WO2011063728A1 - 无源光纤网络的信号处理方法、设备和系统 - Google Patents

无源光纤网络的信号处理方法、设备和系统 Download PDF

Info

Publication number
WO2011063728A1
WO2011063728A1 PCT/CN2010/078942 CN2010078942W WO2011063728A1 WO 2011063728 A1 WO2011063728 A1 WO 2011063728A1 CN 2010078942 W CN2010078942 W CN 2010078942W WO 2011063728 A1 WO2011063728 A1 WO 2011063728A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
optical
frequency division
orthogonal frequency
multiple access
Prior art date
Application number
PCT/CN2010/078942
Other languages
English (en)
French (fr)
Inventor
邹世敏
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to AU2010324303A priority Critical patent/AU2010324303A1/en
Priority to EP10832635A priority patent/EP2495892A4/en
Publication of WO2011063728A1 publication Critical patent/WO2011063728A1/zh
Priority to US13/476,684 priority patent/US20120230693A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/18Phase-modulated carrier systems, i.e. using phase-shift keying
    • H04L27/20Modulator circuits; Transmitter circuits
    • H04L27/2096Arrangements for directly or externally modulating an optical carrier
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/27Arrangements for networking
    • H04B10/272Star-type networks or tree-type networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0241Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths
    • H04J14/0242Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON
    • H04J14/0245Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON for downstream transmission, e.g. optical line terminal [OLT] to ONU
    • H04J14/0246Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON for downstream transmission, e.g. optical line terminal [OLT] to ONU using one wavelength per ONU
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0241Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths
    • H04J14/0242Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON
    • H04J14/0249Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON for upstream transmission, e.g. ONU-to-OLT or ONU-to-ONU
    • H04J14/025Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON for upstream transmission, e.g. ONU-to-OLT or ONU-to-ONU using one wavelength per ONU, e.g. for transmissions from-ONU-to-OLT or from-ONU-to-ONU
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0241Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths
    • H04J14/0242Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON
    • H04J14/0249Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON for upstream transmission, e.g. ONU-to-OLT or ONU-to-ONU
    • H04J14/0252Sharing one wavelength for at least a group of ONUs, e.g. for transmissions from-ONU-to-OLT or from-ONU-to-ONU
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0254Optical medium access
    • H04J14/0261Optical medium access at the optical multiplex section layer
    • H04J14/0265Multiplex arrangements in bidirectional systems, e.g. interleaved allocation of wavelengths or allocation of wavelength groups
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0278WDM optical network architectures
    • H04J14/0282WDM tree architectures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only
    • H04L27/2627Modulators
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2697Multicarrier modulation systems in combination with other modulation techniques
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0298Wavelength-division multiplex systems with sub-carrier multiplexing [SCM]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0241Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths
    • H04J14/0242Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON
    • H04J2014/0253Allocation of downstream wavelengths for upstream transmission

Definitions

  • the embodiments of the present invention relate to the field of communications technologies, and in particular, to a signal processing method, device, and system for a passive optical network.
  • FIG. 1 is a schematic structural diagram of an existing PON network. As shown in FIG. 1 , the PON network is composed of an optical line terminal (Optical Line Terminal, OLT for short), a passive optical distribution network (ODN), and multiple It consists of an Optical Network Unit (ONU).
  • OLT optical Line Terminal
  • ODN passive optical distribution network
  • ONU Optical Network Unit
  • PON has the advantages of optical fiber resource sharing, OLT port sharing, saving machine room investment, high equipment security, fast network construction speed, and low comprehensive network construction cost.
  • PON technology is also evolving, from Passive Optical Network (APON) adopting Asynchronous Transfer Mode (abbreviation: ATM), and broadband passive optical network ( Broadband Passive Optical Network (BPON) evolved to Ethernet Passive Optical Network (EPON), Gigabit-Capable PON (GPON), wavelength division multiplexing (Wavelength Division Multiplexing, WDM for short) PON,
  • APON Passive Optical Network
  • BPON Broadband Passive Optical Network
  • EPON Ethernet Passive Optical Network
  • GPON Gigabit-Capable PON
  • WDM Wavelength Division Multiplexing
  • the transmission distance of PON is far more than 20Km, which is above 10Om, which can expand the coverage of PON, make OLT more concentrated, reduce the construction of central office (CO), and reduce the operation and maintenance of the entire access network.
  • Cost all-optical technology can be used to achieve long-distance transmission of PON, because all-optical technology has better transparency and power consumption than photoelectric light (Optical-Electrical-Optical, abbreviation: OEO)
  • OEO optical-Electrical-Optical, abbreviation: OEO
  • the power consumption of the technology is low; the larger the split ratio of the PON, the better, and the more users that can be carried, the better.
  • the current GPON split ratio is 1:32/64, and operators hope that the split ratio of PON can be increased to 1:256-1:1024.
  • DeutscheInstitut DT hopes to use WDM-PON to achieve passive transmission above 50Km, can carry more than 1000 users, and provide each user with access bandwidth of up to IGbps, but the existing WDM PON does not reach this skills requirement.
  • a WDM PON network may include multiple ONUs, one remote node (Re: RN) and one OLT2, and the remote node is passive.
  • the WDM splitter and the WDM combiner are also included, and the OLT 2 also includes a WDM splitter and a WDM combiner.
  • the working principle of WDM-PON is: OLT2 has multiple light sources that generate different wavelengths, for example: it can be a broadband light source generated by a filter, or can be generated by a separate color light source.
  • the OLT2 modulates the service signal to the optical signal of different wavelengths, and transmits it to the downlink direction through the WDM combiner in the OLT2; and separates the optical signals of different wavelengths from the received optical signal by the WDM splitter of the RN5. , sent to different 0NU1, ONU1 recovers the business signal through photoelectric conversion.
  • each ONU1 modulates the service signal to an optical signal of a different wavelength, and combines the WDM combiner in the RN5 to the single optical fiber 7 to transmit to the OLT, and then the OLT2 is separated by the WDM splitter. Each wavelength is converted into an electrical signal by the optical receiver (PD_1 to PD_n) to recover the service signal.
  • WDM PON The advantage of WDM PON is that the optical signal is continuous, there is no need for the OLT to have a burst receiver, and the ONU does not need a burst transmitter. At the same time, each ONU has a single wavelength, which is highly confidential and suitable for large customer dedicated applications.
  • the inventors have at least found that the existing WDM PON technology has at least the following problems in the process of implementing the present invention:
  • WDM PON The number of wavelengths separated by WDM PON is limited. For example, there are currently 40 wavelengths available for C-band in WDM PON, which is difficult to increase. Each user is assigned an independent wavelength, and the number of users is limited. Because of WDM PON Each ONU has a unique wavelength, and the wavelength sharing is poor. Even if the wavelength of an ONU is not used, it cannot be used by other ONUs, resulting in waste of resources.
  • FIG. 3 is a structural diagram of a conventional PON of a WDM and a TDM.
  • TDMA Time Division Multiple Access
  • multiple GPON downlink signals are modulated to the color wavelength by the OLT2 transmitter (LD_1 to LD_n), and after being combined by the WDM combiner, they are sent downstream to the remote node RN5, RN5.
  • RN5 It is a passive node, but includes not only a WDM splitter and a WDM combiner, but also a power splitter (POWER SPLITER).
  • the WDM splitter in the RN5 wavelength-separates the received optical signal to obtain a single-wavelength optical signal.
  • the ONU1 may include a Reflective Semiconductor Optical Amplifier (RSOA), and the seed light source of the ONU1 may be a color light source transmitted by the transmitter of the OLT 2.
  • RSOA Reflective Semiconductor Optical Amplifier
  • the RSOA can remodulate the ONU1 and then superimpose it through the power splitter and WDM combiner, such as Arrayed Waveguide Grating (AWG), and then send it to the receiver of the OLT (PD1 to PDn).
  • WDM combiner such as Arrayed Waveguide Grating (AWG)
  • the WDM and TDM hybrid PON is TDMA+WDMA in the uplink direction. Its performance depends mainly on the inherent performance of TDMA. For example: logical distance, physical distance, etc., the transmission distance of WDM and TDM mixed PON is completely dependent on the adopted Physical transmission distance of TDM PON; Due to the burst frame structure of uplink TDMA, optical power compensation in the uplink direction is difficult to achieve, whether it is an Erbium-doped Optical Fiber Amplifier (EDFA) or a semiconductor optical amplifier ( Semiconductor Optical Amplifier (SOA) is difficult to implement and cannot be transmitted over long distances. In addition, TDMA is adopted for a single wavelength. In the uplink direction, the receiving end of the OLT needs a burst transmitter, and the ONU also needs to have a burst transmitter, and the network construction cost is high.
  • EDFA Erbium-doped Optical Fiber Amplifier
  • SOA Semiconductor Optical Amp
  • Embodiments of the present invention provide a signal processing method, device, and system for a passive optical network, which can improve transmission distance and reduce network construction cost.
  • the embodiment of the invention provides a signal processing method for a passive optical network, which includes:
  • the multiplexed frequency division multiplexing modulation method is used to modulate the service signal after the baseband coding process to The allocated orthogonal frequency division multiple access subcarriers;
  • the embodiment of the invention further provides a signal processing method for a passive optical network, comprising: performing analog-to-digital conversion on the received superposed optical domain orthogonal frequency division multiple access signal;
  • An embodiment of the present invention further provides an optical network unit, including:
  • An encoding module configured to perform baseband encoding processing on the received service signal
  • An orthogonal frequency division multiplexing modulation module configured to modulate a signal after baseband coding processing onto an allocated orthogonal frequency division multiple access subcarrier by using a modulation method of orthogonal frequency division multiplexing
  • a digital-to-analog conversion module configured to perform digital-to-analog conversion on the modulated orthogonal frequency division multiple access subcarriers to obtain an electrical domain orthogonal frequency division multiple access signal
  • An optical modulation module configured to modulate the electrical domain orthogonal frequency division multiple access signal onto an uplink optical signal to obtain an optical domain orthogonal frequency division multiple access signal
  • a sending module configured to send the optical domain orthogonal frequency division multiple access signal.
  • the embodiment of the invention further provides an optical line terminal, including:
  • An analog-to-digital conversion module configured to perform analog-to-digital conversion on the received superposed orthogonal frequency division multiple access signal
  • an orthogonal frequency division multiplexing demodulation module configured to perform orthogonal frequency division on the signal after analog-to-digital conversion Demodulation
  • the baseband decoding module is configured to perform a baseband decoding process on the signal after the orthogonal frequency division multiplexing demodulation, to obtain a service signal.
  • An embodiment of the present invention further provides a passive optical network system, including: an optical line terminal, a remote node, and one or more optical network units;
  • the optical network unit is configured to perform baseband coding processing on the received service signal; and modulate the signal after the baseband coding process into the allocated orthogonal frequency division multiple access subcarrier by using an orthogonal frequency division multiplexing modulation mode Up; performing digital-to-analog conversion on the modulated orthogonal frequency division multiple access subcarriers to obtain an electrical domain orthogonal frequency Dividing the multiple access signal; modulating the electrical domain orthogonal frequency division multiple access signal onto the uplink optical signal to obtain an optical domain orthogonal frequency division multiple access signal; and transmitting the optical domain orthogonal frequency division multiple access signal;
  • the remote node is configured to superimpose the optical frequency orthogonal frequency division multiple access signals of the same wavelength transmitted by the received optical network units by using the power splitter, and then superimpose the superposed signals by the wavelength division multiplexing combiner
  • the optical domain orthogonal frequency division multiple access signal is combined into a multi-wavelength optical signal and sent to the optical line terminal;
  • the optical line terminal is configured to separate the received multi-wavelength optical signals to obtain optical signals of different wavelengths, where the optical signals of different wavelengths carry superposed optical domain orthogonal frequency division multiple access signals;
  • the domain orthogonal frequency division multiple access signals are subjected to analog-to-digital conversion, orthogonal frequency division multiplexing demodulation, and baseband decoding processing, respectively, to obtain a service signal.
  • a signal processing method, device, and system for a passive optical network provided by an embodiment of the present invention, modulating a received service signal onto an allocated orthogonal frequency division multiple access subcarrier, and modulating the orthogonal frequency division multiple access
  • the electrical domain orthogonal frequency division multiple access signal obtained by digital-to-analog conversion of the sub-carrier is modulated onto the uplink optical signal, and then the continuous multi-wavelength optical signal can be obtained by superimposing the combined wave by the remote node, and the optical power compensation of the continuous signal is simple, and Supports long-distance transmission; and continuous signal transmission and reception equipment is less expensive than burst signals, thereby reducing network construction costs.
  • FIG. 1 is a schematic structural diagram of an existing PON network
  • FIG. 2 is a network architecture diagram of an existing WDM PON
  • FIG. 3 is a schematic diagram of a frequency domain of an existing OFDM system according to an embodiment of the present invention
  • FIG. 5 is a schematic diagram of another frequency domain of an OFDM system according to an embodiment of the present invention
  • FIG. 7a is a schematic structural diagram of an application in an embodiment of a passive optical network system according to the present invention
  • FIG. 7b is a schematic structural diagram of another application in an embodiment of a passive optical network system according to the present invention
  • FIG. 9 is a schematic structural view of an embodiment of an optical line terminal according to the present invention
  • 10 is a flowchart of a first embodiment of a signal processing method for a passive optical network according to the present invention
  • FIG. 11 is a flowchart of a second embodiment of a signal processing method for a passive optical network according to the present invention
  • FIG. 12b is a schematic diagram of a method for superimposing OFDMA subcarriers on the same wavelength in a third embodiment of a signal processing method for a passive optical network according to the present invention.
  • Orthogonal Frequency Division Multiplexing (OFDM) technology is part of Frequency Division Multiplexing (FDM) technology, which is a kind of frequency between adjacent frequencies in a single channel.
  • FDM Frequency Division Multiplexing
  • subcarriers may have overlapping portions in order to maximize the efficiency of the spectrum.
  • overlapping adjacent channels interfere with each other, but in OFDM systems, subcarriers are precisely orthogonal, allowing for overlap without interference. Therefore, the OFDM system can maximize the efficiency of the spectrum without causing adjacent channel interference.
  • FIG. 4 is a schematic diagram of a frequency domain of an OFDM system according to an embodiment of the present invention.
  • each of the individual channels C may include seven subcarriers S.
  • the transmission rate of the channel increases as the channel bandwidth increases, and the OFDM system allows higher data throughput than the conventional FDM system.
  • Subcarrier overlap in an OFDM communication system can make more efficient use of spectrum resources. Since the power maximum point of each subcarrier directly corresponds to the minimum point of adjacent channel power, these subcarriers may partially overlap without interfering with each other.
  • FIG. 5 is a schematic diagram of another frequency domain of an OFDM system according to an embodiment of the present invention. As shown in FIG.
  • each subcarrier of an OFDM system is represented by different peak points, and the peak point of each subcarrier directly corresponds to other channels. Zero crossing.
  • Modern OFDM systems use digital signal processing technology. The generation and reception of each subcarrier are performed by digital signal processing algorithms. Inverse Fast Fourier Transform (IFFT) / Fast Fourier Crypt (Fast Fourier) Transform, referred to as FFT), simplifies the structure of the system. In order to improve the spectrum utilization, the spectrums on each subcarrier overlap each other, but these spectra satisfy the orthogonality throughout the symbol period, thereby ensuring that the receiving end can recover the signal without distortion.
  • IFFT Inverse Fast Fourier Transform
  • FFT Fast Fourier Crypt
  • the OFDM modulation process is also an IFFT or Inverse Discrete Fourier Transform (IDFT) operation process, and the OFDM demodulation process is also an FFT or discrete Fourier.
  • IDFT Inverse Discrete Fourier Transform
  • DFT Discrete Fourier Transform
  • the passive optical network system includes: an optical line terminal 61, a remote node 62, and one or more optical network units 63; 63, configured to perform baseband encoding processing on the received service signal; modulate the baseband encoding process onto the allocated orthogonal frequency division multiple access subcarrier by using an orthogonal frequency division multiplexing modulation method; The Orthogonal Frequency Division Multiple Access subcarriers are subjected to digital-to-analog conversion to obtain an electrical domain orthogonal frequency division multiple access signal; and the electrical domain orthogonal frequency division multiple access signal is modulated onto the uplink optical signal to obtain an optical domain orthogonality. a frequency division multiple access signal; transmitting the optical domain orthogonal frequency division multiple access signal;
  • the remote node 62 is configured to superimpose the received optical domain orthogonal frequency division multiple access signals of the same wavelength transmitted by the respective optical network units by using the power splitter, and then superimposing the superposed light by the wavelength division multiplexing combiner
  • the domain orthogonal frequency division multiple access signal is combined into a multi-wavelength optical signal and sent to the optical line terminal 61;
  • the optical line terminal 61 is configured to separate the received multi-wavelength optical signals to obtain optical signals of different wavelengths, where the optical signals of different wavelengths carry the superposed optical domain orthogonal frequency division multiple access signals;
  • the orthogonal frequency division multiple access signals are subjected to analog-to-digital conversion, orthogonal frequency division multiplexing demodulation, and baseband decoding processing, respectively, to obtain a service signal.
  • the optical line terminal 61 is further configured to perform baseband coding processing, orthogonal frequency division multiplexing modulation, and modulation on the allocated orthogonal frequency division multiple access subcarriers on the received service signal; Performing digital-to-analog conversion on the frequency-division-multi-access subcarrier to obtain an electrical domain orthogonal frequency division multiple access signal, and modulating the electrical domain orthogonal frequency division multiple access signal onto the downlink optical signal to obtain optical domain orthogonal frequency division multiple access Signaling; combining optical wavelength orthogonal frequency division multiple access signals of different wavelengths into multi-wavelength optical signals and transmitting to the remote node 62;
  • the remote node 62 is further configured to separate the received multi-wavelength optical signal into optical signals of different wavelengths by using a wavelength division multiplexing combiner, where the optical signals of different wavelengths carry optical domain orthogonal frequency division multiple access.
  • a signal the orthogonal frequency division multiple access signal is sent to each optical network unit 63 by a power splitter; the optical network unit 63 is further configured to receive the optical domain orthogonal frequency division multiple access signal sent by the remote node 62,
  • the optical domain orthogonal frequency division multiple access signal is subjected to analog-to-digital conversion, orthogonal frequency division multiplexing demodulation, and baseband decoding processing, respectively, to obtain a service signal.
  • the signal is in an uplink direction from the optical network unit to the optical line terminal, and the signal is in a downlink direction from the optical path terminal to the optical network unit.
  • FIG. 7a is a schematic structural diagram of an application in an embodiment of a passive optical network system according to the present invention.
  • an optical network unit 63 receives the same.
  • the service signals such as Fast Ethernet (FE) or Gigabit Ethernet (GE) signals are used in Multiple Quadrature Amplitude Modulation (MIM).
  • FE Fast Ethernet
  • GE Gigabit Ethernet
  • MIM Multiple Quadrature Amplitude Modulation
  • the service signal can be modulated onto the allocated (Orthogonal Frequency Division Multiple Access, OFDMA) subcarrier; then the OFDMA subcarrier is digitally modulated (Digital) /Analog, abbreviation: D/A) After conversion, it is modulated onto the optical signal by a semiconductor optical amplifier (RSOA).
  • OFDMA Orthogonal Frequency Division Multiple Access
  • the optical network unit 63 transmits the OFDMA signal to the remote node 62, superimposing the OFDMA signals of the plurality of optical line terminals 63 into one OFDMA frame through a power splitter 623 in the remote node 62, and then the waves in the remote node 62
  • the division multiplexing combiner 622 can also combine the OFDMA frames of the plurality of power splitters into a multi-wavelength optical signal and transmit the signals to the optical line terminal 61.
  • the optical line terminal 61 can separate the multi-wavelength signal into optical signals of different wavelengths through the WDM combiner, and then independently receive the corresponding signals through the respective receivers (PD_1 to PD_n).
  • the optical signal of the wavelength; then the optical signal of different wavelengths is subjected to A/D conversion, FFT operation (OFDM demodulation) and MQAM decoding (baseband decoding) processing, and a service signal can be obtained.
  • the uplink direction of the signal transmitted by the optical network unit ONU to the optical line terminal OLT adopts the OFDMA format, and in the downlink direction where the signal is sent by the OLT to the ONU, the OFDMA format can also be adopted, as shown in FIG. 7a, in the passive optical network.
  • the optical line terminal 61 may perform MQAM coding and OFDM modulation (using IFFT operation) on the service signal to improve dispersion tolerance and improve bandwidth utilization, and modulate the service signal to the allocated signal.
  • the transmitter On the OFDMA subcarrier, then the D/A conversion of the electrical signal on the OFDMA subcarrier is performed, and then modulated onto the optical signal; the transmitter (LD_1 to LD_n) transmits the optical signal to the WDM combiner, and the WDM combiner will Optical signals of different wavelengths are combined into a multi-wavelength optical signal.
  • the multi-wavelength optical signal is then transmitted to the remote node 62 in the optical line termination.
  • the wavelength separation multiplexer 621 of the remote node 62 separates the multi-wavelength signal into optical signals of different wavelengths, and the power of the remote node 62 is separated.
  • the 623 separates the OFDMA frames carried on the optical signals of different wavelengths into the optical domain OFDMA signals of the same wavelength, and then the power splitter 623 can transmit the optical domain OFDMA signals of the same wavelength to the respective optical network units 63.
  • the optical network unit 63 After receiving the optical domain OFDMA signal by the receiver PD, the optical network unit 63 performs A/D conversion, FFT operation, and MQAM decoding processing on the optical domain OFDMA signal, and then obtains a service signal. For example: When the downlink optical signal is a 10G GPON or EPON signal, the OLT first converts the bit rate into a character rate through MQAM encoding and IFFT operations.
  • the lOGbps data rate is converted to 2.5 by 16QAM encoding.
  • the character rate of GHz can be transmitted at a rate of 10 Gbps using a 2.5 GHz optical modulator (LD_1 to LD_n), reducing the requirement of the optical modulator speed and overcoming the dispersion effect at 10 G speed.
  • each ONU receiver PD After receiving the optical signal, each ONU receiver PD converts the optical signal into a 2.5 GHz OFDM electrical signal, and then recovers the GPON or EPON downlink format through A/D conversion, FFT operation, MQAM decoding, and the like.
  • the service signal sent to the ONU is filtered, for example: a data packet, and sent to the user terminal in a format such as FE or GE.
  • the OLT may first allocate downlink orthogonal frequency division multiple access subcarriers according to traffic of the service signal, for example: OLT according to FE
  • the traffic of the /GE port or the Virtual Local Area Network (VLAN) traffic allocates subcarriers in the downlink OFDMA frame to the ONU.
  • the OLT modulates the FE/GE signal or the VLAN into the allocated OFDMA subcarriers by performing packet adaptation, MQAM coding, IFFT operation, D/A conversion, etc., to form a complete downlink OFDMA.
  • the frame is transmitted to each ONU by the RN, and each ONU performs demodulation on the OFDMA subcarrier to recover the service signal in the FE/GE format.
  • the Dynamic Bandwidth Allocation (DBA) module of the OLT may further allocate downlink orthogonal frequency division multiple access subcarriers to the OLT according to the traffic of the service signal and the service type. For example: When the OLT has Layer 3 monitoring capability, the DBA in the downstream direction OLT can allocate bandwidth according to the service type and traffic, and can define downlink OFDMA subcarriers with broadcast and multicast functions, and layer 3 multicast data streams. It is mapped to the corresponding anchor subcarrier, and the ONU having the authority in the same multicast group can receive and demodulate the service signal.
  • DBA Dynamic Bandwidth Allocation
  • the DBA allocates OFDMA subcarriers to the ONU according to the service type, which ensures that the high priority service preferentially uses the OFDMA subcarrier, which is more suitable for the transmission of real-time services such as video. Therefore, when the ONU has the layer 3 monitoring capability, the bandwidth allocation request may be generated according to the traffic of the port, and the bandwidth allocation request may be generated according to the service type and the traffic, for example, a voice over IP (VOICE OVER IP, VoIP for short) service, Real-time services such as video calls can directly generate high-priority bandwidth allocation requests to ensure timely delivery of real-time services.
  • VOICE OVER IP Voice over IP
  • FIG. 7b is a schematic structural diagram of another application in the embodiment of the passive optical network system according to the present invention.
  • the uplink direction is used by the optical network unit 63 to transmit signals to the optical line terminal 61.
  • the format of the OFDMA, but in the downlink direction in which the signal is transmitted from the optical line terminal 61 to the optical network unit 63, the signal processing method for the passive optical network may also adopt the format of GPON or EPON.
  • the private line is provided to the large customer.
  • the optical line terminal OLT directly modulates the GE or 10GE signal to the color wavelength, that is, the multi-wavelength optical signal, and sends it to the optical network unit ONU.
  • the ONU monopolizes the color wavelength to ensure large The security and confidentiality requirements of the customer's leased line;
  • the OLT can directly use the downstream format of the existing WDM and TDM hybrid PON to modulate to the color wavelength.
  • the OLT directly passes the downlink format of at least one GPON, GEPON or 10GEPON through the light.
  • the modulators (LD_1 to LD_n) are modulated to different color wavelengths.
  • the OLT passes the wavelength division multiplexing combiner. For example: AWG combines 32 different color wavelengths and sends them to the ONU in the downstream direction. After the optical signal arrives at the RN, the WDM in the RN A splitter such as: AWG can filter out the 32 wavelengths.
  • the number of power splitters can be set according to the number of common customers. If all the customers are ordinary users, the remote node 62, that is, the RN, can set the corresponding power splitter according to each wavelength; The ONU is not directly passed through the power splitter, and a large customer can use a single 0.
  • the advantage of using the GPON or EPON format in the downlink direction is that the leased line service is transparent, compatible with the existing GPON and EPON downlink formats, and rationally utilizing logic design resources.
  • the downlink capacity can also be expanded by wavelength. For each additional wavelength, Does not affect the operation of other wavelengths. Since the PON system is a continuous signal in the downlink direction, there is no technical problem in optical power compensation, and the EDFA can perform optical power compensation on the continuous signal to realize long-distance transmission.
  • the OFDM modulation is applied to the service signal, and the multi-wavelength optical signal transmitted by the ONU in the uplink direction or the continuous signal transmitted by the OLT in the downlink direction is used, so that the uplink of the ONU is not required.
  • the transmitting device does not need the uplink burst receiving device of the OLT, which can reduce the network construction cost; the continuous signal optical power compensation is easy to implement, and the long-distance transmission can be realized; and the power splitter in the RN can satisfy the ONU that needs to access the network.
  • the number of the uplink optical signals reflected by the RSOA can make the uplink optical signals of all ONUs in the same group connected by one power splitter consistent, preventing the upstream OLT from receiving the beat noise.
  • FIG. 8 is a schematic structural diagram of an embodiment of an optical network unit according to the present invention.
  • the optical network unit includes: an encoding module 81, an orthogonal frequency division multiplexing modulation module 82, a digital-to-analog conversion module 83, and an optical modulation module 84. And sending module 85.
  • the coding module 81 is configured to perform baseband coding processing on the received service signal, and the orthogonal frequency division multiplexing modulation module 82 is configured to modulate the signal after the baseband coding process by using a modulation method of orthogonal frequency division multiplexing. To the allocated orthogonal frequency division multiple access subcarriers;
  • the digital-to-analog conversion module 83 is configured to perform digital-to-analog conversion on the modulated orthogonal frequency division multiple access subcarriers to obtain an electrical domain orthogonal frequency division multiple access signal;
  • the optical modulation module 84 is configured to modulate the electrical domain orthogonal frequency division multiple access signal onto the uplink optical signal to obtain an optical domain orthogonal frequency division multiple access signal;
  • the transmitting module 85 is configured to send the optical domain orthogonal frequency division multiple access signal.
  • the optical modulation module 84 may be specifically configured to: generate an uplink optical signal by reflection according to the received downlink optical signal; and modulate the electrical domain orthogonal frequency division multiple access signal to the uplink optical signal to obtain an optical domain. Orthogonal frequency division multiple access signals.
  • the optical network unit may further include:
  • the receiving module 86 is configured to receive uplink bandwidth indication information, where the uplink bandwidth indication information includes the number and number of the allocated orthogonal frequency division multiple access subcarriers.
  • the encoding module 81 may perform baseband encoding processing on the service signal, for example: using MQAM coding, orthogonal frequency
  • the sub-multiplex modulation module 82 performs orthogonal frequency division multiplexing modulation on the baseband encoded service signal, for example: using an IFFT operation to modulate the baseband encoded processing service signal to the allocated orthogonal frequency division multiple access OFDMA subcarriers on.
  • the number and number of allocated OFDMA subcarriers may be obtained from the received uplink payment indication information sent by the OLT.
  • the optical modulation module 84 After the digital-to-analog conversion module 83 performs D/A conversion on the modulated OFDMA subcarrier, the optical modulation module 84 generates an uplink optical signal by using the downlink optical signal sent by the OLT according to the OLT. No., and the electrical signal on the OFDMA subcarrier is modulated onto the optical signal to obtain an optical domain OFDMA signal.
  • the transmitting module of the optical network unit may send the optical domain OFDMA signal to the remote node, and superimpose the optical domain OFDMA signals of the same wavelength transmitted by the multiple optical network units by using one power splitter of the remote node,
  • the superposed optical domain OFDMA signal can be an OFDMA frame, and the WDM combiner in the remote node combines the superposed optical domain OFDMA signals of the multiple power splitters into one multi-wavelength optical signal and sends the optical signal to the optical line. terminal.
  • the orthogonal frequency division multiplexing modulation module may modulate the encoded service signal to the allocated orthogonal frequency division multiple access.
  • the digital-to-analog conversion module performs analog-to-digital conversion on the modulated orthogonal frequency division multiple access subcarrier, and then modulates it onto the optical signal by the optical modulation module, and then sends it to the RN through the transmitting module, and superimposes the multiplexed wave through the RN.
  • a continuous multi-wavelength optical signal can be obtained, and the optical power compensation method of the continuous multi-wavelength optical signal is simple, and can support long-distance transmission; and the transmission and reception equipment of the continuous signal is lower in cost than the burst signal, thereby reducing network construction. cost.
  • FIG. 9 is a schematic structural diagram of an embodiment of an optical line terminal according to the present invention.
  • the optical line terminal includes: an analog-to-digital conversion module 91, an orthogonal frequency division multiplexing demodulation module 92, and a baseband decoding module 93.
  • the analog-to-digital conversion module 91 is configured to perform analog-to-digital conversion on the received superposed orthogonal frequency division multiple access signal;
  • An orthogonal frequency division multiplexing demodulation module 92 configured to perform orthogonal frequency division multiplexing demodulation on the signal after the analog-to-digital conversion
  • the baseband decoding module 93 is configured to perform a baseband decoding process on the signal after the orthogonal frequency division multiplexing demodulation, to obtain a service signal.
  • the wavelength division multiplexing splitter can separate the multi-wavelength signal into overlapping orthogonals of different wavelengths.
  • the frequency division multiple access signal is separately received by each of the receivers to independently superimpose the orthogonal frequency division multiple access signals of each wavelength, and then the analog to digital conversion module 91 performs the received superposed orthogonal frequency division multiple access signals.
  • the orthogonal frequency division multiplexing demodulation module 92 performs orthogonal frequency division multiplexing demodulation on the analog-to-digital converted signal, for example: FFT operation; the baseband decoding module 93 demodulates the orthogonal frequency division multiplexing
  • the signal is subjected to baseband decoding, for example: MQAM decoding processing, and a traffic signal can be obtained.
  • the optical line terminal may further include: a bandwidth allocation module 94 and a sending module 95.
  • the bandwidth allocation module 94 is configured to use the optical network according to the traffic and/or service type of the service signal.
  • the element allocates an uplink orthogonal frequency division multiple access subcarrier;
  • the sending module 95 is configured to send uplink bandwidth indication information to the optical network unit, where the uplink bandwidth indication information includes the number and number of the orthogonal frequency division multiple access subcarriers.
  • the bandwidth allocation module 94 may allocate orthogonal frequency division multiple access subcarriers to the optical network unit according to the traffic and/or service type of the service signal, and may carry the bearer through the sending module 95.
  • the number of allocated OFDMA subcarriers and the numbered uplink bandwidth indication information are sent to the corresponding optical network unit.
  • the optical line terminal separates the received multi-wavelength optical signals to obtain superposed orthogonal frequency division multiple access signals of different wavelengths, and then performs analog-to-digital conversion and orthogonalization on the superposed orthogonal frequency division multiple access signals.
  • the service signal can be obtained; since the multi-wavelength optical signal in this embodiment is a continuous signal formed by the multiplexing of orthogonal frequency division multiple access signals, the optical power compensation is performed, and the support is far. Distance transmission; continuous signal transmission and reception equipment is less expensive than burst signals, thereby reducing network construction costs.
  • the signal processing method of the passive optical network includes:
  • Step 101 Perform baseband coding processing on the received service signal.
  • Step 102 modulate the service signal after the baseband coding process into the allocated orthogonal frequency division multiple access subcarriers by using an orthogonal frequency division multiplexing modulation mode.
  • Step 103 Perform digital-to-analog conversion on the modulated orthogonal frequency division multiple access subcarriers to obtain an electrical domain orthogonal frequency division multiple access signal.
  • Step 104 modulate the electrical domain orthogonal frequency division multiple access signal onto an uplink optical signal to obtain an optical domain orthogonal frequency division multiple access signal.
  • Step 105 Send the optical domain orthogonal frequency division multiple access signal.
  • the passive optical network system may include: an optical line terminal OLT, a remote node RN, and one or more optical network units ONU, wherein the remote node may include a WDM splitter, a WDM combiner, and a power Separator, etc.
  • the signal processing method of the passive optical network can be applied in the uplink direction (from ONU to OLT) or in the downlink direction (from OLT to ONU).
  • the signal processing method of the passive optical network may further include the following steps: receiving uplink bandwidth indication information, where the uplink bandwidth indication information includes the number and number of the allocated orthogonal frequency division multiple access subcarriers.
  • the OLT may allocate orthogonal frequency division multiple access subcarriers to the optical network unit according to the traffic and/or service type of the service signal, and allocate the allocated orthogonal frequency divisions by using the uplink bandwidth indication information.
  • the number and number of subcarriers are sent to the ONU. If the ONU receives the service signal, for example, the FE signal GE signal, etc., the service signal may be subjected to baseband encoding processing, for example: using MQAM encoding processing.
  • the ONU performs orthogonal frequency division multiplexing modulation on the service signal after the baseband coding process.
  • the service signal after the baseband coding process is modulated onto the allocated orthogonal frequency division multiple access OFDMA subcarrier by using an IFFT operation.
  • the ONU may perform D/A conversion on the OFDMA carrying the service signal to obtain an electrical domain OFDMA signal; and then modulate the electrical domain OFDMA signal onto the optical signal to obtain an optical domain OFDMA signal.
  • step 104 may specifically include:
  • a reflective semiconductor optical amplifier (RSOA) is used to reflect an uplink optical signal according to the received downlink optical signal, and then the electrical domain OFDMA signal on the OFDMA subcarrier is modulated onto the reflected upstream optical signal to form a The optical domain OFDMA signal; the transmitter in the ONU can transmit the modulated optical domain OFDMA signal to the RN for combining.
  • RSOA reflective semiconductor optical amplifier
  • the method further includes: superposing the optical domain orthogonal frequency division multiple access signal by a power splitter of the remote node, where the power splitter is configured to receive at least one channel and the optical domain orthogonal frequency division The optical signals having the same wavelength of the multiple access signals are transmitted, and the superposed optical domain orthogonal frequency division multiple access signals are transmitted.
  • Each of the power splitters in the RN can connect a plurality of transmitted ONUs having the same wavelength, and the plurality of ONUs having the same wavelength can be transmitted as one group.
  • the power splitter receives the optical domain OFDMA signals of the same wavelength transmitted by the respective ONUs in the connected group, the received optical domain OFDMA signals are superimposed, and then the WDM combiner in the RN sets the different power splitters.
  • the superposed optical domain OFDMA signals are combined into a continuous multi-wavelength optical signal.
  • the wavelengths of the optical domain OFDMA signals superimposed by different power splitters may be different.
  • the RN may perform optical power compensation on the multi-wavelength optical signal by using an optical compensation device such as an active amplifier before transmitting the multi-wavelength optical signal to realize long-distance transmission.
  • an optical compensation device such as an active amplifier
  • the ONU modulates the received service signal onto the allocated orthogonal frequency division multiple access subcarrier, and modulates the electrical signal on the orthogonal frequency division multiple access subcarrier to the reflected uplink optical signal, and passes the RN.
  • a continuous multi-wavelength optical signal can be obtained, and the continuous multi-wavelength optical signal can be easily and easily compensated for optical power, thereby supporting long-distance transmission; the transmitting and receiving equipment of the continuous signal is lower in cost than the burst signal. Thereby reducing the network construction cost.
  • FIG. 11 is a flowchart of a second embodiment of a signal processing method for a passive optical network according to the present invention. As shown in FIG. 11, the signal processing method of the passive optical network includes:
  • Step 201 Perform analog-to-digital conversion on the received superposed optical domain orthogonal frequency division multiple access signal.
  • Step 202 Perform orthogonal frequency division multiplexing demodulation on the analog-to-digital converted signal.
  • Step 203 Perform baseband decoding processing on the signal after orthogonal frequency division multiplexing demodulation, and obtain a service signal.
  • the OLT may include multiple receivers, and the WDM splitter of the OLT may receive
  • the multi-wavelength optical signal transmitted by the RN is separated into superposed optical domain orthogonal frequency division multiple access signals of different wavelengths.
  • Each of the receivers may respectively receive the superposed optical domain OFDMA signal; then perform analog-to-digital (A/D) conversion on the superposed optical domain OFDMA signal, and then perform orthogonal frequency division multiplexing (OFDM) demodulation, for example: using FFT
  • OFDM orthogonal frequency division multiplexing
  • the calculation is performed by the baseband decoding process. For example, after the MQAM decoding operation, the service signal transmitted by the ONU can be recovered.
  • the OLT separates the received multi-wavelength optical signals to obtain a superposed optical domain OFDMA signal, and then performs superposed analog-to-digital conversion, orthogonal frequency division multiplexing demodulation, and baseband decoding processing on the superposed optical domain OFDMA, respectively, to obtain a service.
  • Signal Since the multi-wavelength optical signal is a continuous signal formed by the multiplexing of orthogonal frequency division multiple access frames, the optical power compensation is simple to implement and can support long-distance transmission; compared with the burst signal, the continuous signal transmitting and receiving equipment has low cost. Thereby reducing the network construction cost.
  • the uplink direction of the signal sent by the ONU to the OLT, and the signal processing method of the passive optical network may include:
  • Step 301 Each ONU performs a baseband coding process, such as an MQAM coding process, on an input service signal, such as an FE or a GE signal.
  • a baseband coding process such as an MQAM coding process
  • Step 302 The ONU performs an IFFT operation on the baseband coded service signal to implement OFDM modulation, and modulates the baseband coded service signal to each allocated OFDMA subcarrier.
  • the OLT may adopt an OFDMA subcarrier based dynamic.
  • the bandwidth allocation (Dynamic Bandwidth Allocation, DBA) algorithm allocates bandwidth to the ONU, thereby improving the upper bandwidth. Bandwidth utilization of the line.
  • the ONU can monitor the traffic of the uplink customer's service signal, and when the bandwidth is about to be insufficient, send an uplink bandwidth allocation request to the OLT to apply for a bandwidth request to the OLT; the OLT can request the uplink bandwidth allocation of all the ONUs.
  • DBA Dynamic Bandwidth Allocation
  • the bandwidth allocation of the ONUs is uniformly performed according to the traffic or at the same time according to the traffic and the service priority.
  • the uplink bandwidth allocation of all ONUs of one wavelength can be in the OFDMA mode.
  • Each ONU allocates bandwidth according to the OFDMA subcarriers. Different ONUs can allocate one or more different OFDMA subcarriers, and the ONUs share one common unit by OFDMA subcarriers.
  • the OLT then sends an uplink bandwidth indication information to the ONU, indicating how many uplink OFDMA subcarriers and subcarriers can be used by the ONU.
  • the ONU can map the service signal to the allocated according to the received uplink bandwidth indication information.
  • the MQAM mapping and the IFFT operation are performed on the allocated subcarriers, and the subcarriers in other locations are zero-filled.
  • These OFDMA subcarriers are equivalent to time slots, and each OFDMA subcarrier represents a minimum bandwidth allocation unit.
  • multiple ONUs can share the same wavelength through OFDMA subcarriers, thereby improving the ability to share wavelengths.
  • Step 303 The ONU performs D/A conversion on the OFDMA subcarrier carrying the service signal to obtain the electrical domain OFDMA signal, and then modulates the electrical domain OFDMA signal to the optical signal of a certain wavelength through the RSOA to form the optical domain OFDMA signal;
  • Step 304 The power splitter in the RN superimposes the optical domain OFDMA signals of the same wavelength transmitted by the connected ONUs to form a complete uplink OFDMA frame.
  • the ONU can be modulated by means of reflecting the uplink optical signal.
  • the electrical domain OFDMA signal is modulated by the RSOA to the optical signal of a certain wavelength, specifically: the uplink optical signal of the ONU is received by the downlink optical signal received by the ONU.
  • the seed light source is amplified by reflection, etc., and then the amplified light source is modulated and sent to the OLT.
  • each power splitter is connected to the same ONU as a group. For example, there are 32 ONUs of wavelength A, which are the first group; the other 32 ONUs of wavelength B are the second group; Different wavelengths can be divided into 32 groups.
  • the same group of ONUs allocates OFDMA subcarriers by OFDMA to achieve wavelength sharing, specifically: assigning different numbers and different numbers of OFDMA subcarriers to different ONUs in the same group, and electrical domains on the same group of OFDMA subcarriers
  • the OFDMA signal is converted to an optical domain OFDMA signal of the same wavelength, and then the OFA signals of the same optical domain are superimposed by a power splitter.
  • An ONU may be allocated to one or more OFDMA subcarriers in the uplink direction, and the OFDMA subcarriers of all connected ONUs are in the frequency domain and time by a power splitter at one wavelength.
  • the inter-domain is superimposed as an OFDMA frame.
  • FIG. 12b is a schematic diagram of a method for superimposing OFDMA subcarriers on the same wavelength in a third embodiment of a signal processing method for a passive optical network according to the present invention.
  • ONU_1 is allocated to OFDMA subcarrier A
  • ONU_2 is allocated to OFDMA subcarrier B
  • the ONU_3 is allocated to the OFDMA subcarrier C and the OFDMA subcarrier D.
  • the OFDMA subcarriers A, B, C, and D to which all ONUs are allocated may be superimposed into one OFDMA frame.
  • the reason why the ONUs are grouped according to the wavelength is as follows: Assume that the number of ONUs is 1024. If each ONU is only allocated one subcarrier, the fineness of bandwidth allocation is poor, which is not conducive to efficient use of bandwidth; The number of subcarriers allocated by the ONU can be greater than one. H does not allocate 32 subcarriers for each ONU. The ONU needs to implement 32 1024 points when performing IFFT operations. The more points, the more difficult it is to implement digital processing and hardware implementation of IFFT operations. .
  • the OFDMA frame is repeated in time, the distance of each ONU is different, and the time offset of the OFDMA frame may be generated when the power splitter is superimposed. If the time offset exceeds the guard interval between the OFDMA frames, the OLT A reception error may occur, so the OLT can measure the distance or relative time offset of each ONU individually for each wavelength group, which is the ranging process. Each ONU can send delay compensation according to the result of the ranging, so that the differential distance delay between the ONUs is smaller than the guard interval of the OFDMA frame, so that the OLT can receive correctly.
  • the ranging process is specifically as follows: First, the OLT issues a windowing instruction; subsequently, the ONU in the working state stops transmitting data, and fills "0" in the assigned subcarrier position in the OFDMA frame, and the newly entered ONU follows the following line.
  • the value in the time counter is used as the downlink time reference, and the OFDMA join request frame is sent to the OLT. If the OLT receives the OFDMA join request frame sent by the newly entered ONU, the time offset value of the newly entered ONU is calculated, and the time offset is calculated.
  • the ONU sends the OFU frame to the OLT after adding the time offset value to the downlink time reference.
  • Step 305 The WDM combiner in the RN may combine the optical signals of different wavelengths superimposed by the respective power splitters to obtain a multi-wavelength optical signal, and then the RN transmits the multi-wavelength optical signal to the OLT direction;
  • optical signals of different wavelengths carrying the respective OFDMA frames superimposed by the power splitter are independent of each other, and the uplink OFDMA frames of different wavelengths of each power splitter are combined by the WDM combiner in the RN to form multi-wavelength light.
  • Step 306 After the OLT performs wavelength separation on the multi-wavelength optical signal by the WDM splitter at the receiving end, the receiver in the OLT independently receives the optical signal for each wavelength.
  • the OLT can filter out optical signals of different wavelengths through the WDM splitter at the receiving end and send them to different receivers, for example: optical receivers. Since the uplink OFDMA signals of each ONU are time-continuous signals, the OLT can use Continuous optical receiver reception. Also, each ONU can use a continuous laser transmitter in the upstream direction without any shutdown.
  • the upstream wavelengths of the same group of ONUs are locked to the same seed source, so that the upstream wavelengths of the same group of ONUs can be kept strictly consistent, and the same group is all passed through the power splitter.
  • the ONU optical domain OFDMA signal is superimposed as an uplink OFDMA frame, it is sent to the OLT, and the OLT receiver does not generate beat noise.
  • the uplink optical signals of a group of ONUs can be strictly consistent, for example: using the RSOA to reflect and amplify the received downlink color light in the ONU, wherein the downlink color light can be received by each ONU.
  • the downlink optical signal that is currently modulated to carry the data sent by the OLT may also be another downlink optical signal that the OLT specifically sends to the ONU.
  • the downlink color light that is preferably used is the current received by each ONU.
  • the modulated downstream optical signal carrying the data transmitted by the OLT After receiving the downlink optical signal, the ONU reflects and amplifies the downlink optical signal by using the RSOA to form an uplink optical signal; and then converts the uplink IOFDM-processed electrical domain OFDMA signal to the uplink optical signal to implement the electrical signal to the optical signal. Signal conversion, this process is the process of remodulation, which is the process of reflecting and amplifying the downstream optical signal and then performing electro-optic modulation.
  • the ONU's upstream laser can use RSOA, FP-LD (Fabry-Perot semiconductor laser diode) laser, or other lasers.
  • the upstream optical signal of the ONU is not limited to being received and received.
  • the downlink optical signals are the same, but the uplink optical signals between the 0NUs in the same group are the same, which can ensure that the receiver of the corresponding OLT in the group does not generate beat noise.
  • Step 307 The OLT performs an A/D conversion, an FFT demodulation, and an MQAM decoding operation on the optical signal according to the group, and recovers the service signal.
  • the signal processing method of the passive optical network in this embodiment is adopted, and the access bandwidth of each ONU is large, even reaching 1 Gbps, and the specific analysis is as follows:
  • the ONU may be extended to the network according to the wavelength, for example: if each wavelength can carry 32 ONUs, 32 wavelengths may have 1024 ONUs; if each wavelength can have 64 ONUs, suppose C With a maximum of 40 wavelengths, a total of 2560 ONUs can be used.
  • the ONU adopts OFDM modulation and MQAM coding before optical modulation, which can improve bandwidth utilization.
  • Each ONU realizes sharing of uplink optical signals by OFDMA, and the OFDMA frames of each ONU are repeated by time, in the same Over time, the format of the OFDMA frame includes a prefix part and an OFDM IFFT data part; the superposed OFDMA signal is a continuous signal in time; and the TDMA mode PON directly processes the service signal to the transmitting laser after being processed by the TDM frame.
  • the signal obtained by superposition by the power splitter is the same burst signal as the upstream direction of the GPON.
  • the ONU does not need to have an uplink burst sending capability, and only needs to be generally The continuous transmission capability of the ONU; the transmission laser of the ONU does not need to be turned off and on, and is always on; therefore, there is no need to set an expensive burst receiver in the OLT, and a general continuous receiver such as an optical receiver can be used. Thereby reducing the cost of network construction.
  • the present embodiment adds an electric processing process such as IFFT and D/A conversion, it can be realized based on mature integrated circuit technology, and the hardware cost is not high.
  • the transmission distance is limited by the physical distance of the GPON itself.
  • factors affecting the physical distance include difficulty in compensating for the burst signal optical power.
  • the problem is that, in the all-optical region, the time constant of the EDFA is much larger than the frame length of the GPON, and it is almost impossible to completely respond to burst signals of different levels, so it is very difficult to perform power compensation operation in the optical domain.
  • the optical power compensation of the continuous signal of the OFDMA can be performed at the OLT and the RN by using an EDFA or the like, such as setting a bidirectional optical amplifier in the RN.
  • the transmission distance can be greatly increased to achieve long-distance transmission.
  • the ONU output is O DBm
  • the RN consumes 4DB.
  • the budget can also pass 10Km, a total distance of 20Km.
  • OLT preset (PRE-AMP) EDFA OLT preset
  • the sensitivity of the OLT can be increased to -40DB, which can realize the transmission above lOOKm between RN and OLT, plus the optical power compensation on the RN. From the ONU to the OLT, all-optical transmission above 1 lOKm can be achieved.
  • the output of the OLT downstream optical amplifier is + 20DB.
  • the RN After reaching the RN at 80Km, there is still - 12DB, which can be boosted to + 12DB after being compensated by the downlink amplifier in the RN; and remaining + 7DB after the AWG is depleted by 5DB.
  • the remaining - 8DB after the transfer of lOKm to the ONU, the loss of 4DB remains - 12DB, assuming that the receiving sensitivity of the ONU is - 18DB, the total power budget has more surplus.
  • the above power compensation for the RN is guaranteed. Sum calculation, if you consider the maximum output power, there is still a large power margin. Therefore, in this embodiment, optical power compensation is performed on the continuous signal, and long-distance transmission of more than 10 OKm can be realized.
  • bandwidth allocation is performed for the ONU according to the OFDMA subcarrier, which is based on bandwidth allocation in the frequency domain.
  • the dynamic bandwidth allocation of the ONU in the uplink frame on the uplink frame is based on time. Bandwidth allocation for the domain.
  • the OFDMA frame is sent as a continuous signal in the uplink direction, and the uplink burst transmitting device of the ONU is not required, and the uplink burst receiving device of the OLT is not needed, which can reduce the network construction cost; Power compensation is relatively easy to implement, enabling long-distance transmission.
  • transmissions above 10Omm provide the possibility of CO upshifting.
  • the direction is grouped according to different wavelengths, which is beneficial to the expansion of the number of ONUs in the system.
  • the foregoing program may be stored in a computer readable storage medium, and the program is executed when executed.
  • the foregoing steps include the steps of the foregoing method embodiments; and the foregoing storage medium includes: a medium that can store program codes, such as a ROM, a RAM, a magnetic disk, or an optical disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Computing Systems (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optical Communication System (AREA)

Description

无源光纤网络的信号处理方法、 设备和系统
本申请要求于 2009 年 11 月 24 日提交中国专利局、 申请号为 200910226175.3、 发明名称为"无源光纤网络的信号处理方法、 设备和系统"的 中国专利申请的优先权, 其全部内容通过引用结合在本申请中。
技术领域
本发明实施例涉及通信技术领域,特别涉及一种无源光纤网络的信号处理 方法、 设备和系统。
背景技术
无源光纤网络( Passive Optical Network, 简称: PON )是一种宽带光接入 技术, 是点到多点的物理拓朴结构。 图 1为现有 PON网络的结构示意图, 如 图 1所示, 该 PON网络由光线路终端 (Optical Line Terminal, 简称: OLT )、 无源光分配网络( Optical Distribution Network, 简称: ODN )和多个光网络单 元(Optical Network Unit, 简称: ONU )组成。 其中, 多个 ONU1共享光纤资 源、共享 OLT2端口; ODN3以无源方式连接一个 OLT2和一个或多个 ONU1, ODN2中的光分支点 4不需要有源的节点设备,一个无源的光分支器 4即可实 现, 因此, PON具有光纤资源共享、 OLT端口共享、 节省机房投资、 设备安 全性高、 建网速度快、 综合建网成本低等优点。 随着宽带业务的增长, PON 技术也在不断演进,从采用异步转移模式( Asynchronous Transfer Mode, 简称: ATM ) 的无源光纤网络 ( ATM Passive Optical Network, 简称: APON )、 宽带 无源光纤网络( Broadband Passive Optical Network, 简称: BPON )发展到以 太网无源光纤网络 ( Ethernet Passive Optical Network, 简称: EPON )、 千兆位 无源光纤网络( Gigabit-Capable PON, 简称: GPON )、 波分复用 ( Wavelength Division Multiplexing, 简称: WDM ) PON, PON技术演进的总趋势是使每个 用户的接入带宽越来越大, 传输距离越来越长, 每个 OLT所带的用户数量越 来越多。
运营商进行网络规划时, 需要考虑 PON的传输距离、 功耗、 分光比等因 素。 例如: PON的传输距离远超过 20Km, 达到 lOOKm以上, 可以扩大 PON 的覆盖范围, 使 OLT较集中, 减少中心局 (Central Office, 简称: CO )局点 的建设, 降低整个接入网络的运维成本; 可以采用全光技术来实现 PON的远 距 离 传输 , 因 为 全光技术的 透明 性较好 , 功耗比 光 电 光 ( Optical-Electrical-Optical, 简称: OEO )技术的功耗低; PON的分光比越大 越好, 可以带的用户数量越多越好。 目前的 GPON分光比为 1 : 32/64, 运营 商希望 PON的分光比能提高到 1 :256— 1 :1024。 例如, 德国电信 DT希望使用 WDM-PON来实现 50Km以上的无源传输, 可以带 1000个以上的用户, 并给 每个用户提供高达 IGbps的接入带宽, 但是现有的 WDM PON达不到这个技 术要求。
图 2为现有 WDM PON的网络架构图, 如图 2所示, WDM PON网络可 以包括多个 ONU、 一个远端节点 ( Remote Node, 简称: RN )和一个 OLT2, 远端节点由无源的 WDM分波器和 WDM合波器组成, OLT2中也包括 WDM 分波器和 WDM合波器。 其中, WDM-PON的工作原理是: OLT2具有产生多 个不同波长的光源, 例如: 可以是宽带光源经过滤波器产生, 也可以独立的彩 色光源产生等。 下行方向, OLT2将业务信号调制到不同波长的光信号上, 通 过 OLT2中的 WDM合波器向下行方向发送; 通过 RN5的 WDM分波器从接 收到的光信号中分离出不同波长的光信号, 发送给不同的 0NU1, ONU1通过 光电转化恢复业务信号。 上行方向, 每个 ONU1 分别将业务信号调制到不同 波长的光信号上,通过 RN5中的 WDM合波器合波到单根光纤 7中向 OLT方 向传送,然后 OLT2再经过 WDM分波器分离出每个波长,经过光接收器( PD_1 到 PD_n )转换为电信号, 恢复出业务信号。 WDM PON的优点是光信号连续, 不需要 OLT有突发接收器, 也不需要 ONU有突发发送器。 同时, 每个 ONU 独占一个波长, 保密性强, 适合大客户专线应用。
发明人在实现本发明的过程中至少发现现有 WDM PON技术至少存在如 下问题:
WDM PON分离出的波长数量有限, 例如: 目前在 WDM PON中 C波段 的可用波长为 40个, 很难再提高, 为每个用户分配一个独立波长, 则所带的 用户数量有限; 由于 WDM PON中每个 ONU独享一个波长, 波长共享性差, 一个 ONU的波长即使不使用, 也不能为其他 ONU使用, 造成资源的浪费。
图 3为现有 WDM和 TDM混合的 PON的构架图,如图 3所示,在 WDM PON中增加时分多址接入( Time Division Multiple Access, 简称: TDMA ) 的 功能。 下行方向, 多个 GPON下行信号通过 OLT2的发射器( LD_1到 LD_n ) 调制到彩色波长, 经 WDM合波器合波后, 向下游发送到远端节点 RN5, RN5 为无源的节点,但不仅包括 WDM分波器和 WDM合波器,还包括功率分离器 ( POWER SPLITER )。 RN5中的 WDM分波器将接收到的光信号进行波长分 离,得到单个波长的光信号, 功率分离器对单个波长的光信号再进行功率分离 后, 将得到的信号发送给连接到这一功率分离器的所有 ONUl。 ONU1中可以 包括反射型半导体光放大器 (Reflective Semiconductor Optical Amplifier, 简称: RSOA), ONU1的种子光源可以是 OLT2的发射器发送过来的彩色光源。 上行 方向, RSOA可对 ONU1 重调制 ( Re-modulation ), 然后通过功率分离器和 WDM合波器例如: 阵列波导光栅( Arrayed Waveguide Grating, 简称: AWG ) 叠加后再送到 OLT的接收器( PD1到 PDn )。 WDM和 TDM混合的 PON可以 改善无源分离器的分光比, 以满足带用户数量, WDM和 TDM混合的 PON的 分光比具体为 1 : ( M*N ), 其中 M为分波器的波道数, N为功率分离器的功 率分配比例, 例如当 M=N=32时, 可以带多达 1024个 ONU; 提高了波长共 享效率,每个波长可以在一组 ONU之间共享(例如 32个 ONU共享一个波长)。
发明人在实现本发明的过程中至少发现现有 WDM和 TDM混合的 PON 技术至少存在如下问题:
WDM和 TDM混合的 PON在上行方向是 TDMA+WDMA方式, 其性能 主要取决于 TDMA 的固有性能, 例如: 逻辑距离、 物理距离等限制, WDM 和 TDM混合的 PON的传送距离完全取决于所采用的 TDM PON的物理传输 距离; 由于上行 TDMA的突发帧结构, 在上行方向的光功率补偿很难实现, 无论是掺铒光纤放大器 (Erbium-doped Optical Fiber Amplifier, 简称: EDFA ) 还是半导体光放大器 (Semiconductor Optical Amplifier, 简称: SOA )都难以完 成, 无法实现长距离传输。 另外, 对单个波长采用 TDMA的方式, 上行方向 时, OLT的接收端需要突发发送器, ONU也需要具有突发发送器, 网络建设 成本高。
发明内容
本发明实施例提供一种无源光纤网络的信号处理方法、设备和系统, 可以 提高传输距离, 降低网络建设成本。
本发明实施例提供一种无源光纤网络的信号处理方法, 包括:
对接收到的业务信号进行基带编码处理;
采用正交频分复用的调制方式,将基带编码处理之后的业务信号调制到已 分配的正交频分多址子载波上;
对调制后的正交频分多址子载波进行数模转换,得到电域正交频分多址信 号;
将所述电域正交频分多址信号调制到上行光信号上,获得光域正交频分多 址信号;
发送所述光域正交频分多址信号。
本发明实施例又提供一种无源光纤网络的信号处理方法, 包括: 对接收到的叠加的光域正交频分多址信号进行模数转换;
将模数转换之后的信号进行正交频分复用解调;
将正交频分复用解调之后的信号进行基带解码处理后, 得到业务信号。 本发明实施例再提供一种光网络单元, 包括:
编码模块, 用于对接收到的业务信号进行基带编码处理;
正交频分复用调制模块, 用于采用正交频分复用的调制方式,将基带编码 处理之后的信号调制到已分配的正交频分多址子载波上;
数模转换模块, 用于对调制后的正交频分多址子载波进行数模转换,得到 电域正交频分多址信号;
光调制模块, 用于将所述电域正交频分多址信号调制到上行光信号上, 获 得光域正交频分多址信号;
发送模块, 用于发送所述光域正交频分多址信号。
本发明实施例还提供一种光线路终端, 包括:
模数转换模块, 用于对接收到的叠加的正交频分多址信号进行模数转换; 正交频分复用解调模块,用于将模数转换之后的信号进行正交频分复用解 调;
基带解码模块, 用于将正交频分复用解调之后的信号进行基带解码处理 后, 得到业务信号。
本发明实施例还提供一种无源光纤网络系统, 包括: 光线路终端、 远端节 点和一个以上光网络单元;
所述光网络单元, 用于对接收到的业务信号进行基带编码处理; 采用正交 频分复用的调制方式,将基带编码处理之后的信号调制到已分配的正交频分多 址子载波上; 对调制后的正交频分多址子载波进行数模转换,得到电域正交频 分多址信号; 将所述电域正交频分多址信号调制到上行光信号上,获得光域正 交频分多址信号; 发送所述光域正交频分多址信号;
所述远端节点,用于通过功率分离器将接收到的各个光网络单元发送的波 长相同的光域正交频分多址信号进行叠加,再通过波分复用合波器将叠加后的 光域正交频分多址信号合波为多波长光信号并发送给所述光线路终端;
所述光线路终端,用于将接收到的多波长光信号分离得到不同波长的光信 号, 所述不同波长的光信号承载叠加的光域正交频分多址信号; 将所述叠加的 光域正交频分多址信号分别进行模数转换、正交频分复用解调和基带解码处理 后, 得到业务信号。
本发明实施例提供的无源光纤网络的信号处理方法、设备和系统, 将接收 到的业务信号调制到已分配的正交频分多址子载波上,将调制后的正交频分多 址子载波进行数模转换得到的电域正交频分多址信号调制到上行光信号上,然 后通过远端节点叠加合波可以得到连续的多波长光信号,连续信号的光功率补 偿简单, 可以支持远距离传输; 且连续信号的发射和接收设备与突发信号相比 成本低, 从而降低了网络建设成本。 附图说明
图 1为现有 PON网络的结构示意图; 图 2为现有 WDM PON的网络架构图;
图 3为现有 WDM和 TDM混合的 PON的构架图; 图 4为本发明实施例中 OFDM系统的频域示意图; 图 5为本发明实施例中 OFDM系统的另一频域示意图; 图 6为本发明无源光纤网络系统实施例的结构示意图;
图 7 a为本发明无源光纤网络系统实施例中一种应用的结构示意图; 图 7b为本发明无源光纤网络系统实施例中另一种应用的结构示意图; 图 8为本发明光网络单元实施例的结构示意图; 图 9为本发明光线路终端实施例的结构示意图; 图 10为本发明无源光纤网络的信号处理方法第一实施例的流程图; 图 11为本发明无源光纤网络的信号处理方法第二实施例的流程图; 图 12a为本发明无源光纤网络的信号处理方法第三实施例的流程图; 图 12b为本发明无源光纤网络的信号处理方法第三实施例中 OFDMA子载 波在相同波长上叠加的示意图。 具体实施方式
下面通过附图和实施例, 对本发明的技术方案做进一步的详细描述。
正交频分复用 ( Orthogonal Frequency Division Multiplexing,简称: OFDM ) 技术是频分复用 (Frequency Division Multiplexing, 简称: FDM )技术的一部 分, FDM技术是一种在单个信道中在相邻的频率间利用多个子载波的技术。 在 OFDM系统中, 为了使频谱的效率达到最大, 子载波可以有重叠部分。 通 常有重叠的相邻信道会互相干扰, 但在 OFDM系统中, 子载波之间精确正交, 可以实现有重叠但不发生干扰。 因此, OFDM 系统可以在不引起相邻信道干 扰的同时, 使频谱的效率最大化。
图 4为本发明实施例中 OFDM系统的频域示意图, 如图 4所示, 每个单 独的信道 C中可以包括七个子载波 S。信道的传输速率随着信道带宽的增加而 增加, 与普通的 FDM系统相比, OFDM系统允许的数据吞吐量更高。 OFDM 通信系统中子载波重叠可以更有效地利用频谱资源。因为每个子载波的功率最 大值点直接对应于相邻信道功率的最小值点,这些子载波可以部分重叠而不互 相干扰。 图 5为本发明实施例中 OFDM系统的另一频域示意图, 如图 5所示, OFDM 系统的每个子载波由不同的峰值点表示, 同时, 每个子载波的峰值点 直接对应于其他信道的过零点。 现代 OFDM系统采用数字信号处理技术, 各 子载波的产生和接收都由数字信号处理算法完成反向快速傅里叶变换(Inverse Fast Fourier Transform,简称: IFFT )/快速傅里叶哭换 ( Fast Fourier Transform, 简称: FFT ) , 简化了系统的结构。 为了提高频谱利用率, 使各子载波上的频 谱相互重叠,但这些频谱在整个符号周期内满足正交性,从而保证接收端能够 不失真地复原信号。
OFDM调制过程也是 IFFT或反向离散傅里叶变换( Inverse Discrete Fourier Transform, 简称: IDFT )运算过程, OFDM解调过程也是 FFT或离散傅里 叶变换 ( Discrete Fourier Transform, 简称: DFT )过程。
图 6为本发明无源光纤网络系统实施例的结构示意图,如图 6所示,该无 源光纤网络系统包括:光线路终端 61、远端节点 62和一个以上光网络单元 63; 光网络单元 63, 用于对接收到的业务信号进行基带编码处理; 采用正交 频分复用的调制方式,将基带编码处理之后的信号调制到已分配的正交频分多 址子载波上; 对调制后的正交频分多址子载波进行数模转换,得到电域正交频 分多址信号; 将所述电域正交频分多址信号调制到上行光信号上, 获得光域正 交频分多址信号; 发送所述光域正交频分多址信号;
远端节点 62, 用于通过功率分离器将接收到的各个光网络单元发送的波 长相同的光域正交频分多址信号进行叠加,再通过波分复用合波器将叠加后的 光域正交频分多址信号合波为多波长光信号并发送给光线路终端 61;
光线路终端 61, 用于将接收到的多波长光信号分离得到不同波长的光信 号, 所述不同波长的光信号承载叠加的光域正交频分多址信号; 将所述叠加的 光域正交频分多址信号分别进行模数转换、正交频分复用解调和基带解码处理 后, 得到业务信号。
进一步地, 光线路终端 61还用于,将接收到的业务信号进行基带编码处 理、 正交频分复用调制, 调制到已分配的正交频分多址子载波上; 将调制后的 正交频分多址子载波进行数模转换,得到电域正交频分多址信号,将所述电域 正交频分多址信号调制到下行光信号上获得光域正交频分多址信号;将不同波 长的光域正交频分多址信号合波为多波长光信号并发送给远端节点 62;
远端节点 62还用于, 通过波分复用合波器将接收到的所述多波长光信号 分离为不同波长的光信号, 所述不同波长的光信号承载光域正交频分多址信 号, 通过功率分离器将所述正交频分多址信号发送到各个光网络单元 63; 光网络单元 63还用于, 接收远端节点 62发送的光域正交频分多址信号, 将所述光域正交频分多址信号分别进行模数转换、正交频分复用解调和基带解 码处理后, 得到业务信号。
本发明实施例中信号从光网络单元到光线路终端为上行方向,信号从光线 路终端到光网络单元为下行方向。
图 7a为本发明无源光纤网络系统实施例中一种应用的结构示意图, 如图 7a所示, 示例性的, 在无源光纤网络系统的上行方向, 光网络单元 63对接收 到的业务信号例如快速以太网 ( Fast Ethernet, 简称: FE )信号或千兆比特以 太网(Gigabit Ethernet, 简称: GE )信号等进行多进制正交幅度调制(Multiple Quadrature Amplitude Modulation, 简称: MQAM )编码(基带编码) 、 IFFT 运算(即 OFDM 调制)后, 可以将业务信号调制到已分配的 ( Orthogonal Frequency Division Multiple Access,简称: OFDMA)子载波上;然后对 OFDMA 子载波进行数模(Digital/Analog, 简称: D/A ) 变换后, 通过半导体光放大 器 (RSOA)调制到光信号上。 光网络单元 63将 OFDMA信号发送至远端节点 62,通过远端节点 62中的一个功率分离器 623将多个光线路终端 63的 OFDMA 信号叠加为一个 OFDMA帧, 然后远端节点 62中的波分复用合波器 622还可 以将多个功率分离器的 OFDMA 帧合波为多波长光信号, 发送给光线路终端 61。 光线路终端 61接收到光网络单元发送的多波长光信号后, 通过 WDM合 波器可以将多波长信号分离为不同波长的光信号, 再通过各个接收器 (PD_1 到 PD_n )分别独立的接收对应波长的光信号; 然后将不同波长的光信号进行 A/D转换、 FFT运算( OFDM解调 )和 MQAM解码(基带解码 )处理后, 可 以得到业务信号。
在由光网络单元 ONU 向光线路终端 OLT 发送信号的上行方向采用 OFDMA的格式,在由 OLT向 ONU发送信号的下行方向,也可以采用 OFDMA 的格式, 如图 7a所示, 在无源光纤网络的下行方向, 光线路终端 61接收到业 务信号后, 可以对该业务信号进行 MQAM编码和 OFDM调制 (采用 IFFT运 算) 来提高色散容限和提高带宽利用率, 将该业务信号调制到已分配的 OFDMA子载波上, 然后对 OFDMA子载波上的电信号进行 D/A变换后, 调 制到光信号上; 发送器 (LD_1到 LD_n )将光信号发送到 WDM合波器上, WDM合波器将不同波长的光信号合波为多波长光信号。 然后, 光线路终端中 将多波长光信号发送至远端节点 62。 远端节点接收到光线路终端发送的多波 长光信号后, 通过远端节点 62的波分复用分波器 621将多波长信号分离为不 同波长的光信号后, 远端节点 62的功率分离器 623将不同波长的光信号上承 载的 OFDMA帧分离为各个波长相同的光域 OFDMA信号, 然后功率分离器 623可以将各个波长相同的光域 OFDMA信号发送到各个光网络单元 63。光网 络单元 63通过接收器 PD接收到光域 OFDMA信号后, 对该光域 OFDMA信 号进行 A/D转换、 FFT运算和 MQAM解码处理后, 可以得到业务信号。 例如: 当下行光信号为 10G级别的 GPON或 EPON信号时, 首先 OLT经 过 MQAM编码和 IFFT运算, 将比特率转换为字符速率, 例如, 当 M=16时, lOGbps 数据速率经过 16QAM 编码转换成 2.5GHz 的字符速率, 可以利用 2.5GHZ的光调制器 (LD_1到 LD_n ) 实现 lOGbps的速率传输, 降低对光调 制器速率的要求,克服在 10G速率下的色散影响。每个 ONU的接收器 PD接收 到光信号后,将该光信号转换得到 2.5GHz的 OFDM电信号, 然后再经过 A/D 转换、 FFT运算、 MQAM解码等过程, 恢复出 GPON或 EPON的下行格式, 最后过滤出发送到该 ONU的业务信号例如: 数据包, 以 FE或 GE等格式送 给用户终端。
当下行光信号不是 GPON/EPON格式的信号, 例如为 FE/GE格式的信号 时, 首先 OLT可以根据业务信号的流量, 为 OLT分配下行的正交频分多址子 载波, 例如: OLT根据 FE/GE端口的流量或虚拟局域网 ( Virtual Local Area Network, 简称: VLAN )流量为 ONU分配下行的 OFDMA帧中的子载波。 然 后如图 9a所示, OLT将 FE/GE信号或 VLAN经过封装适配、 MQAM编码、 IFFT运算、 D/A转换等过程后, 调制到已分配的 OFDMA子载波上, 形成下 行的完整的 OFDMA帧, 经 RN发送到各 ONU, 各 ONU按 OFDMA子载波 进行解调, 恢复出 FE/GE格式的业务信号。
进一步地, OLT的动态带宽分配(Dynamic Bandwidth Allocation; 简称: DBA )模块还可以根据业务信号的流量和业务类型, 为 OLT分配下行的正交 频分多址子载波。例如: 当 OLT具有层 3监视能力时, 下行方向 OLT的 DBA 可根据业务类型和流量来分配带宽, 并可以定义具有广播、组播功能的下行的 OFDMA子载波, 将层 3的组播数据流映射到对应的主播子载波上, 在同一组 播组内具有权限的 ONU都可以接收、 解调业务信号。 DBA按照业务类型为 ONU分配 OFDMA子载波,可以保证高优先级业务优先使用 OFDMA子载波, 更适合视频等实时业务的传输。 因此, 当 ONU具有层 3监视能力时, 可以根 据端口的流量产生带宽分配请求,还可以同时根据业务类型和流量产生带宽分 配请求, 例如, 对 IP语音(VOICE OVER IP, 简称: VoIP )业务、 视频通话 等实时业务,可以直接产生高优先级的带宽分配请求,保证实时业务及时传递。
图 7b为本发明无源光纤网络系统实施例中另一种应用的结构示意图, 如 图 7b所示, 在由光网络单元 63 向光线路终端 61 发送信号的上行方向采用 OFDMA的格式,但在由光线路终端 61向光网络单元 63发送信号的下行方向, 对无源光纤网络的信号处理方法还可以采用 GPON或 EPON的格式。
例如: 在下行方向, 对大客户提供专线, 光线路终端 OLT将 GE或 10GE 信号直接调制到彩色波长即多波长光信号, 发送到光网络单元 ONU, 这个时 候 ONU独占该彩色波长, 以保证大客户专线的安全性和保密要求; 对普通的 用户, OLT可以直接利用现有 WDM和 TDM混合的 PON的下行格式调制到 彩色波长, 例如 OLT直接将至少一个 GPON、 GEPON或 10GEPON的下行格 式通过光调制器 (LD_1到 LD_n )调制到不同的彩色波长。
£设共有 32个不同的彩色波长,则 OLT通过波分复用合波器例如: AWG 将 32个不同的彩色波长合波后向下行方向的 ONU发送; 光信号到达 RN后, RN中的 WDM分波器例如: AWG可以过滤出该 32个波长。 其中, 根据普通 客户的数量可以设置功率分离器的数量,如果所有客户都是普通用户,远端节 点 62即 RN可以根据每个波长设置对应的功率分离器; 对大客户专线则可以 不设置或不经过功率分离器直接到达 ONU, 且一个大客户可以单独使用一个 0而。
由于功率分离器的分光比一般为 1 : 32或 1 : 64。 如果按分光比为 1 : 32 计算, 存在 32个波长时, 一共可以带 32*32=1024个 ONU, 假设 GPON采用 2.5Gbps下行速率, 则共有 32 (波长数) x 2.5Gbps带宽, 每个 ONU平均可 以得到 32(波长数) X 2.5Gbps/1024=77Mbps左右的下行带宽;如果是 10GPON 或 10GEPON的下行格式, 则每个 ONU大致可以得到 280M左右的平均下行 带宽。如果按分光比为 1 : 64计算,存在 32个波长时,一共可以带 32*64=2048 个 ONU,假设 GPON采用 lOGbps的下行速率时, 则每个 ONU可以平均得到 140Mbps左右的带宽。
下行方向采用 GPON或 EPON格式的优点是专线业务透明, 可以兼容现 有 GPON和 EPON的下行格式, 合理利用逻辑设计资源; 另外, 下行方向的 容量也可以按波长来进行扩展, 每增加一个波长, 不影响其他波长的运行。 由 于 PON系统在下行方向都是连续信号, 在光功率补偿上不存在技术问题, 可 以 EDFA对连续信号进行光功率补偿, 实现长距离传输。
本实施例对业务信号采用 OFDM调制,在上行方向 ONU发送的多波长光 信号或下行方向 OLT发送的信号为的连续信号, 因此, 不需要 ONU的上行突 发发送设备, 也不需要 OLT的上行突发接收设备, 可以减少网络建设成本; 连续信号光功率补偿容易实现, 可以实现长距离传输; 并且 RN中的功率分离 器可以满足需要接入网络的 ONU的数量;利用 RSOA反射相同的上行光信号, 可以使一个功率分离器连接的同一组内的所有 ONU的上行光信号一致, 防止 上行方向 OLT接收产生拍频噪声。
图 8为本发明光网络单元实施例的结构示意图,如图 8所示, 该光网络单 元包括: 编码模块 81、 正交频分复用调制模块 82、 数模转换模块 83、 光调制 模块 84和发送模块 85。
其中, 编码模块 81, 用于对接收到的业务信号进行基带编码处理; 正交频分复用调制模块 82, 用于采用正交频分复用的调制方式, 将基带 编码处理之后的信号调制到已分配的正交频分多址子载波上;
数模转换模块 83, 用于对调制后的正交频分多址子载波进行数模转换, 得到电域正交频分多址信号;
光调制模块 84, 用于将所述电域正交频分多址信号调制到上行光信号上, 获得光域正交频分多址信号;
发送模块 85, 用于发送所述光域正交频分多址信号。
进一步地, 光调制模块 84具体可以用于: 根据接收到的下行光信号通过 反射产生上行光信号;将所述电域正交频分多址信号调制到所述上行光信号 上, 获得光域正交频分多址信号。
该光网络单元还可以包括:
接收模块 86, 用于接收上行带宽指示信息, 所述上行带宽指示信息包括 所述已分配的正交频分多址子载波的数量和编号。
具体地, 在无源光纤网络的上行方向, 光网络单元接收到业务信号例如: FE信号 GE信号等之后, 编码模块 81可以对该业务信号进行基带编码处理, 例如: 采用 MQAM编码, 正交频分复用调制模块 82再对基带编码后的业务 信号进行正交频分复用调制例如: 采用 IFFT运算, 将基带编码处理之后的业 务信号调制到已分配的正交频分多址 OFDMA 子载波上。 其中, 已分配的 OFDMA子载波的数量和编号, 可以从接收到的 OLT发送的上行货款指示信 息中获取。然后数模转换模块 83对调制后的 OFDMA子载波进行 D/A变换后, 光调制模块 84通过 RSOA根据 OLT发送的下行光信号通过反射产生上行光信 号, 并将 OFDMA子载波上的电信号调制到光信号上, 获得光域 OFDMA信 号。 光网络单元的发送模块例如: 发射器, 可以将光域 OFDMA信号发送至远 端节点,通过远端节点的一个功率分离器对多个光网络单元发送的波长相同的 光域 OFDMA信号进行叠加,叠加后的光域 OFDMA信号可以为一个 OFDMA 帧,远端节点中的 WDM合波器再将多个功率分离器的叠加后的光域 OFDMA 信号合波为一个多波长光信号, 发送给光线路终端。
本实施例在上行方向光网络单元的编码模块对接收到的业务信号进行基 带编码处理后,正交频分复用调制模块可以将编码后的业务信号调制到已分配 的正交频分多址子载波上,数模转换模块将调制后的正交频分多址子载波进行 模数转换后, 经光调制模块调制到光信号上, 再经发送模块发送给 RN, 通过 RN将叠加合波可以得到连续的多波长光信号, 连续的多波长光信号的光功率 补偿方法简单, 可以支持远距离传输; 并且连续信号的发射和接收设备与突发 信号相比成本低, 从而降低了网络建设成本。
图 9为本发明光线路终端实施例的结构示意图,如图 9所示, 该光线路终 端包括: 模数转换模块 91、 正交频分复用解调模块 92和基带解码模块 93。
其中, 模数转换模块 91, 用于对接收到的叠加的正交频分多址信号进行 模数转换;
正交频分复用解调模块 92, 用于将模数转换之后的信号进行正交频分复 用解调;
基带解码模块 93, 用于将正交频分复用解调之后的信号进行基带解码处 理后, 得到业务信号。
具体地,在无源光纤网络的上行方向, 如果光线路终端接收到光网络单元 发送的多波长光信号,通过波分复用分波器可以将多波长信号分离为不同波长 的叠加的正交频分多址信号,再通过各个接收器分别独立的接收每一个波长的 叠加的正交频分多址信号, 然后, 模数转换模块 91对接收到的叠加的正交频 分多址信号进行模数转换, 正交频分复用解调模块 92对模数转换后的信号进 行正交频分复用解调例如: FFT运算; 基带解码模块 93将正交频分复用解调 之后的信号进行基带解码例如: MQAM解码处理, 可以得到业务信号。
进一步地, 该光线路终端还可以包括: 带宽分配模块 94和发送模块 95。 带宽分配模块 94, 用于根据业务信号的流量和 /或业务类型, 为光网络单 元分配上行的正交频分多址子载波;
发送模块 95, 用于向所述光网络单元发送上行带宽指示信息, 所述上行 带宽指示信息包括所述正交频分多址子载波的数量和编号。
带宽分配模块 94在接收到光网络单元的带宽分配请求后, 可以根据业务 信号的流量和 /或业务类型为光网络单元分配正交频分多址子载波, 并可以通 过发送模块 95将承载已分配的 OFDMA子载波的数量和编号上行带宽指示信 息发送给对应的光网络单元。
本实施例中,光线路终端将接收到的多波长光信号分离得到不同波长的叠 加的正交频分多址信号, 然后将叠加的正交频分多址信号分别进行模数转换、 正交频分复用解调和基带解码处理后, 可以得到业务信号; 由于本实施例中的 多波长光信号是正交频分多址信号合波形成的连续信号, 以进行光功率补偿, 支持远距离传输; 连续信号的发射和接收设备与突发信号相比成本低,从而降 低了网络建设成本。
图 10为本发明无源光纤网络的信号处理方法第一实施例的流程图, 如图 10所示, 该无源光纤网络的信号处理方法包括:
步骤 101、 对接收到的业务信号进行基带编码处理;
步骤 102、 采用正交频分复用的调制方式, 将基带编码处理之后的业务信 号调制到已分配的正交频分多址子载波上;
步骤 103、 对调制后的正交频分多址子载波进行数模转换, 得到电域正交 频分多址信号;
步骤 104、 将所述电域正交频分多址信号调制到上行光信号上, 获得光域 正交频分多址信号;
步骤 105、 发送所述光域正交频分多址信号。
在本实施例中, 无源光纤网络系统可以包括: 光线路终端 OLT、 远端节 点 RN和一个以上的光网络单元 ONU, 其中远端节点中可以包括 WDM分波 器、 WDM合波器和功率分离器等。 该无源光纤网络的信号处理方法可以应用 于上行方向 (从 ONU到 OLT ) , 也可以用于下行方向 (从 OLT到 ONU ) 。
进一步地, 该无源光纤网络的信号处理方法还可以包括以下步骤: 接收上行带宽指示信息,所述上行带宽指示信息包括所述已分配的正交频 分多址子载波的数量和编号。 具体地, 在上行方向, OLT可以预先根据业务信号的流量和 /或业务类型, 为光网络单元分配正交频分多址子载波,并通过上行带宽指示信息将已分配的 正交频分多址子载波的数量和编号发送给 ONU。如果 ONU接收到业务信号例 如: FE信号 GE信号等后, 可以对业务信号进行基带编码处理, 例如: 采用 MQAM编码处理。 ONU对基带编码处理之后的业务信号进行正交频分复用调 制例如: 采用 IFFT运算将基带编码处理之后的业务信号调制到已分配的正交 频分多址 OFDMA子载波上。 ONU可以对承载所述业务信号的 OFDMA进行 D/A变换, 得到电域 OFDMA信号; 再将电域 OFDMA信号调制到光信号上, 获得光域 OFDMA信号。
进一步地, 步骤 104具体可以包括:
根据接收到的下行光信号通过反射产生上行光信号;
将所述电域正交频分多址信号调制到所述上行光信号上,获得光域正交频 分多址信号。
例如: 通过反射型半导体光放大器 (RSOA)根据接收到的 OLT发射的下行 光信号, 反射得到上行光信号, 然后将 OFDMA子载波上的电域 OFDMA信 号调制到反射得到的上行光信号上, 形成光域 OFDMA信号; ONU中的发射 器可以将调制后的光域 OFDMA信号发送给 RN用于合波。
在步骤 105之后,还可以包括: 将所述光域正交频分多址信号通过远端节 点的功率分离器进行叠加,所述功率分离器用于接收至少一路与所述光域正交 频分多址信号波长相同的光信号, 并发送叠加后的光域正交频分多址信号。
RN中的每一个功率分离器可以连接多个发送的波长相同的 ONU,该多个 发送的波长相同的 ONU可以作为一组。 在功率分离器接收到其连接的一组内 各个 ONU发送的波长相同的光域 OFDMA信号后, 将接收到的光域 OFDMA 信号进行叠加,然后 RN中的 WDM合波器再将不同功率分离器叠加后的光域 OFDMA信号合波为连续的多波长光信号。其中不同功率分离器叠加后的光域 OFDMA信号的波长可以不同。
为了提高可发送距离, RN在发送该多波长光信号之前, 可以采用有源放 大器等光补偿装置对该多波长光信号进行光功率补偿, 实现长距离传输。
本实施例 ONU将接收到的业务信号调制到已分配的正交频分多址子载波 上, 将正交频分多址子载波上的电信号调制到反射的上行光信号上, 通过 RN 叠加合波后可以得到连续的多波长光信号,连续的多波长光信号可以的光功率 补偿简单方便,从而可以支持远距离传输; 连续信号的发射和接收设备与突发 信号相比成本低, 从而降低了网络建设成本。
图 11为本发明无源光纤网络的信号处理方法第二实施例的流程图, 如图 11所示, 该无源光纤网络的信号处理方法包括:
步骤 201、 对接收到的叠加的光域正交频分多址信号进行模数转换; 步骤 202、 将模数转换之后的信号进行正交频分复用解调;
步骤 203、 将正交频分复用解调之后的信号进行基带解码处理后, 得到业 务信号。
其中, OLT中可以包括多个接收器, OLT的 WDM分波器可以将接收到
RN发送的多波长光信号分离为不同波长的叠加的光域正交频分多址信号。 各 个接收器可以分别接收到叠加的光域 OFDMA信号; 然后对该叠加的光域 OFDMA信号进行模数 ( A/D )转换后, 经过正交频分复用 (OFDM )解调例 如: 采用 FFT运算, 再进行基带解码处理例如: 采用 MQAM解码运算后, 可 以恢复出 ONU发送的业务信号。
本实施例 OLT将接收到的多波长光信号分离得到叠加的光域 OFDMA信 号,然后将叠加的光域 OFDMA分别进行模数转换、正交频分复用解调和基带 解码处理后,得到业务信号; 由于多波长光信号是正交频分多址帧合波形成的 连续信号, 光功率补偿实现简单, 可以支持远距离传输; 与突发信号相比, 连 续信号发射和接收设备成本低, 从而降低了网络建设成本。
图 12a为本发明无源光纤网络的信号处理方法第三实施例的流程图,如图 12a所示,在本发明无源光纤网络的信号处理方法第一、第二实施例的基础上, 从 ONU向 OLT发送信号的上行方向,该无源光纤网络的信号处理方法可以包 括:
步骤 301、每个 ONU将输入的业务信号例如 FE或 GE信号, 进行基带编 码处理例如: MQAM编码处理;
步骤 302、ONU对基带编码处理后的业务信号进行 IFFT运算,实现 OFDM 调制, 将基带编码处理后的业务信号调制到已分配的各个 OFDMA子载波上; 其中, OLT 可以采用基于 OFDMA 子载波的动态带宽分配 (Dynamic Bandwidth Allocation, 简称: DBA ) 算法对 ONU进行带宽分配, 从而提高上 行的带宽利用率。 具体地, ONU可以通过对上行客户的业务信号的流量进行 监视, 在带宽即将不足时, 向 OLT发送上行的带宽分配请求, 向 OLT提出带 宽申请; OLT根据所有 ONU的上行的带宽分配请求, 可以按照流量或者同时 按照流量和业务优先级等统一对 ONU进行带宽分配。 一个波长的所有 ONU 的上行的带宽分配可以采用 OFDMA方式,每个 ONU按 OFDMA子载波进行 带宽分配,不同的 ONU可分配一个或一个以上的不同的 OFDMA子载波, ONU 按 OFDMA子载波共享一个共同的上行的 OFDMA帧。 然后 OLT向 ONU发 出上行带宽指示信息, 指示 ONU可以使用多少上行 OFDMA子载波及子载波 的具体编号; 在执行步骤 302时, ONU根据接收到的上行带宽指示信息, 可 以将业务信号映射到所分配的子载波上, 即在分配到的子载波上进行 MQAM 映射和 IFFT运算, 其他位置的子载波填零处理。 这些 OFDMA子载波相当于 时隙, 每个 OFDMA子载波表示一个最小的带宽分配单位。 其中, 多个 ONU 可以通过 OFDMA子载波共享相同的波长, 从而提高对波长的共享能力。
步骤 303、 ONU将承载业务信号的 OFDMA子载波进行 D/A变换, 得到 电域 OFDMA信号, 然后通过 RSOA将电域 OFDMA信号调制到某一个波长 的光信号上, 形成光域 OFDMA信号;
步骤 304、 RN中的功率分离器将其连接的各个 ONU发送的波长相同的光 域 OFDMA信号进行叠加, 形成一个完整的上行的 OFDMA帧;
其中, ONU可以采用反射上行光信号的方式进行调制,例如: 通过 RSOA 将电域 OFDMA信号调制到某一个波长的光信号上, 具体为: ONU的上行光 信号以 ONU接收到的下行光信号作为种子光源, 通过反射放大等, 然后再对 放大后的光源进行调制, 发送给 OLT。 在上行方向, 每个功率分离器连接的 发射波长相同 ONU为一组, 例如, 波长 A的有 32个 ONU, 为第一组; 波长 B的另外 32个 ONU,为第二组; H没有 32种不同的波长,则可以分为 32组。
同一组的 ONU之间通过 OFDMA分配 OFDMA子载波实现对波长的共 享, 具体为: 对同一组中不同的 ONU分配不同数量、 不同编号的 OFDMA子 载波, 并同一组的 OFDMA子载波上的电域 OFDMA信号转换到波长相同的 光域 OFDMA信号上, 然后通过功率分离器将波长相同光域 OFDMA信号进 行叠加。 一个 ONU在上行方向可以分配到一个或多个 OFDMA子载波, 在一 个波长上通过功率分离器将所连接的所有 ONU的 OFDMA子载波在频域和时 间域叠加为一个 OFDMA帧。图 12b为本发明无源光纤网络的信号处理方法第 三实施例中 OFDMA 子载波在相同波长上叠加的示意图, 如图 12b 所示, ONU_l分配到 OFDMA子载波 A, ONU_2分配到 OFDMA子载波 B, ONU_3 分配到 OFDMA子载波 C和 OFDMA子载波 D, 则在同一波长上, 可以将所 有 ONU分配到的 OFDMA子载波 A、 B、 C、 D叠加为一个 OFDMA帧。
按照波长来对 ONU进行分组的原因如下: 假设 ONU数量为 1024, 如果 每个 ONU仅分配到一个子载波, 带宽分配的精细度较差, 不利于带宽的有效 利用; 为了有效利用带宽, 每个 ONU分配的子载波可以大于一个, H没 OLT 为每个 ONU分配 32个子载波, ONU在进行 IFFT运算时,需要实现 32 1024 点的运算, 点数越多, IFFT运算的数字处理和硬件实现越困难。 而如果按每 个波长对 ONU进行分组, 对每组独立进行 OFDMA操作、 IFFT运算、 OLT 分组接收、 带宽分配管理等, 可以大大减少 IFFT运算点数, 便于简化硬件的 实现。 例如: 如果每个 ONU平均分配 32个子载波, 波长的数量为 32个, 将 1024个 ONU分为 32组, 总共仅需要 32 x 32 = 1024个子载波的 IFFT运算, 比不分组时少很多。且对每个波长进行独立运算的好处是扩容方便, 不影响其 他组的正常工作。 例如: 当波长的数量最大为 32 个, 每个波长最大可带 64 个 ONU时, 则网路中可以连接的 ONU的最大数量为 32*64=2048个。
进一步地, 由于 OFDMA帧是按时间重复的, 每个 ONU的距离不一样, 在功率分离器叠加时可能产生 OFDMA 帧的时间偏移, 如果时间偏移超过 OFDMA帧之间的保护间隔, 则 OLT可能发生接收错误, 所以 OLT可以以每 个波长为一组单独测量各 ONU的距离或相对时间偏移, 这是测距过程。 每个 ONU根据测距的结果可以发送延时补偿, 使 ONU之间的差分距离延时小于 OFDMA帧的保护间隔, 从而使 OLT可以正确接收。 测距过程具体为: 首先, OLT发出开窗指令; 随后, 工作状态的 ONU停止发送数据, 并在 OFDMA帧 中各自所分配的子载波位置填 "0" , 而新进入的 ONU则以下行的时间计数 器中的数值作为下行时间参考, 向 OLT发出 OFDMA加入请求帧; 如果 OLT 接收到新进入的 ONU发出的 OFDMA加入请求帧, 则计算新进入的 ONU的 时间偏移值,并将该时间偏移值发回 ONU; 然后新进入的 ONU将下行时间参 考加上该时间偏移值后向 OLT发送 OFDMA帧, OLT接收到 OFDMA帧并确 认后将确认信息发送给 ONU, 表示 ONU已经成功进入。 步骤 305、 RN中的 WDM合波器可以将各个功率分离器叠加后的不同波 长的光信号进行合波, 得到多波长光信号, 然后 RN将多波长光信号向 OLT 方向发送;
经过功率分离器叠加后的承载各个 OFDMA 帧的不同波长的光信号之间 彼此独立,每个功率分离器不同波长的上行的 OFDMA帧经过 RN中的 WDM 合波器合波后, 形成多波长光信号, 发送给 OLT。
步骤 306、 OLT在接收端通过 WDM分波器将多波长光信号进行波长分离 后, OLT内的接收器按每个波长分别独立的接收光信号。
OLT在接收端通过 WDM分波器可以过滤出不同的波长的光信号, 分别 发送给不同的接收器例如: 光接收器, 由于每个 ONU的上行 OFDMA信号是 时间连续的信号, 所以 OLT可以用连续的光接收器接收。 并且, 每个 ONU 在上行方向也可以使用连续的激光发送器, 不需要任何关断操作。
另外, 由于同一组 ONU的种子光源相同, 将同一组 ONU的上行的波长 锁定在相同的种子光源上, 可以使同一组 ONU的上行的波长保持严格一致, 此时通过功率分离器将同一组所有 ONU 的光域 OFDMA信号叠加为上行的 OFDMA帧后, 发送给 OLT, OLT的接收器不会产生拍频噪声。 具体分析如 下:
在上行方向, 同一组 ONU的调制器输出的波长会严格一致或差别较大, 不能存在很接近的情况, 否则 OLT的接收器将产生拍频噪声, 影响正确接收。 为了避免产生拍频噪声, 可以使一组 ONU的上行光信号严格一致, 例如: 在 ONU中利用 RSOA反射和放大接收到的相同的下行彩光, 其中, 该下行彩光 可以是每个 ONU接收到的当前调制的携带 OLT发送的数据的下行光信号,也 可以是 OLT专门发送给该 ONU的另外的下行光信号,本实施例中优选为采用 的下行彩光是每个 ONU接收到的当前调制的携带 OLT发送的数据的下行光信 号。 ONU接收到该下行光信号后, 利用 RSOA将该下行光信号反射、 放大后 形成上行光信号; 然后将上行经过 IFFT处理后的电域 OFDMA信号转换到该 上行光信号上, 实现电信号到光信号的转换, 这个过程为重调制的过程, 就是 对下行光信号反射放大后再进行电光调制的过程。 ONU的上行激光器可以使 用 RSOA, 也可以使用 FP-LD(Fabry-Perot semiconductor laser diode)激光器, 或使用其他的激光器。 另外, ONU的上行光信号也不局限于一定要与接收到 的下行光信号相同, 但同一组内的 0NU之间的上行光信号相同, 可以保证该 组内对应的 OLT的接收器不产生拍频噪声。
步骤 307、 OLT按组对光信号进行经过 A/D转换、 FFT解调、 MQAM解 码的操作, 恢复出业务信号。
在器件能力允许的情况下, 采用本实施例无源光纤网络的信号处理方法, 每个 ONU的接入带宽较大, 甚至达到 lGbps, 具体分析如下:
£设采用抽样速率为 5G比特每秒( bit per second; 简称: bps )的 A/D转 换器, 上行调制带宽为 2.5GHZ, 如果有 1024 个 OFDMA子载波, 则每个 OFDMA子载波的间隔为 2.44MHZ左右; 若使用 16QAM编码, 且频谱利用 率设为 4bps/HZ, 则每个 OFDMA 子载波可以传送 2.44MHZ x 4bps/HZ=9.76Mbps 的数字速率, 即每个 OFDMA 子载波的接入带宽可达 9.76Mbps; 如果每个 ONU平均为 32个子载波, 则每个 ONU的接入带宽理论 上可以达到 300Mbps以上。 如果考虑纠错等开销, 16QAM编码的频谱利用率 设为 2BIT/HZ, 则每个 ONU上行的平均接入带宽也可以达到 150Mbps以上, 能够满足 LTE基站所需的接入带宽。 进一步地, 假设有 1024个 ONU, 每 32 个 ONU共享一个波长, 则每个波长的上行速率为 32 lGbps = 32Gbps , 如果 使用抽样速率为 20Gbps的 A/D转换器,并采用 64QAM,频谱利用率为 4bps/HZ 时, 在 10GHZ的带宽上可以实现传递约 10GHZ X 4bps/HZ=40Gbps的数字速 率, 所以在器件能力允许的情况下, 每个 ONU上行的平均接入带宽可能达到 lGb Sc
在本实施例中, 可以按照波长对网络进行 ONU的扩展, 例如: 如果每个 波长可以带 32个 ONU, 则 32个波长可以带 1024个 ONU; 如果每个波长可 以带 64个 ONU,假设 C波段最大为 40个波长, 则总共可以带 2560个 ONU。 本实施例 ONU在光调制之前采用了 OFDM调制和 MQAM编码, 可以提高带 宽利用率,每个 ONU之间通过 OFDMA实现对上行光信号的共享,每个 ONU 的 OFDMA帧按时间重复, 在同样的时间上叠加, OFDMA帧的格式包括前缀 部分和 OFDM IFFT数据部分; 叠加后的 OFDMA信号是时间上的连续信号; 而 TDMA方式的 PON则是直接将业务信号经 TDM帧处理后调制到发送激光 器, 通过功率分离器叠加后得到的信号是与 GPON的上行方向完全相同的突 发信号。 因此, 本实施例中 ONU不需要具有上行突发发送能力, 仅需要一般 的连续发送能力; ONU的发送激光器不用进行关断和开启等操作, 一直常开; 因此, OLT 中不需要设置价格昂贵的突发接收器, 一般的连续接收器例如: 光接收器即可, 从而降低了网络建设的成本。 虽然本实施例增加了 IFFT、 D/A 转换等电处理过程, 但基于成熟的集成电路技术可以实现, 且硬件成本不高。
另夕卜, 在现有的 WDM和 TDM混合的 PON中, 传输距离受限于 GPON 本身的物理距离, 除了光功率预算的因素外, 影响物理距离的因素还包括对突 发信号光功率补偿困难等的问题, 这是因为, 在全光域, EDFA的时间常数远 大于 GPON 的帧长度, 对不同电平的突发信号几乎无法完全响应, 因此在光 域进行功率补偿操作非常困难。 而本实施例中, 由于本实施例 ONU发送和 OLT接收的是 OFDMA的连续信号, 可以利用 EDFA等在 OLT处和 RN处对 OFDMA的连续信号进行光功率补偿, 如在 RN中设置双向光放大器, 传输距 离可以大大增加, 从而实现长距离传输。
上行方向, 例如, 当 RN和 OLT没有光放大器补偿时, 假设 ONU输出为 O DBm, 传递 lOKm后到达 RN消耗 4DB, 如果功率分离器消耗 15DB, WDM 合波器消耗 5DB (总损耗为 4 + 15 + 5 = 24DB ) , 假设 OLT的接收器灵敏度 为 - 28DB, 则在 RN不对上行方向的信号进行光功率补偿的情况下, OLT和 RN之间的距离只能有 4DB(28-24=4)的预算, 还可以传递 10Km, 总共可以传 20Km距离。 而当 RN上设置有 EDFA等光功率补偿装置时, 可以把功率分离 器和 WDM合波器的损耗完全补偿(共 15 + 5 = 20DB ), 如果 RN的上行方向 的信号为 10DB, 则有 38DB (其中, OLT的接收器灵敏度 28DB + RN上行方 向的信号 10DB = 38DB )左右的上行功率预算, 按每 lOKm损耗 4DB的预算, 至少可以实现 OLT到 RN之间 80KM距离传输。如果在 OLT也有光功率补偿, 例如 OLT预设(PRE- AMP ) EDFA, 使 OLT的灵敏度提升到 - 40DB, 可以 实现 RN到 OLT之间 lOOKm以上的传输, 再加上 RN上的光功率补偿, 则从 ONU到 OLT可以实现 1 lOKm以上的全光传输。
下行方向, 例如, OLT下行光放大器输出为 + 20DB , 经 80Km到达 RN 之后, 还剩下 - 12DB, 经 RN中的下行放大器补偿后, 可以提升到 + 12DB; 再经 AWG损耗 5DB后剩余 + 7DB; 然后经功率分离器损耗 15 DB后剩余- 8DB; 再传递 lOKm到达 ONU时损耗 4DB后剩余 - 12DB,假设 ONU的接收 灵敏度为 - 18DB, 总的功率预算还有较多剩余。 以上对 RN的功率补偿是保 守计算, 如果考虑最大的输出功率, 则还有很大的功率裕度。 因此本实施例中 采用对连续信号进行光功率补偿, 可以实现 lOOKm以上的长距离传输。
另外, 本实施例按 OFDMA子载波为 ONU分配带宽, 是基于频域的带宽 分配; 而现有的 WDM和 TDM混合的 PON中在上行帧上按 TDMA方式对 ONU进行动态带宽分配, 是基于时域的带宽分配。
综上所述,本实施例在上行方向发送 OFDMA帧为连续信号,不需要 ONU 的上行突发发送设备, 也不需要 OLT的上行突发接收设备, 可以减少网络建 设成本;对连续信号进行光功率补偿比较容易实现,从而实现长距离传输例如: 超过 lOOKm以上的传输, 为 CO上移提供了可能, 例如: 使一个 CO管辖半 径为 100KM, 可以减少 CO局点数, 降低运营维护成本; 在上行方向根据不 同波长进行分组, 有利于扩展系统中 ONU数量; 利用 RSOA反射波长相同的 光信号, 可使同一组内的所有 ONU 的上行光信号一致, 防止上行方向 OLT 接收产生拍频噪声。
本领域普通技术人员可以理解:实现上述方法实施例的全部或部分步骤可 以通过程序指令相关的硬件来完成,前述的程序可以存储于一计算机可读取存 储介质中, 该程序在执行时, 执行包括上述方法实施例的步骤; 而前述的存储 介质包括: ROM、 RAM, 磁碟或者光盘等各种可以存储程序代码的介质。
最后应说明的是: 以上实施例仅用以说明本发明的技术方案, 而非对其限 制; 尽管参照前述实施例对本发明进行了详细的说明, 本领域的普通技术人员 应当理解: 其依然可以对前述各实施例所记载的技术方案进行修改,或者对其 中部分技术特征进行等同替换; 而这些修改或者替换, 并不使相应技术方案的 本质脱离本发明各实施例技术方案的范围。

Claims

权 利 要 求
1、 一种无源光纤网络的信号处理方法, 其特征在于, 包括:
对接收到的业务信号进行基带编码处理;
采用正交频分复用的调制方式,将基带编码处理之后的业务信号调制到已 分配的正交频分多址子载波上;
对调制后的正交频分多址子载波进行数模转换,得到电域正交频分多址信 号;
将所述电域正交频分多址信号调制到上行光信号上,获得光域正交频分多 址信
Figure imgf000024_0001
2、 根据权利要求 1所述的无源光纤网络的信号处理方法, 其特征在于, 所述将所述电域正交频分多址信号调制到上行光信号上,获得光域正交频分多 址信号, 包括:
根据接收到的下行光信号通过反射产生上行光信号;
将所述电域正交频分多址信号调制到所述上行光信号上,获得光域正交频 分多址信号。
3、 根据权利要求 1或 2所述的无源光纤网络的信号处理方法, 其特征在 于, 还包括:
将所述光域正交频分多址信号通过远端节点的功率分离器进行叠加,所述 功率分离器用于接收至少一路与所述光域正交频分多址信号波长相同的光信 号, 并发送叠加后的光域正交频分多址信号。
4、 根据权利要求 1或 2所述的无源光纤网络的信号处理方法, 其特征在 于, 还包括:
接收上行带宽指示信息,所述上行带宽指示信息包括所述已分配的正交频 分多址子载波的数量和编号。
5、 一种无源光纤网络的信号处理方法, 其特征在于, 包括:
对接收到的叠加的光域正交频分多址信号进行模数转换;
将模数转换之后的信号进行正交频分复用解调;
将正交频分复用解调之后的信号进行基带解码处理后, 得到业务信号。
6、 根据权利要求 5所述的无源光纤网络的信号处理方法, 其特征在于, 还包括:
根据业务信号的流量和 /或业务类型, 为光网络单元分配上行的正交频分 多址子载波;
向所述光网络单元发送上行带宽指示信息,所述上行带宽指示信息包括所 述正交频分多址子载波的数量和编号。
7、 一种光网络单元, 其特征在于, 包括:
编码模块, 用于对接收到的业务信号进行基带编码处理;
正交频分复用调制模块, 用于采用正交频分复用的调制方式,将基带编码 处理之后的信号调制到已分配的正交频分多址子载波上;
数模转换模块, 用于对调制后的正交频分多址子载波进行数模转换,得到 电域正交频分多址信号;
光调制模块, 用于将所述电域正交频分多址信号调制到上行光信号上, 获 得光域正交频分多址信号;
发送模块, 用于发送所述光域正交频分多址信号。
8、 根据权利要求 7所述的光网络单元, 其特征在于, 所述光调制模块具 体用于: 根据接收到的下行光信号通过反射产生上行光信号;将所述电域正交 频分多址信号调制到所述上行光信号上, 获得光域正交频分多址信号。
9、 根据权利要求 7或 8所述的光网络单元, 其特征在于, 还包括: 接收模块, 用于接收上行带宽指示信息, 所述上行带宽指示信息包括所述 已分配的正交频分多址子载波的数量和编号。
10、 一种光线路终端, 其特征在于, 包括:
模数转换模块, 用于对接收到的叠加的正交频分多址信号进行模数转换; 正交频分复用解调模块,用于将模数转换之后的信号进行正交频分复用解 调;
基带解码模块, 用于将正交频分复用解调之后的信号进行基带解码处理 后, 得到业务信号。
11、 根据权利要求 10所述的光线路终端, 其特征在于, 还包括: 带宽分配模块, 用于根据业务信号的流量和 /或业务类型, 为光网络单元 分配上行的正交频分多址子载波;
发送模块, 用于向所述光网络单元发送上行带宽指示信息, 所述上行带宽 指示信息包括所述正交频分多址子载波的数量和编号。
12、 一种无源光纤网络系统, 其特征在于, 包括: 光线路终端、 远端节点 和一个以上光网络单元;
所述光网络单元, 用于对接收到的业务信号进行基带编码处理; 采用正交 频分复用的调制方式,将基带编码处理之后的信号调制到已分配的正交频分多 址子载波上; 对调制后的正交频分多址子载波进行数模转换,得到电域正交频 分多址信号; 将所述电域正交频分多址信号调制到上行光信号上, 获得光域正 交频分多址信号; 发送所述光域正交频分多址信号;
所述远端节点,用于通过功率分离器将接收到的各个光网络单元发送的波 长相同的光域正交频分多址信号进行叠加,再通过波分复用合波器将叠加后的 光域正交频分多址信号合波为多波长光信号并发送给所述光线路终端;
所述光线路终端,用于将接收到的多波长光信号分离得到不同波长的光信 号, 所述不同波长的光信号承载叠加的光域正交频分多址信号; 将所述叠加的 光域正交频分多址信号分别进行模数转换、正交频分复用解调和基带解码处理 后, 得到业务信号。
13、 根据权利要求 12所述的无源光纤网络系统, 其特征在于, 所述光线路终端还用于, 将接收到的业务信号进行基带编码处理、正交频 分复用调制,调制到已分配的正交频分多址子载波上; 将调制后的正交频分多 址子载波进行数模转换,得到电域正交频分多址信号,将所述电域正交频分多 址信号调制到下行光信号上获得光域正交频分多址信号;将不同波长的光域正 交频分多址信号合波为多波长光信号并发送给所述远端节点;
所述远端节点还用于,通过波分复用合波器将接收到的所述多波长光信号 分离为不同波长的光信号, 所述不同波长的光信号承载光域正交频分多址信 号, 通过功率分离器将所述正交频分多址信号发送到各个光网络单元;
所述光网络单元还用于, 接收所述远端节点发送的光域正交频分多址信 号,将所述光域正交频分多址信号分别进行模数转换、正交频分复用解调和基 带解码处理后, 得到业务信号。
PCT/CN2010/078942 2009-11-24 2010-11-22 无源光纤网络的信号处理方法、设备和系统 WO2011063728A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
AU2010324303A AU2010324303A1 (en) 2009-11-24 2010-11-22 Method, device and system for signal processing in passive optical network
EP10832635A EP2495892A4 (en) 2009-11-24 2010-11-22 METHOD, DEVICE AND SIGNAL PROCESSING SYSTEM IN PASSIVE OPTICAL NETWORKS
US13/476,684 US20120230693A1 (en) 2009-11-24 2012-05-21 Signal processing method, device, and system in a passive optical network

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200910226175.3 2009-11-24
CN2009102261753A CN102075478A (zh) 2009-11-24 2009-11-24 无源光纤网络的信号处理方法、设备和系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/476,684 Continuation US20120230693A1 (en) 2009-11-24 2012-05-21 Signal processing method, device, and system in a passive optical network

Publications (1)

Publication Number Publication Date
WO2011063728A1 true WO2011063728A1 (zh) 2011-06-03

Family

ID=44033826

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/078942 WO2011063728A1 (zh) 2009-11-24 2010-11-22 无源光纤网络的信号处理方法、设备和系统

Country Status (5)

Country Link
US (1) US20120230693A1 (zh)
EP (1) EP2495892A4 (zh)
CN (1) CN102075478A (zh)
AU (1) AU2010324303A1 (zh)
WO (1) WO2011063728A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105263071A (zh) * 2015-10-30 2016-01-20 上海斐讯数据通信技术有限公司 一种olt自适应系统及其方法
CN105263071B (zh) * 2015-10-30 2019-07-16 上海斐讯数据通信技术有限公司 一种olt自适应系统及其方法

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8855490B2 (en) * 2007-08-31 2014-10-07 Futurewei Technologies, Inc. Backward compatible PON coexistence
CN102025478B (zh) * 2009-09-15 2015-03-18 华为技术有限公司 数据传送、接收的方法及装置
CN102281118A (zh) * 2011-07-29 2011-12-14 上海交通大学 基于光正交频分多址接入的波分复用无源光网络传输系统
EP2748577B1 (en) 2011-08-24 2018-02-28 Telefonaktiebolaget LM Ericsson (publ) Pon supervision using otdr measurements
KR20130093788A (ko) * 2011-12-30 2013-08-23 한국전자통신연구원 Ofdma-pon 기반의 tdma-pon 서비스를 위한 융합 수동형 광가입자망
US8953942B1 (en) * 2012-04-27 2015-02-10 Google Inc. Hybrid WDM-TDM passive optical network
CN102780669B (zh) * 2012-06-11 2015-04-22 北京邮电大学 全光ofdm信号光层网络编码的实现方法和装置
WO2014063349A1 (zh) * 2012-10-26 2014-05-01 华为技术有限公司 无源光网络通信方法和系统、光线路终端
US9413484B2 (en) 2012-11-05 2016-08-09 Futurewei Technologies, Inc. System and method for passive optical network communication
CN103856282B (zh) * 2012-11-29 2017-04-26 武汉邮电科学研究院 复用器解复用器、发射机接收机、光纤通信系统以及方法
CN103869813B (zh) * 2012-12-14 2017-02-01 苏州宝时得电动工具有限公司 自动工作系统
US8917992B1 (en) 2013-01-02 2014-12-23 Google Inc. Optical network remote node for WDM-PON and TDM-PON
KR20140093099A (ko) * 2013-01-17 2014-07-25 한국전자통신연구원 광망 종단장치 및 광회선단말을 포함하는 직교 주파수 분할 다중접속 수동형 광가입자망
CN103117979B (zh) * 2013-01-29 2013-09-18 华中科技大学 一种无源光接入网络用户上行信号传输方法及其系统
CN104380630B (zh) * 2013-06-08 2016-11-16 华为技术有限公司 网络节点传输方法及其装置、系统
CN103733547B (zh) * 2013-06-21 2016-08-31 华为技术有限公司 光线路终端、光网络系统及信号处理方法
MX2016002233A (es) 2013-08-30 2016-06-21 Nec Corp Aparato de transmisión óptica, aparato de recepción óptica, aparato de comunicación óptica, sistema de comunicación óptica y métodos para controlarlos.
CN103517163B (zh) * 2013-09-13 2018-01-19 上海交通大学 高功率预算的正交频分复用无源光网络下行传输系统
WO2015041651A1 (en) * 2013-09-19 2015-03-26 Hewlett-Packard Development Company, L.P. Software defined optical network
CN104363532B (zh) * 2014-11-18 2017-11-07 武汉邮电科学研究院 在光接入网络中使用无色无光光网络单元的方法和系统
US9871613B2 (en) * 2016-03-15 2018-01-16 Alcatel-Lucent Usa Inc. Sub-wavelength granularity for transport of multicarrier optical signals
CN107222295B (zh) * 2017-05-25 2018-02-23 武汉盈科通信技术有限公司 Pon聚合拉远系统上行突发处理方法及远端、局端设备
CN109391586A (zh) * 2017-08-04 2019-02-26 深圳市中兴微电子技术有限公司 一种防止静态ip非法上网的装置及方法、onu设备和pon系统
US11095364B2 (en) * 2019-03-04 2021-08-17 Infiriera Corporation Frequency division multiple access optical subcarriers
US11791893B2 (en) * 2019-03-04 2023-10-17 Infinera Corporation Frequency division multiple access optical subcarriers
US20220376780A1 (en) * 2019-03-04 2022-11-24 Infinera Corporation Frequency division multiple access optical subcarriers
US11838105B2 (en) * 2019-05-07 2023-12-05 Infinera Corporation Bidirectional optical communications
CN113329277B (zh) * 2020-02-29 2022-07-29 华为技术有限公司 光通信的方法和装置
CN113573176A (zh) * 2020-04-29 2021-10-29 华为技术有限公司 一种onu、olt、光通信系统及数据传输方法
CN113543151A (zh) * 2021-06-29 2021-10-22 深圳凡维泰科技服务有限公司 4g/5g信号无线覆盖方法
CN114389689B (zh) * 2022-01-12 2023-05-23 烽火通信科技股份有限公司 相干发送接收装置、相干pon系统及上行突发处理方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101034942A (zh) * 2006-12-28 2007-09-12 上海交通大学 在两个以上无源光网络间实现全光虚拟专网的网络结构
CN101075854A (zh) * 2007-06-28 2007-11-21 中兴通讯股份有限公司 基于wdm和tdm的混合无源光网络实现装置及实现方法
US20080267630A1 (en) * 2007-03-15 2008-10-30 Nec Laboratories America, Inc. Orthogonal frequency division multiple access (ofdma) based passive optical network (pon) architecture and its extension to long distance
US20090097852A1 (en) * 2007-10-08 2009-04-16 Nec Laboratories America 10 Gbps OFDMA-PON

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100870897B1 (ko) * 2007-02-06 2008-11-28 한국과학기술원 전송품질이 개선된 반사형 반도체 광증폭기 기반광가입자망 시스템

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101034942A (zh) * 2006-12-28 2007-09-12 上海交通大学 在两个以上无源光网络间实现全光虚拟专网的网络结构
US20080267630A1 (en) * 2007-03-15 2008-10-30 Nec Laboratories America, Inc. Orthogonal frequency division multiple access (ofdma) based passive optical network (pon) architecture and its extension to long distance
CN101075854A (zh) * 2007-06-28 2007-11-21 中兴通讯股份有限公司 基于wdm和tdm的混合无源光网络实现装置及实现方法
US20090097852A1 (en) * 2007-10-08 2009-04-16 Nec Laboratories America 10 Gbps OFDMA-PON

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105263071A (zh) * 2015-10-30 2016-01-20 上海斐讯数据通信技术有限公司 一种olt自适应系统及其方法
CN105263071B (zh) * 2015-10-30 2019-07-16 上海斐讯数据通信技术有限公司 一种olt自适应系统及其方法

Also Published As

Publication number Publication date
US20120230693A1 (en) 2012-09-13
EP2495892A4 (en) 2012-10-24
EP2495892A1 (en) 2012-09-05
CN102075478A (zh) 2011-05-25
AU2010324303A1 (en) 2012-06-21

Similar Documents

Publication Publication Date Title
WO2011063728A1 (zh) 无源光纤网络的信号处理方法、设备和系统
US8000604B2 (en) Orthogonal frequency division multiple access (OFDMA) based passive optical network (PON) architecture and its extension to long distance
Cvijetic et al. 100 Gb/s optical access based on optical orthogonal frequency-division multiplexing
US9654245B2 (en) Optimizing optical systems using code division multiple access and/or orthogonal frequency-division multiplexing
Cvijetic et al. Orthogonal frequency division multiple access PON (OFDMA-PON) for colorless upstream transmission beyond 10 Gb/s
US7978975B2 (en) Passive optical network system employing sub-carrier multiplexing and orthogonal frequency division multiple access modulation schemes
CN102202248B (zh) 正交频分复用无源光网络系统
KR100516152B1 (ko) 부반송파다중화 방식이 적용된 파장 분할 다중 방식수동형 광가입자망 및 그것에서의 비대칭 패킷 데이터통신을 위한 매체접속 제어 방법
US20090097852A1 (en) 10 Gbps OFDMA-PON
Kanonakis et al. ACCORDANCE: A novel OFDMA-PON paradigm for ultra-high capacity converged wireline-wireless access networks
US8705970B2 (en) Method for data processing in an optical network, optical network component and communication system
CN101640820A (zh) 一种正交频分复用无源光网络
WO2007071154A1 (fr) Reseau optique passif a multiplexage par repartition en longueur d'onde et son procede de mise en oeuvre
CN101009530A (zh) 支持组播类业务的无源光网络、复用/解复用器及方法
CN101068129B (zh) 一种在wdm-pon中实现组播业务的方法、系统及olt
CN102171951A (zh) 用于光学网络中的数据处理的方法、光学网络组件和通信系统
CN102237977A (zh) 一种偏振交织的ofdm/scfdm无源光网络系统
US8666250B2 (en) Optical access network and nodes
KR20130093788A (ko) Ofdma-pon 기반의 tdma-pon 서비스를 위한 융합 수동형 광가입자망
CN103581770A (zh) 基于单载波频分复用的无源光网络信号处理方法与系统
CN102291633B (zh) 一种基于交织频分多址的无源光网络上行传输系统
Qian et al. Optical OFDM transmission in metro/access networks
Butt et al. Evolution of access network from copper to PON-Current status
Songlin et al. ZTE’s perspective on applying OFDM-PON in next converged optical and wireless networks
Altabas et al. Passive optical networks: Introduction

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10832635

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1306/KOLNP/2012

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2010324303

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2010832635

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2010324303

Country of ref document: AU

Date of ref document: 20101122

Kind code of ref document: A