WO2011060707A1 - 公共承载处理方法、网络节点及通信系统 - Google Patents

公共承载处理方法、网络节点及通信系统 Download PDF

Info

Publication number
WO2011060707A1
WO2011060707A1 PCT/CN2010/078783 CN2010078783W WO2011060707A1 WO 2011060707 A1 WO2011060707 A1 WO 2011060707A1 CN 2010078783 W CN2010078783 W CN 2010078783W WO 2011060707 A1 WO2011060707 A1 WO 2011060707A1
Authority
WO
WIPO (PCT)
Prior art keywords
bearer
group
public
user plane
common
Prior art date
Application number
PCT/CN2010/078783
Other languages
English (en)
French (fr)
Inventor
支春霞
郭小龙
刘永俊
梅里奥·劳伦斯
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to JP2012539171A priority Critical patent/JP5584921B2/ja
Priority to AU2010321416A priority patent/AU2010321416B2/en
Publication of WO2011060707A1 publication Critical patent/WO2011060707A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/06Selective distribution of broadcast services, e.g. multimedia broadcast multicast service [MBMS]; Services to user groups; One-way selective calling services
    • H04W4/08User group management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/30Resource management for broadcast services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • H04W48/10Access restriction or access information delivery, e.g. discovery data delivery using broadcasted information

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a public bearer processing method, a network node, and a communication system.
  • LTE/SAE Long Term Evolved/System Architecture Evolved
  • H2H Human To Human
  • each user equipment User Equipment, UE for short
  • the network manages each UE separately and establishes a bearer used by a single UE. There is no association between different UEs.
  • Machine to Machine (M2M) communication technology is one of the development trends of current communication technology.
  • M2M communication technology data is transmitted from one device to another, that is, a dialogue between devices is realized.
  • M2M network based on M2M communication technology, the relationship between the user and the device is no longer a simple 1:1 relationship.
  • a user will have more than one device or even a large number of devices, that is, a user and a device form a 1: The relationship of M.
  • M2M network there may be a case where a plurality of users use one device in common, that is, a relationship of N:1 is formed between the user and the device. Based on the various possible scenarios of M2M, the correspondence between users and devices in the M2M network can be expressed as N: M.
  • the embodiment of the invention provides a common bearer processing method, a network node and a communication system, which are used to save network resources required for terminal device management.
  • An embodiment of the present invention provides a public bearer processing method, including:
  • the common bearer is used to provide services for devices in the group.
  • An embodiment of the present invention further provides another public bearer processing method, including:
  • the group information is broadcasted for the devices belonging to the group to select a cell in which the public bearer is created to camp.
  • the embodiment of the invention further provides a network node, including:
  • a common bearer creation module configured to create a common bearer corresponding to the group to which the device belongs
  • a group device service module configured to use the public bearer to provide services for devices in the group.
  • Another embodiment of the present invention provides another network node, including:
  • a group information obtaining module configured to acquire group information corresponding to the public bearer by creating a common bearer corresponding to the group to which the device belongs;
  • a group information broadcast module configured to broadcast the group information, for the device belonging to the group to select a cell in which the public bearer is created to camp.
  • An embodiment of the present invention further provides a communication system, including: a network node and a device communicably connected to the network node,
  • the network node is configured to create a common bearer corresponding to a group to which the device belongs, and use the public bearer to provide services for devices in the group.
  • Another embodiment of the present invention provides a communication system, including: a network node and a device communicably connected to the network node,
  • the network node is configured to acquire the public bearer corresponding to the group to which the device belongs The group information corresponding to the public bearer; the group information is broadcasted, so that the device belonging to the group selects a cell in which the public bearer is created to camp.
  • a common bearer is established for multiple devices belonging to the same group, so that multiple devices belonging to the same group can share the same bearer resource, thereby saving Manage the network resources required for the terminal device.
  • FIG. 1 is a flowchart of a method for processing a common bearer according to a first embodiment of the present invention
  • FIG. 2 is a flowchart of a method for processing a common bearer according to a second embodiment of the present invention
  • FIG. 3 is a schematic diagram of an application scenario of an LTE/SAE system according to an embodiment of a method for processing a bearer according to the present invention
  • FIG. 3b is a schematic diagram of classification of a common bearer in the application scenario shown in FIG. 3a;
  • 4a is a signaling interaction diagram of a public uplink user plane bearer creation method in an attach procedure according to a third embodiment of the present invention.
  • 4b is a signaling interaction diagram of a common uplink user plane bearer usage method in an attach procedure according to a third embodiment of the present invention.
  • FIG. 5 is a signaling interaction diagram of a public uplink user plane bearer creation method in a PDN connection establishment process according to a fourth embodiment of the present invention.
  • FIG. 5b is a signaling interaction diagram of a public uplink user plane bearer usage method in a PDN connection establishment process according to a fourth embodiment of the present invention.
  • 6a is a signaling interaction diagram of a dedicated public uplink user plane bearer creation method in a dedicated bearer setup process according to a fifth embodiment of the present invention.
  • FIG. 6b is a dedicated public uplink user in a dedicated bearer establishment process according to a fifth embodiment of the present invention. Plane bearer usage method signaling interaction diagram;
  • FIG. 7a is a signaling interaction diagram of a public downlink user plane bearer creation method in an attach procedure according to a sixth embodiment of the present invention.
  • FIG. 7b is a signaling interaction diagram of a public downlink user plane bearer usage method in an attach procedure according to a sixth embodiment of the present invention.
  • FIG. 8 is a signaling interaction diagram of a public downlink user plane bearer creation method in a PDN connection establishment process according to a seventh embodiment of the present invention.
  • FIG. 8b is a signaling interaction diagram of a public downlink user plane bearer usage method in a PDN connection establishment process according to a seventh embodiment of the present invention.
  • 9a is a signaling interaction diagram of a dedicated public downlink user plane bearer creation method in a dedicated bearer setup process according to an eighth embodiment of the present invention.
  • FIG. 9b is a signaling interaction diagram of a dedicated public downlink user plane bearer usage method in a dedicated bearer setup process according to an eighth embodiment of the present invention.
  • FIG. 10 is a flowchart of a public control plane bearer processing method according to a ninth embodiment of the present invention
  • FIG. 11a is a signaling cross-sectional diagram of a common bearer creation method in an attach procedure according to a tenth embodiment of the present invention
  • Figure l ib is a signaling interaction diagram of a common bearer usage method in an attach procedure according to a tenth embodiment of the present invention.
  • FIG. 12 is a signaling interaction diagram of a method for creating a dedicated public bearer in a dedicated bearer setup procedure according to an eleventh embodiment of the present invention.
  • FIG. 12b is a signaling interaction diagram of a method for using a dedicated public bearer in a dedicated bearer setup procedure according to an eleventh embodiment of the present invention.
  • 13a is a signaling interaction diagram of a public bearer creation method in an attach procedure according to a twelfth embodiment of the present invention.
  • FIG. 13b is a signaling interaction diagram of a common bearer usage method in an attach procedure according to a twelfth embodiment of the present invention
  • FIG. 14 is a schematic structural diagram of a network node according to a thirteenth embodiment of the present invention
  • FIG. 15 is a schematic structural diagram of a network node according to a fourteenth embodiment of the present invention
  • FIG. 16 is a schematic structural diagram of a communication system according to a fifteenth embodiment of the present invention. detailed description
  • FIG. 1 is a flowchart of a method for processing a common bearer according to a first embodiment of the present invention.
  • the execution body of this embodiment may be a network node that is communicably connected to the terminal side device, such as a core network node.
  • the common bearer processing method in this embodiment includes:
  • Step 11 Create a common bearer corresponding to the group to which the device belongs.
  • the public bearer may be divided into: a public user plane bearer and a public control plane bearer according to functions and data transmission directions, a public user plane bearer is used for transmitting service data, and a public control plane bearer is used for transmitting signaling messages;
  • the transmission data direction is different, and the public user plane bearer can be further divided into: a public uplink user plane bearer and a public downlink user plane bearer.
  • the created public bearer may include: a public user plane bearer and/or a public control plane bearer, where the public user plane bearer may include a public uplink user plane bearer and/or a public downlink user plane bearer.
  • the public uplink user plane bearer, the public downlink user plane bearer, and the common control plane bearer may be a complete bearer of each communication segment between the slave device and all related network nodes of the device, or may be a common bearer of some communication segments.
  • a first common bearer may be created, where the first common bearer is a common bearer between the current node and the first node.
  • a second common bearer may be created, where the second common bearer is a common bearer between the current node and the second node.
  • the foregoing first public bearer and the second common bearer may be created, and a mapping relationship between the first public bearer and the second common bearer is established.
  • the specific implementation manner of establishing the mapping relationship between the first common bearer and the second common bearer is not limited.
  • the first tunnel endpoint identifier corresponding to the first common bearer and the second tunnel endpoint identifier corresponding to the second common bearer may be obtained. And establishing a mapping relationship between the first tunnel endpoint identifier and the second tunnel endpoint identifier.
  • the first node and the second node are respectively different nodes connected to the current node, for example, the first node is a superior node of the current node, the second node is a lower node of the current node, or the first node is a subordinate of the current node. Node, the second node is the superior node of the current node.
  • Step 12 Serving the devices in the group by using the public bearer.
  • the same group of devices can use the same bearer resource, and no separate bearer needs to be created for each device.
  • the common bearer processing method in this embodiment may further include: checking the public user plane bearer to determine a public user plane. Whether the bearer meets the business needs, for example:
  • the performance parameter carried by the public user plane satisfies the service requirement of the service provided by the current node. If yes, the public user plane bearer can be directly used to provide services for the corresponding device; if not, the type carried on the public user plane is a guarantee bit.
  • the QoS parameter carried by the public user plane is updated according to the actual quality of service requirement of the service required by the other device; and the updated QoS parameter is sent to the relevant node that stores the public user plane bearer context corresponding to the group; and Or,
  • the node Determining whether the configuration attribute of the flow template parameter carried by the public user plane is a non-static configuration, and if yes, updating the flow template parameter carried by the public user plane; and correlating the public user plane bearer context of the saved group The node sends the updated stream template parameter.
  • the public user plane bearer after the parameter update can be used to provide services for devices belonging to the same group.
  • a common bearer is established for multiple devices belonging to the same group, so that multiple devices belonging to the same group can share the same bearer resource, thereby The network resources required for terminal device management are saved.
  • FIG. 2 is a flowchart of a method for processing a common bearer according to a second embodiment of the present invention.
  • the executor of the present embodiment may be a network node that is communicably connected to the terminal device, such as an access network node.
  • the common bearer processing method in this embodiment includes:
  • Step 21 The group information corresponding to the public bearer is obtained by creating a common bearer corresponding to the group to which the device belongs.
  • Step 22 Broadcast the group information, so that the device belonging to the group selects to create a cell with a public bearer to camp.
  • the device may select the cell that has created the common bearer on the network side according to the received group information and determine that the network side creates the common bearer of the group to which the network belongs. Resident, attached to the same network node as other devices belonging to the same group.
  • the group side information corresponding to the common bearer established by the network side is broadcasted to the device, so that the terminal side device can select the cell that has created the common bearer on the network side to camp, and belong to the same group.
  • the other devices are attached to the same network node, and can share the same bearer resources with other devices belonging to the same group, thereby saving network resources required for management of the terminal device.
  • FIG. 3 is a schematic diagram of an application scenario of an LTE/SAE system according to an embodiment of a method for processing a bearer according to an embodiment of the present invention.
  • the LTE/SAE mainly includes: a Home Subscriber Server (HSS), a Mobility Management Entity (MME), a SAE gateway, and an evolved universal terrestrial radio access network ( Evolved Universal Terrestrial Radio Access Network (E-UTRAN), E-UTRAN NodeB (eNB).
  • HSS Home Subscriber Server
  • MME Mobility Management Entity
  • SAE gateway an evolved universal terrestrial radio access network
  • E-UTRAN Evolved Universal Terrestrial Radio Access Network
  • eNB Evolved Universal Terrestrial Radio Access Network
  • the HSS is mainly responsible for the contract data management of User Equipment (UE).
  • the subscription data saved by the HSS may include group information of the UE.
  • the group information of the UE may include: a group identifier of the group to which the UE belongs, a group member list (including a group of device identifiers), a common characteristic of the group, and a component save. If a certain UE belongs to multiple groups, the group information of the UE may further include a mapping relationship between the group identifier of the group and the service type, such as the APN and the group identifier.
  • the subscription data of the UE saved on the HSS may be maintained by an application server such as a machine type communication (MTC).
  • MTC machine type communication
  • the MTC application server may change the group information of the UE and add the UE to one or some groups. Or, delete the UE from one or some groups, and so on.
  • the group information of the UE changes, the subscription data saved on the HSS also changes accordingly, so that the management mode of the UE on the network side also needs to change accordingly.
  • the main function of the MME is to save the mobility management context of the UE, and process the Non-Access Stratum (NAS) signaling, which is responsible for the security of the NAS signaling, etc., where the mobility management context may include the identifier of the user. , mobility management status, location information, etc.
  • the MME may acquire the subscription data of the UE from the HSS, and acquire the group information of the UE according to the subscription data.
  • NAS Non-Access Stratum
  • the SAE gateway includes a Serving Gateway (S-GW) and a Packet Data Network Gateway (P-GW); the S-GW and the P-GW are two logical entities, which may exist in the same or Different physical entities.
  • the S-GW mainly stores the user plane context of the UE, such as: the UE's IP address and routing information, performing lawful interception, packet data routing, and the like; the S-GW communicates with the MME through the S11 interface, and performs mobility management information of the UE. Session control information and other interactions.
  • the P-GW is responsible for the user plane anchor function of the UE accessing the packet data network, communicates with the external packet data network through the SGi reference point, has the function of packet routing and forwarding, and is responsible for the policy charging enhancement function, based on each user.
  • the packet filtering function and the like; the P-GW communicates with the S-GW through the S5 interface, and transmits control information such as bearer establishment/modification/deletion, and packet data routing.
  • the E-UTRAN is composed of a plurality of eNBs.
  • the main function of the eNB is to establish, maintain, or release a wireless connection with the UE, save the context information of the UE in the connected state, and access the access layer (Access).
  • AS access layer
  • AS signaling is responsible for the security of AS signaling.
  • FIG. 3b is a schematic diagram of classification of a common bearer in the application scenario shown in FIG. 3a.
  • the interface between the MME and the eNB is an S1 interface, which uses a common control plane bearer (CP Bearer) communication;
  • the interface between the S-GW and the eNB is an S1 interface.
  • the interface between the MME and the S-GW is an SI 1 interface, and the communication is carried by using a common control plane;
  • the interface between the S-GW and the P-GW is an S5/S8 interface, Communicate using a common control plane or a common user plane.
  • CP Bearer common control plane bearer
  • the public user plane bearer can be further divided into: a public uplink user plane bearer and a public downlink user plane bearer, that is, the P-GW and the S-GW, the S-GW and the eNB can be carried by the public uplink user plane. And public downlink user plane bearer, respectively for uplink communication and downlink communication.
  • 4a-6b are embodiments of a bearer processing method when a common bearer corresponding to a group is a public uplink user plane bearer.
  • the related network node of the device may first determine whether the group to which the device belongs has been determined according to the device subscription data acquired by the HSS or the group information provided by the device. Establish a corresponding public bearer.
  • the relevant network node of the device first activates the common bearer, and then uses the common bearer for data transmission of the device of the group. If the relevant network node has a higher-level node and a lower-level node, the related network node also needs to save the mapping relationship between the upper-level bearer and the next-level bearer.
  • the following is a detailed description of the attach process, the PDN connection establishment process, and the dedicated bearer setup process.
  • a device in the following embodiments may be used to describe the UE mentioned in the application scenario of the foregoing embodiment of the present invention.
  • the public bearer corresponding to the group is a public uplink user.
  • the bearer processing method at the time of plane bearing is described as an example.
  • FIG. 4a is a signaling interaction diagram of a public uplink user plane bearer creation method in an attach procedure according to a third embodiment of the present invention.
  • the application scenario of this embodiment is as follows: The device that belongs to the same group and the first network attaching process initiates a public uplink user plane bearer corresponding to the group in the attaching process; the downlink user plane bearer and the control plane bearer creation manner Unlimited.
  • the associated network node of the device in this embodiment may determine whether the public uplink user plane bearer corresponding to the group to which the device belongs is established according to the subscription data related to the device or the group information provided by the device. This embodiment assumes that the public uplink user plane bearer of the group to which the device belongs has not been established.
  • the method for creating a public uplink user plane bearer in the attaching process in this embodiment includes:
  • the device sends a radio resource control (RRC) connection establishment (RRC Connection Setup) message to the eNB, where the RRC connection setup message includes an attach request (Attach Request) message, a device identifier, and a group to which the device belongs.
  • RRC connection setup message includes an attach request (Attach Request) message, a device identifier, and a group to which the device belongs.
  • Information such as a group ID (Group ID);
  • the attach request message may optionally carry information such as an Access Point Name (APN);
  • the attach request message may be a non-access stratum (Non-Access Stratum, Referred to as NAS) message.
  • the eNB selects the MME according to the current location of the device and the network topology, and sends an initial UE message to the selected MME.
  • the initial UE message includes an attach request message. NAS message).
  • Step 43a The MME obtains device-related subscription data from the HSS by using an Update Location Procedure.
  • this step can be omitted.
  • Step 44a The MME performs S-GW and P-GW selection according to the saved device subscription data and/or the APN information carried by the device according to the principle of load balancing, and sends a setup session request to the selected S-GW (Create Session
  • the message, the session identifier message carries the group identifier of the group to which the device belongs, and can also carry the device identifier, the tunnel endpoint identifier (TEID) of the MME, the P-GW address, the APN, and the default bearer.
  • TEID tunnel endpoint identifier
  • TEID tunnel endpoint identifier
  • the P-GW address the P-GW address
  • the APN the default bearer.
  • Default Bearer Information such as Quality of Service (QoS) and bearer identification.
  • Step 45a The S-GW creates a bearer context related to the group, where the created bearer context includes a group identifier of the group to which the device belongs; and the S-GW sends the selected P-GW according to the received P-GW information.
  • Sending a session establishment request message, establishing a group identity, a device identifier, an APN, a user plane address of the S-GW, a downlink user plane TEID of the S-GW, and a control plane TEID of the S-GW in the session request message The default bearer QoS, bearer ID and other information.
  • the P-GW creates a bearer context related to the group, and the created bearer context includes a group identifier of the group to which the device belongs and a common uplink user plane TEID of the P-GW, which is represented as a public UL TEID.
  • the common uplink user plane TEID of the P-GW is an uplink user plane TEID corresponding to the group identifier of the group to which the device belongs, for the S-GW to transmit uplink data of any device belonging to the same group.
  • the P-GW returns a Create Session Response message to the S-GW, and establishes a user plane address of the P-GW in the session response message, a common uplink user plane TEID of the P-GW, and a control plane TEID of the P-GW. Bearer identification, bearer QoS and other information.
  • Step 47 The S-GW establishes a mapping relationship between the common uplink user plane TEID of the P-GW and the public uplink user plane TEID of the S-GW, and saves the mapping relationship in the bearer context that has been created by itself.
  • the common uplink user plane TEID of the S-GW is an uplink user plane TEID corresponding to the group identifier of the group to which the device belongs, for the eNB to transmit uplink data of any device belonging to the same group. When used.
  • the S-GW returns a session establishment response message to the MME, and the session response message carries the user plane address of the S-GW, the common uplink user plane TEID of the S-GW, the control plane TEID of the S-GW, the bearer identifier, and the bearer QoS information. .
  • Step 48a The MME sends an Initial Context Setup Request message to the eNB, where the initial context setup request message carries the bearer QoS, the bearer identifier, the user plane address of the S-GW, and the public uplink user plane TEID of the S-GW.
  • the group identifier, the attachment accept message, and the like, and the attach accept message may be a NAS message.
  • the eNB creates a bearer context corresponding to the group, and the created bearer context includes the group identifier of the group to which the device belongs.
  • the eNB sends an RRC connection reconfiguration message to the device, where the RRC connection reconfiguration message carries a radio bearer identifier and an attach accept message, and the attach accept message may be a NAS message.
  • Step 410a The device returns an RRC Connection Reconfiguration Complete message to the eNB.
  • Step 411 The eNB sends an initial context setup response message to the MME, where the message carries information such as a downlink user plane TEID and an eNB user plane address of the eNB.
  • Step 412a The MME sends a modify bearer request message to the S-GW, where the bearer request message carries the information such as the downlink user plane TEID, the eNB user plane address, and the bearer identifier of the eNB.
  • Step 413 The S-GW saves the downlink user plane TEID of the eNB in the bearer context that has been created, and returns a modify bearer response message to the MME, and the bearer response message carries information such as the bearer identifier.
  • the public uplink user plane bearer corresponding to the group to which the device belongs is created in the attaching process. After the public uplink user plane bearer corresponding to the group is established, multiple devices belonging to the same group may use the The public uplink user plane carries the uplink data.
  • FIG. 4b is a signaling interaction diagram of a common uplink user plane bearer usage method in an attach procedure according to a third embodiment of the present invention.
  • the difference from the application scenario shown in FIG. 4a is that the application scenario shown in FIG. 4b is: an attachment process of a device that is not the first to initiate a network attachment process among devices belonging to the same group, and the use process is created in the attach process.
  • the public uplink user plane bearer usage method in the attaching process in this embodiment includes:
  • Step 41b-step 43b is similar to step 41a-step 43a, and details are not described herein again.
  • Step 44b The MME may determine, according to the subscription data related to the device or the group information provided by the device, whether the public uplink user plane bearer corresponding to the group to which the device belongs is established. If not, the process may be created by using the process shown in Figure 4a.
  • the MME checks the type of the common uplink user plane bearer corresponding to the group. If the type of the common uplink user plane is a Guaranteed Bit Rate (GBR) bearer, the actual service quality requirement of the service required by the current device is Update the QoS parameters carried by the public uplink user plane; or,
  • GLR Guaranteed Bit Rate
  • the MME checks the uplink traffic flow template (TFT) of the public uplink user plane corresponding to the group saved by the P-GW, and the configuration attribute of the UL TFT is shown in the figure, if the P-GW saves the public
  • TFT uplink traffic flow template
  • the configuration of the uplink TFT carried by the uplink user plane is a non-static configuration, and the uplink TFT parameter is updated.
  • the updated uplink TFT parameter includes a new service flow template that can identify the destination address of the uplink data packet sent by the current device.
  • the MME sends a Modify Bearer Command message to the S-GW, and the corresponding performance parameter of the update carried by the common uplink user plane is carried in the bearer command message, including: the QoS parameter of the updated public uplink user plane, and / or updated upstream TFT parameters, etc.
  • the MME check result is that the configuration type of the uplink TFT of the public uplink user plane is a non-GBR bearer, and/or the configuration attribute of the uplink TFT carried by the public uplink user plane corresponding to the group saved by the P-GW is a static configuration, It is not necessary to modify the performance parameters carried by the public uplink user plane.
  • the S-GW updates the corresponding parameters in the bearer context saved by itself, such as the updated QoS parameters carried by the common uplink user plane, and/or the updated uplink TFT according to the parameters carried in the Modify Bearer Command message. Parameters, etc.
  • the S-GW sends a modify bearer command message to the P-GW, and the bearer command message carries the bearer identifier, the updated QoS parameter of the public uplink user plane, and/or the updated uplink TFT parameter.
  • This step is an optional step.
  • Step 46b The P-GW updates the corresponding parameters in the bearer context, such as the updated QoS parameters carried by the public uplink user plane, and/or the updated uplink TFT parameters, according to the parameters carried in the Modify Bearer Command message. Wait. The P-GW returns a Modify Bearer Response message to the S-GW. This step is an optional step.
  • Step 47b The S-GW sends a modify bearer response message to the MME.
  • Step 48b The MME sends an initial context setup request message to the eNB. If the step 45b-step 47b is performed in the foregoing process, the initial context setup request message sent by the MME to the eNB further carries the updated QoS parameters carried by the common uplink user plane, and/or the updated uplink TFT parameters.
  • Step 49b The eNB updates the corresponding parameter in the bearer context saved by itself according to the information carried in the initial context setup request message.
  • the eNB sends an RRC connection reconfiguration message to the device, where the RRC connection reconfiguration message carries a radio bearer identifier and an attach accept message, and the attach accept message may be a NAS message.
  • Step 410b-step 411b is similar to step 410a-step 411a, and details are not described herein again.
  • the MME checks the common uplink user plane bearer corresponding to the group to which the device belongs.
  • the foregoing process may also be modified.
  • the S-GW pair device The public uplink user plane bearer corresponding to the group is checked.
  • the foregoing step 44b is specifically: the MME sends a setup session request message to the S-GW, and the bearer processing procedure of the MME in the original step 44b is completed by the S-GW;
  • the foregoing step 47b is specifically: the S-GW sends the establishment to the MME.
  • the session implementation message is similar to the above process, and is not described here.
  • the newly-added devices belonging to the same group can use the created common uplink user plane to carry resources, such as the common uplink user plane TEID, and do not need to re-create the uplink user plane bearer resources for these devices. Therefore, the uplink bearer resource overhead required for transmitting uplink data of devices belonging to the same group is saved. Further, if the created public uplink user plane bearer is a non-GBR bearer, or the configuration attribute of the uplink TFT carried by the public uplink user plane saved by the P-GW and the S-GW is static, the public uplink user plane bearer does not need to be initiated. The modification process can save some signaling resource overhead.
  • FIG. 5a and FIG. 5b illustrate an example of a bearer processing method when a public bearer corresponding to a group is a public uplink user plane bearer in a packet data network (PDN) connection establishment process.
  • PDN packet data network
  • FIG. 5a is a public uplink user plane in a PDN connection establishment process according to a fourth embodiment of the present invention; Bearer creation method signaling interaction diagram.
  • the application scenario of this embodiment is as follows: The device that belongs to the same group and the first one that initiates the PDN connection establishment process creates a public uplink user plane bearer in the PDN connection establishment process; the downlink user plane bearer and the control plane bearer are created independently. limit. This embodiment assumes that the public uplink user plane bearer of the group to which the device belongs has not been established.
  • the method for creating a public uplink user plane bearer in the PDN connection establishment process in this embodiment includes:
  • Step 51 a The device sends a PDN connection request message to the MME, where the PDN connection request message carries information such as an APN, and optionally carries the group identification information.
  • Step 52a The MME sends a session establishment request message to the S-GW according to the saved device subscription data and the APN carried by the device, and the device request message carries the device identifier, the MME control plane TEID, the P-GW address, the APN, and the default bearer. Information such as QoS, bearer ID, group ID, and so on.
  • Steps 53a-55a are similar to steps 45a-47a and will not be described again.
  • Step 56a The MME sends a bearer setup request message to the eNB, where the bearer setup request message carries the bearer QoS, the bearer identifier, the user plane address of the S-GW, the public uplink user plane TEID of the S-GW, the group identifier, and the PDN connection accept message. And so on, the PDN connection accept message can be a NAS message.
  • Step 57 The eNB creates a bearer context corresponding to the group, and the created bearer context includes a group identifier of the group to which the device belongs.
  • the eNB sends an RRC connection reconfiguration message to the device, where the RRC connection reconfiguration message carries a radio bearer identifier and a PDN connection accept message, and the PDN connection accept message may be a NAS message.
  • Step 58a The device returns an RRC Connection Reconfiguration Complete message to the eNB.
  • Step 59 The eNB sends a bearer setup response message to the MME, where the bearer setup response message carries information such as the downlink user plane TEID and the eNB user plane address of the eNB.
  • Step 510a-step 511a is similar to step 412a-step 413a, and details are not described herein again.
  • FIG. 5b is a signaling interaction diagram of a public uplink user plane bearer usage method in a PDN connection establishment process according to a fourth embodiment of the present invention.
  • the difference from the application scenario shown in FIG. 5a is that the application scenario shown in FIG. 5b is: a PDN connection establishment process of a device that is not the first to initiate a PDN connection establishment process among devices belonging to the same group, and the PDN connection establishment is established.
  • the created public uplink user plane associated with the group is used in the process.
  • the public uplink user plane bearer usage method in the PDN connection establishment process in this embodiment includes:
  • Step 5 lb the device sends a PDN connection request message to the MME, and the PDN connection request message carries information such as APN, and optionally carries the group identification information.
  • Step 52b The MME may determine, according to the subscription data related to the device or the group information provided by the device, whether the public uplink user plane bearer corresponding to the group to which the device belongs is established. If not, the process shown in Figure 5a may be used.
  • step 44b the procedure for checking whether the performance parameter of the public uplink user plane bearer meets the service requirement of the device is similar to that of step 44b, and details are not described herein again.
  • Step 53b-step 55b is similar to step 45b-step 47b, and details are not described herein again.
  • Step 56b The MME sends a bearer setup request message to the eNB, where the bearer setup request message carries the bearer QoS, the bearer identifier, the user plane address of the S-GW, the public uplink user plane TEID of the S-GW, the group identifier, and the PDN connection accept message.
  • the PDN connection accept message can be a NAS message.
  • Step 57b-step 511b is similar to step 57a-step 511a, and details are not described herein again.
  • the MME checks the public uplink user plane bearer corresponding to the group to which the device belongs.
  • the foregoing process may also be modified.
  • the S-GW pair device The public uplink user plane bearer corresponding to the group is checked.
  • the foregoing step 52b is specifically: the MME sends a setup session request message to the S-GW, where the message carries information such as the group identifier, and the bearer processing procedure of the MME in the original step 52b is completed by the S-GW; 55b is specifically: The S-GW returns a session establishment response message to the MME.
  • the device that belongs to the same group that is newly initiated by the PDN connection can use the created common uplink user plane to carry resources, such as the TEID of the public uplink user plane, and no need to re-create the uplink user for these devices.
  • the surface carries resources, thereby saving uplink bearer resource overhead required for transmitting uplink data of devices belonging to the same group.
  • the created public uplink user plane bearer is a non-GBR bearer, or the configuration attribute of the uplink TFT carried by the public uplink user plane saved by the P-GW and the S-GW is static, the public uplink user plane bearer does not need to be initiated.
  • the modification process can save some signaling resource overhead.
  • FIG. 6a and FIG. 6b illustrate an example of a bearer processing method when a public bearer corresponding to a group is a dedicated public uplink user plane bearer in a dedicated bearer setup procedure.
  • FIG. 6 is a signaling interaction diagram of a dedicated public uplink user plane bearer creation method in a dedicated bearer setup procedure according to a fifth embodiment of the present invention.
  • the application scenario of this embodiment is: a device that belongs to the same group and is the first to create a dedicated bearer, and creates a dedicated public uplink user plane bearer corresponding to the group in the process of creating a dedicated bearer; the downlink user plane bearer and the control plane bearer The way to create is not limited.
  • the method for creating a dedicated public uplink user plane bearer in the dedicated bearer setup process in this embodiment includes:
  • Step 61 The P-GW creates a bearer context related to the group, and the created bearer context includes a group identifier of the group to which the device belongs and a dedicated public uplink user plane TEID of the P-GW.
  • the P-GW sends a bearer setup request message to the S-GW, and the bearer request message carries the device identifier, the user plane address of the P-GW, the dedicated public uplink user plane TEID of the P-GW, the bearer QoS, and the default bearer identifier, such as: LBI, and other information, the group ID of the group to which the portable device belongs.
  • Step 62a The S-GW creates a bearer context related to the group, where the created bearer context includes a group identifier of the group to which the device belongs and a dedicated public uplink user plane TEID of the S-GW.
  • the S-GW also establishes a P-GW.
  • a mapping relationship between the dedicated public uplink user plane TEID and the dedicated public uplink user plane TEID of the S-GW, and the mapping relationship is saved in the bearer context that has been created by itself.
  • the S-GW sends a bearer setup request message to the MME, and the bearer request message carries the device label. Identification, S-GW user plane address, S-GW dedicated public uplink user plane TEID, bearer QoS, default bearer identifier, such as: LBI, and other information, the group identifier of the group to which the portable device belongs.
  • the MME sends a bearer setup request message to the eNB, and the bearer setup message carries information such as the bearer QoS, the bearer identifier, the S-GW user plane address, and the dedicated public uplink user plane TEID of the S-GW.
  • the group ID of the group is the group ID of the group.
  • Step 64 The eNB creates a bearer context, and the created bearer context includes a group identifier of the group to which the device belongs and a dedicated public uplink user plane TEID of the S-GW.
  • the eNB sends an RRC connection reconfiguration message to the device, where the RRC connection reconfiguration message carries a radio bearer identifier and an attach accept message, and the attach accept message may be a NAS message.
  • Step 65a The device returns an RRC connection reconfiguration complete message to the eNB.
  • Step 66 The eNB sends a bearer setup response message to the MME, where the bearer setup response message carries information such as a downlink user plane TEID of the eNB, a user plane address of the eNB, and a bearer identifier.
  • the bearer setup response message carries information such as a downlink user plane TEID of the eNB, a user plane address of the eNB, and a bearer identifier.
  • Step 67 The MME sends a bearer setup response message to the S-GW, and the bearer response message carries information such as the downlink user plane TEID of the eNB, the user plane address of the eNB, and the bearer identifier.
  • the S-GW saves the information carried in the bearer response message to the bearer context that has been created, and sends a bearer response message to the P-GW to establish a downlink user plane TEID carrying the S-GW in the bearer response message.
  • Information such as the user plane address and bearer identifier of the S-GW.
  • the dedicated public uplink user plane bearer corresponding to the group to which the device belongs is created in the dedicated bearer setup process, and the uplink data is established on the dedicated public uplink user plane corresponding to the group.
  • FIG. 6b is a signaling interaction diagram of a dedicated public uplink user plane bearer usage method in a dedicated bearer setup procedure according to a fifth embodiment of the present invention.
  • the difference from the application scenario shown in FIG. 6a is that the application scenario as shown in FIG. 6b is: The device that is not the first one that initiates the dedicated bearer establishment process among the devices belonging to the same group, is used in the dedicated bearer establishment process.
  • the methods of using the bearer include:
  • Step 61b The P-GW determines, according to the saved group identification information of the device, whether the dedicated public uplink user plane bearer corresponding to the group to which the device belongs is established. If not, the process shown in Figure 6a may be used to create and The private public uplink user plane bearer corresponding to the group; if it is created, the P-GW checks whether the performance parameter of the dedicated public uplink user plane is the service requirement of the device. If not, the public uplink user plane bearer is required. The performance parameters are modified. If they are met, the performance parameters carried by the common uplink user plane need not be modified.
  • the performance parameters of the public uplink user plane are to be modified, check whether the performance parameters carried by the dedicated public uplink user plane meet the service requirements of the device, for example: check the type of the dedicated public uplink user plane corresponding to the group.
  • the type of the dedicated public uplink user plane is a GBR bearer, and the updated dedicated public uplink user plane bearer QoS parameter is determined according to the actual bandwidth requirement of the current device required service; and/or, the S-GW saves the group corresponding to the group.
  • the configuration attribute of the uplink TFT carried by the public uplink user plane is a non-static configuration, the updated uplink TFT is determined, and the updated uplink TFT is included. There is a new business flow template that can identify the upstream data sent by the current device.
  • the P-GW sends an update bearer request message to the S-GW, where the update bearer request message carries information such as updated bearer QoS, bearer identifier, and updated uplink TFT.
  • the process of checking the performance parameters carried by the dedicated public uplink user plane to meet the service requirement of the device is optional, and may be completed by the P-GW, or may be completed by the S-GW.
  • Step 62b If the update bearer request sent by the P-GW carries the P-GW updated bearer performance parameter, such as the updated bearer QoS, the updated uplink TFT, and the like, the S-GW carries the update bearer request message according to the The information is updated, and the related parameters of the bearer context corresponding to the group are updated, and the update bearer request message is sent to the MME, where the message carries updated bearer QoS, bearer identifier, updated uplink TFT and the like.
  • the P-GW updated bearer performance parameter such as the updated bearer QoS, the updated uplink TFT, and the like
  • the S-GW may also check the performance parameters carried by the dedicated public uplink user plane, and the method for checking P-GW is similar and will not be described here.
  • Step 63b The MME sends a bearer modification request message to the eNB, where the bearer modification request message carries information such as the updated bearer QoS, the bearer identifier, the S-GW user plane address, and the dedicated public uplink user plane TEID of the S-GW, and optionally carries The group ID of the group to which the device belongs.
  • the bearer modification request message carries information such as the updated bearer QoS, the bearer identifier, the S-GW user plane address, and the dedicated public uplink user plane TEID of the S-GW, and optionally carries The group ID of the group to which the device belongs.
  • Step 64b The eNB updates the corresponding parameter in the bearer context saved by itself according to the information carried in the bearer modification request message.
  • the eNB sends an RRC connection reconfiguration message to the device, where the RRC connection reconfiguration message carries a radio bearer identifier and an attach accept message, and the attach accept message may be a NAS message.
  • Steps 65b-68b are similar to steps 65a-68a, and are not described here.
  • the device that belongs to the same group that newly initiates the dedicated bearer setup process uses the created common uplink user plane to carry resources, such as: the common uplink user plane TEID, etc., without re-creating the dedicated for these devices.
  • the uplink user plane carries resources, thereby saving uplink bearer resource overhead required for transmitting uplink data of devices belonging to the same group.
  • the created dedicated public uplink user plane bearer is a non-GBR bearer, or the configuration attribute of the uplink TFT carried by the dedicated public uplink user plane saved by the S-GW and the eNB is a static configuration, the dedicated public uplink user plane does not need to be initiated.
  • the modification process of the bearer can save some signaling resource overhead.
  • the public uplink user plane bearer may include only the uplink user plane bearer of the S5/S8 interface segment, and may also include only the uplink user plane bearer of the S1 interface segment.
  • the uplink user plane bearer of the S5/S8 interface segment is: P-GW
  • the uplink user plane bearer between the S-GW and the eNB is the uplink user plane bearer between the S-GW and the eNB.
  • related network nodes such as an eNB and an S-GW. Or the P-GW, etc.
  • the manner in which the public uplink user plane associated with the group is created is not limited, and may be stored in the bearer context of the device; or the context carried by the public uplink user plane may be created as
  • the bearer contexts related to the group are saved independently.
  • the bearer context common to the devices in the same group does not need to separately store the context carried by the common uplink user plane, effectively avoiding related network nodes, and repeatedly storing the same group.
  • the devices of the group have the same content about the context carried by the public uplink user plane, thereby saving network resources required for terminal device bearer management.
  • 7a-9b are embodiments of a bearer processing method when a common bearer corresponding to a group is a public downlink user plane bearer.
  • the application method of the public downlink user plane is similar to that of the public uplink user plane.
  • the difference is that all the involved network nodes need to filter the downlink service data stream, that is, the downstream IP data packet header of the device needs to be identified, and the bearer related information is saved. Downstream TFT.
  • these network nodes also need to save the mapping relationship between the upper-level bearer and the next-level bearer.
  • the public downlink user plane is loaded with a new device or a device is removed, the downlink TFT associated with the bearer needs to be modified (except for the downlink TFT static configuration scenario).
  • the following is a detailed description of the attach process, the PDN connection establishment process, and the dedicated bearer setup process.
  • FIG. 7a and FIG. 7b illustrate an example of a bearer processing method when a common bearer corresponding to a group is a public downlink user plane bearer in an attach procedure.
  • FIG. 7a is a signaling interaction diagram of a public downlink user plane bearer creation method in an attach procedure according to a sixth embodiment of the present invention.
  • the application scenario of this embodiment is as follows: The device that belongs to the same group and the first network attaching process initiates the public downlink user plane bearer corresponding to the group in the attaching process; the uplink user plane bearer and the control plane bearer creation manner Unlimited.
  • the public downlink user plane bearer creation method in the attaching process of this embodiment includes:
  • Steps 71a to 74a are similar to steps 41a to 44a and will not be described again.
  • Step 75a The S-GW creates a bearer context related to the group, where the created bearer context includes a group identifier of the group to which the device belongs and a public downlink user plane TEID of the S-GW, and the S-GW
  • the common downlink user plane TEID is a downlink user plane TEID allocated by the S-GW corresponding to the group identifier of the group to which the device belongs, for use when the P-GW transmits downlink data of devices belonging to the same group.
  • the S-GW sends a setup session request message to the selected P-GW according to the received P-GW information, and establishes a session identifier message carrying the group identifier, the device identifier, the user of the APN, and the S-GW of the group to which the device belongs.
  • the address the public downlink user plane TEID of the S-GW, the control plane TEID of the S-GW, the default bearer QoS, the bearer identifier, and the like.
  • Step 76a The P-GW creates a bearer context related to the group, and the created bearer context includes a group identifier of the group to which the device belongs, and returns a Create Session Response message to the S-GW to establish a session response.
  • the message carries the user plane address of the P-GW, the uplink user plane TEID of the P-GW, the control plane TEID of the P-GW, the bearer identifier, and the bearer QoS.
  • Step 77a The S-GW returns a session establishment response message to the MME, and establishes a user plane address of the S-GW, an uplink user plane TEID of the S-GW, a control plane TEID of the S-GW, a bearer identifier, and a bearer QoS in the session response message. And other information.
  • the MME sends an initial context setup request message to the eNB, where the initial context setup request message carries the bearer QoS, the bearer identifier, the user plane address of the S-GW, the uplink user plane TEID of the S-GW, the group identifier, and the attach accept message. And so on, the attach accept message can be a NAS message.
  • Step 79 The eNB creates a bearer context corresponding to the group, and the created bearer context includes a group identifier of the group to which the device belongs.
  • the eNB sends an RRC connection reconfiguration message to the device, where the RRC connection reconfiguration message carries a radio bearer identifier and an attach accept message, and the attach accept message may be a NAS message.
  • Step 710a The device returns an RRC connection reconfiguration complete message to the eNB.
  • Step 711 The eNB sends an initial context setup response message to the MME, where the message carries information such as a common downlink user plane TEID and an eNB user plane address of the eNB.
  • the common downlink user plane TEID of the eNB is a downlink user plane TEID corresponding to the group identifier of the group to which the device belongs, which is used by the S-GW to transmit downlink data of devices belonging to the same group.
  • Step 712a The MME sends a modify bearer request message to the S-GW, where the bearer request message carries the public downlink user plane TEID, the eNB user plane address, the bearer identifier, the group identifier, and the like of the eNB.
  • Step 713a The S-GW establishes a mapping relationship between the common downlink user plane TEID of the S-GW and the public downlink user plane TEID of the eNB, and saves the mapping relationship in the bearer context that has been created by itself.
  • the S-GW returns a modify bearer response message to the MME, and the bearer response message carries information such as a bearer identifier.
  • the public downlink user plane bearer corresponding to the group to which the device belongs may be created in the attaching process. After the public downlink user plane bearer corresponding to the group is established, other devices belonging to the same group may use the The public downlink user plane carries transmission downlink data.
  • FIG. 7b is a signaling interaction diagram of a public downlink user plane bearer usage method in an attach procedure according to a sixth embodiment of the present invention.
  • the difference from the application scenario shown in FIG. 7a is that the application scenario shown in FIG. 7b is: an attachment process belonging to the same group, not the first device that initiates the network attachment process, and the created and the group are used in the attachment process.
  • Group related public downlink user plane bearers As shown in FIG. 7b, the public downlink user plane bearer usage method in the attaching process in this embodiment includes:
  • Step 71b-step 73b is similar to step 71a-step 73a, and details are not described herein again.
  • Step 74b The MME may determine, according to the subscription data related to the device or the group information provided by the device, whether the public downlink user plane bearer corresponding to the group to which the device belongs is established. If not, the process may be created by using the process shown in Figure 7a.
  • Step 75b The S-GW checks whether the performance parameter of the public downlink user plane that is created meets the service requirement of the device. If not, the performance parameter carried by the public downlink user plane needs to be modified. The performance parameters carried by the downlink user plane are modified.
  • the S-GW checks whether the performance parameters carried by the public downlink user plane meet the service requirements of the device.
  • the process can include the following:
  • the S-GW checks the type of the public downlink user plane bearer corresponding to the group. If the type of the public downlink user plane is a GBR bearer, the updated public downlink user plane bearer QoS is determined according to the actual bandwidth requirement of the current device. And/or, the MME checks the downlink TFT carried by the public downlink user plane corresponding to the group saved by the P-GW, and the configuration attribute of the DL TFT is shown in the figure, if the public downlink user plane is carried by the P-GW The configuration of the downlink TFT is a non-static configuration, and the updated downlink TFT parameter is determined. The updated downlink TFT parameter includes a new service flow template that can identify downlink data sent by the current device.
  • the S-GW check result is that the type of the downlink TFT carried by the common downlink user plane is a non-GBR bearer, and/or the configuration attribute of the downlink TFT carried by the public downlink user plane corresponding to the group saved by the P-GW is static configuration , there is no need to modify the performance parameters carried by the public downlink user plane.
  • the S-GW sends a modify bearer command message to the P-GW, and the bearer command message carries the bearer identifier, the updated QoS of the public downlink user plane bearer, and/or the updated downlink TFT parameter.
  • This step is an optional step.
  • step 76b the P-GW updates the corresponding parameters in the bearer context, such as the updated QoS parameters carried by the public downlink user plane, and/or the updated downlink TFT parameters, according to the parameters carried in the Modify Bearer Command message. Wait. The P-GW returns a Modify Bearer Response message to the S-GW. This step is an optional step.
  • Step 77b The S-GW sends a session establishment response message to the MME, and the QoS of the updated public downlink user plane carried in the session response message is established.
  • Step 78b The MME sends a modify bearer request message to the eNB. If the performance parameter of the public downlink user plane is modified in the foregoing process, the QoS, bearer identifier, and group carried by the updated public downlink user plane may be carried in the modify bearer request message. Group identification and other information.
  • Step 79b-step 710b is similar to step 79a-step 710a, and details are not described herein again.
  • Step 71 lb The eNB sends a modify bearer response message to the MME, and the bearer response message carries information such as the bearer identifier.
  • the S-GW checks the public downlink user plane bearer corresponding to the group to which the device belongs.
  • the foregoing process may be modified.
  • the MME pair and the device are modified.
  • the public downlink user plane bearer corresponding to the group is checked.
  • the foregoing step 74b is specifically: the MME sends a modify bearer command message to the S-GW, where the message carries updated Bearer QoS, bearer identifier, updated downlink TFT, and the like, and the bearer processing of the S-GW in the original step 74b The process is completed by the MME.
  • the foregoing step 77b is specifically: The S-GW sends a modify bearer response message to the MME.
  • the newly-added devices belonging to the same group can use the created common downlink user plane bearer resources, such as the public downlink user plane TEID, and do not need to re-create the downlink user plane bearer resources for these devices. Therefore, the downlink bearer resource overhead required for transmitting downlink data of devices belonging to the same group is saved. Further, if the created public downlink user plane bearer is a non-GBR bearer, or the configuration attribute of the downlink TFT carried by the common downlink user plane saved by the P-GW and the S-GW is static, the public downlink user plane bearer does not need to be initiated. The modification process can save some signaling resource overhead.
  • FIG. 8a and FIG. 8b illustrate an example of a bearer processing method when a public bearer corresponding to a group is a public downlink user plane bearer in a PDN connection establishment process.
  • FIG. 8 is a signaling interaction diagram of a public downlink user plane bearer creation method in a PDN connection establishment process according to a seventh embodiment of the present invention.
  • the application scenario of this embodiment is as follows: The device that belongs to the same group and the first one that initiates the PDN connection establishment process creates a public downlink user plane bearer in the PDN connection establishment process. The uplink user plane bearer and control plane bearer are created. limit. This embodiment assumes that the public downlink user plane bearer of the group to which the device belongs has not been established.
  • the method for creating a public downlink user plane bearer in the PDN connection establishment process in this embodiment includes:
  • Step 81 a The device sends a PDN connection request message to the MME, where the PDN connection request message carries information such as an APN, and optionally carries the group identification information.
  • Steps 82a-85a are similar to steps 74a-77a and will not be described again.
  • Step 86a The MME sends a bearer setup request message to the eNB, where the bearer setup request message carries With the QoS, the bearer identifier, the user plane address of the S-GW, the uplink user plane TEID of the S-GW, the group identifier, the PDN connection accept message, and the like, the PDN connection accept message may be a NAS message.
  • Steps 87a-88a are similar to steps 57a-58a and will not be repeated here.
  • Step 89a-step 811a is similar to step 711a - step 713a, and details are not described herein again.
  • the public downlink user plane bearer corresponding to the group to which the device belongs is created in the PDN connection establishment process. After the public downlink user plane bearer corresponding to the group is established, other devices belonging to the same group can be used.
  • the public downlink user plane carries transmission downlink data.
  • FIG. 8b is a signaling interaction diagram of a public downlink user plane bearer usage method in a PDN connection establishment process according to a seventh embodiment of the present invention.
  • the difference from the application scenario shown in FIG. 8a is that the application scenario shown in FIG. 8b is: a PDN connection establishment process of a device that belongs to the same group and is not the first to initiate a PDN connection establishment process, and is used in the PDN connection establishment process.
  • the public downlink user plane bearer associated with the group has been created.
  • the public downlink user plane bearer usage method in the PDN connection establishment process in this embodiment includes:
  • Step 81b The device sends a PDN connection request message to the MME, where the PDN connection request message carries information such as an APN, and optionally carries the group identification information.
  • Step 82b-step 89b is similar to step 74b-step 711b, and details are not described herein again.
  • the S-GW checks the common downlink user plane bearer corresponding to the group to which the device belongs.
  • the foregoing process may be modified.
  • the MME pair and the device are modified.
  • the public downlink user plane bearer corresponding to the group is checked.
  • the foregoing step 82b is specifically: the MME sends a modify bearer command message to the S-GW, where the message carries updated Bearer QoS, Bearer identifier, updated downlink TFT parameters, and the like, and the S-GW bearer in the original step 82b
  • the process is completed by the MME.
  • the foregoing step 85b is specifically:
  • the S-GW sends a modify bearer response message to the MME.
  • the device that belongs to the same group that is newly initiated by the PDN connection can use the created common downlink user plane to carry resources, such as the TEID of the public downlink user plane, and no need to re-create the downlink user for these devices. Carrying resources, thereby saving transmissions belonging to the same group
  • the downlink bearer resource overhead required for the downlink data of the device of the group if the created public downlink user plane bearer is a non-GBR bearer, or the configuration attribute of the downlink TFT carried by the common downlink user plane saved by the P-GW and the S-GW is static, the public downlink user plane bearer does not need to be initiated.
  • the modification process can save some signaling resource overhead.
  • FIG. 9 is a signaling interaction diagram of a dedicated public downlink user plane bearer creation method in a dedicated bearer setup procedure according to an eighth embodiment of the present invention.
  • the application scenario of this embodiment is as follows: The device that belongs to the same group and the first one that creates the dedicated bearer creates a dedicated public downlink user plane bearer corresponding to the group in the process of creating the dedicated bearer; the uplink user plane bearer and the control plane bearer The way to create is not limited.
  • the method for creating a dedicated public downlink user plane bearer in the dedicated bearer setup process of this embodiment includes:
  • Step 91a The P-GW creates a bearer context related to the group, and the created bearer context includes a group identifier of the group to which the device belongs.
  • the P-GW sends a bearer setup request message to the S-GW, and the bearer request message carries the device identifier, the user plane address of the P-GW, the dedicated uplink user plane TEID of the P-GW, the bearer QoS, and the default bearer identifier, such as: LBI , and other information, the group ID of the group to which the portable device belongs.
  • Step 92a The S-GW creates a bearer context related to the group, where the created bearer context includes a group identifier of the group to which the device belongs, and the S-GW sends a bearer setup request message to the MME, where the bearer request message carries the device identifier.
  • Steps 93a-95a are similar to steps 63a-65a and will not be described again.
  • Step 96 The eNB sends a bearer setup response message to the MME, where the bearer setup response message carries information such as a dedicated public downlink user plane TEID of the eNB, a user plane address of the eNB, and a bearer identifier.
  • the bearer setup response message carries information such as a dedicated public downlink user plane TEID of the eNB, a user plane address of the eNB, and a bearer identifier.
  • Step 97 The MME sends a bearer setup response message to the S-GW, and establishes a bearer response message carrying information such as a dedicated public downlink user plane TEID of the eNB, a user plane address of the eNB, and a bearer identifier.
  • Step 98a The S-GW establishes a mapping relationship between the dedicated public downlink user plane TEID of the S-GW and the dedicated public downlink user plane TEID of the eNB, and saves the mapping relationship in the bearer context that has been created by itself.
  • the S-GW sends a bearer setup message to the P-GW, and the bearer response message carries information such as a dedicated public downlink user plane TEID of the S-GW, a user plane address of the S-GW, and a bearer identifier.
  • the dedicated public downlink user plane bearer corresponding to the group to which the device belongs is created in the dedicated bearer setup process, and the downlink data is established on the dedicated public downlink user plane corresponding to the group.
  • FIG. 9b is a signaling interaction diagram of a dedicated public downlink user plane bearer usage method in a dedicated bearer setup procedure according to an eighth embodiment of the present invention.
  • the difference from the application scenario shown in FIG. 9a is that the application scenario shown in FIG. 9b is: The device that is not the first one that initiates the dedicated bearer setup process among the devices belonging to the same group, and the used device is created in the dedicated bearer setup process.
  • the dedicated public downlink user plane bearer usage method in the dedicated bearer setup process in this embodiment includes:
  • the P-GW determines whether the dedicated public downlink user plane bearer corresponding to the group to which the device belongs is established according to the saved group identification information of the device. If not, the process shown in Figure 9a can be used to create and If the P-GW is configured, the P-GW checks whether the performance parameters of the dedicated public downlink user plane are the service requirements of the device. If not, the public downlink user plane needs to be carried. The performance parameters are modified, and the bearer context saved by itself is updated according to the modified result; if it is satisfied, the performance parameters carried by the common downlink user plane need not be modified.
  • the performance parameters of the public downlink user plane check whether the performance parameters carried by the dedicated public downlink user plane meet the service requirements of the device. For example: Check the type of the dedicated public downlink user plane corresponding to the group. The type of the dedicated public downlink user plane is GBR bearer, and the updated dedicated one is determined according to the actual bandwidth requirement of the current device.
  • the public downlink user plane carries the QoS parameter; and/or, the configuration attribute of the downlink TFT carried by the dedicated public downlink user plane corresponding to the group saved by the S-GW is checked, and if the S-GW saves the downlink of the public downlink user plane
  • the configuration attribute of the TFT is a non-static configuration, and the updated downlink TFT parameter is determined.
  • the updated downlink TFT parameter includes a new service flow template that can identify downlink data sent by the current device.
  • the P-GW sends an update bearer request message to the S-GW, and the update bearer request message carries information such as updated bearer QoS, bearer identifier, and updated downlink TFT.
  • whether the performance parameter of the dedicated public downlink user plane is checked to meet the service requirement of the device is optional, and may be completed by the P-GW, or may be completed by the S-GW.
  • Step 92b If the update bearer request sent by the P-GW carries the P-GW updated bearer performance parameter, such as the updated bearer QoS, the updated downlink TFT, and the like, the S-GW carries the update bearer request message according to the The information of the bearer context corresponding to the group that has been established by itself.
  • the P-GW updated bearer performance parameter such as the updated bearer QoS, the updated downlink TFT, and the like
  • the S-GW can also check the performance parameters of the dedicated public downlink user plane, and the checking method is similar to that of the P-GW. Let me repeat.
  • Step 93b The MME sends a bearer modification request message to the eNB, and carries the updated bearer QoS, bearer identifier, and the like in the bearer modification request message. This step is an optional step.
  • Step 94b-step 98b is similar to step 64b-step 68b, and details are not described herein again.
  • the device that belongs to the same group that newly initiates the dedicated bearer setup process uses the created common downlink user plane to carry resources, such as: the public downlink user plane TEID, etc., without re-creating dedicated for these devices.
  • the downlink user plane carries resources, thereby saving downlink bearer resource overhead required for transmitting downlink data of devices belonging to the same group.
  • the created dedicated public downlink user plane bearer is a non-GBR bearer, or the configuration attribute of the downlink TFT carried by the dedicated public downlink user plane saved by the S-GW and the eNB is a static configuration, the dedicated public downlink user plane does not need to be initiated.
  • the modification process of the bearer can save some signaling resource overhead.
  • the public downlink user plane bearer may include only the downlink user plane bearer of the S5/S8 interface segment, and may also include only the downlink user plane bearer of the S1 interface segment.
  • the downlink user plane bearer of the S5/S8 interface segment is: P-GW
  • the downlink user plane bearer between the S-GW and the S-GW is the downlink user plane bearer between the S-GW and the eNB.
  • the device establishes independent downlink user plane bearers, which are not described here.
  • the manner in which the related network node, such as an eNB, an S-GW, or a P-GW, creates a community-related public downlink user plane is not supported by the context.
  • the restrictions can be saved in the respective bearer contexts of the device, or the context carried by the public downlink user plane can be created as the bearer context associated with the group, which effectively saves the related network nodes and repeatedly saves the same group.
  • Each device has the same content about the context carried by the public downlink user plane, thereby saving network resources required for terminal device bearer management.
  • the devices may share the common user plane bearer; Or, when different services of a device belong to different groups, if the QoS requirements of the services are the same, the services can share the same common user plane bearer.
  • FIG. 10 is a flowchart of a method for processing a common control plane bearer according to a ninth embodiment of the present invention.
  • the public control plane bearer processing method of this embodiment may include:
  • Step 101 The network node is a device that belongs to the same group that is attached to the device, and creates a common control plane bearer corresponding to the group to which the device belongs.
  • the network node that is created by the common control plane corresponding to the group may be: one of the network nodes such as an eNB, an MME, an S-GW, or a P-GW, or a combination thereof. If multiple devices belonging to the same group are attached to the same MME and S-GW, the MME and the S-GW may create a common S11 control plane bearer corresponding to the group, and these devices may use the public S11 control plane bearer transmission and its related Control signaling.
  • the S-GW and the P-GW may create a common S5/S8 control plane bearer corresponding to the group, and these devices may use the public S5.
  • the /S8 control plane carries the transmission and its associated control signaling.
  • the eNB and the MME may create a common S1 control plane bearer corresponding to the group, and these devices may use the common S1 control plane bearer transmission and its associated control signaling. .
  • Step 102 The network node uses a common control plane bearer to transmit control signaling related to each device belonging to the same group.
  • the MME and the S-GW need to allocate a control plane to carry TEID resources, and all control signaling related to these devices are
  • the device identifier carried in the signaling message can distinguish signaling messages of different devices by using the same control plane bearer transmission.
  • the S-GW and the P-GW need to assign a control plane to bear TEID resources, all related to these devices.
  • the control signaling is transmitted through the same control plane bearer.
  • the device identifier carried in the signaling message can distinguish signaling messages of different devices.
  • the public S1 control plane bearer transmits control signaling related to multiple devices belonging to the same group, the eNB and the MME need to assign an SI AP ID to these devices, and all control signaling related to these devices pass the same S1.
  • the control plane bears the transmission, and the signaling message needs to carry a new IE to distinguish the signaling messages of different devices.
  • the new IE can be a device identifier, or it can be a newly defined IE or any other identifier that can distinguish between different devices.
  • the network node allocates a common control plane bearer for a plurality of devices belonging to the same group attached to the same, and the devices can use the same common control.
  • the bearer carries the control signaling associated with it, so that the network node does not need to separately create a control plane bearer for these devices, thereby saving the control plane bearer resource overhead required for transmitting control signaling of devices belonging to the same group.
  • FIG. 4a and FIG. 6b are embodiments of a common uplink user plane bearer processing method
  • FIG. 7a and FIG. 9b are common downlink user plane bearer processing method embodiments
  • FIG. 10 is a common control plane bearer processing method embodiment.
  • the common uplink user plane bearer, the public downlink user plane bearer, and any combination of the common control plane bearers can be created as needed to create a common bearer for multiple devices belonging to the same group.
  • Figure 11a and Figure lib illustrate the common bearer processing method in the attaching process.
  • the common bearer corresponding to the group includes the public uplink user plane bearer, the public downlink user plane bearer, and the bearer processing when the public control plane bears.
  • the public uplink user plane bearer includes: a public S1 and S5/S8 uplink user plane bearer;
  • the public downlink user plane bearer includes: a public S5/S8 downlink user plane bearer;
  • the common control plane bearer includes: a public S11 and S5 /S8 control plane bearer.
  • FIG. 11a is a signaling diagram of a common bearer creation method in an attach procedure according to a tenth embodiment of the present invention.
  • the application scenario of this embodiment is as follows: The device that belongs to the same group and the first network attaching process is created in the attaching process, and the common uplink bearer corresponding to the group is created, and the method for creating the public uplink user plane bearer is similar to that of FIG. 4a.
  • the method for creating a public downlink user plane bearer is similar to that of FIG. 7a, and the method for creating a common control plane bearer is similar to that of FIG.
  • the public bearer creation method in the attach process of this embodiment includes:
  • Steps 111a to 113a are similar to steps 41a to 43a, and are not described herein again.
  • Step 114a The MME performs S-GW and P-GW selection according to the principle of load balancing, and sends a setup session request message to the selected S-GW, and establishes a group identifier of the group to which the device belongs in the session request message, and the device identifier Information such as the common control plane TEID, the P-GW address, the APN, the default bearer QoS, and the bearer identifier of the MME, where the common control plane TEID of the MME is public Sl l Control plane 7 carries the TEID.
  • Step 115a The S-GW creates a bearer context related to the group, where the created bearer context includes a group identifier of the group to which the device belongs; and the S-GW sends the selected P-GW according to the received P-GW information.
  • Sending a session establishment request message establishing a group identity, a device identifier, an APN, a user plane address of the S-GW, a public downlink user plane TEID of the S-GW, and a public control of the S-GW in the session request message Information such as the TEID, the default bearer QoS, and the bearer ID.
  • the common downlink user plane TEID of the S-GW is: the TEID carried by the public S5/S8 downlink user plane.
  • the common control plane TEID of the S-GW is: Public S5 /S8 Control plane carries the TEID.
  • Step 116a The P-GW creates a bearer context related to the group, returns a session establishment response message to the S-GW, and establishes a user plane address of the P-GW in the session response message, and a common uplink user plane TEID of the P-GW.
  • Step 117a The S-GW establishes a mapping relationship between the common uplink user plane TEID of the P-GW and the common uplink user plane TEID of the S-GW, and saves the mapping relationship in the bearer context that has been created.
  • the S-GW returns a session establishment response message to the MME, and establishes a user plane address of the S-GW in the session response message, a common uplink user plane TEID of the S-GW, a common control plane TEID of the S-GW, a bearer identifier, a bearer QoS, and the like.
  • the common uplink user plane TEID of the S-GW is: The TEID carried by the uplink user plane of the public S1.
  • Step 117 The MME sends an initial context setup request message to the eNB, where the initial context setup request message carries the bearer QoS, the bearer identifier, the user plane address of the S-GW, the public uplink user plane TEID of the S-GW, the group identifier, and the attach accept The information such as the message; wherein, the common uplink user plane TEID of the S-GW is: the TEID carried by the public S1 uplink user plane, and the attach accept message may be a NAS message.
  • Step 119a-step 1113a is similar to step 49a-step 413a, and details are not described herein again.
  • a public corresponding to the group to which the device belongs may be created in the attaching process.
  • S1 and S5/S8 uplink user plane bearers public S5/S8 downlink user plane bearers, and public S11 and S5/S8 control plane bearers.
  • a plurality of devices belonging to the same group may transmit data or control signaling using the established common bearer described above.
  • Figure 1 ib is a signaling interaction diagram of a common bearer usage method in an attach procedure according to a tenth embodiment of the present invention.
  • the difference from the application scenario shown in FIG. 11a is that the application scenario shown in FIG. 1b is: an attachment process of a device belonging to the same group and not the first network attaching process, and the created process is used in the attach process.
  • the group-related common bearer wherein the public uplink user plane bearer is used in a similar manner to FIG. 4b, the public downlink user plane bearer is used in a similar manner to FIG. 7b, and the public control plane bearer is used in a similar manner to FIG.
  • the common bearer usage method in the attaching process in this embodiment includes:
  • Step 111b-step 113b is similar to step 111a-step 113a, and details are not described herein again.
  • Step 114b The MME uses the public S11 control plane bearer to send a setup session request message, and establishes a group identifier of the group to which the device belongs in the session request message, the device identifier, the common control plane TEID, the P-GW address, the APN, and the default bearer of the MME.
  • the QoS, bearer identifier, and other information, the common control plane TEID of the MME is: The TEID carried by the common SI 1 control plane.
  • step 115b the S-GW checks whether the performance parameter of the public S5/S8 downlink user plane is the service requirement of the device. If not, the performance parameter carried by the public downlink user plane needs to be modified. The performance parameters carried by the public downlink user plane need to be modified.
  • the S-GW checks whether the performance parameters of the downlink user plane carried by the public S5/S8 meet the service requirements of the device.
  • the process may include the following:
  • the S-GW checks the type of the public S5/S8 downlink user plane bearer corresponding to the group, if the public S5/ The S8 downlink user plane bearer type is a GBR bearer, and the updated public downlink user plane bearer QoS is determined according to the actual bandwidth requirement of the current device required service; and/or, the MME checks the public corresponding to the group saved by the P-GW.
  • the downlink TFT carried by the downlink user plane which is shown as the configuration attribute of the DL TFT, if the P-GW stores the downlink of the public downlink user plane.
  • the configuration attribute of the TFT is a non-static configuration, and the updated downlink TFT parameter is determined.
  • the updated downlink TFT parameter includes a new service flow template that can identify the downlink packet of the current device.
  • the S-GW check result is that the public S5/S8 downlink user plane bearer type is a non-GBR bearer, and/or the downlink TFT carried by the public S5/S8 downlink user plane corresponding to the group saved by the P-GW If the configuration attribute is static, you do not need to modify the performance parameters carried by the public S5/S8 downlink user plane.
  • the S-GW sends a modify bearer command message to the P-GW by using the S5/S8 control plane bearer, and modifies the QoS of the bearer identifier, the updated public S5/S8 downlink user plane bearer, and/or the updated downlink TFT parameter. Wait.
  • This step is an optional step.
  • Step 116b The P-GW updates the corresponding parameters in the payload context, such as the updated QoS parameters carried by the public downlink user plane, and/or the new downlink TFT parameters, according to the parameters carried in the modify bearer command message.
  • the P-GW returns a Modify Bearer Response message to the S-GW. This step is an optional step.
  • Step 117b The S-GW checks whether the performance parameter of the public S1 uplink user plane that is created meets the service requirement of the device. If not, the performance parameter of the uplink user plane carried by the public S1 needs to be modified. The performance parameters carried by the public S1 uplink user plane are modified.
  • the process of the S-GW checking whether the performance parameter of the uplink user plane of the public S1 meets the service requirements of the device may include the following:
  • the S-GW checks the type of the public S1 uplink user plane bearer corresponding to the group, if the public S1 uplink user plane carries the If the type is a GBR bearer, the updated public S1 uplink user plane bearer QoS is determined according to the actual bandwidth requirement of the current device, and/or the MME checks the public S1 uplink user plane corresponding to the group saved by the P-GW.
  • the uplink TFT of the bearer which is represented as a UL TFT, has the configuration attribute.
  • the updated uplink TFT parameter is determined, and the updated uplink is determined.
  • the TFT parameters include a new service flow template that identifies the upstream packets of the current device.
  • the S-GW uses the public S11 control plane to carry the setup session response message returned to the MME, and establishes The session response message carries information such as the QoS of the updated public S1 uplink user plane, the updated uplink TFT, and the bearer identifier.
  • the S-GW updates the TFTs in the bearer context created according to itself.
  • the MME sends a modify bearer request message to the eNB. If the performance parameter of the public S1 uplink user plane bearer is modified in the foregoing process, the modified bearer request message may carry the updated updated public S1 uplink user plane bearer QoS, Information such as bearer ID, group ID, and so on.
  • Step 119b-step l l l lb, similar to step 79b - step 711b, will not be repeated here.
  • the public user plane bearer corresponding to the group to which the device belongs is checked by the S-GW.
  • the foregoing process may be modified.
  • the MME is paired with the device.
  • the public user plane bearer corresponding to the group is checked.
  • the foregoing step 114b is specifically: the MME sends a modify bearer command message to the S-GW, where the message carries the updated bearer QoS, the bearer identifier, the updated downlink TFT, and the like, and the bearer processing of the S-GW in the original step 114b The process is completed by the MME.
  • the foregoing step 117b is specifically: The S-GW sends a modify bearer response message to the MME.
  • the newly attached devices belonging to the same group can use the existing public S5/S8 uplink and downlink user plane bearers, the public S1 uplink user plane bearer, and the public S11 and S5/S8 control plane bearers. , saving a lot of carrying resources.
  • the established public user plane bearer is a non-GBR bearer or a P-GW or an S-GW, and the TFT configuration attribute carried by the common user plane held by the eNB is statically configured, part of the signaling resources may also be saved.
  • the method of the common bearer processing in the PDN connection establishment process is similar to the method of the common bearer processing in the attaching process, and is not described here.
  • Figure 12a and Figure 12b illustrate the common bearer processing method in the dedicated bearer setup process.
  • the common bearer corresponding to the group includes the common uplink user plane bearer and the bearer processing method when the public downlink user plane bears.
  • the public uplink user plane bearer includes: a public S1 and an S5/S8 uplink user plane bearer; the public downlink user plane bearer includes: a public S5/S8 downlink user plane bearer.
  • a dedicated bearer setup process may be initiated on the basis of the attach process or the PDN connection establishment process, and the public control plane bearer may be created in the attach process, and details are not described herein again.
  • FIG. 12 is a signaling interaction diagram of a method for creating a dedicated public bearer in a dedicated bearer setup procedure according to an eleventh embodiment of the present invention.
  • the application scenario of this embodiment is as follows: The device that initiates the dedicated bearer setup process in the device belonging to the same group is created in the dedicated bearer establishment process, and the common bearer corresponding to the group is created. The method is similar to that of FIG. 6a.
  • the method for creating a public downlink user plane bearer is similar to that of FIG. 9a, and the method for creating a common control plane bearer is similar to that of FIG.
  • the method for creating a common bearer in the dedicated bearer setup process in this embodiment includes:
  • the P-GW creates a bearer context related to the group, and the created bearer context includes a group identifier of the group to which the device belongs and a dedicated public uplink user plane TEID of the P-GW, where the P-GW has a dedicated public
  • the uplink user plane TEID is: Public S5/S8 uplink user plane TEID.
  • the P-GW sends a bearer setup request message to the S-GW, and the bearer request message carries the device identifier, the user plane address of the P-GW, the dedicated public uplink user plane TEID of the P-GW, the bearer QoS, the default bearer identifier, and the like.
  • the group ID of the group to which the portable device belongs may be selected; wherein, the dedicated public uplink user plane TEID of the P-GW is: a public S5/S8 uplink user plane TEID.
  • Step 122a The S-GW creates a bearer context related to the group, where the created bearer context includes a group identifier of the group to which the device belongs and a dedicated public uplink user plane TEID of the S-GW; the S-GW establishes a dedicated public S5/ The mapping relationship between the S8 uplink user plane TEID and the dedicated public S1 uplink user plane TEID, and the mapping relationship is saved in the bearer context that has been created.
  • the dedicated public uplink user plane TEID of the S-GW is: Public S 1 uplink user plane TEID.
  • the S-GW sends a bearer setup request message to the MME, and the bearer request message carries the device identifier, the S-GW user plane address, the dedicated public uplink user plane TEID of the S-GW, the bearer QoS, the default bearer identifier, and the like, and is selectable.
  • Step 123 The MME sends a bearer setup request message to the eNB, where the bearer setup message carries the information such as the bearer QoS, the bearer identifier, the S-GW user plane address, and the dedicated public uplink user plane TEID of the S-GW.
  • the group ID of the group, the dedicated public uplink user plane TEID of the S-GW is: a dedicated public S1 uplink user plane TEID.
  • the eNB creates a bearer context, and the created bearer context includes a group identifier of the group to which the device belongs and a dedicated public uplink user plane TEID of the S-GW, where the dedicated public uplink user plane TEID of the S-GW is: Dedicated public S1 uplink user plane TEID.
  • the eNB sends an RRC connection reconfiguration message to the device, where the RRC connection reconfiguration message carries the radio bearer identifier and the attach accept message, and the attach accept message may be a NAS message.
  • Steps 125a-127a are similar to steps 65a-67a, and are not described herein again.
  • the S-GW saves the information carried in the bearer response message to the bearer context that has been created, and sends a bearer response message to the P-GW to establish a dedicated public downlink user carrying the S-GW in the bearer response message.
  • Information such as the TEID, the user plane address of the S-GW, and the bearer identifier.
  • the dedicated public downlink user plane TEID of the S-GW is the dedicated public S5/S8 downlink user plane TEID.
  • the public S5/S8 uplink and downlink user plane bearer and the public S1 uplink user plane bearer corresponding to the group to which the device belongs are created in the dedicated bearer setup process, and the dedicated public user plane bearer corresponding to the group is established. After that, other devices belonging to the same group can use the dedicated public user plane to carry uplink and downlink data.
  • FIG. 12b is a signaling interaction diagram of a method for using a dedicated public bearer in a dedicated bearer setup procedure according to an eleventh embodiment of the present invention.
  • the difference from the application scenario shown in FIG. 12a is that the application scenario shown in FIG. 12b is: a device belonging to the same group and not the first to initiate a dedicated bearer setup process, and the created and the group are used in the dedicated bearer setup process. Group related dedicated bearers.
  • the usage method of the public uplink user plane bearer is similar to that of FIG. 6b.
  • the usage method of the public downlink user plane bearer is similar to that of FIG. 9b
  • the public control plane bearer usage method is similar to that of FIG.
  • the method for using the dedicated public bearer in the dedicated bearer establishment process in this embodiment includes:
  • the P-GW determines, according to the saved group identification information of the device, whether the dedicated public S5/S8 uplink user plane bearer corresponding to the group to which the device belongs has been established. If it has been created, the P-GW checks the created Whether the performance parameters carried by the dedicated public S5/S8 uplink user plane meet the service requirements of the device. If not, the performance of the dedicated public S5/S8 uplink user plane is required. The number is modified. If it is satisfied, the performance parameters carried by the dedicated public S5/S8 uplink user plane need not be modified.
  • the performance parameters of the dedicated public S5/S8 uplink user plane are to be modified, check whether the performance parameters carried by the dedicated public S5/S8 uplink user plane meet the service requirements of the device. For example, check the dedicated public S5 corresponding to the group. /S8 The type of the uplink user plane bearer. If the type of the dedicated public S5/S8 uplink user plane is a GBR bearer, the updated dedicated public S5/S8 uplink user plane bearer QoS is determined according to the actual bandwidth requirement of the current device.
  • the configuration attribute of the uplink TFT carried by the dedicated public S5/S8 uplink user plane corresponding to the group saved by the S-GW, if the S-GW saves the dedicated public S5/S8 uplink user plane The configuration of the uplink TFT is a non-static configuration, and the updated uplink TFT is determined.
  • the updated uplink TFT includes a new service flow template that can identify the uplink data packet sent by the current device.
  • the P-GW sends an update bearer request message to the S-GW, where the update bearer request message carries information such as updated bearer QoS, bearer identifier, and updated uplink TFT. Based on the modification result of the performance parameter, the P-GW modifies the corresponding parameters of the bearer context that it has created.
  • the performance parameter of the dedicated public S5/S8 uplink user plane is checked to meet the service requirements of the device.
  • the process is optional, and can be completed by the P-GW or by the S-GW.
  • Step 122b If the update bearer request sent by the P-GW carries the P-GW updated bearer performance parameter, such as the updated bearer QoS, the updated uplink TFT, and the like, the S-GW carries the update bearer request message according to the The information is updated, and the related parameters of the bearer context corresponding to the group are updated, and the update bearer request message is sent to the MME, where the message carries updated bearer QoS, bearer identifier, updated uplink TFT and the like.
  • the P-GW updated bearer performance parameter such as the updated bearer QoS, the updated uplink TFT, and the like
  • the S-GW may also check the performance parameters of the dedicated public S5/S8 uplink user plane, and the method and the check method are P-GW. GW is similar and will not be described here.
  • Step 123b The MME sends a bearer modification request message to the eNB, where the bearer modification request message carries the updated bearer QoS, bearer identifier, S-GW user plane address, and S-GW dedicated public uplink. Information such as the user plane TEID, and the group identifier of the group to which the portable device belongs.
  • Steps 124b to 128b are similar to steps 64b to 68b, and are not described herein again.
  • the embodiment can make the newly initiated dedicated bearer establishment process belong to the same group and save a large amount of bearer resources.
  • the public user plane bearer is a non-GBR bearer, or the configuration attribute of the common user plane that carries the uplink TFT saved by the S-GW and the eNB is statically configured, part of the signaling resources may also be saved.
  • related network nodes such as the MME, the S-GW, the P-GW, and the eNB, need to store group related data.
  • the specific storage mode of the group related data is not limited.
  • the storage structure of each network node regarding group related data is as follows: ⁇ Table 1 - Table 4:
  • Table 1 Example of MME storage structure related to group related data Group ID (Group ID)
  • Deivce ID List Table 3 S-GW storage structure example of group related data
  • MME common control plane 7 carrying TEID ( MME CP TEID (Sl l) )
  • Deivce ID List is shown in Figure 13a and Figure 13b.
  • the public bearer processing method in the attaching process is used as an example.
  • the common bearer corresponding to the group includes the public uplink user plane bearer and the public control plane bearer.
  • the bearer processing method embodiment where the public uplink user plane bearer includes: a public S1 and an S5/S8 uplink user plane bearer; the common control plane bearer includes: a public S11 and an S5/S8 control plane bearer.
  • FIG. 13a is a signaling interaction diagram of a public bearer creation method in an attach procedure according to a twelfth embodiment of the present invention.
  • the application scenario of this embodiment is as follows: The device that belongs to the same group and the first network attaching process is created in the attaching process, and the common uplink bearer corresponding to the group is created, and the method for creating the public uplink user plane bearer is similar to that of FIG. 4a.
  • the creation method of the common control plane bearer is similar to that of FIG.
  • the public bearer creation method in the attach process of this embodiment includes:
  • Steps 131a to 133a are similar to steps 41a to 43a and will not be described again.
  • Step 134a is similar to step 114a, and details are not described herein again.
  • Step 135a The S-GW creates a bearer context related to the group, where the created bearer context includes a group identifier of the group to which the device belongs; and the S-GW sends the selected P-GW according to the received P-GW information.
  • the session establishment request message is sent, and the group identifier, the device identifier, the APN, the user plane address of the S-GW, the common control plane TEID of the S-GW, the default bearer QoS, the bearer identifier, and the like are carried in the session request message.
  • Information where the public control plane TEID of the S-GW is: The TEID carried by the S5/S8 control plane.
  • Step 136a-step 1313a is similar to step 116a-step 1113a, and details are not described herein again.
  • the public S1 and S5/S8 uplink user plane bearers corresponding to the group to which the device belongs, and the public S11 and S5/S8 control plane bearers can be created in the attaching process. Multiple devices belonging to the same group may use the established common bearer to transmit data or control signaling.
  • FIG. 13b is a signaling interaction diagram of a common bearer usage method in an attach procedure according to a twelfth embodiment of the present invention.
  • the difference from the application scenario shown in FIG. 13a is that the application scenario shown in FIG. 13b is: an attachment process belonging to the same group, a device that is not the first to initiate the network attachment process, and the created and the group are used in the attachment process.
  • the group-related common bearer wherein the public uplink user plane bearer is used in a similar manner to FIG. 4b, and the public control plane bearer is used in a similar manner to FIG.
  • the public bearer usage method in the attaching process in this embodiment includes:
  • Step 131b-step 134b is similar to step 11 lb-step 114b, and details are not described herein again.
  • Step 135b The S-GW searches for the public S5/S8 uplink user plane bearer information corresponding to the group identifier, if the public S5/S8 uplink user plane bearer is a GBR bearer, or a public S5/S8 uplink user plane bearer saved by the P-GW.
  • the TFT attribute is configured as a non-static configuration, and the S-GW uses the public S5/S8 control plane bearer to send a modify bearer command message to the P-GW, and the modified bearer command message carries the updated public S5/S8 uplink user plane bearer QoS and bearer. Identification, updated uplink TFT and other information. This step is an optional step.
  • Step 136b The P-GW updates the corresponding parameters in the self-maintaining bearer context according to the parameters carried in the modify bearer command message, such as the updated public S5/S8 uplink user plane bearer QoS, and/or the updated uplink TFT parameter.
  • the P-GW returns a Modify Bearer Response message to the S-GW. This step is an optional step.
  • Step 137b-step 1311b is similar to step 117b-step 1111b, and details are not described herein again.
  • the S-GW checks the common uplink user plane bearer corresponding to the group to which the device belongs.
  • the foregoing process may be modified.
  • the MME pair and the device are modified.
  • the public uplink user plane bearer corresponding to the group is checked.
  • the foregoing step 134b is specifically: the MME sends a modify bearer command message to the S-GW, where the message carries the updated bearer QoS, the bearer identifier, and the updated uplink TFT, and the bearer processing procedure of the S-GW in the original step 134b is completed by the MME.
  • the foregoing step 77b is specifically: The S-GW sends a modify bearer response message to the MME.
  • the newly attached devices belonging to the same group can use the existing public S1 and S5/S8 uplink user plane bearers, and the public S11 and S5/S8 control plane bearers, thereby saving a large amount of bearer resources.
  • the public user plane bearer that is established is a non-GBR bearer or the P-GW, the S-GW, and the TFT configuration attribute of the common uplink user plane carried by the eNB are statically configured, part of the signaling resources may also be saved.
  • the processing methods of the public S1 and S5/S8 uplink user plane bearers, and the common S11 and S5/S8 control plane bearers, and the attaching process shown in FIG. 13a and FIG. 13b are performed in the PDN connection establishment process of the devices belonging to the same group.
  • the common public bearer processing method is similar. After the attaching process or the PDN connection establishing process, the public S1 and S5/S8 uplink user plane bearers can be created and used in the dedicated bearer setup process.
  • the specific implementation is similar to that of FIG. 6a and FIG. 6b. No longer.
  • the eNB may carry the group information related to the common bearer in the cell broadcast message, for example, the group identifier.
  • the device may determine, according to the received group information, whether the network side has created a common bearer of the group to which the group belongs. If yes, the network side may select the public bearer that has been created.
  • the cells are camped on, and are attached to the same eNB by other devices belonging to the same group, so that the same bearer resources can be shared with other devices belonging to the same group, which saves network resources required for terminal device management.
  • FIG. 14 is a schematic structural diagram of a network node according to a thirteenth embodiment of the present invention.
  • the network node of this embodiment includes: a common bearer creation module 141 and a group device service module 142.
  • the public bearer creation module 141 is configured to create a common bearer corresponding to the group to which the device belongs.
  • the group device service module 142 is configured to use the common bearer to provide services for devices in the group.
  • the public bearer can be divided into: a public user plane bearer and a public control plane bearer according to functions and data transmission directions, a public user plane bearer is used for transmitting service data, and a public control plane bearer is used for transmitting signaling messages; The data direction is different.
  • the public user plane bearer can be further divided into: public uplink user plane bearer and public downlink user plane bearer.
  • the network node in this embodiment may further include: a group information acquiring module 143.
  • the group information obtaining module 143 is configured to acquire group information of a group to which the device belongs.
  • the group device service module 142 is specifically configured to create a common bearer corresponding to the group to which the device belongs according to the group information acquired by the group information obtaining module 143.
  • the created public bearer may include: a public user plane bearer and/or a public control plane bearer, where the public user plane bearer may include a public uplink user plane bearer and/or a public downlink user plane bearer.
  • the public uplink user plane bearer, the public downlink user plane bearer, and the common control plane bearer may be a complete bearer of each communication segment between the relevant device nodes of the slave device to the device, or may be a common bearer of some of the communication segments.
  • the public bearer creation module 141 includes a common bearer creation unit 1411 or a common bearer mapping unit 1412.
  • the public bearer creating unit 1411 is configured to create a first public bearer or a second public bearer corresponding to the group to which the creating device belongs.
  • the common bearer mapping unit 1412 is configured to create a first common bearer and a second common bearer corresponding to the group to which the device belongs, and establish a mapping relationship between the first common bearer and the second common bearer.
  • the first common bearer is a common bearer between the current node and the first node
  • the second common bearer is a common bearer between the current node and the second node, and the first node and the second node are respectively connected to the current node.
  • Different levels of nodes are possible.
  • the common bearer mapping unit 1412 may include: an obtaining subunit 14121 and a mapping establishing subunit 14122.
  • the obtaining sub-unit 14121 is configured to obtain a first tunnel endpoint identifier corresponding to the first common bearer and a second tunnel endpoint identifier corresponding to the second common bearer.
  • the mapping establishment sub-unit 14122 is configured to establish a mapping relationship between the first tunnel endpoint identifier and the second tunnel endpoint identifier according to the first tunnel endpoint identifier and the second tunnel endpoint identifier acquired by the obtaining sub-unit 14121.
  • the network node in this embodiment may further include: a determining module 144.
  • the determining module 144 is configured to determine that the public bearer is a public user plane bearer.
  • the network node of this embodiment may further include at least one of the following: a quality of service parameter update module 145 and a flow template parameter update module 146.
  • the service quality parameter update module 145 is configured to: when the determining module 144 determines that the public bearer is a public user plane bearer, the performance parameter carried on the public user plane does not satisfy the service requirement of the service, and the public user plane When the type of the bearer is guaranteed to be a bit rate, the quality of service parameters carried by the public user plane are updated according to the service requirement of the service.
  • the flow template parameter update module 146 is configured to: when the determining module determines that the public bearer is a public user plane bearer, update the public user when a configuration attribute of a flow template parameter carried by the common user plane is a non-static configuration The flow template parameters carried by the face.
  • the network node establishes a common bearer for multiple devices belonging to the same group, so that multiple devices belonging to the same group can share the same bearer resource, thereby saving the communication required by multiple devices belonging to the same group.
  • Bearer resource overhead The specific performance entity of the network node in this embodiment is not limited, and may be a core network node, such as an MME, an S-GW, or a P-GW.
  • the mechanism for processing the common bearer may be as shown in FIG. 1 and FIG. 4a to FIG. 13b. The description of the embodiments will not be repeated here.
  • FIG. 15 is a schematic structural diagram of a network node according to a fourteenth embodiment of the present invention.
  • the network node of this embodiment includes: a group information acquiring module 151 and a group information broadcasting module 152.
  • the group information obtaining module 151 is configured to obtain the common bearer corresponding group information by creating a common bearer corresponding to the group to which the device belongs.
  • the group information broadcast module 152 is configured to broadcast the group information, so that the device belonging to the group selects a cell in which the public bearer is created to camp.
  • the network node broadcasts a group message corresponding to the public bearer established by the network side to the device.
  • the terminal side device may select a cell on the network side that has created the common bearer to camp, and other devices belonging to the same group are attached to the same network node, and may share the same with other devices belonging to the same group.
  • the resources are carried, thereby saving the bearer resource overhead required for communication with multiple devices belonging to the same group.
  • the performance entity of the network node is not limited, and may be an access network node, such as an eNB.
  • an eNB For the manner in which the eNB obtains the corresponding group information of the common bearer, refer to the description of the corresponding embodiment in FIG. 4a-FIG.
  • FIG. 16 is a schematic structural diagram of a communication system according to a fifteenth embodiment of the present invention. As shown in FIG. 16, the communication system includes: a network node 161 and a device 162, and the network node 161 and the device 162 are communicably connected.
  • the network node 161 is configured to create a common bearer corresponding to the group to which the device belongs, and use the common bearer to provide services for the devices in the group.
  • the network node establishes a common bearer for multiple devices belonging to the same group, so that multiple devices belonging to the same group can share the same bearer resource, thereby saving communication with multiple devices belonging to the same group.
  • the bearer resource overhead The detailed structure of the network node in this embodiment can be referred to the description of the corresponding embodiment in FIG. 14.
  • the mechanism for processing the common bearer by the network node can be referred to the description of the corresponding embodiment in FIG. 1 and FIG. 4a to FIG. 13b, and details are not described herein again.
  • the network node 161 is configured to acquire the common bearer corresponding group information by creating a common bearer corresponding to the group to which the device belongs, and broadcast the group information, so that the device belonging to the group selects and creates the public
  • the bearer cell is camped on.
  • the network node broadcasts the group information corresponding to the common bearer established by the network side to the device, and the terminal side device selects the cell that has created the common bearer on the network side to camp, and attaches to other devices belonging to the same group.
  • the same bearer resources can be shared with other devices belonging to the same group, thereby saving the resource overhead required for communication with multiple devices belonging to the same group.
  • modules in the apparatus in the embodiments may be distributed in the apparatus of the embodiment according to the embodiment, or may be correspondingly changed in one or more apparatuses different from the embodiment.
  • the modules of the above embodiments may be combined into one module, or may be further split into a plurality of sub-modules.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

公共承载处理方法、 网络节点及通信系统 本申请要求于 2009年 11月 19 日提交的, 申请号为 200910226515. 2,发 明名称为 "公共承载处理方法、 网络节点及通信系统" 的中国申请的优先权, 其全部内容通过引用结合在本申请中。 技术领域
本发明涉及通信技术领域, 特别是涉及一种公共承载处理方法、 网络节 点及通信系统。
背景技术
目前长期演进 /系统架构演进 ( Long Term Evolved/System Architecture Evolved, 以下简称 LTE/SAE )等网络是基于人对人( Human To Human, 简称 H2H )设计的。 在现有网络中, 每个用户设备( User Equipment, 简称 UE ) 通常只属于一个用户, 网络对于每个 UE进行单独管理, 建立单个 UE使用的 承载, 不同 UE之间没有关联。
机器对机器(Machine To Machine, 简称 M2M )通信技术是当前通信技 术的发展趋势之一。 M2M通信技术中,数据从一台设备传输到另一台设备上, 即实现设备之间的对话。 在基于 M2M通信技术的 M2M网络中, 用户与设备 之间不再是简单的 1 : 1的关系, 通常一个用户会拥有不止一台甚至拥有大量 的设备, 即用户与设备之间形成了 1: M的关系。 此外在 M2M网络中, 也可 能存在多个用户共同使用一个设备的情形, 即用户与设备之间形成了 N: 1的 关系。 综合 M2M上述各种可能情形, 在 M2M网络中用户与设备之间的对应 关系可表示为 N : M。
当大量设备在发起通信流程时, 按照现有技术建立由单个设备使用的承 载, 将会占用大量的网络承载资源, 造成网络资源浪费。
发明内容 本发明实施例提供一种公共承载处理方法、 网络节点及通信系统, 用以 节省对终端设备管理所需的网络资源。
本发明实施例提供了一种公共承载处理方法, 包括:
创建设备所属群组对应的公共承载;
使用所述公共承载为所述群组中的设备提供服务。
本发明实施例还提供了另一种公共承载处理方法, 包括:
通过创建设备所属群组对应的公共承载, 获取所述公共承载对应的群组 信息;
广播所述群组信息, 以供属于所述群组的设备选择创建有所述公共承载 的小区进行驻留。
本发明实施例还提供了一种网络节点, 包括:
公共承载创建模块, 用于创建设备所属群组对应的公共承载;
群组设备服务模块, 用于使用所述公共承载为所述群组中的设备提供服 务。
本发明实施例还提供了另一种网络节点, 包括:
群组信息获取模块, 用于通过创建设备所属群组对应的公共承载, 获取 所述公共承载对应的群组信息;
群组信息广播模块, 用于广播所述群组信息, 以供属于所述群组的设备 选择创建有所述公共承载的小区进行驻留。
本发明实施例还提供了一种通信系统, 包括: 网络节点以及与所述网络 节点以可通信方式相连的设备,
所述网络节点, 用于创建设备所属群组对应的公共承载, 使用所述公共 承载为所述群组中的设备提供服务。
本发明实施例还提供了另一种通信系统, 包括: 网络节点以及与所述网 络节点以可通信方式相连的设备,
所述网络节点, 用于通过创建设备所属群组对应的公共承载, 获取所述 公共承载对应的群组信息; 广播所述群组信息, 以供属于所述群组的设备选 择创建有所述公共承载的小区进行驻留。
本发明实施例提供的公共承载处理方法、 网络节点及通信系统中, 为属 于同一群组的多个设备建立公共承载, 使得属于同一群组的多个设备可以共 享相同的承载资源, 从而节省了对终端设备管理所需的网络资源。 附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案, 下面将对实 施例或现有技术描述中所需要使用的附图作简单地介绍, 显而易见地, 下面 描述中的附图仅仅是本发明的一些实施例, 对于本领域普通技术人员来讲, 在不付出创造性劳动性的前提下, 还可以根据这些附图获得其他的附图。
图 1为本发明第一实施例提供的公共承载处理方法流程图;
图 2为本发明第二实施例提供的公共承载处理方法流程图;
图 3a为本发明承载处理方法实施例的应用场景 LTE/SAE系统结构示意 图;
图 3b为图 3a所示的应用场景中公共承载的分类示意图;
图 4a为本发明第三实施例提供的附着流程中公共上行用户面承载创建方 法信令交互图;
图 4b为本发明第三实施例提供的附着流程中公共上行用户面承载使用方 法信令交互图;
图 5a为本发明第四实施例提供的 PDN连接建立流程中公共上行用户面 承载创建方法信令交互图;
图 5b为本发明第四实施例提供的 PDN连接建立流程中公共上行用户面 承载使用方法信令交互图;
图 6a为本发明第五实施例提供的专用承载建立流程中专用公共上行用户 面承载创建方法信令交互图;
图 6b为本发明第五实施例提供的专用承载建立流程中专用公共上行用户 面承载使用方法信令交互图;
图 7a为本发明第六实施例提供的附着流程中公共下行用户面承载创建方 法信令交互图;
图 7b为本发明第六实施例提供的附着流程中公共下行用户面承载使用方 法信令交互图;
图 8a为本发明第七实施例提供的 PDN连接建立流程中公共下行用户面 承载创建方法信令交互图;
图 8b为本发明第七实施例提供的 PDN连接建立流程中公共下行用户面 承载使用方法信令交互图;
图 9a为本发明第八实施例提供的专用承载建立流程中专用公共下行用户 面承载创建方法信令交互图;
图 9b为本发明第八实施例提供的专用承载建立流程中专用公共下行用户 面承载使用方法信令交互图;
图 10为本发明第九实施例提供的公共控制面承载处理方法流程图; 图 11a为本发明第十实施例提供的附着流程中公共承载创建方法信令交 互图;
图 l ib为本发明第十实施例提供的附着流程中公共承载使用方法信令交 互图;
图 12a为本发明第十一实施例提供的专用承载建立流程中专用公共承载 创建方法信令交互图;
图 12b为本发明第十一实施例提供的专用承载建立流程中专用公共承载 使用方法信令交互图;
图 13a为本发明第十二实施例提供的附着流程中公共承载创建方法信令 交互图;
图 13b为本发明第十二实施例提供的附着流程中公共承载使用方法信令 交互图; 图 14为本发明第十三实施例提供的网络节点的结构示意图; 图 15为本发明第十四实施例提供的网络节点的结构示意图;
图 16为本发明第十五实施例提供的通信系统的结构示意图。 具体实施方式
下面将结合本发明实施例中的附图, 对本发明实施例中的技术方案进行 清楚、 完整地描述, 显然, 所描述的实施例仅仅是本发明一部分实施例, 而 不是全部的实施例。 基于本发明中的实施例, 本领域普通技术人员在没有付 出创造性劳动前提下所获得的所有其他实施例, 都属于本发明保护的范围。
图 1 为本发明第一实施例提供的公共承载处理方法流程图。 本实施例的 执行主体可为与终端侧设备以可通信方式相连的网络节点, 如核心网节点等。 如图 1所示, 本实施例公共承载处理方法包括:
步骤 11、 创建设备所属群组对应的公共承载。
本发明实施例中, 公共承载按照功能及数据传输方向可分为: 公共用户 面承载和公共控制面承载, 公共用户面承载用于传输业务数据, 公共控制面 承载用于传输信令消息; 根据传输数据方向不同, 公共用户面承载又可分为: 公共上行用户面承载和公共下行用户面承载。
本步骤根据某一群组的群组信息, 创建该群组对应的公共承载。 创建的 公共承载可包括: 公共用户面承载和 /或公共控制面承载, 其中, 公共用户面 承载可包括公共上行用户面承载和 /或公共下行用户面承载。 公共上行用户面 承载、 公共下行用户面承载和公共控制面承载, 即可为从设备到设备所有的 相关网络节点之间各通信段的完整承载, 也可为其中部分通信段的公共承载。
在创建公共承载过程中, 可创建第一公共承载, 第一公共承载为当前节 点与第一节点之间的公共承载。 或者, 在创建公共承载过程中, 可创建第二 公共承载, 第二公共承载为当前节点与第二节点之间的的公共承载。 或者, 在创建公共承载过程中, 可创建上述第一公共承载和第二公共承载, 并建立 第一公共承载和第二公共承载之间的映射关系。 建立第一公共承载和第二公共承载之间的映射关系的具体实现方式不受 限制, 例如: 可获取第一公共承载对应的第一隧道端点标识以及第二公共承 载对应的第二隧道端点标识, 建立第一隧道端点标识和第二隧道端点标识的 映射关系。
上述第一节点和第二节点分别为与当前节点连接的不同级节点, 如第一 节点为当前节点的上级节点, 第二节点为当前节点的下级节点, 或者, 第一 节点为当前节点的下级节点, 第二节点为当前节点的上级节点。
步骤 12、 使用上述公共承载为上述群组中的设备提供服务。
公共承载建立完成之后, 相同群组的设备就可以使用相同的承载资源, 不需要为每个设备单独创建承载。
可选的, 在创建设备所属群组对应的公共承载之后, 如果创建的公共承 载为公共用户面承载, 本实施例公共承载处理方法还可包括: 对公共用户面 承载进行检查以确定公共用户面承载是否满足业务需求, 例如:
判断公共用户面承载的性能参数是否满足当前节点提供的服务的业务需 求, 如果满足, 可直接使用公共用户面承载为相应设备提供服务; 如果不满 足, 则在公共用户面承载的类型为保证比特速率承载时, 根据其他设备所需 业务的实际服务质量需求, 更新公共用户面承载的服务质量参数; 向保存该 群组对应的公共用户面承载上下文的相关节点发送更新的服务质量参数; 和 / 或,
判断所述公共用户面承载的流模版参数的配置属性是否为非静态配置, 如果是, 则更新所述公共用户面承载的流模版参数; 向保存所述群组的公共 用户面承载上下文的相关节点发送更新的所述流模版参数。
保存该群组对应的公共用户面承载上下文的相关节点更新参数后, 可使 用参数更新后的公共用户面承载为属于相同群组的设备提供服务。
本实施例提供的公共承载处理方法中, 为属于同一群组的多个设备建立 公共承载, 使得属于同一群组的多个设备可以共享相同的承载资源, 从而节 省了对终端设备管理所需的网络资源。
图 2为本发明第二实施例提供的公共承载处理方法流程图。 本实施例的 执行主体可为与终端侧设备以可通信方式相连的网络节点, 如接入网节点等 如图 2所示, 本实施例公共承载处理方法包括:
步骤 21、 通过创建设备所属群组对应的公共承载, 获取上述公共承载对 应的群组信息。
网络侧创建设备所属群组对应的公共承载的方法可参见图 1 对应实施例 的记载, 在此不再赘述。
步骤 22、 广播上述群组信息, 以供属于上述群组的设备选择创建有公共 承载的小区进行驻留。
设备接收到包括有公共承载对应的群组信息时, 可根据接收的群组信息, 且确定网络侧创建有自身所属群组的公共承载时, 可选择网络侧已创建有该 公共承载的小区进行驻留, 与属于相同群组的其他设备附着到相同的网络节 点上。
本实施例公共承载处理方法中, 通过向设备广播网络侧建立的公共承载 对应的群组信息, 使得终端侧设备可选择网络侧已创建有该公共承载的小区 进行驻留, 与属于相同群组的其他设备附着到相同的网络节点上, 可与属于 同一群组的其他设备共享相同的承载资源, 从而节省了对终端设备管理所需 的网络资源。
图 3a为本发明承载处理方法实施例的应用场景 LTE/SAE系统结构示意 图。如图 3a所示, LTE/SAE主要包括: 归属签约用户服务器( Home Subscriber Server, 简称 HSS )、 移动性管理实体 ( Mobility Management Entity , 简称 MME )、 SAE网关、演进的通用陆地无线接入网络( Evolved Universal Terrestrial Radio Access Network, 简称 E-UTRAN ) 中的演进基站 ( E-UTRAN NodeB , 简称 eNB )等。
HSS 主要负责用户设备( User Equipment , 简称 UE )的签约数据管理, HSS保存的签约数据可包括 UE的群组信息。 UE的群组信息可包括: UE所 属的群组的组标识、 组成员列表(包括一组设备标识)、 组的公共特性、 组成 保存。 如果某一 UE属于多个群组, UE的群组信息还可包括群组的组标识与 业务类型之间的映射关系, 如 APN与组标识对等。 HSS上保存的 UE的签约 数据可由机器类型通信( Machine Type Communication, 简称 MTC )等应用服 务器进行维护, 例如: MTC应用服务器可改变 UE 的群组信息, 将 UE加入 某一或某些群组, 或者, 将 UE从某一或某些群组中删除等。 当 UE的群组信 息发生改变时, HSS 上保存的签约数据也相应发生改变, 使得网络侧对 UE 的管理方式也需发生相应的变化。
MME的主要功能是保存 UE的移动性管理上下文, 并对非接入层(Non Access Stratum, 简称 NAS )信令进行处理, 负责 NAS信令的安全等, 其中 移动性管理上下文可包括用户的标识、 移动性管理状态、 位置信息等。 MME 可向 HSS获取 UE的签约数据, 根据签约数据获取 UE的群组信息。
SAE网关包括服务网关( Serving Gateway , 简称 S-GW )和分组数据网 络网关( Packet Data Network Gateway, 简称 P-GW ); S-GW与 P-GW是两个 逻辑实体, 可以存在于同一个或不同的物理实体上。 S-GW上主要保存 UE的 用户面上下文, 如: UE的 IP地址和路由信息、 执行合法监听、 分组数据路 由功能等; S-GW通过 S11接口与 MME通信, 进行 UE的移动性管理信息与 会话控制信息等交互。 P-GW负责 UE接入到分组数据网的用户面锚点功能, 通过 SGi参考点与外部分组数据网进行通信, 具有分组路由和转发的功能, 并负责策略计费增强功能、 基于每个用户的分组过滤功能等; P-GW通过 S5 接口与 S-GW通信, 传输承载建立 /修改 /删除等控制信息, 以及分组数据路由 等。
E-UTRAN由多个 eNB组成, eNB主要功能是负责建立、 维护或释放与 UE之间的无线连接,保存处于连接状态 UE的上下文信息,并对接入层( Access Stratum, 简称 AS )信令进行处理, 负责 AS信令的安全等。
图 3b为图 3a所示的应用场景中公共承载的分类示意图。 如图 3b所示, 在图 3a所示的应用场景中, MME与 eNB 之间的接口为 S1接口, 使用公共 控制面承载(CP Bearer )通信; S-GW与 eNB 之间的接口为 S1接口, 使用 公共用户面承载 ( UP Bearer )通信; MME与 S-GW之间的接口为 SI 1接口, 使用公共控制面承载通信; S-GW和 P-GW之间的接口为 S5/S8接口, 使用公 共控制面或公共用户面承载通信。 根据传输数据方向不同, 公共用户面承载 又可分为: 公共上行用户面承载和公共下行用户面承载, 即 P-GW和 S-GW 之间、 S-GW和 eNB可通过公共上行用户面承载和公共下行用户面承载, 分 别进行上行通信和下行通信。
下面结合本发明实施例在图 3a和图 3b所示的应用场景为例, 说明本发 明承载处理方法的技术方案。
图 4a-图 6b为与群组对应的公共承载是公共上行用户面承载时的承载处 理方法实施例。 当属于某一群组的设备需要为发起的业务建立承载时, 设备 的相关网络节点,可根据由 HSS获取的设备签约数据或设备提供的群组信息, 首先判断该设备所属的群组是否已建立相应的公共承载。 如果没有, 则建立 该群组相应的公共承载; 如果已建立公共承载且此承载处于激活状态, 则属 于该群组的设备可直接使用该公共承载传输数据; 如果已建立公共承载且此 承载处于非激活状态, 则设备的相关网络节点首先激活该公共承载, 之后再 将该公共承载用于该群组的设备的数据传输。 如果相关网络节点存在上一级 节点和下一级节点, 则该相关网络节点还需要保存上一级承载与下一级承载 之间的映射关系。 下面分别结合附着流程、 PDN连接建立流程和专用承载建 立流程为例, 进行详细说明。
本领域普通技术人员可以理解, 下述实施例中的设备可以为阐述上述本 发明实施例应用场景时提到的 UE。
图 4a和图 4b以在附着流程中, 与群组对应的公共承载是公共上行用户 面承载时的承载处理方法为例进行说明。
图 4a为本发明第三实施例提供的附着流程中公共上行用户面承载创建方 法信令交互图。 本实施例的应用场景为: 属于同一群组、 第一个发起网络附 着流程的设备, 在附着流程中创建与群组对应的公共上行用户面承载; 下行 用户面承载和控制面承载的创建方式不受限制。
本实施例中设备的相关网络节点可根据与设备相关的签约数据或设备提 供的群组信息, 判断该设备所属群组对应的公共上行用户面承载是否已建立。 本实施例假设设备所属群组的公共上行用户面承载尚未建立。 如图 4a所示, 本实施例附着流程中公共上行用户面承载创建方法包括:
步骤 41a、设备向 eNB发送无线资源控制( Radio Resource Control, 简称 RRC )连接建立( RRC Connection Setup )消息, RRC连接建立消息包括附着 请求(Attach Request ) 消息、 设备标识, 设备所属群组的群组信息, 如群组 标识( Group ID )等信息;附着请求消息可选择的携带接入点名称( Access Point Name,简称 APN )等信息;附着请求消息可以为非接入层( Non-Access Stratum, 简称 NAS ) 消息。
步骤 42a、 eNB根据设备当前所处的位置及网络拓朴结构, 按照负载均 衡的原则选择 MME,并向选定的 MME发送初始 UE消息( Initial UE message ), 初始 UE消息中包括附着请求消息 ( NAS消息)。
步骤 43a、 MME通过更新位置流程 ( Update Location Procedure ),从 HSS 中获取与设备相关的签约数据。
如果 MME中已保存该设备相关的签约数据, 则此步骤可省略。
步骤 44a、 MME根据保存的设备签约数据和 /或设备所携带的 APN信息, 按照负载均衡的原则进行 S-GW和 P-GW选择, 并向选定的 S-GW发送建立 会话请求( Create Session Request ) 消息, 建立会话请求消息中携带设备所属 群组的群组标识, 还可携带设备标识、 MME的控制面隧道端点标识(Tunnel Endpoint Identifier,简称 TEID )、 P-GW地址、 APN、默认承载( Default Bearer ) 服务质量(Quality of Service , 简称 QoS )、 承载标识等信息。
步骤 45a、 S-GW创建与群组相关的承载上下文, 创建的承载上下文中包 括有设备所属群组的群组标识; S-GW根据接收到的 P-GW信息, 向选定的 P-GW发送建立会话请求消息,建立会话请求消息中携带设备所属群组的群组 标识、 设备标识、 APN、 S-GW的用户面地址、 S-GW的下行用户面 TEID、 S-GW的控制面 TEID、 默认承载 QoS、 承载标识等信息。
步骤 46a、 P-GW创建与群组相关的承载上下文, 创建的承载上下文中包 括有设备所属群组的群组标识以及 P-GW的公共上行用户面 TEID, 图中表示 为公共 UL TEID, 该 P-GW的公共上行用户面 TEID为 P-GW分配的、 与该 设备所属群组的群组标识对应的上行用户面 TEID, 以供 S-GW传输属于同一 群组的任一设备的上行数据时使用。
P-GW向 S-GW返回建立会话响应 (Create Session Response ) 消息, 建 立会话响应消息中携带 P-GW的用户面地址、 P-GW的公共上行用户面 TEID、 P-GW的控制面 TEID、 承载标识、 承载 QoS等信息。
步骤 47a、 S-GW建立 P-GW的公共上行用户面 TEID和 S-GW的公共上 行用户面 TEID之间的映射关系,并将该映射关系保存在自身已创建的承载上 下文中。 其中, S-GW的公共上行用户面 TEID为 S-GW分配的、 与该设备所 属群组的群组标识对应的上行用户面 TEID,以供 eNB传输属于同一群组的任 一设备的上行数据时使用。
S-GW向 MME返回建立会话响应消息,建立会话响应消息中携带 S-GW 的用户面地址、 S-GW的公共上行用户面 TEID、 S-GW的控制面 TEID、 承载 标识、 承载 QoS等信息。
步骤 48a、 MME向 eNB发送初始上下文建立请求( Initial Context Setup Request )消息, 初始上下文建立请求消息中携带承载 QoS、 承载标识、 S-GW 的用户面地址、 S-GW的公共上行用户面 TEID、 群组标识、 附着接受消息等 信息, 该附着接受消息可以为 NAS消息。 步骤 49a、 eNB创建与群组对应的承载上下文, 创建的承载上下文中包 括有设备所属群组的群组标识。
eNB向设备发送 RRC连接重配置消息, RRC连接重配置消息中携带无 线承载标识和附着接受消息, 该附着接受消息可以为 NAS消息。
步骤 410a、 设备向 eNB返回 RRC连接重配置完成消息。
步骤 411 a、 eNB向 MME发送初始上下文建立响应消息,消息中携带 eNB 的下行用户面 TEID、 eNB用户面地址等信息。
步骤 412a、 MME向 S-GW发送修改承载请求消息, 修改承载请求消息 中携带 eNB的下行用户面 TEID、 eNB用户面地址、 承载标识等信息。
步骤 413a、 S-GW将 eNB的下行用户面 TEID保存在自身已创建的承载 上下文中,并向 MME返回修改承载响应消息,修改承载响应消息中携带承载 标识等信息。
本实施例通过上述流程, 可在附着流程中创建设备所属群组对应的公共 上行用户面承载, 在群组对应的公共上行用户面承载建立起来之后, 属于同 一群组的多个设备可使用该公共上行用户面承载传输上行数据。
图 4b为本发明第三实施例提供的附着流程中公共上行用户面承载使用方 法信令交互图。 与图 4a所示的应用场景的区别在于, 如 4b所示的应用场景 为: 属于同一群组的各设备中非第一个发起网络附着流程的设备的附着流程, 在附着流程中使用已创建的与群组相关的公共上行用户面承载。如图 4b所示, 本实施例在附着流程中公共上行用户面承载使用方法包括:
步骤 41b-步骤 43b、 与步骤 41a-步骤 43a相似, 在此不再赘述。
步骤 44b、 MME可根据与设备相关的签约数据或设备提供的群组信息, 判断该设备所属群组对应的公共上行用户面承载是否已建立, 如果没有, 则 可采用图 4a所示的流程创建与群组对应的公共上行用户面承载;如果已创建, MME 则检查创建的公共上行用户面承载的性能参数是否满足设备的业务需 求, 如果不满足, 则需要对公共上行用户面承载的性能参数进行修改, 如果 满足, 则不需要对公共上行用户面承载的性能参数进行修改, 例如:
MME检查该群组对应的公共上行用户面承载的类型,如果公共上行用户 面承载的类型为保证比特速率 ( Guaranteed Bit Rate, 简称 GBR )承载, 则根 据当前设备所需业务的实际服务质量需求, 更新公共上行用户面承载的 QoS 参数; 或者,
MME检查 P-GW保存的该群组对应的公共上行用户面承载的上行业务 流模版( Traffic Flow Template, 简称 TFT ), 图中表示为 UL TFT, 的配置属 性, 如果 P-GW保存的该公共上行用户面承载的上行 TFT的配置属性为非静 态配置, 则更新上行 TFT参数, 更新的上行 TFT参数中包括有可识别当前设 备所发上行数据包目的地址的新的业务流模版。
MME向 S-GW发送修改承载命令(Modify Bearer Command ) 消息, 修 改承载命令消息中携带有公共上行用户面承载的更新的相应性能参数, 如包 括: 更新的公共上行用户面承载的 QoS参数, 和 /或更新的上行 TFT参数等。
本步骤中, 如果 MME检查结果为公共上行用户面承载的类型为非 GBR 承载、和 /或 P-GW保存的该群组对应的公共上行用户面承载的上行 TFT的配 置属性为静态配置, 则不需要对公共上行用户面承载的性能参数进行修改。
步骤 45b、 S-GW根据修改承载命令 ( Modify Bearer Command ) 消息携 带的参数, 更新自身保存的承载上下文中的相应参数, 如更新的公共上行用 户面承载的 QoS参数, 和 /或更新的上行 TFT参数等。 S-GW向 P-GW发送修 改承载命令消息, 修改承载命令消息中携带承载标识、 更新的公共上行用户 面承载的 QoS参数, 和 /或更新的上行 TFT参数等。 本步骤为可选步骤。
步骤 46b、 P-GW根据修改承载命令 ( Modify Bearer Command ) 消息携 带的参数, 更新自身保存承载上下文中的相应参数, 如更新的公共上行用户 面承载的 QoS参数, 和 /或更新的上行 TFT参数等。 P-GW向 S-GW返回修改 承载响应 ( Modify Bearer Response ) 消息。 本步骤为可选步骤。
步骤 47b、 S-GW向 MME发送修改承载响应消息。 步骤 48b、 MME向 eNB发送初始上下文建立请求消息。如果上述流程中 有执行步骤 45b-步骤 47b, 则 MME向 eNB发送的初始上下文建立请求消息 中还携带有更新的公共上行用户面承载的 QoS参数,和 /或更新的上行 TFT参 数等。
步骤 49b、 eNB根据初始上下文建立请求消息携带的信息, 更新自身保 存的承载上下文中的相应参数。
eNB向设备发送 RRC连接重配置消息, RRC连接重配置消息中携带无 线承载标识和附着接受消息, 该附着接受消息可以为 NAS消息。
步骤 410b-步骤 411b、 与步骤 410a-步骤 411a相似, 在此不再赘述。 图 4b所示的流程中, 由 MME对与设备所属群组对应的公共上行用户面 承载进行检查, 可选的, 还可对上述流程进行变形, 在变形实施例中由 S-GW 对与设备所属群组对应的公共上行用户面承载进行检查。 该情形下, 上述步 骤 44b具体为: MME向 S-GW发送建立会话请求消息,且原步骤 44b中 MME 的承载处理过程由 S-GW完成; 上述步骤 47b具体为: S-GW向 MME发送建 立会话响应消息, 具体实现过程与上述流程相似, 在此不再赘述。
本实施例通过以上流程, 可使新附着的、 属于相同群组的设备使用已创 建的公共上行用户面承载资源, 如: 公共上行用户面 TEID等, 无需为这些设 备重新创建上行用户面承载资源, 从而节省了传输属于同一群组的设备的上 行数据所需的上行承载资源开销。 进一步的, 如果创建的公共上行用户面承 载为非 GBR承载、 或者 P-GW和 S-GW保存的公共上行用户面承载的上行 TFT的配置属性为静态配置, 则不需要发起公共上行用户面承载的修改流程, 由此可节省部分信令资源开销。
图 5a和图 5b以在分组数据网( Packet Data Network, 简称 PDN )连接建 立流程中, 与群组对应的公共承载是公共上行用户面承载时的承载处理方法 为例进行说明。
图 5a为本发明第四实施例提供的 PDN连接建立流程中公共上行用户面 承载创建方法信令交互图。 本实施例的应用场景为: 属于同一群组、 第一个 发起 PDN连接建立流程的设备, 在 PDN连接建立流程中创建公共上行用户 面承载; 下行用户面承载和控制面承载的创建方式不受限制。 本实施例假设 设备所属群组的公共上行用户面承载尚未建立。 如图 5a所示, 本实施例 PDN 连接建立流程中公共上行用户面承载创建方法包括:
步骤 51 a、 设备向 MME发送 PDN连接请求消息, PDN连接请求消息中 携带 APN等信息, 可选择的携带群组标识信息。
步骤 52a、MME根据保存的设备签约数据及设备所携带的 APN,向 S-GW 发送建立会话请求消息, 建立会话请求消息中携带设备标识、 MME控制面 TEID、 P-GW地址、 APN、 默认承载的 QoS、 承载标识、 群组标识等信息。
步骤 53a-步骤 55a、 与步骤 45a-步骤 47a相似, 在此不再赘述。
步骤 56a、 MME向 eNB发送承载建立请求消息,承载建立请求消息中携 带承载 QoS、承载标识、 S-GW的用户面地址、 S-GW的公共上行用户面 TEID、 群组标识、 PDN连接接受消息等信息, 该 PDN连接接受消息可以为 NAS消 息。
步骤 57a、 eNB创建与群组对应的承载上下文, 创建的承载上下文中包 括有设备所属群组的群组标识。
eNB向设备发送 RRC连接重配置消息, RRC连接重配置消息中携带无 线承载标识和 PDN连接接受消息, 该 PDN连接接受消息可以为 NAS消息。
步骤 58a、 设备向 eNB返回 RRC连接重配置完成消息。
步骤 59a、 eNB向 MME发送承载建立响应消息,承载建立响应消息中携 带 eNB的下行用户面 TEID、 eNB用户面地址等信息。
步骤 510a-步骤 511a、 与步骤 412a-步骤 413a相似, 在此不再赘述。
本实施例通过上述流程,可在 PDN连接建立流程中创建设备所属群组对 应的公共上行用户面承载, 在群组对应的公共上行用户面承载建立起来之后, 属于同一群组的其它设备可使用该公共上行用户面承载传输上行数据。 图 5b为本发明第四实施例提供的 PDN连接建立流程中公共上行用户面 承载使用方法信令交互图。 与图 5a所示的应用场景的区别在于, 如 5b所示 的应用场景为: 属于同一群组的各设备中非第一个发起 PDN连接建立流程的 设备的 PDN连接建立流程, 在 PDN连接建立流程中使用已创建的与群组相 关的公共上行用户面 7|载。 如图 5b所示, 本实施例 PDN连接建立流程中公 共上行用户面承载使用方法包括:
步骤 5 lb、 设备向 MME发送 PDN连接请求消息, PDN连接请求消息中 携带 APN等信息, 可选择的携带群组标识信息。
步骤 52b、 MME可根据与设备相关的签约数据或设备提供的群组信息, 判断该设备所属群组对应的公共上行用户面承载是否已建立, 如果没有, 则 可采用图 5a所示的流程创建与群组对应的公共上行用户面承载;如果已创建, MME 则检查创建的公共上行用户面承载的性能参数是否满足设备的业务需 求, 如果不满足, 则需要对公共上行用户面承载的性能参数进行修改, 如果 满足, 则不需要对公共上行用户面承载的性能参数进行修改。
本步骤中关于 MME检查公共上行用户面承载的性能参数是否满足设备 的业务需求过程, 与步骤 44b相似, 在此不再赘述。
步骤 53b-步骤 55b、 与步骤 45b-步骤 47b相似, 在此不再赘述。
步骤 56b、 MME向 eNB发送承载建立请求消息,承载建立请求消息中携 带承载 QoS、承载标识、 S-GW的用户面地址、 S-GW的公共上行用户面 TEID、 群组标识、 PDN连接接受消息等信息, PDN连接接受消息可以为 NAS消息。
步骤 57b-步骤 511b、 与步骤 57a-步骤 511a相似, 在此不再赘述。
图 5b所示的流程中, 由 MME对与设备所属群组对应的公共上行用户面 承载进行检查, 可选的, 还可对上述流程进行变形, 在变形实施例中由 S-GW 对与设备所属群组对应的公共上行用户面承载进行检查。 该情形下, 上述步 骤 52b具体为: 由 MME向 S-GW发送建立会话请求消息, 消息中携带群组 标识等信息, 原步骤 52b中 MME的承载处理过程由 S-GW完成; 上述步骤 55b具体为: S-GW向 MME返回建立会话响应消息。
本实施例通过以上流程, 可使新发起 PDN连接建立的、 属于相同群组的 设备使用已创建的公共上行用户面承载资源, 如: 公共上行用户面 TEID等, 无需为这些设备重新创建上行用户面承载资源, 从而节省了传输属于同一群 组的设备的上行数据所需的上行承载资源开销。 进一步的, 如果创建的公共 上行用户面承载为非 GBR承载、或者 P-GW和 S-GW保存的公共上行用户面 承载的上行 TFT的配置属性为静态配置, 则不需要发起公共上行用户面承载 的修改流程, 由此可节省部分信令资源开销。
图 6a和图 6b以在专用承载建立流程中, 与群组对应的公共承载是专用 公共上行用户面承载时的承载处理方法为例进行说明。
图 6a为本发明第五实施例提供的专用承载建立流程中专用公共上行用户 面承载创建方法信令交互图。 本实施例的应用场景为: 属于同一群组、 第一 个创建专用承载的设备, 在创建专用承载的流程中创建与群组对应的专用公 共上行用户面承载; 下行用户面承载和控制面承载的创建方式不受限制。 如 图 6a所示, 本实施例专用承载建立流程中专用公共上行用户面承载创建方法 包括:
步骤 61a、 P-GW创建与群组相关的承载上下文, 创建的承载上下文中包 括有设备所属群组的群组标识以及 P-GW的专用公共上行用户面 TEID。
P-GW向 S-GW发送建立承载请求消息, 建立承载请求消息中携带设备 标识、 P-GW的用户面地址、 P-GW的专用公共上行用户面 TEID、 承载 QoS、 默认承载标识, 如: LBI, 等信息, 可选择的携带设备所属群组的群组标识。
步骤 62a、 S-GW创建与群组相关的承载上下文, 创建的承载上下文中包 括有设备所属群组的群组标识以及 S-GW的专用公共上行用户面 TEID; S-GW 还建立 P-GW的专用公共上行用户面 TEID和 S-GW的专用公共上行用户面 TEID之间的映射关系, 并将该映射关系保存在自身已创建的承载上下文中。
S-GW向 MME发送建立承载请求消息,建立承载请求消息中携带设备标 识、 S-GW用户面地址、 S-GW的专用公共上行用户面 TEID、 承载 QoS、 默 认承载标识, 如: LBI, 等信息, 可选择的携带设备所属群组的群组标识。
步骤 63a、 MME向 eNB发送承载建立请求消息,建立承载请求消息中携 带承载 QoS、 承载标识、 S-GW用户面地址、 S-GW 的专用公共上行用户面 TEID等信息, 可选择的携带设备所属群组的群组标识。
步骤 64a、 eNB创建承载上下文, 创建的承载上下文中包括有设备所属 群组的群组标识以及 S-GW的专用公共上行用户面 TEID。
eNB向设备发送 RRC连接重配置消息, RRC连接重配置消息中携带无 线承载标识和附着接受消息, 该附着接受消息可以为 NAS消息。
步骤 65a、 设备向 eNB返回 RRC连接重配置完成消息。
步骤 66a、 eNB向 MME发送承载建立响应消息,承载建立响应消息中携 带 eNB的下行用户面 TEID、 eNB的用户面地址、 承载标识等信息。
步骤 67a、 MME向 S-GW发送建立承载响应消息, 建立承载响应消息中 携带 eNB的下行用户面 TEID、 eNB的用户面地址、 承载标识等信息。
步骤 68a、 S-GW将建立承载响应消息中携带的信息保存到自身已创建的 承载上下文中, 并向 P-GW发送建立承载响应消息, 建立承载响应消息中携 带 S-GW的下行用户面 TEID、 S-GW的用户面地址、 承载标识等信息。
本实施例通过上述流程, 可在专用承载建立流程中创建设备所属群组对 应的专用公共上行用户面承载, 在群组对应的专用公共上行用户面承载建立 上行数据。
图 6b为本发明第五实施例提供的专用承载建立流程中专用公共上行用户 面承载使用方法信令交互图。 与图 6a所示的应用场景的区别在于, 如 6b所 示的应用场景为: 属于同一群组的各设备中非第一个发起专用承载建立流程 的设备, 在专用承载建立流程中使用已创建的与群组相关的专用公共上行用 户面承载。 如图 6b所示, 本实施例专用承载建立流程中专用公共上行用户面 承载使用方法包括:
步骤 61b、 P-GW根据保存的该设备所属的群组标识信息, 判断该设备所 属群组对应的专用公共上行用户面承载是否已建立, 如果没有, 则可采用图 6a 所示的流程创建与群组对应的专用公共上行用户面承载; 如果已创建, P-GW 则检查创建的专用公共上行用户面承载的性能参数是否满足设备的业 务需求, 如果不满足, 则需要对公共上行用户面承载的性能参数进行修改, 如果满足, 则不需要对公共上行用户面承载的性能参数进行修改。
如果需要对公共上行用户面承载的性能参数进行修改, 检查专用公共上 行用户面承载的性能参数是否满足设备的业务需求过程, 例如: 检查该群组 对应的专用公共上行用户面承载的类型, 如果专用公共上行用户面承载的类 型为 GBR承载, 则根据当前设备所需业务的实际带宽需求, 确定更新的专用 公共上行用户面承载 QoS参数; 和 /或, 检查 S-GW保存的该群组对应的专用 公共上行用户面承载的上行 TFT的配置属性, 如果 S-GW保存的该公共上行 用户面承载的上行 TFT的配置属性为非静态配置, 则确定更新的上行 TFT, 更新的上行 TFT中包括有可识别当前设备所发上行数据的新的业务流模版。
P-GW向 S-GW发送更新承载请求消息, 更新承载请求消息中携带有更 新的承载 QoS、 承载标识、 更新的上行 TFT等信息。
本步骤对专用公共上行用户面承载的性能参数进行检查是否满足设备的 业务需求过程为可选处理, 可由 P-GW完成, 还可由 S-GW完成。
步骤 62b、 如果 P-GW发送的更新承载请求中携带有 P-GW更新后的承 载性能参数, 如更新的承载 QoS、 更新的上行 TFT等信息, S-GW则根据该 更新承载请求消息中携带的信息, 更新自身已建立的与群组对应的承载上下 文的相关参数, 并向 MME发送更新承载请求消息, 消息中携带更新的承载 QoS, 承载标识、 更新的上行 TFT等信息。
可选的, 如果 P-GW没有对专用公共上行用户面承载的性能参数进行检 查, 也可由 S-GW检查专用公共上行用户面承载的性能参数, 检查的方法与 P-GW相似, 在此不再赘述。
步骤 63b、 MME向 eNB发送承载修改请求消息,承载修改请求消息中携 带更新的承载 QoS、 承载标识、 S-GW用户面地址、 S-GW的专用公共上行用 户面 TEID等信息, 可选择的携带设备所属群组的群组标识。
步骤 64b、 eNB根据承载修改请求消息携带的信息, 更新自身保存的承 载上下文中的相应参数。
eNB向设备发送 RRC连接重配置消息, RRC连接重配置消息中携带无 线承载标识和附着接受消息, 该附着接受消息可以为 NAS消息。
步骤 65b-步骤 68b、 与步骤 65a-步骤 68a相似, 在此不再赘述。
本实施例通过以上流程, 可使新发起专用承载建立流程的、 属于相同群 组的设备使用已创建的公共上行用户面承载资源, 如: 公共上行用户面 TEID 等, 无需为这些设备重新创建专用上行用户面承载资源, 从而节省了传输属 于同一群组的设备的上行数据所需的上行承载资源开销。 进一步的, 如果创 建的专用公共上行用户面承载为非 GBR承载、 或者 S-GW和 eNB保存的专 用公共上行用户面承载的上行 TFT的配置属性为静态配置, 则不需要发起专 用公共上行用户面承载的修改流程, 由此可节省部分信令资源开销。
可选的, 上述图 4a-图 6b所示的应用实例中, 除了可以按照图中所示的 流程中建立和使用完整的公共上行用户面承载之外, 还可分段创建和使用, 例如:公共上行用户面承载可以只包括 S5/S8接口段的上行用户面承载,也可 以只包括 S1接口段的上行用户面承载; 其中, S5/S8接口段的上行用户面承 载即为: P-GW和 S-GW之间的上行用户面承载, S 1接口段的上行用户面承 载即为: S-GW与 eNB之间的上行用户面承载。 需要创建和使用公共上行用 户面承载的部分段, 其使用的方法与上述建立和使用完整的公共上行用户面 承载的方法相似, 不需要创建和使用公共上行用户面承载的其他段, 则可为 设备建立各自独立的上行用户面承载, 在此不再赘述。
可选的,上述图 4a-图 6b所示的应用实例中,相关网络节点如 eNB、S-GW 或 P-GW等, 创建的与群组相关的公共上行用户面承载的上下文的方式不受 限制, 可保存在设备各自的承载上下文中; 或者, 可将公共上行用户面承载 的上下文, 创建为与群组相关的承载上下文进行独立保存, 该情形下, 同一 群组的设备公共的承载上下文中, 不需要单独保存公共上行用户面承载的上 下文, 有效避免了相关网络节点, 重复保存属于同一群组的各设备关于公共 上行用户面承载的上下文的相同内容, 从而节省了对终端设备承载管理所需 的网络资源。
图 7a-图 9b为与群组对应的公共承载是公共下行用户面承载时的承载处 理方法实施例。
公共下行用户面承载的应用方法和公共上行用户面承载的类似, 所不同 的是所有涉及的网络节点需要做下行业务数据流的过滤, 即需要识别设备的 下行 IP数据包头, 并保存承载相关的下行 TFT。 同时, 这些网络节点还需要 保存上一级承载与下一级承载之间的映射关系。 当公共下行用户面承载有新 设备加入或有设备离开时, 都需要修改承载相关的下行 TFT (下行 TFT静态 配置场景除外)。 下面分别结合附着流程、 PDN连接建立流程和专用承载建立 流程为例, 进行详细说明。
图 7a和图 7b以在附着流程中, 与群组对应的公共承载是公共下行用户 面承载时的承载处理方法为例进行说明。
图 7a为本发明第六实施例提供的附着流程中公共下行用户面承载创建方 法信令交互图。 本实施例的应用场景为: 属于同一群组、 第一个发起网络附 着流程的设备, 在附着流程中创建与群组对应的公共下行用户面承载; 上行 用户面承载和控制面承载的创建方式不受限制。 如图 7a所示, 本实施例附着 流程中公共下行用户面承载创建方法包括:
步骤 71a-步骤 74a、 与步骤 41a-步骤 44a相似, 在此不再赘述。
步骤 75a、 S-GW创建与群组相关的承载上下文, 创建的承载上下文中包 括有设备所属群组的群组标识以及 S-GW的公共下行用户面 TEID, 该 S-GW 的公共下行用户面 TEID为 S-GW分配的、与该设备所属群组的群组标识对应 的下行用户面 TEID,以供 P-GW传输属于同一群组的设备的下行数据时使用。
S-GW根据接收到的 P-GW信息, 向选定的 P-GW发送建立会话请求消 息, 建立会话请求消息中携带设备所属群组的群组标识、 设备标识、 APN、 S-GW的用户面地址、 S-GW的公共下行用户面 TEID、 S-GW的控制面 TEID、 默认承载 QoS、 承载标识等信息。
步骤 76a、 P-GW创建与群组相关的承载上下文, 创建的承载上下文中包 括有设备所属群组的群组标识,并向 S-GW返回建立会话响应( Create Session Response )消息, 建立会话响应消息中携带 P-GW的用户面地址、 P-GW的上 行用户面 TEID、 P-GW的控制面 TEID、 承载标识、 承载 QoS等信息。
步骤 77a、 S-GW向 MME返回建立会话响应消息, 建立会话响应消息中 携带 S-GW的用户面地址、 S-GW的上行用户面 TEID、 S-GW的控制面 TEID、 承载标识、 承载 QoS等信息。
步骤 78a, MME向 eNB发送初始上下文建立请求消息,初始上下文建立 请求消息中携带承载 QoS、 承载标识、 S-GW的用户面地址、 S-GW的上行用 户面 TEID、 群组标识、 附着接受消息等信息, 该附着接受消息可以为 NAS 消息。
步骤 79a、 eNB创建与群组对应的承载上下文, 创建的承载上下文中包 括有设备所属群组的群组标识。
eNB向设备发送 RRC连接重配置消息, RRC连接重配置消息中携带无 线承载标识和附着接受消息, 该附着接受消息可以为 NAS消息。
步骤 710a、 设备向 eNB返回 RRC连接重配置完成消息。
步骤 711 a、 eNB向 MME发送初始上下文建立响应消息,消息中携带 eNB 的公共下行用户面 TEID、 eNB用户面地址等信息。 该 eNB的公共下行用户 面 TEID 为 eNB 分配的、 与该设备所属群组的群组标识对应的下行用户面 TEID, 以供 S-GW传输属于同一群组的设备的下行数据时使用。 步骤 712a、 MME向 S-GW发送修改承载请求消息, 修改承载请求消息 中携带 eNB的公共下行用户面 TEID、 eNB用户面地址、 承载标识、 群组标 识等信息。
步骤 713a、 S-GW建立 S-GW的公共下行用户面 TEID和 eNB的公共下 行用户面 TEID之间的映射关系,并将该映射关系保存在自身已创建的承载上 下文中。 S-GW向 MME返回修改承载响应消息, 修改承载响应消息中携带承 载标识等信息。
本实施例通过上述流程, 可在附着流程中创建设备所属群组对应的公共 下行用户面承载, 在群组对应的公共下行用户面承载建立起来之后, 属于同 一群组的其它设备, 可使用该公共下行用户面承载传输下行数据。
图 7b为本发明第六实施例提供的附着流程中公共下行用户面承载使用方 法信令交互图。 与图 7a所示的应用场景的区别在于, 如 7b所示的应用场景 为: 属于同一群组、 非第一个发起网络附着流程的设备的附着流程, 在附着 流程中使用已创建的与群组相关的公共下行用户面承载。 如图 7b所示, 本实 施例在附着流程中公共下行用户面承载使用方法包括:
步骤 71b-步骤 73b、 与步骤 71a-步骤 73a相似, 在此不再赘述。
步骤 74b、 MME可根据与设备相关的签约数据或设备提供的群组信息, 判断该设备所属群组对应的公共下行用户面承载是否已建立, 如果没有, 则 可采用图 7a所示的流程创建与群组对应的公共下行用户面承载;如果已创建, 向 S-GW发送建立会话请求消息, 建立会话请求消息中携带设备标识、 MME 控制面 TEID、 P-GW地址、 APN、 默认承载的 QoS、 承载标识、 群组标识等 信息。
步骤 75b、 S-GW检查创建的公共下行用户面承载的性能参数是否满足设 备的业务需求, 如果不满足, 则需要对公共下行用户面承载的性能参数进行 修改, 如果满足, 则不需要对公共下行用户面承载的性能参数进行修改。
S-GW检查公共下行用户面承载的性能参数是否满足设备的业务需求过 程可包括如下:
S-GW检查该群组对应的公共下行用户面承载的类型, 如果公共下行用 户面承载的类型为 GBR承载, 则根据当前设备所需业务的实际带宽需求, 确 定更新的公共下行用户面承载 QoS; 和 /或, MME检查 P-GW保存的该群组 对应的公共下行用户面承载的下行 TFT, 图中表示为 DL TFT, 的配置属性, 如果 P-GW保存的该公共下行用户面承载的下行 TFT的配置属性为非静态配 置, 则确定更新的下行 TFT参数, 更新的下行 TFT参数中包括有可识别当前 设备所发下行数据的新的业务流模版。
本步骤中, 如果 S-GW检查结果为公共下行用户面承载的类型为非 GBR 承载、和 /或 P-GW保存的该群组对应的公共下行用户面承载的下行 TFT的配 置属性为静态配置, 则不需要对公共下行用户面承载的性能参数进行修改。
S-GW向 P-GW发送修改承载命令消息, 修改承载命令消息中携带承载 标识、 更新的公共下行用户面承载的 QoS, 和 /或更新的下行 TFT参数等。 本 步骤为可选步骤。
步骤 76b、 P-GW根据修改承载命令 ( Modify Bearer Command ) 消息携 带的参数, 更新自身保存承载上下文中的相应参数, 如更新的公共下行用户 面承载的 QoS参数, 和 /或更新的下行 TFT参数等。 P-GW向 S-GW返回修改 承载响应消息。 本步骤为可选步骤。
步骤 77b、 S-GW向 MME发送建立会话响应消息, 建立会话响应消息中 携带更新的公共下行用户面承载的 QoS。
步骤 78b、 MME向 eNB发送修改承载请求消息,如果上述流程中有对公 共下行用户面承载的性能参数进行修改, 修改承载请求消息中可携带更新的 公共下行用户面承载的 QoS、 承载标识、 群组标识等信息。
步骤 79b-步骤 710b、 与步骤 79a-步骤 710a相似, 在此不再赘述。
步骤 71 lb、 eNB向 MME发送修改承载响应消息, 修改承载响应消息中 携带承载标识等信息。 图 7b所示的流程中,由 S-GW对与设备所属群组对应的公共下行用户面 承载进行检查, 可选的, 还可对上述流程进行变形, 在变形实施例中由 MME 对与设备所属群组对应的公共下行用户面承载进行检查。 该情形下, 上述步 骤 74b具体为: 由 MME向 S-GW发送修改承载命令消息, 消息中携带更新 的 Bearer QoS、 Bearer标识、 更新的下行 TFT等信息, 原步骤 74b中 S-GW 的承载处理过程由 MME完成; 上述步骤 77b具体为: S-GW向 MME发送修 改承载响应消息。 这两个步骤都是可选步骤。
本实施例通过以上流程, 可使新附着的、 属于相同群组的设备使用已创 建的公共下行用户面承载资源, 如: 公共下行用户面 TEID等, 无需为这些设 备重新创建下行用户面承载资源, 从而节省了传输属于同一群组的设备的下 行数据所需的下行承载资源开销。 进一步的, 如果创建的公共下行用户面承 载为非 GBR承载、 或者 P-GW和 S-GW保存的公共下行用户面承载的下行 TFT的配置属性为静态配置, 则不需要发起公共下行用户面承载的修改流程, 由此可节省部分信令资源开销。
图 8a和图 8b以在 PDN连接建立流程中, 与群组对应的公共承载是公共 下行用户面承载时的承载处理方法为例进行说明。
图 8a为本发明第七实施例提供的 PDN连接建立流程中公共下行用户面 承载创建方法信令交互图。 本实施例的应用场景为: 属于同一群组、 第一个 发起 PDN连接建立流程的设备, 在 PDN连接建立流程中创建公共下行用户 面承载; 上行用户面承载和控制面承载的创建方式不受限制。 本实施例假设 设备所属群组的公共下行用户面承载尚未建立。 如图 8a所示, 本实施例 PDN 连接建立流程中公共下行用户面承载创建方法包括:
步骤 81 a、 设备向 MME发送 PDN连接请求消息, PDN连接请求消息中 携带 APN等信息, 可选择的携带群组标识信息。
步骤 82a-步骤 85a、 与步骤 74a-步骤 77a相似, 在此不再赘述。
步骤 86a、 MME向 eNB发送承载建立请求消息,承载建立请求消息中携 带承载 QoS、 承载标识、 S-GW的用户面地址、 S-GW的上行用户面 TEID、 群组标识、 PDN连接接受消息等信息, PDN连接接受消息可以为 NAS消息。
步骤 87a-步骤 88a、 与步骤 57a-步骤 58a相似, 在此不再赘述。
步骤 89a-步骤 811a、 与步骤 711a -步骤 713a相似, 在此不再赘述。
本实施例通过上述流程,可在 PDN连接建立流程中创建设备所属群组对 应的公共下行用户面承载, 在群组对应的公共下行用户面承载建立起来之后, 属于同一群组的其它设备可使用该公共下行用户面承载传输下行数据。
图 8b为本发明第七实施例提供的 PDN连接建立流程中公共下行用户面 承载使用方法信令交互图。 与图 8a所示的应用场景的区别在于, 如 8b所示 的应用场景为:属于同一群组、非第一个发起 PDN连接建立流程的设备的 PDN 连接建立流程, 在 PDN连接建立流程中使用已创建的与群组相关的公共下行 用户面承载。 如图 8b所示, 本实施例 PDN连接建立流程中公共下行用户面 承载使用方法包括:
步骤 81b、 设备向 MME发送 PDN连接请求消息, PDN连接请求消息中 携带 APN等信息, 可选择的携带群组标识信息。
步骤 82b-步骤 89b、 与步骤 74 b-步骤 711b相似, 在此不再赘述。
图 8b所示的流程中,由 S-GW对与设备所属群组对应的公共下行用户面 承载进行检查, 可选的, 还可对上述流程进行变形, 在变形实施例中由 MME 对与设备所属群组对应的公共下行用户面承载进行检查。 该情形下, 上述步 骤 82b具体为: 由 MME向 S-GW发送修改承载命令消息, 消息中携带更新 的 Bearer QoS、 Bearer标识、更新的下行 TFT参数等信息,原步骤 82b中 S-GW 的承载处理过程由 MME完成; 上述步骤 85b具体为: S-GW向 MME发送修 改承载响应消息。 这两个步骤都是可选步骤。
本实施例通过以上流程, 可使新发起 PDN连接建立的、 属于相同群组的 设备使用已创建的公共下行用户面承载资源, 如: 公共下行用户面 TEID等, 无需为这些设备重新创建下行用户面承载资源, 从而节省了传输属于同一群 组的设备的下行数据所需的下行承载资源开销。 进一步的, 如果创建的公共 下行用户面承载为非 GBR承载、或者 P-GW和 S-GW保存的公共下行用户面 承载的下行 TFT的配置属性为静态配置, 则不需要发起公共下行用户面承载 的修改流程, 由此可节省部分信令资源开销。
图 9a为本发明第八实施例提供的专用承载建立流程中专用公共下行用户 面承载创建方法信令交互图。 本实施例的应用场景为: 属于同一群组、 第一 个创建专用承载的设备, 在创建专用承载的流程中创建与群组对应的专用公 共下行用户面承载; 上行用户面承载和控制面承载的创建方式不受限制。 如 图 9a所示, 本实施例专用承载建立流程中专用公共下行用户面承载创建方法 包括:
步骤 91a、 P-GW创建与群组相关的承载上下文, 创建的承载上下文中包 括有设备所属群组的群组标识。
P-GW向 S-GW发送建立承载请求消息, 建立承载请求消息中携带设备 标识、 P-GW的用户面地址、 P-GW的专用上行用户面 TEID、 承载 QoS、 默 认承载标识, 如: LBI, 等信息, 可选择的携带设备所属群组的群组标识。
步骤 92a、 S-GW创建与群组相关的承载上下文, 创建的承载上下文中包 括有设备所属群组的群组标识, S-GW向 MME发送建立承载请求消息, 建立 承载请求消息中携带设备标识、 S-GW用户面地址、 S-GW的专用上行用户面 TEID、 承载 QoS、 默认承载标识, 如: LBI, 等信息, 可选择的携带设备所 属群组的群组标识。
步骤 93a-步骤 95a、 与步骤 63a-步骤 65a相似, 在此不再赘述。
步骤 96a、 eNB向 MME发送承载建立响应消息,承载建立响应消息中携 带 eNB的专用公共下行用户面 TEID、 eNB的用户面地址、 承载标识等信息。
步骤 97a、 MME向 S-GW发送建立承载响应消息, 建立承载响应消息中 携带 eNB的专用公共下行用户面 TEID、 eNB的用户面地址、 承载标识等信 息。 步骤 98a、 S-GW建立 S-GW的专用公共下行用户面 TEID和 eNB的专用 公共下行用户面 TEID之间的映射关系,并将该映射关系保存在自身已创建的 承载上下文中。 S-GW向 P-GW发送建立承载响应消息,建立承载响应消息中 携带 S-GW的专用公共下行用户面 TEID、 S-GW的用户面地址、 承载标识等 信息。
本实施例通过上述流程, 可在专用承载建立流程中创建设备所属群组对 应的专用公共下行用户面承载, 在群组对应的专用公共下行用户面承载建立 下行数据。
图 9b为本发明第八实施例提供的专用承载建立流程中专用公共下行用户 面承载使用方法信令交互图。 与图 9a所示的应用场景的区别在于, 如 9b所 示的应用场景为: 属于同一群组的各设备中非第一个发起专用承载建立流程 的设备, 在专用承载建立流程中使用已创建的与群组相关的专用公共下行用 户面承载。 如图 9b所示, 本实施例专用承载建立流程中专用公共下行用户面 承载使用方法包括:
步骤 91b、 P-GW根据保存的该设备所属的群组标识信息, 判断该设备所 属群组对应的专用公共下行用户面承载是否已建立, 如果没有, 则可采用图 9a 所示的流程创建与群组对应的专用公共下行用户面承载; 如果已创建, P-GW 则检查创建的专用公共下行用户面承载的性能参数是否满足设备的业 务需求, 如果不满足, 则需要对公共下行用户面承载的性能参数进行修改, 根据修改结果更新自身保存的承载上下文; 如果满足, 则不需要对公共下行 用户面承载的性能参数进行修改。
如果需要对公共下行用户面承载的性能参数进行修改, 检查专用公共下 行用户面承载的性能参数是否满足设备的业务需求过程, 例如: 检查该群组 对应的专用公共下行用户面承载的类型, 如果专用公共下行用户面承载的类 型为 GBR承载, 则根据当前设备所需业务的实际带宽需求, 确定更新的专用 公共下行用户面承载 QoS参数; 和 /或, 检查 S-GW保存的该群组对应的专用 公共下行用户面承载的下行 TFT的配置属性, 如果 S-GW保存的该公共下行 用户面承载的下行 TFT的配置属性为非静态配置, 则确定更新的下行 TFT参 数, 更新的下行 TFT参数中包括有可识别当前设备所发下行数据的新的业务 流模版。
P-GW向 S-GW发送更新承载请求消息, 更新承载请求消息中携带有更 新的承载 QoS、 承载标识、 更新的下行 TFT等信息。
本步骤对专用公共下行用户面承载的性能参数进行检查是否满足设备的 业务需求过程为可选处理, 可由 P-GW完成, 还可由 S-GW完成。
步骤 92b、 如果 P-GW发送的更新承载请求中携带有 P-GW更新后的承 载性能参数, 如更新的承载 QoS、 更新的下行 TFT等信息, S-GW则根据该 更新承载请求消息中携带的信息, 更新自身已建立的与群组对应的承载上下 文的相关参数。
可选的, 如果 P-GW没有对专用公共下行用户面承载的性能参数进行检 查, 也可由 S-GW检查专用公共下行用户面承载的性能参数, 检查的方法与 P-GW相似, 在此不再赘述。
步骤 93b、 MME向 eNB发送承载修改请求消息,承载修改请求消息中携 带更新的承载 QoS、 承载标识等信息, 本步骤为可选步骤。
步骤 94b-步骤 98b、 与步骤 64b-步骤 68b相似, 在此不再赘述。
本实施例通过以上流程, 可使新发起专用承载建立流程的、 属于相同群 组的设备使用已创建的公共下行用户面承载资源, 如: 公共下行用户面 TEID 等, 无需为这些设备重新创建专用下行用户面承载资源, 从而节省了传输属 于同一群组的设备的下行数据所需的下行承载资源开销。 进一步的, 如果创 建的专用公共下行用户面承载为非 GBR承载、 或者 S-GW和 eNB保存的专 用公共下行用户面承载的下行 TFT的配置属性为静态配置, 则不需要发起专 用公共下行用户面承载的修改流程, 由此可节省部分信令资源开销。 可选的, 上述图 7a-图 9b所示的应用实例中, 除了可以按照图中所示的 流程中建立和使用完整的公共下行用户面承载之外, 还可分段创建和使用, 例如:公共下行用户面承载可以只包括 S5/S8接口段的下行用户面承载,也可 以只包括 S1接口段的下行用户面承载; 其中, S5/S8接口段的下行用户面承 载即为: P-GW和 S-GW之间的下行用户面承载, S1接口段的下行用户面承 载即为: S-GW与 eNB之间的下行用户面承载。 需要创建和使用公共下行用 户面承载的部分段, 其使用的方法与上述建立和使用完整的公共下行用户面 承载的方法相似, 不需要创建和使用公共下行用户面承载的其他段, 则可为 设备建立各自独立的下行用户面承载, 在此不再赘述。
可选的,上述图 7a-图 9b所示的应用实例中,相关网络节点如 eNB、S-GW 或 P-GW等, 创建的与群组相关的公共下行用户面承载的上下文的方式不受 限制, 可保存在设备各自的承载上下文中, 或者, 可将公共下行用户面承载 的上下文创建为与群组相关的承载上下文进行独立保存, 有效避免了相关网 络节点, 重复保存属于同一群组的各设备关于公共下行用户面承载的上下文 的相同内容, 从而节省了对终端设备承载管理所需的网络资源。
在图 4a-图 9b对应实施例技术方案的基础上, 可选的, 如果某些设备发 起的业务的 QoS需求相同, 无论这些设备是否属于同一群组, 这些设备也可 共享公共用户面承载; 或者, 当某一设备的不同业务属于不同群组时, 如果 业务的 QoS需求相同, 这些业务也可以共享相同的公共用户面承载。
图 10为本发明第九实施例提供的公共控制面承载处理方法流程图。本实 施例公共控制面承载处理方法可包括:
步骤 101、 网络节点为附着到自身的、 属于同一群组的各设备, 创建与设 备所属群组对应的公共控制面承载。
在图 3a和图 3b所示的应用场景中, 创建与群组对应的公共控制面承载 的网络节点可为: eNB、 MME、 S-GW或 P-GW等网络节点其中之一或其组 合。 如果属于同一群组的多个设备附着到相同的 MME和 S-GW,则 MME和 S-GW可创建与群组对应的公共 S11 控制面承载, 这些设备可使用公共 S11 控制面承载传输与其相关的控制信令。
如果属于同一群组的多个设备附着到相同的 S-GW和 P-GW, 则 S-GW 和 P-GW可创建与群组对应的公共 S5/S8控制面承载, 这些设备可使用公共 S5/S8控制面承载传输与其相关的控制信令。
如果属于同一群组的多个设备附着到相同的 eNB和 MME, 则 eNB和 MME可创建与群组对应的公共 S1控制面承载,这些设备可使用公共 S1控制 面承载传输与其相关的控制信令。
步骤 102、 网络节点使用公共控制面承载,传输与上述属于同一群组的各 设备相关的控制信令。
如果使用公共 S11控制面承载传输与属于同一群组的多个设备相关的控 制信令, MME和 S-GW需给这些设备分配一个控制面承载 TEID资源, 所有 与这些设备相关的控制信令都通过相同的控制面承载传送, 信令消息中携带 的设备标识可区分不同设备的信令消息。
如果使用公共 S5/S8控制面承载传输与属于同一群组的多个设备相关的 控制信令, S-GW和 P-GW需给这些设备分配一个控制面承载 TEID资源, 所 有与这些设备相关的控制信令都通过相同的控制面承载传送, 信令消息中携 带的设备标识可区分不同设备的信令消息。
如果使用公共 S1 控制面承载传输与属于同一群组的多个设备相关的控 制信令, eNB和 MME需给这些设备分配一个 SI AP ID, 所有与这些设备相 关的控制信令都通过相同的 S1控制面承载传送,信令消息中需要携带新的 IE 用来区分不同设备的信令消息。 新的 IE可以是设备标识, 也可以是新定义的 IE或其他任何可以区分不同设备的标识。
本实施例公共控制面承载处理方法中, 网络节点为附着到自身的、 属于 同一群组的多个设备分配公共控制面承载, 这些设备可使用相同的公共控制 面承载传输与其相关的控制信令, 使得网络节点无需为这些设备单独创建控 制面承载, 从而节省了传输属于同一群组的设备的控制信令所需的控制面承 载资源开销。
本发明上述实施例中, 图 4a-图 6b为公共上行用户面承载处理方法实施 例, 图 7a-图 9b为公共下行用户面承载处理方法实施例, 图 10为公共控制面 承载处理方法实施例。 在实际应用过程中, 可根据需要将公共上行用户面承 载、 公共下行用户面承载、 以及公共控制面承载的任意组合, 为属于同一群 组的多个设备创建公共承载。
下面结合图 3a和图 3b所示的应用场景, 举例说明公共用户面承载和公 共控制面承载的组合处理方法。
图 11a和图 lib以附着流程中公共承载处理方法为例进行说明, 该实施 例中与群组对应的公共承载包括公共上行用户面承载、 公共下行用户面承载 和公共控制面承载时的承载处理方法实施例, 其中, 公共上行用户面承载包 括:公共 S1和 S5/S8上行用户面承载; 公共下行用户面承载包括:公共 S5/S8 下行用户面承载; 公共控制面承载包括: 公共 S11和 S5/S8控制面承载。
图 11a为本发明第十实施例提供的附着流程中公共承载创建方法信令交 互图。 本实施例的应用场景为: 属于同一群组、 第一个发起网络附着流程的 设备, 在附着流程中创建于群组对应的上述公共承载, 其中公共上行用户面 承载的创建方法与图 4a相似, 公共下行用户面承载的创建方法与图 7a相似, 公共控制面承载的创建方法与图 10相似。 如图 11a所示, 本实施例附着流程 中公共承载创建方法包括:
步骤 111a-步骤 113a、 与步骤 41a-步骤 43a相似, 在此不再赘述。
步骤 114a、 MME按照负载均衡的原则进行 S-GW和 P-GW选择, 并向 选定的 S-GW发送建立会话请求消息, 建立会话请求消息中携带设备所属群 组的群组标识, 设备标识、 MME的公共控制面 TEID、 P-GW地址、 APN、 默认承载 QoS、 承载标识等信息, 其中, MME的公共控制面 TEID即为公共 Sl l控制面 7 载的 TEID。
步骤 115a、 S-GW创建与群组相关的承载上下文, 创建的承载上下文中 包括有设备所属群组的群组标识; S-GW根据接收到的 P-GW信息, 向选定的 P-GW发送建立会话请求消息,建立会话请求消息中携带设备所属群组的群组 标识、设备标识、 APN、 S-GW的用户面地址、 S-GW的公共下行用户面 TEID、 S-GW的公共控制面 TEID、 默认承载 QoS、 承载标识等信息; 其中, S-GW 的公共下行用户面 TEID即为:公共 S5/S8下行用户面承载的 TEID, S-GW的 公共控制面 TEID即为: 公共 S5/S8控制面承载的 TEID。
步骤 116a、 P-GW创建与群组相关的承载上下文, 向 S-GW返回建立会 话响应消息,建立会话响应消息中携带 P-GW的用户面地址、 P-GW的公共上 行用户面 TEID、 P-GW的公共控制面 TEID、 承载标识、 承载 QoS等信息; 其中, P-GW的公共上行用户面 TEID 即为: 公共 S5/S8上行用户面承载的 TEID; P-GW的公共控制面 TEID即为: 公共 S5/S8控制面承载的 TEID。
步骤 117a、 S-GW建立 P-GW的公共上行用户面 TEID和 S-GW的公共 上行用户面 TEID之间的映射关系,并将该映射关系保存在自身已创建的承载 上下文中。
S-GW向 MME返回建立会话响应消息,建立会话响应消息中携带 S-GW 的用户面地址、 S-GW的公共上行用户面 TEID、 S-GW的公共控制面 TEID、 承载标识、 承载 QoS等信息; 其中, S-GW的公共上行用户面 TEID即为: 公 共 S1上行用户面承载的 TEID。
步骤 118a、 MME向 eNB发送初始上下文建立请求消息, 初始上下文建 立请求消息中携带承载 QoS、 承载标识、 S-GW的用户面地址、 S-GW的公共 上行用户面 TEID、 群组标识、 附着接受消息等信息; 其中, S-GW的公共上 行用户面 TEID即为:公共 S1上行用户面承载的 TEID, 附着接受消息可以为 NAS消息。
步骤 119a-步骤 1113a、 与步骤 49a-步骤 413a相似, 在此不再赘述。 本实施例通过上述流程, 可在附着流程中创建设备所属群组对应的公共
S1和 S5/S8上行用户面承载、 公共 S5/S8下行用户面承载、 以及公共 S11和 S5/S8控制面承载。属于同一群组的多个设备可使用建立的上述公共承载传输 数据或控制信令。
图 l ib为本发明第十实施例提供的附着流程中公共承载使用方法信令交 互图。 与图 11a所示的应用场景的区别在于, 如 l ib所示的应用场景为: 属于 同一群组、 非第一个发起网络附着流程的设备的附着流程, 在附着流程中使 用已创建的与群组相关的公共承载, 其中公共上行用户面承载的使用方法与 图 4b相似, 公共下行用户面承载的使用方法与图 7b相似, 公共控制面承载 的使用方法与图 10相似。 如图 l ib所示, 本实施例在附着流程中公共承载使 用方法包括:
步骤 111b-步骤 113b、 与步骤 111a-步骤 113a相似, 在此不再赘述。 步骤 114b、 MME使用公共 S11控制面承载发送建立会话请求消息, 建 立会话请求消息中携带设备所属群组的群组标识, 设备标识、 MME的公共控 制面 TEID、 P-GW地址、 APN、 默认承载 QoS、 承载标识等信息, MME的 公共控制面 TEID即为: 公共 SI 1控制面承载的 TEID。
步骤 115b、 S-GW检查创建的公共 S5/S8下行用户面承载的性能参数是 否满足设备的业务需求, 如果不满足, 则需要对公共下行用户面承载的性能 参数进行修改, 如果满足, 则不需要对公共下行用户面承载的性能参数进行 修改。
S-GW检查公共 S5/S8 下行用户面承载的性能参数是否满足设备的业务 需求过程可包括如下: S-GW检查该群组对应的公共 S5/S8下行用户面承载的 类型, 如果公共 S5/S8下行用户面承载的类型为 GBR承载, 则根据当前设备 所需业务的实际带宽需求,确定更新的公共下行用户面承载 QoS;和 /或, MME 检查 P-GW保存的该群组对应的公共下行用户面承载的下行 TFT, 图中表示 为 DL TFT, 的配置属性, 如果 P-GW保存的该公共下行用户面承载的下行 TFT的配置属性为非静态配置,则确定更新的下行 TFT参数,更新的下行 TFT 参数中包括有可识别当前设备的下行数据包的新的业务流模版。
本步骤中, 如果 S-GW检查结果为公共 S5/S8下行用户面承载的类型为 非 GBR承载、和 /或 P-GW保存的该群组对应的公共 S5/S8下行用户面承载的 下行 TFT的配置属性为静态配置, 则不需要对公共 S5/S8下行用户面承载的 性能参数进行修改。
S-GW使用 S5/S8控制面承载向 P-GW发送修改承载命令消息,修改承载 命令消息中携带承载标识、 更新的公共 S5/S8下行用户面承载的 QoS, 和 /或 更新的下行 TFT参数等。 本步骤为可选步骤。
步骤 116b、 P-GW根据修改承载命令消息携带的参数, 更新自身保存承 载上下文中的相应参数, 如更新的公共下行用户面承载的 QoS参数, 和 /或更 新的下行 TFT参数等。 P-GW向 S-GW返回修改承载响应消息。 本步骤为可 选步骤。
步骤 117b、 S-GW检查创建的公共 S1上行用户面承载的性能参数是否满 足设备的业务需求, 如果不满足, 则需要对公共 S1上行用户面承载的性能参 数进行修改, 如果满足, 则不需要对公共 S1上行用户面承载的性能参数进行 修改。
S-GW检查公共 S1上行用户面承载的性能参数是否满足设备的业务需求 过程可包括如下: S-GW检查该群组对应的公共 S1上行用户面承载的类型, 如果公共 S1上行用户面承载的类型为 GBR承载, 则根据当前设备所需业务 的实际带宽需求, 确定更新的公共 S 1上行用户面承载 QoS; 和 /或, MME检 查 P-GW保存的该群组对应的公共 S1上行用户面承载的上行 TFT, 图中表示 为 UL TFT, 的配置属性, 如果 P-GW保存的公共 S1上行用户面承载的上行 TFT的配置属性为非静态配置,则确定更新的上行 TFT参数,更新的上行 TFT 参数中包括有可识别当前设备的上行数据包的新的业务流模版。
S-GW使用公共 S11控制面承载向 MME返回的建立会话响应消息,建立 会话响应消息中携带更新的公共 S1上行用户面承载的 QoS、更新的上行 TFT、 承载标识等信息。 S-GW根据更新自身创建的承载上下文中保存的 TFT。
步骤 118b、 MME向 eNB发送修改承载请求消息, 如果上述流程中有对 公共 S1上行用户面承载的性能参数进行修改, 修改承载请求消息中可携带更 新的更新的公共 S1上行用户面承载的 QoS、 承载标识、 群组标识等信息。
步骤 119b-步骤 l l l lb、 与步骤 79b -步骤 711b相似, 在此不再赘述。 图 l ib所示的流程中, 由 S-GW对与设备所属群组对应的公共用户面承 载进行检查, 可选的, 还可对上述流程进行变形, 在变形实施例中由 MME 对与设备所属群组对应的公共用户面承载进行检查。 该情形下, 上述步骤 114b具体为: 由 MME向 S-GW发送修改承载命令消息, 消息中携带更新的 承载 QoS、 承载标识、 更新的下行 TFT等信息, 原步骤 114b中 S-GW的承 载处理过程由 MME完成; 上述步骤 117b具体为: S-GW向 MME发送修改 承载响应消息。 这两个步骤都是可选步骤。
本实施例通过以上流程, 可使新附着的、 属于相同群组的设备使用已有 的公共 S5/S8上下行用户面承载、 公共 S1上行用户面承载、 以及公共 S11和 S5/S8控制面承载,节省了大量承载资源。 当建立的公共用户面承载是非 GBR 承载或 P-GW、 S-GW, eNB保存的公共用户面承载的 TFT配置属性为静态配 置时, 还可节省部分信令资源。
属于相同群组的设备进行 PDN连接建立流程中公共承载处理的方法,与 附着流程中公共承载处理方法相似, 在此不再赘述。
图 12a和图 12b以专用承载建立流程中公共承载处理方法为例进行说明, 该实施例中与群组对应的公共承载包括公共上行用户面承载和公共下行用户 面承载时的承载处理方法实施例, 其中, 公共上行用户面承载包括: 公共 S1 和 S5/S8上行用户面承载; 公共下行用户面承载包括: 公共 S5/S8下行用户面 承载。 本实施例可在附着流程或 PDN连接建立流程的基础上发起专用承载建 立流程, 公共控制面承载可在附着流程创建, 在此不再赘述。 图 12a为本发明第十一实施例提供的专用承载建立流程中专用公共承载 创建方法信令交互图。 本实施例的应用场景为: 属于同一群组的各设备中第 一个发起专用承载建立流程的设备, 在专用承载建立流程中创建于群组对应 的公共承载, 其中公共上行用户面承载的创建方法与图 6a相似, 公共下行用 户面承载的创建方法与图 9a相似, 公共控制面承载的创建方法与图 10相似。 如图 12a所示, 本实施例专用承载建立流程中公共承载创建方法包括:
步骤 121a、 P-GW创建与群组相关的承载上下文, 创建的承载上下文中 包括有设备所属群组的群组标识以及 P-GW的专用公共上行用户面 TEID, 其 中, P-GW的专用公共上行用户面 TEID即为: 公共 S5/S8上行用户面 TEID。
P-GW向 S-GW发送建立承载请求消息, 建立承载请求消息中携带设备 标识、 P-GW的用户面地址、 P-GW的专用公共上行用户面 TEID、 承载 QoS、 默认承载标识等信息, 可选择的携带设备所属群组的群组标识; 其中, P-GW 的专用公共上行用户面 TEID即为: 公共 S5/S8上行用户面 TEID。
步骤 122a、 S-GW创建与群组相关的承载上下文, 创建的承载上下文中 包括有设备所属群组的群组标识以及 S-GW 的专用公共上行用户面 TEID; S-GW建立专用公共 S5/S8上行用户面 TEID和专用公共 S1上行用户面 TEID 之间的映射关系, 并将该映射关系保存在自身已创建的承载上下文中; 其中, S-GW的专用公共上行用户面 TEID即为: 专用公共 S 1上行用户面 TEID。
S-GW向 MME发送建立承载请求消息,建立承载请求消息中携带设备标 识、 S-GW用户面地址、 S-GW的专用公共上行用户面 TEID、 承载 QoS、 默 认承载标识等信息, 可选择的携带设备所属群组的群组标识; S-GW的专用公 共上行用户面 TEID即为: 专用公共 S1上行用户面 TEID。
步骤 123a、 MME向 eNB发送承载建立请求消息, 建立承载请求消息中 携带承载 QoS、 承载标识、 S-GW用户面地址、 S-GW的专用公共上行用户面 TEID等信息, 可选择的携带设备所属群组的群组标识, S-GW的专用公共上 行用户面 TEID即为: 专用公共 S1上行用户面 TEID。 步骤 124a、 eNB创建承载上下文, 创建的承载上下文中包括有设备所属 群组的群组标识以及 S-GW的专用公共上行用户面 TEID, 其中, S-GW的专 用公共上行用户面 TEID即为: 专用公共 S1上行用户面 TEID。
eNB向设备发送 RRC连接重配置消息, RRC连接重配置消息中携带无 线承载标识和附着接受消息, 附着接受消息可以为 NAS消息。
步骤 125a-步骤 127a、 与步骤 65a-步骤 67a相似, 在此不再赘述。
步骤 128a、 S-GW将建立承载响应消息中携带的信息保存到自身已创建 的承载上下文中, 并向 P-GW发送建立承载响应消息, 建立承载响应消息中 携带 S-GW的专用公共下行用户面 TEID、 S-GW的用户面地址、 承载标识等 信息; 其中, S-GW的专用公共下行用户面 TEID即为专用公共 S5/S8下行用 户面 TEID。
本实施例通过上述流程, 可在专用承载建立流程中创建设备所属群组对 应的公共 S5/S8上下行用户面承载、 公共 S1上行用户面承载, 在群组对应的 专用公共用户面承载建立起来之后, 属于同一群组的其它设备可使用该专用 公共用户面承载传输上下行数据。
图 12b为本发明第十一实施例提供的专用承载建立流程中专用公共承载 使用方法信令交互图。 与图 12a所示的应用场景的区别在于, 如 12b所示的 应用场景为: 属于同一群组、 非第一个发起专用承载建立流程的设备, 在专 用承载建立流程中使用已创建的与群组相关的专用承载。 其中公共上行用户 面承载的使用方法与图 6b相似, 公共下行用户面承载的使用方法与图 9b相 似, 公共控制面承载的使用方法与图 10相似。 如图 12b所示, 本实施例专用 承载建立流程中专用公共承载使用方法包括:
步骤 121b、 P-GW根据保存的该设备所属的群组标识信息, 判断该设备 所属群组对应的专用公共 S5/S8 上行用户面承载是否已建立, 如果已创建, P-GW则检查创建的专用公共 S5/S8上行用户面承载的性能参数是否满足设备 的业务需求,如果不满足,则需要对专用公共 S5/S8上行用户面承载的性能参 数进行修改,如果满足,则不需要对专用公共 S5/S8上行用户面承载的性能参 数进行修改。
如果需要对专用公共 S5/S8上行用户面承载的性能参数进行修改, 检查 专用公共 S5/S8上行用户面承载的性能参数是否满足设备的业务需求过程,例 如:检查该群组对应的专用公共 S5/S8上行用户面承载的类型,如果专用公共 S5/S8上行用户面承载的类型为 GBR承载, 则根据当前设备所需业务的实际 带宽需求, 确定更新的专用公共 S5/S8上行用户面承载 QoS参数; 和 /或, 检 查 S-GW保存的该群组对应的专用公共 S5/S8上行用户面承载的上行 TFT的 配置属性, 如果 S-GW保存的该专用公共 S5/S8上行用户面承载的上行 TFT 的配置属性为非静态配置, 则确定更新的上行 TFT, 更新的上行 TFT中包括 有可识别当前设备所发上行数据包的新的业务流模版。
P-GW向 S-GW发送更新承载请求消息, 更新承载请求消息中携带有更 新的承载 QoS、 承载标识、 更新的上行 TFT等信息。 P-GW根据性能参数的 修改结果, 对自身已创建的承载上下文的相应参数进行修改。
本步骤对专用公共 S5/S8上行用户面承载的性能参数进行检查是否满足 设备的业务需求过程为可选处理, 可由 P-GW完成, 还可由 S-GW完成。
步骤 122b、 如果 P-GW发送的更新承载请求中携带有 P-GW更新后的承 载性能参数, 如更新的承载 QoS、 更新的上行 TFT等信息, S-GW则根据该 更新承载请求消息中携带的信息, 更新自身已建立的与群组对应的承载上下 文的相关参数, 并向 MME发送更新承载请求消息, 消息中携带更新的承载 QoS, 承载标识、 更新的上行 TFT等信息。
可选的, 如果 P-GW没有对专用公共 S5/S8上行用户面承载的性能参数 进行检查, 也可由 S-GW检查专用公共 S5/S8上行用户面承载的性能参数, 检查的方法与 P-GW相似, 在此不再赘述。
步骤 123b、 MME向 eNB发送承载修改请求消息, 承载修改请求消息中 携带更新的承载 QoS、 承载标识、 S-GW用户面地址、 S-GW的专用公共上行 用户面 TEID等信息, 可选择的携带设备所属群组的群组标识。
步骤 124b-步骤 128b、 与步骤 64b-步骤 68b相似, 在此不再赘述。
本实施例通过上述流程, 可使新发起专用承载建立流程的、 属于相同群 节省了大量承载资源。 当公共用户面承载是非 GBR承载、或者 S-GW和 eNB 保存的公共用户面承载上行 TFT的配置属性为静态配置时, 还可节省部分信 令资源。
上述图 11a-图 12b对应实施例的公共承载组合方式中, 相关网络节点, 如 MME、 S-GW, P-GW和 eNB需存储群组相关数据。 群组相关数据具体存 储方式不受限制, 例如, 可选的, 各网络节点关于群组相关数据的存储结构 示例: ^表 1-表 4所示:
表 1 MME关于群组相关数据的存储结构示例 群组标识 (Group ID )
S-GW公共控制面 7|载 TEID ( S-GW CP TEID(Sl l) )
S-GW公共用户面 7|载 TEID ( S-GW UP TEID(Sl) )
设备标识列表 ( Deivce ID List )
表 2 P-GW关于群组相关数据的存储结构示例 群组标识 (Group ID )
S-GW公共控制面 7|载 TEID ( S-GW CP TEID(S5/S8) )
S-GW公共用户面 7|载 TEID ( S-GW UP TEID(S5/S8) )
设备标识列表 ( Deivce ID List ) 表 3 S-GW关于群组相关数据的存储结构示例 群组标识 (Group ID ) P-GW公共控制面 7|载 TEID ( S-GW CP TEID(S5/S8) ) P-GW公共用户面 7|载 TEID ( S-GW UP TEID(S5/S8) )
MME公共控制面 7|载 TEID ( MME CP TEID(Sl l) )
设备标识列表 ( Deivce ID List ) 表 4 eNB关于群组相关数据的存储结构示例 群组标识 (Group ID )
S-GW公共用户面 7|载 TEID ( S-GW CP TEID(Sl) )
设备标识列表 ( Deivce ID List ) 图 13a和图 13b以附着流程中公共承载处理方法为例进行说明, 该实施 例中与群组对应的公共承载包括公共上行用户面承载和公共控制面承载时的 承载处理方法实施例, 其中, 公共上行用户面承载包括: 公共 S1和 S5/S8上 行用户面承载; 公共控制面承载包括: 公共 S11和 S5/S8控制面承载。
图 13a为本发明第十二实施例提供的附着流程中公共承载创建方法信令 交互图。 本实施例的应用场景为: 属于同一群组、 第一个发起网络附着流程 的设备, 在附着流程中创建于群组对应的上述公共承载, 其中公共上行用户 面承载的创建方法与图 4a相似, 公共控制面承载的创建方法与图 10相似。 如图 13a所示, 本实施例附着流程中公共承载创建方法包括:
步骤 131a-步骤 133a、 与步骤 41a-步骤 43a相似, 在此不再赘述。
步骤 134a、 与步骤 114a相似, 在此不再赘述。
步骤 135a、 S-GW创建与群组相关的承载上下文, 创建的承载上下文中 包括有设备所属群组的群组标识; S-GW根据接收到的 P-GW信息, 向选定的 P-GW发送建立会话请求消息,建立会话请求消息中携带设备所属群组的群组 标识、 设备标识、 APN、 S-GW的用户面地址、 S-GW的公共控制面 TEID、 默认承载 QoS、 承载标识等信息; 其中, S-GW的公共控制面 TEID即为: 公 共 S5/S8控制面承载的 TEID。
步骤 136a-步骤 1313a、 与步骤 116a-步骤 1113a相似, 在此不再赘述。 本实施例通过上述流程, 可在附着流程中创建设备所属群组对应的公共 S1和 S5/S8上行用户面承载、 以及公共 S11和 S5/S8控制面承载。 属于同一 群组的多个设备可使用建立的上述公共承载传输数据或控制信令。
图 13b为本发明第十二实施例提供的附着流程中公共承载使用方法信令 交互图。 与图 13a所示的应用场景的区别在于, 如 13b所示的应用场景为: 属于同一群组、 非第一个发起网络附着流程的设备的附着流程, 在附着流程 中使用已创建的与群组相关的公共承载, 其中公共上行用户面承载的使用方 法与图 4b相似, 公共控制面承载的使用方法与图 10相似。 如图 13b所示, 本实施例在附着流程中公共承载使用方法包括:
步骤 131b-步骤 134b、 与步骤 11 lb-步骤 114b相似, 在此不再赘述。 步骤 135b、 S-GW查找与群组标识对应的公共 S5/S8上行用户面承载信 息,如果公共 S5/S8上行用户面承载是 GBR承载、或者 P-GW保存的公共 S5/S8 上行用户面承载的 TFT属性配置为非静态配置, 则 S-GW使用公共 S5/S8控 制面承载向 P-GW发送修改承载命令消息, 修改承载命令消息中携带更新的 公共 S5/S8上行用户面承载 QoS、 承载标识、 更新的上行 TFT等信息。 本步 骤为可选步骤。
步骤 136b、 P-GW根据修改承载命令消息携带的参数, 更新自身保存承 载上下文中的相应参数, 如更新的公共 S5/S8上行用户面承载 QoS, 和 /或更 新的上行 TFT参数等。 P-GW向 S-GW返回修改承载响应消息。 本步骤为可 选步骤。
步骤 137b-步骤 1311b、 与步骤 117b-步骤 1111b相似, 在此不再赘述。 图 13b所示的流程中, 由 S-GW对与设备所属群组对应的公共上行用户 面承载进行检查, 可选的, 还可对上述流程进行变形, 在变形实施例中由 MME对与设备所属群组对应的公共上行用户面承载进行检查。 该情形下, 上述步骤 134b具体为: 由 MME向 S-GW发送修改承载命令消息, 消息中携 带更新的承载 QoS、承载标识、更新的上行 TFT等信息,原步骤 134b中 S-GW 的承载处理过程由 MME完成; 上述步骤 77b具体为: S-GW向 MME发送 修改承载响应消息。 这两个步骤都是可选步骤。
本实施例通过以上流程, 可使新附着的、 属于相同群组的设备使用已有 的公共 S1和 S5/S8上行用户面承载、 以及公共 S11和 S5/S8控制面承载, 节 省了大量承载资源。当建立的公共用户面承载是非 GBR承载或 P-GW、S-GW、 eNB保存的公共上行用户面承载的 TFT配置属性为静态配置时, 还可节省部 分信令资源。
属于相同群组的设备进行 PDN连接建立流程中, 关于公共 S1和 S5/S8 上行用户面承载、 以及公共 S11 和 S5/S8控制面承载的处理方法, 与图 13a 和图 13b所示的附着流程中公共承载处理方法相似; 在附着流程或 PDN连接 建立流程之后, 可在专用承载建立流程创建和使用公共 S1和 S5/S8上行用户 面承载, 具体实现方式与图 6a和图 6b相似, 在此不再赘述。
上述图 4a-图 13b所示的各实施例创建公共承载之后, eNB可在小区广播 消息中携带公共承载相关的群组信息, 例如: 群组标识等。 设备接收到包括 有公共承载对应的群组信息时, 可根据接收的群组信息, 判断网络侧是否创 建有自身所属群组的公共承载, 如果有, 则可选择网络侧已创建有该公共承 载的小区进行驻留, 与属于相同群组的其他设备附着到相同的 eNB上, 从而 可与属于同一群组的其他设备共享相同的承载资源, 节省了对终端设备管理 所需的网络资源。
图 14为本发明第十三实施例提供的网络节点的结构示意图。 如图 14所 示,本实施例网络节点包括:公共承载创建模块 141和群组设备服务模块 142。
公共承载创建模块 141用于创建设备所属群组对应的公共承载。
群组设备服务模块 142 用于使用所述公共承载为所述群组中的设备提供 服务。 上述技术方案中, 公共承载按照功能及数据传输方向可分为: 公共用户 面承载和公共控制面承载, 公共用户面承载用于传输业务数据, 公共控制面 承载用于传输信令消息; 根据传输数据方向不同, 公共用户面承载又可分为: 公共上行用户面承载和公共下行用户面承载。
在上述技术方案的基础上, 可选的, 本实施例网络节点还可包括: 群组 信息获取模块 143。
群组信息获取模块 143 用于获取设备所属群组的群组信息。 相应的, 群 组设备服务模块 142具体用于根据群组信息获取模块 143获取的群组信息, 创建所述设备所属群组对应的公共承载。
创建的公共承载可包括: 公共用户面承载和 /或公共控制面承载, 其中, 公共用户面承载可包括公共上行用户面承载和 /或公共下行用户面承载。 公共 上行用户面承载、 公共下行用户面承载和公共控制面承载, 即可为从设备到 设备所有的相关网络节点之间各通信段的完整承载, 也可为其中部分通信段 的公共承载。 该情形下, 公共承载创建模块 141 包括公共承载创建单元 1411 或公共承载映射单元 1412。
公共承载创建单元 1411用于创建创建设备所属群组对应的第一公共承载 或第二公共承载。
公共承载映射单元 1412用于创建所述设备所属群组对应的第一公共承载 和第二公共承载, 并建立所述第一公共承载和所述第二公共承载的映射关系。
上述第一公共承载为当前节点与第一节点之间的公共承载, 上述第二公 共承载为当前节点与第二节点之间的公共承载, 第一节点和第二节点分别为 与当前节点连接的不同级节点。
在上述技术方案的基础上, 可选的, 公共承载映射单元 1412可包括: 获 取子单元 14121以及映射建立子单元 14122。
获取子单元 14121 用于获取所述第一公共承载对应的第一隧道端点标识 以及第二公共承载对应的第二隧道端点标识。 映射建立子单元 14122用于根据获取子单元 14121获取的第一隧道端点 标识以及第二隧道端点标识, 建立第一隧道端点标识和第二隧道端点标识的 映射关系。
上述技术方案中, 本实施例网络节点还可包括: 确定模块 144。
确定模块 144用于确定所述公共承载为公共用户面承载。
本实施例网络节点还可包括以下至少之一: 服务质量参数更新模块 145 和流模版参数更新模块 146。
服务质量参数更新模块 145用于在确定模块 144确定所述公共承载为公 共用户面承载时, 在所述公共用户面承载的性能参数不满足所述服务的业务 需求, 且在所述公共用户面承载的类型为保证比特速率承载时, 根据所述所 述服务的业务需求, 更新所述公共用户面承载的服务质量参数。
流模版参数更新模块 146用于在所述确定模块确定所述公共承载为公共 用户面承载时, 在所述公共用户面承载的流模版参数的配置属性为非静态配 置时, 更新所述公共用户面承载的流模版参数。
本实施例网络节点为属于同一群组的多个设备建立公共承载, 使得属于 同一群组的多个设备可以共享相同的承载资源, 从而节省了与属于同一群组 的多个设备通信所需的承载资源开销。 本实施例网络节点的具体表现实体不 受限制, 可为核心网节点, 如 MME、 S-GW或 P-GW等, 其对公共承载进行 处理的机理可参见图 1、 图 4a-图 13b对应实施例的记载, 在此不再赘述。
图 15为本发明第十四实施例提供的网络节点的结构示意图。 如图 15所 示,本实施例网络节点包括:群组信息获取模块 151和群组信息广播模块 152。
群组信息获取模块 151 用于通过创建设备所属群组对应的公共承载, 获 取所述公共承载对应群组信息。
群组信息广播模块 152 用于用于广播所述群组信息, 以供属于所述群组 的设备选择创建有所述公共承载的小区进行驻留。
本实施例网络节点通过向设备广播网络侧建立的公共承载对应的群组信 息, 使得终端侧设备可选择网络侧已创建有该公共承载的小区进行驻留, 与 属于相同群组的其他设备附着到相同的网络节点上, 可与属于同一群组的其 他设备共享相同的承载资源, 从而节省了与属于同一群组的多个设备通信所 需的承载资源开销。 本实施例网络节点的表现实体不受限制, 可为接入网节 点, 如 eNB等, eNB获取公共承载对应群组信息的方式可参见图 4a-图 13b 对应实施例的记载, 自身对公共承载进行处理的机理可参见图 2对应实施例 的记载, 在此不再赘述。
图 16为本发明第十五实施例提供的通信系统的结构示意图。 如图 16所 示, 通信系统包括: 网络节点 161和设备 162, 网络节点 161和设备 162之间 以可通信方式相连。
网络节点 161 用于创建设备所属群组对应的公共承载, 使用所述公共承 载为所述群组中的设备提供服务。
该情形下, 网络节点为属于同一群组的多个设备建立公共承载, 使得属 于同一群组的多个设备可以共享相同的承载资源, 从而节省了与属于同一群 组的多个设备通信所需的承载资源开销。 本实施例网络节点的细化结构可参 见图 14对应实施例的记载,网络节点对公共承载进行处理的机理可参见图 1、 图 4a-图 13b对应实施例的记载, 在此不再赘述。
或者, 网络节点 161用于通过创建设备所属群组对应的公共承载, 获取 所述公共承载对应群组信息; 广播所述群组信息, 以供属于所述群组的设备 选择创建有所述公共承载的小区进行驻留。
该情形下, 网络节点通过向设备广播网络侧建立的公共承载对应的群组 信息, 终端侧设备选择网络侧已创建有该公共承载的小区进行驻留, 与属于 相同群组的其他设备附着到相同的网络节点上, 可与属于同一群组的其他设 备共享相同的承载资源, 从而节省了与属于同一群组的多个设备通信所需的 载资源开销。本实施例网络节点的细化结构可参见图 15对应实施例的记载, 网络节点和设备的工作机理可分别参见图 2对应实施例的记载, 在此不再赘 述。
本领域普通技术人员可以理解: 附图只是一个实施例的示意图, 附图中 的模块或流程并不一定是实施本发明所必须的。
本领域普通技术人员可以理解: 实施例中的装置中的模块可以按照实施 例描述分布于实施例的装置中, 也可以进行相应变化位于不同于本实施例的 一个或多个装置中。 上述实施例的模块可以合并为一个模块, 也可以进一步 拆分成多个子模块。
上述本发明实施例序号仅仅为了描述, 不代表实施例的优劣。
本领域普通技术人员可以理解: 实现上述方法实施例的全部或部分步骤 可以通过程序指令相关的硬件来完成, 前述的程序可以存储于一计算机可读 取存储介质中, 该程序在执行时, 执行包括上述方法实施例的步骤; 而前述 的存储介质包括: ROM、 RAM, 磁碟或者光盘等各种可以存储程序代码的介 质。
最后应说明的是: 以上实施例仅用以说明本发明的技术方案, 而非对其 限制; 尽管参照前述实施例对本发明进行了详细的说明, 本领域的普通技术 人员应当理解: 其依然可以对前述实施例所记载的技术方案进行修改, 或者 对其中部分技术特征进行等同替换; 而这些修改或者替换, 并不使相应技术 方案的本质脱离本发明实施例技术方案的精神和范围。

Claims

权利要求 书
1、 一种公共承载处理方法, 其特征在于, 包括:
创建设备所属群组对应的公共承载;
使用所述公共承载为所述群组中的设备提供服务。
2、 根据权利要求 1所述的公共承载处理方法, 其特征在于,
所述公共承载包括以下至少之一: 公共用户面承载和公共控制面承载; 所述公共用户面承载包括以下至少之一: 公共上行用户面承载和公共下行 用户面承载。
3、 根据权利要求 1所述的公共承载处理方法, 其特征在于, 所述创建设备 所属群组对应的公共承载, 包括:
根据所述群组的群组信息, 创建所述设备所属群组对应的公共承载。
4、 根据权利要求 3所述的公共承载处理方法, 其特征在于, 所述创建设备 所属群组对应的公共承载, 包括:
创建所述设备所属群组对应的第一公共承载或第二公共承载, 所述第一公 共承载为当前节点与第一节点之间的公共承载, 所述第二公共承载为所述当前 节点与第二节点之间的公共承载, 所述第一节点和所述第二节点分别为与所述 当前节点连接的不同级节点; 或者,
创建所述设备所属群组对应的第一公共承载和第二公共承载, 并建立所述 第一公共承载和所述第二公共承载的映射关系, 所述第一公共承载为当前节点 与第一节点之间的公共承载, 所述第二公共承载为所述当前节点与第二节点之 间的公共承载, 所述第一节点和所述第二节点分别为与所述当前节点连接的不 同级节点。
5、 根据权利要求 4所述的公共承载处理方法, 其特征在于, 所述创建所述 设备所属群组对应的第一公共承载或第二公共承载, 包括:
移动性管理实体 MME向服务网关 S-GW发送第一建立会话请求消息, 所 述第一建立会话请求消息包括所述群组的群组信息; 所述服务网关 S-GW创建与群组相关的承载上下文, 所述 S-GW创建的与 群组相关的承载上下文包括所述群组的群组信息, 向分组数据网络网关 P-GW 发送第二建立会话请求消息, 所述第二建立会话请求消息包括所述群组的群组 信息;
所述分组数据网络网关 P-GW创建与群组相关的承载上下文, 所述 P-GW 创建的与群组相关的承载上下文包括所述群组的群组信息。
6、 根据权利要求 5所述的公共承载处理方法, 其特征在于, 所述方法还包 括:
所述 MME向演进基站 eNB发送初始上下文建立请求, 所述初始上下文建 立请求包括所述群组的群组信息,所述 eNB创建与所述群组对应的承载上下文, 所述创建的承载上下文包括所述群组的群组标识。
7、 根据权利要求 6所述的公共承载处理方法, 其特征在于,
所述 S-GW将所述 S-GW创建的与群组相关的承载上下文保存在设备的承 载上下文中, 或将所述 S-GW创建的与群组相关的承载上下文独立保存;
所述 P-GW将所述 P-GW创建的与群组相关的承载上下文保存在设备的承 载上下文中, 或将所述 P-GW创建的与群组相关的承载上下文独立保存;
所述 eNB将所述 eNB创建的与群组相关的承载上下文保存在设备的承载上 下文中, 或将所述 eNB创建的与群组相关的承载上下文独立保存。
8、 根据权利要求 4或 5或 6或 7所述的公共承载处理方法, 其特征在于, 所述建立所述第一公共承载和所述第二公共承载的映射关系, 包括:
获取所述第一公共承载对应的第一隧道端点标识以及所述第二公共承载对 应的第二隧道端点标识, 建立所述第一隧道端点标识和所述第二隧道端点标识 的映射关系。
9、 根据权利要求 1所述的公共承载处理方法, 其特征在于,
所述公共承载为公共用户面承载;
所述在创建设备所属群组对应的公共承载之后, 所述方法还包括: 在所述公共用户面承载的性能参数不满足所述服务的业务需求, 且在所述 公共用户面承载的类型为保证比特速率承载时, 根据所述所述服务的业务需求, 更新所述公共用户面承载的服务质量参数; 和 /或,
在所述公共用户面承载的流模版参数的配置属性为非静态配置时, 更新所 述公共用户面承载的流模版参数。
10、 根据权利要求 9 所述的公共承载处理方法, 其特征在于, 所述更新所 述公共用户面承载的服务质量参数, 包括:
移动管理实体 MME向服务网关 S-GW发送修改承载命令消息, 所述修改 承载命令消息包括所述公共用户面承载的更新的公共用户面承载的服务质量参 数, 以使得所述 S-GW更新所述公共用户面承载的服务质量参数;
和 /或,
所述更新所述公共用户面承载的流模版参数, 包括:
移动管理实体 MME向服务网关 S-GW发送修改承载命令消息, 所述修改 承载命令消息包括所述公共用户面承载的流模版参数, 以使得所述 S-GW更新 所述公共用户面承载的流模版参数。
11、 一种公共承载处理方法, 其特征在于,
通过创建第一设备所属群组对应的公共承载, 获取所述公共承载对应的群 组信息;
广播所述群组信息, 以供属于所述群组的设备选择创建有所述公共承载的 小区进行驻留。
12、 一种网络节点, 其特征在于, 包括:
公共承载创建模块, 用于创建设备所属群组对应的公共承载;
群组设备服务模块, 用于使用所述公共承载为所述群组中的设备提供服务。
13、 根据权利要求 12所述的网络节点, 其特征在于, 所述网络节点还包括 群组信息获取模块,
所述群组信息获取模块, 用于获取所述群组的群组信息; 所述群组设备服务模块, 具体用于根据所述群组信息获取模块获取的所述 群组的群组信息, 创建所述设备所属群组对应的公共承载。
14、 根据权利要求 13所述的网络节点, 其特征在于, 所述公共承载创建模 块包括公共承载创建单元或公共承载映射单元:
所述公共承载创建单元, 用于创建所述设备所属群组对应的第一公共承载 或第二公共承载, 所述第一公共承载为当前节点与第一节点之间的公共承载, 所述第二公共承载为所述当前节点与第二节点之间的公共承载, 所述第一节点 和所述第二节点分别为与所述当前节点连接的不同级节点;
所述公共承载映射单元, 用于创建所述设备所属群组对应的第一公共承载 和第二公共承载, 并建立所述第一公共承载和所述第二公共承载的映射关系, 所述第一公共承载为当前节点与第一节点之间的公共承载, 所述第二公共承载 为所述当前节点与第二节点之间的公共承载, 所述第一节点和所述第二节点分 别为与所述当前节点连接的不同级节点。
15、 根据权利要求 14所述的网络节点, 其特征在于, 所述网络节点为服务 网关 S-GW,
所述群组信息获取模块,具体用于接收移动性管理实体 MME发送的第一建 立会话请求消息, 所述第一建立会话请求消息包括所述群组的群组信息;
所述公共承载创建模块, 具体用于创建与群组相关的承载上下文, 所述 S-GW创建的与群组相关的承载上下文包括所述群组的群组信息。
16、 根据权利要求 14所述的网络节点, 其特征在于, 所述网络节点为分组 数据网络网关 P-GW,
所述群组信息获取模块, 具体用于接收服务网关 S-GW发送的第二建立会 话请求消息, 所述第一建立会话请求消息包括所述群组的群组信息;
所述公共承载创建模块, 具体用于创建与群组相关的承载上下文, 所述 P-GW创建的与群组相关的承载上下文包括所述群组的群组信息。
17、 根据权利要求 14所述的网络节点, 其特征在于, 所述网络节点为演进 基站 eNB,
所述群组信息获取模块,具体用于接收移动管理实体 MME发送的初始上下 文建立请求, 所述初始上下文建立请求包括所述群组的群组信息, 所述 eNB创 建与所述群组对应的承载上下文, 所述创建的承载上下文包括所述群组的群组 标识。
18、 根据权利要求 12-17任一权利要求所述的网络节点, 其特征在于, 所述网络节点还包括用于将创建的与群组相关的承载上下文保存在设备的 承载上下文中, 或将所述 S-GW创建的与群组相关的承载上下文独立保存的模 块。
19、 根据权利要求 14所述的网络节点, 其特征在于, 所述公共承载映射单 元包括获取子单元以及映射建立子单元,
所述获取子单元, 用于获取所述第一公共承载对应的第一隧道端点标识以 及所述第二公共承载对应的第二隧道端点标识;
所述映射建立子单元, 用于根据所述获取子单元获取的所述第一隧道端点 标识以及第二隧道端点标识, 建立所述第一隧道端点标识和所述第二隧道端点 标识的映射关系。
20、 根据权利要求 12所述的网络节点, 其特征在于, 所述网络节点还包括 确定模块,
所述确定模块, 用于确定所述公共承载为公共用户面承载;
所述网络节点还包括以下至少之一;
服务质量参数更新模块, 用于在所述确定模块确定所述公共承载为公共用 户面承载时, 在所述公共用户面承载的性能参数不满足所述服务的业务需求, 且在所述公共用户面承载的类型为保证比特速率承载时, 根据所述所述服务的 业务需求, 更新所述公共用户面承载的服务质量参数;
流模版参数更新模块, 用于在所述确定模块确定所述公共承载为公共用户 面承载时, 在所述公共用户面承载的流模版参数的配置属性为非静态配置时, 更新所述公共用户面承载的流模版参数。
21、 一种网络节点, 其特征在于, 包括:
群组信息获取模块, 用于通过创建第一设备所属群组对应的公共承载, 获 取所述公共承载对应的群组信息;
群组信息广播模块, 用于广播所述群组信息, 以供属于所述群组的设备选 择创建有所述公共承载的小区进行驻留。
22、 一种通信系统, 其特征在于, 包括: 网络节点以及与所述网络节点以 可通信方式相连的设备,
所述网络节点, 用于创建设备所属群组对应的公共承载, 使用所述公共承 载为所述群组中的设备提供服务。
23、 一种通信系统, 其特征在于, 包括: 网络节点以及与所述网络节点以 可通信方式相连的设备, 所述网络节点, 用于通过创建设备所属群组对应的公共承载, 获取所述公 共承载对应的群组信息; 广播所述群组信息, 以供属于所述群组的设备选择创 建有所述公共承载的小区进行驻留。
PCT/CN2010/078783 2009-11-19 2010-11-16 公共承载处理方法、网络节点及通信系统 WO2011060707A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012539171A JP5584921B2 (ja) 2009-11-19 2010-11-16 共通ベアラ処理方法、ネットワークノード、および通信システム
AU2010321416A AU2010321416B2 (en) 2009-11-19 2010-11-16 Common bearer processing methods, network node and communication system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2009102265152A CN102075872A (zh) 2009-11-19 2009-11-19 公共承载处理方法、网络节点及通信系统
CN200910226515.2 2009-11-19

Publications (1)

Publication Number Publication Date
WO2011060707A1 true WO2011060707A1 (zh) 2011-05-26

Family

ID=44034185

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/078783 WO2011060707A1 (zh) 2009-11-19 2010-11-16 公共承载处理方法、网络节点及通信系统

Country Status (4)

Country Link
JP (1) JP5584921B2 (zh)
CN (2) CN102075872A (zh)
AU (1) AU2010321416B2 (zh)
WO (1) WO2011060707A1 (zh)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014011683A (ja) * 2012-06-29 2014-01-20 Ntt Docomo Inc 移動通信システム、移動管理装置及び移動通信方法
JP2014011643A (ja) * 2012-06-29 2014-01-20 Ntt Docomo Inc 移動通信システム、サービングゲートウェイ装置及び移動通信方法
JP2014011685A (ja) * 2012-06-29 2014-01-20 Ntt Docomo Inc 移動通信システム、移動管理装置及び移動通信方法
WO2014125777A1 (ja) * 2013-02-18 2014-08-21 日本電気株式会社 移動通信システム、通信制御方法、及び非一時的なコンピュータ可読媒体
WO2014125778A1 (ja) * 2013-02-18 2014-08-21 日本電気株式会社 移動通信システム、制御装置、移動端末装置、通信制御方法、及び非一時的なコンピュータ可読媒体
JP2014531848A (ja) * 2011-09-30 2014-11-27 アルカテル−ルーセント パターン・ベースのメッセージ送信の方法
JP2015511422A (ja) * 2012-01-19 2015-04-16 大唐移▲動▼通信▲設▼▲備▼有限公司 クラスタユーザに基づいたメッセージ送信方法とデバイス
JP2016027755A (ja) * 2011-08-11 2016-02-18 インターデイジタル パテント ホールディングス インコーポレイテッド マシンタイプコミュニケーション接続性共有
WO2017167012A1 (en) * 2016-04-01 2017-10-05 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for facilitating multicast communication
US9820335B2 (en) 2011-04-01 2017-11-14 Interdigital Patent Holdings, Inc. System and method for sharing a common PDP context
WO2018167600A1 (en) 2017-03-13 2018-09-20 Wavelight Gmbh Laser device for material processing
JP2019057939A (ja) * 2012-07-02 2019-04-11 アルカテル−ルーセント パケット・モバイル・ネットワークにおけるデータ送信のサポート

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102164411B (zh) * 2011-05-31 2013-10-16 电信科学技术研究院 一种进行寻呼的方法、系统和设备
CN102958003B (zh) 2011-08-30 2016-03-30 华为技术有限公司 组呼的方法及设备
CN103096433B (zh) * 2011-11-08 2018-03-23 中兴通讯股份有限公司 一种终端组的服务网关选择方法及系统
KR102133785B1 (ko) * 2012-05-10 2020-07-15 삼성전자주식회사 메시지 송수신 방법 및 장치
KR20140045215A (ko) * 2012-10-08 2014-04-16 삼성전자주식회사 그룹 기반 연결 설정 방법 및 장치
CN103024008B (zh) * 2012-12-03 2016-03-16 中国联合网络通信集团有限公司 物联网中数据传输的方法、设备和系统
PT2954281T (pt) 2013-02-07 2018-11-28 Dyno Nobel Inc Sistemas para entregar explosivos e métodos relacionados com os mesmos
WO2014121491A1 (zh) * 2013-02-07 2014-08-14 华为技术有限公司 通信方法、通信装置和通信设备
WO2014179960A1 (zh) * 2013-05-09 2014-11-13 华为技术有限公司 网络配置的方法和装置
CN103338487B (zh) * 2013-06-03 2016-06-01 大唐移动通信设备有限公司 一种异系统间重选或切换处理方法和设备
US9819578B2 (en) 2013-08-26 2017-11-14 Nec Corporation Communication device and method in a communication system, and device and method for communication path control
WO2015029417A1 (ja) * 2013-08-26 2015-03-05 日本電気株式会社 通信システムにおける通信装置および方法、通信パスの制御装置および方法
CN104519597B (zh) * 2013-10-08 2018-10-30 阿尔卡特朗讯 一种用于设置承载的方法、装置和设备
KR20180078233A (ko) 2015-09-16 2018-07-09 엘지전자 주식회사 무선 통신 시스템에서 데이터를 송수신하기 위한 베어러 설정 방법 및 이를 지원하는 장치
CN108401226B (zh) * 2017-02-04 2021-11-30 中兴通讯股份有限公司 信息传输、处理方法及装置、设备、终端和系统
CN109005527B (zh) * 2017-06-06 2022-07-12 华为技术有限公司 一种数据传输方法和终端
CN110493835A (zh) * 2019-07-10 2019-11-22 海能达通信股份有限公司 一种通信小区选择方法、通信终端和具有存储功能的装置
CN111866756B (zh) * 2020-07-17 2023-05-12 腾讯科技(深圳)有限公司 多播广播业务的通信方法、装置、计算机可读介质及设备

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101325789A (zh) * 2007-06-14 2008-12-17 中兴通讯股份有限公司 用户设备的驻留小区确定方法及系统
CN101529932A (zh) * 2006-11-01 2009-09-09 艾利森电话股份有限公司 用于对向多个小区提供多媒体广播/组播的节点共亨传输信道的方法和设备

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2904907A1 (fr) * 2006-08-08 2008-02-15 France Telecom Procede de communication par messages et dispositif associe
CN101188793B (zh) * 2007-01-12 2011-11-23 中兴通讯股份有限公司 高速下行共享信道的共享控制信道的配置方法及装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101529932A (zh) * 2006-11-01 2009-09-09 艾利森电话股份有限公司 用于对向多个小区提供多媒体广播/组播的节点共亨传输信道的方法和设备
CN101325789A (zh) * 2007-06-14 2008-12-17 中兴通讯股份有限公司 用户设备的驻留小区确定方法及系统

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9820335B2 (en) 2011-04-01 2017-11-14 Interdigital Patent Holdings, Inc. System and method for sharing a common PDP context
JP2016027755A (ja) * 2011-08-11 2016-02-18 インターデイジタル パテント ホールディングス インコーポレイテッド マシンタイプコミュニケーション接続性共有
JP2014531848A (ja) * 2011-09-30 2014-11-27 アルカテル−ルーセント パターン・ベースのメッセージ送信の方法
US9456448B2 (en) 2011-09-30 2016-09-27 Alcatel Lucent Method of pattern-based message transmission
US9860922B2 (en) 2012-01-19 2018-01-02 Datang Mobile Communications Equipment Co., Ltd Trunking user based message transmission method and device
JP2015511422A (ja) * 2012-01-19 2015-04-16 大唐移▲動▼通信▲設▼▲備▼有限公司 クラスタユーザに基づいたメッセージ送信方法とデバイス
JP2014011643A (ja) * 2012-06-29 2014-01-20 Ntt Docomo Inc 移動通信システム、サービングゲートウェイ装置及び移動通信方法
JP2014011685A (ja) * 2012-06-29 2014-01-20 Ntt Docomo Inc 移動通信システム、移動管理装置及び移動通信方法
JP2014011683A (ja) * 2012-06-29 2014-01-20 Ntt Docomo Inc 移動通信システム、移動管理装置及び移動通信方法
CN110167196B (zh) * 2012-07-02 2023-09-05 诺基亚技术有限公司 分组移动网络中数据传输的支持
US11452148B2 (en) 2012-07-02 2022-09-20 Nokia Technologies Oy Support of data transmission in a packet mobile network
JP2019057939A (ja) * 2012-07-02 2019-04-11 アルカテル−ルーセント パケット・モバイル・ネットワークにおけるデータ送信のサポート
CN110167196A (zh) * 2012-07-02 2019-08-23 诺基亚技术有限公司 分组移动网络中数据传输的支持
WO2014125778A1 (ja) * 2013-02-18 2014-08-21 日本電気株式会社 移動通信システム、制御装置、移動端末装置、通信制御方法、及び非一時的なコンピュータ可読媒体
WO2014125777A1 (ja) * 2013-02-18 2014-08-21 日本電気株式会社 移動通信システム、通信制御方法、及び非一時的なコンピュータ可読媒体
US10904712B2 (en) 2016-04-01 2021-01-26 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for facilitating multicast communication
WO2017167012A1 (en) * 2016-04-01 2017-10-05 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for facilitating multicast communication
WO2018167600A1 (en) 2017-03-13 2018-09-20 Wavelight Gmbh Laser device for material processing

Also Published As

Publication number Publication date
CN102075872A (zh) 2011-05-25
AU2010321416A1 (en) 2012-06-21
AU2010321416B2 (en) 2014-04-24
CN106454764A (zh) 2017-02-22
JP5584921B2 (ja) 2014-09-10
JP2013511862A (ja) 2013-04-04

Similar Documents

Publication Publication Date Title
WO2011060707A1 (zh) 公共承载处理方法、网络节点及通信系统
US11690110B2 (en) Time sensitive network bridge configuration
US10938601B2 (en) Method and system for setting up a bearer
US11438746B2 (en) Method and equipment for determining IOT service, and method and equipment for controlling IOT service behavior
JP7116193B2 (ja) 情報伝送方法および装置
US10455489B2 (en) Method for supporting PDN GW selection
EP2642815A1 (en) Method for establishing and using public path and m2m communication method and system
CN115175372A (zh) 控制ue上下文和ue连接的方法和设备
WO2021026704A1 (zh) 一种无线通信的方法和装置
EP3589062A1 (en) Communication method and apparatus
US10182354B2 (en) Methods and systems for providing standalone LTE based communication networks
WO2018054336A1 (zh) 消息的发送方法和装置
US20190141758A1 (en) Session management for massive machine type communication in 5g networks

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10831122

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012539171

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1280/KOLNP/2012

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2010321416

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2010321416

Country of ref document: AU

Date of ref document: 20101116

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 10831122

Country of ref document: EP

Kind code of ref document: A1