, it may take time to cure, and if it exceeds 280 ° C, the residual stress may increase. On the other hand, when the heating temperature is within the particularly preferable range, it is advantageous in terms of connection reliability.
  • the thermocompression bonding time in the thermocompression bonding is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 3 seconds to 300 seconds, more preferably 4 seconds to 60 seconds, and more preferably 5 seconds to 30 seconds.
  • thermocompression bonding time is less than 3 seconds, the resin may not be sufficiently cured, and if it exceeds 300 seconds, productivity may be reduced. On the other hand, when the thermocompression bonding time is within the particularly preferable range, it is advantageous in terms of productivity and connection reliability. In the thermocompression bonding, it is preferable to use an elastic head.
  • the elastic head is not particularly limited as long as it contains an elastomer, and can be appropriately selected according to the purpose.
  • Example 1 As shown in FIGS. 3 and 4, alignment marks 31 (core: copper) formed on a TEG substrate 34 (trade name: MCL-E-679F, manufactured by Hitachi Chemical Co., Ltd.) with a pitch of 8 mm in length and 8 mm in width.
  • Anisotropic conductive film 32 (trade name: FP5530, manufactured by Sony Chemical & Information Device Co., Ltd., thickness: 40 ⁇ m) is affixed onto a circular cylinder having a cross section of 0.3 mm in diameter) Using a metal rod 40 having a cylindrical shape (bottom: 2 mm diameter, height: 20 mm, flat tip shape), pressing is performed at a pressure of 20 MPa and a pressing time of 1 second to form a recess (thin portion) 33.
  • a mounting area defined by a flip chip bonder (trade name: FB30T-M, manufactured by Panasonic) is defined based on the position of the alignment mark in which the concave portion 33 is formed in the region immediately above.
  • An IC chip 41 was mounted on the area to produce an electronic component mounting structure.
  • the thickness t 1 ( ⁇ m) of the anisotropic conductive film 32 on the alignment mark 31 (when the thickness varies depending on the measurement position) Minimum value) is measured, the pattern recognition coincidence degree A of the alignment mark 31 is measured using a flip chip bonder (trade name: FB30T-M, manufactured by Panasonic), and the spectrocolorimeter (trade name: CM-3600d, Konica)
  • the light transmittance (%) was measured using Minolta. Further, as shown in FIG.
  • alignment marks 51 (core: copper, Ni / Au plating) formed at a pitch of 5.5 mm vertically and 5.5 mm horizontally in the mounting area of the IC chip 41, and the cross section has a diameter of 0. .1 mm circular cylindrical shape), as in the case of the alignment mark 31, the anisotropic conductive film 32 is attached and pressed using the metal rod 40 to form the recess 33, An electronic component mounting structure was produced, and the pattern recognition coincidence frequency B was measured.
  • the pattern recognition coincidence degrees A and B are absolute evaluations (absolute values) calculated using normalized correlation using a flip chip bonder (trade name: FB30T-M, manufactured by Panasonic Corporation).
  • the light transmittance is obtained by calculating the light transmittance of the anisotropic conductive film having the measured thickness using the measurement result of the thickness of the anisotropic conductive film 32 on the alignment marks 31 and 51. is there. Therefore, the light transmittance before attaching the anisotropic conductive film 32 is 100%.
  • Example 2 In Example 1, a cylindrical rod (bottom: 2 mm in diameter, height: 20 mm, tip shape is flat) is combined with a cylindrical shape (bottom: 2 mm in diameter, height: 20 mm) and a hemisphere (2 mm in diameter).
  • An electronic component mounting structure was prepared in the same manner as in Example 1 except that the metal rod was changed to a metal rod having a hemispherical shape (tip shape is hemispherical), and the anisotropic conductive film thickness t 1 ( ⁇ m), pattern recognition The coincidence frequencies A and B (%) and light transmittance (%) were measured.
  • Example 1 An electronic component mounting structure was produced in the same manner as in Example 1 except that pressing with a metal rod was not performed, and the thickness t 0 ( ⁇ m) of the anisotropic conductive film and pattern recognition coincidence were obtained. The frequencies A and B (%) and light transmittance (%) were measured.
  • Examples 1 and 2 since the pattern recognition coincidence in Examples 1 and 2 is within an allowable range (70% or more), by pressing the anisotropic conductive film 32 on the alignment marks 31 and 51 with the metal rod 40. It was found that the alignment marks 31 and 51 can be recognized by a flip chip bonder (trade name: FB30TM-M, manufactured by Panasonic). As in Examples 1 and 2, when the particle-containing film in the region immediately above the alignment mark is pressed, the particles are pushed away by the pressing (the particles do not move in the same direction as the pressing direction, and are substantially perpendicular to the pressing direction). Even in the particle-containing film portion that is thinned by pressing, particles are present at a particle density substantially equal to the particle density in the particle-containing film before pressing.
  • the alignment marks A and B are improved because the particle-containing film is thinned so that the alignment mark can be easily recognized.
  • the anisotropic conductive film 32 can be applied to the entire surface of the substrate 34 so as to cover the alignment marks 31 and 51, a highly accurate film application device is not required, and the number of times of adhesive sheet application can be increased. Therefore, the process can be shortened. Further, as shown in FIG. 5, it is possible to install the alignment mark 51 in the mounting area of the IC chip 41, and the substrate can be miniaturized.
  • Example 1 in which the anisotropic conductive film was pressed using a metal rod having a flat tip shape was compared with Example 2 in which the anisotropic conductive film was pressed using a metal rod having a hemispherical tip shape.
  • Example 2 shows better pattern recognition coincidence (%). This is because by using a metal rod having a hemispherical tip shape, the shape of the formed recess becomes hemispherical, which can scatter incident light and suppress “light”, and the pattern recognition coincidence ( %) Is considered to have improved.
  • the method for manufacturing an electronic component mounting structure according to the present invention is suitably used for manufacturing a semiconductor device, for example.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)
  • Wire Bonding (AREA)
  • Structure Of Printed Boards (AREA)

Abstract

Disclosed is a method for producing an electronic component mounting structure, comprising a film disposing step for disposing a film containing particles on a substrate having alignment marks, a pressing step for pressing the portions of the film containing particles on areas directly above the alignment marks, using a pressing member, to reduce the thickness of the portions of the film containing particles, a mounting area defining step for defining a mounting area for an electronic component on the basis of the position of the alignment marks, directly above which the thin portions of the film containing particles are formed, and an electronic component mounting step for mounting an electronic component on the mounting area.

Description

電子部品実装構造体及びその製造方法Electronic component mounting structure and manufacturing method thereof
 本発明は、電子部品実装構造体の製造方法及び該方法により製造された電子部品実装構造体に関する。 The present invention relates to a method for manufacturing an electronic component mounting structure and an electronic component mounting structure manufactured by the method.
 従来、プリント配線板等の配線基板上にICチップを直接実装する方法として、バインダー中に導電粒子を分散させた異方性導電フィルムを用いる方法が知られている。
 前記異方性導電フィルムを用いた実装方法では、異方性導電フィルムを貼り付けた配線基板上にICチップを搭載した後に、前記ICチップを加圧・加熱して異方性導電フィルムを硬化させて熱圧着実装を行う。
Conventionally, as a method of directly mounting an IC chip on a wiring board such as a printed wiring board, a method using an anisotropic conductive film in which conductive particles are dispersed in a binder is known.
In the mounting method using the anisotropic conductive film, after mounting the IC chip on the wiring substrate on which the anisotropic conductive film is pasted, the IC chip is pressurized and heated to cure the anisotropic conductive film. To perform thermocompression mounting.
 ICチップと配線基板との接続にあたっては、両者の位置合わせ(アライメント)を高精度に行う必要がある。即ち、ICチップ上のアライメントマークと、配線基板上のアライメントマークとを認識し、ICチップとそれを貼り付ける配線基板との位置合わせを精密かつ正確に行うことが重要となる。
 ここで、アライメントマークの認識の観点から、図1に示すように、異方性導電フィルム10がアライメントマーク20に重ならないように、異方性導電フィルム10を各ICチップ30の大きさに合わせて配線基板に配置するか、または、図2に示すように、異方性導電フィルム10をICチップ30の幅に合わせて帯貼りしていた。そのため、異方性導電フィルムを個々の形状に合わせて貼り付ける必要があり、生産性が低く、また、高精度なフィルム貼付装置を必要としていた。
When connecting the IC chip and the wiring board, it is necessary to align the two with high precision. That is, it is important to recognize the alignment mark on the IC chip and the alignment mark on the wiring board, and to precisely and accurately align the IC chip and the wiring board to which the IC chip is attached.
Here, from the viewpoint of alignment mark recognition, the anisotropic conductive film 10 is adjusted to the size of each IC chip 30 so that the anisotropic conductive film 10 does not overlap the alignment mark 20 as shown in FIG. The anisotropic conductive film 10 is banded according to the width of the IC chip 30 as shown in FIG. Therefore, it is necessary to attach the anisotropic conductive film in conformity with each shape, and the productivity is low, and a highly accurate film sticking apparatus is required.
 また、配線基板上にICチップを直接実装するフリップチップ実装において、配線基板のアライメントマークを除いた部分に接着剤層を形成することが行われているが(例えば、特許文献1)、接着剤層を形成する工程が煩雑となり、コスト高となってしまうという問題があった。 In flip chip mounting in which an IC chip is directly mounted on a wiring board, an adhesive layer is formed on a portion of the wiring board excluding the alignment mark (for example, Patent Document 1). There is a problem that the process of forming the layer becomes complicated and the cost becomes high.
特開2007-294575号公報JP 2007-294575 A
 本発明は、従来における前記諸問題を解決し、以下の目的を達成することを課題とする。即ち、本発明は、アライメントマークを、粒子含有フィルムを介して認識することができる電子部品実装構造体の製造方法及び該方法により製造された電子部品実装構造体を提供することを目的とする。 This invention makes it a subject to solve the said various problems in the past and to achieve the following objectives. That is, an object of the present invention is to provide a method for manufacturing an electronic component mounting structure in which an alignment mark can be recognized through a particle-containing film, and an electronic component mounting structure manufactured by the method.
 前記課題を解決する手段としては、以下の通りである。即ち、
 <1> アライメントマークを有する基材上に粒子含有フィルムを配置するフィルム配置工程と、前記アライメントマークの直上領域における粒子含有フィルムを、押圧部材を用いて押圧して、前記粒子含有フィルムの厚みを薄くする押圧工程と、前記粒子含有フィルムの厚みの薄い部分が直上領域に形成されたアライメントマークの位置に基づいて電子部品の実装領域を画定する実装領域画定工程と、前記実装領域に電子部品を実装する電子部品実装工程と、を含むこと特徴とする電子部品実装構造体の製造方法である。
 <2> 押圧部材が、半球状の押圧部を有する前記<1>に記載の電子部品実装構造体の製造方法である。
 <3> 押圧部材が、アライメントマークを覆うようにして押圧可能である前記<1>から<2>のいずれかに記載の電子部品実装構造体の製造方法である。
 <4> 押圧部材が、ポリテトラフルオロエチレンを含む前記<1>から<3>のいずれかに記載の電子部品実装構造体の製造方法である。
 <5> 粒子含有フィルムが熱硬化樹脂を含み、電子部品実装工程において、前記粒子含有フィルムを介して、基材と電子部品とを熱圧着する前記<1>から<4>のいずれかに記載の電子部品実装構造体の製造方法である。
 <6> アライメントマークが実装領域内に位置する前記<1>から<5>のいずれかに記載の電子部品実装構造体の製造方法である。
 <7> 電子部品実装工程において、エラストマーを含む弾性ヘッドを用いる前記<1>から<6>のいずれかに記載の電子部品実装構造体の製造方法である。
 <8> 前記<1>から<7>のいずれかに記載の電子部品実装構造体の製造方法によって製造されたことを特徴とする電子部品実装構造体である。
Means for solving the above problems are as follows. That is,
<1> A film placement step of placing a particle-containing film on a substrate having an alignment mark, and a particle-containing film in a region immediately above the alignment mark are pressed using a pressing member, and the thickness of the particle-containing film is determined. A pressing step of thinning, a mounting region defining step of defining a mounting region of an electronic component based on a position of an alignment mark in which a thin portion of the particle-containing film is formed in a region directly above, and an electronic component in the mounting region An electronic component mounting structure comprising: an electronic component mounting step for mounting.
<2> The method for manufacturing an electronic component mounting structure according to <1>, wherein the pressing member has a hemispherical pressing portion.
<3> The method for manufacturing an electronic component mounting structure according to any one of <1> to <2>, wherein the pressing member can be pressed so as to cover the alignment mark.
<4> The method for manufacturing an electronic component mounting structure according to any one of <1> to <3>, wherein the pressing member includes polytetrafluoroethylene.
<5> The particle-containing film includes a thermosetting resin, and in the electronic component mounting step, the substrate and the electronic component are thermocompression bonded via the particle-containing film, according to any one of <1> to <4>. It is a manufacturing method of the electronic component mounting structure.
<6> The method for manufacturing an electronic component mounting structure according to any one of <1> to <5>, wherein the alignment mark is located in a mounting region.
<7> The method for manufacturing an electronic component mounting structure according to any one of <1> to <6>, wherein an elastic head including an elastomer is used in the electronic component mounting step.
<8> An electronic component mounting structure manufactured by the method for manufacturing an electronic component mounting structure according to any one of <1> to <7>.
 本発明によれば、従来における前記諸問題を解決し、前記目的を達成することができ、アライメントマークを、粒子含有フィルムを介して認識することができる電子部品実装構造体の製造方法及び該方法により製造された電子部品実装構造体を提供することができる。 According to the present invention, a method for manufacturing an electronic component mounting structure capable of solving the above-described problems and achieving the object, and recognizing an alignment mark via a particle-containing film, and the method The electronic component mounting structure manufactured by the above can be provided.
図1は、従来の配線基板における異方性導電フィルムの配置を示す図である(その1)。FIG. 1 is a diagram showing an arrangement of anisotropic conductive films in a conventional wiring board (No. 1). 図2は、従来の配線基板における異方性導電フィルムの配置を示す図である(その2)。FIG. 2 is a view showing the arrangement of an anisotropic conductive film in a conventional wiring board (No. 2). 図3は、本発明の電子部品実装構造体の製造方法を説明するための図である(その1)。FIG. 3 is a view for explaining a method for manufacturing an electronic component mounting structure according to the present invention (part 1). 図4は、本発明の電子部品実装構造体の製造方法を説明するための図である(その2)。FIG. 4 is a drawing for explaining the method for manufacturing an electronic component mounting structure according to the present invention (No. 2). 図5は、本発明の電子部品実装構造体の製造方法を説明するための図である(その3)。FIG. 5 is a view for explaining the method for manufacturing an electronic component mounting structure according to the present invention (No. 3). 図6は、本発明の電子部品実装構造体の製造方法に用いられるアライメントマークの例を示す図である。FIG. 6 is a diagram showing an example of alignment marks used in the method for manufacturing an electronic component mounting structure according to the present invention. 図7は、本発明の電子部品実装構造体の製造方法に用いられるアライメントマークの他の例を示す図である。FIG. 7 is a diagram showing another example of alignment marks used in the method for manufacturing an electronic component mounting structure according to the present invention.
(電子部品実装構造体及びその製造方法)
 本発明の電子部品実装構造体の製造方法は、フィルム配置工程と、押圧工程と、実装領域画定工程と、電子部品実装工程とを少なくとも含み、更に必要に応じて適宜選択した、その他の工程を含む。
 本発明の電子部品実装構造体は、本発明の電子部品実装構造体の製造方法により製造された電子部品実装構造体であって、アライメントマークを有する基材と、前記基材上に形成された粒子含有フィルムと、前記アライメントマークの位置に基づく実装領域に実装された電子部品とを有する。
(Electronic component mounting structure and manufacturing method thereof)
The method for manufacturing an electronic component mounting structure according to the present invention includes at least a film arranging step, a pressing step, a mounting area defining step, and an electronic component mounting step, and further selecting other steps as necessary. Including.
The electronic component mounting structure of the present invention is an electronic component mounting structure manufactured by the method of manufacturing an electronic component mounting structure of the present invention, and is formed on a base material having an alignment mark and the base material A particle-containing film and an electronic component mounted on a mounting region based on the position of the alignment mark.
<フィルム配置工程>
 前記フィルム配置工程は、アライメントマークを有する基材上に粒子含有フィルムを配置する工程である。
<Film placement process>
The film disposing step is a step of disposing a particle-containing film on a substrate having an alignment mark.
<<アライメントマーク>>
 前記アライメントマークとしては、基材と電子部品との位置合わせに使用可能なものである限り、特に制限はなく、目的に応じて適宜選択することができる。
 前記アライメントマークの形状としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、円柱状、半球状、円錐状、角柱状、角錐状、+字状、などが挙げられる。これらの中でも、エッチング又はメッキによる形成のし易さの点で、円柱状が好ましい。
<< Alignment mark >>
The alignment mark is not particularly limited as long as it can be used for alignment between the base material and the electronic component, and can be appropriately selected according to the purpose.
There is no restriction | limiting in particular as a shape of the said alignment mark, According to the objective, it can select suitably, For example, cylindrical shape, hemispherical shape, cone shape, prismatic shape, pyramid shape, + character shape etc. are mentioned. Among these, a columnar shape is preferable from the viewpoint of easy formation by etching or plating.
 前記アライメントマークの大きさとしては、特に制限はなく、目的に応じて適宜選択することができるが、断面形状の最大長さ(例えば、円柱状である場合、円柱断面の円の直径)が0.05mm~1mmであることが好ましく、0.1mm~0.6mmであることがより好ましく、0.2mm~0.5mmであることが特に好ましい。
 前記最大長さが0.05mm未満であると、マークが読み取れないことがあり、1mmを超えると、アライメントマーク認識時に視野に収まらないことがある。一方、前記最大長さが前記特に好ましい範囲内であると、マーク読み取り性の点で有利である。
 なお、最大長さは、アライメントマーク(アライメントマークが存在する領域)の直径又は対角線を意味する。
The size of the alignment mark is not particularly limited and may be appropriately selected according to the purpose. However, the maximum length of the cross-sectional shape (for example, the diameter of the circle of the circular column in the case of a cylindrical shape) is 0. It is preferably 0.05 mm to 1 mm, more preferably 0.1 mm to 0.6 mm, and particularly preferably 0.2 mm to 0.5 mm.
If the maximum length is less than 0.05 mm, the mark may not be read. If the maximum length exceeds 1 mm, the mark may not fit in the field of view when the alignment mark is recognized. On the other hand, if the maximum length is within the particularly preferable range, it is advantageous in terms of mark readability.
The maximum length means the diameter or diagonal of the alignment mark (region where the alignment mark exists).
 前記アライメントマークの高さは基板上の回路の厚みと略同等である。 The height of the alignment mark is substantially equal to the thickness of the circuit on the substrate.
 前記アライメントマークの材質としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、コア材料としての銅にNi/Auメッキしたもの、コア材料としての銅にAuメッキしたもの、などが挙げられる。 The material of the alignment mark is not particularly limited and can be appropriately selected depending on the purpose. For example, the core material is plated with Ni / Au on copper, the core material is plated with Au, Etc.
<<基材>>
 前記基材としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、
ガラスエポキシ基板、ポリイミド基板、セラミック基板、紙フェノール基板、PET基板などが挙げられる。
<< Base material >>
The substrate is not particularly limited and can be appropriately selected depending on the purpose.
Examples include a glass epoxy substrate, a polyimide substrate, a ceramic substrate, a paper phenol substrate, and a PET substrate.
<<粒子含有フィルム>>
 前記粒子含有フィルムとしては、粒子を含有したフィルムである限り、特に制限はなく、目的に応じて適宜選択することができ、例えば、異方性導電フィルム(ACF)、シリカ粒子などを含む非導電性フィルム(NCF)などが挙げられる。
<< particle-containing film >>
The particle-containing film is not particularly limited as long as it is a film containing particles, and can be appropriately selected according to the purpose. For example, non-conductive including an anisotropic conductive film (ACF), silica particles, and the like. Include an adhesive film (NCF).
-異方性導電フィルム(ACF)-
 前記異方性導電フィルム(ACF)としては、導電性粒子と、バインダーとを少なくとも含むフィルムである限り、特に制限はなく、目的に応じて適宜選択することができる。
-Anisotropic conductive film (ACF)-
The anisotropic conductive film (ACF) is not particularly limited as long as it is a film containing at least conductive particles and a binder, and can be appropriately selected depending on the purpose.
--導電性粒子--
 前記導電性粒子としては、特に制限はなく、目的に応じて適宜選択することができ、従来の異方性導電接着剤において用いられているものと同じ構成の数平均粒子径が1μm~50μmの金属粒子又は金属被覆樹脂粒子を使用することができる。
 前記金属粒子としては、特に制限はなく、目的に応じて適宜選択することができ、ニッケル、コバルト、銅などが挙げられる。それらの表面酸化を防ぐ目的で、表面に金、パラジウムを施した粒子を用いてもよい。更に、表面に金属突起や有機物で絶縁皮膜を施したものを用いてもよい。
 前記金属被覆樹脂粒子としては、特に制限はなく、目的に応じて適宜選択することができ、ニッケル、コバルト、銅などの1種以上でメッキを施した真球状の粒子が挙げられる。同様に、最外表面に金、パラジウムを施した粒子を用いてもよい。更に、表面に金属突起や有機物で絶縁皮膜を施したものを用いてもよい。
--- Conductive particles--
The conductive particles are not particularly limited and may be appropriately selected depending on the purpose. The number average particle diameter of the same configuration as that used in conventional anisotropic conductive adhesive is 1 μm to 50 μm. Metal particles or metal-coated resin particles can be used.
There is no restriction | limiting in particular as said metal particle, According to the objective, it can select suitably, Nickel, cobalt, copper, etc. are mentioned. In order to prevent such surface oxidation, particles having gold or palladium on the surface may be used. Furthermore, you may use what gave the insulating film with the metal protrusion and organic substance on the surface.
There is no restriction | limiting in particular as said metal-coated resin particle, According to the objective, it can select suitably, The spherical particle plated with 1 or more types, such as nickel, cobalt, copper, is mentioned. Similarly, particles having gold or palladium on the outermost surface may be used. Furthermore, you may use what gave the insulating film with the metal protrusion and organic substance on the surface.
--バインダー--
 前記バインダーとしては、特に制限はなく、目的に応じて適宜選択することができ、例えば、エポキシ樹脂、アクリレート樹脂等の熱硬化樹脂などが挙げられる。
--binder--
There is no restriction | limiting in particular as said binder, According to the objective, it can select suitably, For example, thermosetting resins, such as an epoxy resin and an acrylate resin, etc. are mentioned.
-非導電性フィルム(NCF)-
 前記非導電性フィルム(NCF)としては、シリカ粒子などを含むものである限り、特に制限はなく、目的に応じて適宜選択することができ、例えば、シリカ含有熱硬化性エポキシ樹脂フィルム、などが挙げられる。
-Non-conductive film (NCF)-
The non-conductive film (NCF) is not particularly limited as long as it contains silica particles and the like, and can be appropriately selected according to the purpose. Examples thereof include a silica-containing thermosetting epoxy resin film. .
-シリカ粒子-
 前記シリカ粒子としては、特に制限はなく、目的に応じて適宜選択することができるが、数平均粒子径が0.01μm~0.5μmのシリカ粒子が好ましい。
-Silica particles-
The silica particles are not particularly limited and may be appropriately selected depending on the intended purpose. However, silica particles having a number average particle diameter of 0.01 μm to 0.5 μm are preferable.
<押圧工程>
 前記押圧工程は、前記アライメントマークの直上領域における粒子含有フィルムを、押圧部材を用いて押圧して、前記粒子含有フィルムの厚みを薄くする工程である。
 なお、前記押圧工程では、複数のアライメントマークの直上領域における粒子含有フィルムを、複数の押圧部材を用いて、一括して押圧してもよい。
<Pressing process>
The pressing step is a step of reducing the thickness of the particle-containing film by pressing the particle-containing film in the region immediately above the alignment mark using a pressing member.
In the pressing step, the particle-containing film in the region immediately above the plurality of alignment marks may be pressed in a lump using a plurality of pressing members.
<<押圧>>
 前記押圧における押圧力としては、特に制限はなく、目的に応じて適宜選択することができるが、1MPa~100MPaが好ましく、5MPa~75MPaがより好ましく、10MPa~50MPaが特に好ましい。
 前記押圧力が1MPa未満であると、押圧の効果が得られないことがあり、100MPaを超えると、基板を損傷することがある。一方、前記押圧力が前記特に好ましい範囲内であると、圧力と読み取り性のバランスの点で有利である。
 前記押圧における押圧時間としては、特に制限はなく、目的に応じて適宜選択することができるが、0.01秒間~3秒間が好ましく、0.05秒間~2秒間がより好ましく、0.1秒間~1秒間が特に好ましい。
 前記押圧時間が0.01秒間未満であると、押圧の効果が得られないことがあり、3秒間を超えると、生産性が低下することがある。一方、前記押圧時間が前記特に好ましい範囲内であると、生産性と読み取り性のバランスの点の点で有利である。
<< Pressing >>
The pressing force in the pressing is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 1 MPa to 100 MPa, more preferably 5 MPa to 75 MPa, and particularly preferably 10 MPa to 50 MPa.
If the pressing force is less than 1 MPa, the pressing effect may not be obtained, and if it exceeds 100 MPa, the substrate may be damaged. On the other hand, when the pressing force is within the particularly preferable range, it is advantageous in terms of the balance between the pressure and the readability.
The pressing time in the pressing is not particularly limited and may be appropriately selected depending on the purpose, but is preferably 0.01 seconds to 3 seconds, more preferably 0.05 seconds to 2 seconds, and more preferably 0.1 seconds. ˜1 second is particularly preferred.
If the pressing time is less than 0.01 seconds, the pressing effect may not be obtained, and if it exceeds 3 seconds, productivity may be reduced. On the other hand, when the pressing time is within the particularly preferable range, it is advantageous in terms of a balance between productivity and readability.
 アライメントマークの直上領域における粒子含有フィルムを押圧すると、該押圧により粒子が押しのけられるため(粒子が押圧方向と同一方向に移動せず、押圧方向と略垂直な方向に移動する)、押圧により薄くなった粒子含有フィルム部分においても、押圧前の粒子含有フィルムにおける粒子密度とほぼ同等な粒子密度で粒子が存在する。よって、粒子含有フィルムが薄くなったことで、アライメントマークの認識がしやすくなり、後述するパターン認識一致度が向上するものと考えられる。 When the particle-containing film in the region immediately above the alignment mark is pressed, the particles are pushed away by the pressing (the particles do not move in the same direction as the pressing direction, but move in a direction substantially perpendicular to the pressing direction), and are thinned by pressing. Also in the particle-containing film portion, particles exist with a particle density substantially equal to the particle density in the particle-containing film before pressing. Accordingly, it is considered that the alignment mark can be easily recognized and the pattern recognition coincidence described later is improved because the particle-containing film is thin.
<<直上領域>>
 前記直上領域とは、前記アライメントマークが形成された基材の直交方向から視たときのアライメントマークの頂部の上に位置する領域(図3における領域A)の少なくとも一部を含む領域である限り、特に制限はなく、目的に応じて適宜選択することができるが、前記アライメントマークが形成された基材の直交方向から視たときのアライメントの重心部(中心部)の上に位置する領域を含むことが好ましく、前記アライメントマークが形成された基材の直交方向から視たときのアライメントマークの頂部の上に位置する領域(図3における領域A)を全て含む領域であることがより好ましい。前記アライメントマークが形成された基材の直交方向から視たときのアライメントマークの頂部の上に位置する領域(図3における領域A)を全て含む領域の粒子含有フィルムの厚みを薄くするために、アライメントマークを覆うようにして押圧可能な押圧部材が使用される。
<< directly above area >>
As long as the region directly above is a region including at least a part of a region (region A in FIG. 3) located on the top of the alignment mark when viewed from the orthogonal direction of the base material on which the alignment mark is formed. There is no particular limitation, and it can be appropriately selected according to the purpose, but the region located on the center of gravity (center) of the alignment when viewed from the orthogonal direction of the substrate on which the alignment mark is formed. Preferably, it is a region including all the region (region A in FIG. 3) located on the top of the alignment mark when viewed from the orthogonal direction of the substrate on which the alignment mark is formed. In order to reduce the thickness of the particle-containing film in the region including all the region (region A in FIG. 3) located on the top of the alignment mark when viewed from the orthogonal direction of the substrate on which the alignment mark is formed, A pressing member that can be pressed so as to cover the alignment mark is used.
<<押圧部材>>
 前記押圧部材としては、粒子含有フィルムを押圧可能である限り、特に制限はなく、目的に応じて適宜選択することができる。
 前記押圧部材の形状としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、円柱状、円柱の一方の底面に半球が形成された形状、などが挙げられる。これらの中でも、入射光を散乱させ、「てかり」を抑制して、後述するパターン認識一致度を向上させることができる点で、円柱の一方の底面に半球が形成された形状が好ましい。
 前記押圧部材の大きさとしては、特に制限はなく、目的に応じて適宜選択することができるが、アライメントマークを覆うようにして押圧可能な大きさが好ましい。
 前記押圧部材の材質としては、特に制限はなく、目的に応じて適宜選択することができるが、粒子含有フィルムにおけるバインダー(接着剤成分)付着防止の点で、ポリテトラフルオロエチレンが表面にコーティングされたものが好ましい。
 また、前記押圧部材は、各アライメントマーク間の高さの差を吸収可能なバネ機構、粒子含有フィルムの厚みを薄くし易くする(凹部を形成し易くする)加熱機構を備えることが好ましい。
<< Pressing member >>
The pressing member is not particularly limited as long as the particle-containing film can be pressed, and can be appropriately selected according to the purpose.
There is no restriction | limiting in particular as a shape of the said press member, According to the objective, it can select suitably, For example, the shape where the hemisphere was formed in one bottom face of a cylinder, etc. are mentioned. Among these, a shape in which a hemisphere is formed on one bottom surface of a cylinder is preferable in that incident light can be scattered to suppress the “light” and improve pattern recognition coincidence described later.
There is no restriction | limiting in particular as a magnitude | size of the said press member, Although it can select suitably according to the objective, The magnitude | size which can be pressed so that an alignment mark may be covered is preferable.
The material of the pressing member is not particularly limited and may be appropriately selected according to the purpose. However, the surface of the particle-containing film is coated with polytetrafluoroethylene in order to prevent adhesion of the binder (adhesive component) in the particle-containing film. Are preferred.
The pressing member preferably includes a spring mechanism that can absorb the difference in height between the alignment marks and a heating mechanism that facilitates reducing the thickness of the particle-containing film (easily forming a recess).
<実装領域画定工程>
 前記実装領域画定工程は、前記粒子含有フィルムの厚みの薄い部分が直上領域に形成されたアライメントマークの位置に基づいて電子部品の実装領域を画定する工程である。
<Mounting area demarcation process>
The mounting region defining step is a step of defining a mounting region of an electronic component based on the position of an alignment mark in which the thin part of the particle-containing film is formed in the region directly above.
<<前記アライメントマークの認識方法>>
 前記アライメントマークの認識方法としては、特に制限はなく、目的に応じて適宜選択することができ、特開2008-101962号公報に示されるように、従来から用いられている方法、例えば、アライメントマークに向けて光を照射し、前記アライメントマークにおいて反射した光を検出する方法、などが挙げられる。
 例えば、図6及び7に示すような丸型アライメントマーク及び十字型アライメントマークがIC、基板に配置される。ここで、アライメントマークの中央の「+」は、位置合わせための中心座標Cを意味し、この中心座標Cに対応するようにアライメントマーク(+の外周)が設定される。カメラ外周のアライメントマーク(円又は十字)を読み取ると、自ずと中心座標Cが導き出されアライメントすることができる。中心座標Cに合うようにアライメントマークを設定する。
<< Method for recognizing the alignment mark >>
A method for recognizing the alignment mark is not particularly limited and may be appropriately selected depending on the purpose. As disclosed in Japanese Patent Application Laid-Open No. 2008-101962, a conventionally used method, for example, an alignment mark And a method of detecting light reflected by the alignment mark.
For example, a round alignment mark and a cross alignment mark as shown in FIGS. 6 and 7 are arranged on the IC and the substrate. Here, “+” in the center of the alignment mark means the center coordinate C for alignment, and the alignment mark (the outer periphery of +) is set so as to correspond to the center coordinate C. When the alignment mark (circle or cross) on the outer periphery of the camera is read, the center coordinate C is naturally derived and alignment can be performed. An alignment mark is set to match the center coordinate C.
<<電子機器>>
 前記電子機器としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ICチップなどが挙げられる。
<< Electronic equipment >>
There is no restriction | limiting in particular as said electronic device, According to the objective, it can select suitably, For example, an IC chip etc. are mentioned.
<<実装領域>>
 前記実装領域としては、アライメントマークの位置に基づくものである限り、特に制限はなく、目的に応じて適宜選択することができるが、アライメントマークが内部に位置する実装領域(図5)が好ましい。これにより、実装基板を小型化することができる。
<< Mounting area >>
The mounting area is not particularly limited as long as it is based on the position of the alignment mark, and can be appropriately selected according to the purpose. However, the mounting area (FIG. 5) in which the alignment mark is located is preferable. Thereby, a mounting board can be reduced in size.
<電子部品実装工程>
 前記電子部品実装工程は、前記実装領域に電子部品を実装する工程である。例えば、微粒子含有フィルムが熱硬化樹脂を含む場合、粒子含有フィルムを介して、基材と電子部品とを熱圧着することにより、前記実装領域に電子部品が実装される。
<Electronic component mounting process>
The electronic component mounting step is a step of mounting an electronic component in the mounting region. For example, when the fine particle-containing film contains a thermosetting resin, the electronic component is mounted on the mounting region by thermocompression bonding the base material and the electronic component through the particle-containing film.
<<熱圧着>>
 前記熱圧着における圧力としては、特に制限はなく、目的に応じて適宜選択することができるが、0.1MPa~10MPaが好ましく、0.5MPa~7MPaがより好ましく、1MPa~5MPaが特に好ましい。
 前記圧力が0.1MPa未満であると、押圧不足により導通が得られないことがあり、10MPaを超えると、スプリングバックにより導通が得られないことがある。一方、前記圧力が前記特に好ましい範囲内であると、導通の安定性の点で有利である。
 前記熱圧着における加熱温度としては、特に制限はなく、目的に応じて適宜選択することができるが、90℃~280℃が好ましく、100℃~240℃がより好ましく、110℃~200℃が特に好ましい。
 前記加熱温度が90℃未満であると、硬化に時間を要することがあり、280℃を超えると、残留応力が大きくなることがある。一方、前記加熱温度が前記特に好ましい範囲内であると、接続信頼性の点で有利である。
 前記熱圧着における熱圧着時間としては、特に制限はなく、目的に応じて適宜選択することができるが、3秒間~300秒間が好ましく、4秒間~60秒間がより好ましく、5秒間~30秒間が特に好ましい。
 前記熱圧着時間が3秒間未満であると、充分に樹脂が硬化しないことがあり、300秒間を超えると、生産性が低下することがある。一方、前記熱圧着時間が前記特に好ましい範囲内であると、生産性と接続信頼性の点で有利である。
 また、前記熱圧着において、弾性ヘッドを用いることが好ましい。
<< Thermo-compression bonding >>
The pressure in the thermocompression bonding is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 0.1 MPa to 10 MPa, more preferably 0.5 MPa to 7 MPa, and particularly preferably 1 MPa to 5 MPa.
If the pressure is less than 0.1 MPa, conduction may not be obtained due to insufficient pressing, and if it exceeds 10 MPa, conduction may not be obtained due to springback. On the other hand, when the pressure is within the particularly preferable range, it is advantageous in terms of stability of conduction.
The heating temperature in the thermocompression bonding is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 90 ° C to 280 ° C, more preferably 100 ° C to 240 ° C, and particularly preferably 110 ° C to 200 ° C. preferable.
If the heating temperature is less than 90 ° C, it may take time to cure, and if it exceeds 280 ° C, the residual stress may increase. On the other hand, when the heating temperature is within the particularly preferable range, it is advantageous in terms of connection reliability.
The thermocompression bonding time in the thermocompression bonding is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 3 seconds to 300 seconds, more preferably 4 seconds to 60 seconds, and more preferably 5 seconds to 30 seconds. Particularly preferred.
If the thermocompression bonding time is less than 3 seconds, the resin may not be sufficiently cured, and if it exceeds 300 seconds, productivity may be reduced. On the other hand, when the thermocompression bonding time is within the particularly preferable range, it is advantageous in terms of productivity and connection reliability.
In the thermocompression bonding, it is preferable to use an elastic head.
-弾性ヘッド-
 前記弾性ヘッドとしては、エラストマーを含む限り、特に制限はなく、目的に応じて適宜選択することができる。
 前記エラストマーとしては、特に制限はなく、目的に応じて適宜選択することができるが、天然ゴム、シリコーンゴム等の合成ゴム、などが挙げられる。これらの中でも、耐熱性及び耐圧性の点から、シリコーンゴムが好ましい。
-Elastic head-
The elastic head is not particularly limited as long as it contains an elastomer, and can be appropriately selected according to the purpose.
There is no restriction | limiting in particular as said elastomer, Although it can select suitably according to the objective, Synthetic rubbers, such as natural rubber and silicone rubber, etc. are mentioned. Among these, silicone rubber is preferable from the viewpoint of heat resistance and pressure resistance.
<その他の工程>
 前記その他の工程としては、特に制限はなく、目的に応じて適宜選択することができる。
<Other processes>
There is no restriction | limiting in particular as said other process, According to the objective, it can select suitably.
 以下、本発明の実施例について説明するが、本発明は下記実施例に何ら限定されるものではない。 Examples of the present invention will be described below, but the present invention is not limited to the following examples.
(実施例1)
 図3及び図4に示すように、TEG基板34(商品名:MCL-E-679F、日立化成工業社製)上に、縦8mm、横8mmのピッチで形成されたアライメントマーク31(コア:銅、Ni/Auメッキ)、断面が直径0.3mmの円形状の円柱形状)上に、異方性導電フィルム32(商品名:FP5530、ソニーケミカル&インフォメーションデバイス株式会社製、厚み:40μm)を貼り付け、円柱形状(底面:直径2mm、高さ:20mm、先端形状が平坦)の金属棒40を用いて、押圧力20MPa、押圧時間1秒間で押圧して凹部(厚みが薄い部分)33を形成し、フリップチップボンダー(商品名:FB30T-M、パナソニック製)を用いて凹部33が直上領域に形成されたアライメントマークの位置に基づいて画定された実装領域にICチップ41を実装して、電子部品実装構造体を作製した。表面粗さ測定機(商品名:SE3500、小坂研究所社製)を用いて、アライメントマーク31上の異方性導電フィルム32の厚みt(μm)(測定位置によって厚さが変化する場合は最小値)を測定し、フリップチップボンダー(商品名:FB30T-M、パナソニック製)を用いてアライメントマーク31のパターン認識一致度数Aを測定し、分光測色計(商品名:CM-3600d、コニカミノルタ製)を用いて光透過率(%)を測定した。
 また、図5に示すように、ICチップ41の実装領域内に縦5.5mm、横5.5mmのピッチで形成されたアライメントマーク51(コア:銅、Ni/Auメッキ)、断面が直径0.1 mmの円形状の円柱形状)に対しても、アライメントマーク31の場合と同様に、異方性導電フィルム32を貼り付け、金属棒40を用いて押圧して凹部33を形成して、電子部品実装構造体を作製し、パターン認識一致度数Bを測定した。
 なお、前記パターン認識一致度数A及びBは、フリップチップボンダー(商品名:FB30T-M、パナソニック社製)を用いて正規化相関を用いて算出した絶対評価(絶対値である。
 また、前記光透過率は、アライメントマーク31、51上の異方性導電フィルム32の厚みの測定結果を用いて、該測定された厚みの異方性導電フィルムの光透過率を算出したものである。よって、異方性導電フィルム32を貼り付ける前の光透過率は、100%となる。
Example 1
As shown in FIGS. 3 and 4, alignment marks 31 (core: copper) formed on a TEG substrate 34 (trade name: MCL-E-679F, manufactured by Hitachi Chemical Co., Ltd.) with a pitch of 8 mm in length and 8 mm in width. Anisotropic conductive film 32 (trade name: FP5530, manufactured by Sony Chemical & Information Device Co., Ltd., thickness: 40 μm) is affixed onto a circular cylinder having a cross section of 0.3 mm in diameter) Using a metal rod 40 having a cylindrical shape (bottom: 2 mm diameter, height: 20 mm, flat tip shape), pressing is performed at a pressure of 20 MPa and a pressing time of 1 second to form a recess (thin portion) 33. In addition, a mounting area defined by a flip chip bonder (trade name: FB30T-M, manufactured by Panasonic) is defined based on the position of the alignment mark in which the concave portion 33 is formed in the region immediately above. An IC chip 41 was mounted on the area to produce an electronic component mounting structure. Using a surface roughness measuring machine (trade name: SE3500, manufactured by Kosaka Laboratory), the thickness t 1 (μm) of the anisotropic conductive film 32 on the alignment mark 31 (when the thickness varies depending on the measurement position) Minimum value) is measured, the pattern recognition coincidence degree A of the alignment mark 31 is measured using a flip chip bonder (trade name: FB30T-M, manufactured by Panasonic), and the spectrocolorimeter (trade name: CM-3600d, Konica) The light transmittance (%) was measured using Minolta.
Further, as shown in FIG. 5, alignment marks 51 (core: copper, Ni / Au plating) formed at a pitch of 5.5 mm vertically and 5.5 mm horizontally in the mounting area of the IC chip 41, and the cross section has a diameter of 0. .1 mm circular cylindrical shape), as in the case of the alignment mark 31, the anisotropic conductive film 32 is attached and pressed using the metal rod 40 to form the recess 33, An electronic component mounting structure was produced, and the pattern recognition coincidence frequency B was measured.
The pattern recognition coincidence degrees A and B are absolute evaluations (absolute values) calculated using normalized correlation using a flip chip bonder (trade name: FB30T-M, manufactured by Panasonic Corporation).
The light transmittance is obtained by calculating the light transmittance of the anisotropic conductive film having the measured thickness using the measurement result of the thickness of the anisotropic conductive film 32 on the alignment marks 31 and 51. is there. Therefore, the light transmittance before attaching the anisotropic conductive film 32 is 100%.
(実施例2)
 実施例1において、円柱形状(底面:直径2mm、高さ:20mm、先端形状が平坦)の金属棒を、円柱形状(底面:直径2mm、高さ:20mm)と半球(直径2mm)とを組み合わせた形状(先端形状が半球状)の金属棒に変更した以外は、実施例1と同様にして、電子部品実装構造体を作製し、異方性導電フィルムの厚みt(μm)、パターン認識一致度数A及びB(%)、光透過率(%)を測定した。
(Example 2)
In Example 1, a cylindrical rod (bottom: 2 mm in diameter, height: 20 mm, tip shape is flat) is combined with a cylindrical shape (bottom: 2 mm in diameter, height: 20 mm) and a hemisphere (2 mm in diameter). An electronic component mounting structure was prepared in the same manner as in Example 1 except that the metal rod was changed to a metal rod having a hemispherical shape (tip shape is hemispherical), and the anisotropic conductive film thickness t 1 (μm), pattern recognition The coincidence frequencies A and B (%) and light transmittance (%) were measured.
(比較例1)
 実施例1において、金属棒による押圧を行わなかったこと以外は、実施例1と同様にして、電子部品実装構造体を作製し、異方性導電フィルムの厚みt(μm)、パターン認識一致度数A及びB(%)、光透過率(%)を測定した。
(Comparative Example 1)
In Example 1, an electronic component mounting structure was produced in the same manner as in Example 1 except that pressing with a metal rod was not performed, and the thickness t 0 (μm) of the anisotropic conductive film and pattern recognition coincidence were obtained. The frequencies A and B (%) and light transmittance (%) were measured.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 以上より、実施例1及び2でのパターン認識一致度が許容範囲内(70%以上)であることから、アライメントマーク31、51上の異方性導電フィルム32を金属棒40で押圧することにより、フリップチップボンダー(商品名:FB30T-M、パナソニック製)により、アライメントマーク31、51を認識可能であることが判った。
 実施例1及び2のように、アライメントマークの直上領域における粒子含有フィルムを押圧すると、該押圧により粒子が押しのけられるため(粒子が押圧方向と同一方向に移動せず、押圧方向と略垂直な方向に移動する)、押圧により薄くなった粒子含有フィルム部分においても、押圧前の粒子含有フィルムにおける粒子密度とほぼ同等な粒子密度で粒子が存在する。よって、粒子含有フィルムが薄くなったことで、アライメントマークの認識がしやすくなり、パターン認識一致度A、Bが向上しているものと考えられる。
 また、アライメントマーク31、51を覆う形で、異方性導電フィルム32を基板34の全面に貼り付けが可能となるため、高精度なフィルム貼付け装置を必要とせず、また、接着シート貼付け回数を減らすことができ、もって工程の短縮を図ることができる。
 また、図5に示すように、ICチップ41の実装領域内にアライメントマーク51を設置することも可能となり、基板を小型化することができる。
 また、先端形状が平坦の金属棒を用いて異方性導電フィルムを押圧した実施例1と、先端形状が半球状の金属棒を用いて異方性導電フィルムを押圧した実施例2とを比較した場合、アライメントマーク上の異方性導電フィルムの厚みtがそれぞれ10μmであっても、実施例2の方が良好なパターン認識一致度(%)を示している。これは、先端形状が半球状の金属棒を用いることにより、形成された凹部の形状が半球状となり、入射光を散乱させて、「てかり」を抑制することができ、パターン認識一致度(%)が向上したものと考えられる。
As mentioned above, since the pattern recognition coincidence in Examples 1 and 2 is within an allowable range (70% or more), by pressing the anisotropic conductive film 32 on the alignment marks 31 and 51 with the metal rod 40. It was found that the alignment marks 31 and 51 can be recognized by a flip chip bonder (trade name: FB30TM-M, manufactured by Panasonic).
As in Examples 1 and 2, when the particle-containing film in the region immediately above the alignment mark is pressed, the particles are pushed away by the pressing (the particles do not move in the same direction as the pressing direction, and are substantially perpendicular to the pressing direction). Even in the particle-containing film portion that is thinned by pressing, particles are present at a particle density substantially equal to the particle density in the particle-containing film before pressing. Therefore, it is considered that the alignment marks A and B are improved because the particle-containing film is thinned so that the alignment mark can be easily recognized.
In addition, since the anisotropic conductive film 32 can be applied to the entire surface of the substrate 34 so as to cover the alignment marks 31 and 51, a highly accurate film application device is not required, and the number of times of adhesive sheet application can be increased. Therefore, the process can be shortened.
Further, as shown in FIG. 5, it is possible to install the alignment mark 51 in the mounting area of the IC chip 41, and the substrate can be miniaturized.
Further, Example 1 in which the anisotropic conductive film was pressed using a metal rod having a flat tip shape was compared with Example 2 in which the anisotropic conductive film was pressed using a metal rod having a hemispherical tip shape. In this case, even when the thickness t 1 of the anisotropic conductive film on the alignment mark is 10 μm, Example 2 shows better pattern recognition coincidence (%). This is because by using a metal rod having a hemispherical tip shape, the shape of the formed recess becomes hemispherical, which can scatter incident light and suppress “light”, and the pattern recognition coincidence ( %) Is considered to have improved.
 本発明の電子部品実装構造体の製造方法は、例えば、半導体装置などの製造に好適に用いられる。 The method for manufacturing an electronic component mounting structure according to the present invention is suitably used for manufacturing a semiconductor device, for example.
10 異方性導電フィルム
20 アライメントマーク
30 ICチップ
31 アライメントマーク
32 異方性導電フィルム
33 凹部
34 基板
40 金属棒
41 ICチップ
51 アライメントマーク
DESCRIPTION OF SYMBOLS 10 Anisotropic conductive film 20 Alignment mark 30 IC chip 31 Alignment mark 32 Anisotropic conductive film 33 Recess 34 Substrate 40 Metal rod 41 IC chip 51 Alignment mark

Claims (8)

  1.  アライメントマークを有する基材上に粒子含有フィルムを配置するフィルム配置工程と、
     前記アライメントマークの直上領域における粒子含有フィルムを、押圧部材を用いて押圧して、前記粒子含有フィルムの厚みを薄くする押圧工程と、
     前記粒子含有フィルムの厚みの薄い部分が直上領域に形成されたアライメントマークの位置に基づいて電子部品の実装領域を画定する実装領域画定工程と、
     前記実装領域に電子部品を実装する電子部品実装工程と、
    を含むこと特徴とする電子部品実装構造体の製造方法。
    A film placement step of placing a particle-containing film on a substrate having an alignment mark;
    Pressing the particle-containing film in the region directly above the alignment mark using a pressing member to reduce the thickness of the particle-containing film; and
    A mounting region defining step of defining a mounting region of an electronic component based on the position of an alignment mark in which the thin part of the particle-containing film is formed in the region directly above;
    An electronic component mounting process for mounting an electronic component in the mounting region;
    The manufacturing method of the electronic component mounting structure characterized by including.
  2.  押圧部材が、半球状の押圧部を有する請求項1に記載の電子部品実装構造体の製造方法。 The method for manufacturing an electronic component mounting structure according to claim 1, wherein the pressing member has a hemispherical pressing portion.
  3.  押圧部材が、アライメントマークを覆うようにして押圧可能である請求項1から2のいずれかに記載の電子部品実装構造体の製造方法。 3. The method of manufacturing an electronic component mounting structure according to claim 1, wherein the pressing member can be pressed so as to cover the alignment mark.
  4.  押圧部材が、ポリテトラフルオロエチレンを含む請求項1から3のいずれかに記載の電子部品実装構造体の製造方法。 The manufacturing method of the electronic component mounting structure according to any one of claims 1 to 3, wherein the pressing member includes polytetrafluoroethylene.
  5.  粒子含有フィルムが熱硬化樹脂を含み、
     電子部品実装工程において、前記粒子含有フィルムを介して、基材と電子部品とを熱圧着する請求項1から4のいずれかに記載の電子部品実装構造体の製造方法。
    The particle-containing film contains a thermosetting resin,
    The manufacturing method of the electronic component mounting structure in any one of Claim 1 to 4 which thermocompression-bonds a base material and an electronic component through the said particle | grain containing film in an electronic component mounting process.
  6.  アライメントマークが実装領域内に位置する請求項1から5のいずれかに記載の電子部品実装構造体の製造方法。 The method for manufacturing an electronic component mounting structure according to any one of claims 1 to 5, wherein the alignment mark is located in the mounting region.
  7.  電子部品実装工程において、エラストマーを含む弾性ヘッドを用いる請求項1から6のいずれかに記載の電子部品実装構造体の製造方法。 The method for manufacturing an electronic component mounting structure according to any one of claims 1 to 6, wherein an elastic head containing an elastomer is used in the electronic component mounting step.
  8.  請求項1から7のいずれかに記載の電子部品実装構造体の製造方法によって製造されたことを特徴とする電子部品実装構造体。 An electronic component mounting structure manufactured by the method for manufacturing an electronic component mounting structure according to any one of claims 1 to 7.
PCT/JP2010/065436 2009-11-25 2010-09-08 Electronic component mounting structure and method for producing same WO2011065093A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-267658 2009-11-25
JP2009267658A JP2010199546A (en) 2009-11-25 2009-11-25 Electronic component mounting structure and method of manufacturing same

Publications (1)

Publication Number Publication Date
WO2011065093A1 true WO2011065093A1 (en) 2011-06-03

Family

ID=42823921

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/065436 WO2011065093A1 (en) 2009-11-25 2010-09-08 Electronic component mounting structure and method for producing same

Country Status (3)

Country Link
JP (1) JP2010199546A (en)
TW (1) TW201138577A (en)
WO (1) WO2011065093A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7321792B2 (en) * 2019-06-26 2023-08-07 株式会社ジャパンディスプレイ Anisotropic conductive film and display device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1154560A (en) * 1997-08-01 1999-02-26 Seiko Epson Corp Ic packaging method, liquid crystal display device and electronic equipment
JP2002094222A (en) * 2000-09-19 2002-03-29 Matsushita Electric Ind Co Ltd Sheet for bonding electronic component, method for mounting electronic component, and equipment for mounting the same
JP2005294652A (en) * 2004-04-01 2005-10-20 Seiko Epson Corp Press-bonding device
JP2008218744A (en) * 2007-03-05 2008-09-18 Denso Corp Method of manufacturing semiconductor device
JP2009081337A (en) * 2007-09-27 2009-04-16 Sony Chemical & Information Device Corp Method and apparatus for mounting electronic component

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1154560A (en) * 1997-08-01 1999-02-26 Seiko Epson Corp Ic packaging method, liquid crystal display device and electronic equipment
JP2002094222A (en) * 2000-09-19 2002-03-29 Matsushita Electric Ind Co Ltd Sheet for bonding electronic component, method for mounting electronic component, and equipment for mounting the same
JP2005294652A (en) * 2004-04-01 2005-10-20 Seiko Epson Corp Press-bonding device
JP2008218744A (en) * 2007-03-05 2008-09-18 Denso Corp Method of manufacturing semiconductor device
JP2009081337A (en) * 2007-09-27 2009-04-16 Sony Chemical & Information Device Corp Method and apparatus for mounting electronic component

Also Published As

Publication number Publication date
TW201138577A (en) 2011-11-01
JP2010199546A (en) 2010-09-09

Similar Documents

Publication Publication Date Title
KR102011650B1 (en) Anisotropic conductive film and connection structure
EP3933697A1 (en) Biometric imaging module and method for manufacturing a biometric imaging module
US7315070B2 (en) Fingerprint sensor package
KR20060044369A (en) Semiconductor device and mu1ti1ayer substrate therefor
JP2000241498A (en) Semiconductor element connecting device, and semiconductor element inspection device and its method
US10163820B2 (en) Chip carrier and method thereof
WO2011065093A1 (en) Electronic component mounting structure and method for producing same
US8951810B2 (en) Methods for forming interconnection line using screen printing technique
WO2018079303A1 (en) Filler-containing film
KR20180119096A (en) Method for manufacturing inspection device
CN113573474B (en) Circuit board structure and display device
CN101256998B (en) Semiconductor device using anisotropic conductive adhesive layer and manufacturing method thereof
KR20200002953A (en) Manufacturing method of adhesive composition and connector
JP2008235838A (en) Semiconductor device, manufacturing method and mounting method therefor, and ic card using the device
CN207560068U (en) Modular structure and terminal device
JP2005268669A (en) Manufacturing method of semiconductor device
JPH11258268A (en) Device and method for inspecting semiconductor device
JP4436588B2 (en) Semiconductor mounting module
JP2000155822A (en) Non-contact ic card
JP4085790B2 (en) IC card manufacturing method
US10949733B2 (en) Semiconductor device and antenna label
JP2001068179A (en) Anisotropic conductive connection member
TWI336223B (en) Electronic device and method of manufacturing same
KR20240051204A (en) Conductive film, connection structure, and method of manufacturing the same
JP2010010319A (en) Conductive bump, method of forming the same, and electronic component mounting structure using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10832940

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10832940

Country of ref document: EP

Kind code of ref document: A1