WO2011052847A1 - Multi-selective micro manipulator - Google Patents

Multi-selective micro manipulator Download PDF

Info

Publication number
WO2011052847A1
WO2011052847A1 PCT/KR2009/007720 KR2009007720W WO2011052847A1 WO 2011052847 A1 WO2011052847 A1 WO 2011052847A1 KR 2009007720 W KR2009007720 W KR 2009007720W WO 2011052847 A1 WO2011052847 A1 WO 2011052847A1
Authority
WO
WIPO (PCT)
Prior art keywords
main mover
submover
selective
lever
groove
Prior art date
Application number
PCT/KR2009/007720
Other languages
French (fr)
Inventor
Eui Sung Yoon
Sung Wook Yang
Jinseok Kim
Duk Moon Rho
Jei Won Cho
Hee Sup Shin
Original Assignee
Korea Institute Of Science And Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Korea Institute Of Science And Technology filed Critical Korea Institute Of Science And Technology
Priority to EP09850918.5A priority Critical patent/EP2493665B1/en
Publication of WO2011052847A1 publication Critical patent/WO2011052847A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J7/00Micromanipulators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/70Manipulators specially adapted for use in surgery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/70Manipulators specially adapted for use in surgery
    • A61B34/72Micromanipulators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6846Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive
    • A61B5/6867Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive specially adapted to be attached or implanted in a specific body part
    • A61B5/6868Brain
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6846Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive
    • A61B5/6879Means for maintaining contact with the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00367Details of actuation of instruments, e.g. relations between pushing buttons, or the like, and activation of the tool, working tip, or the like
    • A61B2017/00398Details of actuation of instruments, e.g. relations between pushing buttons, or the like, and activation of the tool, working tip, or the like using powered actuators, e.g. stepper motors, solenoids
    • A61B2017/00402Piezo electric actuators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/34Trocars; Puncturing needles
    • A61B17/3403Needle locating or guiding means
    • A61B2017/3405Needle locating or guiding means using mechanical guide means
    • A61B2017/3409Needle locating or guiding means using mechanical guide means including needle or instrument drives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/08Accessories or related features not otherwise provided for
    • A61B2090/0807Indication means
    • A61B2090/0811Indication means for the position of a particular part of an instrument with respect to the rest of the instrument, e.g. position of the anvil of a stapling instrument
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/04Electrodes
    • A61N1/05Electrodes for implantation or insertion into the body, e.g. heart electrode
    • A61N1/0526Head electrodes
    • A61N1/0529Electrodes for brain stimulation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T74/00Machine element or mechanism
    • Y10T74/15Intermittent grip type mechanical movement
    • Y10T74/1526Oscillation or reciprocation to intermittent unidirectional motion
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T74/00Machine element or mechanism
    • Y10T74/18Mechanical movements
    • Y10T74/18056Rotary to or from reciprocating or oscillating
    • Y10T74/18296Cam and slide
    • Y10T74/18304Axial cam
    • Y10T74/18312Grooved
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T74/00Machine element or mechanism
    • Y10T74/20Control lever and linkage systems
    • Y10T74/20207Multiple controlling elements for single controlled element
    • Y10T74/20366Power and manual controlling elements

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Robotics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Neurology (AREA)
  • Mechanical Engineering (AREA)
  • Manipulator (AREA)
  • Microscoopes, Condenser (AREA)

Abstract

Disclosed is a multi-selective micromanipulator capable of controlling the motion of a main mover using a single actuator to linearly move a plurality of submovers selectively. The multi-selective micromanipulator includes a main mover which moves linearly or rotationally with respect to an axis, a driving means which moves the main mover, a lever which is formed on the main mover, and a plurality of submovers which the lever contacts with selectively depending on the movement of the main mover, wherein a selected submover is linearly moved by the lever in a direction parallel to the axis direction.

Description

MULTI-SELECTIVE MICRO MANIPULATOR
This disclosure relates to a micromanipulator, more particularly to a multi-selective micromanipulator capable of controlling the motion of a main mover using a single actuator to linearly move a plurality of submovers selectively.
A living organism consists of numerous nerve cells, which mediate transmission of information. The transmission of information between the nerve cells is achieved by sending and receiving of electrical signals. That is, the nerve cells transmit information to other nerve cells by means of specific electrical signals. This also means that the nerve cells are sensitive to external electrical stimulations.
Electrophysiology is the discipline that studies the relationship between living organisms and electricity. In other words, electrophysiology involves the study of the effect of electricity on living organisms and the electrical phenomena occurring in living organisms. Electrophysiology is making rapid progress with the development of electronic engineering, implantation of electrodes into living organisms, or the like.
Usually, small animals such as mouse are used in experiments to investigate the relationship between nerve cells and electricity. A micromanipulator is used to approach an electrode, which detects electrical signals from the nerve cells of a subject or applies electrical signals to the nerve cells, to the nerve cells.
FIG. 1 schematically illustrates an experimental apparatus used to investigate the relationship between brain nerve cells of a mouse subject and electricity. On the head of a mouse, a micromanipulator 1 which inserts an electrode into the subject is connected to analyze electrical signals from the brain. The micromanipulator 1 is connected to an external signal processor 2. The external signal processor 2 is composed of a controller which controls the motion of the micromanipulator 1, a signal processor which converts an electrical signal from the brain nerve cell into a digital signal and analyzes it, or the like.
As illustrated in FIG. 1, since the micromanipulator 1 is directly fixed to the body of the subject, it needs to have a small size so as not to constrain the motion of the subject. Accordingly, in a micromanipulator module, it is usual to use one actuator to move one electrode.
However, it may be needed to insert a plurality of electrodes at a test site of the subject. In this case, a plurality of micromanipulator modules as many as the electrodes are required to control the motion of the inserted electrodes.
But, since the area of the implanted site is limited, it is difficult to insert a plurality of electrodes at the implanted site when a plurality of micromanipulator modules are used. In addition, as the number of the modules increases, so does the number of actuators to move the electrodes, sensors, or the like. Therefore, to use a plurality of micromanipulators is inefficient in several aspects, including the weight of the apparatus, control, or the like.
This disclosure is directed to providing a multi-selective micromanipulator capable of controlling the motion of a main mover to linearly move a plurality of submovers selectively. Further, it is directed to providing a multi-selective micromanipulator capable of precisely controlling the location of a plurality of electrodes even with a simple structure.
In an aspect, there is provided a multi-selective micromanipulator including a main mover which moves linearly or rotationally with respect to a certain axis, a driving means which moves the main mover, a lever which is formed on the main mover, and a plurality of submovers which the lever contacts with selectively depending on the movement of the main mover. A selected submover is linearly moved by the lever in a direction parallel to the axis direction.
The driving means may include an actuator having a shaft, the main mover may be clamped on the shaft, and the plurality of submovers may be aligned radially around the shaft.
The main mover may have a cylindrical shape, the driving means may include a guide groove formed at a surface of the main mover and a first guide pin which may be engaged with the guide groove, the guide groove may include a plurality of first inclined grooves formed to be inclined right downwardly with respect to a length direction of the shaft and a plurality of second inclined grooves formed to be inclined left downwardly with respect to the length direction of the shaft, the first inclined grooves and the second inclined grooves may be alternately aligned at the side surface of the main mover, and a first inclined groove and a second inclined groove adjacent to each other may be connected to each other to form a sawtooth-shaped guide pin path.
The first guide pin may be located above the submover, the guide groove further may include a plurality of first straight grooves formed in parallel with the length direction of the shaft, and one end of the first straight groove may be connected to an intersection of the first inclined groove and the second inclined groove formed at an upper portion of the main mover and the other end may be formed toward an upper end of the main mover to form an upper entrance through which the first guide pin may enter the intersection of the first inclined groove and the second inclined groove.
The plurality of submovers may be aligned at regular intervals.
The plurality of first straight grooves may be aligned at regular intervals.
The lever may be located in a straight line with the first straight groove.
As the main mover moves linearly downward while the lever is located above the submover, the lever may press an upper end of the submover so that the submover may be moved linearly downward.
A second guide pin located below the submover may be provided, the guide groove may further include a plurality of second straight grooves formed in parallel with the length direction of the shaft, and one end of the second straight groove may be connected to an intersection of the first inclined groove and the second inclined groove formed at a lower portion of the main mover and the other end may be formed toward a lower end of the main mover to form a lower entrance through which the second guide pin may enter the intersection of the first inclined groove and the second inclined groove.
The plurality of first second grooves may be aligned at regular intervals.
As the main mover moves linearly upward while the lever is located below the submover, the lever may lift a lower end of the submover so that the submover may be moved linearly upward.
The actuator may include a piezo motor.
The submover may include an electrode for detecting an electrical signal, and the electrode may extend in a direction parallel to the linear moving direction of the main mover.
The submover may have a plate-shaped head and a body having a diameter smaller than that of the head and extending perpendicularly to the head, and as the main mover moves linearly upward while the lever is located below the submover, the lever may lift the head of the submover so that the electrode attached on the submover may be moved linearly upward.
The multi-selective micromanipulator may further include a position sensor which senses the location of the main mover, and the position sensor may include a magnet fixed to the main mover and a magnetic sensor which senses the location of the magnet.
In accordance with the disclosure, the motion of a main mover may be controlled using a single actuator to linearly move a plurality of submovers selectively. Accordingly, the number of actuators needed to linearly move the plurality of submovers is minimized. Consequently, the multi-selective micromanipulator may have simple structure and small size.
Further, because the motion of the submovers may be controlled precisely, the micromanipulator may be used to move electrodes whose locations should be precisely controlled.
The above and other aspects, features and advantages of the disclosed exemplary embodiments will be more apparent from the following detailed description taken in conjunction with the accompanying drawings in which:
FIG. 1 schematically illustrates an experimental apparatus used to investigate the relationship between brain nerve cells of a mouse subject and electricity;
FIG. 2 is an exploded perspective view of a micromanipulator according to an embodiment;
FIG. 3 is an assembled perspective view of a micromanipulator according to an embodiment;
FIGS. 4 to 9 schematically illustrate an operation of a micromanipulator according to an embodiment;
FIG. 10 is a front view illustrating intervals between electrodes, first straight grooves and second straight grooves; and
FIGS. 11 to 15 schematically illustrate an operation of a micromanipulator according to another embodiment.
Exemplary embodiments now will be described more fully hereinafter with reference to the accompanying drawings, in which exemplary embodiments are shown. This disclosure may, however, be embodied in many different forms and should not be construed as limited to the exemplary embodiments set forth therein. Rather, these exemplary embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of this disclosure to those skilled in the art. In the description, details of well-known features and techniques may be omitted to avoid unnecessarily obscuring the presented embodiments.
The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of this disclosure. As used herein, the singular forms "a", "an" and "the" are intended to include the plural forms as well, unless the context clearly indicates otherwise. Furthermore, the use of the terms a, an, etc. does not denote a limitation of quantity, but rather denotes the presence of at least one of the referenced item. The use of the terms "first", "second" and the like does not imply any particular order, but they are included to identify individual elements. Moreover, the use of the terms first, second, etc. does not denote any order or importance, but rather the terms first, second, etc. are used to distinguish one element from another. It will be further understood that the terms "comprises" and/or "comprising" or "includes" and/or "including" when used in this specification, specify the presence of stated features, regions, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, regions, integers, steps, operations, elements, components, and/or groups thereof.
Unless otherwise defined, all terms (including technical and scientific terms) used herein have the same meaning as commonly understood by one of ordinary skill in the art. It will be further understood that terms, such as those defined in commonly used dictionaries, should be interpreted as having a meaning that is consistent with their meaning in the context of the relevant art and the present disclosure, and will not be interpreted in an idealized or overly formal sense unless expressly so defined herein.
In the drawings, like reference numerals in the drawings denote like elements. The shape, size and regions, and the like, of the drawing may be exaggerated for clarity.
FIG. 2 is an exploded perspective view and FIG. 3 is an assembled perspective view of a micromanipulator according to an embodiment. In FIG. 3, a case 21, 22 is partly cut open to show inside of the micromanipulator.
Referring to FIG. 2 and FIG. 3, a micromanipulator according to an embodiment comprises a cylindrical main mover 40 and a driving means for moving the main mover 40.
In an embodiment, the driving means includes a piezo motor comprising a vibrator 11 and a shaft 12. The piezo motor is used as an actuator to move the main mover 40. When an external power is applied to the piezo motor, the vibrator 11 made of a piezoelectric material undergoes a mechanical deformation and thereby vibrates the shaft 12. Then, the main mover 40 clamped on the shaft 12 is linearly moved by inertia.
The specific construction of the piezo motor and the principle by which the main mover 40 is linearly moved are well known to those skilled in the art. Therefore, a detailed description thereof will be omitted.
In this embodiment, the main mover 40 is clamped on the shaft 12. When the piezo motor 10 operates, the main mover 40 is linearly moved by the shaft 12. That is, the main mover 40 moves linearly along an axis formed by the shaft 12. Because of the operation characteristics of the piezo motor 10, the main mover 40 moves linearly, not rotationally.
The piezo motor 10 and the main mover 40 are provided in a case 21, 22, 23. Although not illustrated in detail in the figure, the shaft 12 of the motor 10 penetrates central parts of an upper case 21 and a lower case 23. As the motor 10 penetrates the centers of the upper and lower cases 21, 23, the center of mass of the micromanipulator lies at the central part and its structure is stabilized. In addition, the dimension of the micromanipulator in a traverse direction is reduced.
The shaft 12 is fixed to the upper and lower cases 21, 23 by using epoxy or the like at the intersections. That is to say, the shaft 12 is fixed to the upper and lower cases with such a strength that it may minutely vibrate upward and downward, rather than rigidly.
As such, when the piezo motor 10 is operated, the main mover 40 accommodated in the case 22 is linearly moved upward and downward by the shaft 12.
According to this embodiment, a plurality of submovers 31 to 36 is selectively moved by the main mover 40. In an embodiment the submovers may include a plurality of electrodes for detecting electrical signals.
As illustrated in FIG. 2 and FIG. 3, the plurality of electrodes attached on the submovers 31 to 36 extend in a direction parallel to a linear moving direction 100 of the main mover 40. The plurality of electrodes penetrates the lower case 23 and may move linearly upward and downward with respect to the lower case 23. The plurality of submovers 31 to 36 including electrodes are aligned radially around the shaft 12.
Referring to FIG. 3, a lever 41 protrudes at a lower portion of the surface of the main mover 40. In an embodiment, the lever 41 is a rectangular plate. As the main mover 40 moves downward, the bottom of the lever 41 presses the upper end of the submover, so that the electrode attached on the submover is linearly moved downward.
In this embodiment, the main mover 40 has one lever 41. Therefore, in order to select a desired electrode to move it linearly, it is needed to rotate the main mover 40 with respect to the shaft 12 and move the lever 41 right above the electrode.
As described, the piezo motor 10 is an actuator which linearly moves the main mover 40 in the vertical direction 100. Therefore, in this embodiment, the driving means further comprises a rotational driver to rotate the main mover 40.
Referring again to FIG. 3, the driving means includes a guide groove 70 formed at a surface of the main mover 40, and a first guide pin 51 which may be engaged with the guide groove 70.
In this embodiment, the first guide pin 51 is inserted into the case 22 through a formed hole. The first guide pin 51 extends in a direction perpendicular to the shaft 12. The first guide pin 51 is located above the upper ends of the submovers 31 to 36.
The guide groove 70 comprises a plurality of first inclined grooves 71 formed to be inclined right downwardly with respect to a length direction of the shaft 12, and a plurality of second inclined grooves 72 formed to be inclined left downwardly with respect to the length direction of the shaft 12. As illustrated in FIG. 3, the first inclined grooves 71 and the second inclined grooves 72 are alternately aligned at the side surface of the main mover 40. A first inclined groove 71 and a second inclined groove 72 adjacent to each other are connected to each other to form a sawtooth-shaped guide pin path 73, as represented by a broken line in FIG. 3.
The guide groove 70 further comprises a plurality of first straight grooves 74 formed in parallel with the length direction of the shaft 12. One end of the first straight groove 74 is connected to an intersection of the first inclined groove 71 and the second inclined groove 72 formed at an upper portion of the main mover 40. The other end of the first straight groove 74 is formed toward an upper end of the main mover 40 to form an upper entrance 75 through which the first guide pin 51 may enter the intersection of the first inclined groove 71 and the second inclined groove 72.
In addition, the guide groove 70 further comprises a plurality of second straight grooves 76 formed in parallel with the length direction of the shaft 12. One end of the second straight groove 76 is connected to an intersection of the first inclined groove 71 and the second inclined groove 72 formed at a lower portion of the main mover 40. The other end of the second straight groove 76 is formed toward a lower end of the main mover 40 to form a lower entrance 77.
With such a construction of the main mover 40 and with the help of the first guide pin 51, the main mover 40 may be controlled to move only linearly at some section, without rotation, and to move both linearly and rotationally at some other section. Accordingly, by controlling the linear and rotational motion of the main mover 40 to locate the lever 41 above a desired electrode and making the lever 41 press the selected electrode, the electrode may be linearly moved selectively.
Hereinafter, an operation of a micromanipulator according to an embodiment will be described referring to FIGS. 4 to 9. FIGS. 4 to 9 schematically illustrate an operation of a micromanipulator according to an embodiment.
In FIGS. 4 to 9, an operation of moving the lever 41 above the electrode 33 and linearly moving the submover 33 downward will be described.
First, as illustrated in FIG. 4, in a state where the first guide pin 51 is located in a straight line with a first straight groove 74' of the main mover 40, the main mover 40 is linearly moved in an upward direction 101. By this operation, the first guide pin 51 passes through an upper entrance 75' and is engaged with the first straight groove 74'. Because the first straight groove 74' is formed to be vertical, the main mover 40 moves only linearly, without rotation, while the first guide pin 51 passes through the first straight groove 74'.
As the main mover 40 further moves in the upward direction 101, the first guide pin 51 reaches an intersection 81' of a first inclined groove 71' and a second inclined groove 72', as illustrated in FIG. 5.
In the embodiment illustrated in FIG. 4 to 9, the first straight groove 74' and the second inclined groove 72' forms a smoothly curved path, whereas the first straight groove 74' and the first inclined groove 71' forms a sharply curved path. Accordingly, as illustrated in FIG. 6, if the main mover 40 further moves linearly in an upward direction 102, the first guide pin 51 moves along the path formed by the second inclined groove 72' to an intersection 82' of the second inclined groove 72' and a first inclined groove 71". By this operation, the main mover 40 rotates in an arrow direction 202, and, accordingly, the lever 41 is rotated from the original location to the location represented by the broken line.
In this state, if the main mover 40 is moved in a downward direction 103, as illustrated in FIG. 7, the first guide pin 51 moves along a path formed by the first inclined groove 71" and reaches an intersection 81" of the first inclined groove 71" and a second inclined groove 72". By this operation, the main mover 40 rotates in an arrow direction 203, and, accordingly, the lever 41 is rotated from the location represented by the broken line to be located above the submover 33.
If it is desired to select and move a submover other than the submover 33, the above-described upward and downward motion of the main mover 40 is repeated, so that the first guide pin 51 moves sequentially along the paths formed by the first inclined grooves and the second inclined grooves. That is to say, the main mover 40 may be further rotated by repeating the upward and downward motion until the lever 41 is located above the desired submover.
When the lever 41 is located above the submover 33, the main mover 40 is moved in a downward direction 104, as illustrated in FIG. 8. By this operation, the first guide pin 51 moves along a path formed by a first straight groove 74" and is disengaged from the guide groove through an upper entrance 75".
Because the first straight groove 74" is formed to be straight in a vertical direction, the main mover 40 moves only linearly, without rotation, while the first guide pin 51 passes through the path formed by the first straight groove 74". When the lever 41 contacts with the upper end of the submover 33, the main mover 40 is further moved in a downward direction.
That is, if the main mover 40 is further moved in a downward direction 105, as illustrated in FIG. 9, the lever 41 presses the upper end of the submover 33, so that the electrode attached on the submover 33 is linearly moved in a downward direction. At this time, the main mover 40 moves only linearly, without rotation, by the operation of the piezo motor 10.
Therefore, according to this embodiment, a plurality of electrodes may be linearly moved selectively using a single actuator. Accordingly, the multi-selective micromanipulator may have simple structure and high efficiency.
In this embodiment, the main mover 40 rotates in a counterclockwise direction because the first straight groove 74' and the second inclined groove 72' forms a smoothly curved path and the first straight groove 74' and the first inclined groove 71' forms a sharply curved path, as illustrated in FIG. 4 to 9. However, this is only exemplary. The first inclined groove 71 and the second inclined groove 72 may be otherwise adequately designed so that the main mover 40 may move in a clockwise direction 200, as illustrated in FIG. 3.
For precise and accurate control of the rotation of the main mover 40 using the guide groove and the guide pin, the design of the guide groove formed on the main mover 40 should be determined depending on the interval between the plurality of submovers.
Accordingly, in an embodiment, the plurality of submovers 31 to 36 are aligned at regular intervals for easier calculation of the rotation angle of the main mover 40. Further, the plurality of first straight grooves 74 and the plurality of second straight grooves 76 (see FIG. 3) are also aligned at regular intervals.
FIG. 10 is a plan view illustrating intervals between the electrodes, the first straight grooves and the second straight grooves.
As illustrated in FIG. 10, the submovers 31, 32 are spaced apart by a distance T. And, the first straight grooves 74 are spaced apart by a distance t1, and the second straight grooves 76 are spaced apart by a distance t2. In an embodiment, the electrodes, the first straight grooves and the second straight grooves are configured to satisfy the relationships T = 2t1 and t1 = t2. And, the lever 41 is located in a straight line with one of the first straight grooves 74.
In such a configuration, when the guide pin is engaged with one of the first straight grooves, the lever 41 is necessarily located in a straight line with one of the electrodes or in a straight line in the middle of two electrodes.
In a state where the lever 41 is located above the submover 31, the lever 41 may be located above the neighboring submover 32 by two reciprocal upward and downward motion of the main mover 40. Such a configuration is advantageous in that the calculation needed to move the lever 41 above the desired electrode is markedly simplified.
To use the micromanipulator to move an electrode, which is directly inserted into the body of a subject, the moving distance of the submover including the electrode needs to be precisely and accurately controlled.
In an embodiment, a position sensor which measures the location and displacement of the main mover 40 is provided for accurate control of the moving distance of the electrode.
Referring to FIG. 2 and FIG. 3 again, a coupling member 62 is connected to the main mover 40. One end of the coupling member 62 is connected to a frame 63 in such a manner that the coupling member 62 may move upward and downward. The other end is connected to the main mover 40 by means of a bearing 60, so that the rotation of the main mover 40 is not interrupted by the coupling member 62. Accordingly, although the coupling member 62 moves upward and downward as the main mover 40 moves upward and downward, the rotation of the main mover 40 is not interrupted by the coupling member 62.
A permanent magnet 61 is fixed at an end of the coupling member 62. A magnetic sensor (not shown) which detects the location of the permanent magnet 61 by measuring the magnetism emitted from the permanent magnet 61 is provided outside the frame 63.
When the main mover 40 moves upward and downward, so does the permanent magnet 61. The magnetic sensor calculates the location of the moving permanent magnet 61 and, based thereon, calculates the current location and displacement of the main mover 40. The location and displacement of the electrodes moved by the main mover 40 may be calculated from the current location and displacement of the main mover 40 considering the original design of the micromanipulator. Accordingly, once the location and displacement of the main mover 40 are calculated, the location of the submovers including the electrodes moved by the main mover 40 may be precisely calculated, and, based on the result, the moving distance of the electrodes may be accurately controlled.
Hereinafter, an operation of linearly moving the submover upward will be described referring to FIGS. 11 to 15.
FIGS. 11 to 15 schematically illustrate an operation of a micromanipulator according to another embodiment.
As illustrated in FIG. 11, in an embodiment, the submover comprises a plate-shaped head 31' and a body 31" having a diameter smaller than that of the head 31' and extending perpendicularly to the head 31'.
In FIG. 11, all the submovers 31 to 36 are located at lower positions as pressed by the lever 41. In this embodiment, a second guide pin 52 located below the upper end of the electrode is provided to move the electrode upward. On the main mover 40, a plurality of second straight grooves 76 are formed (see FIG. 3). One end of the second straight groove 76 is connected to an intersection of the first inclined groove 71 and the second inclined groove 72 formed at a lower portion of the main mover 40, and the other end is formed toward a lower end of the main mover 40 to form a lower entrance 77.
As in the afore-described embodiment, the electrodes, the first straight grooves and the second straight grooves are configured to satisfy the relationships T = 2t1 and t1 = t2. And, as illustrated in FIG. 11, the second guide pin 52 is spaced from the first guide pin 51 by 1/2 t2. As described above, such a configuration is advantageous in that the calculation needed to move the lever 41 above the desired electrode is simplified.
First, as illustrated in FIG. 11, in a state where the second guide pin 52 is located in a straight line with a second straight groove 76' of the main mover 40, the main mover 40 is linearly moved in a downward direction 106. Then, the second guide pin 52 passes through a lower entrance 77' and is engaged with the second straight groove 76'. Because the second straight groove 76' is formed to be vertical, the main mover 40 moves only linearly, without rotation, while the second guide pin 52 passes through the second straight groove 76'.
As the main mover 40 further moves in a downward direction 107, the second guide pin 52 reaches an intersection 82' of the first inclined groove 71' and the second inclined groove 72', as illustrated in FIG. 12.
In this state, if the main mover 40 is moved in a downward direction 108, as illustrated in FIG. 13, the second guide pin 52 moves along a path formed by the first inclined groove 71' and reaches an intersection 81' of the second inclined groove 72" and the first inclined groove 71'. By this operation, the main mover 40 rotates in an arrow direction 208, and, accordingly, the lever 41 is also rotated.
When the main mover 40 is moved in an upward direction 109, as illustrated in FIG. 14, the second guide pin 52 moves along a path formed by the second inclined groove 72" and reaches an intersection 82" of the first inclined groove 71" and the second inclined groove 72". By this operation, the main mover 40 is further rotated in an arrow direction 209, and the lever 41 is further rotated to be located below the head of the submover 34.
When the main mover 40 is further moved in the upward direction 109, as illustrated in FIG. 15, the lever 41 pushes the head 34' of the submover 34 and lifts the submover 34 including an electrode in an upward direction.
Although example embodiments of the micromanipulator for selectively moving a plurality of electrodes using a single actuator were described, this disclosure is not necessarily limited thereto. For example, the disclosed micromanipulator may be adequately used to linearly move a plurality of submovers using a single actuator in a microrobot where use of several actuators is restricted.
While the exemplary embodiments have been shown and described, it will be understood by those skilled in the art that various changes in form and details may be made thereto without departing from the spirit and scope of this disclosure as defined by the appended claims.
In addition, many modifications can be made to adapt a particular situation or material to the teachings of this disclosure without departing from the essential scope thereof. Therefore, it is intended that this disclosure not be limited to the particular exemplary embodiments disclosed as the best mode contemplated for carrying out this disclosure, but that this disclosure will include all embodiments falling within the scope of the appended claims.

Claims (16)

  1. A multi-selective micromanipulator comprising:
    a main mover which moves linearly or rotationally with respect to a certain axis;
    a driving means which moves the main mover;
    a lever which is formed on the main mover; and
    a plurality of submovers which the lever contacts with selectively depending on the movement of the main mover,
    wherein a selected submover is linearly moved by the lever in a direction parallel to the axis direction.
  2. The multi-selective micromanipulator according to claim 1,
    wherein
    the driving means includes an actuator having a shaft,
    the main mover is clamped on the shaft, and
    the plurality of submovers are aligned radially around the shaft.
  3. The multi-selective micromanipulator according to claim 2,
    wherein
    the main mover has a cylindrical shape,
    the driving means includes a guide groove formed at a surface of the main mover, and a first guide pin which may be engaged with the guide groove,
    the guide groove comprises a plurality of first inclined grooves formed to be inclined right downwardly with respect to a length direction of the shaft, and a plurality of second inclined grooves formed to be inclined left downwardly with respect to the length direction of the shaft,
    the first inclined grooves and the second inclined grooves are alternately aligned at the side surface of the main mover, and
    a first inclined groove and a second inclined groove adjacent to each other are connected to each other to form a sawtooth-shaped guide pin path.
  4. The multi-selective micromanipulator according to claim 3,
    wherein
    the first guide pin is located above the submover,
    the guide groove further comprises a plurality of first straight grooves formed in parallel with the length direction of the shaft, and
    one end of the first straight groove is connected to an intersection of the first inclined groove and the second inclined groove formed at an upper portion of the main mover, and the other end is formed toward an upper end of the main mover to form an upper entrance through which the first guide pin may enter the intersection of the first inclined groove and the second inclined groove.
  5. The multi-selective micromanipulator according to claim 4,
    wherein the plurality of submovers are aligned at regular intervals.
  6. The multi-selective micromanipulator according to claim 5,
    wherein the plurality of first straight grooves are aligned at regular intervals.
  7. The multi-selective micromanipulator according to claim 6,
    wherein the lever is located in a straight line with the first straight groove.
  8. The multi-selective micromanipulator according to claim 7,
    wherein, as the main mover moves linearly downward while the lever is located above the submover, the lever presses an upper end of the submover so that the submover is moved linearly downward.
  9. The multi-selective micromanipulator according to claim 8,
    wherein
    a second guide pin located below the submover is provided,
    the guide groove further comprises a plurality of second straight grooves formed in parallel with the length direction of the shaft, and
    one end of the second straight groove is connected to an intersection of the first inclined groove and the second inclined groove formed at a lower portion of the main mover, and the other end is formed toward a lower end of the main mover to form a lower entrance through which the second guide pin may enter the intersection of the first inclined groove and the second inclined groove.
  10. The multi-selective micromanipulator according to claim 9,
    wherein the plurality of second straight grooves are aligned at regular intervals.
  11. The multi-selective micromanipulator according to claim 10,
    wherein, as the main mover moves linearly upward while the lever is located below the submover, the lever lifts a lower end of the submover so that the submover is moved linearly upward.
  12. The multi-selective micromanipulator according to claim 11,
    wherein the actuator is a piezo motor.
  13. The multi-selective micromanipulator according to claim 12,
    wherein
    the submover includes an electrode for detecting an electrical signal, and
    the electrode extends in a direction parallel to the linear moving direction of the main mover.
  14. The multi-selective micromanipulator according to claim 13,
    wherein
    the submover comprises a plate-shaped head and a body having a diameter smaller than that of the head and extending perpendicularly to the head, and
    as the main mover moves linearly upward while the lever is located below the submover, the lever lifts the head of the submover so that the electrode attached on the submover is moved linearly upward.
  15. The multi-selective micromanipulator according to claim 1, further comprising a position sensor which senses the location of the main mover.
  16. The multi-selective micromanipulator according to claim 15, wherein the position sensor comprises a magnet fixed to the main mover and a magnetic sensor which senses the location of the magnet.
PCT/KR2009/007720 2009-10-29 2009-12-23 Multi-selective micro manipulator WO2011052847A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP09850918.5A EP2493665B1 (en) 2009-10-29 2009-12-23 Multi-selective micro manipulator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2009-0103753 2009-10-29
KR1020090103753A KR101091610B1 (en) 2009-10-29 2009-10-29 Multi-Selective Micro Manipulator

Publications (1)

Publication Number Publication Date
WO2011052847A1 true WO2011052847A1 (en) 2011-05-05

Family

ID=43922264

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2009/007720 WO2011052847A1 (en) 2009-10-29 2009-12-23 Multi-selective micro manipulator

Country Status (4)

Country Link
US (1) US8707809B2 (en)
EP (1) EP2493665B1 (en)
KR (1) KR101091610B1 (en)
WO (1) WO2011052847A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016166740A1 (en) 2015-04-16 2016-10-20 Universidade Do Minho Cap with retractable electrode pins for use in eeg

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07198314A (en) * 1993-12-28 1995-08-01 Jeol Ltd Apparatus for reproducing tip of probe of microscope and so on using scanning probe
JP2000060817A (en) * 1998-08-24 2000-02-29 Agency Of Ind Science & Technol Device for controlling position of electrode for measuring nerve cell activity
KR100608998B1 (en) * 2004-12-29 2006-08-09 한국과학기술연구원 Micro-manipulator and manipulation method for electrode movement and measurement system of brain signal the same

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6057682A (en) * 1998-04-17 2000-05-02 Cts Corporation Dual rotational and linear position sensor
US6249691B1 (en) * 1999-03-05 2001-06-19 California Institute Of Technology Chronic chamber microdrive
US6556869B1 (en) * 1999-12-01 2003-04-29 Vertis Neuroscience, Inc. Electrode introducer for a percutaneous electrical therapy system
IL151315A (en) * 2002-08-18 2010-04-29 Maroon J Abu Nassar Device for electrode positioning
GB2394261A (en) * 2002-10-19 2004-04-21 Luk Lamellen & Kupplungsbau Shift mechanism having a rotating drum
JP4244650B2 (en) * 2003-02-13 2009-03-25 株式会社日立製作所 Shifting operation device
EP1841990A1 (en) * 2005-01-20 2007-10-10 LuK Lamellen und Kupplungsbau Beteiligungs KG Motor vehicle gearbox actuator for operation of a motor vehicle gearbox
US7466063B2 (en) * 2006-06-27 2008-12-16 Korea Institute Of Science And Technology Micro manipulator for movement of electrode, driving method thereof, and measuring device of brain signal using the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07198314A (en) * 1993-12-28 1995-08-01 Jeol Ltd Apparatus for reproducing tip of probe of microscope and so on using scanning probe
JP2000060817A (en) * 1998-08-24 2000-02-29 Agency Of Ind Science & Technol Device for controlling position of electrode for measuring nerve cell activity
KR100608998B1 (en) * 2004-12-29 2006-08-09 한국과학기술연구원 Micro-manipulator and manipulation method for electrode movement and measurement system of brain signal the same

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CHAM, J.G. ET AL.: "Semi-Chronic Motorized Microdrive and Control Algorithm for Autonomously Isolating and Maintaining Optimal Extracellular Action Potentials", JOURNAL OF NEUROPHYSIOLOGY, vol. 93, 2005, pages 570 - 579, XP008155114 *
YANG, S. ET AL.: "Piezo motor based Microdrive for Neural Signal Recording.", 30TH ANNUAL INTERNATIONAL IEEE EMBS CONFERENCE, 20 August 2008 (2008-08-20) - 24 August 2008 (2008-08-24), VANCOUVER, CANADA, pages 3364 - 3367, XP008155113 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016166740A1 (en) 2015-04-16 2016-10-20 Universidade Do Minho Cap with retractable electrode pins for use in eeg

Also Published As

Publication number Publication date
KR101091610B1 (en) 2011-12-13
US8707809B2 (en) 2014-04-29
KR20110047005A (en) 2011-05-06
EP2493665B1 (en) 2017-09-13
EP2493665A4 (en) 2014-05-07
EP2493665A1 (en) 2012-09-05
US20110100147A1 (en) 2011-05-05

Similar Documents

Publication Publication Date Title
WO2010038947A2 (en) Small stereoscopic image photographing apparatus
WO2020149508A1 (en) Modular photovoltaic panel cleaning device
WO2011093553A1 (en) Planar 3-dof stage
WO2014042402A2 (en) Ball having information display function
WO2010098558A2 (en) Probe block
WO2013162268A1 (en) Five degrees-of-freedom parallel micro robot
WO2015129937A1 (en) Small-sized linear servo actuator
WO2019093718A1 (en) Robot arm extension device and robot including same
WO2011052847A1 (en) Multi-selective micro manipulator
WO2015167030A1 (en) Detachable industrial network module
WO2015037837A1 (en) Tactile sensor using fine droplets of liquid metal
WO2012023840A2 (en) Detection system using magnetic resistance sensor
KR20100077901A (en) Micro manipulator for electrode movement in neural signal recording
WO2017039105A1 (en) Roller module having magnetic bearing and permanent magnet portion
CN112676889B (en) Operating system for microassembly
WO2021033948A1 (en) Plate connecting assembly
WO2016200094A1 (en) Piezoelectric vibration module
Nagy et al. The magnetic self-aligning hermaphroditic connector a scalable approach for modular microrobots
JP2002162408A (en) Acceleration sensor
WO2020230971A1 (en) Stage device for xrd measurement of battery
WO2023171927A1 (en) Magnetic field generation device
CN216216353U (en) Direct current servo motor
WO2022177295A1 (en) Large-area pressure sensing apparatus
Vítek et al. Modular Platform for Magnetic Minirobots Operation with Integrated Non-Visual Localization
WO2023128375A1 (en) Cognition test and treatment device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09850918

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2009850918

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2009850918

Country of ref document: EP