WO2011055062A1 - Mat reacteur equipe d'un generateur de tourbillons et son procede de fabrication - Google Patents

Mat reacteur equipe d'un generateur de tourbillons et son procede de fabrication Download PDF

Info

Publication number
WO2011055062A1
WO2011055062A1 PCT/FR2010/052299 FR2010052299W WO2011055062A1 WO 2011055062 A1 WO2011055062 A1 WO 2011055062A1 FR 2010052299 W FR2010052299 W FR 2010052299W WO 2011055062 A1 WO2011055062 A1 WO 2011055062A1
Authority
WO
WIPO (PCT)
Prior art keywords
mast
reactor
box
aircraft
boundary layer
Prior art date
Application number
PCT/FR2010/052299
Other languages
English (en)
Inventor
Steve Bedoin
Cyril Bonnaud
Original Assignee
Airbus Operations (S.A.S.)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Airbus Operations (S.A.S.) filed Critical Airbus Operations (S.A.S.)
Priority to EP10787857.1A priority Critical patent/EP2496472B1/fr
Priority to US13/508,283 priority patent/US8936213B2/en
Priority to CN2010800501753A priority patent/CN102648125A/zh
Publication of WO2011055062A1 publication Critical patent/WO2011055062A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C7/00Structures or fairings not otherwise provided for
    • B64C7/02Nacelles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C23/00Influencing air flow over aircraft surfaces, not otherwise provided for
    • B64C23/06Influencing air flow over aircraft surfaces, not otherwise provided for by generating vortices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D29/00Power-plant nacelles, fairings, or cowlings
    • B64D29/02Power-plant nacelles, fairings, or cowlings associated with wings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/20Mounting or supporting of plant; Accommodating heat expansion or creep
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/10Stators
    • F05D2240/12Fluid guiding means, e.g. vanes
    • F05D2240/127Vortex generators, turbulators, or the like, for mixing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/10Drag reduction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49229Prime mover or fluid pump making
    • Y10T29/49231I.C. [internal combustion] engine making

Definitions

  • the invention relates to a method of manufacturing a reactor mast to be mounted between an aircraft reactor and a wing of the aircraft.
  • This method consists in equipping the mast with at least one vortex generator which, indirectly, makes it possible to modify the shape of the mast.
  • the invention has applications in the field of aeronautics and, in particular, in the field of manufacture of reactor poles.
  • FIG. 1 shows an example of a quadreactor aircraft of which only two reactors 1 are visible.
  • Each of these reactors 1 is installed in a nacelle 5 fixed to the wing 6 by means of a mast 7.
  • the nacelle 5 is mounted along the longitudinal axis of the aircraft.
  • the shape of the reactor mast is profiled.
  • the reactor pylon has an elongated water drop shape, i.e., an oblong force, with a first rounded end and straight flanks that meet at a tip at a second end, as shown in FIG. 2A.
  • This Figure 2A shows a top view of a conventional reactor mast. It should be noted that the rounded end 7a of the reactor pylon is directed towards the front of the aircraft while the pointed end 7b is directed towards the rear of the aircraft, the front of the aircraft being the nose of the aircraft.
  • the mast 7 of Figure 2A is also shown, in a side view, in Figure 2B.
  • This FIG. 2B shows that the reactor pylon 7, also called simply mast, is hooked to the wing 6 and supports the pod 5.
  • This reactor pylon 7 comprises:
  • primary structure providing the mechanical connection between the wing and the reactor and, consequently, the transmission of the forces emitted by the engine from the reactor to the entire aircraft, via the wing, and
  • the mast 7 forms, with the wing 6, a narrowing angle a.
  • This necking angle is generally between 10 ° and 20 °.
  • This boundary layer is a turbulent air flow thickness between the mast box surface and the outside air flow.
  • the air has zero velocity, or near zero, which creates turbulence.
  • the outside air flowing at a certain distance from the surface of the box of the mast has a speed sufficient to avoid turbulence.
  • the thickness of the limit layer at the trailing edge of the mast depends on the length of the mast, called the rope, and the necking angle a. If the necking angles are too small, the mast is too long and generates a lot of drag. If the necking angles are too large, there is a risk of air separation, which also generates drag. Aircraft manufacturers are therefore seeking a compromise on narrowing angles to limit drag.
  • these vortex generators are mounted on the casing of the mast, after design and manufacture of the aircraft. They are mounted on the mast casing after the aircraft manufacturer has noticed that there are air detachments, in flight.
  • These vortex generators 2 are fins arranged so as to make protrusion on the box of the mast 7 to change the flow of air along said mast.
  • These vortex generators 2 provide a mixture of the air of the boundary layer with the air of the outer layer, which makes it possible to increase the speed of the air in the immediate vicinity of the mast, thus avoiding air detachments. .
  • the role of such a vortex generator is shown diagrammatically in FIG. 3. This figure shows, by an arrow F1, the local air flow along a mast 7. It also shows, by the arrows F2, the air vortices generated by the vortex generators 2, these vortices being the consequence of the winding of air which occurs at the end of the fins 2 because of the pressure difference between the intrados 2a and the extrados 2b of the fin.
  • the purpose of the invention is precisely to overcome the disadvantages of the techniques described above.
  • the invention proposes manufacture aircraft jet engines incorporating vortex generators from the design stage. These vortex generators being integrated into the mast of the aircraft from the design of said aircraft, it is possible to modify the dimensions of the reactor mast, in order to gain weight, without causing adverse aerodynamic effects.
  • the invention relates to a method for manufacturing a reactor mast intended to be mounted between a reactor and a wing (6) of an aircraft, comprising:
  • a mounting operation of a mast box around a primary structure the box having a substantially oblong shape along which is formed, in flight, a boundary layer of air,
  • the manufacturing method of the invention may include one or more of the following features:
  • Vortex generators are mounted symmetrically on both sides of the mast box.
  • the shape of the mast is determined so that the primary structure has an enlarged surface to improve a recovery of the forces from the reactor.
  • the shape of the mast is determined for a length of the box is shortened.
  • At least one vortex generator is mounted on one side of the mast box, inducing a curvature effect of the aerodynamic shape of the mast.
  • the invention also relates to an aircraft engine mast, manufactured according to the method described above.
  • the invention also relates to an aircraft comprising a wing, at least one reactor and a reactor mast connecting the wing and the reactor, said reactor mast being manufactured according to the method described above.
  • Figure 1 already described, shows a side view of an aircraft with two reactors.
  • FIGS. 2A and 2B already described, show a conventional reactor mast equipped with vortex generators.
  • FIG. 3 already described, schematically shows the flow of air around a vortex generator.
  • Figures 4A and 4B show, respectively, a side view and a top view of a reactor mast structure.
  • FIGS. 5A and 5B show the structure of FIGS. 4A and 4B when the reactor tower is equipped with vortex generators.
  • FIGS. 6A and 6B show a plan view of a reactor mast made according to a first embodiment of the method of the invention.
  • FIGS. 7A and 7B show a view from above of a reactor mast made according to a second embodiment of the method of the invention.
  • Figures 8A and 8B show a top view of a reactor mast made according to a third embodiment of the method of the invention.
  • the invention provides a method of manufacturing a reactor mast in which vortex generators are mounted on the mast from the design of said mast.
  • the fact of integrating vortex generators during the design of the reactor mast makes it possible to reduce the thickness of the boundary layer, in flight, with respect to a reactor mast designed, conventionally, without a vortex generator.
  • This gain in thickness of the boundary layer makes it possible to modify the shape of the reactor mast in order to gain mass. It is thus possible to improve the drag (by a reduction of the boundary layer), and / or reduce the total mass of the aircraft (by a modification of the shape of the reactor mast).
  • the shape of the mast is determined so as to increase the narrowing angles between the wing 6 and the engine 7. In fact, increasing the necking angles, without degrading the aerodynamic performance, allows to improve the characteristics of the aircraft. In other words, the method of the invention makes it possible to reduce the mass with iso-drag or to reduce the drag to iso-mass.
  • the method of the invention therefore proposes to integrate vortex generators on the reactor mast from the design of the aircraft, and to mount them on the mast during the manufacture of the aircraft, in order to take advantage of the advantages provided by these eddy generators to change the shape of the reactor mast.
  • Vortex generators are small surfaces that, like a wing, produce a swirling wake downstream of their trailing edge.
  • these vortex generators are used by placing them so as to treat a well-defined area of the sidewall of the masts.
  • the vortex generators may have, for example, the following dimensions: a height of a few centimeters to a few decimetres, a length preferably equal to or greater than 3 times the height, and a leading edge of between 20 and 90 degrees.
  • the vortex generators then act by mixing air outside the boundary layer (highly energized air) with the boundary layer air that has lost energy. The behavior of the boundary layer is improved and its thickness decreases.
  • FIGS. 4A and 4B show an example of a reactor tower 7, with its caisson 8 and its primary structure 9.
  • the primary structure 9 of the mast 7 indicates the dimensioning points P of the aerodynamic shape of the mast, that is, that is to say the hard points through which the box must necessarily pass to ensure the mechanical connection between the reactor and the wing.
  • the reactor mast has no vortex generator.
  • FIG. 4A shows the boundary layer C in dotted lines. corresponding to the aerodynamic shape of the casing 8 of the mast 7 without a vortex generator.
  • the boundary layer has a thickness e1.
  • FIGS. 5A and 5B show the same mast 7 as in FIGS. 4A and 4B, but in the case where the mast is provided with vortex generators 2. It can be seen that in this case the boundary layer Cin has a thickness e2, less than the thickness e1, this reduction in thickness of the boundary layer being caused by the presence of the vortex generators 2.
  • the invention makes it possible to gain mass on the reactor mast. This mass gain can be obtained in different ways:
  • the mass gain is obtained by widening the primary structure 9 of the mast.
  • the primary structure of the mast is a structural part that transmits the forces from the reactor to the wing and to the entire structure of the aircraft.
  • This primary structure 9 has a substantially parallelepipedal shape, as shown in FIG. 6A.
  • aerodynamic iso-behaviors This enlargement of the primary structure is of the order of 1 to 10%.
  • FIG. 6B the primary structure is enlarged at its rectangular surface, its overall shape remaining parallelepipedal. This widening of the primary structure offers a better transmission of recovery efforts. The transmission of forces being facilitated, the primary structure is less heavy.
  • the mass saving is obtained by shortening the aerodynamic shape of the box 8 of the reactor mast.
  • FIGs 7A and 7B An example of this embodiment is shown in Figures 7A and 7B.
  • Fig. 7A shows an example of a conventional mast, with a conventional box shape and the boundary layer C.
  • Fig. 7B shows a example of a mast made according to the method of the invention.
  • the primary structure has conventional dimensions, but the mast box 8 has a shortened shape, that is to say whose shape at the tip is shorter than for a conventional box. This shortened shape is defined so that it passes through the dimensioning points P of the primary structure 9.
  • the vortex generators are mounted symmetrically on both sides of the mast 7.
  • the same number of vortex generators is mounted on the upper surface and on the upper surface.
  • the boundary layer Cinf is symmetrical on both sides of the mast box.
  • the improvement of the aerodynamic performance is obtained by generating a camber effect of the aerodynamic shape of the engine mast.
  • the air arriving on the reactor mast sees a neutral line N straight corresponding to the axis of symmetry passing through the reactor mast.
  • a curvature effect that ensures that the air arriving on the mast sees the neutral line Curve, and not rectilinear, as shown in Figures 8A and 8B. This curvature effect is created by mounting at least one fin on one side of the reactor mast.
  • a single fin is mounted on the intrados or on the extrados of the reactor pylon 7 so that the flow of air is not distributed symmetrically on both sides of the reactor mast.
  • This asymmetric distribution of the air flow, with respect to the axis of symmetry of the reactor mast generates a camber of the mast to iso-structure and aerodynamic isoform.
  • this camber has a positive effect on the drag, the thickness of the boundary layer Cinf being lower on the side of the vortex generator 2 than on the side without a vortex generator.
  • the modification of the shape of the reactor pylon associated with the installation of the vortex generators on the mast casing allows a mass gain of the order of several tens of kilograms, iso-aerodynamic behavior, that is to say with aerodynamic behavior identical to that of a conventional aircraft.
  • the mass gain then makes it possible to improve the aerodynamic performance of the aircraft manufactured according to the method of the invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Abstract

L'invention concerne un procédé de fabrication d'un mât réacteur (7) destiné à être monté entre un réacteur (1) et une voilure (6) d'un aéronef, comportant : - une opération de montage d'un caisson (8) de mât autour d'une structure primaire (9), le caisson ayant une forme sensiblement oblongue le long duquel se forme, en vol, une couche limite d'air (C), - une opération de montage d'au moins un générateur de tourbillons (2) sur le caisson du mât afin que soit modifiée une épaisseur (e) de la couche limite, et - une opération préalable de détermination de la forme du mât, en fonction de l'épaisseur modifiée de la couche limite et du positionnement des générateurs de tourbillons

Description

MAT REACTEUR EQUIPE D'UN GENERATEUR DE TOURBILLONS ET SON
PROCEDE DE FABRICATION
Domaine de l'invention
L'invention concerne un procédé de fabrication d'un mât réacteur destiné à être monté entre un réacteur d'aéronef et une voilure de l'aéronef. Ce procédé consiste à équiper le mât d'au moins un générateur de tourbillons permettant, indirectement, de modifier la forme du mât.
L'invention trouve des applications dans le domaine de l'aéronautique et, en particulier, dans le domaine de la fabrication des mâts réacteurs.
Etat de la technique
Les aéronefs actuels sont équipés, pour la plupart, de mâts profilés, suspendus à leur voilure, et assurant une liaison entre leurs moteurs et la voilure. Ces mâts profilés faisant saillie par rapport à l'intrados de la voilure, ils engendrent des perturbations aérodynamiques sur la voilure et, d'une façon générale, sur l'ensemble de l'aéronef. Ces perturbations aérodynamiques ont des effets défavorables, tels qu'une perte de la portance et un accroissement de la traînée. En outre, ces effets aérodynamiques sont renforcés par le fait que, pour des raisons structurelles, les mâts présentent une largeur relativement importante avec un bord de fuite au voisinage du bord de fuite de la voilure, un tel voisinage de bords de fuite augmentant les risques de décollement des filets d'air le long de l'aéronef.
Sur la figure 1 , on a représenté un exemple d'aéronef quadriréacteur dont seulement deux réacteurs 1 sont visibles. Chacun de ces réacteurs 1 est installé dans une nacelle 5 fixée à la voilure 6 par l'intermédiaire d'un mât 7. La nacelle 5 est montée suivant l'axe longitudinal de l'aéronef. Pour obtenir des performances aérodynamiques les moins défavorables possible, la forme du mât réacteur est profilée. Généralement, le mât réacteur a une forme de goutte d'eau allongée, c'est-à-dire une force oblongue, avec une première extrémité arrondie et des flancs rectilignes qui se rejoignent en pointe à une seconde extrémité, comme représenté sur la figure 2A. Cette figure 2A montre une vue de dessus d'un mât réacteur classique. Il est à noter que l'extrémité arrondie 7a du mât réacteur est dirigée vers l'avant de l'aéronef tandis que l'extrémité en pointe 7b est dirigée vers l'arrière de l'aéronef, l'avant de l'aéronef étant le nez de l'aéronef.
Le mât 7 de la figure 2A est également représenté, selon une vue de profil, sur la figure 2B. Cette figure 2B montre que le mât réacteur 7, appelé aussi simplement mât, est accroché à la voilure 6 et supporte la nacelle 5. Ce mât réacteur 7, comporte :
- une structure, appelée structure primaire, assurant la liaison mécanique entre la voilure et le réacteur et, par conséquent, la transmission des efforts émis par le moteur du réacteur vers l'ensemble de l'aéronef, en passant par la voilure, et
- un caisson entourant la structure primaire et de forme profilée.
Le mât 7 forme, avec la voilure 6, un angle de rétreint a. Cet angle de rétreint est généralement compris entre 10° et 20°.
Lorsqu'un aéronef est en vol, l'air s'écoule le long de l'aéronef et forme, le long de la structure, une couche limite. Cette couche limite est une épaisseur d'écoulement d'air turbulent entre la surface du caisson du mât et l'écoulement de l'air extérieur. Dans la couche limite, l'air a une vitesse nulle, ou proche de zéro, ce qui crée des turbulences. Au contraire, l'air extérieur s'écoulant à une certaine distance de la surface du caisson du mât a une vitesse suffisante pour éviter les turbulences.
Il est à noter que l'épaisseur de la couche limite au bord de fuite 10 du mât dépend de la longueur du mât, appelée corde, et de l'angle de rétreint a. Si les angles de rétreint sont trop faibles, le mât est trop long et génère beaucoup de traînée. Si les angles de rétreint sont trop grands, on risque un décollement d'air, ce qui génère également de la traînée. Les constructeurs aéronautiques cherchent donc un compromis sur les angles de rétreint pour limiter la traînée.
Si, malgré ce compromis aérodynamique, l'aéronef en vol subit des décollements d'air, il est possible d'équiper les mâts réacteurs de générateurs de tourbillons (ou vortex generators, en termes anglo-saxons). Classiquement, ces générateurs de tourbillons, référencés 2 sur les figures 2A et 2B, sont montés sur le caisson du mât, après conception et fabrication de l'aéronef. Ils sont montés sur le caisson du mât après que le constructeur aéronautique se soit aperçu qu'il existe des décollements d'air, en vol. Ces générateurs de tourbillons 2 sont des ailettes agencées de façon à faire saillie sur le caisson du mât 7 afin de modifier l'écoulement de l'air le long dudit mât. Ces générateurs de tourbillons 2 assurent un mélange de l'air de la couche limite avec l'air de la couche extérieur, ce qui permet d'augmenter la vitesse de l'air à proximité immédiate du mât, évitant ainsi les décollements d'air. Le rôle d'un tel générateur de tourbillons est représenté de façon schématique sur la figure 3. Cette figure montre, par une flèche F1 , l'écoulement d'air local le long d'un mât 7. Elle montre également, par les flèches F2, les tourbillons d'air générés par les générateurs de tourbillons 2, ces tourbillons étant la conséquence de l'enroulement d'air qui se produit à l'extrémité des ailettes 2 du fait de la différence de pression entre l'intrados 2a et l'extrados 2b de l'ailette.
Un exemple de générateurs de tourbillons destiné à être installé après fabrication de l'aéronef pour modifier l'écoulement d'air le long du mât est décrit dans la demande de brevet français FR-2 905 930. Le système d'ailettes décrit dans ce document permet d'adapter le mât réacteur d'un aéronef aux conditions de fonctionnement dudit aéronef. Cependant, ces ailettes entraînent nécessairement une augmentation de la masse totale de l'aéronef par rapport à la masse prévue lors de sa conception, mais également un incrément de traînée lié à l'ailette elle-même.
Par ailleurs, les constructeurs aéronautiques cherchent en permanence à améliorer les performances aérodynamiques d'un aéronef. Ces performances peuvent être améliorées de deux façons différentes :
- soit en améliorant la traînée, c'est-à-dire en la diminuant,
- soit en diminuant la masse de l'aéronef.
Cependant, la traînée et la masse d'un aéronef sont directement liées l'une à l'autre. En effet, pour diminuer la traînée, des générateurs de tourbillons peuvent être installés sur le mât réacteur. Or, ces générateurs de tourbillons ont une masse non négligeable qui augmente la masse totale de l'aéronef. Et, si aucun générateur de tourbillon n'est installé, la traînée de l'aéronef reste relativement importante du fait des décollements d'air.
Exposé de l'invention
L'invention a justement pour but de remédier aux inconvénients des techniques exposées précédemment. A cette fin, l'invention propose de fabriquer des mâts réacteurs pour aéronefs intégrant, dès leur conception, des générateurs de tourbillons. Ces générateurs de tourbillons étant intégrés au mât de l'aéronef dès la conception dudit aéronef, il est possible de modifier les dimensions du mât réacteur, afin de gagner en masse, sans toutefois entraîner d'effets aérodynamiques néfastes.
De façon plus précise, l'invention concerne un procédé de fabrication d'un mât réacteur destiné à être monté entre un réacteur et une voilure (6) d'un aéronef, comportant :
- une opération de montage d'un caisson de mât autour d'une structure primaire, le caisson ayant une forme sensiblement oblongue le long duquel se forme, en vol, une couche limite d'air,
- une opération de montage d'au moins un générateur de tourbillons sur le caisson du mât afin que soit modifiée l'épaisseur de la couche limite au bord de fuite du mât,
caractérisé en ce qu'il comporte, au préalable, une opération de détermination de la forme du mât, en fonction de l'épaisseur modifiée de la couche limite et du positionnement des générateurs de tourbillons.
Le procédé de fabrication de l'invention peut comporter une ou plusieurs des caractéristiques suivantes :
- des générateurs de tourbillons sont montés symétriquement de part et d'autre du caisson du mât.
- la forme du mât est déterminée pour que la structure primaire ait une surface élargie afin d'améliorer une reprise des efforts provenant du réacteur.
- la forme du mât est déterminée pour qu'une longueur du caisson soit raccourcie.
- au moins un générateur de tourbillons est monté sur un seul coté du caisson du mât, induisant un effet de courbure de la forme aérodynamique du mât.
L'invention concerne également un mât réacteur pour aéronef, fabriqué suivant le procédé décrit précédemment.
L'invention concerne également un aéronef comportant une voilure, au moins un réacteur et un mât réacteur reliant la voilure et le réacteur, ledit mât réacteur étant fabriqué suivant le procédé décrit précédemment. Brève description des dessins
La figure 1 , déjà décrite, représente une vue de coté d'un aéronef avec deux réacteurs.
Les figures 2A et 2B, déjà décrites, représentent un mât réacteur classique équipé de générateurs de tourbillons.
La figure 3, déjà décrite, représente schématiquement l'écoulement d'air aux alentours d'un générateur de tourbillons.
Les figures 4A et 4B représentent, respectivement, une vue de coté et une vue de dessus d'une structure de mât réacteur.
Les figures 5A et 5B représentent la structure des figures 4A et 4B lorsque le mât réacteur est équipé de générateurs de tourbillons.
Les figures 6A et 6B représentent une vue de dessus d'un mât réacteur réalisé suivant un premier mode de réalisation du procédé de l'invention.
Les figures 7A et 7B représentent une vue de dessus d'un mât réacteur réalisé suivant un deuxième mode de réalisation du procédé de l'invention.
Les figures 8A et 8B représentent une vue de dessus d'un mât réacteur réalisé suivant un troisième mode de réalisation du procédé de l'invention.
Description détaillée de modes de réalisation de l'invention
L'invention propose un procédé de fabrication d'un mât réacteur dans lequel des générateurs de tourbillons sont montés sur le mât dès la conception dudit mât. Le fait d'intégrer des générateurs de tourbillons lors de la conception du mât réacteur permet de diminuer l'épaisseur de la couche limite, en vol, par rapport à un mât réacteur conçu, classiquement, sans générateur de tourbillon. Ce gain d'épaisseur de la couche limite permet de modifier la forme du mât réacteur, afin de gagner en masse. Il est ainsi possible d'améliorer la traînée (par une diminution de la couche limite), et/ou diminuer la masse totale de l'aéronef (par une modification de la forme du mât réacteur).
La forme du mât est déterminée de façon à augmenter les angles de rétreint entre la voilure 6 et le mât réacteur 7. En effet, augmenter les angles de rétreint, sans dégrader la performance aérodynamique, permet d'améliorer les caractéristiques de l'aéronef. En d'autres termes, le procédé de l'invention permet de diminuer la masse à iso-traînée ou de diminuer la traînée à iso-masse.
Dans toute la description de l'invention, la diminution ou l'augmentation de la masse, de la traînée ou de la forme du mât sera établie par rapport à un aéronef classique, de même type, équipé d'un mât réacteur sans générateur de tourbillons, ou d'un mât réacteur avec générateurs de tourbillons montés après fabrication. Autrement dit, ces comparaisons sont établies pour des caractéristiques de mâts identiques fabriqués, d'une part selon le procédé de l'invention et, d'autre part, selon un procédé conventionnel.
Le procédé de l'invention propose donc d'intégrer des générateurs de tourbillons sur le mât réacteur dès la conception de l'aéronef, et de les monter sur le mât lors de la fabrication de l'aéronef, afin de profiter des avantages apportés par ces générateurs de tourbillons pour modifier la forme du mât réacteur.
Les générateurs de tourbillons sont des petites surfaces qui, à la manière d'une aile, produisent un sillage tourbillonnaire en aval de leur bord de fuite. Dans l'invention, on utilise ces générateurs de tourbillons en les plaçant de manière à traiter une zone bien définie du flanc des mâts. Les générateurs de tourbillons peuvent avoir, par exemple, les dimensions suivantes : une hauteur de quelques centimètres à quelques décimètres, une longueur préférentiellement égale ou supérieure à 3 fois la hauteur, et un bord d'attaque compris entre 20 et 90 degrés. Les générateurs de tourbillons agissent alors en mélangeant de l'air à l'extérieur de la couche limite (air très énergisé) avec l'air de la couche limite qui a perdu de l'énergie. Le comportement de la couche limite se trouve amélioré et son épaisseur diminue.
On a représenté sur les figures 4A et 4B, un exemple de mât réacteur 7, avec son caisson 8 et sa structure primaire 9. La structure primaire 9 du mât 7 indique les points dimensionnants P de la forme aérodynamique du mât, c'est-à-dire les points durs par lesquels le caisson doit nécessairement passer pour assurer la liaison mécanique entre le réacteur et la voilure. Dans cet exemple, le mât réacteur n'a pas de générateur de tourbillons. On a représenté, en traits pointillés, sur la figure 4A, la couche limite C correspondant à la forme aérodynamique du caisson 8 du mât 7 sans générateur de tourbillons. Dans l'exemple des figures 4A et 4B, la couche limite a une épaisseur e1 .
Sur les figures 5A et 5B, on a représenté le même mât 7 que sur les figures 4A et 4B, mais dans le cas où le mât est muni de générateurs de tourbillons 2. On voit que, dans ce cas, la couche limite Cinf a une épaisseur e2, inférieure à l'épaisseur e1 , cette diminution d'épaisseur de la couche limite étant provoquée par la présence des générateurs de tourbillons 2.
Du fait de cette diminution de l'épaisseur de couche limite Cinf, l'invention permet de gagner en masse sur le mât réacteur. Ce gain de masse peut être obtenu de différentes façons :
- en élargissant la structure primaire 9 du mât 7, comme montré sur les figures 6A et 6B,
- en raccourcissant la forme aérodynamique du caisson 8, comme montré sur les figures 7A et 7B, ou
- en autorisant une courbure du mât 7, comme montré sur les figures 8A et 8B.
Dans un premier mode de réalisation de l'invention, le gain de masse est obtenu par élargissement de la structure primaire 9 du mât. On rappelle que la structure primaire du mât est une pièce structurale qui permet de transmettre les efforts provenant du réacteur vers la voilure et vers l'ensemble de la structure de l'aéronef. Cette structure primaire 9 a une forme sensiblement parallélépipédique, comme montré sur la figure 6A. Dans l'invention, on propose de réaliser une structure primaire 9 plus large, à iso- comportements aérodynamiques. Cet élargissement de la structure primaire est de l'ordre de 1 à 10%. Comme montré sur la figure 6B, la structure primaire est élargie au niveau de sa surface rectangulaire, sa forme globale restant parallélépipédique. Cet élargissement de la structure primaire offre une meilleure transmission des efforts de reprise. La transmission des efforts étant facilitée, la structure primaire est moins lourde.
Dans un second mode de réalisation de l'invention, le gain de masse est obtenu par raccourcissement de la forme aérodynamique du caisson 8 du mât réacteur. Un exemple de ce mode de réalisation est représenté sur les figures 7A et 7B. La figure 7A montre un exemple de mât classique, avec une forme de caisson classique et la couche limite C. La figure 7B montre un exemple d'un mât réalisé selon le procédé de l'invention. Dans cet exemple, la structure primaire a des dimensions classiques, mais le caisson de mât 8 a une forme raccourcie, c'est-à-dire dont la forme au niveau de la pointe est plus courte que pour un caisson classique. Cette forme raccourcie est définie de façon à ce qu'elle passe par les points dimensionnants P de la structure primaire 9. Cette diminution de la longueur du caisson de mât, de l'ordre de 5 à 15%, induit une augmentation des angles de rétreint entre la voilure et le mât. L'invention permet ainsi la réalisation d'un mât réacteur ayant des angles de rétreint pouvant être deux fois plus grands que ceux des mâts réacteurs classiques, c'est-à-dire de l'ordre de 20 à 40°.
En l'absence de générateurs de tourbillons, ces angles de rétreint seraient inacceptables car trop grands : ils entraîneraient un décollement d'air. Les générateurs de tourbillons rendent la couche limite plus robuste, celle-ci pouvant alors supporter des angles de rétreint plus importants. Ce caisson de mât de dimensions réduites offre à la fois des gains structuraux (masse moins lourde car dimensions plus faibles) et des gains aérodynamiques (moins de surface).
Dans les deux modes de réalisation qui viennent d'être décrits, les générateurs de tourbillons sont montés de façon symétrique de part et d'autre du mât 7. Autrement dit, le même nombre de générateurs de tourbillons est monté sur l'extrados et sur l'intrados du mât réacteur. La couche limite Cinf est donc symétrique de part et d'autre du caisson du mât.
Dans un troisième mode de réalisation de l'invention, l'amélioration des performances aérodynamiques est obtenue par génération d'un effet de cambrure de la forme aérodynamique du mât réacteur. En effet, d'une façon générale, l'air arrivant sur le mât réacteur voit une ligne neutre N rectiligne correspondant à l'axe de symétrie traversant le mât réacteur. Il est possible de créer, selon l'invention, un effet de courbure qui fait en sorte que l'air arrivant sur le mât voit la ligne neutre Ne courbe, et non plus rectiligne, comme représenté sur les figures 8A et 8B. Cet effet de courbure est créé en montant au moins une ailette sur un seul côté du mât réacteur.
Dans le mode de réalisation des figures 8A et 8B, une seule ailette est montée sur l'intrados ou sur l'extrados du mât réacteur 7 de façon à ce que le flux d'air ne soit pas réparti symétriquement de part et d'autre du mât réacteur. Cette répartition asymétrique du flux d'air, par rapport à l'axe de symétrie du mât réacteur génère une cambrure du mât à iso-structure et isoforme aérodynamique. Comme on le voit sur la figure 8B, cette cambrure a un effet positif sur la traînée, l'épaisseur de la couche limite Cinf étant plus faible du côté du générateur de tourbillon 2 que du côté sans générateur de tourbillon.
Quel que soit le mode de réalisation de l'invention, la modification de forme du mât réacteur associé à l'installation des générateurs de tourbillons sur le caisson de mât permet un gain de masse de l'ordre de plusieurs dizaines de kilos, cela à iso-comportement aérodynamique, c'est-à-dire à comportement aérodynamique identique à celui d'un aéronef classique. Le gain de masse permet alors d'améliorer les performances aérodynamiques de l'aéronef fabriqué selon le procédé de l'invention.

Claims

REVENDICATIONS
1 - Procédé de fabrication d'un mât réacteur (7) destiné à être monté entre un réacteur (1 ) et une voilure (6) d'un aéronef, comportant :
- une opération de montage d'un caisson (8) de mât autour d'une structure primaire (9), le caisson ayant une forme sensiblement oblongue le long duquel se forme, en vol, une couche limite d'air (C),
- une opération de montage d'au moins un générateur de tourbillons (2) sur le caisson du mât afin que soit modifiée une épaisseur (e) de la couche limite,
caractérisé en ce qu'il comporte, au préalable, une opération de détermination de la forme du mât, en fonction de l'épaisseur modifiée de la couche limite et du positionnement des générateurs de tourbillons.
2 - Procédé selon la revendication 1 , caractérisé en ce que des générateurs de tourbillons sont montés symétriquement de part et d'autre du caisson du mât. 3 - Procédé selon la revendication 2, caractérisé en ce que la forme du mât est déterminée pour que la structure primaire ait une surface élargie afin d'améliorer une reprise des efforts provenant du réacteur.
4 - Procédé selon la revendication 2, caractérisé en ce que la forme du mât est déterminée pour qu'une longueur du caisson soit raccourcie.
5 - Procédé selon la revendication 1 ou 2, caractérisé en ce que au moins un générateur de tourbillons est monté sur un seul coté du caisson du mât, induisant un effet de courbure de la forme aérodynamique du mât.
6 - Mât réacteur pour aéronef, caractérisé en ce qu'il comporte :
- un caisson de mât (8) monté autour d'une structure primaire (9), le caisson ayant une forme sensiblement oblongue le long duquel se forme, en vol, une couche limite d'air (C), - des générateurs de tourbillons montés sur le caisson du mât, symétriquement de part et d'autre du mât, pour assurer une modification de l'épaisseur de la couche limite,
et en ce que la structure primaire est de forme sensiblement parallélépipédique avec une largeur élargie de 1 à 10% au niveau de sa surface rectangulaire pour améliorer la transmission des efforts de reprise.
7 - Mât réacteur pour aéronef, caractérisé en ce qu'il comporte :
- un caisson de mât (8) monté autour d'une structure primaire (9), le caisson ayant une forme sensiblement oblongue le long duquel se forme, en vol, une couche limite d'air (C),
- des générateurs de tourbillons montés sur le caisson du mât, symétriquement de part et d'autre du mât, pour assurer une modification de l'épaisseur de la couche limite, et
- des angles de rétreint de l'ordre de 20 à 40°.
8 - Mât réacteur pour aéronef, caractérisé en ce qu'il comporte :
- un caisson de mât (8) monté autour d'une structure primaire (9), le caisson ayant une forme sensiblement oblongue le long duquel se forme, en vol, une couche limite d'air (C),
- au moins un générateur de tourbillons monté sur un seul coté du mât réacteur et générant un effet de courbure du mât.
9 - Aéronef comportant au moins une voilure, un réacteur et un mât réacteur (7) reliant le réacteur (1 ) à la voilure(6), caractérisé en ce que le mât réacteur est conforme à l'une quelconque des revendications 6 à 8.
PCT/FR2010/052299 2009-11-06 2010-10-27 Mat reacteur equipe d'un generateur de tourbillons et son procede de fabrication WO2011055062A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP10787857.1A EP2496472B1 (fr) 2009-11-06 2010-10-27 Mat reacteur equipe d'un generateur de tourbillons et son procede de fabrication
US13/508,283 US8936213B2 (en) 2009-11-06 2010-10-27 Engine pylon comprising a vortex generator, and method for the production thereof
CN2010800501753A CN102648125A (zh) 2009-11-06 2010-10-27 具有涡流发生器的发动机吊架及其生产方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0957891A FR2952349B1 (fr) 2009-11-06 2009-11-06 Procede de fabrication d'un mat reacteur equipe d'un generateur de tourbillons
FR0957891 2009-11-06

Publications (1)

Publication Number Publication Date
WO2011055062A1 true WO2011055062A1 (fr) 2011-05-12

Family

ID=42169255

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2010/052299 WO2011055062A1 (fr) 2009-11-06 2010-10-27 Mat reacteur equipe d'un generateur de tourbillons et son procede de fabrication

Country Status (5)

Country Link
US (1) US8936213B2 (fr)
EP (1) EP2496472B1 (fr)
CN (1) CN102648125A (fr)
FR (1) FR2952349B1 (fr)
WO (1) WO2011055062A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2982236A1 (fr) * 2011-11-03 2013-05-10 Snecma Pylone d'accrochage pour turbomachine
US10266273B2 (en) 2013-07-26 2019-04-23 Mra Systems, Llc Aircraft engine pylon

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3045012B1 (fr) * 2015-12-11 2017-12-08 Airbus Operations Sas Mat d'accrochage d'une turbomachine muni d'un element de protection thermique

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2112077A (en) * 1981-12-21 1983-07-13 Gen Electric Hot exhaust gas constrant in a nacelle installation
FR2905930A1 (fr) 2006-09-18 2008-03-21 Airbus France Sa Generateur de tourbillon en sortie de gaz chauds
US20090230251A1 (en) * 2008-03-14 2009-09-17 Airbus France Airplane engine pylon comprising at least one protruding element to generate a vortex of the airflow

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8928038D0 (en) * 1989-12-12 1990-02-14 British Aerospace Aircraft wing pylon extensions for minimised aerodymanic penalties
JP3714722B2 (ja) * 1996-05-09 2005-11-09 本田技研工業株式会社 剥離抑制装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2112077A (en) * 1981-12-21 1983-07-13 Gen Electric Hot exhaust gas constrant in a nacelle installation
FR2905930A1 (fr) 2006-09-18 2008-03-21 Airbus France Sa Generateur de tourbillon en sortie de gaz chauds
US20090230251A1 (en) * 2008-03-14 2009-09-17 Airbus France Airplane engine pylon comprising at least one protruding element to generate a vortex of the airflow

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2982236A1 (fr) * 2011-11-03 2013-05-10 Snecma Pylone d'accrochage pour turbomachine
WO2013064768A3 (fr) * 2011-11-03 2013-12-27 Snecma Pylone d'accrochage pour turbomachine
CN103917444A (zh) * 2011-11-03 2014-07-09 斯奈克玛 涡轮发动机的连接吊架
US9938901B2 (en) 2011-11-03 2018-04-10 Snecma Attachment pylon for a turbine engine
US10266273B2 (en) 2013-07-26 2019-04-23 Mra Systems, Llc Aircraft engine pylon

Also Published As

Publication number Publication date
US8936213B2 (en) 2015-01-20
CN102648125A (zh) 2012-08-22
US20120273610A1 (en) 2012-11-01
EP2496472A1 (fr) 2012-09-12
FR2952349B1 (fr) 2012-02-17
EP2496472B1 (fr) 2014-03-05
FR2952349A1 (fr) 2011-05-13

Similar Documents

Publication Publication Date Title
EP2962934B1 (fr) Pale à ligne d'empilement incurvée pour rotor anticouple
EP1456081B1 (fr) Extremite d'aile cylindrique a fente helicoidale
EP3380399B1 (fr) Avion propulse par une turbomachine muni d'un ecran acoustique
FR2928622A1 (fr) Mat de suspension d'avion comportant au moins un element pour former des tourbillons d'air
EP2019775B8 (fr) Agencement d'aile d'aeronef comportant un mat d'accrochage de moteur definissant en zone avant un canal lateral d'ecoulement d'air
EP2773557B1 (fr) Pylone d'accrochage pour turbomachine
FR2894558A1 (fr) Aile a ailette d'extremite de voilure et aeronef comportant une telle aile
EP3527491A1 (fr) Methode d'amelioration d'une pale afin d'augmenter son incidence negative de decrochage
EP2496472B1 (fr) Mat reacteur equipe d'un generateur de tourbillons et son procede de fabrication
CA2850243A1 (fr) Pale pour une helice de turbomachine, notamment a soufflante non carenee, helice et turbomachine correspondantes
WO2013083937A1 (fr) Procede pour realiser un element de liaison dispose entre deux pieces d'une structure, element de liaison et turbomoteur a double flux comprenant un tel element de liaison
FR3073824A1 (fr) Ensemble pour aeronef comprenant une structure primaire de mat d'accrochage fixee a un caisson de voilure par des attaches partiellement enterrees dans la structure primaire
EP1607328A1 (fr) Nacelle de réacteur pour avion supersonique
FR3021706A1 (fr) Turbopropulseur d'aeronef comportant deux helices coaxiales.
FR2945790A1 (fr) Procede pour l'amelioration de l'efficacite aerodynamique de l'empennage vertical d'un aeronef.
FR2922520A1 (fr) Procede de reduction de la trainee de compressibilite d'une voilure et conteneur mettant en oeuvre ce procede
EP3984883B1 (fr) Methode d'amelioration du comportement aerodynamique de pales d'un giravion en vol stationnaire par un deplacement du bord d'attaque des profils aerodynamiques de ces pales
EP1145953A1 (fr) Mât de suspension profilé de voilure d'aéronef
EP2337951B1 (fr) Éolienne a axe vertical
EP3540205A1 (fr) Groupe propulseur d'aéronef dont la nacelle est liée par un pivot à l'arbre d'entraînement de sa soufflante
FR2973774A1 (fr) Procede d'amelioration de l'efficacite aerodynamique d'un empennage vertical d'aeronef.
EP3442864B1 (fr) Manchon de pale de rotor d'un aéronef muni d'une protubérance en zone arrière et rotor muni d'un tel manchon
FR2993861A1 (fr) Ensemble turboreacteur et capotage du pylone de fixation a la voilure d'un aeronef
EP2639153A1 (fr) Aéronef comprenant des carénages visant à corriger sa dissymétrie ou son asymétrie latérale
FR3102973A1 (fr) Procédé d’atténuation d’instabilités aéroélastiques dans des avions à fonctionnement transsonique et avion équipé de dispositifs de mise en œuvre du procédé par intervention directe dans la couche limite aérodynamique

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080050175.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10787857

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010787857

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13508283

Country of ref document: US