WO2011063005A2 - Methods of producing human rpe cells and pharmaceutical preparations of human rpe cells - Google Patents

Methods of producing human rpe cells and pharmaceutical preparations of human rpe cells Download PDF

Info

Publication number
WO2011063005A2
WO2011063005A2 PCT/US2010/057056 US2010057056W WO2011063005A2 WO 2011063005 A2 WO2011063005 A2 WO 2011063005A2 US 2010057056 W US2010057056 W US 2010057056W WO 2011063005 A2 WO2011063005 A2 WO 2011063005A2
Authority
WO
WIPO (PCT)
Prior art keywords
cells
rpe
rpe cells
preparation
cell
Prior art date
Application number
PCT/US2010/057056
Other languages
French (fr)
Other versions
WO2011063005A3 (en
Inventor
Christopher Malcuit
Linda Lemieux
William Holmes
Pedro Huertas
Lucy Vilner
Original Assignee
Advanced Cell Technology, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to EP10832114.2A priority Critical patent/EP2501802A4/en
Application filed by Advanced Cell Technology, Inc. filed Critical Advanced Cell Technology, Inc.
Priority to IL301479A priority patent/IL301479A/en
Priority to CA2781149A priority patent/CA2781149A1/en
Priority to IL281453A priority patent/IL281453B/en
Priority to KR1020187022658A priority patent/KR102073730B1/en
Priority to US13/510,426 priority patent/US10485829B2/en
Publication of WO2011063005A2 publication Critical patent/WO2011063005A2/en
Publication of WO2011063005A3 publication Critical patent/WO2011063005A3/en
Priority to IL219787A priority patent/IL219787B/en
Priority to IL264430A priority patent/IL264430B/en
Priority to US16/597,419 priority patent/US11850261B2/en
Priority to IL294095A priority patent/IL294095B2/en
Priority to US18/504,238 priority patent/US20240307436A2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/56Materials from animals other than mammals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P27/00Drugs for disorders of the senses
    • A61P27/02Ophthalmic agents
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0618Cells of the nervous system
    • C12N5/0621Eye cells, e.g. cornea, iris pigmented cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0652Cells of skeletal and connective tissues; Mesenchyme
    • C12N5/0662Stem cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2506/00Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells
    • C12N2506/02Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells from embryonic cells

Definitions

  • RPE Retinal Pigment Epithelium
  • the retina] pigment epithelium is the pigmented cell layer outside the neurosensory retina between the underlying choroid (the layer of blood vessels behind the retina) and overlying retinal visual cells ⁇ e.g., photoreceptors— rods and cones).
  • the RPE is critical to the function and health of photoreceptors and the retina.
  • the RPE maintains photoreceptor function by recycling photopigments, delivering, metabolizing, and storing vitamin A, phagocytosing rod photoreceptor outer segments, transporting iron and small molecules between the retina and choroid, maintaining Bruch's membrane and absorbing stray light to allow better image resolution.
  • Mature RPE is characterized by its cobblestone cellular morphology of black pigmented cells and RPE cell markers including cellular retinaldehyde -binding protein
  • CRALBP retinaldehyde-binding protein
  • RPE65 a 65 kD cytoplasmic protein involved in retinoid metabolism
  • bestrophin a membrane localized 68 kD product of the Best vitelliform macular dystrophy gene (VMD2) (Marmorstein, et al.
  • PNAS 97(23): 12758-12763 pigment epithelium derived factor
  • PEDF pigment epithelium derived factor
  • Degeneration of the RPE can cause retinal detachment, retinal dysplasia, or retinal atrophy that is associated with a number of vision-altering ailments that result in photoreceptor damage and blindness, such as, choroideremia, diabetic retinopathy, macular degeneration (including age-related macular degeneration), retinitis pigmentosa, and Stargardt's Disease (fundus flavimaculatus).
  • choroideremia diabetic retinopathy
  • macular degeneration including age-related macular degeneration
  • retinitis pigmentosa retinitis pigmentosa
  • Stargardt's Disease fundus flavimaculatus
  • Choroideremia is an X-lin.ked recessive retinal degenerative disease that leads to the degeneration of the choriocapillaris, the retinal pigment epithelium, and the photoreceptor of the eye.
  • Mutations in the CHM gene, which encodes the Rab escort protein- 1 (REP- 1 ) cause choroideremia.
  • REP- 1 attaches to Rab proteins (involved in intracellular trafficking) and directs the Rab proteins to the organelle membranes. Mutant REP- 1 proteins cannot escort Rab proteins, leading to a lack of functional Rab proteins. This lack of Rab proteins causes a disruption in intracellular trafficking and leads to necrosis in the RPE.
  • Diabetic retinopathy is the most common diabetic eye disease and a leading cause of blindness in the United States. Diabetic retinopathy is caused by changes in the blood vessels of the retina and occurs in four stages. First, microaneurysms occur in the retinal blood vessels (Mild Nonproliferative Retinopathy). As the disease progresses, blood vessels become blocked leading to Moderate Nonproliferative Retinopathy. As more blood vessels are blocked this deprives several areas of the retina of their blood supply (Severe Nonproliferative Retinopathy.) Finally, signals sent by the retina for nourishment trigger the growth of new blood vessels (proliferative retinopathy) but these new blood vessels are abnormal and fragile.
  • the new abnormal blood vessels grow along the retina and along the surface of the vitreous humour inside of the eye.
  • "'Diabetic Retinopathy” (MayoClinic.org) [February 1 1 , 2010]
  • diabetic retinopathy may only be controlled or slowed with surgery but not treated, and the patient usually continues to suffer from vision problems. Therefore, there exists a need for improved diabetic retinopathy therapies.
  • Age-related macular degeneration is the most common reason for legal blindness in the Uiiited States and Europe. Atrophy of the submacuiar RPE and the development of choroidal neovascularizations (CNV) results secondarily in loss of central visual acuity. Early signs of AMD are deposits (druses) between retinal pigment epithelium and Bruch's membrane. Central geographic atrophy (“dry AMD”) results from atrophy to the retinal pigment epithelial layer below the retina, which causes vision loss through loss of photoreceptors (rods and cones) in the central part of the eye.
  • AMD Age-related macular degeneration
  • Neovascular or exudative AMD causes vision loss due to abnormal blood vessel growth (choroidal neovascularization) in the choriocapil!aris, through Bruch's membrane, ultimately leading to blood and protein leakage below the macula. Bleeding, leaking, and scarring from these blood vessels eventually cause in'eversibie damage to the photoreceptors and rapid vision loss if left untreated.
  • Current treatments for macular degeneration include anti -angiogenic therapy with ranibizumab (LUCENTIS®) or bevacizumab (AVASTIN®), photocoagulation (laser surgery), photodynamic therapy with verteporfin
  • Retinitis pigmentosa is a group of inherited diseases that damage the
  • photoreceptors e.g., rods and cones
  • autosomal recessive RP is caused by mutations in cis retinaldehyde binding protein or RPE65.
  • the progression of RP is slow and varies from patient to patient. Patients with RP all suffer some vision loss, with night blindness as a typical early symptom followed by tunnel vision, and some may lose all sight.
  • Retinitis Pigmentosa American Optometric Association (October 2010). Although treatment with vitamin A and lutein has shown some promise in slowing the progress of RP, no effective treatment is available.
  • Retinal detachment including rhegmatogenous retinal detachment, exudative, serous, or secondary retinal detachment, and tractionai retinal detachment, is a disorder of the eye in which the retina peels away from its underlying layer of support tissue, initial detachment may be localized, but without rapid treatment the entire retina may detach, leading to vision loss and blindness. See Ghazi and Green (2002) Eye 16: 41 1-421 . A minority of retinal detachments arise from trauma including blunt blows to the orbit, penetrating trauma, and concussions.
  • the current treatment is emergency eye surgery but only has an approximately 85% success rate, and even if successful, the patient may suffer a loss of visual acuity and visual artifacts. See Facts About Retinal Detachment [NEI Health Information] (October 2010). Therefore, a need exists for a treatment for retinal detachment.
  • Stargardt's Disease (fundus flavimaculatus) is a type of macular degeneration, including both an autosomal recessive and a dominant form, that causes a progressive loss of central vision of both eyes, but does not affect peripheral vision.
  • Patients with Stargardt's experience a gradual deterioration of the retina's cone receptor cells. Cones are concentrated in the macula, and are responsible for central vision and color. Over time, these diseased cells cause a blackened hole to form in the central vision, and the ability to perceive colors is eventually affected. See Gass and Hummer (1999) Retina 19(4): 297-301 and Aaberg (1986) Tr. Am. Ophth. Soc. LXXXIV: 453-487. Currently, there are no treatments available for Stargardt's Disease.
  • CNV subfoveal choroidal neovascularization
  • RPE cells have been suggested as a possible therapy for treating
  • Parkinson' s disease a chronic degenerative disease of the brain.
  • the disease is caused by degeneration of specialized neuronal cells in the region of the basal ganglia.
  • the death of dopaminergic neurons results in reduced synthesis of dopamine, an important neurotransmitter, in patients with Parkinson's disease.
  • the standard therapy is medical therapy with L-dopa.
  • L-dopa is metabolized in the basal ganglia to dopamine and there takes over the function of the missing endogenous neurotransmitter. See McKay, et al. (2006) Exp Neurol. 20( 1 ): 234-243 and NINDS Parkinson's Disease Information Page (September 23, 2009).
  • RPE cells sourced from human donors has several intractable problems.
  • RPE cells sourced from human donors are an inherently limited pool of available tissue that prevent it from scaling up for widespread use.
  • Second, the RPE cells from human donors may be contaminated with pathogens and may have genetic defects.
  • Third, donated RPE cells are derived from cadavers. The cadaver- sourced RPE cells have an additional problem of age where the RPE cells are may be close to senesce (e.g., shorter telomeres) and thus have a limited useful lifespan following transplantation.
  • Reliance on RPE cells derived from fetal tissue does not solve this problem because these cells have shown a very low proliferative potential. Further, fetal cells vary widely from batch to batch and must be characterized for safety before transplantation. See, e.g., Irina Klimanskaya, Retinal Pigment Epithelium Derived From Embryonic Stem Cells, in STEM CELL ANTHOLOGY 335-346 (Bruce Carlson edminister 2009). Any human sourced tissue may also have problems with tissue compatibility leading to immunological response (graft-rejection). Also, cadaver-sourced RPE ceils may not be of sufficient quality as to be useful in transplantation (e.g., the cells may not be stable or functional).
  • RPE cells transplanted in an autologous transplantation carry the same genetic information that may have lead to the development of AMD. See, e.g. , Binder, et al. (2007) Progress in Retinal and Eve Research 26(5): 516-554.
  • the RPE cells used in autologous transplantation are already cells that are close to senesce, as AMD may develop in older patients. Thus, a shorter useful lifespan of the RPE cells limits their utility in therapeutic applications ⁇ e.g., the RPE cells may not transplant well and are less likely to last long enough for more complete recovery of vision).
  • hESC-RPE cells Embryonic Stem Cells derived RPE Cells
  • Rpe65 rdl2 /Rpe rd!2 mice receiving the RPE cell transplants did show significant visual recovery during a 7-month period, this was complicated by retinal detachments and tumors.
  • GTP Current Good Manufacturing Practices
  • GTP Current Good Tissue Practices
  • the present invention provides methods for differentiating RPE cells from pluripotent stem cells.
  • the present invention also provides functional retinal pigmented epithelial cells (RPE) that are terminally differentiated from pluripotent stem cells. These methods may be used to produce large numbers of functional differentiated RPE cells for use in therapeutic methods (and uses), screening assays, and to study the basic biology of the RPE,
  • RPE retinal pigmented epithelial cells
  • the present invention also provides preparations including pharmaceutical preparations of RPE ceils derived from pluripotent stem cells.
  • the invention provides a method of producing a substantially purified culture of retinal pigment epithelial (RPE) cells comprising
  • the invention provides a method of producing a substantially pure culture of mature retinal pigment epithelial (RPE) cells comprising
  • the pluripotent stem cells are embryonic stem cells, induced pluripotent stem (iPS) cells, adult stem cells, hematopoietic cells, fetal stem cells, mesenchymal stem cells, postpartum stem cells, muitipotent stem cells, or embryonic germ cells.
  • the pluripotent stem cells may be mammalian pluripotent. stem cells.
  • the pluripotent stem cells may be human pluripotent stem cells including but not limited to human embryonic stem (hES) cells, human induced pluripotent stem (iPS) cells, human adult stem cells, human hematopoietic stem cells, human fetal stem cells, human mesenchymal stem cells, human postpartum stem cells, human muitipotent stem cells, or human embryonic germ cells.
  • the pluripotent stem cells may be a hES cell line listed in the European Human Embryonic Stem Cell Registry - hESCreg,
  • the present invention provides preparations of RPE cells, including substantially purified preparations of RPE cells.
  • RPE cells may be differentiated from pluripotent stem cells, such as embryonic stem cells, iPS cells, blastomeres, inner mass cells, or oocytes which may be parthenogenetically activated.
  • pluripotent stem cells may be recombinant or genetically engineered (e.g., engineered to express a desired therapeutic protein or to eliminate the expression of a gene involved in a genetic deficiency such as macular degeneration.)
  • the RPE cells may be formulated and used to treat retinal degenerative diseases.
  • pluripotent stem cell-derived RPE ceils can be used in screening assays to identify agents that modulate RPE cell survival (in vitro and/or in vivo), to study RPE cell maturation, or to identify agents that modulate RPE cell maturation. Agents identified using such screening assays may be used in vitro or in vivo and may provide additional therapeutics that can be used alone or in combination with RPE cells to treat retinal degenerative diseases.
  • the pluripotent stem cells of (a) may be genetically engineered
  • the medium of (a), (b), (c), (d), (f), (g), or (h) contains serum free B-27 supplement.
  • the medium of (a), (b), (c), (d), (f), (g), or (h) does not contain serum free B-27 supplement.
  • the cells of (b) are cultured for at least about 7-14 days. In another embodiment, the cells of (c) are cultured for at least about 7- 10 days. In a further embodiment, cells of (e) are cultured for at least about 14-21 days.
  • the medium of (a), (b), (c), (d), (f), (g), or (h) is MDBK-GM, OpttPro SFM, VP-SFM, EGM-2, or MDBK-MM.
  • the growth factor of (f) is EGF, bFGF, VEGF, or recombinant insulin-like growth factor.
  • the medium (g) comprises heparin, hydrocortisone, or ascorbic acid.
  • the culture medium used for propagating the enriched culture of RPE cells does not support the growth or maintenance of undifferentiated pluripotent stem cells.
  • step (e) comprises contacting the culture with an enzyme selected from the group consisting of trypsin, collagenase, dispase, papain, mixture of collagenase and dispase, and a mixture of collagenase and trypsin.
  • step (e) comprises mechanical disruption.
  • the pluripotent stem cells have reduced HLA antigen complexity.
  • the method further comprising culturing said RPE cells under conditions that increase alpha integrin subunit expression, wherein said alpha integrin subunits are 1 -6 or 9.
  • the conditions comprising exposure to manganese, exposure to an antibody to CD29, or passaging said RPE cells for at least about 4 passages.
  • the anti-CD29 antibody is monoclonal antibody HUTS-21 or monoclonal antibody (mAb) TS2/16.
  • the invention provides a pharmaceutical preparation of RPE cells suitable for treatment of retinal degradation, wherein said RPE cells have at least one of the following properties:
  • (k) have longer telomeres than RPE cells derived from human donors.
  • the RPE cells have at least 1 , 2, 3, 4, 5, or 6 of the recited properties.
  • the RPE cells are phagocytositic and have longer telomeres than RPE cells derived from human donors.
  • the invention provides a pharmaceutical preparation for use in treating retinal degeneration comprising an effective amount of RPE cells.
  • the retinal degeneration is due to Stargardt's disease, age-related macular degeneration (AMD), choroideremia, retinitis pigmentosa, retinal detachment, retinal dysplasia, or retinal atrophy.
  • the pharmaceutical preparation of RPE cells is formulated for transplantation in the form of a suspension, gel, or colloid.
  • the preparation is formulated for transplantation with a matrix, substrate, scaffold, or graft.
  • the preparation is formulated for administration to the subretinal space of the eye.
  • the preparation comprises at least about 10 3 - 10 9 RPE cells.
  • the RPE cell preparation comprises mature RPE cells. In another embodiment, the RPE cell preparation consist essentially of mature RPE cells. In a further embodiment, the preparation comprises at least about 75% RPE cells.
  • the preparation is substantially free of viral, bacterial, and/or fungal contamination. In another embodiment, the preparation is formulated in a
  • the preparation is formulated for administration to the eye. In a still further, the preparation is formulated for administration to the sub-retinal space.
  • the RPE cells are functional RPE cells capable of integrating into the retina upon transplantation.
  • the preparation is substantially free of mouse embryo fibroblasts (MEF) and human embryonic stem cells (hES). In a further embodiment, the preparation is Good Manufacturing Practices (GMP) compliant.
  • the invention provides a cryopreserved preparation comprising at least about 10 4 human RPE cells, wherein the preparation is a substantially purified preparation of human RPE cells derived from human pluripotent stem cells, and wherein the RPE cells express RPE-65, Bestrophin, PEDF, CRALBP, Otx2, and Mit-F. In another embodiment, at least about 85% of the RPE cells retain viability following thawing.
  • the invention provides a substantially purified preparation of human RPE cells differentiated from human pluripotent stem cells, wherein the RPE cells express, at the mRNA and protein level, RPE-65, Bestrophin, PEDF, CRALBP, Otx2, and Mit-F, and wherein the cells substantially lack expression of Oct-4, NANOG, and Rex- 1.
  • the RPE cells comprise differentiated RPE cells and mature differentiated RPE cells, and wherein at least the mature differentiated RPE cells further express, at the mRNA and protein level, PAX2, pax-6, and tyrosinase.
  • the RPE cells are differentiated from human ES cells or human iPS cells.
  • the invention provides for the use of a pharmaceutical preparation of RPE cells in the manufacture of a medicament for the treatment of retinal degeneration.
  • the invention provides a method of cryopreserving RPE cells comprising
  • the RPE cells are washed with Ca 2+ /Mg + DPBS.
  • the RPE cells were cultured until bestrophin is organized at the cell membrane.
  • the RPE cells are cultured until they reach a medium pigmentation level.
  • step (a) comprising culturing at least two culture vessels of RPE cells.
  • the RPE cells are harvested and combined into a single lot.
  • the RPE cells are harvested and stored in FBS during the combination of RPE cells.
  • the invention provides a method of treating retinal degeneration comprising a pharmaceutical preparation comprising administering an effective amount of RPE cells described herein.
  • the retinal degeneration is due to choroideremia, diabetic retinopathy, age-related macular degeneration, retinal detachment, retinitis pigmentosa, or Stargardt's Disease.
  • the preparation is transplanted in a suspension, matrix, gel, colloid, scaffold, or substrate.
  • the preparation is administered by injection into the subretinal space of the eye.
  • the effective amount is at least about 20,000-200,000 RPE cells. In another embodiment, the effective amount is at least about 20,000, 50,000, 75,000, 100,000, 125,000, 150,000, 175,000, 180,000, 185,000, 190,000, or 200,000 RPE cells.
  • the method further comprising monitoring the efficacy of the method by measuring electroretinogram responses, optomotor acuity threshold, or luminance threshold in the subject.
  • the preparation is substantially free of viral, bacterial, or fungal contamination.
  • the RPE cells are functional RPE cells capable of integrating into the retina upon transplantation.
  • the RPE celts improve visual acuity following transplantation.
  • the present invention provides methods for the treatment of eye disorders.
  • these methods involve the use of RPE cells to treat or ameliorate the symptoms of eye disorders, particularly eye disorders caused or exacerbated, in whole or in part, by damage to or breakdown of the endogenous RPE layer (e.g., retinal degeneration).
  • the RPE cells described herein are substantially free of genetic mutations that may lead to retinal degeneration.
  • the RPE cells may be transplanted with a biocompatible polymer such as poiylactic acid, po!y(lactic-co-glycolic acid), 50:50 PDLGA, 85: 35 PDLGA, and INION GTR® biodegradable membrane (mixture of biocompatible polymers).
  • a biocompatible polymer such as poiylactic acid, po!y(lactic-co-glycolic acid), 50:50 PDLGA, 85: 35 PDLGA, and INION GTR® biodegradable membrane (mixture of biocompatible polymers).
  • the RPE cells adhere to Bruch's membrane after
  • the RPE cells may improve visual acuity after transplantation. In another embodiment, the RPE cells may substantially improve visual acuity after transplantation.
  • the RPE cells may be in compliance with at least one of the GTP and/or GMP Regulations as presented in Table 3 or 4.
  • the RPE cells may be produced in accordance with Good Manufacturing Practice (GMP).
  • the RPE cells may be produced in accordance with Good Tissue Practice (GTP).
  • GTP Good Tissue Practice
  • the RPE cells may meet at least one of the criteria recited in Table 4.
  • the RPE cells may meet at least 1 , 2, 3, 4, or 5 of the criteria recited in Table 4.
  • the RPE cells lack substantial expression of embryonic stem cell markers including but not limited to Oct-4, NANOG, Rex- 1 , alkaline phosphatase, Sox2, TDGF- 1 , DPPA-2, and DPPA-4.
  • the RPE cells express RPE cell markers including but not limited to RPE65, CRALBP, PEDF, Bestrophin, MitF, Otx2, PAX2, Pax-6, and tyrosinase.
  • the RPE cells express at least one of the genes listed in Table 5, and wherein expression of the at least one gene is increased in the RPE cells relative to expression in human ES cells.
  • the RPE cells express at least one of the genes listed in Table 6, and wherein expression of the at least one gene is decreased in the RPE cells relative to expression in human ES cells.
  • the RPE cells show increased alpha integrin subunit expression.
  • the alpha integrin subunit is alpha 1, 2, 3, 4, 5, 6, or 9.
  • the expression is mRNA expression, protein expression, or both mRNA and protein expression.
  • the present invention provides for a method of providing a RPE preparation to a clinical site comprising (a) thawing vials of cryopreserved RPE cells, (b) resuspending the RPE cells in media, (c) centrifuging the RPE cells, (d) resuspending the RPE cells in media, (e) aliqouting the RPE cells into vials, and (f) transferring to the clinical site.
  • the resuspension and centrifugation steps may be repeated at least 1 , 2, 3, 4, or 5 times.
  • the RPE product is transported to the clinical site within at least about 1 , 2, 3, 4, 5, 6, 7, 8, 9, or 10 hours of completion of step (e).
  • the vials may be labeled.
  • the present invention also provides a method for a providing RPE cell preparation for sale comprising (a) producing RPE cells and (b) preparing said RPE cell preparations for transfer to a customer.
  • the method may comprise cryopreserving the RPE cells.
  • the method comprises offering said RPE cell preparations for sale.
  • the method comprises advertising the RPE cell preparations.
  • the invention contemplates any combination of the aspects and embodiments described above or below.
  • preparations of RPE cells comprising any combination of differentiated RPE cells and mature RPE cells can be used in the treatment of any of the conditions described herein.
  • methods described herein for producing RPE cells using human embryonic stem cells as a starting material may be similarly performed using any human pluripotent stem as a starting material.
  • Figures 1-7 depict exemplary protocols for the production of RPE cells.
  • FIG. 1 Production of RPE Cells: Step 1 - Preparation of MEF Feeder Cells.
  • the MEF feeder cells may be cultured in the presence of about 10-20 nm/mL human leukemia inhibitory factor (LIF) and about 8-16 ng/mL human bFGF.
  • LIF human leukemia inhibitory factor
  • bFGF human bFGF
  • FIG. 1 Production of RPE Cells: Step 2 - Seeding and Expansion of hES Cells.
  • FIG. 4 Production of RPE Cells: Step 4 - RPE Derivation. Clusters of RPE cells may appear within 6-8 weeks, where RPE cells may appear on the surface of the embryoid bodies and then slowly spread to the entire embryoid body over time.
  • FIG. 5 Production of RPE Cells: Step 5 - RPE Expansion and Differentiation.
  • the RPE cell cultures may be washed at least 1 , 2, 3, 4, or 5 times to remove loose or isolated cells. The inventors found that this surprisingly improved the yield of RPE cells.
  • the RPE cells may be characterized by the expression of RPE-specific cell markers such as CRALBP, bestrophin, RPE65, and PEDF.
  • the RPE cells may also be characterized by functional tests including a RPE-specific phagocytosis assay and vitamin A metabolism assay.
  • FIG. 6 Production of RPE Cells: Step 6 -Harvest, Culturing, and Cryopreservation.
  • several flasks of RPE cells may be seeded and propagated to yield a large amount of RPE cells.
  • the RPE cells may be stored in FBS at about 4°C during the harvesting steps.
  • the RPE cells may be considered ready for cryopreservation when the dystrophin is organized at the cell membrane and the PAX6 expression is low. The inventors found that this surprisingly improved the viability of the cryopreserved RPE cells.
  • Figure 7 Production of RPE Cells Step 7 -Thawing of Cryopreserved RPE cells and Pharmaceutical Preparation.
  • Figure 8 depicts the Log up- or downregulation of ES and RPE markers, respectively, in RPE cells.
  • the mean ⁇ SD relative gene expression of seven representative lots of RPE are shown. Data have been normalized to ⁇ -actin control levels for each sample and are expressed relative to the levels of expression observed in MA09 hES cells.
  • the four upregulated RPE markers e.g., RPE-65, PAX6, Bestrophin, and MIT are shown on the left; the three
  • downregulated hES markers e.g., OCT4, NANOG and SOX2 .
  • FIGURE 9 depicts electrical activity of the outer (a-wave) and inner (b-wave) retina in response to light flashes test by ERG responses at both P60 and P90. ERG responses in RPE grafted animals achieved significantly better responses over sham controls (p ⁇ 0.05, t-test).
  • FIGURE 10 depicts date from an optomoter data system shows that shows that the RPE treated eyes performed significantly better than the sham-treated and untreated eyes (p ⁇ 0.05, t-test), giving approximately 50% and 100% improvement in visual acuity over the sham and untreated controls, respectively.
  • FIGURE 11 Luminance threshold at PI 00— luminance threshold responses recorded across the superior colliculus, each curve (average SEM) shows the percent of retinal area (y- axis) where the visual threshold is less than the corresponding value on the x-axis (log units, relative to background illumination 0.02 cd/m 2 ). Asterisks show the points where the curves for grafted and sham-operated eyes are statistically different (t-test, p ⁇ 0.05).
  • FIGURE 12 depicts in vitro maturation and degree of pigmentation in different batches of human ES cell-derived RPE cells.
  • hES cells were matured to yield (A) light (LI ), (B) medium (L2), and (C) heavy (L3) pigmentation levels,
  • A): Phase contrast image; scale bar 200 ⁇ .
  • FIGURE 13 depicts comparative assessment of hES cell-RPE cells using real-time polymerase chain reaction (PCR) and Western blot analyses.
  • A Reverse transcription-PCR analysis of genes specific to hES cells, neuroectoderm, and terminally differentiated RPE cells examined throughout the in vitro differentiation process. Time points correspond to hES cells, EBs, plated EBs representing early intermediates (EB/RPE), a mixed population of cells containing newly differentiated RPE cells, remaining progenitors (Mixed), purified RPE
  • FIG. 12A corresponding to Fig. 12A
  • FIG. 12C fully-mature RPE
  • FIG. 12B Western blot analysis of hESC-specific and RPE-specific markers.
  • APRE-19 cells top lane
  • FIG. 12C show an inconclusive pattern of proteomic marker expression. Actin is used as protein loading control.
  • RPE bottom lane
  • hES cells do not express the hES cell-specific proteins Oct-4, NANOG, Rex- 1 , TDGFl , and DPPA4, However, RPE cells express RPE65, CRALBP, PEDF, Bestrophin, PAX6, Pax 2, Otx2, MitF, and Tyr— all markers of differentiated RPE.
  • FIGURE 14 depicts principal components analysis plot.
  • Component 1 represents 69% of the variability represents the cell type, whereas component 2 represents the cell line (i.e., genetic variability).
  • a near-linear scatter of gene expression profiles characterizes the developmental ontogeny of RPE derived from hES cells.
  • FIGURE 15 depicts (A): visual acuity as measured by the optomotor response shows that animals treated with 5,000, 20,000, 50,000, 75,000, and 100,000 cells performed
  • C-F Luminance threshold responses recorded across the superior colliculus (SC); each curve (average ⁇ SEM) shows the percent of retinal area (y-axis) where the visual threshold is less than the corresponding value at .x-axis (log units, relative to background illumination 0.02 cd/m 2 ).
  • Cell-injected groups are significantly better than controls: the curves showed that 28% of the area in the SC in animals with the (C) 20,000 RPE cell dose; (D) about 45% with the 50,000 RPE cell dose; (E) about 40% with the 75,000 RPE cell dose; (F) about 60% with the 100,000 RPE cell dose; and only 3% in medium control had thresholds of 2.2 log units.
  • Dashed lines cell-treated and Solid lines— medium control. Abbreviation: c/d, cycles/degree.
  • FIGURE 16 depicts changes in acuity and luminance threshold with time. Batch and longevity of effect as measured by visual acuity: cell-injected groups at all the time points (P60- P240) had significantly higher visual acuities than controls (p ⁇ .01); however, there is no substantial difference with different pigment levels (p > .05). Abbreviation: c/d, cycles/degree. [0070]
  • FIGURE 17 depicts a comparison of the effects of pigmentation on the efficacy of RPE cells in a RCS rat model. The rats were transplanted with 50,000 RPE cells with low, medium, or high pigmentation levels. These rats were compared to sham surgery and untreated controls.
  • FIGURE 18 two examples of luminance threshold maps from mice receiving a 100,000 RPE cell dose with medium pigmentation.
  • the luminance thresholds show serious deterioration on the untreated side, with more than one half the area being nonresponsive at PI 87 compared with P98, whereas responsiveness is still sensitive on the cell-injected side, although some reduction in thresholds has occurred (0.7 log units at P98 vs. 1.0 log units at PI 87).
  • FIGURE 19 depicts histological examination of cell-injected and untreated RCS retinas, showing photoreceptors in (A) normal, (B) cell injected, and (C) untreated eyes at P90 (arrows in B point to rescued photoreceptors; arrows in C indicate remaining photoreceptors).
  • D-F Photoreceptors rescued at (D) 5,000 and (E and F) 50,000 dose (arrows in E indicate rescued photoreceptors; cone arrestin showed rescued cone photoreceptors in F).
  • G :
  • INL inner nuclear layer
  • IPL inner plexiform layer
  • ONL outer nuclear layer
  • RPE retinal pigment epithelium
  • RGC retinal ganglion cells.
  • Effective amount refers broadly to the amount of a compound or cells that, when administered to a patient for treating a disease, is sufficient to effect such treatment for the disease.
  • the effective amount may be an amount effective for prophylaxis, and/or an amount effective for prevention.
  • the effective amount may be an amount effective to reduce, an amount effective to prevent the incidence of signs/symptoms, to reduce the severity of the incidence of signs/symptoms, to eliminate the incidence of signs/symptoms, to slow the development of the incidence of signs/symptoms, to prevent the development of the incidence of signs/symptoms, and/or effect prophylaxis of the incidence of signs/symptoms.
  • the “effective amount” may vary depending on the disease and its severity and the age, weight, medical history, susceptibility, and preexisting conditions, of the patient to be treated.
  • the term “effective amount” is synonymous with "therapeutically effective amount” for purposes of this invention.
  • Embryo or “embryonic,” as used herein refers broadly to a developing cell mass that has not implanted into the uterine membrane of a maternal host.
  • An “embryonic cell” is a cell isolated from or contained in an embryo. This also includes blastomeres, obtained as early as the two-cell stage, and aggregated blastomeres.
  • Embryonic stem cells refers broadly to cells derived from the inner cell mass of blastocysts or morulae that have been serially passaged as cell lines.
  • the ES cells may be derived from fertilization of an egg cell with sperm or DNA, nuclear transfer, parthenogenesis, or by means to generate ES cells with homozygosity in the HLA region.
  • ES cells may also refer to cells derived from a zygote, blastomeres, or blastocyst-staged mammalian embryo produced by the fusion of a sperm and egg cell, nuclear transfer, parthenogenesis, or the reprogramming of chromatin and subsequent incorporation of the reprogrammed chromatin into a plasma membrane to produce a cell.
  • Embryonic stem cells regardless of their source or the particular method used to produce them, can be identified based on the: (i) ability to differentiate into cells of all three germ layers, (ii) expression of at least Oct-4 and alkaline phosphatase, and (iii) ability to produce teratomas when transplanted into immunocompromised animals.
  • Embryo-derived cells refers broadly to morn la-derived cells, blastocyst-derived cells including those of the inner cell mass, embryonic shield, or epiblast, or other pluripotent stem cells of the early embryo, including moni ve endoderm, ectoderm, and mesoderm and their derivatives.
  • EDC also including blastomeres and cell masses from aggregated single blastomeres or embryos from varying stages of development, but excludes human embryonic stem cells that have been passaged as cell lines.
  • Macular degeneration refers broadly to diseases characterized by a progressive loss of central vision associated with abnormalities of Bmch's membrane, the neural retina, and the retinal pigment epithelium. Macular degeneration diseases include but are not limited to age- related macular degeneration, North Carolina macular dystrophy, Sorsby's fundus dystrophy, Stargardt's disease, pattern dystrophy, Best disease, malattia leventinese, Doyne's honeycomb choroiditis, dominant drusen, and radial drusen.
  • Pluripotent stem cell refers broadly to a cell capable of prolonged or virtually indefinite proliferation in vitro while retaining their undifferentiated state, exhibiting normal karyotype (e.g., chromosomes), and having the capacity to differentiate into all three germ layers (i.e., ectoderm, mesoderm and endoderm) under the appropriate conditions.
  • normal karyotype e.g., chromosomes
  • Pluripotent embryonic stem cells refers broadly cells that: (a) are capable of inducing teratomas when transplanted in immunodeficient (SOD) mice; (b) are capable of differentiating to cell types of all three germ layers (e.g., ectodermal, mesodermal, and endodermal cell types); and (c) express at least one molecular embryonic stem cell markers (e.g., express Oct 4, alkaline phosphatase, SSEA-3 surface antigen, SSEA-4 surface antigen, NANOG, TRA- 1 -60, TRA- 1 -81 , SOX2, REX1 ).
  • SOD immunodeficient
  • RPE cell differentiated from a pluripotent stem cell using a method of the invention.
  • the term is used generically to refer to differentiated RPE cells, regardless of the level of maturity of the cells, and thus may encompass RPE cells of various levels of maturity.
  • RPE cells can be visually recognized by their cobblestone morphology and the initial appearance of pigment.
  • RPE cells can also be identified molecularly based on substantial lack of expression of embryonic stem cell markers such as Oct-4 and NANOG, as well as based on the expression of RPE markers such as RPE-65, PEDF, CRALBP, and bestrophin.
  • RPE cells refers to RPE cells differentiated in vitro from pluripotent stem cells.
  • Mature RPE cell and “mature differentiated RPE cell,” as used herein, may be used interchangeably throughout to refer broadly to changes that occur following initial differentiating of RPE cells. Specifically, although RPE cells can be recognized, in part, based on initial appearance of pigment, after differentiation mature RPE cells can be recognized based on enhanced pigmentation.
  • Pigmentation refers broadly to any level of pigmentation, for example, the pigmentation that initial occurs when RPE cells differentiate from ES cells. Pigmentation may vary with cell density and the maturity of the differentiated RPE cells.
  • the pigmentation of a RPE cell may be the same as an average RPE cell after terminal differentiation of the RPE cell.
  • the pigmentation of a RPE cell may be more pigmented than the average RPE cell after terminal differentiation of the RPE cell.
  • the pigmentation of a RPE cell may be less pigmented than the average RPE cell after terminal differentiation.
  • “Signs” of disease refers broadly to any abnormality indicative of disease, discoverable on examination of the patient; an objective indication of disease, in contrast to a symptom, which is a subjective indication of disease.
  • Symptoms of disease refers broadly to any morbid phenomenon or departure from the normal in structure, function, or sensation, experienced by the patient and indicative of disease.
  • “Therapy,” “therapeutic,” “treating,” or “treatment”, as used herein, refers broadly to treating a disease, arresting or reducing the development of the disease or its clinical symptoms, and/or relieving the disease, causing regression of the disease or its clinical symptoms.
  • Therapy encompasses prophylaxis, prevention, treatment, cure, remedy, reduction, alleviation, and/or providing relief from a disease, signs, and/or symptoms of a disease.
  • Therapy encompasses an alleviation of signs and/or symptoms in patients with ongoing disease signs and/or symptoms (e.g., blindness, retinal deterioration.) Therapy also encompasses "prophylaxis" and
  • Prophylaxis includes preventing disease occurring subsequent to treatment of a disease in a patient or reducing the incidence or severity of the disease in a patient.
  • reduced for purpose of therapy, refers broadly to the clinical significant reduction in signs and/or symptoms.
  • Therapy includes treating relapses or recurrent signs and/or symptoms (e.g., retinal degeneration, loss of vision.) Therapy encompasses but is not limited to precluding the appearance of signs and/or symptoms anytime as well as reducing existing signs and/or symptoms and eliminating existing signs and/or symptoms.
  • Therapy includes treating chronic disease (“maintenance") and acute disease.
  • treatment includes treating or preventing relapses or the recurrence of signs and/or symptoms (e.g., blindness, retinal degeneration).
  • RPE Retinal Pigment Epithelium
  • the present invention provides RPE cells that may be differentiated from pluri potent stem cells, such as human embryonic stem cells, and are molecularly distinct from embryonic stem cells, adult-derived RPE cells, and fetal-derived RPE cells.
  • pluri potent stem cells such as human embryonic stem cells
  • the inventors found that the RPE cells produced by the methods described produced a different RPE cell product than previous methods and sources of RPE cells.
  • the manufacturing process steps described herein impart distinctive structural and functional characteristics to the final RPE cell product such that these cells closely resemble native RPE cells and are distinct from fetal derived RPE cells or RPE cell lines (e.g., APRE19).
  • the methods of producing RPE cells described herein are not permissive to ES cells. Thus, as ES cells cannot persist in the culture processes described herein, and they do not pose an
  • the cell types provided by this invention include, but are not limited to, RPE cells, RPE progenitor cells, iris pigmented epithelial (IPE) cells, and other vision associated neural cells, such as internuncial neurons (e.g. , "relay" neurons of the inner nuclear layer (INL)) and amacrine cells.
  • the invention also provides retinal cells, rods, cones, and corneal cells as well as cells providing the vasculature of the eye.
  • the RPE cells may be used for treating retinal degeneration diseases due to retinal detachment, retinal dysplasia, or retinal atrophy or associated with a number of vision-altering ailments that result in photoreceptor damage and blindness, such as, choroideremia, diabetic retinopathy, macular degeneration (e.g. , age-related macular degeneration), retinitis pigmentosa, and Stargardt's Disease (fundus flavimaculatus).
  • the RPE cells may be stable, terminally differentiated RPE cells that do not de-differentiate to a non-RPE ceil type.
  • the RPE cells described herein may be functional RPE cells, characterized by the ability to integrate into the retina upon corneal, sub-retinal, or other administration into an animal.
  • ES embryonic stem cell
  • RPE retinal pigmented epithelium
  • the RPE cells may express RPE cell markers listed in Table 5.
  • the expression level of the RPE cell genes RPE65, PAX2, PAX6, and tyrosinase, bestrophin, PEDF, CRALBP, Otx2, and MitF may be equivalent to that in naturally occurring RPE cells.
  • the level of maturity of the RPE ceils may assessed by expression of at least one of PAX2, PAX6, and tyrosinase, or their respective expression levels.
  • the RPE cells may not express ES cell markers listed in Table 6.
  • the expression levels of the ES cell genes Oct-4, NANOG, and/or Rex- 1 may be about 100-1000 fold lower in RPE cells than in ES cells.
  • the RPE cells may
  • ES cell markers including but not limited to Octamer binding protein 4 (Oct-4, a.k.a., PouSfl), stage specific embryonic antigens (SSEA)-3 and SSEA-4, tumor rejection antigen (TRA) ⁇ l -60, TRA- 1 -80, alkaline phosphatase, NANOG, and Rex- 1 .
  • Oct-4 Octamer binding protein 4
  • SSEA stage specific embryonic antigens
  • TRA tumor rejection antigen
  • RPE cells are substantially lack expression of Oct-4, NANOG, and/or Rex- 1 .
  • the RPE cells described herein may also show elevated expression levels of alpha integrin subunits 1 -6 or 9 as compared to uncultured RPE cells or other RPE cell preparations.
  • the RPE cells described herein may also show elevated expression levels of alpha integrin subunits 1 , 2, 3, 4, 5, or 9.
  • the RPE cells described herein may be cultured under conditions that promote the expression of alpha integrin subunits 1-6.
  • the RPE cells may be cultured with integrin-activating agents including but not limited to manganese and the activating monoclonal antibody (mAb) TS2/16. See Afshari, et al. Brain (2010) 133(2): 448-464.
  • the RPE cells may be plated on laminin (1 ⁇ g/mL) and exposed to Mn 2+ (500 ⁇ ) for at least about 8, 12, 24, 36, or 48 hours. Also, the RPE cells may be cultured for several passages (e.g., at least about 4, 5, 6, 7, or 8 passages) which increases alpha integrin subunit expression.
  • Table 1 describes some characteristics of the RPE cells that may be used to identify or characterize the RPE cells.
  • the RPE cells may exhibit a normal karyotype, express RPE markers, and not express hES markers.
  • the distinct expression pattern of mRNA and proteins in the RPE cells of the invention constitutes a set of markers that separate these RPE cells from cells in the art, such as hES cells, ARPE-19 cells, and fetal RPE cells. Specifically, these cells are different in that they can be identified or characterized based on the expression or lack of expression, which may be assessed by mRNA or protein level, of at least one marker. For example, the RPE cells may be identified or characterized based on expression or lack of expression of at least one marker listed in Tables 5 or 6. See also Liao. et al. (2010) Human Molecular Genetics 19(21 ): 4229-38.
  • the RPE cells may also be identified and characterized, as well as distinguished from other cells, based on their structural properties.
  • the RPE cells described herein expressed multiple genes that were not expressed in hES cells, fetal RPE cells, or ARPE-19 cells. See WO 2009/051671 ; See also Dunn, et al (1996) Exp Eve Res. 62(2): 155-169.
  • the RPE cells described herein may also be identified and characterized based on the degree of pigmentation of the cell. Pigmentation post-differentiation is not indicative of a change in the RPE state of the cells ⁇ e.g., the cells are still differentiated RPE ceils). Rather, the changes in pigment post-differentiation correspond to the density at which the RPE celts are cultured and maintained. Mature RPE cells have increased pigmentation that accumulates after initial differentiation. For example, the RPE cells described herein may be mature RPE cells with increased pigmentation in comparison to differentiated RPE cells. Differentiated RPE cells that are rapidly dividing are lightly pigmented.
  • the RPE cells may be pigmented, to at least some extent.
  • the RPE cell may be derived from a human embryonic stem cell, which cell is pigmented and expresses at least one gene that is not expressed in a cell that is not a human retinal pigmented epithelial cell.
  • Mature RPE cells can be subcultured at a lower density, such that the pigmentation decreases.
  • mature RPE cells may be cultured to produce RPE cells.
  • Such RPE cells are still differentiated RPE cells that express markers of RPE differentiation.
  • pigmentation changes post-differentiation are phenomenological and do not reflect dedifferentiation of the ceils away from an RPE fate.
  • the RPE cells described herein may maintain their phenotype for a long period of time in vitro.
  • the RPE cells may maintain their phenotype for at least 1 , 2, 3, 4, 5, 6, 7, 8, 9, 10, 1 1 , 12, 13, 14, 15, 16, 17, 18, 19, or 20 passages.
  • the RPE cells may maintain their phenotype for at least about 1 , 2, 3, 4, 5, 6, 7, 8, 9, 10, 1 1 , 12, 13, 14, 15, 16, 17, 18, 19, or 20 days.
  • the RPE cells may maintain their phenotype for at least about 1 , 2, 3, 4, 5, 6, 7, 8, 9, or 10 weeks.
  • the RPE cells described herein may maintain their phenotype following transplantation.
  • the RPE cells may maintain their phenotype for the lifespan of the receipt after transplantation.
  • the RPE cells may maintain their phenotype following
  • the RPE cells may maintain their phenotype following transplantation for at least about 1 , 2, 3, 4, 5, 6, 7, 8, 9, 10, 1 1 , 12, 13, 14, 15, 16, 17, 18, 19, or 20 days. Further, the RPE cells may maintain their phenotype following transplantation for at least about 1 , 2, 3, 4, 5, 6, 7, 8, 9, or 10 weeks. The RPE cells may maintain their phenotype following transplantation for at least about 1 , 2, 3, 4, 5, 6, 7, 8, 9, 10, 1 1 , or 12 months. The RPE cells may maintain their phenotype following transplantation for at least about 1 , 2, 3, 4, 5, 6, 7, 8, 9, 10, 1 1 , 12, 13, 14, 15, 16, 17, 18, 19, or 20 years.
  • the RPE cells have an increased ability to prevent neovascularization.
  • the RPE cells may be produced by aging a somatic cell from a patient such that telomerase is shortened where at least 10% of the normal replicative lifespan of the ceil has been passed, then the use of said somatic cell as a nuclear transfer donor cell to create cells that overexpress angiogenesis inhibitors such as Pigment Epithelium Derived Factor (PEDF/EPC- 1 ).
  • PEDF/EPC- 1 Pigment Epithelium Derived Factor
  • Such cells may be genetically modified with exogenous genes that inhibit neovascularization.
  • the present invention provides preparations of RPE cells.
  • the invention described herein provides RPE cells, substantially purified populations of RPE cells, pharmaceutical preparations comprising RPE cells, and cryopreserved preparations of the RPE cells.
  • the RPE cells described herein may be substantially free of at least one protein, molecule, or other impurity that is found in its natural environment (e.g., "isolated".)
  • the RPE cells may be mammalian, including, human RPE cells.
  • the invention also provides human RPE cells, a substantially purified population of human RPE cells, pharmaceutical preparations comprising human RPE cells, and cryopreserved preparations of the human RPE cells.
  • the preparation may be a preparation comprising human embryonic stem cell-derived RPE cells, human iPS cell- derived RPE cells, and substantially purified (with respect to non-RPE cells) preparations comprising differentiated ES-derived RPE cells.
  • the RPE cell populations may include differentiated RPE cells of varying levels of maturity, or may be substantially pure with respect to differentiated RPE cells of a particular level of maturity.
  • the RPE cells may be a substantially purified preparation comprising RPE cells of varying levels of maturity/pigmentation.
  • the substantially purified culture of RPE cells may contain both differentiated RPE cel ls and mature differentiated RPE cells.
  • the level of pigment may vary.
  • the mature RPE cells may be distinguished visually from the RPE cells based on the increased level of pigmentation and the more columnar shape.
  • the substantially purified preparation of RPE cells comprises RPE cells of differing levels of maturity (e.g. , differentiated RPE cells and mature differentiated RPE cells).
  • the pigmentation of the RPE cells in the cell culture may be homogeneous. Further, the pigmentation of the RPE ceils in the cell culture may be heterogeneous, and the culture of RPE cells may comprise both differentiated RPE cells and mature RPE cells.
  • Preparations comprising RPE cells include preparations that are substantially pure, with respect to non-RPE cell types, but which contain a mixture of differentiated RPE cells and mature differentiated RPE cells. Preparations comprising RPE cells also include
  • the percentage of mature differentiated RPE cells in the culture may be reduced by decreasing the density of the culture.
  • the methods described herein may further comprise subculturing a population of mature RPE cells to produce a culture containing a smaller percentage of mature RPE cells.
  • the number of RPE cells in the preparation includes differentiated RPE cells, regardless of level of maturity and regardless of the relative percentages of differentiated RPE cells and mature differentiated RPE cells.
  • the number of RPE cells in the preparation refers to the number of either differentiated RPE cells or mature RPE cells.
  • the preparation may comprise at least about 75%, 80%, 85%, 90%, 91 %, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% differentiated RPE cells.
  • the preparation may comprise at least about 75%, 80%, 85%, 90%, 91 %, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% mature RPE cells.
  • the RPE cell preparation may comprise a mixed population of differentiated RPE cells and mature RPE cells.
  • the invention provides a cell culture comprising human RPE cells which are pigmented and express at least one gene that is not expressed in a cell that is not a human RPE.
  • RPE cells may have substantially the same expression of RPE65, PEDF, CRALBP, and bestrophin as a natural human RPE cell.
  • the RPE cells may vary, depending on level of maturity, with respect to expression of one or more of PAX2, Pax-6, MitF, and/or tyrosinase. Note that changes in pigmentation post-differentiation also correlate with changes in PAX2 expression.
  • Mature RPE cells may be distinguished from RPE cells by the level of pigmentation, level of expression of PAX2, Pax-6, and/or tyrosinase. For example, mature RPE cells may have a higher level of pigmentation or a higher level of expression of PAX2, Pax-6, and/or tyrosinase compared to RPE cells,
  • the preparations may be substantially purified, with respect to non-RPE cells, comprising at least about 75%, 80%, 85%, 90%, 91 %, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% RPE cells.
  • the RPE cell preparation may be essentially free of non-RPE cells or consist of RPE cells.
  • the substantially purified preparation of RPE cells may comprise less than about 25%, 20%, 15%, 10%, 9%, 8%, 7%, 6%, 5%, 4%, 3%, 2%, or 1 % non- RPE cell type.
  • the RPE cell preparation may comprise less than about 25%, 20%, 15%, 10%, 9%, 8%, 7%, 6%, 5%, 4%, 3%, 2%, 1 %, 0.9%, 0.8%, 0.7%, 0.6%, 0.5%, 0.4%, 0.3%, 0.2%, 0.1 %, 0.09%, 0.08%, 0.07%, 0.06%, 0.05%, 0.04%, 0.03%, 0.02%, 0.01 %, 0.009%, 0.008%, 0.007%, 0.006%, 0.005%, 0.004%, 0.003%, 0.002%, 0.001 %, 0.0009%, 0.0008%, 0.0007%, 0.0006%, 0.0005%, 0.0004%, 0.0003%, 0.0002%, or 0,0001 % non-RPE cells.
  • the RPE cell preparations may be substantially pure, both with respect to non-RPE cells and with respect to RPE cells of other levels of maturity.
  • the preparations may be substantially purified, with respect to non-RPE cells, and enriched for mature RPE cells.
  • RPE cell preparations enriched for mature RPE cells at least about 30%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91 %, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99%, 99%, or 100% of the RPE cells are mature RPE cells.
  • the preparations may be substantially purified, with respect to non-RPE cells, and enriched for differentiated RPE cells rather than mature RPE cells. For example, at least about 30%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% of the RPE cells may be differentiated RPE cells rather than mature RPE cells.
  • the RPE cell preparations may comprise at least about 1x 10 3 , 2x10 3 , 3x10 3 , 4x10 3 , 5x 30 3 , 6x 10 3 , 7x 10 3 , 8x 10 3 , 9x 10 3 , 1 x 10 4 , 2x 10 4 , 3x 10 4 , 4x 10 4 , 5x 10 4 , 6x !
  • the RPE cell preparations may comprise at least about 5,000-10,000, 50,000-100,000, 100,000-200,000, 200,000-500,000, 300,000-500,000, or 400,000-500,000 RPE cells.
  • the RPE cell preparation may comprise at least about 20,000- 50,000 RPE cells.
  • the RPE cell preparation may comprise at least about 5,000, 10,000, 20,000, 30,000, 40,000, 50,000, 60,000, 70,000, 75,000, 80,000, 100,000, or 500,000 RPE cells.
  • the RPE cell preparations may comprise at least abou1tx 10 3 , 2x10 3 , 3x10 3 , 4x10 3 , 5x10 3 , 6x10 3 , 7x10 3 , 8x10 3 , 9x10 3 , 1x 10 4 , 2x10 4 , 3x30 4 , 4x10 4 , 5x10 4 , 6x10 4 , 7x10 4 , 8x10 4 , 9x10 4 1,x 10 5 , 2x10 5 , 3x10 5 , 4x10 5 , 5x10 5 , 6xJ0 5 , 7x10 5 , 8x10 5 , 9x10 5 1,x 10 6 , 2x10 6 , 3x10 ⁇ , 4x10 6 , 5x10 6 , 6x10 6 , 7x10 6 , 8x10 6 , 9x10 6 1,x 10 7 , 2x10 7 , 3x10 7 , 4x10 7 , 5 , 5
  • the RPE cell preparations may comprise at least about 5,000-10,000, 50,000-100,000, 100,000-200,000, 200,000-500,000, 300,000-500,000, or 400,000-500,000 RPE cells/mL.
  • the RPE cell preparation may comprise at least about 20,000- 50,000 RPE cells/mL.
  • the RPE cell preparation may comprise at least about 5,000, 10,000, 20,000, 30,000, 40,000, 50,000, 60,000, 75,000, 80,000, 100,000, or 500,000 RPE ce!ls/mL.
  • the preparations described herein may be substantially free of bacterial, viral, or fungal contamination or infection, including but not limited to the presence of HIV-1 , HIV-2, HBV, HCV, CMV, HTLV-1. HTLV-2, parvovirus B19, Epstein-Barr virus, or herpesvirus 6.
  • the preparations described herein may be substantially free of mycoplasma contamination or infection.
  • the RPE cells described herein may also act as functional RPE cells after transplantation where the RPE cells form a monolayer between the neurosensory retina and the choroid in the patient receiving the transplanted cells.
  • the RPE cells may also supply nutrients to adjacent photoreceptors and dispose of shed photoreceptor outer segments by phagocytosis.
  • the RPE cells described herein may have undergone less senescence than cells derived from eye donors (e.g. , the RPE cells are "younger" than those of eye donors). This allows the RPE cell described herein to have a longer useful lifespan than cells derived from eye donors.
  • the preparations comprising RPE cells may be prepared in accordance with Good Manufacturing Practices (GMP) (e.g., the preparations are GMP-compliant) and/or current Good Tissue Practices (GTP) (e.g. , the preparations may be GTP ⁇ compliant.)
  • GMP Good Manufacturing Practices
  • GTP Good Tissue Practices
  • the present invention also provides substantially purified cultures of RPE cells, including human RPE cells.
  • the RPE cultures described herein may comprise at least about 1 ,000; 2,000; 3,000; 4,000; 5,000; 6,000; 7,000; 8,000; or 9,000 RPE cells.
  • the culture may comprise at least about 1 x 10 4 , 2x 10 4 , 3x 1 ⁇ 4x 10 4 , 5x 10 4 , 6x 10 4 , 7x 10 4 , 8x 10 4 , 9x 10 4 , 1 x 10 5 , 2x 10 5 , 3x 10 5 , 4x 10 5 , 5x l 0 5 , 6x 10- ⁇ 7x 10 5 , 8x t 0 5 , 9x 10 5 , I x10 6 , 2x 10 6 , 3x 10 6 , 4x10 6 , 5x10 6 , 6x l 0 6 , 7x l 0 6 , 8x 10 6 , 9x 10 6 , 1 x 10 7 , 2x 10 7 , 3x 10 7 , 4x 10 7 , 5x 10 7 , 6x 10 7 , 7x 10 7 , 8x 10 7 , 9x 10 7 , 1 x 10 8 , 2x 10 8 , 3x 10 8
  • the RPE cells are further cultured to produce a culture of mature RPE cells.
  • the RPE cells may be matured, and the RPE cells may be further cultured in, for example MDBK-MM medium until the desired level of maturation is obtained. This may be determined by monitoring the increase in pigmentation level during maturation.
  • MDBK-MM medium a functionally equivalent or similar medium, may be used. Regardless of the particular medium used to mature the RPE cells, the medium may optionally be supplemented with a growth factor or agent.
  • Both RPE cells and mature RPE cells are differentiated RPE cells. However, mature RPE cells are characterized by increased level of pigment in comparison to differentiated RPE cells.
  • the level of maturity and pigmentation may be modulated by increasing or decreasing the density of the culture of differentiated RPE cells.
  • a culture of RPE cells may be further cultured to produce mature RPE cells.
  • the density of a culture containing mature RPE cells may be decreased to decrease the percentage of mature differentiated RPE cells and increase the percentage of differentiated RPE cells.
  • the RPE cells may be identified by comparing the messenger RNA transcripts of such cells with cells derived in vivo. An aliquot of cells is taken at various intervals during the differentiation of embryonic stem cells to RPE cells and assayed for the expression of any of the markers described above. These characteristic distinguish differentiated RPE cells.
  • the RPE cell culture may be a substantially purified culture comprising at least about 30%, 35%, 40%, or 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91 %, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% differentiated RPE cells.
  • the substantially purified culture may comprise at least about 30%, 35%, 40%, or 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91 %, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% mature differentiated RPE cells.
  • the RPE cell cultures may be prepared in accordance with Good Manufacturing Practices (GMP) (e.g., the cultures are GMP-compIiant) and/or current Good Tissue Practices (GTP) (e.g., the cultures may be GTP-compliant.)
  • GMP Good Manufacturing Practices
  • GTP current Good Tissue Practices
  • RPE cells may be frozen for storage.
  • the RPE cells may be stored by any appropriate method known in the art (e.g., cryogenically frozen) and may be frozen at any temperature appropriate for storage of the cells.
  • the cells may be frozen at about -20°C, -80°C, -120°C, -130°C, -135°C, -140°C, -150°C, -160°C, -170°C, -180°C, -190°C, -196°C, at any other temperature appropriate for storage of cells.
  • Cryogenically frozen cells may be stored in appropriate containers and prepared for storage to reduce risk of cell damage and maximize the likelihood that the cells will survive thawing.
  • RPE cells may be cryopreserved immediately following differentiation, following in vitro maturation, or after some period of time in culture. The RPE cells may also be maintained at room temperature, or refrigerated at, for example, about 4°C.
  • the RPE cells may be harvested, washed in buffer or media, counted, concentrated (via centrifugation), formulated in freezing media (e.g., 90% FBS/10% DMSO), or any combination of these steps.
  • the RPE cells may be seeded in several culture vessels and serially expanded. As the RPE cells are harvested and maintained in FBS at about 4°C while several flasks of RPE cells are combined into a single lot.
  • the RPE cells may be also washed with saline solution (e.g., DPBS) at least 1 , 2, 3, 4, or 5 times.
  • saline solution e.g., DPBS
  • the RPE cells may be cryopreserved after dystrophin is organized at the cell membrane and PAX6 expression is low.
  • the vials may be labeled, with a primary and/or secondary label.
  • the information on the label may include the type of cell (e.g., hRPE cells), the lot number and date, the number of cells ⁇ e.g., lx10 6 ce3Is/mL), the expiration date (e.g., recommended date by which the vial should be used), manufacture information (e.g., name and address), warnings, and the storage means (e.g., storage in liquid nitrogen).
  • Cryopreserved RPE cell preparations described herein may comprise at least about 50,000-100,000 RPE cells.
  • the cryopreserved RPE cell preparations may also comprise at least about 20,000-500,000 RPE cells.
  • the cryopreserved RPE ceil preparations may comprise at least about 5,000, 10,000, 20,000, 30,000, 40,000, 50,000, 60,000, 75,000, 80,000, or 100,000 RPE cells.
  • the cryopreserved RPE cell preparations may comprise at least about 1 ,000, 2,000, 3,000, 4,000, 5,000, 10,000, 20,000, 30,000, 40,000, 50,000, 60,000, 75,000, 80,000, 100,000, or 500,000 RPE cells.
  • the cryopreserved RPE cell preparations may comprise at least about 1 ,000, 2,000, 3,000, 4,000, 5,000, 6,000, 7,000, 8,000, 9,000, lx10 4 , 2x10 4 , 3x10 4 , 4x10 4 , 5x10 4 , 6x10 4 , 7x10 4 , 8x10 4 , 9x10 4 , lx10 5 , 2x10 5 , 3x10 5 , 4x10 5 , 5x10 5 , 6x10 5 , 7x10 5 , 8xlQ ⁇ 9x10 5 , lx10 5 , 2x10 6 , 3x.10 6 , 4x10 6 , 5x10 6 , 6x10 6 , 7x10 6 , 8x10 6 , 9x10 6 , lx10 7 , 2x10 7 , 3x10 7 , 4x10 7 , 5x10 7 , 6x10 7 , 7x10 7 ,
  • cryopreserved RPE cell preparations described herein may comprise at least about 50,000-100,000 RPE cells/mL.
  • the cryopreserved RPE cell preparations may also comprise at least about 20,000-500,000 RPE cells/mL.
  • the cryopreserved RPE cell preparations may comprise at least about 5,000, 10,000, 20,000, 30,000, 40,000, 50,000, 60,000, 75,000, 80,000, and 100,000 RPE cells/mL.
  • the cryopreserved RPE cell preparations may comprise at least about 3 ,000, 2,000, 3,000, 4,000, 5,000, 10,000, 20,000, 30,000, 40,000, 50,000, 60,000, 75,000, 80,000, 100,000, or 500,000 RPE cells/mL.
  • the cryopreserved RPE cell preparations may comprise at least about 1,000, 2,000, 3,000, 4,000, 5,000, 6,000, 7,000, 8,000, 9,000, lx10 4 , 2x10 4 , 3x10 4 , 4x10 4 , 5x10 4 , 6x10 4 , 7x10 4 , 8x10 4 , 9x10 4 , lx10 3 , 2x10 5 , 3x10 5 , 4x10 5 , 5x10 5 , 6x10 5 , 7x10 5 , 8x10 5 , 9x10 5 , lx10 6 , 2x10 6 , 3x10 6 , 4x10 6 , 5x10 6 , 6x10 6 , 7x10 6 , 8x10 6 , 9x10 6 , lx10 7 , 2x10 7 , 3x10 7 , 4x10 7 , 5x10 7 , 6x10 7 , 7x10 7 , 8x10
  • the RPE cells of the cryopreserved RPE cell preparations may be mammalian RPE cells, including human RPE cells.
  • the RPE cells of the invention may be recovered from storage following
  • the RPE cells recovered from cryopreservation also maintain their viability and differentiation status. For example, at least about 65%, 70%, 75%, 80%, 8 1 %, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91 %, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% of the RPE cells may retain viability and differentiation following cryopreservation. Further, the RPE cells of the invention may be cryopreserved and maintain their viability after being stored for at least about 1 , 2, 3, 4, 5, 6, or 7 days.
  • the RPE cells of the invention may also be cryopreserved and maintain their viability after being stored for at least about 1 , 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 , or 12 months.
  • the RPE cells of the invention may be cryopreserved and maintain their viability after being stored for at least about 1 , 2, 3, 4, 5, 6, or 7 years.
  • the RPE cells of the invention may be cryopreserved for at least about 4 years and show at least about 80% viability.
  • the cryopreservation preparation comprising RPE cells may be substantially free of DMSO.
  • the present invention provides a method of producing RPE cells from pluripotent stem cells.
  • the cell types that may be produced using this invention include, but are not limited to, RPE cells, RPE progenitor cells, iris pigmented epithelial (IPE) cells, and other vision associated neural cells, such as internuncial neurons (e.g., "relay" neurons of the inner nuclear layer (INL)) and amacrine cells. Additionally, retinal cells, rods, cones, and corneal cells may be produced. Cells providing the vasculature of the eye may also be produced by the methods described herein.
  • PAX6 Paired-box 6
  • PAX6 acts synergisticaily with PAX2 to terminally differentiate mature RPE via the coordination of Mit-F and Otx2 to transcribe RPE-specific genes such as Tyrosinase (Tyr), and downstream targets such as RPE-65, Bestrophin, CRALBP, and PEDF. See WO 2009/051671 , Figure 1 .
  • the RPE cells described herein may be differentiated from pluripotent stem cells, such as human embryonic stem cells, and are molecularly distinct from embryonic stem cells, adult- derived RPE cells, and fetai-derived RPE cells.
  • pluripotent stem cells such as human embryonic stem cells
  • the inventors found that the RPE cells produced by the methods described produced a different RPE cell product than previous methods and sources of RPE ceils.
  • the manufacturing process steps described herein impart distinctive structural and functional characteristics to the final RPE cell product such that these cells closely resemble native RPE cells and are distinct from fetal derived RPE cells or RPE cell lines (e.g. , APRE19).
  • the methods of producing RPE cells described herein are not permissive to ES cells. Thus, as ES ceils cannot persist in the culture processes described herein, and they do not pose an unacceptable risk of contamination in the RPE cell cultures and preparations.
  • the invention provides a method for producing a RPE cell comprising: (a) providing pluripotent stem cells; (b) culturing the pluripotent stem cells as embryoid bodies in nutrient rich, low protein medium, wherein the medium optionally comprises serum free B-27 supplement; (c) culturing the embryoid bodies as an adherent culture in nutrient rich, low protein medium, wherein the medium optionally comprises serum free B-27 supplement; (d) culturing the adherent culture of cells of (c) in nutrient rich, low protein medium, wherein the medium does not comprise serum free B ⁇ 27 supplement; (e) culturing the cells of (d) in medium capable of supporting growth of high-density somatic cell culture, whereby RPE cells appear in the culture of cells; (f) contacting the culture of (e) with an enzyme; (g) selecting the RPE cells from the culture and transferring the RPE cells to a separate culture containing medium supplemented with a growth factor to produce an enriched culture
  • the invention also provides a method for producing a mature retinal pigment epithelial (RPE) cell comprising: (a) providing pluripotent stem cells; (b) culturing the pluripotent stem cells as embryoid bodies in nutrient rich, low protein medium, wherein the medium optionally comprises serum free B-27 supplement; (c) culturing the embryoid bodies as an adherent culture in nutrient rich, low protein medium, wherein the medium optionally comprises serum free B-27 supplement; (d) culturing the adherent culture of cells of step (c) in nutrient rich, low protein medium, wherein the medium does not comprise serum free B-27 supplement; (e) culturing the cells of (d) in medium capable of supporting growth of high- density somatic cell culture, whereby RPE cells appear in the culture of cells; (f) contacting the culture of (e) with an enzyme; (g) selecting the RPE cells from the culture and transferring the RPE cells to a separate culture containing medium supplemente
  • RPE retina
  • the cells may be cultured for at least about 1-10 weeks.
  • the cells may be cultured for at least about 3-6 weeks.
  • the cells may be cultured for between about 1 days and 50 days, for example, for at least about 1-3, 3-4, 7, 4-9, 7-10, 7-12, 8-1 1 , 9-12, 7-14, 14-21 , and 3-45 days.
  • the cells may be cultured for about 1 , 2, 3, 4, 5, 6, 7, 8, 9, 10, 1 1 , 12, 13, 14, 15, 16, 17, 18, 19, 20, 21 , 22, 23, 24, 25, 26, 27, 28, 29, 30, 31 , 32, 33, 34, 35, 36, 37, 38, 39, 40, 41 , 42, 43, 44, 45, 46, 47, 48, 49, or 50 days.
  • the ceils may be cultured for about 1 , 2, 3, 4, 5, 6, 7, 8, 9, 10, 1 1 , 12, 13, 14, 15, 16, 17, 1 8, 19, 20, 21 , 22, 23, or 24 hours.
  • the cells may be cultured for 2-4 and 3-6 hours.
  • the cells may be cultured for the same period of time at each step or for differing periods of time at one or more of the steps.
  • any of the above articulated method steps may be repeated to produce more RPE cells (e.g., scaled up to produce large numbers of RPE cells).
  • the RPE cells may begin to differentiate from amongst cells in the adherent culture of EBs.
  • RPE cells may be visually recognized based on their cobblestone morphology and the initial appearance of pigmentation. As RPE cells continue to differentiate, clusters of RPE cells may be observed. See FIGURE 4.
  • Exemplary mechanical methods include, but are not limited to, titration with a pipette or cutting with a pulled needle.
  • Exemplary enzymatic methods include, but are not limited to, any enzymes appropriate for disassociating cells (e.g. , trypsin (e.g., Trypsin/EDTA), co!lagenase (e.g., collagenase B, collagenase IV), dispase, papain, mixture of collagenase and dispase, a mixture of collagenase and trypsin).
  • a non-enzymatic solution is used to disassociate the cells, such as a high EDTA -containing solution e.g., Hanks-based cell disassociation buffer.
  • the RPE cells differentiate from the embryoid bodies. Isolating RPE cells from the EBs allows for the expansion of the RPE cells in an enriched culture in vitro.
  • RPE cells may be obtained form EBs grown for less than 90 days. Further, RPE cells may arise in human EBs grown for at least about 7- 14 days, 14-28 days, 28 ⁇ 15 days, or 45-90 days.
  • the medium used to culture pluripotent stem cells, embryoid bodies, and RPE cells may be removed and/or replaced with the same or different media at any interval. For example, the medium may be removed and/or replaced after at least about 0-7 days, 7-10 days, 10-14 days, 14-28 days, or 28-90 days. Further, the medium may be replaced at least daily, every other day, or at least every 3 days.
  • RPE cells are dissociated from each other and from non-RPE ceils using mechanical and/or chemical methods. A suspension of RPE cells may then be transferred to fresh medium and a fresh culture vessel to provide an enriched population of RPE cells. See FIGURE 5.
  • RPE cells may be selected from the dissociated cells and cultured separately to produce a substantially purified culture of RPE cells.
  • RPE cells are selected based on characteristics associated with RPE cells. For example, RPE cells can be recognized by cobblestone cellular morphology and pigmentation.
  • RPE cells can be recognized by cobblestone cellular morphology and pigmentation.
  • there are several known markers of the RPE including cellular retinaldehyde-binding protein (CRALBP), a cytoplasmic protein that is also found in apical microvilli; RPE65, a cytoplasmic protein involved in retinoid metabolism;
  • CRALBP retinaldehyde-binding protein
  • RNA transcripts of these markers may be assayed using PCR (e.g., RT-PCR) or Northern blots. Also, the protein levels of these markers may be assaying using immunoblot technology or Western blots.
  • the RPE cells may also be selected based on cell function, such as by phagocytosis of shed rod and cone outer segments, absorption of stray light, vitamin A metabolism, regeneration of retinoids, and tissue repair. Evaluation may also be performed using behavioral tests, fluorescent angiography, histology, tight junctions conductivity, or evaluation using electron microscopy.
  • the enriched cultures of RPE cells may be cultured in appropriate medium, for example, EGM-2 medium. This, or a functionally equivalent or similar medium., may be supplemented with a growth factor or agent (e.g. , bFGF, heparin, hydrocortisone, vascular endothelial growth factor, recombinant insulin-like growth factor, ascorbic acid, or human epidermal growth factor).
  • a growth factor or agent e.g. , bFGF, heparin, hydrocortisone, vascular endothelial growth factor, recombinant insulin-like growth factor, ascorbic acid, or human epidermal growth factor.
  • the RPE cells may be phenotypically stable over a long period of time in culture (e.g., >6 weeks).
  • the methods described herein may use pluripotent stem cells to produce RPE cells.
  • Suitable pluripotent stem cells include but are not limited to embryonic stem cells, embryo- derived stem cells, and induced pluripotent stem cells, regardless of the method by which the pluripotent stem cells are derived.
  • Pluripotent stem cells may be generated using, for example, by methods known in the art.
  • Exemplary pluripotent stem cells include embryonic stem cells derived from the inner cell mass (ICM) of blastocyst stage embryos, as well as embryonic stem ceils derived from one or more blastomeres of a cleavage stage or morula stage embryo
  • embryonic stem cells may be generated from embryonic material produced by fertilization or by asexual means, including somatic cell nuclear transfer (SCNT), parthenogenesis, cellular reprogramming, and
  • pluripotent stem cells include but are not limited to human embryonic stem cells, human embryo-derived stem cells, and human induced pluripotent stem cells, regardless of the method by which the pluripotent stem cells are derived.
  • the pluripotent stem cells may be cultured as a suspension culture to produce embryoid bodies (EBs).
  • the embryoid bodies may be cultured in suspension for about 7-14 days. However, in certain embodiments, the EBs may be cultured in suspension for fewer than 7 days (less than 7, 6, 5, 4, 3, 2, or less than 1 day) or greater than 14 days.
  • the EBs may be cultured in medium supplemented with B-27 supplement.
  • the EBs may be transferred to produce an adherent culture.
  • the EBs may be plated onto gelatin coated plates in medium.
  • the EBs may be cultured in the same type of media as when grown in suspension.
  • the media may not supplemented with B-27 supplement when the cells are cultured as an adherent culture.
  • the medium is supplemented with B-27 initially (e.g., for less than or equal to about 7 days), but then subsequently cultured in the absence of B-27 for the remainder of the period as an adherent culture.
  • the EBs may be cultured as an adherent culture for at least about 14-28. However, in certain embodiments, the EBs may be cultured as an adherent culture for fewer than about 14 days (less than 14, 13, 12, 1 1 , 10, 9, 8, 7, 6, 5, 4, 3, 2, or less than 1 day) or greater than about 28 days.
  • Human embryonic stem (hES) cells may be used as a pluripotent stem cell in the methods described herein.
  • Human embryonic stem cells (hES) are progeny of the inner cell mass (ICM) of a blastocyst and may remain pluripotent virtually indefinitely.
  • the hES cells may be derived from one or more blastomeres of an early cleavage stage embryo, optionally without destroying the embryo.
  • the hES cells may be cultured in any way known in the art, such as in the presence or absence of feeder cells.
  • the hES cells may be cultured in MDBK-GM, hESC Medium, 1NVITROGEN® Stem Cell Media, OptiPro SFM, VP-SFM, EGM-2, or MDBK-MM. See Stem Cell Information (Culture of Human Embryonic Stem Cells (hESC)) [N1H website, 2010].
  • the hES cells may be used and maintained in accordance with GMP standards.
  • hES cells When grown in culture on a feeder layer in defined conditions hES cells maintain a specific morphology, forming flat colonies comprised of small, tightly packed cells with a high ratio of nucleus to cytoplasm, clear boundaries between the cells, and sharp, refractile colony borders.
  • hES cells express a set of molecular markers, such as Octamer binding protein 4 (Oct-4, a.k.a., Pou5fl ), stage specific embryonic antigens (SSEA)-3 and SSEA-4, tumor rejection antigen (TRA)- l-60, TRA- 1-80, alkaline phosphatase, NANOG, and Rex-1.
  • hES cells in culture may be induced to differentiate. For example, hES cells may be differentiated into human RPE under the defined conditions described herein.
  • Human ES cells may produced using any method known in the art.
  • the hES cells may be derived from blastocyst stage embryos that were the product of in vitro fertilization of egg and sperm.
  • the hES cells may be derived from, one or more blastomeres removed from an early cleavage stage embryo, optionally, without destroying the remainder of the embryo.
  • the hES cells may be produced using nuclear transfer.
  • cryopreserved hES cells may be used.
  • Human embryonic stem cells that may be used include, but are not limited to, MAO 1 , MA09, ACT-4, No. 3, H I , H7, H9. H 14 and ACT30 embryonic stem cells. See also N1H Human Embryonic Stem Cell Registry, An exemplary human embryonic stem cell line that may be used is MA09 cells. The isolation and preparation of MA09 cells was previously described in Klimanskaya, et al. (2006) "Human Embryonic Stem Cell lines Derived from Single
  • the hES cells may be initially co-cultivated with murine embryonic feeder ceils (MEF) cells.
  • the MEF cells may be mitotically inactivated by exposure to mitomycin C prior to seeding hES cells in co-culture, and thus the MEFs do not propagate in culture. See FIGURE 1. Additionally, hES cell cultures are examined microscopically and colonies containing non-hES cell morphology are picked and discarded using a stem cell cutting tool. See FIGURE 2. After the point of harvest of the hES cells for seeding for embryoid body formation no additional MEF cells are used in the process. See FIGURE 3.
  • MEF murine embryonic feeder ceils
  • the time between MEF removal and RPE cells described herein harvest may be a minimum of at least one, two, three, four, or five passages and at least about 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, or 100 days in MEF-free cell culture.
  • the time between MEF removal and harvesting the RPE cells may also be a minimum of at least about 3 passages and at least about 80-90 days in MEF-free cell culture. Due to the methods of production described herein, the RPE cell cultures and preparations described herein may be substantially free of mouse embryo fibroblasts (MEF) and human embryonic stem cells (hES). Induced Pluripotent Stem Cells (iPS cells)
  • pluripotent stem cells include induced pluripotent stem cells (iPS cells) generated by reprogramming a somatic cell by expressing or inducing expression of a combination of factors ("reprogramming factors")
  • iPS cells may be generated using fetal, postnatal, newborn, juvenile, or adult somatic cells.
  • iPS cells may be obtained from a cell bank.
  • IPS cells may be newly generated by methods known in the art prior to
  • iPS cells may be an initial step in the production of RPE cells.
  • iPS cells may be specifically generated using material, from a particular patient or matched donor with the goal of generating tissue-matched RPE cells.
  • iPS cells are universal donor cells that are not substantially immunogenic.
  • the induced pluripotent stem cell may be produced by expressing or inducing the expression of one or more reprogramming factors in a somatic cell.
  • the somatic cell is a fibroblast, such as a dermal fibroblast, synovial fibroblast, or lung fibroblast, or a non- fibroblastic somatic cell.
  • the somatic cell is reprogrammed by expressing at least 1 , 2, 3, 4, 5.
  • the reprogramming factors may be selected from Oct 3/4, Sox 2, NANOG, Lin28. e-Myc, and Klf4. Expression of the reprogramming factors may be induced by contacting the somatic cells with at least one agent, such as a small organic molecule agents, that induce expression of reprogramming factors.
  • the somatic cell may also be reprogrammed using a combinatorial approach wherein the reprogramming factor is expressed ⁇ e.g., using a viral vector, plasmid, and the like) and the expression of the reprogramming factor is induced (e.g. , using a small organic molecule.)
  • reprogramming factors may be expressed in the somatic cell by infection using a viral vector, such as a retroviral vector or a lentiviral vector.
  • reprogramming factors may be expressed in the somatic cell using a non-integrative vector, such as an episomai plasmid.
  • the factors When reprogramming factors are expressed using non-integrative vectors, the factors may be expressed in the cells using electroporation, transfection, or transformation of the somatic cells with the vectors. For example, in mouse cells, expression of four factors (Oct3/4, Sox2, c-myc, and KJf4) using integrative viral vectors is sufficient to reprogram a somatic cell. In human cells, expression of four factors (Oct3/4, Sox2, NANOG, and Lin28) using integrative viral vectors is sufficient to reprogram a somatic cell.
  • the cells may be cultured. Over time, cells with ES characteristics appear in the culture dish. The cells may be chosen and subcultured based on, for example, ES morphology, or based on expression of a selectable or detectable marker. The cells may be cultured to produce a culture of cells that resemble ES cells— these are putative iPS cells.
  • the cells may be tested in one or more assays of pluripotency.
  • the cells may be tested for expression of ES cell markers; the cells may be evaluated for ability to produce teratomas when transplanted into SCID mice; the cells may be evaluated for ability to differentiate to produce cell types of all three germ layers.
  • a pluripotent iPS cell Once a pluripotent iPS cell is obtained it may be used to produce RPE cells.
  • Human embryonic stem (hES) cells may be derived from a library of human embryonic stem cells.
  • the library of human embryonic stem cells may comprise stem celis, each of which is hemizygous, homozygous, or nul lizygous for at least one MHC allele present in a human population, wherein each member of said library of stem cells is hemizygous, homozygous, or nullizygous for a different set of MHC alleles relative to the remaining members of the library.
  • the library of human embryonic stem cells may comprise stem cells that are hemizygous, homozygous, or nullizygous for all MHC alleles present in a human population.
  • stem cells that are homozygous for one or more histocompatibility antigen genes include cells that are nullizygous for one or more (and in some embodiments, all) such genes.
  • Nullizygous for a genetic locus means that the gene is null at that locus ⁇ i.e., both alleles of that gene are deleted or inactivated.
  • a hES cell may comprise modifications to one of the alleles of sister chromosomes in the cell's MHC complex.
  • a variety of methods for generating gene modifications, such as gene targeting, may be used to modify the genes in the MHC complex.
  • the modified alleles of the MHC complex in the cells may be subsequently engineered to be homozygous so that identical alleles are present on sister chromosomes. Methods such as loss of heterozygosity (LOH) may be utilized to engineer ceils to have homozygous alleles in the MHC complex.
  • LHO loss of heterozygosity
  • one or more genes in a set of MHC genes from a parental allele can be targeted to generate hemizygous cells.
  • the other set of MHC genes can be removed by gene targeting or LOH to make a null line.
  • This null line can be used further as the embryonic cell line in which to drop arrays of the HLA genes, or individual genes, to make a hemizygous or homozygous bank with an otherwise uniform genetic background.
  • Stem cells that are nullizygous for all MHC genes may be produced by standard methods known in the art, such as, for example, gene targeting and/or loss of heterozygosity (LOH). See, for example, United States Patent
  • the present invention relates to methods of obtaining RPE cells, including a library of RPE celis, with reduced MHC complexity.
  • RPE cells with reduced MHC complexity may be used to increase the supply of available cells for therapeutic applications as it may eliminate the difficulties associated with patient matching.
  • Such cells may be derived from stem cells that are engineered to be hemizygous or homozygous for genes of the MHC complex.
  • the invention also provides a library of RPE cells (and/or RPE lineage cells), wherein several lines of ES cells are selected and differentiated into RPE cells. These RPE cells and/or RPE lineage cells may be used for a patient in need of a cell-based therapy.
  • the invention also provides a library of RPE cells, each of which is hemizygous, homozygous, or nullizygous for at least one MHC allele present in a human population, wherein each member of said library of RPE cells is hemizygous, homozygous, or nullizygous for a different set of MHC alleles relative to the remaining members of the library.
  • the invention provides a library of human RPE cells that are hemizygous, homozygous, or nullizygous for all MHC alleles present in a human population.
  • any medium that is capable of supporting high-density cultures may be used in the methods described herein, such as medium, for viral, bacterial, or eukaryotic cell culture.
  • the medium may be high nutrient, protein-free medium or high nutrient, low protein medium.
  • the medium also may include nutrient components such as albumin, B-27 supplement, ethanolamine, fetuin, glutamine, insulin, peptone, purified lipoprotein material, sodium selenite, transferrin, vitamin A, vitamin C, or vitamin E.
  • nutrient rich, low protein medium may be any medium which supports the growth of cells in culture and has a low protein content.
  • nutrient rich, low protein media includes but is not limited to MDBK-GM, OptiPro SFM, VP-SFM, DMEM, RPMI Media 1640, IDMEM, MEM, F- 12 nutrient mixture, F- 10 nutrient mixture EGM-2, DMEM/F- 12 media, media 1999, or
  • the nutrient rich, low protein medium may be a medium that does not support the growth or maintenance of embryonic stem cells.
  • the medium may contain at least about 20%, 19%, 18%, 17%, 16%, 15%, 14%, 13%, 12%, 1 1 %, 10%, 9%, 8%, 7%, 6%, 5%, 4%, 3%, 2.5%, 2%, 1.5%, 1 %, 0.75%, 0.5%, 0.25%, 0.20%, 0.10%, 0.05%), 0.02%, 0.016%, 0.015%, or 0.010% animal-derived protein (e.g. , 10% FBS).
  • animal-derived protein e.g. , 10% FBS
  • the low protein or protein free medium are supplemented with serum free B-27 supplement.
  • Nutrient components of B27 supplement may comprise biotin, L-carnitine, corticosterone, ethanolamine, D+-galactose, reduced glutathione, linoleic acid, linolenic acid, progesterone, putrescine, retinyl acetate, selenium, triodo- 1 -thyronine (T3), DL-alpha-tocopherol (vitamin E), DL-alpha-tocopherol acetate, bovine serum albumin, catalase, insulin, superoxide dismutase, and transferrin.
  • protein free refers to the medium prior to addition of B-27.
  • Growth factors, agents, and other supplements described herein may be used alone or in combination with other factors, agents, or supplements for inclusion in media. Factors, agents, and supplements may be added to the media immediately, or any time during or after cell culture.
  • the medium may also contain supplements such as heparin, hydrocortisone, ascorbic acid, serum (e.g., fetal bovine serum), or a growth matrix (e.g., extracellular matrix from bovine corneal epithelium, MATRIGEL® (basement membrane matrix), or gelatin), fibronectin, proteolytic fragments of fibronectin, laminin, thrombospondin, aggrecan, and syndezan.
  • supplements such as heparin, hydrocortisone, ascorbic acid, serum (e.g., fetal bovine serum), or a growth matrix (e.g., extracellular matrix from bovine corneal epithelium, MATRIGEL® (basement membrane matrix), or gelatin), fibronectin, proteolytic fragments of fibronectin, laminin, thrombospondin, aggrecan, and syndezan.
  • the culture media may be supplemented with one or more factors or agents.
  • Growth factors that may be used include, for example, EGF, FGF, VEGF, and
  • Growth factors that may be used in the present invention also include 6Ckine (recombinant), activin A, a-interferon, alpha-interferon, amphiregulin, angiogenin, ⁇ -endothelial cell growth factor, beta cellulin, p-interferon, brain derived
  • neurotrophic factor cardiotrophin- 1 , ciliary neurotrophic factor, cytokine-induced neutrophil chemoattractant-1 , endothelial cell growth supplement, eotaxin, epidermal growth factor, epithelial neutrophil activating peptide-78, erythropoiten, estrogen receptor-a, estrogen receptor- ⁇ , fibroblast growth factor (acidic/basic, heparin stabilized, recombinant), FLT-3/FLK-2 ligand (FLT-3 ligand), gamma-interferon, glial ceil line-derived neurotrophic factor,
  • Gly-His-Lys granulocyte colony-stimulating factor, granulocyte macrophage colony-stimulating factor, GRO-alpha/MGSA, GRO-B, GRO-gamma, HCC- 1 , heparin-binding epidermal growth factor like growth factor, hepatocyte growth factor, heregulin-alpha (EGF domain), insulin growth factor binding protein- 1 , insulin-like growth factor binding protein- 1 /IGF- 1 complex, insulin-like growth factor, insulin-like growth factor II, 2.5S nerve growth factor (NGF),
  • macrophage inflammatory protein-3 a macrophage inflammatory protein-3p
  • monocyte chemotaetic protcin- 1 monocyte c he mo tactic protein-2
  • monocyte cheniotactic protein-3 neurotrophin-3, neurotrophin-4, NGF- ⁇ (human or rat recombinant), oncostatin M (human or mouse recombinant)
  • pituitary extract placenta growth factor, platelet-derived endothelial cell growth factor, platelet-derived growth factor, pleiotrophin, rantes, stem cell factor, stromal cell- derived factor 1 B/pre-B cell growth stimulating factor, thrombopoetin, transforming growth factor alpha, transforming growth factor- ⁇ , transforming growth factor-p2, transforming growth factor-p3, transforming growth-factor-p5, tumor necrosis factor (a and ⁇ ), and vascular endothelial growth factor.
  • Agents that may be used according to the present invention include cytokines such as interferon-oc, interferon-a A/D, interferon- ⁇ , interferon- ⁇ , interfere ⁇ - ⁇ -inducible protein- 10, interleukin- 1 , interIeukin-2, interleukin-3, interleukin-4, interleukin-5, interIeukin-6,
  • cytokines such as interferon-oc, interferon-a A/D, interferon- ⁇ , interferon- ⁇ , interfere ⁇ - ⁇ -inducible protein- 10, interleukin- 1 , interIeukin-2, interleukin-3, interleukin-4, interleukin-5, interIeukin-6,
  • the culture media may be supplemented with hormones and hormone antagonists, including but not limited to 17B-estradiol, adrenocorticotropic hormone, adrenomedullin, alpha- melanocyte stimulating hormone, chorionic gonadotropin, corticosteroid-binding globulin, corticosterone, dexamethasone, estriol, follicle stimulating hormone, gastrin 1.
  • hormones and hormone antagonists including but not limited to 17B-estradiol, adrenocorticotropic hormone, adrenomedullin, alpha- melanocyte stimulating hormone, chorionic gonadotropin, corticosteroid-binding globulin, corticosterone, dexamethasone, estriol, follicle stimulating hormone, gastrin 1.
  • glucagon gonadotropin, hydrocortisone, insulin, insulin-like growth factor binding protein, L-3,3' ,5'- triiodothyronine, L-3,3' ,5'-triiodothyronine, leptin, leutinizing hormone, L-thyroxine, melatonin, MZ-4, oxytocin, parathyroid hormone, PEC-60, pituitary growth hormone, progesterone, prolactin, secretin, sex hormone binding globulin, thyroid stimulating hormone, thyrotropin releasing factor, thyroxine-binding globulin, and vasopressin.
  • the culture media may be supplemented with antibodies to various factors including but not limited to anti-low density lipoprotein receptor antibody, an ti -progesterone receptor, internal antibody, anti-alpha interferon receptor chain 2 antibody, anti-c-c chemokine receptor 1 antibody, anti-CD 1 18 antibody, anti-CD 1 19 antibody, anti-colony stimulating factor- 1 antibody, anti-CSF- 1 receptor/c-fms antibody, anti-epidermal growth factor (AB-3) antibody, anti-epidermal growth factor receptor antibody, anti-epidermal growth factor receptor, phospho-specific antibody, anti-epidermal growth factor (AB- 1 ) antibody, an ti -erythropoietin receptor antibody, anti-estrogen receptor antibody, anti-estrogen receptor, C-terminal antibody, anti-estrogen receptor- B antibody, anti- fibroblast growth factor receptor antibody, anti -fibroblast growth factor, basic antibody, anti- gamma-interferon receptor chain antibody, anti-gamma-
  • the RPE cells and pharmaceutically preparations comprising RPE ceils produced by the methods described herein may be used for cell-based treatments.
  • the invention provides methods for treating a condition involving retinal degeneration comprising administering an effective amount of a pharmaceutical preparation comprising RPE cells, wherein the RPE cells are derived from pluripotent stem cells in vitro.
  • Conditions involving retinal degeneration include, for example, choroideremia, diabetic retinopathy, retinal atrophy, retinal detachment, retinal dysplasia, and retinitis pigmentosa.
  • the RPE cells described herein may also be used in methods for treating macular degeneration including but are not limited to age related macular degeneration (dry or wet), North Carolina macular dystrophy, Sorsby's fundus dystrophy, Stargardt's disease, pattern dystrophy, Best disease, malattia leventinese, Doyne's honeycomb choroiditis, dominant drusen, and radial drusen.
  • the RPE cells described herein may also be used in methods of treating Parkinson's disease (PD).
  • PD Parkinson's disease
  • a common feature of cell transplantation is low graft survival, for example, in many cell transplantation studies there tends to be a loss of cells immediately following transplantation (e.g., within the first week). This loss of cells does not appear to be due to rejection of the transplanted cells but rather an inability of a certain percentage of the cells to be retained at the transplant site. This lack of cell retention is most likely due to a number of factors such as the failure of the cells to attach to an underlying structure, a lack of sufficient nutrients, or physical stresses at the transplant site. Following this initial drop-off of cell number, the cell survival at various time after transplantation can vary considerably from study to study. Thus, although some studies show a steady decline in numbers, other show results where the grafted cells can reach a stable number. However, an important factor in considering the success of a
  • transplantation is the percentage of recipients with surviving grafts following cell transplant.
  • the RPE cells in the pharmaceutical preparations described herein may survive long term following transplantation.
  • the RPE cells may survive at least about 1 , 2, 3, 4, 5, 6, 7, 8, 9, or 10 days.
  • the RPE cells may survive at least about 1 , 2, 3, 4, 5, 6, 7, 8, 9, or 10 weeks; at least about 1 , 2, 3, 4, 5, 6, 7, 8, 9, or 10 months; or at least about 1 , 2, 3, 4, 5, 6, 7, 8, 9, or 10 years. Further, the RPE cells may survive throughout the lifespan of the receipt of the transplant.
  • At least 10, 20, 30, 40, 50, 60, 70, 80, 90, 95, 96, 97, 98, 99, or 100% of the receipts of RPE cells described herein may show survival of the transplanted RPE cells.
  • the RPE cel ls described herein may successfully incorporate into the RPE layer in the transplantation receipt, forming a semi- continuous line of ceils and retain expression of key RPE molecular markers (e.g., RPE65 and bestrophin).
  • the RPE cells described herein may also attach to the B inch' s membrane, forming a stable RPE layer in the transplantation receipt.
  • the RPE cells described herein are substantially free of ES cells and the transplantation receipts doe not show abnormal growth or tumor formation at the transplantation site.
  • the methods of treating a patient suffering from a condition associated with retinal degeneration may comprise administering a composition of the invention locally (e.g. , by intraocular injection or insertion of a matrix comprising the pharmaceutical preparation of the invention).
  • Intraocular administration of pharmaceutical preparation of the invention include, for example, delivery into the vitreous body, transcorneally, sub-conjunctival, juxtascleral, posterior scleral, and sub-tenon portions of the eye. See, for example, U.S. Patent Nos, 7,794,704;
  • the invention also provides a method of administering human RPE cells that have been derived from reduced-complexity embryonic stem cells to a patient.
  • This method may comprise: (a) identifying a patient that needs treatment involving administering human RPE cells to him or her; (b) identifying MHC proteins expressed on the surface of the patient's cells; (c) providing a library of human RPE cells of reduced MHC complexity made by the method for producing RPE cells of the present invention; (d) selecting the RPE cells from the library that match this patient's MHC proteins on his or her cells; (e) administering any of the cells from step (d) to said patient.
  • This method may be performed in a regional center, such as, for example, a hospital, a clinic, a physician's office, and other health care facilities. Further, the RPE cells selected as a match for the patient, if stored in small ceil numbers, may be expanded prior to patient treatment.
  • the RPE cells may be cultured under conditions to increase the expression of alpha integrin subunits 1 -6 or 9 as compared to uncultured RPE cells or other RPE cell preparations prior to transplantation.
  • the RPE cells described herein may be cultured to elevate the expression of alpha integrin subunits 1 -6 or 9 as compared to uncultured RPE cells or other RPE cell preparations prior to transplantation.
  • the RPE cells described herein may be cultured to elevate the
  • the RPE cells described herein may be cultured under conditions that promote the expression of alpha integrin subunits 1 -6.
  • the RPE cells may be cultured with integrin-activating agents including but not limited to manganese and the activating monoclonal antibody (mAb) TS2/16. See Afshari, et al. Brain (2010) 133(2): 448-464.
  • the particular treatment regimen, route of administration, and adjuvant therapy may be tailored based on the particular condition, the severity of the condition, and the patient's overall health.
  • Administration of the pharmaceutical preparations comprising RPE cells may be effective to reduce the severity of the symptoms and/or to prevent further degeneration in the patient's condition.
  • administration of a pharmaceutical preparation comprising RPE cells may improve the patient's visual acuity.
  • administration of the RPE cells may be effective to fully restore any vision loss or other symptoms.
  • the RPE cell administration may treat the symptoms of injuries to the endogenous RPE layer.
  • the RPE cells may be formulated with a pharmaceutically acceptable carrier.
  • RPE celts may be administered alone or as a component of a pharmaceutical formulation.
  • the subject compounds may be formulated for administration in any convenient way for use in medicine.
  • Pharmaceutical preparations suitable for administration may comprise the RPE cells, in combination with one or more pharmaceutically acceptable sterile isotonic aqueous or nonaqueous solutions (e.g. , balanced salt solution (BSS)), dispersions, suspensions or emulsions, or sterile powders which may be reconstituted into sterile injectable solutions or dispersions just prior to use, which may contain antioxidants, buffers, bacteriostats, solutes or suspending or thickening agents.
  • BSS balanced salt solution
  • the pharmaceutical preparations for use in this invention may be in a pyrogen-free, physiologically acceptable form.
  • the preparation comprising RPE cells used in the methods described herein may be transplanted in a suspension, gel, colloid, slurry, or mixture. Further, the preparation may desirably be encapsulated or injected in a viscous form into the vitreous humor for delivery to the site of retinal or choroidal damage. Also, at the time of injection, cryopreserved RPE cells may be may be resuspended with commercially available balanced salt solution to achieve the desired osmolality and concentration for administration by subretinal injection.
  • the RPE cells of the invention may be delivered in a pharmaceutically acceptable ophthalmic formulation by intraocular injection.
  • the solution When administering the formulation by intravitreal injection, for example, the solution may be concentrated so that minimized volumes may be delivered. Concentrations for injections may be at any amount that is effective and nontoxic, depending upon the factors described herein.
  • the pharmaceutical preparations of RPE cells for treatment of a patient may be formulated at doses of at least about 10 4 cells/mL.
  • the RPE cell preparations for treatment of a patient are formulated at doses of at least about 10 3 , 10 4 , 10-- , 10 6 , 10 7 , 10 8 , 10 9 , or 10 10 RPE cells/mL.
  • the RPE cells may be formulated in a pharmaceutically acceptable carrier or excipient.
  • the pharmaceutical preparations of RPE cells described herein may comprise at least about 1 ,000; 2,000; 3,000; 4,000; 5,000; 6,000; 7,000; 8,000; or 9,000 RPE cells.
  • the pharmaceutical preparations of RPE cells may comprise at least about l x l 0 4 , 2x 10 4 , 3x 10 4 , 4x 10 ⁇ 5x 10 4 , 6x 10 4 , 7x 10 4 , 8x 10 4 , 9x 10 4 , 1 x 10 5 , 2x 10 5 , 3x 10 5 , 4x 10 5 , 5x 10 5 , 6x 10 ⁇ 7x 10 5 , 8x 10 5 , 9x10 5 , 1 x 10 6 , 2x 10 6 , 3x 10 6 , 4x 10 6 , 5x 10 6 , 6x 10 6 , 7x 10 6 , 8x 10 6 , 9x 10 6 , l x l 0 7 , 2x 10 7 , 3x 10 7 , 4
  • the pharmaceutical preparations of RPE cells may comprise at least about 10 2 1-x1 x 10 3 , 101 2 x-l x 10 4 , 11x 0 4 -l x 10 5 , or1 x 10 3 — 1 x 10 6 RPE cells.
  • the pharmaceutical preparations of RPE cells may comprise at least about 10,000, 20,000, 25,000, 50,000, 75,000, 100,000, 125,000, 150,000, 175,000, 180,000, 185,000, 190,000, or 200,000 RPE cells.
  • the pharmaceutical preparation of RPE cells may comprise at least about 20,000-200,000 RPE cells in a volume at least about 50-200 ⁇ xL.
  • the pharmaceutical preparation of RPE cells may comprise at least about 180,000 RPE cells in a volume at least about 150 L.
  • RPE cells may be formulated for delivery in a pharmaceutically acceptable ophthalmic vehicle, such that the preparation is maintained in contact with the ocular surface for a sufficient time period to allow the cells to penetrate the affected regions of the eye, as for example, the anterior chamber, posterior chamber, vitreous body, aqueous humor, vitreous humor, cornea, iris/ciliary, lens, choroid, retina, sclera, suprachoridal space, conjunctiva, subconjunctival space, episcleral space, intracorneal space, epicorneal space, pars plana, surgically-induced avascular regions, or the macula.
  • a pharmaceutically acceptable ophthalmic vehicle such that the preparation is maintained in contact with the ocular surface for a sufficient time period to allow the cells to penetrate the affected regions of the eye, as for example, the anterior chamber, posterior chamber, vitreous body, aqueous humor, vitreous humor, cornea, iris/ciliary, lens, choroid, retina, sclera
  • the volume of preparation administered according to the methods described herein may dependent on factors such as the mode of administration, number of RPE cells, age and weight of the patient, and type and severity of the disease being treated. If administered by injection, the volume of a pharmaceutical preparations of RPE cells of the invention may be from at least about 1, 1.5, 2, 2.5, 3, 4, or 5 niL. The volume may be at least about 1-2 mL.
  • the volume of a pharmaceutical preparations of RPE cells of the invention may be at least about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 39, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67 ,68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108,
  • the volume of a preparation of the invention may be from at least about 10-50, 20-50, 25-50, or 1-200 ⁇ iL.
  • the volume of a preparation of the invention maybe at least about 10, 20, 30, 40, 50, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, or 200 ⁇ L .
  • the preparation may comprise at least about lx10 3 , 2x10 3 , 3x10 3 , 4x10 3 , 5x10 3 , 6x10 3 , 7x10 3 , 8x10 3 , 9x10 3 , lx10 4 , 2x10 4 , 3x10 4 ,4x10 4 , 5x10 4 , 6x10 4 , 7x10 4 , 8x10 4 , or 9x10 4 RPE cells per )xL.
  • the preparation may comprise 2000 RPE cells per ⁇ L, for example, 100,000 RPE cells per 50 ⁇ L ⁇ or 180,000 RPE cells per 90 ⁇ L.
  • the method of treating retinal degeneration may further comprise administration of an immunosuppressant.
  • Immunosuppressants that may be used include but are not limited to anti- lymphocyte globulin (ALG) polyclonal antibody, and -thymocyte globulin (ATG) polyclonal antibody, azathioprine, BASILIXIMAB® (anti-IL-2Ra receptor antibody), cyclosporin
  • cyclosporin A cyclosporin A
  • DACLIZUMAB® anti-IL-2Ra receptor antibody
  • everolimus mycophenolic acid
  • RITUXIMAB® anti-CD20 antibody
  • sirolimus sirolimus
  • tacrolimus tacrolimus.
  • immunosuppressants may be dosed at least about 1 , 2, 4, 5, 6, 7, 8, 9, or 10 mg/kg. When immunosuppressants are used, they may be administered systemically or locally, and they may be administered prior to, concomitantly with, or following administration of the RPE cells.
  • Immunosuppressive therapy continues for weeks, months, years, or indefinitely following administration of RPE cells.
  • the patient may be administered 5 mg/kg cyclosporin for 6 weeks following administration of the RPE cells.
  • the method of treatment of retinal degeneration may comprise the administration of a single dose of RPE cells. Also, the methods of treatment described herein may comprise a course of therapy where RPE cells are administered multiple times over some period.
  • Exemplary courses of treatment may comprise weekly, biweekly, monthly, quarterly, bi annually, or yearly treatments.
  • treatment may proceed in phases whereby multiple doses are required initially (e.g., daily doses for the first week), and subsequently fewer and less frequent doses are needed.
  • the RPE cells may be delivered one or more times periodically throughout the life of a patient. For example, the RPE cells may be delivered once per year, once every 6-12 months, once every 3-6 months, once every 1 -3 months, or once every 1-4 weeks. Alternatively, more frequent administration may be desirable for certain conditions or disorders. If administered by an implant or device, the RPE cells may be administered one time, or one or more times periodically throughout the lifetime of the patient, as necessary for the particular patient and disorder or condition being treated. Similarly contemplated is a therapeutic regimen that changes over time. For example, more frequent treatment may be needed at the outset (e.g. , daily or weekly treatment). Over time, as the patient's condition improves, less frequent treatment or even no further treatment may be needed.
  • the methods described herein may further comprises the step of monitoring the efficacy of treatment or prevention by measuring electroretinogram responses, optomotor acuity threshold, or luminance threshold in the subject.
  • the method may also comprise monitoring the efficacy of treatment or prevention by monitoring immunogenicity of the cells or migration of the cells in the eye.
  • the RPE cells may be used in the manufacture of a medicament to treat retinal degeneration.
  • the invention also encompasses the use of the preparation comprising RPE cells in the treatment of blindness.
  • the preparations comprising human RPE cells may used to treat retinal degeneration associated with a number of vision-altering ailments that result in photoreceptor damage and blindness, such as, diabetic retinopathy, macular degeneration (including age-related macular degeneration, e.g., wet age-related macular degeneration and dry age-related macular degeneration), retinitis pigmentosa, and Stargardt's Disease (fundus flavimaculatus).
  • the preparation may comprise at least about 5,000-500,000 RPE cells (e.g., 100,00 RPE cells) which may be administered to the retina to treat retinal degeneration associated with a number of vision-altering ailments that result in photoreceptor damage and blindness, such as, diabetic retinopathy, macular degeneration (including age-related macular degeneration), retinitis pigmentosa, and Stargardt' s Disease (fundus flavimaculatus).
  • RPE cells e.g., 100,00 RPE cells
  • the RPE cells provided herein may be human RPE cells.
  • the human cells may be used in human patients, as well as in animal models or animal patients.
  • the human celis may be tested in mouse, rat, cat, dog, or non-human primate models of retinal degeneration.
  • the human cells may be used therapeutically to treat animals in need thereof, such as in veterinary medicine.
  • the pharmaceutical preparation may be formulated in a pharmaceutically acceptable carrier according to the route of administration.
  • the preparation may be formulated to be administered to the subretinal space of the eye.
  • the preparation comprising RPE cells may be administered to one eye or both eyes in the same patient. The administration to both eyes may be sequential or simultaneous.
  • the preparation comprising RPE cells may be formulated as a suspension, solution, slurry, gel, or colloid.
  • RPE cells of the invention may be administered locally by injection (e.g. , intravitreal injection), or as part of a device or implant (e.g. , an implant).
  • the preparation may be administered by injection into the subretinal space of the eye.
  • the preparation may be administered transcorneally.
  • the cells of the present invention may be transplanted into the subretinal space by using vitrectomy surgery.
  • RPE cells may be may be resuspended with commercially available balanced salt solution to achieve the desired osmolality and concentration for administration by subretinal injection.
  • the RPE cells may be added to buffered and electrolyte balanced aqueous solutions, buffered and electrolyte balanced aqueous solutions with a lubricating polymer, mineral oil or petrolatum-based ointment, other oils, liposomes, cylcodextrins, sustained release polymers or gels.
  • a lubricating polymer mineral oil or petrolatum-based ointment, other oils, liposomes, cylcodextrins, sustained release polymers or gels.
  • the methods described herein may comprise a step of administering RPE cells of the invention as an implant or device.
  • the device is bioerodibie implant for treating a medical condition of the eye comprising an active agent dispersed within a
  • the bioerodibie implant is sized for implantation in an ocular region.
  • the ocular region may be any one or more of the anterior chamber, the posterior chamber, the vitreous cavity, the choroid, the suprachoroidal space, the conjunctiva, the subconjunctival space, the episcleral space, the intracorneal space, the epicorneal space, the sclera, the pars plana, surgically-induced avascular regions, the macula, and the retina.
  • the biodegradable polymer may be, for example, a poly(lactic-co-glycolic)acid (PLGA) copolymer, biodegradable poly(DL-lactk>co ⁇ glycolic acid) films, or PLLA/PLGA polymer substrates.
  • the ratio of lactic to glycolic acid monomers in the polymer is about 25/75, 40/60, 50/50, 60/40, 75/25 weight percentage, more preferably about 50/50.
  • the PLGA copolymer may be about 20, 30, 40, 50, 60, 70, 80 to about 90 percent by weight of the bioerodibie implant.
  • the PLGA copolymer may be from about 30 to about 50 percent by weight, preferably about 40 percent by weight of the bioerodibie implant.
  • the RPE cells may be transplanted in conjunction with a biocompatible polymer such as polylactic acid, poly(lactic-c ⁇ ?-glycolic acid), 50:50 PDLGA, 85: 15 PDLGA, and INION GTR® biodegradable membrane (mixture of biocompatible polymers).
  • a biocompatible polymer such as polylactic acid, poly(lactic-c ⁇ ?-glycolic acid), 50:50 PDLGA, 85: 15 PDLGA, and INION GTR® biodegradable membrane (mixture of biocompatible polymers). See U.S. Patent No. 6,331 ,313; 7,462,471 ; and 7,625,582. See also Hutala, et al.
  • the invention provides a method for screening to identify agents that modulate RPE cell maturity.
  • RPE cells differentiated from human ES cells may be used to screen for agents that promote RPE maturation.
  • Identified agents may be used, alone or in combination with RPE cells, as part of a treatment regimen.
  • identified agents may be used as part of a culture method to improve the survival of RPE cells differentiated in vitro.
  • the RPE cells may be used a research tool in settings such as a pharmaceutical, chemical, or biotechnology company, a hospital, or an academic or research institution. Such uses include the use of RPE cells differentiated from embryonic stem cells in screening assays to identify, for example, agents that may be used to promote RPE survival in vitro or in vivo, or that may be used to promote RPE maturation. Identified agents may be studied in vitro or in animal models to evaluate, for example, their potential use alone or in combination with RPE cells.
  • the invention provides a method for identifying agents that promote RPE maturation comprising providing a RPE cell, contacting said RPE cell with an agent, assessing said RPE cell for signs of maturity, and then identifying an agent that promotes RPE maturation when said agent causes RPE cell to show signs of maturity.
  • the signs of maturity may be pigmentation level, gene expression levels, and morphology as discussed herein.
  • Certain aspects of the present invention pertain to the production of RPE cells to reach commercial quantities.
  • the RPE cells may be produced on a large scale, stored if necessary, and supplied to hospitals, clinicians or other healthcare facilities.
  • RPE cells may be harvested, purified, and optionally stored prior to a patient's treatment.
  • RPE cells may optionally be patient specific or specifically selected based on HLA or other immunologic profile. For example, once a patient presents with an indication such as, for example, diabetic retinopathy, macular degeneration (including age-related macular
  • RPE cells may be ordered and provided in a timely manner. Accordingly, the present invention relates to methods of producing RPE cells to attain cells on a commercial scale, cell preparations comprising RPE cells derived from said methods, as well as methods of providing (i.e., producing, optionally storing, and selling) RPE cells to hospitals and clinicians.
  • the production of differentiated RPE cells or mature differentiated RPE cells may be scaled up for commercial use.
  • the present invention also provides for methods of conducting a pharmaceutical business comprising establishing a distribution system for distributing the preparation for sale or may include establishing a sales group for marketing the pharmaceutical preparation.
  • the present invention provides methods of supplying RPE cells to hospitals, healthcare centers, and clinicians, whereby RPE cells produced by the methods disclosed herein are stored, ordered on demand by a hospital, healthcare center, or clinician, and administered to a patient in need of RPE ceil therapy.
  • a hospital, healthcare center, or clinician orders RPE ceils based on patient specific data, RPE cells are produced according to the patient's specifications and subsequently supplied to the hospital or clinician placing the order. For example, after a particular RPE cell preparation is chosen to be suitable for a patient, it is thereafter expanded to reach appropriate quantities for patient treatment.
  • the invention provides a method of conducting a pharmaceutical business, comprising the step of providing RPE cell preparations that are homozygous for at least one histocompatibility antigen, wherein cells are chosen from a bank of such cells comprising a library of RPE cells that may be expanded by the methods disclosed herein, wherein each RPE cell preparation is hemizygous or homozygous for at least one MHC allele present in the human population, and wherein said bank of RPE cells comprises cells that are each hemizygous or homozygous for a different set of MHC alleles relative to the other members in the bank of cells.
  • gene targeting or loss of heterozygosity may be used to generate the hemizygous or homozygous MHC allele stem cells used to derive the RPE cells.
  • the present invention also includes methods of obtaining human ES cells from a patient and then generating and expanding RPE cells derived from the ES cells. These RPE cells may be stored. In addition, these RPE cells may be used to treat the patient from which the ES were obtained or a relative of that patient.
  • Mouse embryo fibroblasts were grown in MEF-GM medium supplemented with about 10% fetal bovine serum (FBS). When sufficient numbers of MEFs were obtained, feeder cells were prepared by mitotically blocking the MEFs with mitomycin-C and seeding into 6-well plates coated with gelatin. See Figure 1. Vials of hES were thawed, seeded on to the MEF feeder cells, and co-cultured in hES Growth Medium. See Table 2 and Figure 2. The hES ceils were expanded several times at a split ratio of about 1 :3. When a sufficient number of hES cells were propagated, the cells were harvested and placed into suspension culture in low attachment 6-well plates in EB Formation Medium (this allows for the formation of embryoid bodies (EBs)). See Table 2 and Figure 3.
  • FBS fetal bovine serum
  • the EBs were then be transferred to gelatin-coated 6-well plates to allow for the outgrowth of RPEs.
  • the initial growth medium is EB Outgrowth Medium, but once the EBs were attached this was changed to EB Maintenance Medium. See Table 2.
  • EB Maintenance Medium See Table 2.
  • the medium was changed to MDBK-MM.
  • the RPE cells were isolated and further propagated in EGM-2 medium until confluent.
  • the RPE cells were cultured in MDBK-MM until the cells reach a medium pigment morphology and pigmentation. See Figures 4 and 5.
  • the RPE cells were then harvested and stored frozen at below about -135°C (e.g., in the vapor phase of liquid nitrogen). See Figure 6.
  • the RPE cells were produced in compliance with GMP. Thus, this method yields an effective amount of human RPE cells suitable for use in transplantation.
  • hES human embryonic stem cells
  • cryopreserved cells of hES were seeded into one well of a 6-well plate, and co-cultures of hES and MEF are incubated for about 4—9 days until about 60-80% confluent. During this time the cultures were examined microscopically: larger colonies displaying mostly hES morphology were dispersed into smaller pieces to prevent spontaneous differentiation. Mosaic colonies with large areas of undifferentiated cells were trimmed by removing those portions comprised of differentiated cells. Colonies containing predominately differentiated cells or non hES cell morphology were picked and discarded, using a stem cell cutting tool using photographs as a guide to the morphology of the colonies. See Figure 2.
  • the hES cells were passaged by washing with Ca 2+ /Mg 2+ -free DPBS and treated with 0.05% trypsin/EDTA for about 2-5 minutes until detached. The trypsin was neutralized with MEF-GM and the cells collected by centrifugation. The hES cells are then reseeded on fresh MEF feeder layers. The hES cells were expanded several times at a split ratio of about 1 :4 or less. See Figure 3.
  • hES cells were harvested. The cells were wash with Ca 2 7Mg 2+ -free DPBS and treated with 0.05% trypsin/EDTA for about 2-5 minutes until detached. The trypsin was neutralized with MEF-GM and the cells collected by centrifugation. The hES cells were then resuspended in EB Formation Medium (EB-FM).
  • EB-FM EB Formation Medium
  • hES cells were inoculated onto iow-attachment, 6-weI! plates (at a split ratio of 1 :2) and cultured for about 7-12 days until embryoid bodies were formed and matured.
  • Embryoid bodies in suspension were harvested from the low attachment wells, resuspended in EB-FM, and plated onto gelatin-coated 6-welI culture plates. The plates were cultured undisturbed for about 3-4 days to allow the embryoid bodies to attach. At this time, medium was changed to EB Growth Medium (EB-GM). When cultures were about 70% confluent (e.g. , after about 9- 12 days), the medium was changed to RPE Maintenance Medium (RPE-MM). See Figure 3.
  • EB-GM EB Growth Medium
  • RPE-MM RPE Maintenance Medium
  • hES cells e.g., MA01 and MA09
  • hES cells were thawed and placed into suspension culture on Lo-bind Nunclon Petri dishes in MDBK-Growth Medium or OptimPro SFM supplemented with L-Glutamine, Penicillin/Streptomycin, and B-27 supplement.
  • the hES cells had been previously derived from single blastomeres biopsied from early cleavage stage human embryos. The remainder of the human embryo was not destroyed. The cells were cultured for at least about 7-14 days as embryoid bodies (EBs).
  • EBs embryoid bodies
  • the EBs were plated onto tissue culture plates coated with gelatin from porcine skin.
  • the EBs were grown as adherent cultures for an at least about an additional 14-28 days in MDBK-Growth Medium or OptimPro SFM supplemented with
  • the human RPE cells prepared in accordance with the methods described herein may be considered substantially free of non-human cells, thus not a xenotransplantation material, and hES cells, thus not tumorigenic.
  • Resuspended human RPE cells were inoculated onto gelatin-coated 4-well or 6-well plates at a density of 50,000 or 250,000 cells, respectively in RPE-GM and cultured until confluent (about 8-1 1 days). At this time, the medium was changed to RPE-MM and incubated for about 9-14 days until the RPE cultures display a medium level of pigmentation.
  • Passage 0 (P0) RPE cultures were harvested with a 1 : 1 mix of 0.25% Trypsin-EDTA and Cell Dissociation Buffer, neutralized with MEF-GM and collected by centrifugation. Cell pellets were
  • RPE cell cultures were expanded at least twice (undergoing two 1 :3 to 1 :6 splits (passage 2
  • the human RPE cells were harvested.
  • the number of RPE cells may be greatly increased i ncluding to reach therapeutically useful amounts of human RPE cells (e.g., at least about l x l 0 3 -l x l 0 6 RPE cells).
  • RPE cells were cultured in an adherent culture. As differentiated RPE cells appear in the adherent cultures, clusters of differentiated RPEs may become visibly noticeable based on cell shape. Frozen collagenase IV (20 mg/ml) was thawed and diluted to 7 mg/ml. The collagenase IV was applied to the adherent culture containing RPE clusters (1 .0 ml to each well in a 6- well plate). Over about 1 -3 hours, the collagenase IV dissociated the cell clusters. By dissociating the RPE clusters from other cells in the culture, an enriched suspension of RPE cells was obtained.
  • Frozen collagenase IV (20 mg/ml) was thawed and diluted to 7 mg/ml. The collagenase IV was applied to the adherent culture containing RPE clusters (1 .0 ml to each well in a 6- well plate). Over about 1 -3 hours, the collagenase IV dissociated the cell clusters. By dissoci
  • the enriched RPE cell suspension was removed from the culture plate and transferred to a 100 mm tissue culture dish with 10 ml of MEF medium. Pigmented clumps were transferred with a stem cell cutting tool (Swemed-Vitrolife) to a well of a 6-well plate containing 3 ml of MEF media. After all clumps have been picked up, the suspension of pigmented cells was transferred to a 15 ml conical tube containing 7 ml of MEF medium and centrifuged at 1000 rpm for five minutes. The supernatant was removed. 5 ml of a 1 : 1 mixture of 0.25% trypsin and cell dissociation buffer was added to the cells. The cells were incubated for 10 minutes at 37°C.
  • the cells were dispersed by pipetting in a 5 ml pipette until few clumps were remaining. 5 ml of MEF medium was added to the cells and the cells centrifuged at 1000 rpm for 5 minutes. The supernatant was removed and the cells were plated on gelatin coated plates with a split of 1 :3 of the original culture in EGM-2 culture medium. See Figure 4.
  • the culture of RPE cells was expanded by continued culture in EGM-2 medium.
  • the cells were passaged, as necessary, at a 1 :3 to 1 :6 ratio using a 1 : 1 mixture of 0.25% trypsin EDTA and Cell Dissociation Buffer.
  • the cells were grown to near confluency in EGM-2.
  • the medium was then changed to MDBK-MM (SAFC Biosciences) to further promote maturation of the RPE cells. Accordingly, mature human RPE cells may be prepared for use in therapeutic methods.
  • the human RPE cells were grown to near confluency and the medium changed to RPE Maintenance Medium.
  • the RPE cells were then cultured until the cells reach a medium pigment morphology and pigmentation. This may take at least about one additional month of culture time.
  • the medium pigment is based on a culture that appears to contain about half of the cells in the dense cobblestone state and half the culture in the lighter, less dense morphology. Pictures may be utilized to help standardize the process.
  • the medium pigment morphology was chosen because the viability post-thaw is maintained, the recovery of the cells is better than the high pigment, and the pharmacology showed similar efficacy to the other morphologies.
  • P2 or P3 medium-pigmented RPE cells in culture were harvested by washing and treatment with 0.25% Trypsin-EDTA, Detached RPE cells were washed with MEF-GM to neutralize the trypsin, centrifuged, counted and resuspended in a solution of 90% FBS and 10% DMSO at a concentration of 1 million cells/mL.
  • One raL of cell product suspension was dispensed into an appropriately labeled, sterile, 1.2 mL cryovials. Vials were stored for 1-3 days at -80°C prior to transfer to the vapor phase of liquid nitrogen storage (-135°C.) See Figure 6.
  • the cryopreserved preparations of RPE cells may be manufactured.
  • Table 4 provides a description of the tests that may be performed for characterization and qualification during the production of RPE cells including RPE cells preparations for use in transplantation therapies.
  • the RPE cells produced in accordance with the methods described herein may be tested by at least one of the tests listed in Table 4.
  • RPE cells may be seeded on gelatin.
  • the RPE cells seeded on gelatin usually show loose pigmentation and epithelial morphology as they divide and migrate away from the initial attachment site. See, e.g. , Klimanskaya, et al. (2004) Cloning and Stem Cells 6(3): 1 -29, Figure
  • the RPE cells may revert to epithelial morphology and re-expressed pigment. See, e.g., id., Figure 2.
  • Various tests may be performed to confirm that the RPE cells maintain their RPE phenotype (e.g. , phenotype stability) including RPE molecular markers, assaying for phagocytic activity, and confirming the absence of adventitious viruses. See, e.g., id.
  • RPE cells express several characteristic RPE proteins in vivo, including bestrophin, RPE65, CRALBP, and PEDF. See, e.g., id., Figure 3. Pigmented epithelial morphology of RPE- Iike differentiated derivatives of hES cells, may be lost in proliferating cultures and
  • RPE cells described herein are similar to natural RPE ceils. See also id.
  • Functional tests for characterization of the RPE cells include RPE-specific phagocytosis using an assay with labeled rod fragments or fluorescent S. aurelius particles.
  • RPE cells provide functional support to photoreceptors through phagocytosis of shed photoreceptor fragments. Therefore, phagocytosis represents a major functional characteristic identifying RPE cells.
  • Approximately 500,000 formulated RPE cells may be seeded in gelatin-coated wells of a 4- well plate and cultured until medium-pigmentation is observed. The cells may then be incubated with fluorescent S. aurelius particles for at least about 24-36 hours at about 37°C. A negative control may be performed with the same plates incubated at about 1 ⁇ 4°C for the same duration. After the incubation, the plates may be rinsed 3 times with PBS to remove the remaining particles, fixed with 2% paraformaldehyde in PBS, rinsed twice with PBS and examined and photographed under the fluorescence inverted microscope.
  • Human RPE cells produced according to the methods described herein are capable of phagocytosis of both latex beads and photoreceptor fragments.
  • Routine morphological assessment may be done using a phase contrast inverted light microscope throughout the duration of the production process. Digital microphotographs may be taken at key stages. Morphological assessment may be performed to confirm maintenance of the RPE phenotype. Human RPE produced according to the methods described herein show a stable RPE phenotype, lasting over 9 months. See Example 19.
  • Karyotyping ⁇ e.g., by G-banding and FISH may be performed to ensure that only cells maintain a normal ploidy ⁇ e.g., 46 chromosomes for humans).
  • This karyotype analysis may be performed after harvest and seeding of hES cells for EB formation, after seeding of the PI passage of RPE cells, and at the harvest of the RPE cells described herein prior to
  • RPE MA09p32 a batch of RPE cells (RPE MA09p32) were prepared in accordance with the methods described herein.
  • the RPE cells were passaged an additional two times prior to harvest and testing for viruses, to ensure that any virus is given the maximum chance to he expressed.
  • RPE MA09p32+4 cells were harvested and tested for inapparent viruses and in vitro viruses.
  • a portion of the cells was passaged one further time (lot RPE MA09p32 ⁇ 5) before being sent for ultrastructural evaluation of viral particles. These cells were substantially free of viral contamination indicating that the manufacture of RPE cells does not result in hidden viruses.
  • RPE cells may produce the desired characteristics after cryopreservation, vials of the RPE cells may thawed and characterized. The RPE cells may then be tested 1 , 2, 3, 6, 12, 18 and 24 months post freeze. A vial of RPE cells were prepared, cryopreserved, and thawed then tested. These RPE cells showed a normal, 46 chromosome (XX) karyotype ⁇ , was viable, substantially free from viruses, and viable after 6-9 months of cryostorage. Additionally, the RPE cells showed a normal, 46 chromosome (XX) karyotype!, was viable, substantially free from viruses, and viable after ⁇ -4 years of cryostorage.
  • XX chromosome
  • a global gene expression analysis via microarray was performed on the human RPE cells derived from both of the single blastomere-derived hES cell lines MA01 and MA09 to test for the presence of RPE markers and the absence of ES markers. Additionally, fetal RPE, ARPE- 19, and retinoblastoma cell lines were analyzed as controls.
  • the results of the mvcroarray assay demonstrates that RPE cells made by the methods described herein express multiple genes that are not expressed by hES cells, fetal RPE cells, or ARPE- 19 cells.
  • the distinctive molecular fingerprint of mRNA and protein expression in the ES-cell derived RPE cells of the invention constitutes a set of markers, such as RPE-65, Bestrophin. PEDF. CRABLP, Otx2. Mif-F, PAX6 and PAX2, that make these RPE cells distinct from cells in the art, such as hES cells, ARPE- 19 cells, and fetal RPE cells.
  • hES-specific genes included Oct-4 (POU5F1), NANOG, Rex- 1 , TDGF-J , SOX-2, and DPPA-2.
  • Genes specific to neural ectoderm/neural retina include CHXIO, NCAM, Nestin, and ⁇ -TubuHn.
  • RPE cells differentiated from human embryonic stem cells were found to express PAX-6, PAX2, RPE-65, PEDF,
  • hES-specific genes are grossly downregulated (near 1000-fold) in RPE cells derived from hES, whereas genes specific for RPE and
  • RPE cells derived from hES are vastly upregulated (about 100-fold) in RPE cells derived from hES.
  • qPCR analysis of fully mature RPE demonstrated a high level expression of the RPE-specific markers RPE65, Tyrosinase, PEDF, Bestrophin, MitF, and PAX6. This agrees with current literature regarding the Pax2-induced regulation of MitF and downstream activation of genes associated with terminally differentiated RPE.
  • the results of the assay demonstrates that RPE cells made by the methods described herein express multiple genes at the mRNA level that are not expressed by hES cells or neural ectoderm/neural retina cells.
  • the distinctive molecular fingerprint of mRNA in the ES-cell derived RPE cells of the invention constitutes a set of markers, such as RPE-65, tyrosinase, Bestrophin, PEDF, Mit-F, and PAX6, that make these RPE cells distinct from cells in the art, such as hES cells and neural ectoderm/neural retina cells.
  • This assay also confirms that the human RPE cell preparations made in accordance with the methods described herein are substantially free from hES cell contamination.
  • the results of the assay demonstrates that RPE cells made by the methods described herein express multiple genes at the protein level that are not expressed by hES cells or APRE-19 cells.
  • the distinctive molecular fingerprint of protein expression in the ES-cell derived RPE cells of the invention constitutes a set of markers, such as RPE65, CRALBP, PEDF, Bestrophin, PAX6, and Otx2, that make these RPE cells distinct from cells in the art, such as hES cells and APRE-19 cells.
  • This assay also confirms that the human RPE cell preparations made in accordance with the methods described herein are
  • cryopreservation e.g., appropriate levels of RPE specific markers. Seven lots of human RPE cells (090621 , 090606, 121 1606, AB3, A090609, A090714, and A020101RG4) manufactured assayed for the selected hES and RPE markers.
  • the results of the assay demonstrates that human RPE cells made by the methods described herein express multiple genes that are not expressed by hES cells.
  • the distinctive molecular fingerprint of protein expression in the ES-cell derived RPE cells of the invention constitutes a set of markers, such as RPE65, CRALBP, PEDF, Bestrophin, PAX6, and Otx2, that make these RPE cells distinct from hES cells.
  • the human RPE cells described herein show upregulation of the RPE cell markers, RPE65, PAX6, bestrophin, and MITF, and downregulation of the ES cell markers, OCT4, NANOG, and SOX2, confirming that the human RPE cells are fully differentiated and have lost their pluripotency.
  • This assay also confirms that the human RPE cell preparations are substantially free from hES cell contamination. Further, these RPE cells are at a desirable level of pigmentation so that they may be cryopreserved and thawed with high levels of viability after thawing.
  • compositions of human RPE cells may be manufactured aseptically in a Class 100 biological safety cabinet.
  • the diluent utilized for the pharmaceutical utilized for the pharmaceutical
  • preparations may be ALCON BSS Plus ® Intraocular Irrigating Solution, a sterile balanced salt solution, comprising sodium chloride (NaCl) 7.14 mg, potassium chloride (KG) 0.38 mg, calcium chloride dihydrate (CaCl 2 *H 2 0) 0.154 mg, magnesium chloride hexahydrate
  • the RPE cells may be thawed for use.
  • the vial of cells may be removed from the liquid nitrogen freezer, placed in a water bath at 37°C, and constantly agitated until the entire contents are liquid.
  • the thawed contents may be resuspended in 1 mL of RPE-MM and transferred to a separate sterile 50 mL tube.
  • RPE-MM are added to each conical tube to bring the volume to 40 mL.
  • the tube may then centrifuged, the supernatant aspirated and the pellet resuspended in 40 mL of BSS-Plus.
  • the cell suspension may be again centrifuged, the supernatant aspirated.
  • the pellet may be resuspended in a second volume of 40 mL of BSS-Plus and the cells pelleted by
  • the resulting peilet may be resuspended in about 75 ⁇ L of BSS-Plus per vial thawed and the cells transferred to a sterile 0.5 mL sterile microcentrifuge tube, A viable cell count may be performed and the appropriate volume of BSS-Plus is added to achieve the appropriate density of cells for dosing.
  • the pharmaceutical preparations of human RPE ceils may have a preparation viability of at least about 85%. These cells may maintain this viability for at least about 4 hours post preparation.
  • a 200 ⁇ sample of the formulated product may be placed in a sterile microcentrifuge tube.
  • the vial may be placed on ice for transport to the surgical facility and is stable for at least about 4 hours after preparation (e.g., cells may be used in therapy within at least about 4 hours of preparation). See FIGURE 7.
  • Needle/syringe and cannula systems were tested for damage/loss of human RPE cells (e.g., cell viability/activity, cell adhesion to the syringe) at a cell dose of about 1 x10 ' human RPE cells in a small volume (e.g. , about 2-3 ⁇ L).
  • human RPE cells e.g., cell viability/activity, cell adhesion to the syringe
  • the resulting RPE were formulated in BSS-Plus and resuspended at 50,000 viable cells per microliter ( ⁇ L).
  • the capillary delivery system used was a 25 ⁇ L Hamilton syringe and a standard glass capillaries made by World Precision Instruments (WPI), Standard Glass Capillaries: 4 in. (100 mm); 1 ,5/0.84 OD/ID (mm) filament, fire polished using natural gas.
  • WPI World Precision Instruments
  • Standard Glass Capillaries 4 in. (100 mm); 1 ,5/0.84 OD/ID (mm) filament, fire polished using natural gas.
  • the Hamilton syringe and glass capillaries were autoclaved prior to use.
  • the tubing was flushed with 70% sterile ethanol using a syringe and needle. This was followed by thorough flushing with sterile PBS prior to use.
  • a 20 gauge syringe needle was affixed to the syringe. One end of the tubing was fitted to the needle and the other end of the tubing was inserted over the capillary tube.
  • BSS-Plus was drawn into the capillary, tubing, and syringe. BSS-Plus was then expelled until about 2-3 inches of the tubing was void to ensure that there was an air bubble between the cells and medium. About 10-12 ⁇ L of the cell suspension was drawn into the capillary. About 2 ⁇ ] ⁇ & of the cell suspension was dispensed over about a 10-20 second time interval into a sterile microcentrifuge tube. The dispensing was repeated 8 times until about 16 had been delivered over about a 1.5-2 minute period. [0259] The RPE cells were then assessed for assessed for viable cell number and their ability to grow in culture.
  • Samples of RPE cells that had been delivered through the capillary were tested for viable cell number by trypan blue exclusion and compared to the same formulated RRE cells that had not been delivered. Control and capillary subjected cells were also seeded in 4-well plates at 50,000 viable cells per well in 1 mL of RPE growth medium. After four days in culture, control and capillary delivered RPE cells were trypsinized and cell counts were performed.
  • Vials of cryopreserved RPE cells (lot 090621) were thawed, washed and resuspended in BSS-Plus at a concentration of 50,000 viable cells per microliter. The viability of the formulated RPE was 88%. The viable cell counts performed on RPE preparation that had been delivered through the capillary system versus control cells are shown in the Table 9.
  • Capillary-injected and non-injected RPE showed no difference regarding the viability, viable cell number or the ability to propagate in culture.
  • the capillary-injection system used in the preclinical studies had no adverse effects RPE number, viability or their capacity to proliferate in culture.
  • Cryopreserved RPE cells (Lot 090621) were thawed, washed with MDBK-MM media, and resuspended with BSS-Plus. Resuspended RPE cells were centrifuged and resuspended again with 400 ⁇ L of BSS-Plus in a fresh microcentrifuge tube. A viable cell count was done on the cell suspension, and the concentration was adjusted to ⁇ 5% of the target concentration. The rigid injection cannula was attached to a 1 mL TB syringe asepiically, and 200 ⁇ L of the cell suspension were drawn up into the syringe via the cannula. The remaining 200 ⁇ L in the tube was labeled "Non-Cannula". The cell suspension in the syringe was dispensed into a new microcentrifuge tube at a rate of 10-15 $L over 10 seconds.
  • a viable cell count was cell count was done to the "Cannula-Injected" sample. From both the “Non-Cannula” and “Cannula” samples 10,000 cells/wel! were seeded into 96 well- plates the cells were cultured in RPE-GM. Another cell count was done 3-4 days post seeding to assess the long term survival status. The cell counts for the canmila-injected sample and non-cannula injected sample are provided in Table 10.
  • the number of viable cell/ ⁇ L after the cannula passage was comparable to the non- injected RPE cells as shown in the Table 9. Also, the number of viable cells 3-4 days post seeding did not differ significantly.
  • the data presented herein demonstrates that the needle/syringe and cannula systems that may be used for administration of human RPE cells can deliver a cell dose up to lx 10 5 human RPE cells in a small volume ⁇ e.g., about 2-3 ⁇ L) without damage/loss of cells (e.g., cell viability/activity, cell adhesion to the syringe).
  • cannula/syringe passage does not substantially affect the viability or survivability of RPE cells. This is consistent with the preclinical data which shows that following subretinal injection in rats and mice, RPE cells are seen both microscopically and using immunostaining using human specific antigens.
  • the methods of producing RPE cells described herein remove ES cells from the RPE cell preparation, thereby reducing the risk of teratoma formation. This was confirmed by assays to detect the presence of hES in the RPE cells described herein.
  • the human RPE cells described herein were tested for tumor formation and no such tumors were detected.
  • mice considered suitable for study were weighed prior to cell implantation. A total of 27 animals were treated with hES cells, 30 animals were treated with RPE cells, and 10 animals were left untreated. After all implantation procedures were completed, 56 male mice (weighing 19.6 to 26.0 g at randomization) were assigned to the respective control and treatment groups identified in the following table using a simple randomization procedure for each group.
  • the hES cell group observed significant tumor formation in 100% of the animals, some as early as 4 weeks. In contrast, the RPE treated animals did not form tumors out to the lifespan of the animals. Thus the human RPE celts preparations do not pose a risk of tumor formation following transplantation. Accordingly, the human RPE cell preparations are acceptable for use in transplantation (e.g., therapeutic applications).
  • a fundamental limitation on the success and usefulness of cell-based therapies is the inability of the transplanted cells to survive, maintain their phenotype, integrate, and function following transplantation.
  • transplantation e.g., transplantation
  • immunofluorescense to detect human molecular markers
  • PCR to detect human DNA
  • the human RPE cells were identified by positive co-immunofluorescence to human mitochondrial antigen and bestrophin antigen and located within the mouse retinal pigmented epithelial cell layer, subjacent to the retina, within the posterior chamber or within the remaining scar at 9 months post-injection.
  • the morphology of the positive staining cells was characterized as typically linear arrangements of cuboidal cells with round nuclei that were displaced eccentrically by small golden-brown intracytoplasmic pigment, and were consistent with retinal pigmented epithelial cells.
  • immunofluorescent cells consistent with RPE were identified within the mouse RPE layer and subretinal space in 8 of 12 mice eyes examined in this study. In 2 of 4 mice eyes, RPE cells were also identified within the posterior chamber and in 1 of 4 mice, RPE cells were identified in scar. RPE cells were not observed in 3 of 12 eyes prepared for staining.
  • intracytoplasmic pigment consistent with retinal pigmented epithelial cells.
  • the human cells When associated with the mouse RPE, the human cells displayed typical polarity along a basement membrane with basally located nuclei and apically located pigmented granules. The human cells could be distinguished from mouse RPE as the human cells appeared slightly larger with fewer and smaller yellow-brown pigmented granules compared to the mouse RPE. There was no evidence of abnormal growth in the sections examined under the conditions of bright field microscopy.
  • DNA observed among the three groups is not considered significant and is attributed to variability in the surgical procedure which may impact cell survival.
  • transplantation is the inability of the transplanted cells to survive long-term following transplantation and the risk of teratoma formation.
  • the purpose of this example was to identify, localize and characterize the morphology of RPE cells after 1 , 3 and 9 months post- injection.
  • the transplanted human RPE cells survived in representative animals up to over 200 days, with no evidence of tumor formation or non-retinal human cells in the eyes.
  • Cell proliferation was evaluated at the 9 month time point for animals evaluated in the utilizing Ki67 staining. No proliferation was seen in either of these studies.
  • Immunofluorescence staining was chosen over immunoperoxidase staining for demonstration of the antigens due to the presence of pigment in the cells of interest and to facilitate double staining of sections for bestrophin and Ki67. Ki67 staining in this study was only conducted at the 1 and 3 month timepoints.
  • mitochondria as bright red punctate cytoplasmic staining viewed with Cy3 580 nm filter.
  • Antibodies appeared to be human-specific as there was no cross- reactivity with mouse tissue. However, some background staining was encountered in some sections, usually associated with retinal photoreceptors, vessel walls, collagen or skeletal muscle, but it was easily distinguished based on level of brightness, staining pattern and location.
  • the human cells When associated with the mouse RPE, the human cells displayed typical polarity along a basement membrane with basally located nuclei and apically located pigmented granules.
  • the human cells could be distinguished from mouse RPE as the human cells appeared slightly larger with fewer and smaller yellow-brown pigmented granules compared to the mouse RPE.
  • the RPE cells were readily identified as linearly organized celts within the RPE and/or subretinally in 5 of 6 mice dosed with 100,000 cells and nuclear Ki67-positive staining was observed in 4 out of 5 mice eyes in which RPE cells were identified. In mice dosed with 50,000 cells, RPE cells were observed in 3 of 6 mice eyes, and Ki67-positive cells were also observed in these same 3 mice eyes.
  • tmmunopositive RPE cells were identified within the mouse RPE and/or subretinai space in 5 of 6 mice eyes dosed at 100,000 cells and 2 of 5 mice eyes dosed with 50,000 cells.
  • immunopositive RPE cells were identified in the posterior chamber and scar; and in 1 animal (animal number 744 dosed with 50,000 cell) RPE cells were only observed in the scar.
  • RPE cells were not identified in 2 of 5 eyes prepared for staining in 50,000 cell group at the 9 month time-point. Ki67 staining was not performed for this group of slides.
  • RPE cells were identified by positive co-immunofluorescence to human mitochondrial antigen and bestrophin antigen and located within the mouse retinal pigmented epithelial cell layer, subjacent to the retina, within the posterior chamber or within the remaining scar up to 9 months post-injection.
  • the morphology of the positive staining celis was characterized as typically linear arrangements of cuboidal cells with round nuclei that were displaced eccentrically by small golden-brown intracytopiasmic pigment, and were consistent with retinal pigmented epithelial cells.
  • a subset of these celis showed nuclear positivity for the proliferation marker Ki67 at 1 and 3 months after injection.
  • Human pigmented epithelial cells were identified within segments of rat retinal pigmented epithelial cells, and thus confirm the presence of human cells in representative animals up to >220 days post surgery. The cells were consistent with RPE morphology and positive for bestrophin. Therefore, the human RPE cells described herein may be transplanted where they integrate forming stable, functional retinal pigmented epithelial layer.
  • the eye is a small organ and the number of cells that may be implanted into the subretinal space is quite small (e.g., 100,000 RPE cells) compared to millions of cells that may be injected into other sites for other conditions. Additionally, the survival rate of transplanted cells (e.g., xenogenic, allogeneic, syngeneic, or autologous) in various animal models is generally low. Although donor cells may be easily detected immediately after transplantation (e.g., several days out to 3 weeks), there is a progressive loss of survival over time, generally resulting in less than 1 % long-term survival in animal model studies. For example, Wang, et al.
  • Invest Opthalmol Vis Sci 46(7): 2552-60 reported a loss of surviving human RPE cells in immunosuppressed RCS rat eyes from 5% at 6 weeks post transplantation to 0.2% at 28 weeks.
  • Carr, et al. (2009) PLoS One 4(12): 8152 disclosed that human iPS-RPE cells were undetectable 13 weeks post-transplantation.
  • Del Priore, et al. (2003) Invest Opthalmol Vis Sci 44(9): 4044-53 found ⁇ 1 % of porcine RPE cells in rabbit eye model after 12 weeks and Canola, et al. (2007) Invest Opthalmol Vis Sci 48(1): 446-54 showed only 0.44% of injected cells survived at 3 months.
  • the purpose of the example was to examine the subretinal injection of RPE cells in non-human primates, in particular vitrectomy, a method to create a subretinal bleb, and cell doses.
  • the risk of stem cell graft rejection and the presence of any deleterious effects on the retinal physiology as a consequence of cell injection was also examined.
  • the study used 8 animals (16 eyes). All animals were injected according to the following schedule in
  • vitrectomy was performed using an end-irrigating light pipe, a vitrector, and a hand-held irrigating contact lens in an effort to elevate the posterior hyaloid. Then a 19 gauge end-irrigating light pipe, a Synergetics subretinal injector, and a Machemer irrigating contact lens were used to create subretinal blebs. Then a subretinal pick was used to inject the cells. Then the sclerotomies were closed using 6-0 Vicryl sutures and the conjunctival peritomy with a 6-0 plain gut sutures. Zinacef
  • a plug was placed and a similar procedure was done in the superonasal quadrant to create a peritomy and a sclerotomy. Then a 19 gauge end-irrigating light pipe, a Synergetics subretinal injector, and a Machemer irrigating contact lens were used to create subretinal blebs. Then a subretinal pick was used to inject 50 micoliters of stem cells (2000 cells / microliter) into each of the blebs. Then the sclerotomies were closed using 6-0 Vicryl sutures and the conjunctival peritomy with a 6-0 plain gut sutures.
  • Zinacef (Cefuroxime, 125 mg) and Decadron (Dexamethasone, 10 mg) were given as subconjunctival injections OU. Erythromycin ointment was placed over the eyes OU. Following each surgery retinal photos and ERGs were done. At termination all animals underwent full necropsy and the eyes were examined histologically.
  • the technique was refined to be a two port pars plana approach with an irrigating light pipe and subretinal cannula, and we have histologically confirmed successful implantation to the subretinal space.
  • a vitrectomy may also be performed, if desired.
  • One suitable method for subretinal bleb formation was as follows: the retina may be approached with the Synergetics subretinal cannula connected to a Hamilton 1 ml syringe with a screw plunger containing Balanced Salt solution (BBS). The BSS may be injected slowly creating a retinotomy and then a small subretinal bleb is raised. This may minimize retinal trauma. The cannula may be then introduced through the retinotomy and the BSS injection restarted and continued to expand the bleb to the correct volume. A process of gentle retinal massage releases the tension in the bleb.
  • BSS Balanced Salt solution
  • the Synergetics cannula may be removed and a 30-gauge Hurricane Instruments needle connected to tubing and syringe preloaded with cells may be introduced.
  • the cells may be infused over about one minute under direct viewing to ensure correct cannula positioning and minimize reflux. This instrumentation procedure is suitable for use in humans.
  • the optomotor test was used to provide a measure of spatial acuity. On P100 sham- injected rats, a threshold response of 0.29 ⁇ 0.03 c/d was recorded and untreated animals gave a figure of 0.21 ⁇ 0.03 c/d. By contrast, the cell-grafted rats sustained levels of 0.42 ⁇ 0.03 c/d, significantly better than sham injected rats (p ⁇ 0.05, t-test) (FIGURE 10).
  • RPE cells described herein may be used in a cell therapy for treating retinal degenerative disease such as the amelioration of age-related macular degeneration (AMD) and senile macular degeneration (SMD).
  • AMD age-related macular degeneration
  • SMD senile macular degeneration
  • the RPE cells described herein may be used for the treatment of age-related macular degeneration and Stargardt's disease.
  • Good Manufacturing Practice-compliant bESC-RPE survived subretinal transplantation in RCS rats for prolonged periods (>220 days).
  • the cells sustained visual function and photoreceptor integrity in a dose-dependent fashion without teratoma formation or untoward pathological reactions. Near-normal functional measurements were recorded at >60 days survival in RCS rats.
  • a Good Laboratory Practice-compliant study was carried out in the N1H III immune-deficient mouse model.
  • hES cells were dissociated from the primary mouse embryonic fibroblast layer by treatment with 0.05% trypsin-EDTA and were seeded in 6-well low-attachment plates to allow EB formation in a chemically defined minimal essential medium (MEM)-based medium (MDBK-GM) containing B-27 supplement for about 7 days and plated on gelatin-coated (0.1%) dishes until RPE colonies were visible.
  • MEM minimal essential medium
  • MDBK-GM minimal essential medium
  • RPE was purified by 3-hour exposure to 4 mg/ml type IV collagenase and manually isolated with a glass pipette. Purified RPE was seeded onto gelatin-coated tissue culture plates and expanded in EGM-2 medium until desired density was achieved, at which point cultures were reverted to MEM-based medium (MDBK-MM) and cultured until the appropriate phenotype was achieved. RPE was dissociated from culture using a 1 : 1 mixture of 0.25% trypsin-EDTA and Hanks-based cell dissociation buffer and was cryopreserved in 90% fetal bovine serum and 10% dimethylsulfoxide .
  • QUANTITECH® reverse transcription kit with a mixture of oligodT and random hexamers primers. Fifty NANOGrams per well of cDNA was used as templates in quantitative polymerase chain reactions (qPCRs) with oligonucleotides specific for hESC and retina! genes. All qPCR reactions were performed in triplicate, with the resultant values being combined into an average threshold cycle (CT), The efficiency of qPCR was calculated from the slope of a relative standard curve using GAPDH primers. Relative quantization was determined using a ST RAT A G ENE® MX3005P QPCR system measuring real-time SYBR Green fluorescence and calculated by the AACT method. Fold differences are calculated using the AACT in the formula 2 - AACt. Expression profiles for the mRNA transcripts are shown as fold differences in comparison to mRNA levels in hES cells.
  • BSS balance salt solution
  • Three cell lines designated low, medium, and high pigment were given in different dose groups. These are summarized in Table 15.
  • a suspension of cells was delivered into the subretinal space of one eye through a small scleral incision, suspended in 2 ⁇ of BSS medium using a fine glass pipette (internal diameter, 75-150 ⁇ ) attached by tubing to a 25-ul Hamilton syringe.
  • the cornea was punctured to reduce intraocular pressure and to limit the efflux of ceils.
  • a sham-surgery group was treated the same way, except the carrying medium alone was injected.
  • the fundus was examined for retinal damage or signs of vascular distress. Any animal showing such problems was removed from the study and excluded from the final animal counts.
  • Each production run generated about 50 x 10 6 RPE cells from a single frozen ampule of I x 10 6 hES cells. This amount is sufficient to dose about 500 rats or 50-100 human subjects. Additionally, the methods described herein are completely suitable to available scale-up technologies such as bioreactor culture or large-scale fluid handling systems. [0322] To characterize the developmental stages during RPE differentiation, several assays were used to identify the expression levels of genes key to each stage of development, qPCR was developed to provide a quantitative and relative measurement of the abundance of cell type-specific mRNA transcripts associated with the RPE differentiation process.
  • a panel of genes associated with hESC pluripotency (Oct-4, NANOG, Rex-1, TDGFl, Sox2, DPPA2, and DPPA4), neuroectoderm intermediates (PAX6 and ChxlO), and RPE (RPE-65,
  • Bestrophin, CRALBP, PEDF, MitF, Otx-2, Tyr, and Pax2) was established and assayed for each by qPCR.
  • Figure 13 shows the gene expression profile of the transcripts during differentiation to mature RPE, including samples from hES cells (dO), embryoid bodies (EBs, d7), plated EBs (dl 4), mixed population of newly formed RPE and less differentiated cells (mixed, d28), purified early RPE (eRPE, d35), and fully matured pigmented RPE (mRPE, d56).
  • hES cells hES cells
  • EBs, d7 embryoid bodies
  • dl 4 plated EBs
  • mixed population of newly formed RPE and less differentiated cells mixed, d28
  • purified early RPE eRPE, d35
  • mRPE fully matured pigmented RPE
  • Lightly pigmented RPE (FIGURE 12) expressed 1 ,000-fold lower quantities of Oct-4, NANOG, Sox2, and DPPA4; ⁇ 10,000-fold less TDGFl ; and 50-fold less Rex-1 and DPPA2 than hESC.
  • the cells also expressed 10- to 100-fold greater quantities of RPE65, CRALBP, PEDF,
  • This cell population expresses genes such as PAX6 and CHX10 because this stage represents an "immature" population of RPE derived from embryonic cells, and may continue to express markers associated with developing cells of the neureiina and/or neurectoderm.
  • FIGURE 12A-C The phenotypic changes that RPE undergoes during the in vitro maturation process were characterized by qPCR (FIGURE 12A-C).
  • FIGURE 12A shows that RPE with a higher degree of pigmentation and polygonal cell borders (corresponding to FIGURE 12C) maintains higher expression of RPE-specific genes.
  • both pigmentation and the high level of RPE-specific gene expression are correlated with the emergence of Pax2 expression and a sharp increase in MitF, Otx2, and Tyr expression.
  • MitF expression, and in turn Tyr is achieved in RPE through synergy of Pax2 and PAX6 during embryonic development.
  • FIGURE 14 shows a principal component analysis (PCA) scatter plot, indicating the contribution to variance that the two major variables, cell type and cell line (x- and ⁇ ' ⁇ axis, respectively), yield on global gene expression.
  • PCA principal component analysis
  • the depigmented RPE cells cluster closer to both ARPE- 19 and fetal RPE; the latter display similar morphological characteristics to this batch of cells in vitro .
  • the more heavily pigmented batches of RPE cells appear to cluster farther from hES cells and retinoblastoma cells (RB) than any other cell type tested.
  • the pigmented batches of RPE from MA01 and MA09 do not overlap by PCA, they are within a similar order of magnitude to each other to that of fetal RPE and ARPE- 19.
  • the more heavily pigmented hESC-RPE cells may be considered the most differentiated, and from a safety standpoint, the most genetically divergent from cells possessing "sternness" or expressing cancer-related genes.
  • FIGURE 15A The results at P90 (70 days after transplantation) are summarized in FIGURE 15A. Improved rescue of spatial acuity occurred from 5,000 to 50,000, after which even doubling the dose of cells to 100,000 had no significant effect on efficacy. Performers among the cell-injected group gave a figure of 0,536 cycles/degree (c/d) compared with 0.6 c/d in normal rats, which is about 90% of normal value. There was no significant difference between sham and untreated groups, which performed significantly worse than the cell- injected group (p ⁇ .01).
  • Luminance thresholds were also measured in a subset of rats selected by their performance on the optomotor response. An area with high sensitivity corresponded to the area of retina in which the cells were introduced, as indicated in FIGURE 15C- 15F. For statistical comparison the data for this part of the example is presented as a percentage of the area of the visual field representation from which thresholds better than designated levels were recorded without regard to position. This gives a simple indicator of overall efficacy, as well as a response figure, dissociated from spatial considerations. It is clear that the overall sensitivity recorded at 50,000 is superior to 20,000, but as with spatial acuity, it does not change significantly between 50,000 and 75,000. For example, about 45% of the SC gave thresholds of 2.2 log units with 50,000 cells/eye and about 40% with 75,000 cells/eye.
  • FIGURE 18 To examine how luminance responses deteriorated with time, thresholds were recorded at two time points in individual rats. An example is shown in FIGURE 18. As shown, the luminance thresholds show serious deterioration on the untreated side, with more than one half the area being nonresponsive at P187 compared with P98, whereas
  • luminance threshold responses were recorded at P98 (shown in FIGURE 18A) and PI 87 (shown in FIGURE 18B) in the same rat from multiple points within the superior colliculus (SC). This method quantifies functional sensitivity to light across the visual field of the eye.
  • the topographical map depicts the luminance threshold responses (measured in log units relative to background illumination of 0.02 cd/mf) at 15 and 16 points in the left and right sides, respectively, within the SC.
  • FIGURE 18 A all points of luminance threshold responses in the treated side are less than 2,0 log units, whereas in the untreated side, all points are greater than 2.3 log units.
  • Table 15B depicts the same animal was recorded at PI 87 (>5 months after surgery); there is deterioration in sensitivity to light compared to P98; however, it is still significantly better than the untreated fellow eye (which has no response over half the area). Abbreviation: c/d, cycles/degree. See FIGURE 18.
  • FIGURE 15B Visual acuity in normal mice tested by the same optomotor device was lower than that in rats (0.35 vs. 0.6 c/d). In untreated Elovl4 mice, the visual acuity deteriorated as photoreceptor degeneration progressed from 0.34 c/d at P28 to 0.24 c/d at PI 05.
  • FIGURE 15B Subretinal injection of hESC-RPE improved the visual acuity over controls at all time points tested. Celi-injected eyes had a figure of 0.32 ⁇ 0.04 c/d at P63 (5 weeks after surgery) compared with 0.26 ⁇ 0.03 c/d in sham-injected and untreated controls.
  • FIGURE 15B The figure of 0.32 ⁇ 0.04 c/d at P63 (5 weeks after surgery) compared with 0.26 ⁇ 0.03 c/d in sham-injected and untreated controls.
  • the human specific nuclear marker, MAB 1281 was used to identify the donor cells. They formed a layer, one to two cells deep, and integrated into the host RPE layer (FIG, 19G, 19H), as was seen in our previous study. Photoreceptor rescue continued beyond the limits of distribution of donor cells, suggesting that rescue was at least in part caused by a diffusible effect. Cone arrestin antibody showed that cone photoreceptors were preserved with disorganized segments (FIG. 19F) at P90. Donor cells were still evident up to at least P249 (FIG. 19G and 19H). There was no indication of continued donor cell division (e.g., shown by the proliferating cell nuclear antigen marker).
  • the long-term risk of teratoma formation was tested in the N1H III mouse model.
  • the N1H III mouse was chosen for its immune-deficient status; the nude mouse has three mutations rendering it devoid of T cells, NK cells, and mature T-independent B lymphocytes.
  • the N1H III mouse retains eye pigmentation, which provides better visualization for subretinal transplantation surgery.
  • the surgical technique was the same as performed in the RCS study.
  • the study compared the hESC-RPE to undifferentiated hES cells (positive control) to determine the teratoma formation potential of the 100,000 RPE cell dose over three time points: 1 , 3, and 9 months (the approximate lifespan of the animal; n - 6 per cohort).
  • no teratoma or tumor formation was found in any of the animals injected with the hESC-derived RPE.
  • basic animal safety assessments were normal compared with controls.
  • the hESC-RPE cells produced according to the methods described herein also rescued visual functions in a dose-dependent fashion: with increased cell concentrations from 5,000 to 50,000, there was an improvement in functional rescue measured with both visual acuity and luminance threshold response. From 50,000 to 100,000, there is tolerance in numbers of cells introduced and that twice the optimal dose is still effective. Previous rodent work has shown that RPE ceils quickly disperse as a single or double layer and that 20,000 cells of an immortalized RPE cell line may occupy about 20% of the retinal area ( 12.56 mm ).
  • the inner macular is 3 mm in diameter: this would mean that a dose of about 40,000 cells may be used to cover the inner macular area but that a larger cell number may likely cover a larger area.
  • the significantly improved visual performance in Elovl4 mice adds to the value of the hESC-RPE as the cell choice for cell-based therapy to treat macular disease (in this case, a subset of patients with Stargardt's disease caused by mutation in the Etovl4 gene).
  • Stargardt's disease is one of the most frequent forms of juvenile macular degeneration. Although some rescue may be achieved by growth factor delivery such as direct injection or factor-releasing cells (encapsulated cells) such as ARPE19 cells transduced to produce ciliary neurotrophic factor or Schwann cells, these approaches cannot replace the other functions of RPE cells.
  • growth factor delivery such as direct injection or factor-releasing cells (encapsulated cells) such as ARPE19 cells transduced to produce ciliary neurotrophic factor or Schwann cells
  • factor-releasing cells encapsulated cells
  • the hESC-RPE cells have a molecular profile more closely resembling native RPE than do ARPE-19, and thus they may be able to take on a broader range of RPE functions than ARPE-19 beyond simple factor delivery.
  • the hESC-RPE cells may replace crucial functions of the host RPE because the hESC-RPE cells are able to phago-cytose latex beads in vitro.
  • part of the rescue effect may be mediated by a diffusible trophic factor effect.
  • the human cells When associated with the mouse RPE, the human cells displayed typical polarity along a basement membrane with basally located nuclei and apically located pigmented granules (Figs. 13, 14). The human cells could be distinguished from mouse RPE as the human cells appeared slightly larger with fewer and smaller yellow-brown pigmented granules compared to the mouse RPE . Thus at P240 (i.e., 220 days after transplantation), donor cells survive, photoreceptors are rescued, and a level of visual function is preserved. Thus, the methods described herein may serve as a safe and inexhaustible source of RPE cells for the efficacious treatment of a range of retinal degenerative diseases.
  • RPE retinal pigmented epithelium
  • RCS Royal College of Surgeons
  • MERTK MER tyrosine kinase
  • RPE cells were subretinally injected in RCS rat eyes at an early stage of retinal degeneration (P21 ) in order to prevent disease progression.
  • Animals were divided into three groups: cell-injected group, balanced salt solution (BSS)-injected control and untreated eyes.
  • BSS balanced salt solution
  • Cells 50,000, 75,000 and 100,000 cells
  • BSS balanced salt solution
  • cyclosporine was added to drinking water (210 mg/L) during the study.
  • the efficacy of RPE cell injection was evaluated by two visual functional tests: optomotor responses and luminance threshold recordings from the superior colliculus (SC), followed by morphological examination including cresyl violet staining (for general retinal lamination and photoreceptor thickness).
  • immunostaining was performed with antibodies to human nuclei or human mitochondria antibodies to identify surviving human cells and the human RPE-specific marker bestrophin to their RPE phenotype. Both BSS injection alone and untreated eyes were used as control groups these were examined along with cell injected groups at all the time points.
  • This test is similar to the Humphrey test used in clinic for visual field analysis in humans. In the case of animals, electrodes are implanted and are measured using sensitive instrumentation. To assess luminance thresholds, single and multi-unit activity in the superficial layers of the super colliculus (SC) was recorded.
  • SC super colliculus
  • the luminance threshold recorded from the SC correlated well with the amount of photoreceptors in the retina. Animals with more photoreceptors were more sensitive to light stimulation, i.e. had a lower luminance threshold. For example, one rat had extensive photoreceptor preservation, which correlated with donor cell distribution. Optomotor response revealed visual acuity of 0.50c/d compared with 0.25 c/d in untreated eye, and luminance threshold recording gave a figure of 0.8 log units at P90, compared with 3.0 log units in untreated control, which is more than 100 times more sensitive to light stimulation. Histology
  • the RPE cells described herein may be transplatned where they survive, maintain their phenotype, and rescue visual acuity in retinal degeneration.
  • a human patient diagnosed with diabetic retinopathy may be treated by administering a pharmaceutical preparation comprising at least about 100,000 human RPE cells (e.g., 100,000 RPE cells in 50 uL).
  • the RPE cell preparation is injected into sub-retinal space.
  • the patient is placed on a treatment course of 5 mg/kg cyclosporin for 6 weeks.
  • the patient is monitored for the development of side effects.
  • the visual acuity of the patient is monitored and tested at least for 6 months following treatment.
  • a human patient diagnosed with age-related macular degeneration may be treated by administering a pharmaceutical preparation comprising at least about 100,000 human RPE cells (e.g., 100,000 RPE cells in 50 ⁇ ).
  • the RPE cells Prior to transplantation, the RPE cells may be cultured under conditions that increase alpha-integrin subunit expression.
  • the RPE cell preparation is injected into sub-retinal space.
  • the patient is placed on a treatment course of 5 mg/kg cyclosporin for 6 weeks.
  • the patient is monitored for the development of side effects.
  • the visual acuity of the patient is monitored and tested at least for 6 months following treatment.
  • a human patient diagnosed with retinal pigmentosa may be treated by administering a pharmaceutical preparation comprising at least about 100,000 human RPE cells (e.g., 100,000 RPE cells in 50 ⁇ L).
  • the RPE cell preparation is injected into sub-retinal space.
  • the patient is placed on a treatment course of 5 mg/kg cyclosporin for 6 weeks.
  • the patient is monitored for the development of side effects.
  • the visual acuity of the patient is monitored and tested at least for 6 months following treatment.
  • a human patient diagnosed with Stargardt's Disease may be treated by administering a pharmaceutical preparation comprising at least about 100,000 human RPE cells (e.g., 100,000 RPE cells in 50 ). Th ⁇ eL RPE cell preparation is injected into sub-retinal space. The patient is placed on a treatment course of 5 mg/kg cyclosporin for 6 weeks. The patient is monitored for the development of side effects. The visual acuity of the patient is monitored and tested at least for 6 months following treatment.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • General Health & Medical Sciences (AREA)
  • Cell Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Medicinal Chemistry (AREA)
  • Ophthalmology & Optometry (AREA)
  • Epidemiology (AREA)
  • Developmental Biology & Embryology (AREA)
  • Neurosurgery (AREA)
  • Neurology (AREA)
  • Immunology (AREA)
  • Virology (AREA)
  • Rheumatology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Materials For Medical Uses (AREA)

Abstract

[0362] The present invention provides improved methods for producing retinal pigmented epithelial (RPE) cells from human embryonic stem cells, human induced pluripotent stem (iPS), human adult stem cells, human hematopoietic stem cells, human fetal stem cells, human mesenchymal stem cells, human postpartum stem cells, human multipotent stem cells, or human embryonic germ cells. The RPE cells derived from embryonic stem cells are molecularly distinct from adult and fetal-derived RPE cells, and are also distinct from embryonic stem cells. The RPE cells described herein are useful for treating retinal degenerative conditions including retinal detachment and macular degeneration.

Description

METHODS OF PRODUCING HUMAN RPE CELLS AND
PHARMACEUTICAL PREPARATIONS OF HUMAN RPE CELLS
CROSS-REFERENCE TO RELATED PATENT APPLICATIONS
[0001] This International Patent Application claims priority to U.S. Provisional Patent
Application No. 6 1/262,002, filed November 17, 2009, the disclosure of which is herein incorporated by reference.
BACKGROUND OF THE INVENTION
Retinal Pigment Epithelium (RPE)
[0002] The retina] pigment epithelium (RPE) is the pigmented cell layer outside the neurosensory retina between the underlying choroid (the layer of blood vessels behind the retina) and overlying retinal visual cells {e.g., photoreceptors— rods and cones). The RPE is critical to the function and health of photoreceptors and the retina. The RPE maintains photoreceptor function by recycling photopigments, delivering, metabolizing, and storing vitamin A, phagocytosing rod photoreceptor outer segments, transporting iron and small molecules between the retina and choroid, maintaining Bruch's membrane and absorbing stray light to allow better image resolution. Engelmann and Valtink (2004) "RPE Cell Cultivation." Graefe's Archive for Clinical and Experimental Ophthalmology 242(1): 65-67; See also Irina Klimanskaya, Retinal Pigment Epithelium Derived From Embryonic Stem Cells, in STEM CELL ANTHOLOGY 335-346 (Bruce Carlson ed., 2009).
[0003] Mature RPE is characterized by its cobblestone cellular morphology of black pigmented cells and RPE cell markers including cellular retinaldehyde -binding protein
(CRALBP), a 36-kD cytoplasmic retinaldehyde-binding protein that is also found in apical microvilli (Eisenfeld, et al. (1985) Experimental Research 41(3): 299-304); RPE65, a 65 kD cytoplasmic protein involved in retinoid metabolism (Ma, et al. (2001 ) invest Opthalmol Vis Sci. 42(7): 1429-35; Redmond (2009) Exp Eye Res. 88(5): 846-847); bestrophin, a membrane localized 68 kD product of the Best vitelliform macular dystrophy gene (VMD2) (Marmorstein, et al. (2000) PNAS 97(23): 12758-12763), and pigment epithelium derived factor (PEDF), a 48-kD secreted protein with angiostatic properties (Karakousis, et al. (2001 ) Molecular Vision 7: 154-163; Jablonski, et al (2000) The Journal of Neuroscience 20(19): 7149-7157).
[0004] Degeneration of the RPE can cause retinal detachment, retinal dysplasia, or retinal atrophy that is associated with a number of vision-altering ailments that result in photoreceptor damage and blindness, such as, choroideremia, diabetic retinopathy, macular degeneration (including age-related macular degeneration), retinitis pigmentosa, and Stargardt's Disease (fundus flavimaculatus). WO 2009/051671 .
Choroideremia
[0005] Choroideremia is an X-lin.ked recessive retinal degenerative disease that leads to the degeneration of the choriocapillaris, the retinal pigment epithelium, and the photoreceptor of the eye. Mutations in the CHM gene, which encodes the Rab escort protein- 1 (REP- 1 ), cause choroideremia. REP- 1 attaches to Rab proteins (involved in intracellular trafficking) and directs the Rab proteins to the organelle membranes. Mutant REP- 1 proteins cannot escort Rab proteins, leading to a lack of functional Rab proteins. This lack of Rab proteins causes a disruption in intracellular trafficking and leads to necrosis in the RPE. In childhood, night blindness is a common first symptom. As the disease progresses, the patient suffers from a loss of vision, frequently starting as an irregular ring that gradually expands both in toward central vision and out toward the peripheral vision. Genetics Home Reference (U.S. National Library of Medicine) [October 17, 2010]. Currently, no treatment is available and a need exists for a therapy for choroideremia.
Diabetic Retinopathy
[0006] Diabetic retinopathy is the most common diabetic eye disease and a leading cause of blindness in the United States. Diabetic retinopathy is caused by changes in the blood vessels of the retina and occurs in four stages. First, microaneurysms occur in the retinal blood vessels (Mild Nonproliferative Retinopathy). As the disease progresses, blood vessels become blocked leading to Moderate Nonproliferative Retinopathy. As more blood vessels are blocked this deprives several areas of the retina of their blood supply (Severe Nonproliferative Retinopathy.) Finally, signals sent by the retina for nourishment trigger the growth of new blood vessels (proliferative retinopathy) but these new blood vessels are abnormal and fragile. The new abnormal blood vessels grow along the retina and along the surface of the vitreous humour inside of the eye. As the structural integrity of the blood vessels deteriorate (in part due to changes in osmolality due to insulin/sugar imbalance fundamental to diabetes), they leak blood, causing severe vision loss and even blindness. "'Diabetic Retinopathy" (MayoClinic.org) [February 1 1 , 2010], Generally, diabetic retinopathy may only be controlled or slowed with surgery but not treated, and the patient usually continues to suffer from vision problems. Therefore, there exists a need for improved diabetic retinopathy therapies.
Macular Degeneration
[0007] Age-related macular degeneration (AMD) is the most common reason for legal blindness in the Uiiited States and Europe. Atrophy of the submacuiar RPE and the development of choroidal neovascularizations (CNV) results secondarily in loss of central visual acuity. Early signs of AMD are deposits (druses) between retinal pigment epithelium and Bruch's membrane. Central geographic atrophy ("dry AMD") results from atrophy to the retinal pigment epithelial layer below the retina, which causes vision loss through loss of photoreceptors (rods and cones) in the central part of the eye. Neovascular or exudative AMD ("wet AMD") causes vision loss due to abnormal blood vessel growth (choroidal neovascularization) in the choriocapil!aris, through Bruch's membrane, ultimately leading to blood and protein leakage below the macula. Bleeding, leaking, and scarring from these blood vessels eventually cause in'eversibie damage to the photoreceptors and rapid vision loss if left untreated. Current treatments for macular degeneration include anti -angiogenic therapy with ranibizumab (LUCENTIS®) or bevacizumab (AVASTIN®), photocoagulation (laser surgery), photodynamic therapy with verteporfin
(VISUDYNE®), and submacuiar hemorrhage displacement sugery. "Macular Degeneration." (MayoClinic.org) [October 2010]. However, the goal of these therapies is to stem further vision loss and, unfortunately, existing damage cannot be reversed. Therefore, a great need exists for the treatment of macular degeneration.
Retinitis Pigmentosa (RP)
[0008] Retinitis pigmentosa (RP) is a group of inherited diseases that damage the
photoreceptors (e.g., rods and cones) in the retina affecting approximately 1 .5 million people worldwide. For example, autosomal recessive RP is caused by mutations in cis retinaldehyde binding protein or RPE65. The progression of RP is slow and varies from patient to patient. Patients with RP all suffer some vision loss, with night blindness as a typical early symptom followed by tunnel vision, and some may lose all sight. "Retinitis Pigmentosa." American Optometric Association (October 2010). Although treatment with vitamin A and lutein has shown some promise in slowing the progress of RP, no effective treatment is available. Retinal Detachment
[0009] Retinal detachment, including rhegmatogenous retinal detachment, exudative, serous, or secondary retinal detachment, and tractionai retinal detachment, is a disorder of the eye in which the retina peels away from its underlying layer of support tissue, initial detachment may be localized, but without rapid treatment the entire retina may detach, leading to vision loss and blindness. See Ghazi and Green (2002) Eye 16: 41 1-421 . A minority of retinal detachments arise from trauma including blunt blows to the orbit, penetrating trauma, and concussions. The current treatment is emergency eye surgery but only has an approximately 85% success rate, and even if successful, the patient may suffer a loss of visual acuity and visual artifacts. See Facts About Retinal Detachment [NEI Health Information] (October 2010). Therefore, a need exists for a treatment for retinal detachment.
Stargardt's Disease (fundus flavimaculatus)
[0010] Stargardt's Disease (fundus flavimaculatus) is a type of macular degeneration, including both an autosomal recessive and a dominant form, that causes a progressive loss of central vision of both eyes, but does not affect peripheral vision. Patients with Stargardt's experience a gradual deterioration of the retina's cone receptor cells. Cones are concentrated in the macula, and are responsible for central vision and color. Over time, these diseased cells cause a blackened hole to form in the central vision, and the ability to perceive colors is eventually affected. See Gass and Hummer (1999) Retina 19(4): 297-301 and Aaberg (1986) Tr. Am. Ophth. Soc. LXXXIV: 453-487. Currently, there are no treatments available for Stargardt's Disease.
RPE Cells in Medicine
[0011] Given the importance of the RPE in maintaining visual and retinal health, the RPE and methodologies for producing RPE cells in vitro are of considerable interest. See Lund, et al, (2001 ) Progress in Retinal and Eye Research 20(4): 415-449. For example, a study reported in Gouras, et al (2002) Investigative Ophthalmology & Visual Science 43(10): 3307-31 1 describes the transplantation of RPE cells from normal mice into transgenic RPE65-/- mice (a mouse model of retinal degeneration). Gouras discloses that the transplantation of healthy RPE cells slowed the retinal degeneration in the RPE65-/- mice but after 3.7 weeks, its salubrious effect began to diminish. Treumer, et al. (2007) Br J Opthaimol 91 : 349-353 describes the
successfully transplantation of autologous RPE-choroid sheet after removal of a subfoveal choroidal neovascularization (CNV) in patients with age related macular degeneration (AMD), but this procedure only resulted in a moderate increase in mean visual acuity,
[0012] Moreover, RPE cells have been suggested as a possible therapy for treating
Parkinson' s disease, a chronic degenerative disease of the brain. The disease is caused by degeneration of specialized neuronal cells in the region of the basal ganglia. The death of dopaminergic neurons results in reduced synthesis of dopamine, an important neurotransmitter, in patients with Parkinson's disease. The standard therapy is medical therapy with L-dopa. L-dopa is metabolized in the basal ganglia to dopamine and there takes over the function of the missing endogenous neurotransmitter. See McKay, et al. (2006) Exp Neurol. 20( 1 ): 234-243 and NINDS Parkinson's Disease Information Page (September 23, 2009). However, L-dopa therapy loses its activity after some years, and thus, a new therapy for Parkinson's disease is needed. For example, Ming and Le (2007) Chinese Medical Journal 120(5): 416^120 suggests the transplantation of RPE cells from eye donors into the striatum of Parkinson's patients to supply beneficial neurotrophic and anti-inflammatory cytokines to treat Parkinson's' disease.
[0013] However, RPE cells sourced from human donors has several intractable problems. First, is the shortage of eye donors, and the current need is beyond what could be met by donated eye tissue. For example, RPE cells sourced from human donors are an inherently limited pool of available tissue that prevent it from scaling up for widespread use. Second, the RPE cells from human donors may be contaminated with pathogens and may have genetic defects. Third, donated RPE cells are derived from cadavers. The cadaver- sourced RPE cells have an additional problem of age where the RPE cells are may be close to senesce (e.g., shorter telomeres) and thus have a limited useful lifespan following transplantation. Reliance on RPE cells derived from fetal tissue does not solve this problem because these cells have shown a very low proliferative potential. Further, fetal cells vary widely from batch to batch and must be characterized for safety before transplantation. See, e.g., Irina Klimanskaya, Retinal Pigment Epithelium Derived From Embryonic Stem Cells, in STEM CELL ANTHOLOGY 335-346 (Bruce Carlson ed„ 2009). Any human sourced tissue may also have problems with tissue compatibility leading to immunological response (graft-rejection). Also, cadaver-sourced RPE ceils may not be of sufficient quality as to be useful in transplantation (e.g., the cells may not be stable or functional). Fourth, sourcing RPE cells from human donors may incur donor consent problems and must pass regulatory obstacles, complicating the harvesting and use of RPE cells for therapy. Fifth, a fundamental limitation is that the RPE cells transplanted in an autologous transplantation carry the same genetic information that may have lead to the development of AMD. See, e.g. , Binder, et al. (2007) Progress in Retinal and Eve Research 26(5): 516-554. Sixth, the RPE cells used in autologous transplantation are already cells that are close to senesce, as AMD may develop in older patients. Thus, a shorter useful lifespan of the RPE cells limits their utility in therapeutic applications {e.g., the RPE cells may not transplant well and are less likely to last long enough for more complete recovery of vision). Seventh, to be successful in long-term therapies, the transplanted RPE cells must integrate into the RPE layer and communicate with the choroid and photoreceptors. Eighth, in AMD patients and elderly patients also suffer from degeneration of the Bruch' s membrane, complicating RPE cell transplantation. See Guilapalli, et al. (2005) Exp Eye Res. 80(2): 235-48. Thus there exists a great need for a source of RPE cells for therapeutic uses.
Embryonic Stem Cells derived RPE Cells (hESC-RPE cells)
[0014] Human embryonic stem cells (hES) are considered a promising source of replacement RPE cells for clinical use. See Idelson, et al (2009) Cell Stem Cell 5: 396^108. However, numerous problems continue to plague their use as therapeutics, including the risk of teratoma formation and the need for powerful immunosuppressive drugs to overcome the problems with immune rejection. For example, Wang, et al. (2010) Transplantation describes a study where mouse embryonic stem cells were differentiated into RPE cells and then transplanted into a mouse model of retinitis pigmentosa (Rpe65rd12/Rperd12 C57BL6 mice). Although the
Rpe65rdl2/Rperd!2 mice receiving the RPE cell transplants did show significant visual recovery during a 7-month period, this was complicated by retinal detachments and tumors.
[0015] Further, the transition from basic research to clinical application is precluded by the need to adhere to guidelines set forth by the U.S. Food and Drug Administration, collectively referred to as current Good Manufacturing Practices (GMP) and current Good Tissue Practices (GTP). In the context of clinical manufacturing of a cell therapy product, such as hES cell- derived RPE, GTP governs donor consent, traceability, and infectious disease screening, whereas the GMP is relevant to the facility, processes, testing, and practices to produce a consistently safe and effective product for human use. Lu, et al. Stem Cells 27: 2126-2135 (2009). Thus, there exists a need for a systematic, directed manner for the production of large numbers of RPE cells suitable for use in transplantation therapies. SUMMARY OF THE INVENTION
[0016] The present invention provides methods for differentiating RPE cells from pluripotent stem cells. The present invention also provides functional retinal pigmented epithelial cells (RPE) that are terminally differentiated from pluripotent stem cells. These methods may be used to produce large numbers of functional differentiated RPE cells for use in therapeutic methods (and uses), screening assays, and to study the basic biology of the RPE, The present invention also provides preparations including pharmaceutical preparations of RPE ceils derived from pluripotent stem cells.
[0017] In one embodiment, the invention provides a method of producing a substantially purified culture of retinal pigment epithelial (RPE) cells comprising
(a) providing pluripotent stem cells;
(b) culturing the pluripotent stem cells to form embryoid bodies in nutrient rich, low protein medium;
(c) culturing the embryoid bodies to form an adherent culture in nutrient rich, low
protein medium;
(d) culturing the cells of (c) in medium capable of supporting growth of high-density somatic cell culture, whereby RPE cells appear in the culture of cells;
(e) dissociating the culture of (d);
(f) selecting the RPE cells from the culture and transferring the RPE cells to a separate culture containing medium supplemented with a growth factor to produce an enriched culture of RPE cells; and
(g) propagating the enriched culture of RPE cells to produce a substantially purified culture of RPE cells.
[0018] In another embodiment, the invention provides a method of producing a substantially pure culture of mature retinal pigment epithelial (RPE) cells comprising
(a) providing pluripotent stem cells;
(b) culturing the pluripotent stem cells to form embryoid bodies in nutrient rich, low protein medium;
(c) culturing the embryoid bodies to form an adherent culture in nutrient rich, low
protein medium; (d) culturing the cells of (c) in medium capable of supporting growth of high-density somatic cell culture, whereby RPE cells appear in the culture of cells;
(e) dissociating the culture of (d);
(f) selecting the RPE cells from the culture and transferring the RPE cells to a separate culture containing medium supplemented with a growth factor to produce an enriched culture of RPE ceils;
(g) propagating the enriched culture of RPE cells; and
(h) eulturing the enriched culture of RPE cells to produce mature RPE cells.
[0019] In one embodiment, the pluripotent stem cells are embryonic stem cells, induced pluripotent stem (iPS) cells, adult stem cells, hematopoietic cells, fetal stem cells, mesenchymal stem cells, postpartum stem cells, muitipotent stem cells, or embryonic germ cells. In another embodiment, the pluripotent stem cells may be mammalian pluripotent. stem cells. In still another embodiment, the pluripotent stem cells may be human pluripotent stem cells including but not limited to human embryonic stem (hES) cells, human induced pluripotent stem (iPS) cells, human adult stem cells, human hematopoietic stem cells, human fetal stem cells, human mesenchymal stem cells, human postpartum stem cells, human muitipotent stem cells, or human embryonic germ cells. In another embodiment, the pluripotent stem cells may be a hES cell line listed in the European Human Embryonic Stem Cell Registry - hESCreg,
[0020] In one embodiment, the present invention provides preparations of RPE cells, including substantially purified preparations of RPE cells. Exemplary RPE cells may be differentiated from pluripotent stem cells, such as embryonic stem cells, iPS cells, blastomeres, inner mass cells, or oocytes which may be parthenogenetically activated. These pluripotent stem cells may be recombinant or genetically engineered (e.g., engineered to express a desired therapeutic protein or to eliminate the expression of a gene involved in a genetic deficiency such as macular degeneration.) The RPE cells may be formulated and used to treat retinal degenerative diseases. Additionally, pluripotent stem cell-derived RPE ceils can be used in screening assays to identify agents that modulate RPE cell survival (in vitro and/or in vivo), to study RPE cell maturation, or to identify agents that modulate RPE cell maturation. Agents identified using such screening assays may be used in vitro or in vivo and may provide additional therapeutics that can be used alone or in combination with RPE cells to treat retinal degenerative diseases. [0021] In one embodiment, the pluripotent stem cells of (a) may be genetically engineered,
[0022] in one embodiment, the medium of (a), (b), (c), (d), (f), (g), or (h) contains serum free B-27 supplement. In another embodiment, the medium of (a), (b), (c), (d), (f), (g), or (h) does not contain serum free B-27 supplement.
[0023] In one embodiment, the cells of (b) are cultured for at least about 7-14 days. In another embodiment, the cells of (c) are cultured for at least about 7- 10 days. In a further embodiment, cells of (e) are cultured for at least about 14-21 days.
[0024] In one embodiment, the medium of (a), (b), (c), (d), (f), (g), or (h) is MDBK-GM, OpttPro SFM, VP-SFM, EGM-2, or MDBK-MM. In another embodiment, the growth factor of (f) is EGF, bFGF, VEGF, or recombinant insulin-like growth factor. In a further embodiment, the the medium (g) comprises heparin, hydrocortisone, or ascorbic acid. In yet another embodiment, the culture medium used for propagating the enriched culture of RPE cells does not support the growth or maintenance of undifferentiated pluripotent stem cells.
[0025] In one embodiment, step (e) comprises contacting the culture with an enzyme selected from the group consisting of trypsin, collagenase, dispase, papain, mixture of collagenase and dispase, and a mixture of collagenase and trypsin. In another embodiment, step (e) comprises mechanical disruption.
[0026] In one embodiment, the pluripotent stem cells have reduced HLA antigen complexity.
[0027] In one embodiment, the method further comprising culturing said RPE cells under conditions that increase alpha integrin subunit expression, wherein said alpha integrin subunits are 1 -6 or 9. In another embodiment, the conditions comprising exposure to manganese, exposure to an antibody to CD29, or passaging said RPE cells for at least about 4 passages. In a further embodiment, the anti-CD29 antibody is monoclonal antibody HUTS-21 or monoclonal antibody (mAb) TS2/16.
[0028] In one embodiment, the invention provides a pharmaceutical preparation of RPE cells suitable for treatment of retinal degradation, wherein said RPE cells have at least one of the following properties:
(a) maintain their phenotype after transplantation for at least about one month,
(b) maintain their phenotype in culture for at least about one month,
(c) integrate into the host after transplantation,
(d) do not substantially proliferate after transplantation. (e) are phagocytositic,
(f) deliver, metabolize, or store vitamin A,
(g) transport iron between the retina and choroid after transplantation,
(h) attach to the Bruch's membrane after transplantation,
(i) absorb stray light after transplantation,
(]) have elevated expression of alpha integrin subunits, or
(k) have longer telomeres than RPE cells derived from human donors.
In another embodiment, the RPE cells have at least 1 , 2, 3, 4, 5, or 6 of the recited properties. In yet another embodiment, the RPE cells are phagocytositic and have longer telomeres than RPE cells derived from human donors.
[0029] In one embodiment, the invention provides a pharmaceutical preparation for use in treating retinal degeneration comprising an effective amount of RPE cells. In another embodiment, the retinal degeneration is due to Stargardt's disease, age-related macular degeneration (AMD), choroideremia, retinitis pigmentosa, retinal detachment, retinal dysplasia, or retinal atrophy.
[0030] In one embodiment, the pharmaceutical preparation of RPE cells is formulated for transplantation in the form of a suspension, gel, or colloid. In another embodiment, the preparation is formulated for transplantation with a matrix, substrate, scaffold, or graft. In a further embodiment, the preparation is formulated for administration to the subretinal space of the eye. In a further embodiment, the preparation comprises at least about 103- 109 RPE cells.
[0031] In one embodiment, the RPE cell preparation comprises mature RPE cells. In another embodiment, the RPE cell preparation consist essentially of mature RPE cells. In a further embodiment, the preparation comprises at least about 75% RPE cells.
[0032] In one embodiment, the preparation is substantially free of viral, bacterial, and/or fungal contamination. In another embodiment, the preparation is formulated in a
pharmaceutically acceptable carrier. In a further embodiment, the preparation is formulated for administration to the eye. In a still further, the preparation is formulated for administration to the sub-retinal space. In another embodiment, the RPE cells are functional RPE cells capable of integrating into the retina upon transplantation. In another embodiment, the preparation is substantially free of mouse embryo fibroblasts (MEF) and human embryonic stem cells (hES). In a further embodiment, the preparation is Good Manufacturing Practices (GMP) compliant. [0033] In one embodiment, the invention provides a cryopreserved preparation comprising at least about 104 human RPE cells, wherein the preparation is a substantially purified preparation of human RPE cells derived from human pluripotent stem cells, and wherein the RPE cells express RPE-65, Bestrophin, PEDF, CRALBP, Otx2, and Mit-F. In another embodiment, at least about 85% of the RPE cells retain viability following thawing.
[0034] In one embodiment, the invention provides a substantially purified preparation of human RPE cells differentiated from human pluripotent stem cells, wherein the RPE cells express, at the mRNA and protein level, RPE-65, Bestrophin, PEDF, CRALBP, Otx2, and Mit-F, and wherein the cells substantially lack expression of Oct-4, NANOG, and Rex- 1. In another embodiment, the RPE cells comprise differentiated RPE cells and mature differentiated RPE cells, and wherein at least the mature differentiated RPE cells further express, at the mRNA and protein level, PAX2, pax-6, and tyrosinase. In another embodiment, the RPE cells are differentiated from human ES cells or human iPS cells.
[0035] In one embodiment, the invention provides for the use of a pharmaceutical preparation of RPE cells in the manufacture of a medicament for the treatment of retinal degeneration.
[0036] In one embodiment, the invention provides a method of cryopreserving RPE cells comprising
(a) culturing RPE cells,
(b) harvesting said RPE cells,
(c) centrifuging said RPE cells, and
(d) resuspending said RPE cells in 10% DMSO/90% FBS solution.
[0037] In one embodiment, the RPE cells are washed with Ca2+/Mg+ DPBS. In another embodiment, the RPE cells were cultured until bestrophin is organized at the cell membrane. In another embodiment, the RPE cells are cultured until they reach a medium pigmentation level. In another embodiment, step (a) comprising culturing at least two culture vessels of RPE cells. In another embodiment, the RPE cells are harvested and combined into a single lot. In another embodiment, the RPE cells are harvested and stored in FBS during the combination of RPE cells.
[0038] In one embodiment, the invention provides a method of treating retinal degeneration comprising a pharmaceutical preparation comprising administering an effective amount of RPE cells described herein. In another embodiment, the retinal degeneration is due to choroideremia, diabetic retinopathy, age-related macular degeneration, retinal detachment, retinitis pigmentosa, or Stargardt's Disease.
[0039] In one embodiment, the preparation is transplanted in a suspension, matrix, gel, colloid, scaffold, or substrate. In another embodiment, the preparation is administered by injection into the subretinal space of the eye.
[0040] In a further embodiment, the effective amount is at least about 20,000-200,000 RPE cells. In another embodiment, the effective amount is at least about 20,000, 50,000, 75,000, 100,000, 125,000, 150,000, 175,000, 180,000, 185,000, 190,000, or 200,000 RPE cells.
[0041] In one embodiment, the method further comprising monitoring the efficacy of the method by measuring electroretinogram responses, optomotor acuity threshold, or luminance threshold in the subject.
[0042] In one embodiment, the preparation is substantially free of viral, bacterial, or fungal contamination. In another embodiment, the RPE cells are functional RPE cells capable of integrating into the retina upon transplantation. In a further embodiment, the RPE celts improve visual acuity following transplantation.
[0043] The present invention provides methods for the treatment of eye disorders. In particular, these methods involve the use of RPE cells to treat or ameliorate the symptoms of eye disorders, particularly eye disorders caused or exacerbated, in whole or in part, by damage to or breakdown of the endogenous RPE layer (e.g., retinal degeneration).
[0044] In one embodiment, the RPE cells described herein are substantially free of genetic mutations that may lead to retinal degeneration.
[0045] In one embodiment, the RPE cells may be transplanted with a biocompatible polymer such as poiylactic acid, po!y(lactic-co-glycolic acid), 50:50 PDLGA, 85: 35 PDLGA, and INION GTR® biodegradable membrane (mixture of biocompatible polymers).
[0046] In another embodiment, the RPE cells adhere to Bruch's membrane after
transplantation, establish polarity, and integrate into the receipt's tissue,
[0047] In one embodiment, the RPE cells may improve visual acuity after transplantation. In another embodiment, the RPE cells may substantially improve visual acuity after transplantation.
[0048] In one embodiment, the RPE cells may be in compliance with at least one of the GTP and/or GMP Regulations as presented in Table 3 or 4. In another embodiment, the RPE cells may be produced in accordance with Good Manufacturing Practice (GMP). In a further embodiment, the RPE cells may be produced in accordance with Good Tissue Practice (GTP). In a further embodiment, the RPE cells may meet at least one of the criteria recited in Table 4. In a still further embodiment, the RPE cells may meet at least 1 , 2, 3, 4, or 5 of the criteria recited in Table 4.
[0049] In one embodiment, the RPE cells lack substantial expression of embryonic stem cell markers including but not limited to Oct-4, NANOG, Rex- 1 , alkaline phosphatase, Sox2, TDGF- 1 , DPPA-2, and DPPA-4. In another embodiment, the RPE cells express RPE cell markers including but not limited to RPE65, CRALBP, PEDF, Bestrophin, MitF, Otx2, PAX2, Pax-6, and tyrosinase. In a further embodiment, the RPE cells express at least one of the genes listed in Table 5, and wherein expression of the at least one gene is increased in the RPE cells relative to expression in human ES cells. In a still further embodiment, the RPE cells express at least one of the genes listed in Table 6, and wherein expression of the at least one gene is decreased in the RPE cells relative to expression in human ES cells. In one embodiment, the RPE cells show increased alpha integrin subunit expression. In another embodiment, the alpha integrin subunit is alpha 1, 2, 3, 4, 5, 6, or 9. In yet another embodiment, the expression is mRNA expression, protein expression, or both mRNA and protein expression.
[0050] The present invention provides for a method of providing a RPE preparation to a clinical site comprising (a) thawing vials of cryopreserved RPE cells, (b) resuspending the RPE cells in media, (c) centrifuging the RPE cells, (d) resuspending the RPE cells in media, (e) aliqouting the RPE cells into vials, and (f) transferring to the clinical site. In one embodiment, the resuspension and centrifugation steps may be repeated at least 1 , 2, 3, 4, or 5 times. In another embodiment, the RPE product is transported to the clinical site within at least about 1 , 2, 3, 4, 5, 6, 7, 8, 9, or 10 hours of completion of step (e). In a further embodiment, the vials may be labeled.
[0051] The present invention also provides a method for a providing RPE cell preparation for sale comprising (a) producing RPE cells and (b) preparing said RPE cell preparations for transfer to a customer. In one embodiment, the method may comprise cryopreserving the RPE cells. In another embodiment, the method comprises offering said RPE cell preparations for sale. In a further embodiment, the method comprises advertising the RPE cell preparations.
[0052] The invention contemplates any combination of the aspects and embodiments described above or below. For example, preparations of RPE cells comprising any combination of differentiated RPE cells and mature RPE cells can be used in the treatment of any of the conditions described herein. Similarly, methods described herein for producing RPE cells using human embryonic stem cells as a starting material may be similarly performed using any human pluripotent stem as a starting material.
BRIEF DESCRIPTION OF THE DRAWINGS
[0053] Figures 1-7 depict exemplary protocols for the production of RPE cells.
[0054] Figure 1 Production of RPE Cells: Step 1 - Preparation of MEF Feeder Cells. The MEF feeder cells may be cultured in the presence of about 10-20 nm/mL human leukemia inhibitory factor (LIF) and about 8-16 ng/mL human bFGF. See, e.g., Irina Klimanskaya, Retinal Pigment Epithelium Derived From Embryonic Stem Cells, in STEM CELL AN THOLOGY 335-346 (Bruce Carlson ed., 2009).
[0055] Figure 2 Production of RPE Cells: Step 2 - Seeding and Expansion of hES Cells.
[0056] Figure 3 Production of RPE Cells: Step 3 - Embryoid Body Formation.
[0057] Figure 4 Production of RPE Cells: Step 4 - RPE Derivation. Clusters of RPE cells may appear within 6-8 weeks, where RPE cells may appear on the surface of the embryoid bodies and then slowly spread to the entire embryoid body over time.
[0058] Figure 5 Production of RPE Cells: Step 5 - RPE Expansion and Differentiation. In one embodiment, the RPE cell cultures may be washed at least 1 , 2, 3, 4, or 5 times to remove loose or isolated cells. The inventors found that this surprisingly improved the yield of RPE cells. The RPE cells may be characterized by the expression of RPE-specific cell markers such as CRALBP, bestrophin, RPE65, and PEDF. The RPE cells may also be characterized by functional tests including a RPE-specific phagocytosis assay and vitamin A metabolism assay. See, e.g., Irina Klimanskaya, Retinal Pigment Epithelium Derived From Embryonic Stem Cells; in STEM CELL ANTHOLOGY 335-346 (Bruce Carlson ed., 2009).
[0059] Figure 6 Production of RPE Cells: Step 6 -Harvest, Culturing, and Cryopreservation. In one embodiment, several flasks of RPE cells may be seeded and propagated to yield a large amount of RPE cells. As individual flasks of RPE cells are harvested (e.g. , T-75 flasks), the RPE cells may be stored in FBS at about 4°C during the harvesting steps. Additionally, the RPE cells may be considered ready for cryopreservation when the dystrophin is organized at the cell membrane and the PAX6 expression is low. The inventors found that this surprisingly improved the viability of the cryopreserved RPE cells. [0060] Figure 7 Production of RPE Cells: Step 7 -Thawing of Cryopreserved RPE cells and Pharmaceutical Preparation.
[0061] Figure 8 depicts the Log up- or downregulation of ES and RPE markers, respectively, in RPE cells. The mean ± SD relative gene expression of seven representative lots of RPE are shown. Data have been normalized to β-actin control levels for each sample and are expressed relative to the levels of expression observed in MA09 hES cells. The four upregulated RPE markers (e.g., RPE-65, PAX6, Bestrophin, and MIT) are shown on the left; the three
downregulated hES markers (e.g., OCT4, NANOG and SOX2 ) are shown on the right.
[0062] FIGURE 9 depicts electrical activity of the outer (a-wave) and inner (b-wave) retina in response to light flashes test by ERG responses at both P60 and P90. ERG responses in RPE grafted animals achieved significantly better responses over sham controls (p < 0.05, t-test).
[0063] FIGURE 10 depicts date from an optomoter data system shows that shows that the RPE treated eyes performed significantly better than the sham-treated and untreated eyes (p < 0.05, t-test), giving approximately 50% and 100% improvement in visual acuity over the sham and untreated controls, respectively.
[0064] FIGURE 11 Luminance threshold at PI 00— luminance threshold responses recorded across the superior colliculus, each curve (average SEM) shows the percent of retinal area (y- axis) where the visual threshold is less than the corresponding value on the x-axis (log units, relative to background illumination 0.02 cd/m2). Asterisks show the points where the curves for grafted and sham-operated eyes are statistically different (t-test, p < 0.05).
[0065] FIGURE 12 depicts in vitro maturation and degree of pigmentation in different batches of human ES cell-derived RPE cells. hES cells were matured to yield (A) light (LI ), (B) medium (L2), and (C) heavy (L3) pigmentation levels, (A): Phase contrast image; scale bar = 200 μπι. (B and C): Hoffman modulation contrast image; scale bar = 100 μιτι.
[0066] FIGURE 13 depicts comparative assessment of hES cell-RPE cells using real-time polymerase chain reaction (PCR) and Western blot analyses. (A): Reverse transcription-PCR analysis of genes specific to hES cells, neuroectoderm, and terminally differentiated RPE cells examined throughout the in vitro differentiation process. Time points correspond to hES cells, EBs, plated EBs representing early intermediates (EB/RPE), a mixed population of cells containing newly differentiated RPE cells, remaining progenitors (Mixed), purified RPE
(corresponding to Fig. 12A), and fully-mature RPE (corresponding to Fig. 12C). (B): Western blot analysis of hESC-specific and RPE-specific markers. APRE-19 cells (top lane) show an inconclusive pattern of proteomic marker expression. Actin is used as protein loading control. RPE (bottom lane) derived from hES cells (middle lane) do not express the hES cell-specific proteins Oct-4, NANOG, Rex- 1 , TDGFl , and DPPA4, However, RPE cells express RPE65, CRALBP, PEDF, Bestrophin, PAX6, Pax 2, Otx2, MitF, and Tyr— all markers of differentiated RPE.
[0067] FIGURE 14 depicts principal components analysis plot. Component 1 represents 69% of the variability represents the cell type, whereas component 2 represents the cell line (i.e., genetic variability). A near-linear scatter of gene expression profiles characterizes the developmental ontogeny of RPE derived from hES cells.
[0068] FIGURE 15 depicts (A): visual acuity as measured by the optomotor response shows that animals treated with 5,000, 20,000, 50,000, 75,000, and 100,000 cells performed
significantly better than those with sham injection and untreated controls (p < .01 ) at P90 days (e.g., a figure of 0.563 c/d compared with 0.6 c/d in normal rat). (B): Visual acuity tested in ElovW mice at several time points after subretinal injection of human RPE cells showed that cell- injected animals performed significantly better than medium-injected and untreated controls (p < .05). Some showed a figure of 0.32 c/d at P63 compared with 0.35 c/d in normal mice, whereas control animals had a figure of 0.28 c/d. (C-F): Luminance threshold responses recorded across the superior colliculus (SC); each curve (average ± SEM) shows the percent of retinal area (y-axis) where the visual threshold is less than the corresponding value at .x-axis (log units, relative to background illumination 0.02 cd/m2). Cell-injected groups are significantly better than controls: the curves showed that 28% of the area in the SC in animals with the (C) 20,000 RPE cell dose; (D) about 45% with the 50,000 RPE cell dose; (E) about 40% with the 75,000 RPE cell dose; (F) about 60% with the 100,000 RPE cell dose; and only 3% in medium control had thresholds of 2.2 log units. Dashed lines— cell-treated and Solid lines— medium control. Abbreviation: c/d, cycles/degree.
[0069] FIGURE 16 depicts changes in acuity and luminance threshold with time. Batch and longevity of effect as measured by visual acuity: cell-injected groups at all the time points (P60- P240) had significantly higher visual acuities than controls (p < .01); however, there is no substantial difference with different pigment levels (p > .05). Abbreviation: c/d, cycles/degree. [0070] FIGURE 17 depicts a comparison of the effects of pigmentation on the efficacy of RPE cells in a RCS rat model. The rats were transplanted with 50,000 RPE cells with low, medium, or high pigmentation levels. These rats were compared to sham surgery and untreated controls.
[0071] FIGURE 18 two examples of luminance threshold maps from mice receiving a 100,000 RPE cell dose with medium pigmentation. The luminance thresholds show serious deterioration on the untreated side, with more than one half the area being nonresponsive at PI 87 compared with P98, whereas responsiveness is still sensitive on the cell-injected side, although some reduction in thresholds has occurred (0.7 log units at P98 vs. 1.0 log units at PI 87).
[0072] FIGURE 19 depicts histological examination of cell-injected and untreated RCS retinas, showing photoreceptors in (A) normal, (B) cell injected, and (C) untreated eyes at P90 (arrows in B point to rescued photoreceptors; arrows in C indicate remaining photoreceptors). (D-F): Photoreceptors rescued at (D) 5,000 and (E and F) 50,000 dose (arrows in E indicate rescued photoreceptors; cone arrestin showed rescued cone photoreceptors in F). (G):
Immunofluorescence- and (H) immunohistochemical-stained human specific antibody showing donor cells (arrows) formed a layer closely contact with the host RPE layer at P240. (I): Typical untreated retina at P240 with disorganized retinal lamination (left arrow indicates RPE cells migrating into inner retina; right arrow indicates disrupted inner nuclear layer). Scale bars = 25 μτη. Abbreviations: INL; inner nuclear layer; IPL: inner plexiform layer; ONL: outer nuclear layer; RPE, retinal pigment epithelium; RGC: retinal ganglion cells.
DETAILED DESCRIPTION OF THE INVENTION
[0073] In order that the invention herein described may be fully understood, the following detailed description is set forth. Various embodiments of the invention are described in detail and may be further illustrated by the provided examples.
Definitions
[0074] Unless defined otherwise, all technical and scientific terms used herein have the same meaning as those commonly understood by one of ordinary skill in the art to which this invention belongs. Although methods and materials similar or equivalent to those described herein can be used in the invention or testing of the present invention, suitable methods and materials are described below. The materials, methods and examples are illustrative only, and are not intended to be limiting. [0075] In order to further define the invention, the following terms and definitions are provided herein.
[0076] As used in the description herein and throughout the claims that follow, the meaning of "a," "an," and "the" includes plural reference unless the context clearly dictates otherwise.
[0077] "Effective amount," as used herein, refers broadly to the amount of a compound or cells that, when administered to a patient for treating a disease, is sufficient to effect such treatment for the disease. The effective amount may be an amount effective for prophylaxis, and/or an amount effective for prevention. The effective amount may be an amount effective to reduce, an amount effective to prevent the incidence of signs/symptoms, to reduce the severity of the incidence of signs/symptoms, to eliminate the incidence of signs/symptoms, to slow the development of the incidence of signs/symptoms, to prevent the development of the incidence of signs/symptoms, and/or effect prophylaxis of the incidence of signs/symptoms. The "effective amount" may vary depending on the disease and its severity and the age, weight, medical history, susceptibility, and preexisting conditions, of the patient to be treated. The term "effective amount" is synonymous with "therapeutically effective amount" for purposes of this invention.
[0078] "Embryo" or "embryonic," as used herein refers broadly to a developing cell mass that has not implanted into the uterine membrane of a maternal host. An "embryonic cell" is a cell isolated from or contained in an embryo. This also includes blastomeres, obtained as early as the two-cell stage, and aggregated blastomeres.
[0079] "Embryonic stem cells" (ES cells), as used herein, refers broadly to cells derived from the inner cell mass of blastocysts or morulae that have been serially passaged as cell lines. The ES cells may be derived from fertilization of an egg cell with sperm or DNA, nuclear transfer, parthenogenesis, or by means to generate ES cells with homozygosity in the HLA region. ES cells may also refer to cells derived from a zygote, blastomeres, or blastocyst-staged mammalian embryo produced by the fusion of a sperm and egg cell, nuclear transfer, parthenogenesis, or the reprogramming of chromatin and subsequent incorporation of the reprogrammed chromatin into a plasma membrane to produce a cell. Embryonic stem cells, regardless of their source or the particular method used to produce them, can be identified based on the: (i) ability to differentiate into cells of all three germ layers, (ii) expression of at least Oct-4 and alkaline phosphatase, and (iii) ability to produce teratomas when transplanted into immunocompromised animals. [0080] "Embryo-derived cells" (EDO, as used herein, refers broadly to morn la-derived cells, blastocyst-derived cells including those of the inner cell mass, embryonic shield, or epiblast, or other pluripotent stem cells of the early embryo, including primiti ve endoderm, ectoderm, and mesoderm and their derivatives. "EDC" also including blastomeres and cell masses from aggregated single blastomeres or embryos from varying stages of development, but excludes human embryonic stem cells that have been passaged as cell lines.
[0081] "Macular degeneration," as used herein, refers broadly to diseases characterized by a progressive loss of central vision associated with abnormalities of Bmch's membrane, the neural retina, and the retinal pigment epithelium. Macular degeneration diseases include but are not limited to age- related macular degeneration, North Carolina macular dystrophy, Sorsby's fundus dystrophy, Stargardt's disease, pattern dystrophy, Best disease, malattia leventinese, Doyne's honeycomb choroiditis, dominant drusen, and radial drusen.
[0082] "Pluripotent stem cell," as used herein, refers broadly to a cell capable of prolonged or virtually indefinite proliferation in vitro while retaining their undifferentiated state, exhibiting normal karyotype (e.g., chromosomes), and having the capacity to differentiate into all three germ layers (i.e., ectoderm, mesoderm and endoderm) under the appropriate conditions.
[0083] "Pluripotent embryonic stem cells," as used herein, refers broadly cells that: (a) are capable of inducing teratomas when transplanted in immunodeficient (SOD) mice; (b) are capable of differentiating to cell types of all three germ layers (e.g., ectodermal, mesodermal, and endodermal cell types); and (c) express at least one molecular embryonic stem cell markers (e.g., express Oct 4, alkaline phosphatase, SSEA-3 surface antigen, SSEA-4 surface antigen, NANOG, TRA- 1 -60, TRA- 1 -81 , SOX2, REX1 ).
[0084] "RPE cell," "differentiated RPE cell," "ES-derived RPE cell," and as used herein, may be used interchangeably throughout to refer broadly to an RPE cell differentiated from a pluripotent stem cell using a method of the invention. The term is used generically to refer to differentiated RPE cells, regardless of the level of maturity of the cells, and thus may encompass RPE cells of various levels of maturity. RPE cells can be visually recognized by their cobblestone morphology and the initial appearance of pigment. RPE cells can also be identified molecularly based on substantial lack of expression of embryonic stem cell markers such as Oct-4 and NANOG, as well as based on the expression of RPE markers such as RPE-65, PEDF, CRALBP, and bestrophin. Thus, unless otherwise specified, RPE cells, as used herein, refers to RPE cells differentiated in vitro from pluripotent stem cells.
[0085] "Mature RPE cell" and "mature differentiated RPE cell," as used herein, may be used interchangeably throughout to refer broadly to changes that occur following initial differentiating of RPE cells. Specifically, although RPE cells can be recognized, in part, based on initial appearance of pigment, after differentiation mature RPE cells can be recognized based on enhanced pigmentation.
[0086] "Pigmented," as used herein refers broadly to any level of pigmentation, for example, the pigmentation that initial occurs when RPE cells differentiate from ES cells. Pigmentation may vary with cell density and the maturity of the differentiated RPE cells. The pigmentation of a RPE cell may be the same as an average RPE cell after terminal differentiation of the RPE cell. The pigmentation of a RPE cell may be more pigmented than the average RPE cell after terminal differentiation of the RPE cell. The pigmentation of a RPE cell may be less pigmented than the average RPE cell after terminal differentiation.
[0087] "Signs" of disease, as used herein, refers broadly to any abnormality indicative of disease, discoverable on examination of the patient; an objective indication of disease, in contrast to a symptom, which is a subjective indication of disease.
[0088] "Symptoms" of disease as used herein, refers broadly to any morbid phenomenon or departure from the normal in structure, function, or sensation, experienced by the patient and indicative of disease.
[0089] "Therapy," "therapeutic," "treating," or "treatment", as used herein, refers broadly to treating a disease, arresting or reducing the development of the disease or its clinical symptoms, and/or relieving the disease, causing regression of the disease or its clinical symptoms. Therapy encompasses prophylaxis, prevention, treatment, cure, remedy, reduction, alleviation, and/or providing relief from a disease, signs, and/or symptoms of a disease. Therapy encompasses an alleviation of signs and/or symptoms in patients with ongoing disease signs and/or symptoms (e.g., blindness, retinal deterioration.) Therapy also encompasses "prophylaxis" and
"prevention". Prophylaxis includes preventing disease occurring subsequent to treatment of a disease in a patient or reducing the incidence or severity of the disease in a patient. The term "reduced", for purpose of therapy, refers broadly to the clinical significant reduction in signs and/or symptoms. Therapy includes treating relapses or recurrent signs and/or symptoms (e.g., retinal degeneration, loss of vision.) Therapy encompasses but is not limited to precluding the appearance of signs and/or symptoms anytime as well as reducing existing signs and/or symptoms and eliminating existing signs and/or symptoms. Therapy includes treating chronic disease ("maintenance") and acute disease. For example, treatment includes treating or preventing relapses or the recurrence of signs and/or symptoms (e.g., blindness, retinal degeneration).
Retinal Pigment Epithelium (RPE) Cells
[0090] The present invention provides RPE cells that may be differentiated from pluri potent stem cells, such as human embryonic stem cells, and are molecularly distinct from embryonic stem cells, adult-derived RPE cells, and fetal-derived RPE cells. The inventors surprisingly discovered that the method by which the RPE cells are produced from a pluripotent stem cell is a critical factor in determining the structural and functional characteristics of the resulting RPE cells. The inventors found that the RPE cells produced by the methods described produced a different RPE cell product than previous methods and sources of RPE cells. For example, the manufacturing process steps described herein impart distinctive structural and functional characteristics to the final RPE cell product such that these cells closely resemble native RPE cells and are distinct from fetal derived RPE cells or RPE cell lines (e.g., APRE19). Further, the methods of producing RPE cells described herein are not permissive to ES cells. Thus, as ES cells cannot persist in the culture processes described herein, and they do not pose an
unacceptable risk of contamination in the RPE cell cultures and preparations.
[0091] The cell types provided by this invention include, but are not limited to, RPE cells, RPE progenitor cells, iris pigmented epithelial (IPE) cells, and other vision associated neural cells, such as internuncial neurons (e.g. , "relay" neurons of the inner nuclear layer (INL)) and amacrine cells. The invention also provides retinal cells, rods, cones, and corneal cells as well as cells providing the vasculature of the eye.
[0092] The RPE cells may be used for treating retinal degeneration diseases due to retinal detachment, retinal dysplasia, or retinal atrophy or associated with a number of vision-altering ailments that result in photoreceptor damage and blindness, such as, choroideremia, diabetic retinopathy, macular degeneration (e.g. , age-related macular degeneration), retinitis pigmentosa, and Stargardt's Disease (fundus flavimaculatus). [0093] The RPE cells may be stable, terminally differentiated RPE cells that do not de-differentiate to a non-RPE ceil type. The RPE cells described herein may be functional RPE cells, characterized by the ability to integrate into the retina upon corneal, sub-retinal, or other administration into an animal.
[0094] In order to characterize developmental stages during the embryonic stem cell (ES) differentiation process into retinal pigmented epithelium (RPE), several assays were used to identify the expression levels of genes key to each representative stage of development. It was discovered that several genes were expressed at the mRNA and protein levels in RPE cells. The expression level of ES and RPE cell markers may be done at the mRNA by, for example, PCR (e.g., RT-PCT, quantitative PCR, real-time PCR) or Northern blotting, or at the protein level by, for example, Western blot, immunoblot, or other immunoassays.
[0095] The pluripotency of embryonic stem cells is maintained in part by the delicate reciprocal balance of the two transcription factors Oct4 (PouSfl ) and NANOG. During ES cell differentiation, the expression of these genes is downregulated, and recent evidence has suggested hypermethylation of the genes encoding these proteins to be responsible. Loss of the expression of either or both of these genes results in transcriptional activation of genes associated with cellular differentiation. For instance, it was discovered that PAX6 acts with PAX2 to terminally differentiate mature RPE cells via coordination of Mit-F and Otx2 to transcribe RPE- specific genes such as Tyrosinase (Tyr), and downstream targets such as RPE-65, Bestrophin, CRALBP, and PEDF.
[0096] The RPE cells may express RPE cell markers listed in Table 5. For example, the expression level of the RPE cell genes RPE65, PAX2, PAX6, and tyrosinase, bestrophin, PEDF, CRALBP, Otx2, and MitF may be equivalent to that in naturally occurring RPE cells. The level of maturity of the RPE ceils may assessed by expression of at least one of PAX2, PAX6, and tyrosinase, or their respective expression levels.
[0097] In contrast, the RPE cells may not express ES cell markers listed in Table 6. For example, the expression levels of the ES cell genes Oct-4, NANOG, and/or Rex- 1 may be about 100-1000 fold lower in RPE cells than in ES cells. For example, the RPE cells may
substantially lack expression of ES cell markers including but not limited to Octamer binding protein 4 (Oct-4, a.k.a., PouSfl), stage specific embryonic antigens (SSEA)-3 and SSEA-4, tumor rejection antigen (TRA)~l -60, TRA- 1 -80, alkaline phosphatase, NANOG, and Rex- 1 . Thus, in comparison to ES cells, RPE cells are substantially lack expression of Oct-4, NANOG, and/or Rex- 1 ,
[0098] The RPE cells described herein may also show elevated expression levels of alpha integrin subunits 1 -6 or 9 as compared to uncultured RPE cells or other RPE cell preparations. The RPE cells described herein may also show elevated expression levels of alpha integrin subunits 1 , 2, 3, 4, 5, or 9. The RPE cells described herein may be cultured under conditions that promote the expression of alpha integrin subunits 1-6. For example, the RPE cells may be cultured with integrin-activating agents including but not limited to manganese and the activating monoclonal antibody (mAb) TS2/16. See Afshari, et al. Brain (2010) 133(2): 448-464. The RPE cells may be plated on laminin (1 μg/mL) and exposed to Mn2+ (500 μΜ) for at least about 8, 12, 24, 36, or 48 hours. Also, the RPE cells may be cultured for several passages (e.g., at least about 4, 5, 6, 7, or 8 passages) which increases alpha integrin subunit expression.
[0099] Table 1 describes some characteristics of the RPE cells that may be used to identify or characterize the RPE cells. In particular, the RPE cells may exhibit a normal karyotype, express RPE markers, and not express hES markers.
Figure imgf000025_0001
[0100] The distinct expression pattern of mRNA and proteins in the RPE cells of the invention constitutes a set of markers that separate these RPE cells from cells in the art, such as hES cells, ARPE-19 cells, and fetal RPE cells. Specifically, these cells are different in that they can be identified or characterized based on the expression or lack of expression, which may be assessed by mRNA or protein level, of at least one marker. For example, the RPE cells may be identified or characterized based on expression or lack of expression of at least one marker listed in Tables 5 or 6. See also Liao. et al. (2010) Human Molecular Genetics 19(21 ): 4229-38. The RPE cells may also be identified and characterized, as well as distinguished from other cells, based on their structural properties. Thus, the RPE cells described herein expressed multiple genes that were not expressed in hES cells, fetal RPE cells, or ARPE-19 cells. See WO 2009/051671 ; See also Dunn, et al (1996) Exp Eve Res. 62(2): 155-169.
[0101] The RPE cells described herein may also be identified and characterized based on the degree of pigmentation of the cell. Pigmentation post-differentiation is not indicative of a change in the RPE state of the cells {e.g., the cells are still differentiated RPE ceils). Rather, the changes in pigment post-differentiation correspond to the density at which the RPE celts are cultured and maintained. Mature RPE cells have increased pigmentation that accumulates after initial differentiation. For example, the RPE cells described herein may be mature RPE cells with increased pigmentation in comparison to differentiated RPE cells. Differentiated RPE cells that are rapidly dividing are lightly pigmented. However, when cell density reaches maximal capacity, or when RPE cells are specifically matured, RPE take on their characteristic phenotypic hexagonal shape and increase pigmentation level by accumulating melanin and lipofuscin. As such, initial accumulation of pigmentation serves as an indicator of RPE differentiation and increased pigmentation associated with cell density serves as an indicator of RPE maturity. For example, the RPE cells may be pigmented, to at least some extent. For example, the RPE cell may be derived from a human embryonic stem cell, which cell is pigmented and expresses at least one gene that is not expressed in a cell that is not a human retinal pigmented epithelial cell.
[0102] Mature RPE cells can be subcultured at a lower density, such that the pigmentation decreases. In this context, mature RPE cells may be cultured to produce RPE cells. Such RPE cells are still differentiated RPE cells that express markers of RPE differentiation. Thus, in contrast to the initial appearance of pigmentation that occurs when RPE cells begin to differentiate, pigmentation changes post-differentiation are phenomenological and do not reflect dedifferentiation of the ceils away from an RPE fate.
[0103] The RPE cells described herein may maintain their phenotype for a long period of time in vitro. For example, the RPE cells may maintain their phenotype for at least 1 , 2, 3, 4, 5, 6, 7, 8, 9, 10, 1 1 , 12, 13, 14, 15, 16, 17, 18, 19, or 20 passages. The RPE cells may maintain their phenotype for at least about 1 , 2, 3, 4, 5, 6, 7, 8, 9, 10, 1 1 , 12, 13, 14, 15, 16, 17, 18, 19, or 20 days. The RPE cells may maintain their phenotype for at least about 1 , 2, 3, 4, 5, 6, 7, 8, 9, or 10 weeks.
[0104] Moreover, the RPE cells described herein may maintain their phenotype following transplantation. The RPE cells may maintain their phenotype for the lifespan of the receipt after transplantation. For example, the RPE cells may maintain their phenotype following
transplantation for at least about 1 , 2, 3, 4, 5, 6, 7, 8, 9, 10, 1 1 , 12, 13, 14, 15, 16, 17, 18, 19, or 20 days. Further, the RPE cells may maintain their phenotype following transplantation for at least about 1 , 2, 3, 4, 5, 6, 7, 8, 9, or 10 weeks. The RPE cells may maintain their phenotype following transplantation for at least about 1 , 2, 3, 4, 5, 6, 7, 8, 9, 10, 1 1 , or 12 months. The RPE cells may maintain their phenotype following transplantation for at least about 1 , 2, 3, 4, 5, 6, 7, 8, 9, 10, 1 1 , 12, 13, 14, 15, 16, 17, 18, 19, or 20 years.
[0105] The RPE cells have an increased ability to prevent neovascularization. The RPE cells may be produced by aging a somatic cell from a patient such that telomerase is shortened where at least 10% of the normal replicative lifespan of the ceil has been passed, then the use of said somatic cell as a nuclear transfer donor cell to create cells that overexpress angiogenesis inhibitors such as Pigment Epithelium Derived Factor (PEDF/EPC- 1 ). Alternatively such cells may be genetically modified with exogenous genes that inhibit neovascularization.
Preparations of RPE Cells
[0106] The present invention provides preparations of RPE cells. The invention described herein provides RPE cells, substantially purified populations of RPE cells, pharmaceutical preparations comprising RPE cells, and cryopreserved preparations of the RPE cells. The RPE cells described herein may be substantially free of at least one protein, molecule, or other impurity that is found in its natural environment (e.g., "isolated".) The RPE cells may be mammalian, including, human RPE cells. The invention also provides human RPE cells, a substantially purified population of human RPE cells, pharmaceutical preparations comprising human RPE cells, and cryopreserved preparations of the human RPE cells. The preparation may be a preparation comprising human embryonic stem cell-derived RPE cells, human iPS cell- derived RPE cells, and substantially purified (with respect to non-RPE cells) preparations comprising differentiated ES-derived RPE cells.
[0107] The RPE cell populations may include differentiated RPE cells of varying levels of maturity, or may be substantially pure with respect to differentiated RPE cells of a particular level of maturity. The RPE cells may be a substantially purified preparation comprising RPE cells of varying levels of maturity/pigmentation. For example, the substantially purified culture of RPE cells may contain both differentiated RPE cel ls and mature differentiated RPE cells. Amongst the mature RPE cells, the level of pigment may vary. However, the mature RPE cells may be distinguished visually from the RPE cells based on the increased level of pigmentation and the more columnar shape. The substantially purified preparation of RPE cells comprises RPE cells of differing levels of maturity (e.g. , differentiated RPE cells and mature differentiated RPE cells). In such instances, there may be variability across the preparation with respect to expression of markers indicative of pigmentation. The pigmentation of the RPE cells in the cell culture may be homogeneous. Further, the pigmentation of the RPE ceils in the cell culture may be heterogeneous, and the culture of RPE cells may comprise both differentiated RPE cells and mature RPE cells. Preparations comprising RPE cells include preparations that are substantially pure, with respect to non-RPE cell types, but which contain a mixture of differentiated RPE cells and mature differentiated RPE cells. Preparations comprising RPE cells also include
preparations that are substantially pure both respect to non-RPE cell types and with respect to RPE cells of other levels of maturity.
[0108] The percentage of mature differentiated RPE cells in the culture may be reduced by decreasing the density of the culture. Thus, the methods described herein may further comprise subculturing a population of mature RPE cells to produce a culture containing a smaller percentage of mature RPE cells. The number of RPE cells in the preparation includes differentiated RPE cells, regardless of level of maturity and regardless of the relative percentages of differentiated RPE cells and mature differentiated RPE cells. The number of RPE cells in the preparation refers to the number of either differentiated RPE cells or mature RPE cells. The preparation may comprise at least about 75%, 80%, 85%, 90%, 91 %, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% differentiated RPE cells. The preparation may comprise at least about 75%, 80%, 85%, 90%, 91 %, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% mature RPE cells. The RPE cell preparation may comprise a mixed population of differentiated RPE cells and mature RPE cells.
[0109] The invention provides a cell culture comprising human RPE cells which are pigmented and express at least one gene that is not expressed in a cell that is not a human RPE. For example, although such RPE cells may have substantially the same expression of RPE65, PEDF, CRALBP, and bestrophin as a natural human RPE cell. The RPE cells may vary, depending on level of maturity, with respect to expression of one or more of PAX2, Pax-6, MitF, and/or tyrosinase. Note that changes in pigmentation post-differentiation also correlate with changes in PAX2 expression. Mature RPE cells may be distinguished from RPE cells by the level of pigmentation, level of expression of PAX2, Pax-6, and/or tyrosinase. For example, mature RPE cells may have a higher level of pigmentation or a higher level of expression of PAX2, Pax-6, and/or tyrosinase compared to RPE cells,
[0110] The preparations may be substantially purified, with respect to non-RPE cells, comprising at least about 75%, 80%, 85%, 90%, 91 %, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% RPE cells. The RPE cell preparation may be essentially free of non-RPE cells or consist of RPE cells. For example, the substantially purified preparation of RPE cells may comprise less than about 25%, 20%, 15%, 10%, 9%, 8%, 7%, 6%, 5%, 4%, 3%, 2%, or 1 % non- RPE cell type. For example, the RPE cell preparation may comprise less than about 25%, 20%, 15%, 10%, 9%, 8%, 7%, 6%, 5%, 4%, 3%, 2%, 1 %, 0.9%, 0.8%, 0.7%, 0.6%, 0.5%, 0.4%, 0.3%, 0.2%, 0.1 %, 0.09%, 0.08%, 0.07%, 0.06%, 0.05%, 0.04%, 0.03%, 0.02%, 0.01 %, 0.009%, 0.008%, 0.007%, 0.006%, 0.005%, 0.004%, 0.003%, 0.002%, 0.001 %, 0.0009%, 0.0008%, 0.0007%, 0.0006%, 0.0005%, 0.0004%, 0.0003%, 0.0002%, or 0,0001 % non-RPE cells.
[0111] The RPE cell preparations may be substantially pure, both with respect to non-RPE cells and with respect to RPE cells of other levels of maturity. The preparations may be substantially purified, with respect to non-RPE cells, and enriched for mature RPE cells. For example, in RPE cell preparations enriched for mature RPE cells, at least about 30%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91 %, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99%, or 100% of the RPE cells are mature RPE cells. The preparations may be substantially purified, with respect to non-RPE cells, and enriched for differentiated RPE cells rather than mature RPE cells. For example, at least about 30%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% of the RPE cells may be differentiated RPE cells rather than mature RPE cells.
[0112] The RPE cell preparations may comprise at least about 1x 103, 2x103, 3x103, 4x103, 5x 303, 6x 103, 7x 103, 8x 103, 9x 103, 1 x 104, 2x 104, 3x 104, 4x 104, 5x 104, 6x ! 04, 7x 104, 8x 104, 9x104, 1x105, 2x1θ\ 3x 105, 4x105, 5x105, 6x105, 7x105, 8x105, 9x1051,x 106, 2x106, 3x106, 4x 106, 5x 106, 6x 106, 7x 106, 8x 106, 9x 106, 1 x 107, 2x 107, 3x 107, 4x 107, 5x 107, 6x 107, 7x 107, 8x107, 9x1071,x 108, 2x108, 3x105, 4x108, 5x108, 6x108, 7x108, 8x108, 9x1081,x 109, 2x109, 3x109, 4x109, 5x109, 6x109, 7x109, 8x109, 9x1091,x 1010, 2x1010, 3xI010, 4x1010, 5x1010, 6x1010, 7x10ί0, 8x10'°, or 9x10l0RPE cells. The RPE cell preparations may comprise at least about 5,000-10,000, 50,000-100,000, 100,000-200,000, 200,000-500,000, 300,000-500,000, or 400,000-500,000 RPE cells. The RPE cell preparation may comprise at least about 20,000- 50,000 RPE cells. Also, the RPE cell preparation may comprise at least about 5,000, 10,000, 20,000, 30,000, 40,000, 50,000, 60,000, 70,000, 75,000, 80,000, 100,000, or 500,000 RPE cells.
[0113] The RPE cell preparations may comprise at least abou1tx 103, 2x103, 3x103, 4x103, 5x103, 6x103, 7x103, 8x103, 9x103, 1x 104, 2x104, 3x304, 4x104, 5x104, 6x104, 7x104, 8x104, 9x1041,x 105, 2x105, 3x105, 4x105, 5x105, 6xJ05, 7x105, 8x105, 9x1051,x 106, 2x106, 3x10ό, 4x106, 5x106, 6x106, 7x106, 8x106, 9x1061,x 107, 2x107, 3x107, 4x107, 5x107, 6x107, 7x107, 8x 107, 9x 107, 1 x 108, 2x 108, 3x 108, 4x 108, 5x 108, 6x 108, 7x 108, 8x 108, 9x 108, 1 x109, 2x 109, 3x109, 4x109, 5x109, 6x109, 7x109, 8x109, 9x1091,x 1010, 2x1010, 3x1010, 4x1010, 5x1010, 6x1010, 7x1010, 8x1010, or 9x1010RPE cells/mL. The RPE cell preparations may comprise at least about 5,000-10,000, 50,000-100,000, 100,000-200,000, 200,000-500,000, 300,000-500,000, or 400,000-500,000 RPE cells/mL. The RPE cell preparation may comprise at least about 20,000- 50,000 RPE cells/mL. Also, the RPE cell preparation may comprise at least about 5,000, 10,000, 20,000, 30,000, 40,000, 50,000, 60,000, 75,000, 80,000, 100,000, or 500,000 RPE ce!ls/mL.
[0114] The preparations described herein may be substantially free of bacterial, viral, or fungal contamination or infection, including but not limited to the presence of HIV-1 , HIV-2, HBV, HCV, CMV, HTLV-1. HTLV-2, parvovirus B19, Epstein-Barr virus, or herpesvirus 6. The preparations described herein may be substantially free of mycoplasma contamination or infection.
[0115] The RPE cells described herein may also act as functional RPE cells after transplantation where the RPE cells form a monolayer between the neurosensory retina and the choroid in the patient receiving the transplanted cells. The RPE cells may also supply nutrients to adjacent photoreceptors and dispose of shed photoreceptor outer segments by phagocytosis. Additionally, the RPE cells described herein may have undergone less senescence than cells derived from eye donors (e.g. , the RPE cells are "younger" than those of eye donors). This allows the RPE cell described herein to have a longer useful lifespan than cells derived from eye donors.
[0116] The preparations comprising RPE cells may be prepared in accordance with Good Manufacturing Practices (GMP) (e.g., the preparations are GMP-compliant) and/or current Good Tissue Practices (GTP) (e.g. , the preparations may be GTP~compliant.)
RPE Cell Cultures
[0117] The present invention also provides substantially purified cultures of RPE cells, including human RPE cells. The RPE cultures described herein may comprise at least about 1 ,000; 2,000; 3,000; 4,000; 5,000; 6,000; 7,000; 8,000; or 9,000 RPE cells. The culture may comprise at least about 1 x 104, 2x 104, 3x 1 θ\ 4x 104, 5x 104, 6x 104, 7x 104, 8x 104, 9x 104, 1 x 105, 2x 105, 3x 105, 4x 105, 5x l 05, 6x 10-\ 7x 105, 8x t 05, 9x 105, I x106, 2x 106, 3x 106, 4x106, 5x106, 6x l 06, 7x l 06, 8x 106, 9x 106, 1 x 107, 2x 107, 3x 107, 4x 107, 5x 107, 6x 107, 7x 107, 8x 107, 9x 107, 1 x 108, 2x 108, 3x 108, 4x 108, 5x l 08, 6x 108, 7x l 08, 8x 108, 9x108, 109, 2x11x 09, 3x l 09, 4x 109, 5x 109, 6x 109, 7x109, 8x109, 9x l 09, I x 1010, 2x10ί0, 3x l 010, 4x l 010, 5x 1010, 6x 1010, 7x 10U), 8x l 010, or 9x 1010 RPE cells.
[0118] The RPE cells are further cultured to produce a culture of mature RPE cells. The RPE cells may be matured, and the RPE cells may be further cultured in, for example MDBK-MM medium until the desired level of maturation is obtained. This may be determined by monitoring the increase in pigmentation level during maturation. As an alternative to MDBK-MM medium, a functionally equivalent or similar medium, may be used. Regardless of the particular medium used to mature the RPE cells, the medium may optionally be supplemented with a growth factor or agent. Both RPE cells and mature RPE cells are differentiated RPE cells. However, mature RPE cells are characterized by increased level of pigment in comparison to differentiated RPE cells. The level of maturity and pigmentation may be modulated by increasing or decreasing the density of the culture of differentiated RPE cells. Thus, a culture of RPE cells may be further cultured to produce mature RPE cells. Alternatively, the density of a culture containing mature RPE cells may be decreased to decrease the percentage of mature differentiated RPE cells and increase the percentage of differentiated RPE cells. [0119] The RPE cells may be identified by comparing the messenger RNA transcripts of such cells with cells derived in vivo. An aliquot of cells is taken at various intervals during the differentiation of embryonic stem cells to RPE cells and assayed for the expression of any of the markers described above. These characteristic distinguish differentiated RPE cells.
[0120] The RPE cell culture may be a substantially purified culture comprising at least about 30%, 35%, 40%, or 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91 %, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% differentiated RPE cells. The substantially purified culture may comprise at least about 30%, 35%, 40%, or 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91 %, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% mature differentiated RPE cells.
[0121] The RPE cell cultures may be prepared in accordance with Good Manufacturing Practices (GMP) (e.g., the cultures are GMP-compIiant) and/or current Good Tissue Practices (GTP) (e.g., the cultures may be GTP-compliant.)
Cryopreserved Preparations of RPE Cells
[0122] RPE cells may be frozen for storage. The RPE cells may be stored by any appropriate method known in the art (e.g., cryogenically frozen) and may be frozen at any temperature appropriate for storage of the cells. For example, the cells may be frozen at about -20°C, -80°C, -120°C, -130°C, -135°C, -140°C, -150°C, -160°C, -170°C, -180°C, -190°C, -196°C, at any other temperature appropriate for storage of cells. Cryogenically frozen cells may be stored in appropriate containers and prepared for storage to reduce risk of cell damage and maximize the likelihood that the cells will survive thawing. RPE cells may be cryopreserved immediately following differentiation, following in vitro maturation, or after some period of time in culture. The RPE cells may also be maintained at room temperature, or refrigerated at, for example, about 4°C.
[0123] Similarly provided are methods of cryopreserving RPE cells. The RPE cells may be harvested, washed in buffer or media, counted, concentrated (via centrifugation), formulated in freezing media (e.g., 90% FBS/10% DMSO), or any combination of these steps. For example, the RPE cells may be seeded in several culture vessels and serially expanded. As the RPE cells are harvested and maintained in FBS at about 4°C while several flasks of RPE cells are combined into a single lot. The RPE cells may be also washed with saline solution (e.g., DPBS) at least 1 , 2, 3, 4, or 5 times. Further, the RPE cells may be cryopreserved after dystrophin is organized at the cell membrane and PAX6 expression is low. In addition, the vials may be labeled, with a primary and/or secondary label. The information on the label may include the type of cell (e.g., hRPE cells), the lot number and date, the number of cells {e.g., lx106 ce3Is/mL), the expiration date (e.g., recommended date by which the vial should be used), manufacture information (e.g., name and address), warnings, and the storage means (e.g., storage in liquid nitrogen).
[0124] Cryopreserved RPE cell preparations described herein may comprise at least about 50,000-100,000 RPE cells. The cryopreserved RPE cell preparations may also comprise at least about 20,000-500,000 RPE cells. Also, the cryopreserved RPE ceil preparations may comprise at least about 5,000, 10,000, 20,000, 30,000, 40,000, 50,000, 60,000, 75,000, 80,000, or 100,000 RPE cells. The cryopreserved RPE cell preparations may comprise at least about 1 ,000, 2,000, 3,000, 4,000, 5,000, 10,000, 20,000, 30,000, 40,000, 50,000, 60,000, 75,000, 80,000, 100,000, or 500,000 RPE cells. The cryopreserved RPE cell preparations may comprise at least about 1 ,000, 2,000, 3,000, 4,000, 5,000, 6,000, 7,000, 8,000, 9,000, lx104, 2x104, 3x104, 4x104, 5x104, 6x104, 7x104, 8x104, 9x104, lx105, 2x105, 3x105, 4x105, 5x105, 6x105, 7x105, 8xlQ\ 9x105, lx105, 2x106, 3x.106, 4x106, 5x106, 6x106, 7x106, 8x106, 9x106, lx107, 2x107, 3x107, 4x107, 5x107, 6x107, 7x107, 8x107, 9x107, lx108, 2x108, 3x108, 4x108, 5x108, 6x108, 7x108, 8x108, 9x108, lx109, 2x109, 3x109, 4x109, 5x109, 6x109, 7x109, 8x109, or 9x109RPE cells. The RPE cells of the cryopreserved RPE cell preparations may be mammalian RPE cells, including human RPE cells.
[0125] Further, the cryopreserved RPE cell preparations described herein may comprise at least about 50,000-100,000 RPE cells/mL. The cryopreserved RPE cell preparations may also comprise at least about 20,000-500,000 RPE cells/mL. Also, the cryopreserved RPE cell preparations may comprise at least about 5,000, 10,000, 20,000, 30,000, 40,000, 50,000, 60,000, 75,000, 80,000, and 100,000 RPE cells/mL. The cryopreserved RPE cell preparations may comprise at least about 3 ,000, 2,000, 3,000, 4,000, 5,000, 10,000, 20,000, 30,000, 40,000, 50,000, 60,000, 75,000, 80,000, 100,000, or 500,000 RPE cells/mL. The cryopreserved RPE cell preparations may comprise at least about 1,000, 2,000, 3,000, 4,000, 5,000, 6,000, 7,000, 8,000, 9,000, lx104, 2x104, 3x104, 4x104, 5x104, 6x104, 7x104, 8x104, 9x104, lx103, 2x105, 3x105, 4x105, 5x105, 6x105, 7x105, 8x105, 9x105, lx106, 2x106, 3x106, 4x106, 5x106, 6x106, 7x106, 8x106, 9x106, lx107, 2x107, 3x107, 4x107, 5x107, 6x107, 7x107, 8x107, 9x107, lx108, 2x108, 3x 108, 4x 108, 5x 108, 6x 108, 7x 108, 8x 108, 9x 108, 1 x109, 2x 109, 3x 109, 4x 109, 5x 109, 6x 109, 7x 109. 8x 10'', 9x 109 1x 1010, 2x l 010, 3x 1010, 4x ] 010, 5x 1010, 6x1010, 7x 1010, 8x l 010, or 9x 1010 RPE cells/mL. The RPE cells of the cryopreserved RPE cell preparations may be mammalian RPE cells, including human RPE cells.
[0126] The RPE cells of the invention may be recovered from storage following
cryopreservation. The RPE cells recovered from cryopreservation also maintain their viability and differentiation status. For example, at least about 65%, 70%, 75%, 80%, 8 1 %, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91 %, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% of the RPE cells may retain viability and differentiation following cryopreservation. Further, the RPE cells of the invention may be cryopreserved and maintain their viability after being stored for at least about 1 , 2, 3, 4, 5, 6, or 7 days. The RPE cells of the invention may also be cryopreserved and maintain their viability after being stored for at least about 1 , 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 , or 12 months. The RPE cells of the invention may be cryopreserved and maintain their viability after being stored for at least about 1 , 2, 3, 4, 5, 6, or 7 years. For example, the RPE cells of the invention may be cryopreserved for at least about 4 years and show at least about 80% viability. The cryopreservation preparation comprising RPE cells may be substantially free of DMSO.
Methods of Producing RPE Cells
[0127] The present invention provides a method of producing RPE cells from pluripotent stem cells. The cell types that may be produced using this invention include, but are not limited to, RPE cells, RPE progenitor cells, iris pigmented epithelial (IPE) cells, and other vision associated neural cells, such as internuncial neurons (e.g., "relay" neurons of the inner nuclear layer (INL)) and amacrine cells. Additionally, retinal cells, rods, cones, and corneal cells may be produced. Cells providing the vasculature of the eye may also be produced by the methods described herein.
[0128] Without being bound to a particular theory, the inventors found that the methods described herein may act through FGF, EOF, WNT4, TGF-beta, and/or oxidative stress to signal MAP~Kinase and potential C-Jun terminal Kinase pathways to induce the expression of the Paired-box 6 (PAX6) transcription factor. PAX6 acts synergisticaily with PAX2 to terminally differentiate mature RPE via the coordination of Mit-F and Otx2 to transcribe RPE-specific genes such as Tyrosinase (Tyr), and downstream targets such as RPE-65, Bestrophin, CRALBP, and PEDF. See WO 2009/051671 , Figure 1 . [0129] The RPE cells described herein may be differentiated from pluripotent stem cells, such as human embryonic stem cells, and are molecularly distinct from embryonic stem cells, adult- derived RPE cells, and fetai-derived RPE cells. The inventors surprisingly discovered that the method by which the RPE cells are produced from a pluripotent stem ceil is a critical factor in determining the structural and functional characteristics of the resulting RPE cells. The inventors found that the RPE cells produced by the methods described produced a different RPE cell product than previous methods and sources of RPE ceils. For example, the manufacturing process steps described herein impart distinctive structural and functional characteristics to the final RPE cell product such that these cells closely resemble native RPE cells and are distinct from fetal derived RPE cells or RPE cell lines (e.g. , APRE19). Further, the methods of producing RPE cells described herein are not permissive to ES cells. Thus, as ES ceils cannot persist in the culture processes described herein, and they do not pose an unacceptable risk of contamination in the RPE cell cultures and preparations.
[0130] The invention provides a method for producing a RPE cell comprising: (a) providing pluripotent stem cells; (b) culturing the pluripotent stem cells as embryoid bodies in nutrient rich, low protein medium, wherein the medium optionally comprises serum free B-27 supplement; (c) culturing the embryoid bodies as an adherent culture in nutrient rich, low protein medium, wherein the medium optionally comprises serum free B-27 supplement; (d) culturing the adherent culture of cells of (c) in nutrient rich, low protein medium, wherein the medium does not comprise serum free B~27 supplement; (e) culturing the cells of (d) in medium capable of supporting growth of high-density somatic cell culture, whereby RPE cells appear in the culture of cells; (f) contacting the culture of (e) with an enzyme; (g) selecting the RPE cells from the culture and transferring the RPE cells to a separate culture containing medium supplemented with a growth factor to produce an enriched culture of RPE cells; and (g) propagating the enriched culture of RPE ceils to produce a RPE cell. These method steps may be performed at least once to produce a substantially purified culture of RPE cells. Further, these method steps may be repeated at least 1 , 2, 3, 4, 5, 6, 7, 8, 9, or 10 times to produce more RPE cells.
[0131] Additionally, the invention also provides a method for producing a mature retinal pigment epithelial (RPE) cell comprising: (a) providing pluripotent stem cells; (b) culturing the pluripotent stem cells as embryoid bodies in nutrient rich, low protein medium, wherein the medium optionally comprises serum free B-27 supplement; (c) culturing the embryoid bodies as an adherent culture in nutrient rich, low protein medium, wherein the medium optionally comprises serum free B-27 supplement; (d) culturing the adherent culture of cells of step (c) in nutrient rich, low protein medium, wherein the medium does not comprise serum free B-27 supplement; (e) culturing the cells of (d) in medium capable of supporting growth of high- density somatic cell culture, whereby RPE cells appear in the culture of cells; (f) contacting the culture of (e) with an enzyme; (g) selecting the RPE cells from the culture and transferring the RPE cells to a separate culture containing medium supplemented with a growth factor to produce an enriched culture of RPE cells; (h) propagating the enriched culture of RPE cells; and (i) culturing the enriched culture of RPE cells to produce a mature RPE cell. These method steps may be performed at least once to produce a substantially purified culture of mature RPE cells. Further, these method steps may be repeated at least 1 , 2, 3, 4, 5, 6, 7, 8, 9, or 10 times to produce more mature RPE cells.
[0132] For any of the articulated steps, the cells may be cultured for at least about 1-10 weeks. For example, the cells may be cultured for at least about 3-6 weeks. For any of the articulated steps, the cells may be cultured for between about 1 days and 50 days, for example, for at least about 1-3, 3-4, 7, 4-9, 7-10, 7-12, 8-1 1 , 9-12, 7-14, 14-21 , and 3-45 days. The cells may be cultured for about 1 , 2, 3, 4, 5, 6, 7, 8, 9, 10, 1 1 , 12, 13, 14, 15, 16, 17, 18, 19, 20, 21 , 22, 23, 24, 25, 26, 27, 28, 29, 30, 31 , 32, 33, 34, 35, 36, 37, 38, 39, 40, 41 , 42, 43, 44, 45, 46, 47, 48, 49, or 50 days. The ceils may be cultured for about 1 , 2, 3, 4, 5, 6, 7, 8, 9, 10, 1 1 , 12, 13, 14, 15, 16, 17, 1 8, 19, 20, 21 , 22, 23, or 24 hours. For example, the cells may be cultured for 2-4 and 3-6 hours. For each of the above articulated method steps, the cells may be cultured for the same period of time at each step or for differing periods of time at one or more of the steps.
Additionally, any of the above articulated method steps may be repeated to produce more RPE cells (e.g., scaled up to produce large numbers of RPE cells).
[0133] In the methods described herein, the RPE cells may begin to differentiate from amongst cells in the adherent culture of EBs. RPE cells may be visually recognized based on their cobblestone morphology and the initial appearance of pigmentation. As RPE cells continue to differentiate, clusters of RPE cells may be observed. See FIGURE 4.
[0134] Mechanical or enzymatic methods are used to select RPE cells from amongst clusters of non-RPE cells in a culture of embryoid body, or to facilitate sub-culture of adherent cells.
Exemplary mechanical methods include, but are not limited to, titration with a pipette or cutting with a pulled needle. Exemplary enzymatic methods include, but are not limited to, any enzymes appropriate for disassociating cells (e.g. , trypsin (e.g., Trypsin/EDTA), co!lagenase (e.g., collagenase B, collagenase IV), dispase, papain, mixture of collagenase and dispase, a mixture of collagenase and trypsin). A non-enzymatic solution is used to disassociate the cells, such as a high EDTA -containing solution e.g., Hanks-based cell disassociation buffer.
[0135] The RPE cells differentiate from the embryoid bodies. Isolating RPE cells from the EBs allows for the expansion of the RPE cells in an enriched culture in vitro. For human cells, RPE cells may be obtained form EBs grown for less than 90 days. Further, RPE cells may arise in human EBs grown for at least about 7- 14 days, 14-28 days, 28^15 days, or 45-90 days. The medium used to culture pluripotent stem cells, embryoid bodies, and RPE cells may be removed and/or replaced with the same or different media at any interval. For example, the medium may be removed and/or replaced after at least about 0-7 days, 7-10 days, 10-14 days, 14-28 days, or 28-90 days. Further, the medium may be replaced at least daily, every other day, or at least every 3 days.
[0136] To enrich for RPE cells and to establish substantially purified cultures of RPE cells, RPE cells are dissociated from each other and from non-RPE ceils using mechanical and/or chemical methods. A suspension of RPE cells may then be transferred to fresh medium and a fresh culture vessel to provide an enriched population of RPE cells. See FIGURE 5.
[0137] RPE cells may be selected from the dissociated cells and cultured separately to produce a substantially purified culture of RPE cells. RPE cells are selected based on characteristics associated with RPE cells. For example, RPE cells can be recognized by cobblestone cellular morphology and pigmentation. In addition, there are several known markers of the RPE, including cellular retinaldehyde-binding protein (CRALBP), a cytoplasmic protein that is also found in apical microvilli; RPE65, a cytoplasmic protein involved in retinoid metabolism;
bestrophin, the product of the Best viteUiform macular dystrophy gene (VMD2), and pigment epithelium derived factor (PEDF), a 48kD secreted protein with angiostatic properties. The messenger RNA transcripts of these markers may be assayed using PCR (e.g., RT-PCR) or Northern blots. Also, the protein levels of these markers may be assaying using immunoblot technology or Western blots.
[0138] The RPE cells may also be selected based on cell function, such as by phagocytosis of shed rod and cone outer segments, absorption of stray light, vitamin A metabolism, regeneration of retinoids, and tissue repair. Evaluation may also be performed using behavioral tests, fluorescent angiography, histology, tight junctions conductivity, or evaluation using electron microscopy.
[0139] The enriched cultures of RPE cells may be cultured in appropriate medium, for example, EGM-2 medium. This, or a functionally equivalent or similar medium., may be supplemented with a growth factor or agent (e.g. , bFGF, heparin, hydrocortisone, vascular endothelial growth factor, recombinant insulin-like growth factor, ascorbic acid, or human epidermal growth factor). The RPE cells may be phenotypically stable over a long period of time in culture (e.g., >6 weeks).
Pluripotent stem cells
[0140] The methods described herein may use pluripotent stem cells to produce RPE cells.
Suitable pluripotent stem cells include but are not limited to embryonic stem cells, embryo- derived stem cells, and induced pluripotent stem cells, regardless of the method by which the pluripotent stem cells are derived. Pluripotent stem cells may be generated using, for example, by methods known in the art. Exemplary pluripotent stem cells include embryonic stem cells derived from the inner cell mass (ICM) of blastocyst stage embryos, as well as embryonic stem ceils derived from one or more blastomeres of a cleavage stage or morula stage embryo
(optionally without destroying the remainder of the embryo). Such embryonic stem cells may be generated from embryonic material produced by fertilization or by asexual means, including somatic cell nuclear transfer (SCNT), parthenogenesis, cellular reprogramming, and
androgenesis. Further, suitable pluripotent stem cells include but are not limited to human embryonic stem cells, human embryo-derived stem cells, and human induced pluripotent stem cells, regardless of the method by which the pluripotent stem cells are derived.
[0141] The pluripotent stem cells (e.g., hES cells) may be cultured as a suspension culture to produce embryoid bodies (EBs). The embryoid bodies may be cultured in suspension for about 7-14 days. However, in certain embodiments, the EBs may be cultured in suspension for fewer than 7 days (less than 7, 6, 5, 4, 3, 2, or less than 1 day) or greater than 14 days. The EBs may be cultured in medium supplemented with B-27 supplement.
[0142] After culturing the EBs in suspension culture, the EBs may be transferred to produce an adherent culture. For example, the EBs may be plated onto gelatin coated plates in medium. When cultured as an adherent culture, the EBs may be cultured in the same type of media as when grown in suspension. The media may not supplemented with B-27 supplement when the cells are cultured as an adherent culture. Also, the medium is supplemented with B-27 initially (e.g., for less than or equal to about 7 days), but then subsequently cultured in the absence of B-27 for the remainder of the period as an adherent culture. The EBs may be cultured as an adherent culture for at least about 14-28. However, in certain embodiments, the EBs may be cultured as an adherent culture for fewer than about 14 days (less than 14, 13, 12, 1 1 , 10, 9, 8, 7, 6, 5, 4, 3, 2, or less than 1 day) or greater than about 28 days.
Human Embryonic Stem Cells
[0143] Human embryonic stem (hES) cells may be used as a pluripotent stem cell in the methods described herein. Human embryonic stem cells (hES) are progeny of the inner cell mass (ICM) of a blastocyst and may remain pluripotent virtually indefinitely. The hES cells may be derived from one or more blastomeres of an early cleavage stage embryo, optionally without destroying the embryo. The hES cells may be cultured in any way known in the art, such as in the presence or absence of feeder cells. For example, the hES cells may be cultured in MDBK-GM, hESC Medium, 1NVITROGEN® Stem Cell Media, OptiPro SFM, VP-SFM, EGM-2, or MDBK-MM. See Stem Cell Information (Culture of Human Embryonic Stem Cells (hESC)) [N1H website, 2010]. The hES cells may be used and maintained in accordance with GMP standards.
[0144] When grown in culture on a feeder layer in defined conditions hES cells maintain a specific morphology, forming flat colonies comprised of small, tightly packed cells with a high ratio of nucleus to cytoplasm, clear boundaries between the cells, and sharp, refractile colony borders. hES cells express a set of molecular markers, such as Octamer binding protein 4 (Oct-4, a.k.a., Pou5fl ), stage specific embryonic antigens (SSEA)-3 and SSEA-4, tumor rejection antigen (TRA)- l-60, TRA- 1-80, alkaline phosphatase, NANOG, and Rex-1. Similar to the cells of the ICM that differentiate into predetermined lineages, hES cells in culture may be induced to differentiate. For example, hES cells may be differentiated into human RPE under the defined conditions described herein.
[0145] Human ES cells may produced using any method known in the art. For example, the hES cells may be derived from blastocyst stage embryos that were the product of in vitro fertilization of egg and sperm. Alternatively, the hES cells may be derived from, one or more blastomeres removed from an early cleavage stage embryo, optionally, without destroying the remainder of the embryo. The hES cells may be produced using nuclear transfer. Also, cryopreserved hES cells may be used.
[0146] Human embryonic stem cells that may be used include, but are not limited to, MAO 1 , MA09, ACT-4, No. 3, H I , H7, H9. H 14 and ACT30 embryonic stem cells. See also N1H Human Embryonic Stem Cell Registry, An exemplary human embryonic stem cell line that may be used is MA09 cells. The isolation and preparation of MA09 cells was previously described in Klimanskaya, et al. (2006) "Human Embryonic Stem Cell lines Derived from Single
Blastomeres." Nature 444: 481-485.
[0147] The hES cells may be initially co-cultivated with murine embryonic feeder ceils (MEF) cells. The MEF cells may be mitotically inactivated by exposure to mitomycin C prior to seeding hES cells in co-culture, and thus the MEFs do not propagate in culture. See FIGURE 1. Additionally, hES cell cultures are examined microscopically and colonies containing non-hES cell morphology are picked and discarded using a stem cell cutting tool. See FIGURE 2. After the point of harvest of the hES cells for seeding for embryoid body formation no additional MEF cells are used in the process. See FIGURE 3. The time between MEF removal and RPE cells described herein harvest may be a minimum of at least one, two, three, four, or five passages and at least about 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, or 100 days in MEF-free cell culture. The time between MEF removal and harvesting the RPE cells may also be a minimum of at least about 3 passages and at least about 80-90 days in MEF-free cell culture. Due to the methods of production described herein, the RPE cell cultures and preparations described herein may be substantially free of mouse embryo fibroblasts (MEF) and human embryonic stem cells (hES). Induced Pluripotent Stem Cells (iPS cells)
[0148] Further exemplary pluripotent stem cells include induced pluripotent stem cells (iPS cells) generated by reprogramming a somatic cell by expressing or inducing expression of a combination of factors ("reprogramming factors"), iPS cells may be generated using fetal, postnatal, newborn, juvenile, or adult somatic cells. iPS cells may be obtained from a cell bank. Alternatively, IPS cells may be newly generated by methods known in the art prior to
commencing differentiation to RPE cells. The making of iPS cells may be an initial step in the production of RPE cells. iPS cells may be specifically generated using material, from a particular patient or matched donor with the goal of generating tissue-matched RPE cells. iPS cells are universal donor cells that are not substantially immunogenic. [0149] The induced pluripotent stem cell may be produced by expressing or inducing the expression of one or more reprogramming factors in a somatic cell. The somatic cell is a fibroblast, such as a dermal fibroblast, synovial fibroblast, or lung fibroblast, or a non- fibroblastic somatic cell. The somatic cell is reprogrammed by expressing at least 1 , 2, 3, 4, 5. The reprogramming factors may be selected from Oct 3/4, Sox 2, NANOG, Lin28. e-Myc, and Klf4. Expression of the reprogramming factors may be induced by contacting the somatic cells with at least one agent, such as a small organic molecule agents, that induce expression of reprogramming factors.
[0150] The somatic cell may also be reprogrammed using a combinatorial approach wherein the reprogramming factor is expressed {e.g., using a viral vector, plasmid, and the like) and the expression of the reprogramming factor is induced (e.g. , using a small organic molecule.) For example, reprogramming factors may be expressed in the somatic cell by infection using a viral vector, such as a retroviral vector or a lentiviral vector. Also, reprogramming factors may be expressed in the somatic cell using a non-integrative vector, such as an episomai plasmid. When reprogramming factors are expressed using non-integrative vectors, the factors may be expressed in the cells using electroporation, transfection, or transformation of the somatic cells with the vectors. For example, in mouse cells, expression of four factors (Oct3/4, Sox2, c-myc, and KJf4) using integrative viral vectors is sufficient to reprogram a somatic cell. In human cells, expression of four factors (Oct3/4, Sox2, NANOG, and Lin28) using integrative viral vectors is sufficient to reprogram a somatic cell.
[0151] Once the reprogramming factors are expressed in the cells, the cells may be cultured. Over time, cells with ES characteristics appear in the culture dish. The cells may be chosen and subcultured based on, for example, ES morphology, or based on expression of a selectable or detectable marker. The cells may be cultured to produce a culture of cells that resemble ES cells— these are putative iPS cells.
[0152] To confirm the pluripotency of the iPS cells, the cells may be tested in one or more assays of pluripotency. For examples, the cells may be tested for expression of ES cell markers; the cells may be evaluated for ability to produce teratomas when transplanted into SCID mice; the cells may be evaluated for ability to differentiate to produce cell types of all three germ layers. Once a pluripotent iPS cell is obtained it may be used to produce RPE cells. Engineering MHC genes in human embryonic stem cells to obtain reduced-complexity RPE cells
[0153] Human embryonic stem (hES) cells may be derived from a library of human embryonic stem cells. The library of human embryonic stem cells may comprise stem celis, each of which is hemizygous, homozygous, or nul lizygous for at least one MHC allele present in a human population, wherein each member of said library of stem cells is hemizygous, homozygous, or nullizygous for a different set of MHC alleles relative to the remaining members of the library. The library of human embryonic stem cells may comprise stem cells that are hemizygous, homozygous, or nullizygous for all MHC alleles present in a human population. In the context of this invention, stem cells that are homozygous for one or more histocompatibility antigen genes include cells that are nullizygous for one or more (and in some embodiments, all) such genes. Nullizygous for a genetic locus means that the gene is null at that locus {i.e., both alleles of that gene are deleted or inactivated.)
[0154] A hES cell may comprise modifications to one of the alleles of sister chromosomes in the cell's MHC complex. A variety of methods for generating gene modifications, such as gene targeting, may be used to modify the genes in the MHC complex. Further, the modified alleles of the MHC complex in the cells may be subsequently engineered to be homozygous so that identical alleles are present on sister chromosomes. Methods such as loss of heterozygosity (LOH) may be utilized to engineer ceils to have homozygous alleles in the MHC complex. For example, one or more genes in a set of MHC genes from a parental allele can be targeted to generate hemizygous cells. The other set of MHC genes can be removed by gene targeting or LOH to make a null line. This null line can be used further as the embryonic cell line in which to drop arrays of the HLA genes, or individual genes, to make a hemizygous or homozygous bank with an otherwise uniform genetic background. Stem cells that are nullizygous for all MHC genes may be produced by standard methods known in the art, such as, for example, gene targeting and/or loss of heterozygosity (LOH). See, for example, United States Patent
Application Publications 2004/0091936, 2003/0217374 and 2003/0232430, and U.S. Provisional Patent Application Number 60/729, 173.
[0155] Accordingly, the present invention relates to methods of obtaining RPE cells, including a library of RPE celis, with reduced MHC complexity. RPE cells with reduced MHC complexity may be used to increase the supply of available cells for therapeutic applications as it may eliminate the difficulties associated with patient matching. Such cells may be derived from stem cells that are engineered to be hemizygous or homozygous for genes of the MHC complex.
[0156] The invention also provides a library of RPE cells (and/or RPE lineage cells), wherein several lines of ES cells are selected and differentiated into RPE cells. These RPE cells and/or RPE lineage cells may be used for a patient in need of a cell-based therapy. The invention also provides a library of RPE cells, each of which is hemizygous, homozygous, or nullizygous for at least one MHC allele present in a human population, wherein each member of said library of RPE cells is hemizygous, homozygous, or nullizygous for a different set of MHC alleles relative to the remaining members of the library. The invention provides a library of human RPE cells that are hemizygous, homozygous, or nullizygous for all MHC alleles present in a human population.
Culture Medium
[0157] Any medium that is capable of supporting high-density cultures may be used in the methods described herein, such as medium, for viral, bacterial, or eukaryotic cell culture. For example, the medium may be high nutrient, protein-free medium or high nutrient, low protein medium. Further, the medium also may include nutrient components such as albumin, B-27 supplement, ethanolamine, fetuin, glutamine, insulin, peptone, purified lipoprotein material, sodium selenite, transferrin, vitamin A, vitamin C, or vitamin E. For example, nutrient rich, low protein medium may be any medium which supports the growth of cells in culture and has a low protein content. For example, nutrient rich, low protein media includes but is not limited to MDBK-GM, OptiPro SFM, VP-SFM, DMEM, RPMI Media 1640, IDMEM, MEM, F- 12 nutrient mixture, F- 10 nutrient mixture EGM-2, DMEM/F- 12 media, media 1999, or
MDBK-MM. See also Table 2. Further, the nutrient rich, low protein medium may be a medium that does not support the growth or maintenance of embryonic stem cells.
[0158] When low protein medium is used, the medium may contain at least about 20%, 19%, 18%, 17%, 16%, 15%, 14%, 13%, 12%, 1 1 %, 10%, 9%, 8%, 7%, 6%, 5%, 4%, 3%, 2.5%, 2%, 1.5%, 1 %, 0.75%, 0.5%, 0.25%, 0.20%, 0.10%, 0.05%), 0.02%, 0.016%, 0.015%, or 0.010% animal-derived protein (e.g. , 10% FBS). Note that reference to the percentage of protein present in low protein medium refers to the medium alone and does not account for protein present in, for example, B-27 supplement. Thus, it is understood that when cells are cultured in low protein medium and B-27 supplement, the percentage of protein present in the medium may be higher. [0159] The low protein or protein free medium are supplemented with serum free B-27 supplement. Nutrient components of B27 supplement may comprise biotin, L-carnitine, corticosterone, ethanolamine, D+-galactose, reduced glutathione, linoleic acid, linolenic acid, progesterone, putrescine, retinyl acetate, selenium, triodo- 1 -thyronine (T3), DL-alpha-tocopherol (vitamin E), DL-alpha-tocopherol acetate, bovine serum albumin, catalase, insulin, superoxide dismutase, and transferrin. When cells are cultured in protein free medium supplemented with B-27, protein free refers to the medium prior to addition of B-27.
[0160] Growth factors, agents, and other supplements described herein may be used alone or in combination with other factors, agents, or supplements for inclusion in media. Factors, agents, and supplements may be added to the media immediately, or any time during or after cell culture.
[0161] The medium may also contain supplements such as heparin, hydrocortisone, ascorbic acid, serum (e.g., fetal bovine serum), or a growth matrix (e.g., extracellular matrix from bovine corneal epithelium, MATRIGEL® (basement membrane matrix), or gelatin), fibronectin, proteolytic fragments of fibronectin, laminin, thrombospondin, aggrecan, and syndezan.
[0162] The culture media may be supplemented with one or more factors or agents.
[0163] Growth factors that may be used include, for example, EGF, FGF, VEGF, and
recombinant insulin-like growth factor. Growth factors that may be used in the present invention also include 6Ckine (recombinant), activin A, a-interferon, alpha-interferon, amphiregulin, angiogenin, β-endothelial cell growth factor, beta cellulin, p-interferon, brain derived
neurotrophic factor, cardiotrophin- 1 , ciliary neurotrophic factor, cytokine-induced neutrophil chemoattractant-1 , endothelial cell growth supplement, eotaxin, epidermal growth factor, epithelial neutrophil activating peptide-78, erythropoiten, estrogen receptor-a, estrogen receptor-β, fibroblast growth factor (acidic/basic, heparin stabilized, recombinant), FLT-3/FLK-2 ligand (FLT-3 ligand), gamma-interferon, glial ceil line-derived neurotrophic factor,
Gly-His-Lys, granulocyte colony-stimulating factor, granulocyte macrophage colony-stimulating factor, GRO-alpha/MGSA, GRO-B, GRO-gamma, HCC- 1 , heparin-binding epidermal growth factor like growth factor, hepatocyte growth factor, heregulin-alpha (EGF domain), insulin growth factor binding protein- 1 , insulin-like growth factor binding protein- 1 /IGF- 1 complex, insulin-like growth factor, insulin-like growth factor II, 2.5S nerve growth factor (NGF),
7S-NGF, macrophage inflammatory protein- ί β, macrophage inflammatory protein-2,
macrophage inflammatory protein-3 a, macrophage inflammatory protein-3p, monocyte chemotaetic protcin- 1 , monocyte c he mo tactic protein-2, monocyte cheniotactic protein-3, neurotrophin-3, neurotrophin-4, NGF-β (human or rat recombinant), oncostatin M (human or mouse recombinant), pituitary extract, placenta growth factor, platelet-derived endothelial cell growth factor, platelet-derived growth factor, pleiotrophin, rantes, stem cell factor, stromal cell- derived factor 1 B/pre-B cell growth stimulating factor, thrombopoetin, transforming growth factor alpha, transforming growth factor-βΐ , transforming growth factor-p2, transforming growth factor-p3, transforming growth-factor-p5, tumor necrosis factor (a and β), and vascular endothelial growth factor.
[0164] Agents that may be used according to the present invention include cytokines such as interferon-oc, interferon-a A/D, interferon-β, interferon-γ, interfere η-γ-inducible protein- 10, interleukin- 1 , interIeukin-2, interleukin-3, interleukin-4, interleukin-5, interIeukin-6,
interleukin-7, interleukin-8, interleukin-9, interleukin-10, interleukin-1 1 , interleukin-12, interleukin- 13, interleukin- 15, interleukin~ 17, keratinocyte growth factor, leptin, leukemia inhibitory factor, macrophage colony-stimulating factor, and macrophage inflammatory protein- 1 a.
[0165] The culture media may be supplemented with hormones and hormone antagonists, including but not limited to 17B-estradiol, adrenocorticotropic hormone, adrenomedullin, alpha- melanocyte stimulating hormone, chorionic gonadotropin, corticosteroid-binding globulin, corticosterone, dexamethasone, estriol, follicle stimulating hormone, gastrin 1. glucagon, gonadotropin, hydrocortisone, insulin, insulin-like growth factor binding protein, L-3,3' ,5'- triiodothyronine, L-3,3' ,5'-triiodothyronine, leptin, leutinizing hormone, L-thyroxine, melatonin, MZ-4, oxytocin, parathyroid hormone, PEC-60, pituitary growth hormone, progesterone, prolactin, secretin, sex hormone binding globulin, thyroid stimulating hormone, thyrotropin releasing factor, thyroxine-binding globulin, and vasopressin. The culture media may be supplemented with antibodies to various factors including but not limited to anti-low density lipoprotein receptor antibody, an ti -progesterone receptor, internal antibody, anti-alpha interferon receptor chain 2 antibody, anti-c-c chemokine receptor 1 antibody, anti-CD 1 18 antibody, anti-CD 1 19 antibody, anti-colony stimulating factor- 1 antibody, anti-CSF- 1 receptor/c-fms antibody, anti-epidermal growth factor (AB-3) antibody, anti-epidermal growth factor receptor antibody, anti-epidermal growth factor receptor, phospho-specific antibody, anti-epidermal growth factor (AB- 1 ) antibody, an ti -erythropoietin receptor antibody, anti-estrogen receptor antibody, anti-estrogen receptor, C-terminal antibody, anti-estrogen receptor- B antibody, anti- fibroblast growth factor receptor antibody, anti -fibroblast growth factor, basic antibody, anti- gamma-interferon receptor chain antibody, anti-gamma-interferon human recombinant antibody, anti-GFR alpha- 1 C-terminal antibody, anti-GFR alpha-2 C-terminal antibody, anti -granulocyte colony-stimulating factor (AB- 1 ) antibody, anti -granulocyte colony-stimulating factor receptor antibody, anti-insulin receptor antibody, anti-insulin-like growth factor- 1 receptor antibody, anti- interleukin-6 human recombinant antibody, anti-interleukin- 1 human recombinant antibody, anti- interleukin-2 human recombinant antibody, anti-Ieptin mouse recombinant antibody, anti-nerve growth factor receptor antibody, anti-p60, chicken antibody, anti -parathyroid hormone-like protein antibody, anti-platelet-derived growth factor receptor antibody, anti-p!atelet-derived growth factor receptor-B antibody, anti-platelet-derived growth factor-alpha antibody, anti- progesterone receptor antibody, anti-retinoic acid receptor-alpha antibody, anti-thyroid hormone nuclear receptor antibody, anti-thyroid hormone nuclear receptor-alpha 1/Bi antibody, anti- transfesferin receptor/CD71 antibody, anti -transforming growth factor-alpha antibody, anti- transforming growth factor-B3 antibody, anti-rumor necrosis factor-alpha antibody, and anti- vascular endothelial growth factor antibody.
[0166] Growth medias suitable for use in the methods described herein are listed in Table 2.
Figure imgf000047_0001
Therapeutic Methods
[0167] The RPE cells and pharmaceutically preparations comprising RPE ceils produced by the methods described herein may be used for cell-based treatments. The invention provides methods for treating a condition involving retinal degeneration comprising administering an effective amount of a pharmaceutical preparation comprising RPE cells, wherein the RPE cells are derived from pluripotent stem cells in vitro. Conditions involving retinal degeneration include, for example, choroideremia, diabetic retinopathy, retinal atrophy, retinal detachment, retinal dysplasia, and retinitis pigmentosa. The RPE cells described herein may also be used in methods for treating macular degeneration including but are not limited to age related macular degeneration (dry or wet), North Carolina macular dystrophy, Sorsby's fundus dystrophy, Stargardt's disease, pattern dystrophy, Best disease, malattia leventinese, Doyne's honeycomb choroiditis, dominant drusen, and radial drusen. The RPE cells described herein may also be used in methods of treating Parkinson's disease (PD).
[0168] A common feature of cell transplantation is low graft survival, for example, in many cell transplantation studies there tends to be a loss of cells immediately following transplantation (e.g., within the first week). This loss of cells does not appear to be due to rejection of the transplanted cells but rather an inability of a certain percentage of the cells to be retained at the transplant site. This lack of cell retention is most likely due to a number of factors such as the failure of the cells to attach to an underlying structure, a lack of sufficient nutrients, or physical stresses at the transplant site. Following this initial drop-off of cell number, the cell survival at various time after transplantation can vary considerably from study to study. Thus, although some studies show a steady decline in numbers, other show results where the grafted cells can reach a stable number. However, an important factor in considering the success of a
transplantation is the percentage of recipients with surviving grafts following cell transplant.
[0169] In contrast with previous preparations, the RPE cells in the pharmaceutical preparations described herein may survive long term following transplantation. For example, the RPE cells may survive at least about 1 , 2, 3, 4, 5, 6, 7, 8, 9, or 10 days. Additionally, the RPE cells may survive at least about 1 , 2, 3, 4, 5, 6, 7, 8, 9, or 10 weeks; at least about 1 , 2, 3, 4, 5, 6, 7, 8, 9, or 10 months; or at least about 1 , 2, 3, 4, 5, 6, 7, 8, 9, or 10 years. Further, the RPE cells may survive throughout the lifespan of the receipt of the transplant. Additionally, at least 10, 20, 30, 40, 50, 60, 70, 80, 90, 95, 96, 97, 98, 99, or 100% of the receipts of RPE cells described herein may show survival of the transplanted RPE cells. Further, the RPE cel ls described herein may successfully incorporate into the RPE layer in the transplantation receipt, forming a semi- continuous line of ceils and retain expression of key RPE molecular markers (e.g., RPE65 and bestrophin). The RPE cells described herein may also attach to the B inch' s membrane, forming a stable RPE layer in the transplantation receipt. Also, the RPE cells described herein are substantially free of ES cells and the transplantation receipts doe not show abnormal growth or tumor formation at the transplantation site.
[0170] The methods of treating a patient suffering from a condition associated with retinal degeneration may comprise administering a composition of the invention locally (e.g. , by intraocular injection or insertion of a matrix comprising the pharmaceutical preparation of the invention). Intraocular administration of pharmaceutical preparation of the invention include, for example, delivery into the vitreous body, transcorneally, sub-conjunctival, juxtascleral, posterior scleral, and sub-tenon portions of the eye. See, for example, U.S. Patent Nos, 7,794,704;
7,795,025; 6,943, 145; and 6,943, 153.
[0171] The invention also provides a method of administering human RPE cells that have been derived from reduced-complexity embryonic stem cells to a patient. This method may comprise: (a) identifying a patient that needs treatment involving administering human RPE cells to him or her; (b) identifying MHC proteins expressed on the surface of the patient's cells; (c) providing a library of human RPE cells of reduced MHC complexity made by the method for producing RPE cells of the present invention; (d) selecting the RPE cells from the library that match this patient's MHC proteins on his or her cells; (e) administering any of the cells from step (d) to said patient. This method may be performed in a regional center, such as, for example, a hospital, a clinic, a physician's office, and other health care facilities. Further, the RPE cells selected as a match for the patient, if stored in small ceil numbers, may be expanded prior to patient treatment.
[0172] The RPE cells may be cultured under conditions to increase the expression of alpha integrin subunits 1 -6 or 9 as compared to uncultured RPE cells or other RPE cell preparations prior to transplantation. The RPE cells described herein may be cultured to elevate the
expression level of alpha integrin subunits 1 , 2, 3, 4, 5, 6, or 9. The RPE cells described herein may be cultured under conditions that promote the expression of alpha integrin subunits 1 -6. For example, the RPE cells may be cultured with integrin-activating agents including but not limited to manganese and the activating monoclonal antibody (mAb) TS2/16. See Afshari, et al. Brain (2010) 133(2): 448-464.
[0173] The particular treatment regimen, route of administration, and adjuvant therapy may be tailored based on the particular condition, the severity of the condition, and the patient's overall health. Administration of the pharmaceutical preparations comprising RPE cells may be effective to reduce the severity of the symptoms and/or to prevent further degeneration in the patient's condition. For example, administration of a pharmaceutical preparation comprising RPE cells may improve the patient's visual acuity. Additionally, in certain embodiments, administration of the RPE cells may be effective to fully restore any vision loss or other symptoms. Further, the RPE cell administration may treat the symptoms of injuries to the endogenous RPE layer.
Pharmaceutical Preparations of RPE Cells
[0174] The RPE cells may be formulated with a pharmaceutically acceptable carrier. For example, RPE celts may be administered alone or as a component of a pharmaceutical formulation. The subject compounds may be formulated for administration in any convenient way for use in medicine. Pharmaceutical preparations suitable for administration may comprise the RPE cells, in combination with one or more pharmaceutically acceptable sterile isotonic aqueous or nonaqueous solutions (e.g. , balanced salt solution (BSS)), dispersions, suspensions or emulsions, or sterile powders which may be reconstituted into sterile injectable solutions or dispersions just prior to use, which may contain antioxidants, buffers, bacteriostats, solutes or suspending or thickening agents.
[0175] When administered, the pharmaceutical preparations for use in this invention may be in a pyrogen-free, physiologically acceptable form. The preparation comprising RPE cells used in the methods described herein may be transplanted in a suspension, gel, colloid, slurry, or mixture. Further, the preparation may desirably be encapsulated or injected in a viscous form into the vitreous humor for delivery to the site of retinal or choroidal damage. Also, at the time of injection, cryopreserved RPE cells may be may be resuspended with commercially available balanced salt solution to achieve the desired osmolality and concentration for administration by subretinal injection.
[0176] The RPE cells of the invention may be delivered in a pharmaceutically acceptable ophthalmic formulation by intraocular injection. When administering the formulation by intravitreal injection, for example, the solution may be concentrated so that minimized volumes may be delivered. Concentrations for injections may be at any amount that is effective and nontoxic, depending upon the factors described herein. The pharmaceutical preparations of RPE cells for treatment of a patient may be formulated at doses of at least about 104 cells/mL. The RPE cell preparations for treatment of a patient are formulated at doses of at least about 103 , 104 , 10-- , 106, 107, 108, 109, or 1010 RPE cells/mL. For example, the RPE cells may be formulated in a pharmaceutically acceptable carrier or excipient.
[0177] The pharmaceutical preparations of RPE cells described herein may comprise at least about 1 ,000; 2,000; 3,000; 4,000; 5,000; 6,000; 7,000; 8,000; or 9,000 RPE cells. The pharmaceutical preparations of RPE cells may comprise at least about l x l 04, 2x 104, 3x 104, 4x 10\ 5x 104, 6x 104, 7x 104, 8x 104, 9x 104, 1 x 105, 2x 105, 3x 105, 4x 105, 5x 105, 6x 10\ 7x 105, 8x 105, 9x105, 1 x 106, 2x 106, 3x 106, 4x 106, 5x 106, 6x 106, 7x 106, 8x 106, 9x 106, l x l 07, 2x 107, 3x 107, 4x 107, 5x 107, 6x 107, 7x 307, 8x 107, 9x 107, 11x 08, 2x 108, 3x 108, 4x 108, 5x 108, 6x 108, 7x 108, 8x 108, 9x 108, 1 x109, 2x 109, 3x10y, 4x 109, 5x 109, 6x 109, 7x 109, 8x 109, 9x 109, l x l 010, 2x 1010, 3x .1010, 4x 1010, 5x 1010, 6x 1010, 7x 1010, 8x 1010, or 9x 1010 RPE cells. The pharmaceutical preparations of RPE cells may comprise at least about 1021-x1 x 103, 1012x-l x 104, 11x 04-l x 105, or1 x 103— 1 x 106 RPE cells. The pharmaceutical preparations of RPE cells may comprise at least about 10,000, 20,000, 25,000, 50,000, 75,000, 100,000, 125,000, 150,000, 175,000, 180,000, 185,000, 190,000, or 200,000 RPE cells. For example, the pharmaceutical preparation of RPE cells may comprise at least about 20,000-200,000 RPE cells in a volume at least about 50-200 \xL. Further, the pharmaceutical preparation of RPE cells may comprise at least about 180,000 RPE cells in a volume at least about 150 L.
[0178] RPE cells may be formulated for delivery in a pharmaceutically acceptable ophthalmic vehicle, such that the preparation is maintained in contact with the ocular surface for a sufficient time period to allow the cells to penetrate the affected regions of the eye, as for example, the anterior chamber, posterior chamber, vitreous body, aqueous humor, vitreous humor, cornea, iris/ciliary, lens, choroid, retina, sclera, suprachoridal space, conjunctiva, subconjunctival space, episcleral space, intracorneal space, epicorneal space, pars plana, surgically-induced avascular regions, or the macula.
[0179] The volume of preparation administered according to the methods described herein may dependent on factors such as the mode of administration, number of RPE cells, age and weight of the patient, and type and severity of the disease being treated. If administered by injection, the volume of a pharmaceutical preparations of RPE cells of the invention may be from at least about 1, 1.5, 2, 2.5, 3, 4, or 5 niL. The volume may be at least about 1-2 mL. For example, if administered by injection, the volume of a pharmaceutical preparations of RPE cells of the invention may be at least about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 39, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67 ,68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 100, 111, 112, Π3, 114, 115, 116, 117, 118, 119, 120, 121,122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 1.46, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 1.82, 183, 184, 185, 1.86, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, or 200 μL (microliters). For example, the volume of a preparation of the invention may be from at least about 10-50, 20-50, 25-50, or 1-200 \iL. The volume of a preparation of the invention maybe at least about 10, 20, 30, 40, 50, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, or 200μL .
[0180] For example, the preparation may comprise at least about lx103, 2x103, 3x103, 4x103, 5x103, 6x103, 7x103, 8x103, 9x103, lx104, 2x104, 3x104,4x104, 5x104, 6x104, 7x104, 8x104, or 9x104 RPE cells per )xL. The preparation may comprise 2000 RPE cells per μL, for example, 100,000 RPE cells per 50 μL· or 180,000 RPE cells per 90 μL.
[0181] The method of treating retinal degeneration may further comprise administration of an immunosuppressant. Immunosuppressants that may be used include but are not limited to anti- lymphocyte globulin (ALG) polyclonal antibody, and -thymocyte globulin (ATG) polyclonal antibody, azathioprine, BASILIXIMAB® (anti-IL-2Ra receptor antibody), cyclosporin
(cyclosporin A), DACLIZUMAB® (anti-IL-2Ra receptor antibody), everolimus, mycophenolic acid, RITUXIMAB® (anti-CD20 antibody), sirolimus, and tacrolimus. The
immunosuppressants may be dosed at least about 1 , 2, 4, 5, 6, 7, 8, 9, or 10 mg/kg. When immunosuppressants are used, they may be administered systemically or locally, and they may be administered prior to, concomitantly with, or following administration of the RPE cells.
Immunosuppressive therapy continues for weeks, months, years, or indefinitely following administration of RPE cells. For example, the patient may be administered 5 mg/kg cyclosporin for 6 weeks following administration of the RPE cells.
[0182] The method of treatment of retinal degeneration may comprise the administration of a single dose of RPE cells. Also, the methods of treatment described herein may comprise a course of therapy where RPE cells are administered multiple times over some period.
Exemplary courses of treatment may comprise weekly, biweekly, monthly, quarterly, bi annually, or yearly treatments. Alternatively, treatment may proceed in phases whereby multiple doses are required initially (e.g., daily doses for the first week), and subsequently fewer and less frequent doses are needed.
[0183] If administered by intraocular injection, the RPE cells may be delivered one or more times periodically throughout the life of a patient. For example, the RPE cells may be delivered once per year, once every 6-12 months, once every 3-6 months, once every 1 -3 months, or once every 1-4 weeks. Alternatively, more frequent administration may be desirable for certain conditions or disorders. If administered by an implant or device, the RPE cells may be administered one time, or one or more times periodically throughout the lifetime of the patient, as necessary for the particular patient and disorder or condition being treated. Similarly contemplated is a therapeutic regimen that changes over time. For example, more frequent treatment may be needed at the outset (e.g. , daily or weekly treatment). Over time, as the patient's condition improves, less frequent treatment or even no further treatment may be needed.
[0184] The methods described herein may further comprises the step of monitoring the efficacy of treatment or prevention by measuring electroretinogram responses, optomotor acuity threshold, or luminance threshold in the subject. The method may also comprise monitoring the efficacy of treatment or prevention by monitoring immunogenicity of the cells or migration of the cells in the eye.
[0185] The RPE cells may be used in the manufacture of a medicament to treat retinal degeneration. The invention also encompasses the use of the preparation comprising RPE cells in the treatment of blindness. For example, the preparations comprising human RPE cells may used to treat retinal degeneration associated with a number of vision-altering ailments that result in photoreceptor damage and blindness, such as, diabetic retinopathy, macular degeneration (including age-related macular degeneration, e.g., wet age-related macular degeneration and dry age-related macular degeneration), retinitis pigmentosa, and Stargardt's Disease (fundus flavimaculatus). The preparation may comprise at least about 5,000-500,000 RPE cells (e.g., 100,00 RPE cells) which may be administered to the retina to treat retinal degeneration associated with a number of vision-altering ailments that result in photoreceptor damage and blindness, such as, diabetic retinopathy, macular degeneration (including age-related macular degeneration), retinitis pigmentosa, and Stargardt' s Disease (fundus flavimaculatus).
[0186] The RPE cells provided herein may be human RPE cells. Note, however, that the human cells may be used in human patients, as well as in animal models or animal patients. For example, the human celis may be tested in mouse, rat, cat, dog, or non-human primate models of retinal degeneration. Additionally, the human cells may be used therapeutically to treat animals in need thereof, such as in veterinary medicine.
Modes of Administration
[0187] The pharmaceutical preparation may be formulated in a pharmaceutically acceptable carrier according to the route of administration. For example, the preparation may be formulated to be administered to the subretinal space of the eye. The preparation comprising RPE cells may be administered to one eye or both eyes in the same patient. The administration to both eyes may be sequential or simultaneous. For example, the preparation comprising RPE cells may be formulated as a suspension, solution, slurry, gel, or colloid.
[0188] RPE cells of the invention may be administered locally by injection (e.g. , intravitreal injection), or as part of a device or implant (e.g. , an implant). For example, the preparation may be administered by injection into the subretinal space of the eye. Also, the preparation may be administered transcorneally. For example, the cells of the present invention may be transplanted into the subretinal space by using vitrectomy surgery. Additionally, at the time of injection, RPE cells may be may be resuspended with commercially available balanced salt solution to achieve the desired osmolality and concentration for administration by subretinal injection.
[0189] Depending on the method of administration, the RPE cells may be added to buffered and electrolyte balanced aqueous solutions, buffered and electrolyte balanced aqueous solutions with a lubricating polymer, mineral oil or petrolatum-based ointment, other oils, liposomes, cylcodextrins, sustained release polymers or gels.
Matrices for use with RPE celis [0190] The methods described herein may comprise a step of administering RPE cells of the invention as an implant or device. In certain embodiments, the device is bioerodibie implant for treating a medical condition of the eye comprising an active agent dispersed within a
biodegradable polymer matrix, wherein at least about 75% of the particles of the active agent have a diameter of less than about 10 pm. The bioerodibie implant is sized for implantation in an ocular region. The ocular region may be any one or more of the anterior chamber, the posterior chamber, the vitreous cavity, the choroid, the suprachoroidal space, the conjunctiva, the subconjunctival space, the episcleral space, the intracorneal space, the epicorneal space, the sclera, the pars plana, surgically-induced avascular regions, the macula, and the retina. The biodegradable polymer may be, for example, a poly(lactic-co-glycolic)acid (PLGA) copolymer, biodegradable poly(DL-lactk>co~glycolic acid) films, or PLLA/PLGA polymer substrates. The ratio of lactic to glycolic acid monomers in the polymer is about 25/75, 40/60, 50/50, 60/40, 75/25 weight percentage, more preferably about 50/50. The PLGA copolymer may be about 20, 30, 40, 50, 60, 70, 80 to about 90 percent by weight of the bioerodibie implant. The PLGA copolymer may be from about 30 to about 50 percent by weight, preferably about 40 percent by weight of the bioerodibie implant. The RPE cells may be transplanted in conjunction with a biocompatible polymer such as polylactic acid, poly(lactic-c<?-glycolic acid), 50:50 PDLGA, 85: 15 PDLGA, and INION GTR® biodegradable membrane (mixture of biocompatible polymers). See U.S. Patent No. 6,331 ,313; 7,462,471 ; and 7,625,582. See also Hutala, et al. (2007) "In vitro biocompatibility of degradable biopolymers in cell line cultures from various ocular tissues: Direct contact studies." Journal of Biomedical Materials Research 83A(2): 407- 413; Lu, et al ( 1998) J Biomater Sci Poiym Ed 9: 1 187-205; and Tomita, et al. (2005) Stem Cells 23: 1579-88.
Screening Assays
[0191] The invention provides a method for screening to identify agents that modulate RPE cell maturity. For example, RPE cells differentiated from human ES cells may be used to screen for agents that promote RPE maturation. Identified agents may be used, alone or in combination with RPE cells, as part of a treatment regimen. Alternatively, identified agents may be used as part of a culture method to improve the survival of RPE cells differentiated in vitro.
[0192] The RPE cells may be used a research tool in settings such as a pharmaceutical, chemical, or biotechnology company, a hospital, or an academic or research institution. Such uses include the use of RPE cells differentiated from embryonic stem cells in screening assays to identify, for example, agents that may be used to promote RPE survival in vitro or in vivo, or that may be used to promote RPE maturation. Identified agents may be studied in vitro or in animal models to evaluate, for example, their potential use alone or in combination with RPE cells.
[0193] The invention provides a method for identifying agents that promote RPE maturation comprising providing a RPE cell, contacting said RPE cell with an agent, assessing said RPE cell for signs of maturity, and then identifying an agent that promotes RPE maturation when said agent causes RPE cell to show signs of maturity. The signs of maturity may be pigmentation level, gene expression levels, and morphology as discussed herein.
Commercial Applications and Methods
[0194] Certain aspects of the present invention pertain to the production of RPE cells to reach commercial quantities. The RPE cells may be produced on a large scale, stored if necessary, and supplied to hospitals, clinicians or other healthcare facilities.
[0195] Accordingly certain aspects of the present invention relate to methods of production, storage, and distribution of RPE cells produced by the methods disclosed herein. Following RPE production, RPE cells may be harvested, purified, and optionally stored prior to a patient's treatment. RPE cells may optionally be patient specific or specifically selected based on HLA or other immunologic profile. For example, once a patient presents with an indication such as, for example, diabetic retinopathy, macular degeneration (including age-related macular
degeneration), retinitis pigmentosa, retinal atrophy, retinal detachment, retinal dysplasia, and Stargardt's Disease (fundus flavimaculatus), RPE cells may be ordered and provided in a timely manner. Accordingly, the present invention relates to methods of producing RPE cells to attain cells on a commercial scale, cell preparations comprising RPE cells derived from said methods, as well as methods of providing (i.e., producing, optionally storing, and selling) RPE cells to hospitals and clinicians. The production of differentiated RPE cells or mature differentiated RPE cells may be scaled up for commercial use.
[0196] The present invention also provides for methods of conducting a pharmaceutical business comprising establishing a distribution system for distributing the preparation for sale or may include establishing a sales group for marketing the pharmaceutical preparation.
[0197] The present invention provides methods of supplying RPE cells to hospitals, healthcare centers, and clinicians, whereby RPE cells produced by the methods disclosed herein are stored, ordered on demand by a hospital, healthcare center, or clinician, and administered to a patient in need of RPE ceil therapy. A hospital, healthcare center, or clinician orders RPE ceils based on patient specific data, RPE cells are produced according to the patient's specifications and subsequently supplied to the hospital or clinician placing the order. For example, after a particular RPE cell preparation is chosen to be suitable for a patient, it is thereafter expanded to reach appropriate quantities for patient treatment.
[0198] Further aspects of the invention relate to a library of RPE cells that can provide matched cells to potential patient recipients. Accordingly, the invention provides a method of conducting a pharmaceutical business, comprising the step of providing RPE cell preparations that are homozygous for at least one histocompatibility antigen, wherein cells are chosen from a bank of such cells comprising a library of RPE cells that may be expanded by the methods disclosed herein, wherein each RPE cell preparation is hemizygous or homozygous for at least one MHC allele present in the human population, and wherein said bank of RPE cells comprises cells that are each hemizygous or homozygous for a different set of MHC alleles relative to the other members in the bank of cells. As mentioned above, gene targeting or loss of heterozygosity may be used to generate the hemizygous or homozygous MHC allele stem cells used to derive the RPE cells.
[0199] The present invention also includes methods of obtaining human ES cells from a patient and then generating and expanding RPE cells derived from the ES cells. These RPE cells may be stored. In addition, these RPE cells may be used to treat the patient from which the ES were obtained or a relative of that patient.
[0200] The present disclosure demonstrates that human RPE cells may be reliably differentiated and expanded from human ES cells under well-defined and reproducible conditions—
representing an inexhaustible source of cells for patients with retinal degenerative disorders. The concentration of these cells would not be limited by availability, but rather could be titrated to the precise clinical requirements of the individual. Repeated infusion or transplantation of the same cell population over the lifetime of the patient would also be possible if deemed necessary by the physician. Furthermore, the ability to create banks of matching or reduced-complexity HLA hES lines from which RPE cells could be produced could potentially reduce or eliminate the need for immunosuppressive drugs and/or immunomodulatory protocols altogether. [0201] The present invention will now be more fully described with reference to the followi ng examples, which are illustrative only and should not be considered as limiting the invention described above.
EXAMPLES
[0202] The invention now being generally described, it will be more readily understood by reference to the following examples, which are included merely for purposes of illustration of certain aspects and embodiments of the present invention, and are not intended to limit the invention.
EXAMPLE 1
METHOD OF MAKING HUMAN RPE CELLS USING HES CELLS
[0203] Mouse embryo fibroblasts (MEF) were grown in MEF-GM medium supplemented with about 10% fetal bovine serum (FBS). When sufficient numbers of MEFs were obtained, feeder cells were prepared by mitotically blocking the MEFs with mitomycin-C and seeding into 6-well plates coated with gelatin. See Figure 1. Vials of hES were thawed, seeded on to the MEF feeder cells, and co-cultured in hES Growth Medium. See Table 2 and Figure 2. The hES ceils were expanded several times at a split ratio of about 1 :3. When a sufficient number of hES cells were propagated, the cells were harvested and placed into suspension culture in low attachment 6-well plates in EB Formation Medium (this allows for the formation of embryoid bodies (EBs)). See Table 2 and Figure 3.
[0204] The EBs were then be transferred to gelatin-coated 6-well plates to allow for the outgrowth of RPEs. The initial growth medium is EB Outgrowth Medium, but once the EBs were attached this was changed to EB Maintenance Medium. See Table 2. When cultures were about 70% confluent the medium was changed to MDBK-MM. Once sufficient numbers of RPE cell clusters were visible, the RPE cells were isolated and further propagated in EGM-2 medium until confluent. When confluent the RPE cells were cultured in MDBK-MM until the cells reach a medium pigment morphology and pigmentation. See Figures 4 and 5. The RPE cells were then harvested and stored frozen at below about -135°C (e.g., in the vapor phase of liquid nitrogen). See Figure 6. The RPE cells were produced in compliance with GMP. Thus, this method yields an effective amount of human RPE cells suitable for use in transplantation. EXAMPLE 2
SEEDING AND EXPANSION OF hES CELLS
[0205] Cryopreserved human embryonic stem cells (hES) cells were thawed, washed with hES-GM, and inoculated onto the mitotically inactivated mouse embryonic feeder (MEF) cells in the gelatin-coated 6-well plates. See Figure 7. The contents of each vial (~ 1 million
cryopreserved cells) of hES were seeded into one well of a 6-well plate, and co-cultures of hES and MEF are incubated for about 4—9 days until about 60-80% confluent. During this time the cultures were examined microscopically: larger colonies displaying mostly hES morphology were dispersed into smaller pieces to prevent spontaneous differentiation. Mosaic colonies with large areas of undifferentiated cells were trimmed by removing those portions comprised of differentiated cells. Colonies containing predominately differentiated cells or non hES cell morphology were picked and discarded, using a stem cell cutting tool using photographs as a guide to the morphology of the colonies. See Figure 2.
[0206] When 60-80% confluent, the hES cells were passaged by washing with Ca2+/Mg2+-free DPBS and treated with 0.05% trypsin/EDTA for about 2-5 minutes until detached. The trypsin was neutralized with MEF-GM and the cells collected by centrifugation. The hES cells are then reseeded on fresh MEF feeder layers. The hES cells were expanded several times at a split ratio of about 1 :4 or less. See Figure 3.
[0207] When a sufficient number of hES cells were propagated, hES cells were harvested. The cells were wash with Ca27Mg2+-free DPBS and treated with 0.05% trypsin/EDTA for about 2-5 minutes until detached. The trypsin was neutralized with MEF-GM and the cells collected by centrifugation. The hES cells were then resuspended in EB Formation Medium (EB-FM).
[0208] No additional MEF cells were used. The time between MEF removal and RPE cells harvest was 3 passages and about 80-90 days in MEF-free cell culture. The hES cell made by this method were further tested and confirmed to be substantially free of MEF cells by, for example, assaying for mouse specific markers. Upon testing of hES cell made by this method, it was found that the hES cells were substantially free of MEF cells. EXAMPLE 3
HUMAN EMBRYOID BODY FORMATION AND OUTGROWTH
[0209] hES cells were inoculated onto iow-attachment, 6-weI! plates (at a split ratio of 1 :2) and cultured for about 7-12 days until embryoid bodies were formed and matured. Embryoid bodies in suspension were harvested from the low attachment wells, resuspended in EB-FM, and plated onto gelatin-coated 6-welI culture plates. The plates were cultured undisturbed for about 3-4 days to allow the embryoid bodies to attach. At this time, medium was changed to EB Growth Medium (EB-GM). When cultures were about 70% confluent (e.g. , after about 9- 12 days), the medium was changed to RPE Maintenance Medium (RPE-MM). See Figure 3. Cell outgrowths from the attached EBs were sustained in culture in RPE-MM until the appropriate number of pigmented clusters were visible (e.g. , after about 35-50 days after changing to RPE-MM). Thus, embryoid bodies were formed and isolated substantially free of non-human cells and thus not "xenotransplantation" material. These EB may then be differentiated to produce human RPE cells.
EXAMPLE 4
USE OF CRYOPRESERVED hES CELLS FOR HUMAN EMBRYOID BODIES
[0210] Cryopreserved hES cells (e.g., MA01 and MA09) were thawed and placed into suspension culture on Lo-bind Nunclon Petri dishes in MDBK-Growth Medium or OptimPro SFM supplemented with L-Glutamine, Penicillin/Streptomycin, and B-27 supplement. The hES cells had been previously derived from single blastomeres biopsied from early cleavage stage human embryos. The remainder of the human embryo was not destroyed. The cells were cultured for at least about 7-14 days as embryoid bodies (EBs).
[0211] After at least about 7-14 days, the EBs were plated onto tissue culture plates coated with gelatin from porcine skin. The EBs were grown as adherent cultures for an at least about an additional 14-28 days in MDBK-Growth Medium or OptimPro SFM supplemented with
L-Glutamine, and Penicillin/Streptomycin, without B-27 supplement. From amongst the cells in the adherent culture of EBs, RPE cells became visible and were recognized by their cobblestone cellular morphology and emergence of pigmentation. Therefore, cryopreserved hES cells may be thawed, cultured, and used to form EBs that may, in turn, be used to produce human RPE cells without the use of MEF cells. EXAMPLE 5
HUMAN RPE CELL DERIVATION
[0212] Human RPE cell derivation was initiated when about 10-30 patches of light to dark brown clusters ~ 1 mm or less in diameter were visible in each well. This may require about 40- 50 days after switching to RPE-MM. Embryoid body cellular outgrowths containing pigmented patches were harvested by incubating in Type IV collagenase in DPBS with Ca27Mg2+ until cell clusters have detached. The detached cell clusters were triple washed in RPE-MM and transferred to 100 mm non-tissue (ultra low attachment) culture dishes. Under a
stereornicroscope, clusters of pigmented cells were mechanically separated from non-pigmented cell clusters using a stem cell cutting tool. Once all the pigmented clusters have been isolated, the collected clusters were examined under the stereornicroscope to remove any non-pigmented clusters that may have been transferred. Pigmented cell clusters were washed in RPE-MM and then dissociated in a 1 : 1 mix of 0.25% Trypsin-EDTA and Cell Dissociation Buffer. The dissociated cells were washed in MEF-GM to neutralize the trypsin and centrifuged. Cell pellets were resuspended in RPE Growth Medium (RPE-GM) before plating in gelatin-coated 6-well plates. See Figure 4. Accordingly, cultures of human RPE cells that are substantially free of hES cells may be differentiated and isolated without the use of non-human feeder cells.
Therefore, the human RPE cells prepared in accordance with the methods described herein may be considered substantially free of non-human cells, thus not a xenotransplantation material, and hES cells, thus not tumorigenic.
EXAMPLE 6
HUMAN RPE EXPANSION
[0213] Resuspended human RPE cells were inoculated onto gelatin-coated 4-well or 6-well plates at a density of 50,000 or 250,000 cells, respectively in RPE-GM and cultured until confluent (about 8-1 1 days). At this time, the medium was changed to RPE-MM and incubated for about 9-14 days until the RPE cultures display a medium level of pigmentation. Passage 0 (P0) RPE cultures were harvested with a 1 : 1 mix of 0.25% Trypsin-EDTA and Cell Dissociation Buffer, neutralized with MEF-GM and collected by centrifugation. Cell pellets were
resuspended in RPE-GM and reinoculated onto gelatin-coated plates at a ratio of 1 :3 to 1 :6. RPE cell cultures were expanded at least twice (undergoing two 1 :3 to 1 :6 splits (passage 2
designation). At this time the human RPE cells were harvested. In this manner, the number of RPE cells may be greatly increased i ncluding to reach therapeutically useful amounts of human RPE cells (e.g., at least about l x l 03-l x l 06 RPE cells).
EXAMPLE 7
PROPAGATION OF MATURE HUMAN RPE CELLS
[0214] RPE cells were cultured in an adherent culture. As differentiated RPE cells appear in the adherent cultures, clusters of differentiated RPEs may become visibly noticeable based on cell shape. Frozen collagenase IV (20 mg/ml) was thawed and diluted to 7 mg/ml. The collagenase IV was applied to the adherent culture containing RPE clusters (1 .0 ml to each well in a 6- well plate). Over about 1 -3 hours, the collagenase IV dissociated the cell clusters. By dissociating the RPE clusters from other cells in the culture, an enriched suspension of RPE cells was obtained. The enriched RPE cell suspension was removed from the culture plate and transferred to a 100 mm tissue culture dish with 10 ml of MEF medium. Pigmented clumps were transferred with a stem cell cutting tool (Swemed-Vitrolife) to a well of a 6-well plate containing 3 ml of MEF media. After all clumps have been picked up, the suspension of pigmented cells was transferred to a 15 ml conical tube containing 7 ml of MEF medium and centrifuged at 1000 rpm for five minutes. The supernatant was removed. 5 ml of a 1 : 1 mixture of 0.25% trypsin and cell dissociation buffer was added to the cells. The cells were incubated for 10 minutes at 37°C. The cells were dispersed by pipetting in a 5 ml pipette until few clumps were remaining. 5 ml of MEF medium was added to the cells and the cells centrifuged at 1000 rpm for 5 minutes. The supernatant was removed and the cells were plated on gelatin coated plates with a split of 1 :3 of the original culture in EGM-2 culture medium. See Figure 4.
[0215] The culture of RPE cells was expanded by continued culture in EGM-2 medium. The cells were passaged, as necessary, at a 1 :3 to 1 :6 ratio using a 1 : 1 mixture of 0.25% trypsin EDTA and Cell Dissociation Buffer. To enrich for mature differentiated RPE cells, the cells were grown to near confluency in EGM-2. The medium was then changed to MDBK-MM (SAFC Biosciences) to further promote maturation of the RPE cells. Accordingly, mature human RPE cells may be prepared for use in therapeutic methods. EXAMPLE 8
RPE CELLS HARVEST AND CRYOPRESERVATION
[0216] The human RPE cells were grown to near confluency and the medium changed to RPE Maintenance Medium. The RPE cells were then cultured until the cells reach a medium pigment morphology and pigmentation. This may take at least about one additional month of culture time. The medium pigment is based on a culture that appears to contain about half of the cells in the dense cobblestone state and half the culture in the lighter, less dense morphology. Pictures may be utilized to help standardize the process. The medium pigment morphology was chosen because the viability post-thaw is maintained, the recovery of the cells is better than the high pigment, and the pharmacology showed similar efficacy to the other morphologies.
[0217] P2 or P3 medium-pigmented RPE cells in culture were harvested by washing and treatment with 0.25% Trypsin-EDTA, Detached RPE cells were washed with MEF-GM to neutralize the trypsin, centrifuged, counted and resuspended in a solution of 90% FBS and 10% DMSO at a concentration of 1 million cells/mL. One raL of cell product suspension was dispensed into an appropriately labeled, sterile, 1.2 mL cryovials. Vials were stored for 1-3 days at -80°C prior to transfer to the vapor phase of liquid nitrogen storage (-135°C.) See Figure 6. Thus the cryopreserved preparations of RPE cells may be manufactured.
EXAMPLE 9
COMPLIANCE WITH GTP AND/OR GMP REGULATIONS
[0218] Human RPE cells, either harvested or thawed from cryopreserved vials may be tested and characterized in compliance with GTP and/or GMP Regulations as presented in Table 3. See also 21 C.F.R. § 210 and § 21 1.
Figure imgf000063_0001
Figure imgf000064_0001
[0219] Table 4 provides a description of the tests that may be performed for characterization and qualification during the production of RPE cells including RPE cells preparations for use in transplantation therapies. The RPE cells produced in accordance with the methods described herein may be tested by at least one of the tests listed in Table 4. INTERNATIONAL PATENT APPLICATION NO. UN ASSIGNED
ATTORNEY DOCKET NO. 75820.001020
[0220] Table 4 Description of Tests for Characterization and Qualification
Figure imgf000065_0001
Figure imgf000066_0001
Figure imgf000067_0001
Figure imgf000068_0001
Figure imgf000069_0001
Figure imgf000070_0001
[0221] These assays were performed on representative cultures and preparations of human RPE cells and confirmed that the methods described herein yielded therapeutically useful amounts of human RPE cells that met the GTP and/or GMP standards. Further, the RPE cells described herein may comply with at least one of the standards recited in Tables 3 or 4. Therefore, the methods described herein may be used to produce therapeutically useful amounts of human RPE ceils that meet GTP and/or GMP standards for use in therapeutic applications (e.g., treating retinal degeneration.)
EXAMPLE 10
RPE CHARACTERIZATION AND TESTING
[0222] RPE cells may be seeded on gelatin. The RPE cells seeded on gelatin usually show loose pigmentation and epithelial morphology as they divide and migrate away from the initial attachment site. See, e.g. , Klimanskaya, et al. (2004) Cloning and Stem Cells 6(3): 1 -29, Figure
] . However, once confluency is reestablished, the RPE cells may revert to epithelial morphology and re-expressed pigment. See, e.g., id., Figure 2. Various tests may be performed to confirm that the RPE cells maintain their RPE phenotype (e.g. , phenotype stability) including RPE molecular markers, assaying for phagocytic activity, and confirming the absence of adventitious viruses. See, e.g., id.
RPE Molecular Markers
[0223] RPE cells express several characteristic RPE proteins in vivo, including bestrophin, RPE65, CRALBP, and PEDF. See, e.g., id., Figure 3. Pigmented epithelial morphology of RPE- Iike differentiated derivatives of hES cells, may be lost in proliferating cultures and
re-established upon reaching confluency as well as the presence of RPE molecular markers RPE65, CRALBP, bestrophin, and PEDF. Therefore, the RPE cells described herein are similar to natural RPE ceils. See also id.
Phagocytosis Assay
[0224] Functional tests for characterization of the RPE cells include RPE-specific phagocytosis using an assay with labeled rod fragments or fluorescent S. aurelius particles. RPE cells provide functional support to photoreceptors through phagocytosis of shed photoreceptor fragments. Therefore, phagocytosis represents a major functional characteristic identifying RPE cells. [0225] Approximately 500,000 formulated RPE cells may be seeded in gelatin-coated wells of a 4- well plate and cultured until medium-pigmentation is observed. The cells may then be incubated with fluorescent S. aurelius particles for at least about 24-36 hours at about 37°C. A negative control may be performed with the same plates incubated at about 1~4°C for the same duration. After the incubation, the plates may be rinsed 3 times with PBS to remove the remaining particles, fixed with 2% paraformaldehyde in PBS, rinsed twice with PBS and examined and photographed under the fluorescence inverted microscope.
[0226] Human RPE cells produced according to the methods described herein are capable of phagocytosis of both latex beads and photoreceptor fragments.
Morphological Assessment
[0227] Manually-purified, hES cell-differentiated RPE in vitro may undergo significant morphological events in culture during the expansion phase. Single-ceil suspensions plated in thin cultures depigment and cells tend to increase in surface area. The human RPE cells maintain this morphology during expansion when the cells are rapidly dividing. However, when cell density reaches maximal capacity, RPE may take on their characteristic phenotypic hexagonal shape and increase pigmentation level by accumulating melanin and lipofuscin.
[0228] Routine morphological assessment may be done using a phase contrast inverted light microscope throughout the duration of the production process. Digital microphotographs may be taken at key stages. Morphological assessment may be performed to confirm maintenance of the RPE phenotype. Human RPE produced according to the methods described herein show a stable RPE phenotype, lasting over 9 months. See Example 19.
Karyotyping
[0229] Karyotyping {e.g., by G-banding and FISH) may be performed to ensure that only cells maintain a normal ploidy {e.g., 46 chromosomes for humans). This karyotype analysis may be performed after harvest and seeding of hES cells for EB formation, after seeding of the PI passage of RPE cells, and at the harvest of the RPE cells described herein prior to
cryopreservation, for example. Human RPE produced according to the methods described herein show a stable karyotype {e.g., 46 chromosomes for humans). See Table 1 .
Adventitious Viruses
[0230] In order to confirm the absence of viral contamination RPE cells, a batch of RPE cells (RPE MA09p32) were prepared in accordance with the methods described herein. The RPE cells were passaged an additional two times prior to harvest and testing for viruses, to ensure that any virus is given the maximum chance to he expressed. At passage 4, RPE MA09p32+4 cells were harvested and tested for inapparent viruses and in vitro viruses. A portion of the cells was passaged one further time (lot RPE MA09p32÷5) before being sent for ultrastructural evaluation of viral particles. These cells were substantially free of viral contamination indicating that the manufacture of RPE cells does not result in hidden viruses.
Stability Testing
[0231] To verify the RPE cells may produce the desired characteristics after cryopreservation, vials of the RPE cells may thawed and characterized. The RPE cells may then be tested 1 , 2, 3, 6, 12, 18 and 24 months post freeze. A vial of RPE cells were prepared, cryopreserved, and thawed then tested. These RPE cells showed a normal, 46 chromosome (XX) karyotype†, was viable, substantially free from viruses, and viable after 6-9 months of cryostorage. Additionally, the RPE cells showed a normal, 46 chromosome (XX) karyotype!, was viable, substantially free from viruses, and viable after \-4 years of cryostorage.
[0232]†These RPE cells were derived from the female human embryonic stem cell line MA09. See Klimanskaya, et al. (2007) Nat Protoc. 2(8): 1963-72 and Klimanskaya, et at. (2006) Nature 444(71 18): 481-5.
EXAMPLE 11
MICROARRAY GENE EXPRESSION PROFILING OF RPE CELLS
[0233] A global gene expression analysis via microarray was performed on the human RPE cells derived from both of the single blastomere-derived hES cell lines MA01 and MA09 to test for the presence of RPE markers and the absence of ES markers. Additionally, fetal RPE, ARPE- 19, and retinoblastoma cell lines were analyzed as controls.
[0234] The data indicates that this phenotypic change to RPE is driven by a change in the global gene expression pattern of these cells, specifically with regard to the expression of PAX6, PAX2, Otx2, MitF, and Tyr. Based on ANOVA analysis comparing the respective hES cell line to its RPE counterpart, we selected the 100 highest and lowest expressed genes, and performed computational analysis to select genes related to pluripotency and eye development.
Upregulated genes are shown in Table 5. Downregulated genes are shown in Table 6. [0235]
Figure imgf000074_0001
Figure imgf000075_0001
Figure imgf000076_0001
Figure imgf000077_0001
Figure imgf000078_0001
Figure imgf000079_0001
Figure imgf000080_0001
Figure imgf000081_0001
Figure imgf000082_0001
Figure imgf000083_0001
[0236] The results of the mvcroarray assay demonstrates that RPE cells made by the methods described herein express multiple genes that are not expressed by hES cells, fetal RPE cells, or ARPE- 19 cells. The distinctive molecular fingerprint of mRNA and protein expression in the ES-cell derived RPE cells of the invention constitutes a set of markers, such as RPE-65, Bestrophin. PEDF. CRABLP, Otx2. Mif-F, PAX6 and PAX2, that make these RPE cells distinct from cells in the art, such as hES cells, ARPE- 19 cells, and fetal RPE cells.
EXAMPLE 12
RPE-SPECIFIC mRNA EXPRESSION MEASURED BY QUANTITATIVE, REAL-TIME, REVERSE TRANSCRIPTION PCR (QPCR)
[0237] In order to characterize developmental stages during the human embryonic stem cell (hES) differentiation process into retinal pigmented epithelium (RPE) assays were employed to identify the expression levels of genes key to each representative stage of development. qPCR was developed to provide a quantitative and relative measurement of the abundance of cell type-specific mRNA transcripts of interest in the RPE differentiation process. qPCR was used to determine genes that are expressed in human embryonic stem cells, in neuroretinai cells during eye development, and in RPE cells differentiated from human embryonic stem cells. The genes for each cell type are listed below in Table 7.
Figure imgf000084_0001
[0238] It was determined that hES-specific genes included Oct-4 (POU5F1), NANOG, Rex- 1 , TDGF-J , SOX-2, and DPPA-2. Genes specific to neural ectoderm/neural retina include CHXIO, NCAM, Nestin, and β-TubuHn. By contrast, RPE cells differentiated from human embryonic stem cells were found to express PAX-6, PAX2, RPE-65, PEDF,
CRALBP, Bestrophin, MitF, Otx-2, and Tyr by qPCR measurement.
[0239] As evident from the qPCR tests, hES-specific genes are grossly downregulated (near 1000-fold) in RPE cells derived from hES, whereas genes specific for RPE and
neuroectoderm are vastly upregulated (about 100-fold) in RPE cells derived from hES. In addition, qPCR analysis of fully mature RPE demonstrated a high level expression of the RPE-specific markers RPE65, Tyrosinase, PEDF, Bestrophin, MitF, and PAX6. This agrees with current literature regarding the Pax2-induced regulation of MitF and downstream activation of genes associated with terminally differentiated RPE.
[0240] The results of the assay demonstrates that RPE cells made by the methods described herein express multiple genes at the mRNA level that are not expressed by hES cells or neural ectoderm/neural retina cells. Thus the distinctive molecular fingerprint of mRNA in the ES-cell derived RPE cells of the invention constitutes a set of markers, such as RPE-65, tyrosinase, Bestrophin, PEDF, Mit-F, and PAX6, that make these RPE cells distinct from cells in the art, such as hES cells and neural ectoderm/neural retina cells. This assay also confirms that the human RPE cell preparations made in accordance with the methods described herein are substantially free from hES cell contamination.
EXAMPLE 13
RPE-SPECIFIC PROTEIN EXPRESSION IDENTIFIED
BY WESTERN BLOT ANALYSIS
Γ0241] To identify proteins expressed in the human RPE cells, a subset of hES-specific and RPE-specific markers were assayed by Western Blot. Actin was used as protein loading control.
[0242] The Western blot analysis confirms that the human RPE cells derived from hES cells did not express the hES-specific proteins Oct-4, NANOG, and Rex-1 , whereas they expressed RPE65, CRALBP, PEDF, Bestrophin, PAX6, and Otx2. These proteins are therefore prominent markers of RPE cells differentiated from hES cells. By contrast, APRE- 19 cells showed an inconclusive pattern of proteomic marker expression. See WO 2009/051671 , Figure 6.
[0243] The results of the assay demonstrates that RPE cells made by the methods described herein express multiple genes at the protein level that are not expressed by hES cells or APRE-19 cells. Thus the distinctive molecular fingerprint of protein expression in the ES-cell derived RPE cells of the invention constitutes a set of markers, such as RPE65, CRALBP, PEDF, Bestrophin, PAX6, and Otx2, that make these RPE cells distinct from cells in the art, such as hES cells and APRE-19 cells. This assay also confirms that the human RPE cell preparations made in accordance with the methods described herein are
substantially free from hES cell contamination. EXAMPLE 14
CRYOPRESERVED PREPARATIONS OF HUMAN RPE CELLS
[0244] It is preferable that human RPE cells require reach a level of medium pigmentation prior to cryopreservation. PCR may used to determine if the cells are ready for
cryopreservation (e.g., appropriate levels of RPE specific markers). Seven lots of human RPE cells (090621 , 090606, 121 1606, AB3, A090609, A090714, and A020101RG4) manufactured assayed for the selected hES and RPE markers.
[0245] For each lot, qRT-PCR assays for the seven markers were conducted in triplicate on at least 2 and up to 5 separate days. Data were normalized to the β-actin expression observed in each sample during each run and compared to the level of expression in the MA09 hES reference, also determined in each experimental run (MA09 hES cells were used as the pluripotent stem cells in the methods to make these seven lots of human RPE cells). For each of the seven lots, the mean expression for each marker was then calculated. To give each lot equal weight, the mean of the means for the seven RPE lots was then determined. Individual RPE lot means and the collective means for the four RPE markers and the three hES markers are shown in Table 8. Also shown are the highest and the lowest individual observed value for each of the markers. The data presented in Table 8 were plotted in the bar graph depicted in Figure 8.
Figure imgf000086_0001
Figure imgf000087_0001
[0246] The results of the assay demonstrates that human RPE cells made by the methods described herein express multiple genes that are not expressed by hES cells. Thus the distinctive molecular fingerprint of protein expression in the ES-cell derived RPE cells of the invention constitutes a set of markers, such as RPE65, CRALBP, PEDF, Bestrophin, PAX6, and Otx2, that make these RPE cells distinct from hES cells. Accordingly, the human RPE cells described herein show upregulation of the RPE cell markers, RPE65, PAX6, bestrophin, and MITF, and downregulation of the ES cell markers, OCT4, NANOG, and SOX2, confirming that the human RPE cells are fully differentiated and have lost their pluripotency. This assay also confirms that the human RPE cell preparations are substantially free from hES cell contamination. Further, these RPE cells are at a desirable level of pigmentation so that they may be cryopreserved and thawed with high levels of viability after thawing.
EXAMPLE 15
PHARMACEUTICAL PREPARATIONS OF HUMAN RPE CELLS
Manufacture of Pharmaceutical Preparations of human RPE
[0247] Pharmaceutical preparations of human RPE cells may be manufactured aseptically in a Class 100 biological safety cabinet. The diluent utilized for the pharmaceutical
preparations may be ALCON BSS Plus® Intraocular Irrigating Solution, a sterile balanced salt solution, comprising sodium chloride (NaCl) 7.14 mg, potassium chloride (KG) 0.38 mg, calcium chloride dihydrate (CaCl2*H20) 0.154 mg, magnesium chloride hexahydrate
(MgCl2*6H20) 0.2 mg, dibasic sodium phosphate (HNa2P04) 0.42 mg, sodium bicarbonate (NaHC03) 2.1 mg, dextrose 0.92 mg, glutathione disulfide 0.384 mg, and sodium hydroxide and/or hydrochloric acid to adjust pH and water for injection per milliliter (mL), The pH is about 7.5 and the osmolality about 305 mOsm/Kg. [0248] Prior to injection, the RPE cells may be thawed for use. The vial of cells may be removed from the liquid nitrogen freezer, placed in a water bath at 37°C, and constantly agitated until the entire contents are liquid. For each cryovial, the thawed contents may be resuspended in 1 mL of RPE-MM and transferred to a separate sterile 50 mL tube. RPE-MM are added to each conical tube to bring the volume to 40 mL. The tube may then centrifuged, the supernatant aspirated and the pellet resuspended in 40 mL of BSS-Plus. The cell suspension may be again centrifuged, the supernatant aspirated. The pellet may be resuspended in a second volume of 40 mL of BSS-Plus and the cells pelleted by
centrifugation a third time.
[0249] The resulting peilet may be resuspended in about 75 μL of BSS-Plus per vial thawed and the cells transferred to a sterile 0.5 mL sterile microcentrifuge tube, A viable cell count may be performed and the appropriate volume of BSS-Plus is added to achieve the appropriate density of cells for dosing. The pharmaceutical preparations of human RPE ceils may have a preparation viability of at least about 85%. These cells may maintain this viability for at least about 4 hours post preparation. A 200 μΤ sample of the formulated product may be placed in a sterile microcentrifuge tube. The vial may be placed on ice for transport to the surgical facility and is stable for at least about 4 hours after preparation (e.g., cells may be used in therapy within at least about 4 hours of preparation). See FIGURE 7. DMSO Levels in Pharmaceutical Preparation
[0250] Three exemplary lots of RPE cells: 090621 , MA09p334+2, and MA01 p50÷4. Each lot was thawed and a final dose preparation was prepared as described herein to achieve a cell density of 1333 viable cells/μL (e.g., equivalent to about a 2x 105 cell dose). A 200 sample of the cell suspension was transferred to cryovials, frozen at -20°C and shipped to a testing lab for determination of DMSO residual levels using gas chromatography.
[0251] The results indicate that preparation of the pharmaceutical preparation of RPE lots 090621 , MA09p334+2, and MA01 p50+4 resulted in extremely low DMSO residual levels (ppm) (e.g., below levels considered acceptable for clinical administration). Therefore the preparation of the RPE cells described results in DMSO residual levels acceptable for clinical administration.
Endotoxin Levels in Pharmaceutical Preparation
[0252] Three exemplary lots of RPE cells: 090621 , MA09p334+2, and MA01p50+4. Each lot was thawed and a final dose preparation was prepared as previously described to achieve a cell density of 1333 viable cells/pJL (e.g., equivalent to about a 2x 105 cell dose). A 100 μί^ sample of the cell suspension was transferred to cryovials, stored at 4°C and shipped to a testing lab for endotoxin levels using a kinetic turbidimetric assay with a sensitivity of 0.001 EU/mL.
[0253] The results indicate that preparation of the clinical formulation using RPE lots 090621 , MA09p34+2, and MA01 p50+4 resulted in endotoxin levels of <0. 100, 0.993 and <0. 100 EU/mL, respectively. Therefore the preparation of the RPE cells according to the methods described herein results in endotoxin levels acceptable for clinical administration. Thus the human RPE cells prepared according to the methods described herein may be prepared, stored, thawed, and formulated in a pharmaceutical preparation suitable for therapeutic applications.
EXAMPLE 16
CAPILLARY AND CANNULA CELL DELIVERY SYSTEMS
[0254] Needle/syringe and cannula systems were tested for damage/loss of human RPE cells (e.g., cell viability/activity, cell adhesion to the syringe) at a cell dose of about 1 x10' human RPE cells in a small volume (e.g. , about 2-3 μL).
Capillary Cell Delivery System
[0255] Cryopreserved vials of RPE lot 090621 were thawed and formulated in a
pharmaceutical preparation. The resulting RPE were formulated in BSS-Plus and resuspended at 50,000 viable cells per microliter ( μL).
[0256] The capillary delivery system used was a 25μL Hamilton syringe and a standard glass capillaries made by World Precision Instruments (WPI), Standard Glass Capillaries: 4 in. (100 mm); 1 ,5/0.84 OD/ID (mm) filament, fire polished using natural gas.
[0257] The Hamilton syringe and glass capillaries were autoclaved prior to use. The tubing was flushed with 70% sterile ethanol using a syringe and needle. This was followed by thorough flushing with sterile PBS prior to use. A 20 gauge syringe needle was affixed to the syringe. One end of the tubing was fitted to the needle and the other end of the tubing was inserted over the capillary tube.
[0258] BSS-Plus was drawn into the capillary, tubing, and syringe. BSS-Plus was then expelled until about 2-3 inches of the tubing was void to ensure that there was an air bubble between the cells and medium. About 10-12 μL of the cell suspension was drawn into the capillary. About 2 μ]^& of the cell suspension was dispensed over about a 10-20 second time interval into a sterile microcentrifuge tube. The dispensing was repeated 8 times until about 16 had been delivered over about a 1.5-2 minute period. [0259] The RPE cells were then assessed for assessed for viable cell number and their ability to grow in culture. Samples of RPE cells that had been delivered through the capillary were tested for viable cell number by trypan blue exclusion and compared to the same formulated RRE cells that had not been delivered. Control and capillary subjected cells were also seeded in 4-well plates at 50,000 viable cells per well in 1 mL of RPE growth medium. After four days in culture, control and capillary delivered RPE cells were trypsinized and cell counts were performed.
[0260] Vials of cryopreserved RPE cells (lot 090621) were thawed, washed and resuspended in BSS-Plus at a concentration of 50,000 viable cells per microliter. The viability of the formulated RPE was 88%. The viable cell counts performed on RPE preparation that had been delivered through the capillary system versus control cells are shown in the Table 9.
Figure imgf000090_0001
[0261] To assess longer-term survival, aliquots of RPE capillary delivered and control RPE cells were seeded at 50,000 viable cells per well and cultured for four day before harvesting and counting. These results are also shown in Table 8.
[0262] Capillary-injected and non-injected RPE showed no difference regarding the viability, viable cell number or the ability to propagate in culture. The capillary-injection system used in the preclinical studies had no adverse effects RPE number, viability or their capacity to proliferate in culture.
Cannula Cell Delivery System
[0263] A study was done to confirm that the use of the cell delivery system, a 30-gauge Angled Rigid Injection Cannula, (Synergetics Inc.), does not have an impact on the viability or survivability of the RPE cells. This study was performed with nominal cell concentrations of 800 cells/nL and 1 ,000 cell/μL.
[0264] Cryopreserved RPE cells (Lot 090621) were thawed, washed with MDBK-MM media, and resuspended with BSS-Plus. Resuspended RPE cells were centrifuged and resuspended again with 400 μL of BSS-Plus in a fresh microcentrifuge tube. A viable cell count was done on the cell suspension, and the concentration was adjusted to ± 5% of the target concentration. The rigid injection cannula was attached to a 1 mL TB syringe asepiically, and 200 μL of the cell suspension were drawn up into the syringe via the cannula. The remaining 200 μL in the tube was labeled "Non-Cannula". The cell suspension in the syringe was dispensed into a new microcentrifuge tube at a rate of 10-15 $L over 10 seconds.
[0265] A viable cell count was cell count was done to the "Cannula-Injected" sample. From both the "Non-Cannula" and "Cannula" samples 10,000 cells/wel! were seeded into 96 well- plates the cells were cultured in RPE-GM. Another cell count was done 3-4 days post seeding to assess the long term survival status. The cell counts for the canmila-injected sample and non-cannula injected sample are provided in Table 10.
TABLE 10 RPE Survival for Non-Cannula and Cannula Suspension
Figure imgf000091_0001
[0266] The number of viable cell/μL after the cannula passage was comparable to the non- injected RPE cells as shown in the Table 9. Also, the number of viable cells 3-4 days post seeding did not differ significantly. The data presented herein demonstrates that the needle/syringe and cannula systems that may be used for administration of human RPE cells can deliver a cell dose up to lx 105 human RPE cells in a small volume {e.g., about 2-3 μL) without damage/loss of cells (e.g., cell viability/activity, cell adhesion to the syringe). In conclusion, cannula/syringe passage does not substantially affect the viability or survivability of RPE cells. This is consistent with the preclinical data which shows that following subretinal injection in rats and mice, RPE cells are seen both microscopically and using immunostaining using human specific antigens.
EXAMPLE 17
RPE CELLS ARE NOT TUMORIGENIC
[0267] The methods of producing RPE cells described herein remove ES cells from the RPE cell preparation, thereby reducing the risk of teratoma formation. This was confirmed by assays to detect the presence of hES in the RPE cells described herein. The human RPE cells described herein were tested for tumor formation and no such tumors were detected.
[0268] ΝΙΗ-III nude mice considered suitable for study were weighed prior to cell implantation. A total of 27 animals were treated with hES cells, 30 animals were treated with RPE cells, and 10 animals were left untreated. After all implantation procedures were completed, 56 male mice (weighing 19.6 to 26.0 g at randomization) were assigned to the respective control and treatment groups identified in the following table using a simple randomization procedure for each group.
TABLE 11 SUMMARY OF ADMINISTRATION
Figure imgf000092_0001
[0269] At necropsy, the animals were euthanized and necropsied sequentially but alternating groups. The animals were evaluated at 4, 12 and 40 weeks (which is the approximate lifespan of the animal models). As only one eye from each animal was treated, each animal acted as its own control.
[0270] The hES cell group observed significant tumor formation in 100% of the animals, some as early as 4 weeks. In contrast, the RPE treated animals did not form tumors out to the lifespan of the animals. Thus the human RPE celts preparations do not pose a risk of tumor formation following transplantation. Accordingly, the human RPE cell preparations are acceptable for use in transplantation (e.g., therapeutic applications).
EXAMPLE 18
THE RPE CELLS ARE STABLE AND INTEGRATED IN ANIMAL MODELS AFTER TRANSPLANTATION
[0271] A fundamental limitation on the success and usefulness of cell-based therapies (e.g., transplantation) is the inability of the transplanted cells to survive, maintain their phenotype, integrate, and function following transplantation. To assess the stability and integration of RPE cells, following injection into the eyes of 22 N1H-III mice, the presence and phenotypic stability of the transplanted human RPE cells was confirmed by immunofluorescense (to detect human molecular markers) and PCR (to detect human DNA), At I week, 1 month, 3 month, and 9 month time points the hRPEs were be identified apart from other cells by means of their physical characteristics (e.g., by their mRNA and protein expression and presence of human DNA in a mouse model. )
Co- immunofluorescence
[0272] In mouse eyes injected with human RPE cells, the human RPE cells were identified by positive co-immunofluorescence to human mitochondrial antigen and bestrophin antigen and located within the mouse retinal pigmented epithelial cell layer, subjacent to the retina, within the posterior chamber or within the remaining scar at 9 months post-injection. Under light microscopy, the morphology of the positive staining cells was characterized as typically linear arrangements of cuboidal cells with round nuclei that were displaced eccentrically by small golden-brown intracytoplasmic pigment, and were consistent with retinal pigmented epithelial cells.
[0273] Cells staining positive for both human mitochondria and bestrophin were identified as linear to small round aggregates within the RPE layer, in subretinal locations, within scar, or as small aggregates within the posterior chamber vitreous space. Specifically,
immunofluorescent cells consistent with RPE were identified within the mouse RPE layer and subretinal space in 8 of 12 mice eyes examined in this study. In 2 of 4 mice eyes, RPE cells were also identified within the posterior chamber and in 1 of 4 mice, RPE cells were identified in scar. RPE cells were not observed in 3 of 12 eyes prepared for staining.
[0274] Under bright field light microscopy, in all cases the morphology of the positive- staining human cells was characterized as organized linear arrangements of 4 to 10 cuboidal cells with round nuclei that were displaced eccentrically by small golden-brown
intracytoplasmic pigment, consistent with retinal pigmented epithelial cells. When associated with the mouse RPE, the human cells displayed typical polarity along a basement membrane with basally located nuclei and apically located pigmented granules. The human cells could be distinguished from mouse RPE as the human cells appeared slightly larger with fewer and smaller yellow-brown pigmented granules compared to the mouse RPE. There was no evidence of abnormal growth in the sections examined under the conditions of bright field microscopy.
[0275] None of the isotype or negative antibody controls showed any specific staining. The untreated eye was consistently negative for any fluorescence.
Detection of human DNA
[0276] Although there is wide inter-animal variation within all the cohorts, human DNA was detected in all transplanted mice tested, including the 22 mice assayed at the final (nine month post-transplantation) time-point. DNA was generally higher in mice that received the 100,000 cell dose compared to mice that received 50,000 RPE ceils. There is a relatively consistent level of DNA present throughout the observation period out to nine months with no consistent increase or decrease in DNA content. Additionally, histopathological assessments confirm that RPE cells survived in animal eyes out to nine months.
Table 12 Human DNA Detected in Mouse E es Transplanted with RPE Cells†
Figure imgf000094_0001
[0277J† The inter-animal variation within all the cohorts (e.g. , apparent different levels
DNA observed among the three groups) is not considered significant and is attributed to variability in the surgical procedure which may impact cell survival.
[0278] The eyes receiving the transplanted human RPE cells displayed healthy swathes of bestrophin positive cells with typical RPE morphology. No tumors were detected in this group or any other cohort except mice injected with the 100% hES dose.
[0279] These data show that the N1H-III mouse model supports the survival of the injected human RPE cells for a significant time interval. A major obstacle to developing a stem cell- based therapy for degenerative retinal disorders is the poor integration and differentiation of retinal stem cells transplanted into recipient retinas. The RPE cells described herein, in contrast, are well tolerated, stable, and integrate into the patent after administration without tumor formation. EXAMPLE 19
HUMAN RPE CELLS SURVIVE LONG-TERM,
POST-INJECTION IN OCULAR TISSUES
[0280] A limitation on the success and usefulness of cell-based therapies (e.g.,
transplantation) is the inability of the transplanted cells to survive long-term following transplantation and the risk of teratoma formation. The purpose of this example was to identify, localize and characterize the morphology of RPE cells after 1 , 3 and 9 months post- injection. The transplanted human RPE cells survived in representative animals up to over 200 days, with no evidence of tumor formation or non-retinal human cells in the eyes. Cell proliferation was evaluated at the 9 month time point for animals evaluated in the utilizing Ki67 staining. No proliferation was seen in either of these studies.
[0281] Selected ocular tissue sections were stained for the presence of human mitochondria, human bestrophin, and human Ki67. Anti-human mitochondrial staining was used as a clear marker for confirming human cell origin. Bestrophin is a basolateral plasma membrane protein expressed in retinal pigment epithelial cells, and was used to confirm RPE origin. Ki67 is a well recognized cell proliferation marker. See, e.g. , Magdelenat (1992) J, Immunol. Methods 150(1-2): 133^13.
[0282] Immunofluorescence staining was chosen over immunoperoxidase staining for demonstration of the antigens due to the presence of pigment in the cells of interest and to facilitate double staining of sections for bestrophin and Ki67. Ki67 staining in this study was only conducted at the 1 and 3 month timepoints.
[0283] Positive and negative control tissues showed specific, sensitive and reproducible staining with minima! nonspecific background staining. Cells stained for human
mitochondria as bright red punctate cytoplasmic staining viewed with Cy3 580 nm filter. Cells stained for bestrophin as bright green basolateral membrane staining viewed with Zlexa 488/Dylight488-550 nm filter, Ki67 staining was specific for nuclei and was bright green under the same filter. Antibodies appeared to be human-specific as there was no cross- reactivity with mouse tissue. However, some background staining was encountered in some sections, usually associated with retinal photoreceptors, vessel walls, collagen or skeletal muscle, but it was easily distinguished based on level of brightness, staining pattern and location.
[0284] None of the isotype or negative antibody controls showed any specific staining. The untreated eye was consistently negative for any fluorescence. [0285] At all time points, cells staining positive for both human mitochondria and bestrophin were identified as linear to small round aggregates within the RPE layer, in subretinai locations, occasionally within scars, or as small aggregates within the posterior chamber vitreous space. In all cases, the morphology of these human cells was characterized as organized cuboidal epithelial cells with round nuclei displaced by small golden-brown intracytoplasmic pigment, consistent with pigmented epithelial cells. When associated with the mouse RPE, the human cells displayed typical polarity along a basement membrane with basally located nuclei and apically located pigmented granules. The human cells could be distinguished from mouse RPE as the human cells appeared slightly larger with fewer and smaller yellow-brown pigmented granules compared to the mouse RPE.
[0286] At the 1 month time point, the RPE cells were readily identified as linearly organized celts within the RPE and/or subretinally in 5 of 6 mice dosed with 100,000 cells and nuclear Ki67-positive staining was observed in 4 out of 5 mice eyes in which RPE cells were identified. In mice dosed with 50,000 cells, RPE cells were observed in 3 of 6 mice eyes, and Ki67-positive cells were also observed in these same 3 mice eyes.
[0287] At the 3 month time point, most of the slides had moderate sectioning artifact but small aggregates of RPE cells were identified within the RPE and/or subretinai space in 2 out of 6 mice dosed with 100,000 cells and 3 out of 6 mice dosed with 50,000 cells. Ki67 staining was performed for 2 mice dosed with 100,000 cells and 4 mice dosed with 50,000 cells: Ki67 positive staining was observed in human RPE cells in 4 of 6 mice. No staining for Ki67 was observed in 2 mice in which staining for RPE was adequate (both in the 50,000 cell dose group). In 2 mice dosed with 100,000 cells, only few RPE cells were identified and considered inadequate to assess Ki67 status,
[0288] At the 9 month time point, tmmunopositive RPE cells were identified within the mouse RPE and/or subretinai space in 5 of 6 mice eyes dosed at 100,000 cells and 2 of 5 mice eyes dosed with 50,000 cells. In 1 of 1 1 mice (animal number 743 dosed with 100,000 cells) immunopositive RPE cells were identified in the posterior chamber and scar; and in 1 animal (animal number 744 dosed with 50,000 cell) RPE cells were only observed in the scar. RPE cells were not identified in 2 of 5 eyes prepared for staining in 50,000 cell group at the 9 month time-point. Ki67 staining was not performed for this group of slides.
Conclusion
[0289] In mouse eyes injected with human retinal pigmented epithelial cells, RPE cells were identified by positive co-immunofluorescence to human mitochondrial antigen and bestrophin antigen and located within the mouse retinal pigmented epithelial cell layer, subjacent to the retina, within the posterior chamber or within the remaining scar up to 9 months post-injection. Under bright field light microscopy, the morphology of the positive staining celis was characterized as typically linear arrangements of cuboidal cells with round nuclei that were displaced eccentrically by small golden-brown intracytopiasmic pigment, and were consistent with retinal pigmented epithelial cells. A subset of these celis showed nuclear positivity for the proliferation marker Ki67 at 1 and 3 months after injection.
[0290] Function was deteriorating down towards baseline levels by 180 days of age (i.e., 160 days post-transplantation). At the point where function was diminished, there were no signs of pathological manifestations.
[0291] The appearance of the remaining retina was also examined. There were no untoward manifestations. Photoreceptor survival was evident in most of the transplanted animals although donor cell survival as seen by human nuclear marker staining was less frequent. There was no indication of extraneous cell growth or of abnormal cell patterns within the inner retina.
[0292] Normal retinal appearance was observed in RCS rats (i.e., no vascular abnormalities, laminar disorder) in the area where the transplanted cells were introduced, in spite of the fact that donor cells were no longer evident in some of these eyes. Photoreceptors, although present, were fewer in number than would typically be seen at 100 days of age after P21 transplants. There was no evidence in any of the eyes examined of potentially tumorous growth of the donor cells.
[0293] Human pigmented epithelial cells were identified within segments of rat retinal pigmented epithelial cells, and thus confirm the presence of human cells in representative animals up to >220 days post surgery. The cells were consistent with RPE morphology and positive for bestrophin. Therefore, the human RPE cells described herein may be transplanted where they integrate forming stable, functional retinal pigmented epithelial layer.
Figure imgf000097_0001
[0294] Unlike other transplant locations, the eye is a small organ and the number of cells that may be implanted into the subretinal space is quite small (e.g., 100,000 RPE cells) compared to millions of cells that may be injected into other sites for other conditions. Additionally, the survival rate of transplanted cells (e.g., xenogenic, allogeneic, syngeneic, or autologous) in various animal models is generally low. Although donor cells may be easily detected immediately after transplantation (e.g., several days out to 3 weeks), there is a progressive loss of survival over time, generally resulting in less than 1 % long-term survival in animal model studies. For example, Wang, et al. (2005) Invest Opthalmol Vis Sci 46(7): 2552-60 reported a loss of surviving human RPE cells in immunosuppressed RCS rat eyes from 5% at 6 weeks post transplantation to 0.2% at 28 weeks. Carr, et al. (2009) PLoS One 4(12): 8152 disclosed that human iPS-RPE cells were undetectable 13 weeks post-transplantation. Del Priore, et al. (2003) Invest Opthalmol Vis Sci 44(9): 4044-53 found <1 % of porcine RPE cells in rabbit eye model after 12 weeks and Canola, et al. (2007) Invest Opthalmol Vis Sci 48(1): 446-54 showed only 0.44% of injected cells survived at 3 months. In the methods described herein, only a portion of the transplanted RPE cells {e.g., >1 %) may survive long- term {e.g., over 9 months). The inventors surprisingly discovered, however, that only a small number of cells are required to affect visual improvement.
EXAMPLE 20
EVALUATION OF VARIOUS DELIVERY PROCEDURES
[0295] The purpose of the example was to examine the subretinal injection of RPE cells in non-human primates, in particular vitrectomy, a method to create a subretinal bleb, and cell doses. The risk of stem cell graft rejection and the presence of any deleterious effects on the retinal physiology as a consequence of cell injection was also examined. The study used 8 animals (16 eyes). All animals were injected according to the following schedule in
Table 14.
Figure imgf000098_0001
Figure imgf000099_0001
[0296] The surgeries were done on two days: on the first surgery day the following steps were followed: After the animal was intubated, the area around the eyes were prepped with iodine solution. A 1060 drape was used to drape the animal for ophthalmic surgery. For each of the animal, the right eye was done first then the left. A Barraquer-type speculum was inserted. A peritomy was created in the superotemporal quadrant. The scleral bed was cauterized with wet-field cautery to achieve hemostasis. A sclerotomy was created 3 mm posterior to the limbus with a 20 gauge MVR blade. A plug was placed and a similar procedure was done in the superonasal quadrant to create a peritomy and a sclerotomy.
[0297] For some subjects, vitrectomy was performed using an end-irrigating light pipe, a vitrector, and a hand-held irrigating contact lens in an effort to elevate the posterior hyaloid. Then a 19 gauge end-irrigating light pipe, a Synergetics subretinal injector, and a Machemer irrigating contact lens were used to create subretinal blebs. Then a subretinal pick was used to inject the cells. Then the sclerotomies were closed using 6-0 Vicryl sutures and the conjunctival peritomy with a 6-0 plain gut sutures. Zinacef
(Cefuroxime, 125 mg) and Decadron (Dexamethasone, 10 mg) were given as subconjunctival injections OU. Erythromycin ointment was placed over the eyes OU.
[0298] On the second day of surgery, the following steps were followed for each procedure: After the animal was intubated, the area around the eyes was prepped with iodine solution. A 1060 drape was used to drape the animal for ophthalmic surgery. For each of the animal, the right eye was done first then the left. A Barraquer-type speculum was inserted. A peritomy was created in the superotemporal quadrant. The scleral bed was cauterized with wet-field cautery to achieve hemostasis. A sclerotomy was created 3 mm posterior to the limbus with a 20 gauge MVR blade. A plug was placed and a similar procedure was done in the superonasal quadrant to create a peritomy and a sclerotomy. Then a 19 gauge end-irrigating light pipe, a Synergetics subretinal injector, and a Machemer irrigating contact lens were used to create subretinal blebs. Then a subretinal pick was used to inject 50 micoliters of stem cells (2000 cells / microliter) into each of the blebs. Then the sclerotomies were closed using 6-0 Vicryl sutures and the conjunctival peritomy with a 6-0 plain gut sutures. Zinacef (Cefuroxime, 125 mg) and Decadron (Dexamethasone, 10 mg) were given as subconjunctival injections OU. Erythromycin ointment was placed over the eyes OU. Following each surgery retinal photos and ERGs were done. At termination all animals underwent full necropsy and the eyes were examined histologically.
[0299] To summarize, the technique was refined to be a two port pars plana approach with an irrigating light pipe and subretinal cannula, and we have histologically confirmed successful implantation to the subretinal space. A vitrectomy may also be performed, if desired.
[0300] One suitable method for subretinal bleb formation was as follows: the retina may be approached with the Synergetics subretinal cannula connected to a Hamilton 1 ml syringe with a screw plunger containing Balanced Salt solution (BBS). The BSS may be injected slowly creating a retinotomy and then a small subretinal bleb is raised. This may minimize retinal trauma. The cannula may be then introduced through the retinotomy and the BSS injection restarted and continued to expand the bleb to the correct volume. A process of gentle retinal massage releases the tension in the bleb. The Synergetics cannula may be removed and a 30-gauge Hurricane Instruments needle connected to tubing and syringe preloaded with cells may be introduced. The cells may be infused over about one minute under direct viewing to ensure correct cannula positioning and minimize reflux. This instrumentation procedure is suitable for use in humans.
[0301] Retinal photography and electrophysiology were performed on each eye
preoperatively and at the 2-week and one-month time points. Complete retinal reattachment was noted within 24 hours and multifocal ERG recordings show no electrophysiological evidence of pathology. In total, fifteen eyes of eight adult rhesus macaques underwent histological examination; one eye developed endophthalmitis and was excluded from the study. BrdU labeling was used to detect the human RPE cells. Cells were observed localized to the subretinal space and are associated with retinal reattachment, excellent preservation of retinal morphology, and lack of inflammation or rejection.
EXAMPLE 21
RPE CELLS IN PHOTORECEPTOR RESCUE IN THE RCS RAT MODEL [0302] At postnatal day 21 - 23 (P21 -23), RCS rats (n=\4) were anesthetized and received subretinai injections of 20,000 hRPE cells/eye via a trans-scleral approach into the upper temporal retina area. Control rats received an injection of medium alone (n=8). Non- dystrophic congenic rats were available for comparison. All animals received daily dexamethasone injections (1 .6 mg/kg, i.p.) for 2 weeks and were maintained on cyclosporin- A administered in the drinking water (210 mg/L; resulting blood concentration: 250-300 μg/L) days prior to ceil injection until animals were euthanized.
[0303] To test visual function, the electrical activity of the outer (a-wave) and inner (b-wave) retina in response to light flashes was tested by ERG responses at both P60 and P90. At P60, the a-wave ERG response is normally lost in RCS rats, and by P90, the b-wave response is severely depleted, allowing graft-related effects to be recognized over background performance. By P60, hES-RPE grafted animals achieved significantly better responses over sham-injected animals (p < 0.05, t-test) for a-wave (31 ± 27 vs. 6 ± 17 V), b-wave ( 108 ± 46 V vs. 36 ± 33 V) and cone b-wave (57 + 19 vs. 28 ± 13 V) (FIGURE 9).
[0304] The optomotor test was used to provide a measure of spatial acuity. On P100 sham- injected rats, a threshold response of 0.29 ± 0.03 c/d was recorded and untreated animals gave a figure of 0.21 ± 0.03 c/d. By contrast, the cell-grafted rats sustained levels of 0.42 ± 0.03 c/d, significantly better than sham injected rats (p < 0.05, t-test) (FIGURE 10).
[0305] Average and best performers in the optomotor test were selected from each group for luminance threshold response testing. Results were obtained from animals receiving hRPE cells (n = 7), sham injections (n = 5), and no treatment (ti = 6). In non-dystrophic rats, a threshold response of less than 0.6 log units is recorded. On P100, untreated RCS rat neurons across the whole visual field failed to respond with thresholds of 2.7 log units or better, while responses could be elicited from 18% of the area in sham-injected rats. By comparison, the celi-injected rats showed 52% of the collicular area with thresholds of 2.7 log units or better, with a best point of 1.3 log units (FIGURE 1 1).
[0306] Histological examination of the retinas demonstrated the presence of human specific nuclear marker that also stained for RPE-specific markers (RPE65 and bestrophin). Staining with human-specific proliferating cell nuclear antigen (PCNA) was negative, indicating that there was no proliferation of the hRPE cells. In addition, the histology revealed persistence of the cell population without inflammation or immune cell infiltration and without cellular proliferation or tumor formation.
[0307] The results of this study indicate that there was significant visual rescue above controls as determined by all three functional assessments. The cells survived long-term (> I 00 days) after transplantation into RCS rats, and localized to the subretinal space without migration into the retina. In addition to extensive photoreceptor rescue (5-7 cells deep in the outer nuclear layer), the relative acuity as measured by the optomotor system showed that animals treated with hES -derived hRPE performed significantly better than sham and untreated controls (50% and 100% improvement in visual performance, respectively; visual acuity was approximately 70% that of normal non-dystrophic rats). There was also no evidence of any tumor formation.
[0308] In these experiments, the transplantation of RPE cells resulted in the maintenance or improvement of visual function. Therefore RPE cells described herein may be used in a cell therapy for treating retinal degenerative disease such as the amelioration of age-related macular degeneration (AMD) and senile macular degeneration (SMD).
EXAMPLE 22
LONG-TERM SAFETY AND FUNCTION OF RPE FROM HUMAN EMBRYONIC STEM CELLS IN PRECLINICAL MODELS OF MACULAR DEGENERATION
Summary of Results
[0309] The RPE cells described herein may be used for the treatment of age-related macular degeneration and Stargardt's disease. Here we show long-term functional rescue using hESC- derived RPE in both the RCS rat and Elovl4 mouse, animal models of retinal degeneration and Stargardt's, respectively. Good Manufacturing Practice-compliant bESC-RPE survived subretinal transplantation in RCS rats for prolonged periods (>220 days). The cells sustained visual function and photoreceptor integrity in a dose-dependent fashion without teratoma formation or untoward pathological reactions. Near-normal functional measurements were recorded at >60 days survival in RCS rats. To further address safety concerns, a Good Laboratory Practice-compliant study was carried out in the N1H III immune-deficient mouse model. Long-term data (spanning the life of the animals) showed no gross or microscopic evidence of teratoma/tumor formation after subretinal hESC-RPE transplantation. See Lu, et al. (2009) Stem Cells 27: 2126-2135.
Animals and Experimental Designs
[0310] Pigmented dystrophic RCS rats in = 79) and ELOVL4 mice in = 28) were used in the main experiments. N1H III immunonude mice (« = 45) were used for safety study. For RCS rats, animals were divided into five groups according to the doses they received. They were 5 x 103 (5,000)/eye (» = 21 ), 2 x 104 (20,000)/eye (n = 21 ), and 5 x 104 (50,000)/eye (« = 21 ). Animals from all dosage groups received cells with low medium and high pigmentation. All above the dosage group animals were received cells with low, medium and high pigmentation (Table 14). For further comparison, two groups were added: one group of animals (n - 8) received 7.5 x 104 (75,000)/eye cells and another group (n = 8) received 1 x 105
( 100,000)/eye cells with medium pigmentation. For ELOVL4 mice, the eyes received 5 x 104 (50,000)/eye cells with medium pigmentation. All animals in the main experiments were maintained on oral cyclosporine A administered in the drinking water (210 mg/1, resulting blood concentration of -300 μg/l) from 1 day before transplantation until they were sacrificed. An intraperitoneal injection of dexamethasone was given for 2 weeks (1 .6 mgfcg/day) after surgery in cell and control injected rats and for 2 weeks alone in untreated animals. All animals were maintained under a 12-hour light/dark cycle.
Cell Preparation
Culture of hES cells and Differentiation into Mature RPE Cells.
[0311] All cell manufacturing procedures were carried out in ISO Class 5 biosafety cabinets in an ISO Class 7 clean room facility under strict environmental control monitoring systems and a routine microbial testing regimen. Single-blastomere hESC lines MA01 and MA09 were maintained as previously described herein. hES cells were dissociated from the primary mouse embryonic fibroblast layer by treatment with 0.05% trypsin-EDTA and were seeded in 6-well low-attachment plates to allow EB formation in a chemically defined minimal essential medium (MEM)-based medium (MDBK-GM) containing B-27 supplement for about 7 days and plated on gelatin-coated (0.1%) dishes until RPE colonies were visible. RPE was purified by 3-hour exposure to 4 mg/ml type IV collagenase and manually isolated with a glass pipette. Purified RPE was seeded onto gelatin-coated tissue culture plates and expanded in EGM-2 medium until desired density was achieved, at which point cultures were reverted to MEM-based medium (MDBK-MM) and cultured until the appropriate phenotype was achieved. RPE was dissociated from culture using a 1 : 1 mixture of 0.25% trypsin-EDTA and Hanks-based cell dissociation buffer and was cryopreserved in 90% fetal bovine serum and 10% dimethylsulfoxide .
Quantitative, Real-Time, Reverse Transcription-Polymerase Chain Reaction.
[0312] RNA was extracted from the cells using TRIzol reagent according to the
manufacturer's protocol. Eluted RNA was quantitated by spectrophotometry, and 10 μg was subjected to DNase digestion, followed by a reverse transcription reaction using a
QUANTITECH® reverse transcription kit with a mixture of oligodT and random hexamers primers. Fifty NANOGrams per well of cDNA was used as templates in quantitative polymerase chain reactions (qPCRs) with oligonucleotides specific for hESC and retina! genes. All qPCR reactions were performed in triplicate, with the resultant values being combined into an average threshold cycle (CT), The efficiency of qPCR was calculated from the slope of a relative standard curve using GAPDH primers. Relative quantization was determined using a ST RAT A G ENE® MX3005P QPCR system measuring real-time SYBR Green fluorescence and calculated by the AACT method. Fold differences are calculated using the AACT in the formula 2 - AACt. Expression profiles for the mRNA transcripts are shown as fold differences in comparison to mRNA levels in hES cells.
Microarray Gene Expression Profiling.
[0313] Global gene expression analysts was performed using the human AFFYMETRIX® HGU133 Plus 2.0 microarray platform on both of the single blastomere-derived hESC lines MA01 and MA09 and the resulting RPE ceils derived from each. Additionally, fetal RPE, ARPE- 19, and retinoblastoma cell lines were used as controls
Western Blot Analysis.
[0314] Immunoblot analysis was carried out using standard SDS-PAGE methods using the BIO-RAD® Mini-Protean and Mini-Transblot Cell. The protein bands were visualized using Western Lightning Chemiluminescence Reagent and a KODAK® 4000MM digital imaging station. Commercially available antibodies specific for DPPA4, TDGFI β-actin, CHX- 10, Otx2, REX1 , RPE65, PAX6 Bestrophin, CRALBP, Pax2, MitF, NANOG, Oct4, PEDF, and Tyr as well as horseradish peroxidase-conjugated secondary antibodies were used.
Table 15 Number of eyes treated at each pigment level
Figure imgf000104_0001
Transplantation Protocol
[0315] Before cell transplantation, cells were thawed and washed in balance salt solution (BSS) and suspended in BSS. Three cell lines designated low, medium, and high pigment were given in different dose groups. These are summarized in Table 15. Using techniques known in the art, a suspension of cells was delivered into the subretinal space of one eye through a small scleral incision, suspended in 2 μΐ of BSS medium using a fine glass pipette (internal diameter, 75-150 μτη) attached by tubing to a 25-ul Hamilton syringe. The cornea was punctured to reduce intraocular pressure and to limit the efflux of ceils. A sham-surgery group was treated the same way, except the carrying medium alone was injected. Pigmented dystrophic RCS rats received unilateral subretinal injections of the cell lines (n = 79 eyes) at P21 ; control rats received sham alone (n = 35 eyes) or were untreated (n = 29 eyes). E!ovi4 mice at P28 received cells (n = 12 eyes), sham alone (n = 8 eyes), or were untreated (n = 8 eyes). Immediately after injection, the fundus was examined for retinal damage or signs of vascular distress. Any animal showing such problems was removed from the study and excluded from the final animal counts.
Spatial Visual Acuity.
[0316] Animals were tested for spatial visual acuity using an optometry testing apparatus comprising four computer monitors arranged in a square, which projected a virtual three- dimensional space of a rotating cylinder lined with a vertical sine wave grating. Unrestrained animals were placed on a platform in the center of the square, where they tracked the grating with reflexive head movements. The spatial frequency of the grating was clamped at the viewing position by recentering the "cylinder" on the animal's head. The acuity threshold was quantified by increasing the spatial frequency of the grating using a psychophysics staircase progression until the following response was lost, thus defining the acuity. Rats were tested from P60 to P240 at monthly intervals. Elovl4 mice were also tested in this apparatus at 3, 5, 7, and 1 1 weeks after surgery.
Luminance Threshold.
[0317] This was studied to provide a different measure of function from the spatial acuity and was achieved by recording single and multiunit activity close to the surface of the superior colliculus (SC) using glass-coated tungsten electrodes (resistance: 0.5 ΜΩ; bandpass 500 Hz to 5 KHz) with previously described procedures. Recordings were made only in rats, selected on the basis of good and representative optomotor results: mice were not examined with this test. The brightness of a 5° spot was varied using neutral density filters (minimum steps of 0.1 log unit) over a baseline level of 5.2 log units until a response double the background activity was obtained: this was defined as the threshold level for that point on the visual field. A total of 15-20 positions were recorded from each SC. All animals were recorded at about PI 00, and some were studied again at a second time point at about P390. Data are expressed as a graph of percentage of SC area with a luminance threshold below defined levels and as raw results.
Histology.
10318] At the end of functional tests, ail animals were euthanized with an overdose of sodium pentobarbital and perfused with phosphate-buffered saline. The eyes were removed, immersed in 2% paraformaldehyde for 1 hour, infiltrated with sucrose, embedded in optical cutting temperature, and cut into 10-μιη horizontal sections on a cryostat. Four sections (50 μιτι apart) were collected per slide, providing five series of every fourth section collected. One was stained with cresyl violet for assessing the injection site and integrity of retinal lamination. The remaining slides were used for antibody staining, following previous protocols, and were examined by regular and confocal microscopy.
Safety Study.
[0319] Cells were prepared and transplanted using the same methodology described above for the RCS rat study. A minimum of six N1H III mice per group were injected with either hES cells or hESC-derived RPE from the MA09 single blastomere cell line in three time- based cohort groups (n = 36). The animals were killed by C02 inhalation followed by exsanguination at 1 , 3, and 9+ months based on cohort. Three negative control animals were also put in the study for each cohort (n = 9). Life study assessments included routine clinical assessments and body weight analysis, plus pre-sacrifice clinical chemistry. Post mortem, eyes were removed and immersed in cold 4% paraformaldehyde, for up to 1 week. The tissue was embedded in paraffin and sectioned. Select slides were stained with hematoxylin and eosin. Slides were examined microscopically to assess retinal lamination and tumor formation.
Differentiation and Characterization of hESC-Derived RPE
[0320] Human RPE cells were generated using a cGMP-compliant cellular manufacturing process. Three different batches of RPE were created from each blasto mere-derived hESC line based on morphological assessment of pigmentation (FIGURE 15), an important indicator of RPE maturation.
[0321] Each production run generated about 50 x 106 RPE cells from a single frozen ampule of I x 106 hES cells. This amount is sufficient to dose about 500 rats or 50-100 human subjects. Additionally, the methods described herein are completely suitable to available scale-up technologies such as bioreactor culture or large-scale fluid handling systems. [0322] To characterize the developmental stages during RPE differentiation, several assays were used to identify the expression levels of genes key to each stage of development, qPCR was developed to provide a quantitative and relative measurement of the abundance of cell type-specific mRNA transcripts associated with the RPE differentiation process. A panel of genes associated with hESC pluripotency (Oct-4, NANOG, Rex-1, TDGFl, Sox2, DPPA2, and DPPA4), neuroectoderm intermediates (PAX6 and ChxlO), and RPE (RPE-65,
Bestrophin, CRALBP, PEDF, MitF, Otx-2, Tyr, and Pax2) was established and assayed for each by qPCR. With regard to quality control of cellular manufacturing, the marked decrease in all stem-related genes and concomitant increase in all retinal-associated genes, at a level of 10- to 100-fold, was deemed acceptable release criteria.
[0323] Figure 13 shows the gene expression profile of the transcripts during differentiation to mature RPE, including samples from hES cells (dO), embryoid bodies (EBs, d7), plated EBs (dl 4), mixed population of newly formed RPE and less differentiated cells (mixed, d28), purified early RPE (eRPE, d35), and fully matured pigmented RPE (mRPE, d56). A progressive decrease in the expression level of hESC-specific genes (FIGURE 13 A) was accompanied by an increase in the level of neu-roectoderm and RPE-specific genes. Lightly pigmented RPE (FIGURE 12) expressed 1 ,000-fold lower quantities of Oct-4, NANOG, Sox2, and DPPA4; < 10,000-fold less TDGFl ; and 50-fold less Rex-1 and DPPA2 than hESC. The cells also expressed 10- to 100-fold greater quantities of RPE65, CRALBP, PEDF,
Bestrophin, PAX6, and MitF and expressed > 100,000,000-fold Tyr, a downstream target of MitF/Otx2 in RPE. This cell population expresses genes such as PAX6 and CHX10 because this stage represents an "immature" population of RPE derived from embryonic cells, and may continue to express markers associated with developing cells of the neureiina and/or neurectoderm.
[0324] The phenotypic changes that RPE undergoes during the in vitro maturation process were characterized by qPCR (FIGURE 12A-C). FIGURE 12A shows that RPE with a higher degree of pigmentation and polygonal cell borders (corresponding to FIGURE 12C) maintains higher expression of RPE-specific genes. Notably, both pigmentation and the high level of RPE-specific gene expression are correlated with the emergence of Pax2 expression and a sharp increase in MitF, Otx2, and Tyr expression. MitF expression, and in turn Tyr, is achieved in RPE through synergy of Pax2 and PAX6 during embryonic development.
Proteomic Validation of Selected Transcripts in hESC-Derived RPE
[0325] To verify that genes of interest were expressed at the protein level, all targets of the initial transcriptional profile panel were assayed by Western analysis. As an internal control, hESC-derived RPE was compared with the ARPE-19 cell line by both qPCR and Western analysis. Figure 10A shows that, although liESC-RPF. expresses similar levels of RPE- specific transcripts to ARPE-19, the hESC-RPE expresses more abundant levels of these proteins (RPE65, PEDF, Pax2, and Bestrophin). Additionally, proteins expressed by hES cells are all downregulated in the final differentiated cell product. This disappearance of stem-related proteins (by immunoblot) and concomitant emergence of retinal-associated proteins is indicative of RPE cells as described herein.
Bioinformatic Analysis of Global Gene Expression in hESC-RPE
[0326] The biological relevance of the morphological changes observed in vitro were assessed by gene expression profiling and subsequent informatic analysis of both hESC lines, each with three different morphologies: a control and several "reference" cell lines on the human Affymetrix® HG-U1.33 Plus 2.0 microarray platform. FIGURE 14 shows a principal component analysis (PCA) scatter plot, indicating the contribution to variance that the two major variables, cell type and cell line (x- and }'~axis, respectively), yield on global gene expression. A linear progression was observed from the undifferentiated (hES cells) state through the three levels of RPE pigmentation. Interestingly, the depigmented RPE cells (See FIGURE 12A) cluster closer to both ARPE- 19 and fetal RPE; the latter display similar morphological characteristics to this batch of cells in vitro . The more heavily pigmented batches of RPE cells appear to cluster farther from hES cells and retinoblastoma cells (RB) than any other cell type tested. Whereas the pigmented batches of RPE from MA01 and MA09 do not overlap by PCA, they are within a similar order of magnitude to each other to that of fetal RPE and ARPE- 19. Taken together, these data suggest that the more heavily pigmented hESC-RPE cells may be considered the most differentiated, and from a safety standpoint, the most genetically divergent from cells possessing "sternness" or expressing cancer-related genes.
Pathogen Testing and Stability of RPE
[0327] An important criterion to consider in the use of RPE cell preparations for therapeutic applications is product safety (e.g., contamination or infection with viral or bacterial agents). To ensure that the RPE cells were free of contamination during the extensive culture and differentiation process, the following testing according to U.S. Food and Drug Administration and International Conference on Harmonization guidelines for applicable microbial and viral agents were conducted: United States Pharmacopeia membrane filtration sterility, fluorochrome-based mycoplasma, transmission electron microscopy for viral particles, in vitro tissue culture safety testing for adventitious agents, in vivo inapparent virus detection, PCR-based reverse transcriptase detection, HIV- 1 , H1V-2, HBV, HCV, CMV, HTLV- 1 and -2, parvovirus B19, Epstein-Barr virus, and herpesvirus 6. Additionally, the cells were cytogenetically analyzed by G-banding karyo-type analysis. Results confirmed that these cell lines are karyotypically stable and substantially free of infectious pathogens.
Dosing Studies in RCS Rats
[0328] The effect of different doses on efficacy was titrated using the optomotor response as an indicator. The results at P90 (70 days after transplantation) are summarized in FIGURE 15A. Improved rescue of spatial acuity occurred from 5,000 to 50,000, after which even doubling the dose of cells to 100,000 had no significant effect on efficacy. Performers among the cell-injected group gave a figure of 0,536 cycles/degree (c/d) compared with 0.6 c/d in normal rats, which is about 90% of normal value. There was no significant difference between sham and untreated groups, which performed significantly worse than the cell- injected group (p < .01).
[0329] Luminance thresholds were also measured in a subset of rats selected by their performance on the optomotor response. An area with high sensitivity corresponded to the area of retina in which the cells were introduced, as indicated in FIGURE 15C- 15F. For statistical comparison the data for this part of the example is presented as a percentage of the area of the visual field representation from which thresholds better than designated levels were recorded without regard to position. This gives a simple indicator of overall efficacy, as well as a response figure, dissociated from spatial considerations. It is clear that the overall sensitivity recorded at 50,000 is superior to 20,000, but as with spatial acuity, it does not change significantly between 50,000 and 75,000. For example, about 45% of the SC gave thresholds of 2.2 log units with 50,000 cells/eye and about 40% with 75,000 cells/eye.
Generally, the mean response levels at 100,000 were better and gave more long-lasting rescue than did lower doses. See FIGURES 15 and 16.
Pigmentation Results
[0330] There was no significant difference between pigment groups on visual acuity
(FIGURE 17), however, compared to the sham or untreated controls, all pigment groups did show significantly better visual acuity at all time points between P40 and P240.
Batch and Longevity of Effect in RCS Rats
[0331] Although slight differences in optomotor acuity were seen between the different pigment levels (Table 14), they were not significant. In contrast, there was a significant difference at all time points studied between the cell-injected groups and medium-injected and untreated controls. See FIGURE 16. Over time, there was a reduction in acuity response for all the cell groups and dose levels.
[0332] To examine how luminance responses deteriorated with time, thresholds were recorded at two time points in individual rats. An example is shown in FIGURE 18. As shown, the luminance thresholds show serious deterioration on the untreated side, with more than one half the area being nonresponsive at P187 compared with P98, whereas
responsiveness is still sensitive on the cell-injected side, although some reduction in thresholds has occurred (0.7 log units at P98 vs. 1.0 log units at PI 87). Raw data from an animal that received cell injection: luminance threshold responses were recorded at P98 (shown in FIGURE 18A) and PI 87 (shown in FIGURE 18B) in the same rat from multiple points within the superior colliculus (SC). This method quantifies functional sensitivity to light across the visual field of the eye. The topographical map depicts the luminance threshold responses (measured in log units relative to background illumination of 0.02 cd/mf) at 15 and 16 points in the left and right sides, respectively, within the SC. In FIGURE 18 A, all points of luminance threshold responses in the treated side are less than 2,0 log units, whereas in the untreated side, all points are greater than 2.3 log units. Table 15B depicts the same animal was recorded at PI 87 (>5 months after surgery); there is deterioration in sensitivity to light compared to P98; however, it is still significantly better than the untreated fellow eye (which has no response over half the area). Abbreviation: c/d, cycles/degree. See FIGURE 18.
Efficacy in Elovl4 Mice
[0333] Visual acuity in normal mice tested by the same optomotor device was lower than that in rats (0.35 vs. 0.6 c/d). In untreated Elovl4 mice, the visual acuity deteriorated as photoreceptor degeneration progressed from 0.34 c/d at P28 to 0.24 c/d at PI 05. FIGURE 15B. Subretinal injection of hESC-RPE improved the visual acuity over controls at all time points tested. Celi-injected eyes had a figure of 0.32 ± 0.04 c/d at P63 (5 weeks after surgery) compared with 0.26 ± 0.03 c/d in sham-injected and untreated controls. FIGURE 15B.
Statistical analysis indicated that the difference between cell-injected and controls was significant (t test, p < .05).
Histological Examination of RCS Rats
General Retina Structure.
[0334] Retinal sections from cell-injected, sham, untreated, and normal control rats were stained with cresyl violet and examined under light microscopy. At P90, compared with normal control (FIG. 19A), the cell-injected retina had five to six layers of photoreceptors (FIG. 19B), whereas the untreated retina had only a single layer remaining (FIG. 19C). In accordance with the functional results, the 5,000/eye doses had slightly better photoreceptor rescue (FIG. 19D) than sham-operated (primarily with localized photoreceptor rescue around injection site), whereas the 20,000/eye produced better photoreceptor rescue. The 50,000/eye and greater doses gave consistent photoreceptor rescue, covering a larger area of the retina (FIG. 19E, 19F) with preserved cones. At P150, cell-injected retinas still had an outer nuclear layer two to three cells deep, and the inner retina lamination was not disrupted. In contrast, both untreated and sham-operated retinas showed a typical secondary pathology, including abnormal vascular formation, RPE cells, and inner retinal neurons migrating along abnormal vessels, leading to distortion of retina lamination. At P240, cell-injected retinas still had an outer nuclear tayer of one to two cells deep, and the inner retina still showed an orderly lamination. In contrast, advanced degeneration was evident in control retinas: the inner nuclear layer became irregular in thickness, ranging from one layer to multiple layers; RPE cells had migrated into the inner retina; and abnormal blood vessels were seen (FIG. 191).
Antibody Staining.
[0335] The human specific nuclear marker, MAB 1281 was used to identify the donor cells. They formed a layer, one to two cells deep, and integrated into the host RPE layer (FIG, 19G, 19H), as was seen in our previous study. Photoreceptor rescue continued beyond the limits of distribution of donor cells, suggesting that rescue was at least in part caused by a diffusible effect. Cone arrestin antibody showed that cone photoreceptors were preserved with disorganized segments (FIG. 19F) at P90. Donor cells were still evident up to at least P249 (FIG. 19G and 19H). There was no indication of continued donor cell division (e.g., shown by the proliferating cell nuclear antigen marker).
Safety Assessment
Studies in NIH III Mice.
[0336] The long-term risk of teratoma formation was tested in the N1H III mouse model. The N1H III mouse was chosen for its immune-deficient status; the nude mouse has three mutations rendering it devoid of T cells, NK cells, and mature T-independent B lymphocytes. However, the N1H III mouse retains eye pigmentation, which provides better visualization for subretinal transplantation surgery. The surgical technique was the same as performed in the RCS study. The study compared the hESC-RPE to undifferentiated hES cells (positive control) to determine the teratoma formation potential of the 100,000 RPE cell dose over three time points: 1 , 3, and 9 months (the approximate lifespan of the animal; n - 6 per cohort). In contrast to the animals that received undifferentiated hES cells, no teratoma or tumor formation was found in any of the animals injected with the hESC-derived RPE. In addition, basic animal safety assessments were normal compared with controls.
Absence of Tumorigenic Growth in RCS Rats.
[0337] In the RCS rat transplant study, none of the 79 cell-injected retinas examined, including the longest time points, showed any evidence of uncontrolled ceil proliferation. There was no evidence of teratoma and/or tumor formation.
Discussion
[0338] These results show the long-term safety and efficacy of hESC-derived RPE cells produced under manufacturing conditions applicable for use in human clinical trials are described herein. In addition to the development of assays with qualified range limits (which constituted the "identity" of the final RPE product), extensive pathogen testing was carried out to ensure that the manufacturing procedure did not introduce any infectious diseases or adventitious agents into the RPE cells.
[0339] To confirm the functionality of these GMP-compHant cells, both dose-response and long-term efficacy were evaluated in homologous models of human retinal disease. Because of the proliferative nature of hES cells, evidence of safety under Good Laboratory Practice ("GLP") conditions is imperative for translating hESC-derived cellular products into the clinic. The extensive characterization detailed above provides assurance of cellular identity, whereas the long-term tumorigenicity study presented here provides strong evidence that the hESC-RPE cells are safe and do not form teratomas and/or tumors during the lifetime of N1H III immune-deficient mice. After introduction to the subretinai space of RCS rats, the hESC- derived cells also survived for more than 8 months without evidence of pathological consequences.
[0340] The hESC-RPE cells produced according to the methods described herein also rescued visual functions in a dose-dependent fashion: with increased cell concentrations from 5,000 to 50,000, there was an improvement in functional rescue measured with both visual acuity and luminance threshold response. From 50,000 to 100,000, there is tolerance in numbers of cells introduced and that twice the optimal dose is still effective. Previous rodent work has shown that RPE ceils quickly disperse as a single or double layer and that 20,000 cells of an immortalized RPE cell line may occupy about 20% of the retinal area ( 12.56 mm ). For the age-related macular degeneration retina, the inner macular is 3 mm in diameter: this would mean that a dose of about 40,000 cells may be used to cover the inner macular area but that a larger cell number may likely cover a larger area. [0341] The significantly improved visual performance in Elovl4 mice adds to the value of the hESC-RPE as the cell choice for cell-based therapy to treat macular disease (in this case, a subset of patients with Stargardt's disease caused by mutation in the Etovl4 gene).
Stargardt's disease is one of the most frequent forms of juvenile macular degeneration. Although some rescue may be achieved by growth factor delivery such as direct injection or factor-releasing cells (encapsulated cells) such as ARPE19 cells transduced to produce ciliary neurotrophic factor or Schwann cells, these approaches cannot replace the other functions of RPE cells. The hESC-RPE cells have a molecular profile more closely resembling native RPE than do ARPE-19, and thus they may be able to take on a broader range of RPE functions than ARPE-19 beyond simple factor delivery. For example, without being bound to a particular mechanism, the hESC-RPE cells may replace crucial functions of the host RPE because the hESC-RPE cells are able to phago-cytose latex beads in vitro. However, because the location of photoreceptor rescue extends beyond the area of donor ceil distribution, part of the rescue effect may be mediated by a diffusible trophic factor effect.
[0342] These results show the long-term safety of hESC-derived RPE cells in immune- deficient animals, as well as their long-term function in two different animal models of disease using GMP conditions suitable for clinical trials. The presence of differentiated human retinal pigmented epithelial cells was identified incorporated or attached to the retinal pigmented epithelial cell layer of rats over 200 days post surgery. In all cases, the morphology of these human cells was characterized as organized cuboidal epithelial cells with round nuclei displaced by small golden-brown intracytoplasmic pigment, consistent with pigmented epithelial cells. When associated with the mouse RPE, the human cells displayed typical polarity along a basement membrane with basally located nuclei and apically located pigmented granules (Figs. 13, 14). The human cells could be distinguished from mouse RPE as the human cells appeared slightly larger with fewer and smaller yellow-brown pigmented granules compared to the mouse RPE . Thus at P240 (i.e., 220 days after transplantation), donor cells survive, photoreceptors are rescued, and a level of visual function is preserved. Thus, the methods described herein may serve as a safe and inexhaustible source of RPE cells for the efficacious treatment of a range of retinal degenerative diseases.
EXAMPLE 23
RESCUE OF VISUAL FUNCTION USING RPE CELLS FROM EMBRYONIC STEM CELLS
Summary
[0343] Human embryonic stem cell-derived retinal pigmented epithelium (RPE) cells were assessed for their ability to retard the progression of retinal degeneration in the Royal College of Surgeons (RCS) rats, a well characterized and studied rodent model for retinai degeneration. These animals carry a mutation in the gene for the MER tyrosine kinase (MERTK), which compromises the ability of RPE to perform phagocytosis of shed photoreceptor outer segments. This dysfunction of RPE cells leads to a progressive loss of both rods and cones overtime. Interestingly, mutation within the human orthologue of MERTK results in retinal degeneration, whereby patients exhibit progressive poor visual acuity and visual Field losses with age.
[0344] RPE cells were subretinally injected in RCS rat eyes at an early stage of retinal degeneration (P21 ) in order to prevent disease progression. Animals were divided into three groups: cell-injected group, balanced salt solution (BSS)-injected control and untreated eyes. Cells (50,000, 75,000 and 100,000 cells) were injected using BSS as the vehicle for cell delivery. For immune suppression cyclosporine was added to drinking water (210 mg/L) during the study. The efficacy of RPE cell injection was evaluated by two visual functional tests: optomotor responses and luminance threshold recordings from the superior colliculus (SC), followed by morphological examination including cresyl violet staining (for general retinal lamination and photoreceptor thickness). Additionally, immunostaining was performed with antibodies to human nuclei or human mitochondria antibodies to identify surviving human cells and the human RPE-specific marker bestrophin to their RPE phenotype. Both BSS injection alone and untreated eyes were used as control groups these were examined along with cell injected groups at all the time points.
Results—Optomotor responses
[0345] Animals were tested for spatial visual acuity using an optometry testing apparatus (CerebralMechanics, Lethbridge, Canada) comprised of four computer monitors arranged in a square, which projected a virtual three-dimensional space of a rotating cylinder lined with a vertical sine wave grating. Unrestrained animals were placed on a platform in the center of the square, where they tracked the grating with reflexive head movements. The spatial frequency of the grating was clamped at the viewing position by recentering the cylinder on the animal's head. The acuity threshold was quantified by increasing the spatial frequency of the grating using a psychophysics staircase progression until the following response was lost, thus defining the acuity.
[0346] All cell-injected and control rats were tested from P60 to P240, the P60 time point was chosen as the earliest time point when difference between cell injection and control can be detected. [0347] Cell-injected animals performed significantly better than BSS injected and untreated controls at all time points tested (p<0.01 ). The majority of the cell-injected animals had visual acuity above 0.5 cycle/degree at P90, which is similar to the visual acuity that non dystrophic rats (0.52-0.60c/d)(8), while in BSS-injected and untreated control animals, an average of 0.25-0.30 c/d was recorded
Luminance threshold recording from the superior colliculus
[0348] This test is similar to the Humphrey test used in clinic for visual field analysis in humans. In the case of animals, electrodes are implanted and are measured using sensitive instrumentation. To assess luminance thresholds, single and multi-unit activity in the superficial layers of the super colliculus (SC) was recorded.
[0349] Recordings were made from the superficial layers of the SC to a depth of 100-300 μηι using glass-coated tungsten electrodes (resistance: 0.5 ΜΩ bandpass 500 Hz - 5KHz). Small craniotomies of about 100 μηι in diameter were made to access the brain. Anatomically, retinal ganglion cells project to contra-lateral superior colliculus (SC), therefore, right eye sends signals to left side of the SC. In the non dystrophic rat retina, there are 10- 12 layers of photoreceptors which are very sensitive to light stimuli. In other words, normal retina will respond to very low light stimulation, so normal animals have low luminance threshold (0.2- 0.4 log units). In the dystrophic rat retina at P90, due to loss of photoreceptors, animals will only respond to high intensity light stimulation, therefore these animals have a high luminance threshold (2.5-3.0 log units). Since the unit is expressed as logarithmic scale, 0.2 log units in a normal retina is more than 100 times more sensitive to light than 2.5 log units in a dystrophic retina.
[0350] Lower luminance thresholds were recorded in cell-injected eyes compared with BSS alone and untreated control eyes. Several of the cell-injected eyes had luminance thresholds of 0.7-0,8 log units, compared with 3.0 log units in untreated fellow eye (over 100 times more sensitive to light stimulation).
[0351] The luminance threshold recorded from the SC correlated well with the amount of photoreceptors in the retina. Animals with more photoreceptors were more sensitive to light stimulation, i.e. had a lower luminance threshold. For example, one rat had extensive photoreceptor preservation, which correlated with donor cell distribution. Optomotor response revealed visual acuity of 0.50c/d compared with 0.25 c/d in untreated eye, and luminance threshold recording gave a figure of 0.8 log units at P90, compared with 3.0 log units in untreated control, which is more than 100 times more sensitive to light stimulation. Histology
General retinal lamination
[0352] At the termination of the experiment, all animals were sacrificed by sodium pentobarbital overdose and perfused with phosphate-buffered saline. The eyes were removed and immersed in paraformaldehyde for one hour, infiltrated with sucrose, embedded in OCT medium and cut into horizontal cryosections. All the retinal sections from cell-injected, BSS - injected and untreated controls were stained with cresyl violet for general retinal lamination, identifying the injection site. There was no evidence of abnormal growth, teratoma formation or any other unwanted pathology.
HES-RPE cell survival
[0353] To confirm survival of human donor cells in rat eyes, the sections were double stained with anti-human mitochondria and anti-human bestrophin antibodies. Frozen eye sections were not originally intended for harsh antigen retrieval procedures required for anti-human mitochondria staining; thus a large number of sections was lost (came off the slides fully or partially, resulting in poor morphology). The assay was further optimized allowing double staining for anti-human nuclei and bestrophin with good preservation of eye morphology. RPE cells were confirmed as present in 13 of 34 animals (38%). The majority of human cells (all but one animal where RPE cells were found in the intravitreous cavity) were found at long term survival endpoints (PI 80-249), integrated into rat RPE layer, and all had typical RPE morphology and were positive for the RPE marker bestrophin which confirms the survival and preservation of RPE identity at long-term post-transplantation in vivo.
Photoreceptor preservation and donor cell distribution
[0354] In cell-injected retina, there were 3-6 layers of photoreceptors compared with localized 1- 2 layers of photoreceptors around injection site in BSS control injection or a single layer of photoreceptors in untreated retina at P90 thus pointing to photoreceptor preservation being associated with transplanted RPE cells. In BSS-injected eyes, 1-2 cells thick localized rescue of photoreceptors was observed adjacent to injection site around P90- 100; however the effect was no longer evident at later time points examined in this study. Luminance threshold recording also revealed this effect (usually one point had a lower luminance threshold) two months after injection. With time, the effect of BSS injection disappeared while in cell-injected retina photoreceptor preservation was seen out to P249 (over 225 days post-injection). In addition, the secondary pathology related to progressive degeneration was largely prevented, while in BSS injected and untreated retinas, typical secondary changes including vascular pathology and inner retinal neurons migrating into inner retina were clearly evident. Human specific antibody staining revealed hRPE cells surviving for over 225 days post-injection. The distribution of hES-RPE cells correlated with preserved photoreceptor.
Conclusion
[0355J In all the retinas examined in this example, long-term preservation of both morphology and function after cell injection was demonstrated. The RPE cells survived for at least 225 days, integrated into rat RPE layer and expressed the RPE cell specific marker bestrophin. No evidence of unwanted overgrowth or teratoma formation was found.
Therefore, the RPE cells described herein may be transplatned where they survive, maintain their phenotype, and rescue visual acuity in retinal degeneration.
EXAMPLE 24
TREATMENT OF PATIENT WITH DIABETIC RETINOPATHY
[0356] A human patient diagnosed with diabetic retinopathy may be treated by administering a pharmaceutical preparation comprising at least about 100,000 human RPE cells (e.g., 100,000 RPE cells in 50 uL). The RPE cell preparation is injected into sub-retinal space. The patient is placed on a treatment course of 5 mg/kg cyclosporin for 6 weeks. The patient is monitored for the development of side effects. The visual acuity of the patient is monitored and tested at least for 6 months following treatment.
EXAMPLE 25
TREATMENT OF PATIENT WITH AGE-RELATED MACULAR DEGENERATION
[0357] A human patient diagnosed with age-related macular degeneration may be treated by administering a pharmaceutical preparation comprising at least about 100,000 human RPE cells (e.g., 100,000 RPE cells in 50 μΕ). Prior to transplantation, the RPE cells may be cultured under conditions that increase alpha-integrin subunit expression. The RPE cell preparation is injected into sub-retinal space. The patient is placed on a treatment course of 5 mg/kg cyclosporin for 6 weeks. The patient is monitored for the development of side effects. The visual acuity of the patient is monitored and tested at least for 6 months following treatment.
EXAMPLE 26
TREATMENT OF PATIENT WITH RETINAL PIGMENTOSA
[0358] A human patient diagnosed with retinal pigmentosa may be treated by administering a pharmaceutical preparation comprising at least about 100,000 human RPE cells (e.g., 100,000 RPE cells in 50 μL). The RPE cell preparation is injected into sub-retinal space. The patient is placed on a treatment course of 5 mg/kg cyclosporin for 6 weeks. The patient is monitored for the development of side effects. The visual acuity of the patient is monitored and tested at least for 6 months following treatment.
EXAMPLE 27
TREATMENT OF PATIENT WITH STARGARDT'S DISEASE
[0359] A human patient diagnosed with Stargardt's Disease (fundus flavimaculatus) may be treated by administering a pharmaceutical preparation comprising at least about 100,000 human RPE cells (e.g., 100,000 RPE cells in 50 ). ThμeL RPE cell preparation is injected into sub-retinal space. The patient is placed on a treatment course of 5 mg/kg cyclosporin for 6 weeks. The patient is monitored for the development of side effects. The visual acuity of the patient is monitored and tested at least for 6 months following treatment.
[0360] All publications, patents and patent applications are herein incorporated by reference in their entirety to the same extent as if each individual publication, patent or patent application was specifically and individually indicated to be incorporated by reference in its entirety. United States Provisional Patent Application Numbers 60/998,766, filed October 12, 2007, 60/998,668, filed October 12, 2007, 61/009,908, filed January 2, 2008, and
61 /009,91 1 , filed January 2, 2008, the disclosures of each of the foregoing applications are hereby incorporated by reference in their entirety. In addition, the disclosure of WO
2009/051671 is hereby incorporated by reference in its entirety.
[0361] Those skilled in the art will recognize, or be able to ascertain using no more than routine experimentation, many equivalents to the specific embodiments of the invention described herein. Such equivalents are intended to be encompassed by the following claims.

Claims

We Claim:
1 . A method of producing a substantially purified culture of retinal pigment epithelial (RPE) cells comprising
(a) providing pluripotent stem cells;
(b) culturing the pluripotent stem cells to form embryoid bodies in nutrient rich, low protein medium;
(c) culturing the embryoid bodies to form an adherent culture in nutrient rich, low protein medium;
(d) culturing the cells of (c) in medium capable of supporting growth of high-density somatic cell culture, whereby RPE cells appear in the culture of cells;
(e) dissociating the culture of (d);
(f) selecting the RPE cells from the culture and transferring the RPE cells to a
separate culture containing medium supplemented with a growth factor to produce an enriched culture of RPE cells; and
(g) propagating the enriched culture of RPE cells to produce a substantially purified culture of RPE ceils.
2. The method of claim 1 , wherein said pluripotent stem cells are induced pluripotent stem (iPS) cells, embryonic stem (ES) cells, adult stem ceils, hematopoietic stem cells, fetal stem cells, mesenchymal stem cells, postpartum stem cells, multipotent stem cells, or embryonic germ cells.
3. The method of claim 2, wherein the pluripotent stem cells are human ES cells or human iPS cells.
4. The method of claim 1 , wherein the pluripotent stem cells of (a) are genetically
engineered.
5. The method of any one of claims 1 -4, wherein the medium of (a), (b), (c), (d), (f), or (g) contains serum free B-27 supplement.
6. The method of any one of claims 1-5, wherein the medium of (a), (b), (c), (d), (f), or (g) does not contain serum free B-27 supplement.
7. The method of any one of claims 1 -6, wherein the growth factor of (g) is EGF, bFGF, VEGF, or recombinant insulin-like growth factor.
8. The method of any one of claims 1-7, wherein the medium of (g) comprises heparin, hydrocortisone, or ascorbic acid.
9. The method of any one of claims 1-7, wherein the cells of (b) are cultured for at least about 7-14 days.
10. The method of any one of claims 1 -7, wherein the cells of (c) are cultured for at least about 7-10 days.
1 1 . The method of any one of claims 1 -7, wherein the cells of (d) are cultured for at least about 14-21 days.
12. The method of any one of claims 1 - 1 1 , wherein the medium of (a), (b), (c), (d), (f), or (g) is MDBK-GM, OptiPro SFM, VP-SFM, EGM-2, or MDBK-MM.
13. The method of any one of claims 1 - 12, wherein (e) comprises contacting the culture with an enzyme selected from the group consisting of trypsin, collagena.se, dispase, papain, mixture of collagenase and dispase, and a mixture of collagenase and trypsin.
14. The method of any one of claims 1 - 12, wherein (e) comprises mechanical disruption.
15. The method of any one of claims 1-14, wherein the pluripotent stem cells have reduced HLA antigen complexity.
16. The method of any one of claims 1 -15, wherein the RPE cells lack substantial expression of embryonic stem cell markers.
17. The method of claim 16, wherein said embryonic stem cell marker is Oct-4, NANOG, Rex-1 , alkaline phosphatase, Sox2, TDGF- 1 , DPPA-2, or DPPA-4.
18. The method of any one of claims 1 -15, wherein the RPE cells express RPE cell markers.
19. The method of claim 18, wherein said RPE cell marker is RPE65, CRALBP, PEDF, Bestrophin, MitF, Otx2, PAX2, Pax-6, or tyrosinase.
20. The method of any one of claims 1 -19, wherein the RPE cells are further cultured to produce a culture of mature RPE cells.
21 . The method of any one of claims 1 -20, wherein said RPE cells are not tumorgenetic.
22. The method of any one of claims 1-21 , wherein said RPE cell culture is substantially free of mouse embryonic feeder cells (MEF) and human embryonic stem cells (hES).
23. The method of any one of claims 1 -22, further comprising culturing said RPE cells under conditions that increase alpha integrin subunit expression.
24. The method of claim 23, wherein said alpha integrin subunits are 1 -6 or 9.
25. The method of claim 23, wherein said condition comprising exposure to manganese, exposure to an antibody to CD29, or passaging said RPE cells for at least about 4 passages.
26. The method of claim 25, wherein said antibody is monoclonal antibody HUTS-21 or monoclonal antibody (mAb) TS2/16.
27. The method of any one of claims 1 -26, wherein the culture medium used for propagating the enriched culture of RPE cells does not support the growth or maintenance of undifferentiated pluripotent stem cells.
28. The method of any one of claims 1 -27, wherein the RPE cells meet at least one of the criteria recited in Table 4.
29. The method of any one of claims 1 -28, wherein the method is conducted in accordance with Good Manufacturing Practices (GMP).
30. A method of producing a substantially pure culture of mature retinal pigment epithelial (RPE) cells comprising
(a) providing pluripotent stem cells;
(b) culturing the pluripotent stem cells to form embryoid bodies in nutrient rich, low protein medium;
(c) culturing the embryoid bodies to form an adherent culture in nutrient rich, low
protein medium;
(d) culturing the cells of (c) in medium capable of supporting growth of high-density somatic cell culture, whereby RPE cells appear in the culture of cells;
(e) dissociating the culture of (d);
(f) selecting the RPE cells from the culture and transferring the RPE cells to a separate culture containing medium supplemented with a growth factor to produce an enriched culture of RPE cells;
(g) propagating the enriched culture of RPE cells; and
(h) culturing the enriched culture of RPE cells to produce mature RPE cells.
31 . The method of claim 30, wherein said pluripotent stem cells are induced pluripotent stem (iPS) cells, embryonic stem (ES) cells, adult stem cells, hematopoietic stem cells, fetal stem cells, mesenchymal stem cells, postpartum stem cells, multipotent stem cells, or embryonic germ cells.
32. The method of claim 31, wherein the pluripotent stem cells are human ES cells or human iPS cells.
33. The method of claim 30, wherein the pluripotent stem cells of (a) are genetically
engineered.
34. The method of any one of claims 30-33, wherein the medium of (a), (b), (c), (d), (f), (g), or (h) contains serum free B-27 supplement.
35. The method of any one of claims 30-33, wherein the medium of (a), (b), (c), (d), (0, (g), or (h) does not contain serum free B-27 supplement.
36. The method of any one of claims 30-35, wherein the cells of (b) are cultured for at least about 7- 14 days.
37. The method of any one of claims 30-35, wherein the cells of (c) are cultured for at least about 7- 10 days.
38. The method of any one of ciaims 30-35, wherein the cells of (e) are cultured for at least about 14-21 days.
39. The method of any one of claims 30-38, wherein the medium of (a), (b), (c), (d), (f), (g), or (h) is MDBK-GM, OptiPro SFM, VP-SFM, EGM-2, or MDBK-MM.
40. The method of any one of claims 30-39, wherein the growth factor of (f) is EGF, bFGF, VEGF, or recombinant insulin-like growth factor.
41 . The method of any one of claims 30-40, wherein the medium (g) comprises heparin, hydrocortisone, or ascorbic acid.
42. The method of any one of claims 30-41 , wherein (e) comprises contacting the culture with an enzyme selected from the group consisting of trypsin, collagenase, dispase, papain, mixture of collagenase and dispase, and a mixture of collagenase and trypsin.
43. The method of any one of claims 30-41 , wherein (e) comprises mechanical disruption.
44. The method of any one of claims 30-43, wherein the pluripotent stem cells have reduced HLA antigen complexity.
45. The method of any one of claims 30-44, wherein the RPE cells lack substantial
expression of embryonic stem cell markers.
46. The method of claim 45, wherein said embryonic stem cell marker is Oct-4, NANOG, Rex-1, alkaline phosphatase, Sox2, TDGF-1 , DPPA-2, or DPPA-4.
47. The method of any one of claims 30-44, wherein the RPE cells express RPE cell
markers.
48. The method of claim 47, wherein said RPE cell marker is RPE65, CRALBP, PEDF, Bestrophin, MitF, Otx2, PAX2, Pax-6, or tyrosinase.
49. The method of any one of claims 30-48, further comprising culturing said RPE cells under conditions that increase alpha integrin subunit expression.
50. The method of claim 49, wherein said alpha integrin subunits are 1-6 or 9.
53 . The method of claim 49, wherein said conditions comprising exposure to manganese, exposure to an antibody to CD29, or passaging said RPE cells for at least about 4 passages.
52. The method of claim 51 , wherein said antibody is monoclonal antibody HUTS-21 or monoclonal antibody (mAb) TS2/16.
53. The method of any one of claims 30-52, wherein the culture medium used for propagating the enriched culture of RPE cells does not support the growth or maintenance of undifferentiated pluripotent stem cells.
54. The method of any one of claims 30-53, wherein the RPE cells meet at least one of the criteria recited in Table 4.
55. The method of any one of claims 30-54, wherein the method is conducted in accordance with Good Manufacturing Practices (GMP).
56. A pharmaceutical preparation of RPE cells suitable for treatment of retinal degradation, wherein said RPE cells have at least one of the following properties:
(a) maintain their phenotype after transplantation for at least about one month,
(b) maintain their phenotype in culture for at least about one month,
(c) integrate into the host after transplantation,
(d) do not substantially proliferate after transplantation,
(e) are phagocytositic,
(f) deliver, metabolize, or store vitamin A,
(g) transport iron between the retina and choroid after transplantation,
(h) attach to the Bruch's membrane after transplantation,
(i) absorb stray light after transplantation,
(j) have elevated expression of alpha integrin subunits, or
(k) have longer telomeres than RPE cells derived from human donors.
57. A pharmaceutical preparation of RPE cells prepared by the method of claim 1.
58. A pharmaceutical preparation of RPE cells prepared by the method of claim 30.
59. A pharmaceutical preparation of RPE cells prepared by the method of any one of claims 1-54.
60. A pharmaceutical preparation for use in treating retinal degeneration comprising an effective amount of RPE cells according to the method of any one of claims 1 -54.
61 . The preparation of claim 60, wherein the retina! degeneration is due to Sfargardt's
disease, age-related macular degeneration (AMD), choroideremia, retinitis pigmentosa, retinal detachment, retinal dysplasia, or retinal atrophy.
62. The preparation of any one of claims 56-61 , wherein the preparation is formulated for transplantation in the form of a suspension, gel, or colloid.
63. The preparation of any one of claims 56-62, wherein the preparation is formulated for transplantation with a matrix, substrate, scaffold, or graft.
64. The preparation of any one of claims 56-63, wherein the preparation is formulated for administration to the subretinal space of the eye.
65. The preparation of any one of claims 56-64, wherein the preparation comprises at least about 103- 109 RPE cells.
66. The preparation of any one of claims 56-65, wherein the RPE cells comprise mature RPE cells.
67. The preparation of claim 66, wherein the RPE cells consist essentially of mature RPE cells.
68. The preparation of any one of claims 56-67, wherein the RPE cells lack substantial expression of embryonic stem cell markers.
69. The preparation of claim 68, wherein said embryonic stem cell marker is Oct-4,
NANOG, Rex- 1 , alkaline phosphatase, Sox2, TDGF- 1 , DPPA-2, or DPPA-4.
70. The preparation of any one of claims 56-67, wherein the RPE cells express RPE cell markers.
71. The preparation of claim 70, wherein said RPE celt marker is RPE65, CRALBP, PEDF, Bestrophin, MitF, Otx2, PAX2, Pax-6, or tyrosinase.
72. The preparation of any one of claims 56-67, wherein the RPE cells express at least one of the genes listed in Table 5, and wherein expression of the at least one gene is increased in the RPE cells relative to expression in human ES cells.
73. The preparation of any one of claims 56-67, wherein the RPE cells express at least one of the genes listed in Table 6, and wherein expression of the at least one gene is decreased in the RPE cells relative to expression in human ES cells.
74. The preparation of any one of claims 56-73, wherein the RPE cells how increased alpha integrin subunit expression.
75. The preparation of claim 74, wherein said alpha integrin subunit is alpha 1 , 2, 3, 4, 5, 6, or 9.
76. The preparation of any one of claims 68-75, wherein expression is mRNA expression.
77. The preparation of any one of claims 68-75, wherein expression is protein expression,
78. The preparation of any one of claims 68-75, wherein expression includes both mRNA and protein expression.
79. The preparation of any one of claims 56-78, wherein said RPE cells show increased
alpha integrin subunit expression.
80. The preparation of claim 79, wherein said alpha integrin subunits are 1 -6 or 9.
81 . The preparation of any one of claims 56-80, wherein the RPE cells meet at least one of the criteria recited in Table 4.
82. The preparation of any one of claims 56-81 , wherein the preparation comprises at least about 75% RPE cells.
83. The preparation of any one of claims 56-82, wherein the preparation is substantially free of viral, bacterial, and/or fungal contamination.
84. The preparation of any one of claims 56-83, wherein the preparation is formulated in a pharmaceutically acceptable carrier.
85. The preparation of any one of claims 56-84, wherein the preparation is formulated for administration to the eye.
86. The preparation of claim 85, wherein the preparation is formulated for administration to the sub-retinal space.
87. The preparation of any one of claims 56-86, wherein the RPE cells are functional RPE cells capable of integrating into the retina upon transplantation.
88. The preparation of any one of claims 56-87, wherein the preparation is substantially free of mouse embryo fibroblasts (MEF) and human embryonic stem cells (hES).
89. The preparation of any one of claims 56-88, wherein the preparation is Good
Manufacturing Practices (GMP) compliant.
90. A cryopreserved preparation comprising at least about 104 human RPE cells, wherein the preparation is a substantially purified preparation of human RPE cells derived from human pluripotent stem cells, and wherein the RPE cells express RPE-65, Bestrophin, PEDF, CRALBP, Otx2, and Mit-F.
91 . The cryopreserved preparation of claim 90, wherein at least about 85% of the RPE cells retain viability following thawing.
92. A substantially purified preparation of human RPE cells differentiated from human pluripotent stem cells, wherein the RPE cells express, at the mRNA and protein level, RPE-65, Bestrophin, PEDF, CRALBP, Otx2, and Mit-F, and wherein the cells substantially lack expression of Oct-4, NANOG, and Rex- 1.
93. The preparation of claim 92, wherein the RPE cells comprise differentiated RPE cells and mature differentiated RPE cells, and wherein at least the mature differentiated RPE cells further express, at the mRNA and protein level, PAX2, pax-6, and tyrosinase.
94. The preparation of claim 92, wherein the RPE cells are differentiated from human ES cells or human iPS cells.
95. The preparation of claim 92, wherein the RPE cells meet at least one of the criteria recited in Table 4.
96. Use of a pharmaceutical preparation of RPE cells prepared by the method of any one of claims 1 -55 for the manufacture of a medicament for the treatment of retinal degeneration.
97. A method of cryopreserving RPE cells comprising
(a) culturing RPE cells,
(b) harvesting said RPE cells,
(c) centriruging said RPE cells, and
(d) resuspending said RPE cells in 10% DMSO/90% FBS solution.
98. The method of claim 97, wherein said RPE cell are washed with Ca2+/Mg+ DPBS.
99. The method of claim 97, wherein said RPE cells were cultured until bestrophin is
organized at the cell membrane.
100. The method of claim 97, wherein said RPE cells are cultured until they reach a medium pigmentation level.
101 .The method of claim 97, wherein said (a) comprising culturing at least two culture
vessels of RPE cells,
102. The method of claim 101 , wherein said RPE cells are harvested and combined into a single lot.
103. The method of claim 102, wherein said RPE cells are harvested and stored in FBS during the combination of RPE cells.
104. A method of treating retinal degeneration comprising a pharmaceutical preparation comprising administering an effective amount of RPE cells according to any one of claims 56-89.
105. The method of claim 104, wherein the retinal degeneration is due to choroideremia, diabetic retinopathy, age-related macular degeneration, retinal detachment, retinitis pigmentosa, or Stargardt's Disease.
106. The method of any one of claims 104 or 105, wherein the preparation is transplanted in a suspension, matrix, gel, colloid, scaffold, or substrate.
107. The method of any one of claims 104- 106, wherein the preparation is administered by injection into the subretinal space of the eye.
108. The method of any one of claims 104-107, wherein the effective amount is at least about 20,000-200,000 RPE cells.
109. The method of c!aim 108, wherein the effective amount is at ieast about 20,000, 50,000, 75,000, 100,000, 125,000, 150,000, 175,000, 180,000, 185,000, 190,000, or 200,000 RPE cells.
1 10. The method of any one of claims 104- 109, further comprising monitoring the efficacy of the method by measuring electroretinogram responses, optomotor acuity threshold, or luminance threshold in the subject.
) 1 l .The method of any one of claims 104- 1 10, wherein the preparation is substantially free of viral, bacterial, or fungal contamination.
1 12. The method of any one of claims 104-1 1 1, wherein the RPE cells are functional RPE cells capable of integrating into the retina upon transplantation.
1 13. The method of any one of claims 104-1 12, wherein the RPE cells improve visual acuity following transplantation.
14. The method of any one of claims 104- 1 13, wherein the alpha integrin subunit expression in the RPE cells is increased.
15. The method of claim 1 14, wherein said alpha integrin subunit is alpha 1 , 2, 3, 4, 5, 6, or 9.
PCT/US2010/057056 2009-11-17 2010-11-17 Methods of producing human rpe cells and pharmaceutical preparations of human rpe cells WO2011063005A2 (en)

Priority Applications (11)

Application Number Priority Date Filing Date Title
US13/510,426 US10485829B2 (en) 2009-11-17 2010-11-17 Methods of producing human RPE cells and pharmaceutical preparations of human RPE cells
IL301479A IL301479A (en) 2009-11-17 2010-11-17 Methods of producing human rpe cells and pharmaceutical preparations of human rpe cells
CA2781149A CA2781149A1 (en) 2009-11-17 2010-11-17 Methods of producing human rpe cells and pharmaceutical preparations of human rpe cells
IL281453A IL281453B (en) 2009-11-17 2010-11-17 Methods of producing human rpe cells and pharmaceutical preparations of human rpe cells
KR1020187022658A KR102073730B1 (en) 2009-11-17 2010-11-17 Methods of producing human rpe cells and pharmaceutical preparations of human rpe cells
EP10832114.2A EP2501802A4 (en) 2009-11-17 2010-11-17 Methods of producing human rpe cells and pharmaceutical preparations of human rpe cells
IL219787A IL219787B (en) 2009-11-17 2012-05-14 Methods of producing human rpe cells and pharmaceutical preparations of human rpe cells
IL264430A IL264430B (en) 2009-11-17 2019-01-23 Method of culturing retinal pigment epithelial cells and such cells for use for increasing expression of alpha integrin subunit in the cells
US16/597,419 US11850261B2 (en) 2009-11-17 2019-10-09 Methods of producing human RPE cells and pharmaceutical preparations of human RPE cells
IL294095A IL294095B2 (en) 2009-11-17 2022-06-19 Methods of producing human rpe cells and pharmaceutical preparations of human rpe cells
US18/504,238 US20240307436A2 (en) 2009-11-17 2023-11-08 Methods of producing human rpe cells and pharmaceutical preparations of human rpe cells

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US26200209P 2009-11-17 2009-11-17
US61/262,002 2009-11-17

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/510,426 A-371-Of-International US10485829B2 (en) 2009-11-17 2010-11-17 Methods of producing human RPE cells and pharmaceutical preparations of human RPE cells
US16/597,419 Continuation US11850261B2 (en) 2009-11-17 2019-10-09 Methods of producing human RPE cells and pharmaceutical preparations of human RPE cells

Publications (2)

Publication Number Publication Date
WO2011063005A2 true WO2011063005A2 (en) 2011-05-26
WO2011063005A3 WO2011063005A3 (en) 2011-10-06

Family

ID=44060313

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2010/057056 WO2011063005A2 (en) 2009-11-17 2010-11-17 Methods of producing human rpe cells and pharmaceutical preparations of human rpe cells

Country Status (6)

Country Link
US (3) US10485829B2 (en)
EP (1) EP2501802A4 (en)
KR (2) KR20120102709A (en)
CA (1) CA2781149A1 (en)
IL (5) IL301479A (en)
WO (1) WO2011063005A2 (en)

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012012803A2 (en) 2010-07-23 2012-01-26 Advanced Cell Technology, Inc. Methods for detection of rare subpopulations of cells and highly purified compositions of cells
US8268303B2 (en) 2004-01-23 2012-09-18 Advanced Cell Technology, Inc. Methods for producing enriched populations of human retinal pigment epithelium cells for treatment of retinal degeneration
WO2013074681A1 (en) * 2011-11-14 2013-05-23 Advanced Cell Technology, Inc. Pharmaceutical preparations of human rpe cells and uses thereof
WO2014162040A1 (en) * 2013-04-03 2014-10-09 Tampereen Yliopisto Methods and media for differentiating eye cells
US8961956B2 (en) 2011-11-30 2015-02-24 Ocata Therapeutics, Inc. Mesenchymal stromal cells and uses related thereto
US8962321B2 (en) 2011-11-30 2015-02-24 Ocata Therapeutics, Inc. Mesenchymal stromal cells and uses related thereto
US9040770B2 (en) 2004-01-23 2015-05-26 Ocata Therapeutics, Inc. Modalities for the treatment of degenerative diseases of the retina
WO2015087231A1 (en) 2013-12-11 2015-06-18 Pfizer Limited Method for producing retinal pigment epithelial cells
WO2015121859A1 (en) * 2014-02-11 2015-08-20 Brainstorm Cell Therapeutics Ltd. Method of qualifying cells
WO2015125941A1 (en) * 2014-02-21 2015-08-27 株式会社ヘリオス Eye disease treatment agent, screening method therefor, and method for predicting rejection response associated with retinal pigment epithelial cell transplant
WO2016097183A1 (en) * 2014-12-18 2016-06-23 Universite Pierre Et Marie Curie (Paris 6) Transgenic rpe cells overexpressing otx2 for the treatment of retinal degeneration
EP2980207A4 (en) * 2013-03-25 2016-09-07 Found Biomedical Res & Innov Cell sorting method
WO2017044488A1 (en) * 2015-09-08 2017-03-16 Cellular Dynamics International, Inc. Macs-based purification of stem cell-derived retinal pigment epithelium
US10046010B2 (en) 2012-08-06 2018-08-14 Brainstorm Cell Therapeutics Ltd. Methods of generating mesenchymal stem cells which secrete neurotrophic factors
US10077424B2 (en) 2007-10-12 2018-09-18 Astellas Institute For Regenerative Medicine Methods of producing RPE cells and compositions of RPE cells
WO2018170494A1 (en) * 2017-03-16 2018-09-20 Bio Time, Inc. Methods for measuring therapeutic effects of retinal disease therapies
CN108998413A (en) * 2018-06-15 2018-12-14 苏州大学附属第二医院 A kind of infant rats retinal pigment epithelium isolated culture method
US10480031B2 (en) 2013-02-01 2019-11-19 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Method for generating Retinal Pigment Epithelium (RPE) cells from Induced Pluripotent Stem Cells (IPSCs)
US10485829B2 (en) 2009-11-17 2019-11-26 Astellas Institute For Regenerative Medicine Methods of producing human RPE cells and pharmaceutical preparations of human RPE cells
EP3674397A1 (en) 2014-12-30 2020-07-01 Cell Cure Neurosciences Ltd. Rpe cell populations and methods of generating same
US10744160B2 (en) 2014-12-01 2020-08-18 T-Helper Cell Technologies, Llc Stem cell material and method of manufacturing
WO2020218480A1 (en) 2019-04-26 2020-10-29 国立研究開発法人理化学研究所 Composite including neural retina, retinal pigment epithelial cells, and hydrogel, and method for producing same
US10865381B2 (en) 2015-10-20 2020-12-15 FUJIFILM Cellular Dynamics, Inc. Multi-lineage hematopoietic precursor cell production by genetic programming
WO2021086911A1 (en) 2019-10-30 2021-05-06 Astellas Institute For Regenerative Medicine Methods for producing retinal pigment epithelium cells
EP3240890B1 (en) 2014-12-30 2021-06-16 Cell Cure Neurosciences Ltd. Assessing retinal pigment epithelial cell populations
WO2021242788A1 (en) * 2020-05-25 2021-12-02 Lineage Cell Therapeutics, Inc. Methods and compositions for treating retinal diseases and conditions
US11376283B2 (en) 2016-05-31 2022-07-05 T-Helper Cell Technologies, Llc Stem cell material, compositions, and methods of use
US11422125B2 (en) 2015-03-23 2022-08-23 Astellas Institute For Regenerative Medicine Assays for potency of human retinal pigment epithelium (RPE) cells and photoreceptor progenitors
WO2022191216A1 (en) 2021-03-09 2022-09-15 国立研究開発法人理化学研究所 Method for producing hypoimmunogenic retinal pigment epithelial cells
WO2023090427A1 (en) 2021-11-19 2023-05-25 国立研究開発法人理化学研究所 Production method for sheet-like retinal tissue
WO2023176906A1 (en) 2022-03-16 2023-09-21 住友ファーマ株式会社 Transplantation medium
US12065671B2 (en) 2015-09-08 2024-08-20 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Method for reproducible differentiation of clinical-grade retinal pigment epithelium cells

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA3174901A1 (en) 2009-11-12 2011-05-19 Technion Research & Development Foundation Ltd. Culture media, cell cultures and methods of culturing pluripotent stem cells in an undifferentiated state
US9850463B2 (en) * 2012-02-01 2017-12-26 The Regents Of The University Of California Methods of culturing retinal pigmented epithelium cells, including xeno-free production, RPE enrichment, and cryopreservation
EP2796545A1 (en) * 2013-04-26 2014-10-29 Université Pierre et Marie Curie (Paris 6) Methods for obtaining retinal progenitors, retinal pigmented epithelial cells and neural retinal cells
WO2016108219A1 (en) * 2014-12-30 2016-07-07 Cell Cure Neurosciences Ltd. Methods of treating retinal diseases
GB201511482D0 (en) * 2015-06-30 2015-08-12 Univ Oslo Hf Culture of RPE cells
IL299326A (en) 2015-08-18 2023-02-01 Astellas Inst For Regenerative Medicine Clinical formulations
AU2019215464A1 (en) 2018-02-05 2020-08-13 Ibex Biosciences, Inc. Use of PCBP1 to treat hyperproliferative disease
WO2020142304A1 (en) * 2019-01-03 2020-07-09 Merck Sharp & Dohme Corp. Supplemented serum-containing culture medium for enhanced arpe-19 growth and human cytomegalovirus vaccine production
EP4010471A4 (en) * 2019-08-07 2023-08-23 Ibex Biosciences, Llc Use of pcbp1 to generate induced pluripotent stem cells while inhibiting oncogenesis
KR102525093B1 (en) * 2021-04-16 2023-04-27 가톨릭대학교 산학협력단 Pharmaceutical composition for preventing or treating retinal degenerative disease, comprising human neural crest derived nasal turbinate stem cells as an active ingredient

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6331313B1 (en) 1999-10-22 2001-12-18 Oculex Pharmaceticals, Inc. Controlled-release biocompatible ocular drug delivery implant devices and methods
US20030217374A1 (en) 2002-01-15 2003-11-20 Advanced Cell Technology Cloning B and T lymphocytes
US20030232430A1 (en) 2001-11-26 2003-12-18 Advanced Cell Technology Methods for making and using reprogrammed human somatic cell nuclei and autologous and isogenic human stem cells
US20040091936A1 (en) 2002-05-24 2004-05-13 Michael West Bank of stem cells for producing cells for transplantation having HLA antigens matching those of transplant recipients, and methods for making and using such a stem cell bank
US6943153B1 (en) 1999-03-15 2005-09-13 The Regents Of The University Of California Use of recombinant gene delivery vectors for treating or preventing diseases of the eye
US6943145B2 (en) 1997-09-10 2005-09-13 University Of Florida Compounds and method for the prevention and treatment of diabetic retinopathy
US7462471B2 (en) 1993-02-01 2008-12-09 Massachusetts Institute Of Technology Porous biodegradable polymeric materials for cell transplantation
WO2009051671A1 (en) 2007-10-12 2009-04-23 Advanced Cell Technology, Inc. Improved methods of producing rpe cells and compositions of rpe cells
US7625582B2 (en) 2000-11-29 2009-12-01 Allergan, Inc. Methods for reducing or preventing transplant rejection in the eye and intraocular implants for use therefor
US7795025B2 (en) 2004-01-23 2010-09-14 Advanced Cell Technology, Inc. Methods for producing enriched populations of human retinal pigment epithelium cells
US7794704B2 (en) 2004-01-23 2010-09-14 Advanced Cell Technology, Inc. Methods for producing enriched populations of human retinal pigment epithelium cells for treatment of retinal degeneration

Family Cites Families (91)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0700429B1 (en) 1993-04-30 2000-10-11 PHOTOGENESIS Incorporated Retinal pigment epithelium transplantation
US6878544B2 (en) 1996-04-19 2005-04-12 Neurotech Sa Retinal cell lines with extended life-span and their applications
US20040086494A1 (en) 1996-10-07 2004-05-06 John Constance Mary Immune privileged cells for delivery of proteins and peptides
JP2001508302A (en) 1997-01-10 2001-06-26 ライフ テクノロジーズ,インコーポレイテッド Embryonic stem cell serum replacement
CA2317115A1 (en) 1998-01-02 1999-07-15 Titan Pharmaceuticals, Inc. Use of pigmented retinal epithelial cells for creation of an immune privilege site
AU2884499A (en) 1998-03-02 1999-09-20 Compucyte Corp. Selective cell analysis
US6667176B1 (en) 2000-01-11 2003-12-23 Geron Corporation cDNA libraries reflecting gene expression during growth and differentiation of human pluripotent stem cells
US6878543B1 (en) 1999-10-25 2005-04-12 Nsgene Sa Cultures of GFAP+ nestin+ cells that differentiate to neurons
EP2336297A3 (en) 1999-10-28 2011-11-16 University of Massachusetts Gynogenetic or androgenetic production of pluripotent cells and cell lines, and use thereof to produce differentiated cells and tissues
EP1248517A2 (en) 2000-01-07 2002-10-16 Oregon Health and Science University Clonal propagation of primate offspring by embryo splitting
US6602711B1 (en) 2000-02-21 2003-08-05 Wisconsin Alumni Research Foundation Method of making embryoid bodies from primate embryonic stem cells
US7005252B1 (en) 2000-03-09 2006-02-28 Wisconsin Alumni Research Foundation Serum free cultivation of primate embryonic stem cells
US7439064B2 (en) 2000-03-09 2008-10-21 Wicell Research Institute, Inc. Cultivation of human embryonic stem cells in the absence of feeder cells or without conditioned medium
WO2001068815A1 (en) 2000-03-14 2001-09-20 Es Cell International Pte Ltd Embryonic stem cells and neural progenitor cells derived therefrom
US6458589B1 (en) 2000-04-27 2002-10-01 Geron Corporation Hepatocyte lineage cells derived from pluripotent stem cells
EP1287116A2 (en) 2000-05-17 2003-03-05 Geron Corporation Neural progenitor cell populations
WO2001098463A1 (en) 2000-06-20 2001-12-27 Es Cell International Pte Ltd Method of controlling differentiation of embryonic stem (es) cells by culturing es cells in the presence of bmp-2 pathway antagonists
JP2004522414A (en) 2000-08-19 2004-07-29 アクソーディア・リミテッド Stem cell differentiation
US6576464B2 (en) 2000-11-27 2003-06-10 Geron Corporation Methods for providing differentiated stem cells
DE10108412B4 (en) 2001-02-21 2006-03-09 Cevec Pharmaceuticals Gmbh Pigment epithelial cell of the eye, its preparation and use in the treatment of an ocular or nervous disease
EP1393066A4 (en) 2001-05-15 2006-01-25 Rappaport Family Inst For Res Insulin producing cells derived from human embryonic stem cells
US6939378B2 (en) 2001-06-01 2005-09-06 The Board Of Trustees Of The Leland Stanford Junior University Microfabricated tissue as a substrate for pigment epithelium transplantation
CN1543500B (en) 2001-07-12 2014-04-09 杰龙公司 Cardiomyocyte precursors from human embryonic stem cells
ATE526041T1 (en) 2001-12-11 2011-10-15 Fibrogen Inc METHOD FOR INHIBITING OCCULAR PROCESSES
ES2397060T3 (en) 2002-04-18 2013-03-04 Opko Pharmaceuticals, Llc Means and methods for specific modulation of target genes in the eye
EP2327762A1 (en) 2002-06-05 2011-06-01 ES Cell International Pte Ltd. Stem cells
US7422736B2 (en) 2002-07-26 2008-09-09 Food Industry Research And Development Institute Somatic pluripotent cells
CN1720055A (en) 2002-10-04 2006-01-11 组织技术公司 Retinal pigment epithelial cell cultures on amniotic membrane and transplantation
US7267981B2 (en) 2002-10-07 2007-09-11 Technion Research & Development Foundation Ltd. Human foreskin fibroblasts for culturing ES cells
AU2003302020B2 (en) 2002-11-14 2008-01-31 Ethicon Endo-Surgery, Inc. Methods and devices for detecting tissue cells
DK1572984T3 (en) 2002-12-16 2016-06-13 Technion Res & Dev Foundation FEEDER CELL-FREE, XENOPHRIC CULTIVATION SYSTEM FOR HUMAN EMBRYONAL STEM CELLS
US7794437B2 (en) 2003-01-24 2010-09-14 Doheny Retina Institute Reservoirs with subretinal cannula for subretinal drug delivery
US20040156878A1 (en) 2003-02-11 2004-08-12 Alireza Rezania Implantable medical device seeded with mammalian cells and methods of treatment
EP1599730A2 (en) 2003-03-03 2005-11-30 Kouyama, Yoshihisa Methods and apparatus for use in detection and quantitation of various cell types and use of optical bio-disc for performing same
US20190282622A1 (en) 2004-01-23 2019-09-19 Astellas Institute For Regenerative Medicine Modalities for the treatment of degenerative diseases of the retina
EP1809739B1 (en) 2004-07-13 2014-10-15 Asterias Biotherapeutics, Inc. Medium for growing human embryonic stem cells
KR101264940B1 (en) 2004-09-08 2013-05-15 위스콘신 얼럼나이 리서어치 화운데이션 Medium and culture of embryonic stem cells
WO2006040763A2 (en) 2004-10-12 2006-04-20 Technion Research & Development Foundation Ltd. Isolated primate embryonic cells and methods of generating and using same
EP2960328A1 (en) 2004-11-04 2015-12-30 Ocata Therapeutics, Inc. Derivation of embryonic stem cells
US7893315B2 (en) 2004-11-04 2011-02-22 Advanced Cell Technology, Inc. Derivation of embryonic stem cells and embryo-derived cells
US20060244913A1 (en) 2004-12-21 2006-11-02 Werner Gellermann Imaging of macular pigment distributions
ES2525684T3 (en) 2004-12-29 2014-12-29 Hadasit Medical Research Services And Development Ltd. Stem cell culture systems
ATE480615T1 (en) 2005-02-11 2010-09-15 Agency Science Tech & Res METHOD FOR PROLIFERATION OF STEM CELLS
AU2006281032B2 (en) 2005-05-17 2010-09-02 Reliance Life Sciences Pvt Ltd Establishment of a human embryonic stem cell line using mammalian cells
US8278104B2 (en) 2005-12-13 2012-10-02 Kyoto University Induced pluripotent stem cells produced with Oct3/4, Klf4 and Sox2
KR100832592B1 (en) 2006-08-17 2008-05-27 박현숙 Method for co-culture of stem cells and feeder cells using a polymer membrane
JP2008099662A (en) 2006-09-22 2008-05-01 Institute Of Physical & Chemical Research Method for culturing stem cell
CN101563449A (en) 2006-09-22 2009-10-21 理化学研究所 Stem cell culture medium and method
CN101688178B (en) 2007-04-18 2013-12-04 哈达锡特医学研究服务及发展有限公司 Stem cell-derived retinal pigment epithelial cells
JP2008307007A (en) 2007-06-15 2008-12-25 Bayer Schering Pharma Ag Human pluripotent stem cell induced from human tissue-originated undifferentiated stem cell after birth
HU0700675D0 (en) 2007-10-15 2007-12-28 Mta Tamogatott Kutatohelyek Ir Method for monitoring stem cell differentiation
US20090226955A1 (en) 2007-12-21 2009-09-10 University Of Miami Immortalized retinal pigmented epithelial cells
US20090233324A1 (en) 2008-03-11 2009-09-17 Kopf-Sill Anne R Methods for Diagnosing Cancer Using Samples Collected From A Central Vein Location or an Arterial Location
EP2279247B1 (en) 2008-04-22 2019-01-02 Regenerative Research Foundation Retinal pigment epithelial stem cells
JPWO2009148170A1 (en) 2008-06-06 2011-11-04 独立行政法人理化学研究所 Stem cell culture method
US20100028307A1 (en) 2008-07-31 2010-02-04 O'neil John J Pluripotent stem cell differentiation
US8652123B2 (en) 2008-09-02 2014-02-18 Geoffrey C. GURTNER Methods and devices for improving the appearance of tissue
US8425473B2 (en) 2009-01-23 2013-04-23 Iscience Interventional Corporation Subretinal access device
WO2010144887A1 (en) 2009-06-11 2010-12-16 Minerva Biotechnologies Corporation Methods for culturing stem and progenitor cells
JP6166900B2 (en) 2009-08-24 2017-07-19 ウイスコンシン アラムナイ リサーチ ファウンデーシヨンWisconsin Alumni Research Foundation Substantially pure human retinal progenitor cell culture, forebrain progenitor cell culture, retinal pigment epithelial cell culture, and methods for their production
US9359592B2 (en) 2009-10-06 2016-06-07 Snu R&Db Foundation Method for differentiation into retinal cells from stem cells
KR101268763B1 (en) 2009-10-06 2013-05-29 김지연 Compositions for inducing differentiation into retinal cells from retinal progenitor cells or inducing proliferation of retinal cells comprising Wnt signaling pathway activators
KR20120102709A (en) 2009-11-17 2012-09-18 어드밴스드 셀 테크놀로지, 인코포레이티드 Methods of producing human rpe cells and pharmaceutical preparations of human rpe cells
EP2383333B1 (en) 2010-04-28 2015-05-27 Technische Universität Dresden Method for producing polarized retinal progenitor cells from pluripotent stem cells and their differentiation into retinal pigment epithelium cells
WO2012149480A2 (en) 2011-04-29 2012-11-01 University Of Southern California Systems and methods for in vitro and in vivo imaging of cells on a substrate
AU2011280878B2 (en) 2010-07-23 2016-06-16 Astellas Institute For Regenerative Medicine Methods for detection of rare subpopulations of cells and highly purified compositions of cells
EP2630232A4 (en) 2010-10-22 2014-04-02 Biotime Inc Methods of modifying transcriptional regulatory networks in stem cells
WO2012080842A1 (en) 2010-12-17 2012-06-21 Biolamina Ab Recombinant laminin-521
US20120258451A1 (en) 2011-04-08 2012-10-11 Advanced Cell Technology, Inc. Laser isolation of viable cells
ES2722207T3 (en) 2011-04-29 2019-08-08 Univ Southern California Procedures for cryopreservation of retinal pigment epithelial cells derived from cytoblasts grown on a polymeric substrate
US10240124B2 (en) 2011-09-22 2019-03-26 Biolamina Ab Cell culture substrate comprising a laminin and a cadherin
KR102054904B1 (en) 2011-11-14 2019-12-11 아스텔라스 인스티튜트 포 리제너러티브 메디슨 Pharmaceutical preparations of human RPE cells and uses thereof
WO2013114360A1 (en) 2012-01-31 2013-08-08 Cell Cure Neurosciences Ltd. Methods of selecting retinal pigmented epithelial cells
US9850463B2 (en) 2012-02-01 2017-12-26 The Regents Of The University Of California Methods of culturing retinal pigmented epithelium cells, including xeno-free production, RPE enrichment, and cryopreservation
EP2838992B1 (en) 2012-04-20 2017-11-08 Biolamina AB Maintenance of differentiated cells with laminins
WO2013184809A1 (en) 2012-06-05 2013-12-12 The Regents Of The University Of California Methods and compositions for the rapid production of retinal pigmented epithelial cells from pluripotent cells
US9719066B2 (en) 2012-09-07 2017-08-01 Biolamina Ab Stem cell bank
WO2014087244A2 (en) 2012-12-03 2014-06-12 Biolamina Ab Methods of producing rpe cells
EP2796545A1 (en) 2013-04-26 2014-10-29 Université Pierre et Marie Curie (Paris 6) Methods for obtaining retinal progenitors, retinal pigmented epithelial cells and neural retinal cells
EP3056564B2 (en) 2013-10-09 2024-09-11 Healios K.K. Method for purification of retinal pigment epithelial cells
US20150159134A1 (en) 2013-12-11 2015-06-11 Pfizer Limited Method for producing retinal pigment epithelial cells
US10457915B2 (en) 2014-05-15 2019-10-29 International Stem Cell Corporation Chemical differentiation of pluripotentstem cells into retinal epithelial cells
WO2016108219A1 (en) 2014-12-30 2016-07-07 Cell Cure Neurosciences Ltd. Methods of treating retinal diseases
IL305070A (en) 2014-12-30 2023-10-01 Cell Cure Neurosciences Ltd Rpe cell populations and methods of generating same
AU2016261600B2 (en) 2015-05-08 2021-09-23 President And Fellows Of Harvard College Universal donor stem cells and related methods
WO2016194522A1 (en) 2015-06-02 2016-12-08 国立研究開発法人産業技術総合研究所 Method for inducing differentiation of neural crest cells into autonomic nervous system cells
GB201511482D0 (en) 2015-06-30 2015-08-12 Univ Oslo Hf Culture of RPE cells
EP3331994B1 (en) 2015-08-05 2022-09-14 Cell Cure Neurosciences Ltd. Preparation of retinal pigment epithelium cells
LT3347457T (en) 2015-09-08 2022-02-10 FUJIFILM Cellular Dynamics, Inc. Macs-based purification of stem cell-derived retinal pigment epithelium
AU2016347652A1 (en) 2015-10-26 2018-05-24 Cell Cure Neurosciences Ltd. Preparation of retinal pigment epithelium cells
EP3421588B1 (en) 2016-02-22 2024-04-10 Osaka University Method for producing three-dimensional cell tissue

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7462471B2 (en) 1993-02-01 2008-12-09 Massachusetts Institute Of Technology Porous biodegradable polymeric materials for cell transplantation
US6943145B2 (en) 1997-09-10 2005-09-13 University Of Florida Compounds and method for the prevention and treatment of diabetic retinopathy
US6943153B1 (en) 1999-03-15 2005-09-13 The Regents Of The University Of California Use of recombinant gene delivery vectors for treating or preventing diseases of the eye
US6331313B1 (en) 1999-10-22 2001-12-18 Oculex Pharmaceticals, Inc. Controlled-release biocompatible ocular drug delivery implant devices and methods
US7625582B2 (en) 2000-11-29 2009-12-01 Allergan, Inc. Methods for reducing or preventing transplant rejection in the eye and intraocular implants for use therefor
US20030232430A1 (en) 2001-11-26 2003-12-18 Advanced Cell Technology Methods for making and using reprogrammed human somatic cell nuclei and autologous and isogenic human stem cells
US20030217374A1 (en) 2002-01-15 2003-11-20 Advanced Cell Technology Cloning B and T lymphocytes
US20040091936A1 (en) 2002-05-24 2004-05-13 Michael West Bank of stem cells for producing cells for transplantation having HLA antigens matching those of transplant recipients, and methods for making and using such a stem cell bank
US7795025B2 (en) 2004-01-23 2010-09-14 Advanced Cell Technology, Inc. Methods for producing enriched populations of human retinal pigment epithelium cells
US7794704B2 (en) 2004-01-23 2010-09-14 Advanced Cell Technology, Inc. Methods for producing enriched populations of human retinal pigment epithelium cells for treatment of retinal degeneration
WO2009051671A1 (en) 2007-10-12 2009-04-23 Advanced Cell Technology, Inc. Improved methods of producing rpe cells and compositions of rpe cells

Non-Patent Citations (12)

* Cited by examiner, † Cited by third party
Title
EISENFELD ET AL., EXPERIMENTAL RESEARCH, vol. 41, no. 3, 1985, pages 299 - 304
ENGELMANNVALTINK: "RPE Cell Cultivation", GRAEFE'S ARCHIVE FOR CLINICAL AND EXPERIMENTAL OPHTHALMOLOGY, vol. 242, no. 1, 2004, pages 65 - 67, XP002358287, DOI: doi:10.1007/s00417-003-0811-9
HUTALA ET AL.: "In vitro biocompatibility of degradable biopolymers in cell line cultures from various ocular tissues: Direct contact studies", JOURNAL OF BIOMEDICAL MATERIALS RESEARCH, vol. 83A, no. 2, 2007, pages 407 - 413
IRINA KLIMANSKAYA: "STEM CELL ANTHOLOGY", 2009, article "Retinal Pigment Epithelium Derived From Embryonic Stem Cells", pages: 335 - 346
JABLONSKI ET AL., THE JOURNAL OF NEUROSCIENCE, vol. 20, no. 19, 2000, pages 7149 - 7157
KARAKOUSIS ET AL., MOLECULAR VISION, vol. 7, 2001, pages 154 - 163
LU ET AL., J BIOMATER SCI POLYM ED, vol. 9, 1998, pages 1 187 - 205
MA ET AL., INVEST OPTHALMOL VIS SCI., vol. 42, no. 7, 2001, pages 1429 - 35
MARMORSTEIN ET AL., PNAS, vol. 97, no. 23, 2000, pages 12758 - 12763
REDMOND, EXP EYE RES., vol. 88, no. 5, 2009, pages 846 - 847
See also references of EP2501802A4
TOMITA ET AL., STEM CELLS, vol. 23, 2005, pages 1579 - 88

Cited By (87)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9562217B2 (en) 2004-01-23 2017-02-07 Astellas Institute For Regenerative Medicine Modalities for the treatment of degenerative diseases of the retina
US8268303B2 (en) 2004-01-23 2012-09-18 Advanced Cell Technology, Inc. Methods for producing enriched populations of human retinal pigment epithelium cells for treatment of retinal degeneration
US9730962B2 (en) 2004-01-23 2017-08-15 Astellas Institute For Regenerative Medicine Modalities for the treatment of degenerative diseases of the retina
US9650607B2 (en) 2004-01-23 2017-05-16 Astellas Institute For Regenerative Medicine Modalities for the treatment of degenerative diseases of the retina
US9649340B2 (en) 2004-01-23 2017-05-16 Astellas Institute For Regenerative Medicine Methods for producing enriched populations of human retinal pigment epithelium cells
US9045732B2 (en) 2004-01-23 2015-06-02 Ocata Therapeutics, Inc. Modalities for the treatment of degenerative diseases of the retina
US9193950B2 (en) 2004-01-23 2015-11-24 Ocata Therapeutics, Inc. Modalities for the treatment of degenerative diseases of the retina
US9181524B2 (en) 2004-01-23 2015-11-10 Ocata Therapeutics, Inc. Modalities for the treatment of degenerative diseases of the retina
US9080150B2 (en) 2004-01-23 2015-07-14 Ocata Therapeutics, Inc. Modalities for the treatment of degenerative diseases of the retina
US9040770B2 (en) 2004-01-23 2015-05-26 Ocata Therapeutics, Inc. Modalities for the treatment of degenerative diseases of the retina
US9040039B2 (en) 2004-01-23 2015-05-26 Ocata Therapeutics, Inc. Modalities for the treatment of degenerative diseases of the retina
US9040038B2 (en) 2004-01-23 2015-05-26 Ocata Therapeutics, Inc. Modalities for the treatment of degenerative diseases of the retina
US10077424B2 (en) 2007-10-12 2018-09-18 Astellas Institute For Regenerative Medicine Methods of producing RPE cells and compositions of RPE cells
US11850261B2 (en) 2009-11-17 2023-12-26 Astellas Institute For Regenerative Medicine Methods of producing human RPE cells and pharmaceutical preparations of human RPE cells
US10485829B2 (en) 2009-11-17 2019-11-26 Astellas Institute For Regenerative Medicine Methods of producing human RPE cells and pharmaceutical preparations of human RPE cells
WO2012012803A2 (en) 2010-07-23 2012-01-26 Advanced Cell Technology, Inc. Methods for detection of rare subpopulations of cells and highly purified compositions of cells
US11739366B2 (en) 2010-07-23 2023-08-29 Astellas Institute For Regenerative Medicine Methods for detection of rare subpopulations of cells and highly purified compositions of cells
JP7404441B2 (en) 2011-11-14 2023-12-25 アステラス インスティテュート フォー リジェネレイティブ メディシン Human RPE cell medicines and their uses
JP2021113193A (en) * 2011-11-14 2021-08-05 アステラス インスティテュート フォー リジェネレイティブ メディシン Pharmaceutical preparations of human rpe cells and uses thereof
JP2014533289A (en) * 2011-11-14 2014-12-11 アドバンスド セル テクノロジー、インコーポレイテッド Human RPE cell medicine and use thereof
IL287381B1 (en) * 2011-11-14 2023-12-01 Astellas Inst For Regenerative Medicine Pharmaceutical preparations of human rpe cells and uses thereof
TWI719277B (en) * 2011-11-14 2021-02-21 美商安斯泰來再生醫藥協會 Pharmaceutical preparations of human rpe cells and uses thereof
AU2017225146B2 (en) * 2011-11-14 2019-01-17 Astellas Institute For Regenerative Medicine Pharmaceutical preparations of human RPE cells and uses thereof
CN113786417A (en) * 2011-11-14 2021-12-14 安斯泰来再生医药协会 Pharmaceutical formulations of human RPE cells and uses thereof
IL287381B2 (en) * 2011-11-14 2024-04-01 Astellas Inst For Regenerative Medicine Pharmaceutical preparations of human rpe cells and uses thereof
AU2019201201B2 (en) * 2011-11-14 2021-04-08 Astellas Institute For Regenerative Medicine Pharmaceutical preparations of human RPE cells and uses thereof
JP7081016B2 (en) 2011-11-14 2022-06-06 アステラス インスティテュート フォー リジェネレイティブ メディシン Human RPE cell drug and its use
CN104080464A (en) * 2011-11-14 2014-10-01 先进细胞技术公司 Pharmaceutical formulations of human RPE cells and uses thereof
KR20140096368A (en) * 2011-11-14 2014-08-05 어드밴스드 셀 테크놀로지, 인코포레이티드 Pharmaceutical preparations of human RPE cells and uses thereof
GB2496969A (en) * 2011-11-14 2013-05-29 Advanced Cell Tech Inc Retinal pigment epithelial cells
JP2018048144A (en) * 2011-11-14 2018-03-29 アステラス インスティテュート フォー リジェネレイティブ メディシン Pharmaceutical preparations of human rpe cells and uses thereof
JP2022130370A (en) * 2011-11-14 2022-09-06 アステラス インスティテュート フォー リジェネレイティブ メディシン Pharmaceutical preparations of human rpe cells and uses thereof
IL273107A (en) * 2011-11-14 2020-04-30 Astellas Inst For Regenerative Medicine Pharmaceutical preparations of human rpe cells and uses thereof
WO2013074681A1 (en) * 2011-11-14 2013-05-23 Advanced Cell Technology, Inc. Pharmaceutical preparations of human rpe cells and uses thereof
TWI785403B (en) * 2011-11-14 2022-12-01 安斯泰來再生醫藥協會 Pharmaceutical preparations of human rpe cells and uses thereof
TWI842079B (en) * 2011-11-14 2024-05-11 安斯泰來再生醫藥協會 Pharmaceutical preparations of human rpe cells and uses thereof
KR102054904B1 (en) * 2011-11-14 2019-12-11 아스텔라스 인스티튜트 포 리제너러티브 메디슨 Pharmaceutical preparations of human RPE cells and uses thereof
TWI655286B (en) * 2011-11-14 2019-04-01 美商安斯泰來再生醫藥協會 Pharmaceutical composition of human RPE cells and use thereof
EP3563860A1 (en) 2011-11-14 2019-11-06 Astellas Institute for Regenerative Medicine Pharmaceutical preparations of human rpe cells and uses thereof
AU2017225146C1 (en) * 2011-11-14 2019-08-22 Astellas Institute For Regenerative Medicine Pharmaceutical preparations of human RPE cells and uses thereof
JP2019189614A (en) * 2011-11-14 2019-10-31 アステラス インスティテュート フォー リジェネレイティブ メディシン Pharmaceutical preparations of human rpe cells and uses thereof
US8962321B2 (en) 2011-11-30 2015-02-24 Ocata Therapeutics, Inc. Mesenchymal stromal cells and uses related thereto
US8961956B2 (en) 2011-11-30 2015-02-24 Ocata Therapeutics, Inc. Mesenchymal stromal cells and uses related thereto
US12097223B2 (en) 2011-11-30 2024-09-24 Astellas Institute For Regenerative Medicine Mesenchymal stromal cells and uses related thereto
US10046010B2 (en) 2012-08-06 2018-08-14 Brainstorm Cell Therapeutics Ltd. Methods of generating mesenchymal stem cells which secrete neurotrophic factors
US10480031B2 (en) 2013-02-01 2019-11-19 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Method for generating Retinal Pigment Epithelium (RPE) cells from Induced Pluripotent Stem Cells (IPSCs)
US11441184B2 (en) 2013-02-01 2022-09-13 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Method for generating retinal pigment epithelium (RPE) cells from induced pluripotent stem cells (IPSCs)
US10072242B2 (en) 2013-03-25 2018-09-11 Foundation For Biomedical Research And Innovation At Kobe Cell sorting method
EP2980207A4 (en) * 2013-03-25 2016-09-07 Found Biomedical Res & Innov Cell sorting method
WO2014162040A1 (en) * 2013-04-03 2014-10-09 Tampereen Yliopisto Methods and media for differentiating eye cells
WO2015087231A1 (en) 2013-12-11 2015-06-18 Pfizer Limited Method for producing retinal pigment epithelial cells
JP2017511876A (en) * 2014-02-11 2017-04-27 ブレインストーム セル セラペウティクス リミテッド Method for determining cell suitability
WO2015121859A1 (en) * 2014-02-11 2015-08-20 Brainstorm Cell Therapeutics Ltd. Method of qualifying cells
US10564149B2 (en) 2014-02-11 2020-02-18 Brainstorm Cell Therapeutics Ltd. Populations of mesenchymal stem cells that secrete neurotrophic factors
KR20160116008A (en) * 2014-02-21 2016-10-06 가부시키가이샤 헤리오스 Eye disease treatment agent, screening method therefor, and method for predicting rejection response associated with retinal pigment epithelial cell transplant
JP2020055796A (en) * 2014-02-21 2020-04-09 大日本住友製薬株式会社 Eye disease treatment agent, screening method thereof, or prediction method of rejection associated with retinal pigment epithelial cell transplantation
WO2015125941A1 (en) * 2014-02-21 2015-08-27 株式会社ヘリオス Eye disease treatment agent, screening method therefor, and method for predicting rejection response associated with retinal pigment epithelial cell transplant
KR102354410B1 (en) 2014-02-21 2022-01-21 다이니뽄 스미토모 세이야쿠 가부시키가이샤 Eye disease treatment agent, screening method therefor, and method for predicting rejection response associated with retinal pigment epithelial cell transplant
JPWO2015125941A1 (en) * 2014-02-21 2017-03-30 株式会社ヘリオス Ophthalmic disease therapeutic agent, screening method thereof, or prediction method of rejection associated with retinal pigment epithelial cell transplantation
US10240201B2 (en) 2014-02-21 2019-03-26 Healios K.K. Eye disease treatment agent, screening method therefor, and method for predicting rejection response associated with retinal pigment epithelial cell transplant
US10744160B2 (en) 2014-12-01 2020-08-18 T-Helper Cell Technologies, Llc Stem cell material and method of manufacturing
WO2016097183A1 (en) * 2014-12-18 2016-06-23 Universite Pierre Et Marie Curie (Paris 6) Transgenic rpe cells overexpressing otx2 for the treatment of retinal degeneration
US11865189B2 (en) 2014-12-18 2024-01-09 Sorbonne Universite Transgenic RPE cells overexpressing OTX2 for the treatment of retinal degeneration
EP3240890B1 (en) 2014-12-30 2021-06-16 Cell Cure Neurosciences Ltd. Assessing retinal pigment epithelial cell populations
US11987810B2 (en) 2014-12-30 2024-05-21 Cell Cure Neurosciences Ltd. RPE cell populations and methods of generating same
US11891622B2 (en) 2014-12-30 2024-02-06 Cell Cure Neurosciences Ltd. RPE cell populations and methods of generating same
EP3674397A1 (en) 2014-12-30 2020-07-01 Cell Cure Neurosciences Ltd. Rpe cell populations and methods of generating same
US11680941B2 (en) 2015-03-23 2023-06-20 Astellas Institute For Regenerative Medicine Assays for potency of human retinal pigment epithelium (RPE) cells and photoreceptor progenitors
US11422125B2 (en) 2015-03-23 2022-08-23 Astellas Institute For Regenerative Medicine Assays for potency of human retinal pigment epithelium (RPE) cells and photoreceptor progenitors
US12065671B2 (en) 2015-09-08 2024-08-20 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Method for reproducible differentiation of clinical-grade retinal pigment epithelium cells
US11162070B2 (en) 2015-09-08 2021-11-02 FUJIFILM Cellular Dynamics, Inc. MACS-based purification of stem cell-derived retinal pigment epithelium
WO2017044488A1 (en) * 2015-09-08 2017-03-16 Cellular Dynamics International, Inc. Macs-based purification of stem cell-derived retinal pigment epithelium
EP4001402A1 (en) * 2015-09-08 2022-05-25 FUJIFILM Cellular Dynamics, Inc. Macs-based purification of stem cell-derived retinal pigment epithelium
US10865381B2 (en) 2015-10-20 2020-12-15 FUJIFILM Cellular Dynamics, Inc. Multi-lineage hematopoietic precursor cell production by genetic programming
US11376283B2 (en) 2016-05-31 2022-07-05 T-Helper Cell Technologies, Llc Stem cell material, compositions, and methods of use
WO2018170494A1 (en) * 2017-03-16 2018-09-20 Bio Time, Inc. Methods for measuring therapeutic effects of retinal disease therapies
IL269363B1 (en) * 2017-03-16 2023-10-01 Lineage Cell Therapeutics Inc Methods for measuring therapeutic effects of retinal disease therapies
IL269363B2 (en) * 2017-03-16 2024-02-01 Lineage Cell Therapeutics Inc Methods for measuring therapeutic effects of retinal disease therapies
AU2018234933B2 (en) * 2017-03-16 2024-03-21 Lineage Cell Therapeutics, Inc. Methods for measuring therapeutic effects of retinal disease therapies
JP2020511539A (en) * 2017-03-16 2020-04-16 リネージ セル セラピューティクス インコーポレイテッド Method to measure the therapeutic effect of retinal disease treatment
CN108998413A (en) * 2018-06-15 2018-12-14 苏州大学附属第二医院 A kind of infant rats retinal pigment epithelium isolated culture method
WO2020218480A1 (en) 2019-04-26 2020-10-29 国立研究開発法人理化学研究所 Composite including neural retina, retinal pigment epithelial cells, and hydrogel, and method for producing same
WO2021086911A1 (en) 2019-10-30 2021-05-06 Astellas Institute For Regenerative Medicine Methods for producing retinal pigment epithelium cells
WO2021242788A1 (en) * 2020-05-25 2021-12-02 Lineage Cell Therapeutics, Inc. Methods and compositions for treating retinal diseases and conditions
WO2022191216A1 (en) 2021-03-09 2022-09-15 国立研究開発法人理化学研究所 Method for producing hypoimmunogenic retinal pigment epithelial cells
WO2023090427A1 (en) 2021-11-19 2023-05-25 国立研究開発法人理化学研究所 Production method for sheet-like retinal tissue
WO2023176906A1 (en) 2022-03-16 2023-09-21 住友ファーマ株式会社 Transplantation medium

Also Published As

Publication number Publication date
IL264430B (en) 2021-03-25
IL294095B1 (en) 2023-04-01
KR20180091125A (en) 2018-08-14
EP2501802A4 (en) 2013-08-21
IL219787A0 (en) 2012-07-31
US20240307436A2 (en) 2024-09-19
US20130149284A1 (en) 2013-06-13
US10485829B2 (en) 2019-11-26
CA2781149A1 (en) 2011-05-26
IL281453A (en) 2021-04-29
US11850261B2 (en) 2023-12-26
US20210060062A9 (en) 2021-03-04
US20240148784A1 (en) 2024-05-09
IL281453B (en) 2022-07-01
IL219787B (en) 2019-02-28
IL294095A (en) 2022-08-01
IL264430A (en) 2019-02-28
US20200113938A1 (en) 2020-04-16
KR102073730B1 (en) 2020-02-05
WO2011063005A3 (en) 2011-10-06
IL301479A (en) 2023-05-01
EP2501802A2 (en) 2012-09-26
IL294095B2 (en) 2023-08-01
KR20120102709A (en) 2012-09-18

Similar Documents

Publication Publication Date Title
US11850261B2 (en) Methods of producing human RPE cells and pharmaceutical preparations of human RPE cells
US20200405767A1 (en) Pharmaceutical preparations of human rpe cells and uses thereof
JP6692768B2 (en) Improved method for producing RPE cells and composition of RPE cells
TW202434266A (en) Pharmaceutical preparations of human rpe cells and uses thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10832114

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 219787

Country of ref document: IL

ENP Entry into the national phase

Ref document number: 2781149

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010832114

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20127015530

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13510426

Country of ref document: US