WO2011051917A1 - Purification of staphylococcus aureus type 5 and type 8 capsular saccharides - Google Patents
Purification of staphylococcus aureus type 5 and type 8 capsular saccharides Download PDFInfo
- Publication number
- WO2011051917A1 WO2011051917A1 PCT/IB2010/054934 IB2010054934W WO2011051917A1 WO 2011051917 A1 WO2011051917 A1 WO 2011051917A1 IB 2010054934 W IB2010054934 W IB 2010054934W WO 2011051917 A1 WO2011051917 A1 WO 2011051917A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- antigen
- polysaccharide
- seq
- type
- protein
- Prior art date
Links
- 150000001720 carbohydrates Chemical class 0.000 title description 31
- 238000000746 purification Methods 0.000 title description 18
- 241000191967 Staphylococcus aureus Species 0.000 title description 7
- 150000004676 glycans Chemical class 0.000 claims abstract description 245
- 229920001282 polysaccharide Polymers 0.000 claims abstract description 243
- 239000005017 polysaccharide Substances 0.000 claims abstract description 243
- 238000000034 method Methods 0.000 claims abstract description 160
- 230000008569 process Effects 0.000 claims abstract description 87
- 102000004169 proteins and genes Human genes 0.000 claims abstract description 64
- 108090000623 proteins and genes Proteins 0.000 claims abstract description 62
- 238000011282 treatment Methods 0.000 claims abstract description 42
- MSFSPUZXLOGKHJ-UHFFFAOYSA-N Muraminsaeure Natural products OC(=O)C(C)OC1C(N)C(O)OC(CO)C1O MSFSPUZXLOGKHJ-UHFFFAOYSA-N 0.000 claims abstract description 35
- 108010013639 Peptidoglycan Proteins 0.000 claims abstract description 35
- 238000005571 anion exchange chromatography Methods 0.000 claims abstract description 24
- 108020004707 nucleic acids Proteins 0.000 claims abstract description 21
- 102000039446 nucleic acids Human genes 0.000 claims abstract description 21
- 150000007523 nucleic acids Chemical class 0.000 claims abstract description 21
- 239000002253 acid Substances 0.000 claims abstract description 15
- 238000011026 diafiltration Methods 0.000 claims abstract description 15
- 108091007433 antigens Proteins 0.000 claims description 303
- 102000036639 antigens Human genes 0.000 claims description 303
- 239000000427 antigen Substances 0.000 claims description 287
- 239000000203 mixture Substances 0.000 claims description 70
- 101150079015 esxB gene Proteins 0.000 claims description 35
- 101150016690 esxA gene Proteins 0.000 claims description 34
- 238000011109 contamination Methods 0.000 claims description 30
- 238000006640 acetylation reaction Methods 0.000 claims description 28
- 101150024289 hly gene Proteins 0.000 claims description 28
- 238000002523 gelfiltration Methods 0.000 claims description 23
- 238000010306 acid treatment Methods 0.000 claims description 19
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 claims description 18
- 230000021615 conjugation Effects 0.000 claims description 18
- 238000009295 crossflow filtration Methods 0.000 claims description 14
- 238000005119 centrifugation Methods 0.000 claims description 11
- 102000016911 Deoxyribonucleases Human genes 0.000 claims description 9
- 108010053770 Deoxyribonucleases Proteins 0.000 claims description 9
- 108010083644 Ribonucleases Proteins 0.000 claims description 9
- 102000006382 Ribonucleases Human genes 0.000 claims description 9
- 101100041727 Staphylococcus aureus (strain NCTC 8325 / PS 47) sasF gene Proteins 0.000 claims description 9
- 101150057984 isdB gene Proteins 0.000 claims description 9
- 101150026034 esxC gene Proteins 0.000 claims description 8
- 229920001542 oligosaccharide Polymers 0.000 claims description 8
- 150000002482 oligosaccharides Chemical class 0.000 claims description 8
- 101150064504 sdrC gene Proteins 0.000 claims description 8
- 101150009625 sdrD gene Proteins 0.000 claims description 8
- 101150085107 clfA gene Proteins 0.000 claims description 7
- 101150018857 emp gene Proteins 0.000 claims description 7
- 101150116335 isdA gene Proteins 0.000 claims description 7
- 101150003115 isdC gene Proteins 0.000 claims description 7
- 239000006228 supernatant Substances 0.000 claims description 7
- 101150035844 clfB gene Proteins 0.000 claims description 6
- 108010009719 mutanolysin Proteins 0.000 claims description 6
- 239000012736 aqueous medium Substances 0.000 claims description 2
- 238000011146 sterile filtration Methods 0.000 claims description 2
- 238000006386 neutralization reaction Methods 0.000 claims 1
- 238000012545 processing Methods 0.000 abstract description 10
- 230000002255 enzymatic effect Effects 0.000 abstract description 9
- 239000000356 contaminant Substances 0.000 abstract description 8
- 108091005461 Nucleic proteins Proteins 0.000 abstract description 3
- 239000013541 low molecular weight contaminant Substances 0.000 abstract description 3
- 150000001413 amino acids Chemical class 0.000 description 117
- 239000012634 fragment Substances 0.000 description 102
- 235000001014 amino acid Nutrition 0.000 description 79
- 229940024606 amino acid Drugs 0.000 description 77
- 235000018102 proteins Nutrition 0.000 description 60
- 210000004027 cell Anatomy 0.000 description 35
- 108090000765 processed proteins & peptides Proteins 0.000 description 30
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 27
- 229960005486 vaccine Drugs 0.000 description 27
- 239000000872 buffer Substances 0.000 description 26
- 102000004196 processed proteins & peptides Human genes 0.000 description 26
- 229920001184 polypeptide Polymers 0.000 description 24
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 22
- 125000001429 N-terminal alpha-amino-acid group Chemical group 0.000 description 19
- 102000014914 Carrier Proteins Human genes 0.000 description 18
- 108020001580 protein domains Proteins 0.000 description 18
- 108010078791 Carrier Proteins Proteins 0.000 description 16
- 108090000988 Lysostaphin Proteins 0.000 description 14
- 230000001580 bacterial effect Effects 0.000 description 14
- 125000001433 C-terminal amino-acid group Chemical group 0.000 description 13
- 239000011780 sodium chloride Substances 0.000 description 12
- JQWHASGSAFIOCM-UHFFFAOYSA-M sodium periodate Chemical compound [Na+].[O-]I(=O)(=O)=O JQWHASGSAFIOCM-UHFFFAOYSA-M 0.000 description 12
- 239000000725 suspension Substances 0.000 description 12
- 239000011347 resin Substances 0.000 description 11
- 229920005989 resin Polymers 0.000 description 11
- 238000004587 chromatography analysis Methods 0.000 description 10
- 230000035772 mutation Effects 0.000 description 10
- 239000000243 solution Substances 0.000 description 10
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 9
- 239000012528 membrane Substances 0.000 description 9
- 238000002360 preparation method Methods 0.000 description 9
- 238000003860 storage Methods 0.000 description 9
- 108010076504 Protein Sorting Signals Proteins 0.000 description 8
- 239000008188 pellet Substances 0.000 description 8
- HNDVDQJCIGZPNO-YFKPBYRVSA-N L-histidine Chemical compound OC(=O)[C@@H](N)CC1=CN=CN1 HNDVDQJCIGZPNO-YFKPBYRVSA-N 0.000 description 7
- 238000004108 freeze drying Methods 0.000 description 7
- 229940027941 immunoglobulin g Drugs 0.000 description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 7
- 241000894006 Bacteria Species 0.000 description 6
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 6
- 102000003839 Human Proteins Human genes 0.000 description 6
- 108090000144 Human Proteins Proteins 0.000 description 6
- 238000010521 absorption reaction Methods 0.000 description 6
- 235000014633 carbohydrates Nutrition 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 6
- 230000005847 immunogenicity Effects 0.000 description 6
- 239000000523 sample Substances 0.000 description 6
- 108010060123 Conjugate Vaccines Proteins 0.000 description 5
- LRQKBLKVPFOOQJ-YFKPBYRVSA-N L-norleucine Chemical compound CCCC[C@H]([NH3+])C([O-])=O LRQKBLKVPFOOQJ-YFKPBYRVSA-N 0.000 description 5
- 238000005481 NMR spectroscopy Methods 0.000 description 5
- 201000005702 Pertussis Diseases 0.000 description 5
- 238000007792 addition Methods 0.000 description 5
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 5
- 229940031670 conjugate vaccine Drugs 0.000 description 5
- 238000000502 dialysis Methods 0.000 description 5
- 206010013023 diphtheria Diseases 0.000 description 5
- 239000000499 gel Substances 0.000 description 5
- 229960002885 histidine Drugs 0.000 description 5
- -1 1 Chemical class 0.000 description 4
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 description 4
- BFSVOASYOCHEOV-UHFFFAOYSA-N 2-diethylaminoethanol Chemical compound CCN(CC)CCO BFSVOASYOCHEOV-UHFFFAOYSA-N 0.000 description 4
- 108010071134 CRM197 (non-toxic variant of diphtheria toxin) Proteins 0.000 description 4
- 229920002271 DEAE-Sepharose Polymers 0.000 description 4
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 4
- 241000606768 Haemophilus influenzae Species 0.000 description 4
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 4
- GLUUGHFHXGJENI-UHFFFAOYSA-N Piperazine Chemical compound C1CNCCN1 GLUUGHFHXGJENI-UHFFFAOYSA-N 0.000 description 4
- NQRYJNQNLNOLGT-UHFFFAOYSA-N Piperidine Chemical compound C1CCNCC1 NQRYJNQNLNOLGT-UHFFFAOYSA-N 0.000 description 4
- 206010043376 Tetanus Diseases 0.000 description 4
- 241000700605 Viruses Species 0.000 description 4
- 239000002671 adjuvant Substances 0.000 description 4
- 229940037003 alum Drugs 0.000 description 4
- 238000003556 assay Methods 0.000 description 4
- 239000000969 carrier Substances 0.000 description 4
- 238000010367 cloning Methods 0.000 description 4
- 239000012153 distilled water Substances 0.000 description 4
- 238000001914 filtration Methods 0.000 description 4
- 230000004927 fusion Effects 0.000 description 4
- HNDVDQJCIGZPNO-UHFFFAOYSA-N histidine Natural products OC(=O)C(N)CC1=CN=CN1 HNDVDQJCIGZPNO-UHFFFAOYSA-N 0.000 description 4
- 230000002163 immunogen Effects 0.000 description 4
- 239000012535 impurity Substances 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 239000011159 matrix material Substances 0.000 description 4
- 239000002609 medium Substances 0.000 description 4
- 244000052769 pathogen Species 0.000 description 4
- 229920000642 polymer Polymers 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 238000006467 substitution reaction Methods 0.000 description 4
- XFNJVJPLKCPIBV-UHFFFAOYSA-N trimethylenediamine Chemical compound NCCCN XFNJVJPLKCPIBV-UHFFFAOYSA-N 0.000 description 4
- WFDIJRYMOXRFFG-UHFFFAOYSA-N Acetic anhydride Chemical compound CC(=O)OC(C)=O WFDIJRYMOXRFFG-UHFFFAOYSA-N 0.000 description 3
- OAKJQQAXSVQMHS-UHFFFAOYSA-N Hydrazine Chemical compound NN OAKJQQAXSVQMHS-UHFFFAOYSA-N 0.000 description 3
- 108010052285 Membrane Proteins Proteins 0.000 description 3
- 102000018697 Membrane Proteins Human genes 0.000 description 3
- 239000012506 Sephacryl® Substances 0.000 description 3
- 229920005654 Sephadex Polymers 0.000 description 3
- 230000021736 acetylation Effects 0.000 description 3
- 230000000890 antigenic effect Effects 0.000 description 3
- 210000004899 c-terminal region Anatomy 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 239000003480 eluent Substances 0.000 description 3
- 230000007062 hydrolysis Effects 0.000 description 3
- 238000006460 hydrolysis reaction Methods 0.000 description 3
- 238000002649 immunization Methods 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- 238000002347 injection Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 238000000655 nuclear magnetic resonance spectrum Methods 0.000 description 3
- 230000002572 peristaltic effect Effects 0.000 description 3
- 239000008194 pharmaceutical composition Substances 0.000 description 3
- 239000002243 precursor Substances 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- 239000012064 sodium phosphate buffer Substances 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- 230000004083 survival effect Effects 0.000 description 3
- 238000000108 ultra-filtration Methods 0.000 description 3
- 229910001868 water Inorganic materials 0.000 description 3
- HNSDLXPSAYFUHK-UHFFFAOYSA-N 1,4-bis(2-ethylhexyl) sulfosuccinate Chemical compound CCCCC(CC)COC(=O)CC(S(O)(=O)=O)C(=O)OCC(CC)CCCC HNSDLXPSAYFUHK-UHFFFAOYSA-N 0.000 description 2
- PVOAHINGSUIXLS-UHFFFAOYSA-N 1-Methylpiperazine Chemical compound CN1CCNCC1 PVOAHINGSUIXLS-UHFFFAOYSA-N 0.000 description 2
- LMDZBCPBFSXMTL-UHFFFAOYSA-N 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide Chemical compound CCN=C=NCCCN(C)C LMDZBCPBFSXMTL-UHFFFAOYSA-N 0.000 description 2
- 101710092462 Alpha-hemolysin Proteins 0.000 description 2
- 239000007989 BIS-Tris Propane buffer Substances 0.000 description 2
- 241000588832 Bordetella pertussis Species 0.000 description 2
- 241000193163 Clostridioides difficile Species 0.000 description 2
- 108010016626 Dipeptides Proteins 0.000 description 2
- 229920002444 Exopolysaccharide Polymers 0.000 description 2
- 102000008100 Human Serum Albumin Human genes 0.000 description 2
- 108091006905 Human Serum Albumin Proteins 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- 108060003951 Immunoglobulin Proteins 0.000 description 2
- FFEARJCKVFRZRR-BYPYZUCNSA-N L-methionine Chemical compound CSCC[C@H](N)C(O)=O FFEARJCKVFRZRR-BYPYZUCNSA-N 0.000 description 2
- 241000699670 Mus sp. Species 0.000 description 2
- 108010062010 N-Acetylmuramoyl-L-alanine Amidase Proteins 0.000 description 2
- 125000003047 N-acetyl group Chemical group 0.000 description 2
- 108091005804 Peptidases Proteins 0.000 description 2
- 206010035664 Pneumonia Diseases 0.000 description 2
- 239000004365 Protease Substances 0.000 description 2
- 241000589517 Pseudomonas aeruginosa Species 0.000 description 2
- 229920001218 Pullulan Polymers 0.000 description 2
- 239000004373 Pullulan Substances 0.000 description 2
- 102100037486 Reverse transcriptase/ribonuclease H Human genes 0.000 description 2
- 241000191963 Staphylococcus epidermidis Species 0.000 description 2
- 210000001744 T-lymphocyte Anatomy 0.000 description 2
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical compound OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 description 2
- 239000007983 Tris buffer Substances 0.000 description 2
- 238000005903 acid hydrolysis reaction Methods 0.000 description 2
- 150000007513 acids Chemical class 0.000 description 2
- 239000011543 agarose gel Substances 0.000 description 2
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 2
- 229910021502 aluminium hydroxide Inorganic materials 0.000 description 2
- ILRRQNADMUWWFW-UHFFFAOYSA-K aluminium phosphate Chemical compound O1[Al]2OP1(=O)O2 ILRRQNADMUWWFW-UHFFFAOYSA-K 0.000 description 2
- 229940001007 aluminium phosphate Drugs 0.000 description 2
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 238000005349 anion exchange Methods 0.000 description 2
- 125000000129 anionic group Chemical group 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 108091008324 binding proteins Proteins 0.000 description 2
- OWMVSZAMULFTJU-UHFFFAOYSA-N bis-tris Chemical compound OCCN(CCO)C(CO)(CO)CO OWMVSZAMULFTJU-UHFFFAOYSA-N 0.000 description 2
- HHKZCCWKTZRCCL-UHFFFAOYSA-N bis-tris propane Chemical compound OCC(CO)(CO)NCCCNC(CO)(CO)CO HHKZCCWKTZRCCL-UHFFFAOYSA-N 0.000 description 2
- 238000012937 correction Methods 0.000 description 2
- OOTFVKOQINZBBF-UHFFFAOYSA-N cystamine Chemical compound CCSSCCN OOTFVKOQINZBBF-UHFFFAOYSA-N 0.000 description 2
- 229940099500 cystamine Drugs 0.000 description 2
- 235000018417 cysteine Nutrition 0.000 description 2
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 description 2
- 230000006378 damage Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- ZBCBWPMODOFKDW-UHFFFAOYSA-N diethanolamine Chemical compound OCCNCCO ZBCBWPMODOFKDW-UHFFFAOYSA-N 0.000 description 2
- 239000003937 drug carrier Substances 0.000 description 2
- 238000006911 enzymatic reaction Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 150000002243 furanoses Chemical group 0.000 description 2
- 239000003228 hemolysin Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 2
- 102000018358 immunoglobulin Human genes 0.000 description 2
- 239000007928 intraperitoneal injection Substances 0.000 description 2
- 231100000518 lethal Toxicity 0.000 description 2
- 230000001665 lethal effect Effects 0.000 description 2
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 2
- 229930182817 methionine Natural products 0.000 description 2
- CRVGTESFCCXCTH-UHFFFAOYSA-N methyl diethanolamine Chemical compound OCCN(C)CCO CRVGTESFCCXCTH-UHFFFAOYSA-N 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 231100000252 nontoxic Toxicity 0.000 description 2
- 230000003000 nontoxic effect Effects 0.000 description 2
- 238000010397 one-hybrid screening Methods 0.000 description 2
- 230000001662 opsonic effect Effects 0.000 description 2
- 230000001717 pathogenic effect Effects 0.000 description 2
- 229920002401 polyacrylamide Polymers 0.000 description 2
- 108010094020 polyglycine Proteins 0.000 description 2
- 150000004804 polysaccharides Polymers 0.000 description 2
- 235000019423 pullulan Nutrition 0.000 description 2
- 150000003214 pyranose derivatives Chemical class 0.000 description 2
- 239000011541 reaction mixture Substances 0.000 description 2
- 238000010845 search algorithm Methods 0.000 description 2
- 238000001542 size-exclusion chromatography Methods 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 235000000346 sugar Nutrition 0.000 description 2
- 230000002588 toxic effect Effects 0.000 description 2
- 239000003053 toxin Substances 0.000 description 2
- 230000032258 transport Effects 0.000 description 2
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 2
- HDTRYLNUVZCQOY-UHFFFAOYSA-N α-D-glucopyranosyl-α-D-glucopyranoside Natural products OC1C(O)C(O)C(CO)OC1OC1C(O)C(O)C(O)C(CO)O1 HDTRYLNUVZCQOY-UHFFFAOYSA-N 0.000 description 1
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 1
- PXFBZOLANLWPMH-UHFFFAOYSA-N 16-Epiaffinine Natural products C1C(C2=CC=CC=C2N2)=C2C(=O)CC2C(=CC)CN(C)C1C2CO PXFBZOLANLWPMH-UHFFFAOYSA-N 0.000 description 1
- MSWZFWKMSRAUBD-UHFFFAOYSA-N 2-Amino-2-Deoxy-Hexose Chemical compound NC1C(O)OC(CO)C(O)C1O MSWZFWKMSRAUBD-UHFFFAOYSA-N 0.000 description 1
- FWMNVWWHGCHHJJ-SKKKGAJSSA-N 4-amino-1-[(2r)-6-amino-2-[[(2r)-2-[[(2r)-2-[[(2r)-2-amino-3-phenylpropanoyl]amino]-3-phenylpropanoyl]amino]-4-methylpentanoyl]amino]hexanoyl]piperidine-4-carboxylic acid Chemical compound C([C@H](C(=O)N[C@H](CC(C)C)C(=O)N[C@H](CCCCN)C(=O)N1CCC(N)(CC1)C(O)=O)NC(=O)[C@H](N)CC=1C=CC=CC=1)C1=CC=CC=C1 FWMNVWWHGCHHJJ-SKKKGAJSSA-N 0.000 description 1
- 208000030507 AIDS Diseases 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- 229920001817 Agar Polymers 0.000 description 1
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 1
- 101710197219 Alpha-toxin Proteins 0.000 description 1
- 108700023418 Amidases Proteins 0.000 description 1
- ATRRKUHOCOJYRX-UHFFFAOYSA-N Ammonium bicarbonate Chemical compound [NH4+].OC([O-])=O ATRRKUHOCOJYRX-UHFFFAOYSA-N 0.000 description 1
- 229910000013 Ammonium bicarbonate Inorganic materials 0.000 description 1
- 102100030009 Azurocidin Human genes 0.000 description 1
- 101710154607 Azurocidin Proteins 0.000 description 1
- 108091008875 B cell receptors Proteins 0.000 description 1
- 101000878103 Bacillus subtilis (strain 168) Iron(3+)-hydroxamate-binding protein FhuD Proteins 0.000 description 1
- 231100000699 Bacterial toxin Toxicity 0.000 description 1
- 101710108797 Bone sialoprotein-binding protein Proteins 0.000 description 1
- 101100039010 Caenorhabditis elegans dis-3 gene Proteins 0.000 description 1
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 1
- 241000222122 Candida albicans Species 0.000 description 1
- 241001647372 Chlamydia pneumoniae Species 0.000 description 1
- 241000606153 Chlamydia trachomatis Species 0.000 description 1
- 101000822677 Clostridium perfringens (strain 13 / Type A) Small, acid-soluble spore protein 1 Proteins 0.000 description 1
- 101000822695 Clostridium perfringens (strain 13 / Type A) Small, acid-soluble spore protein C1 Proteins 0.000 description 1
- 101710198480 Clumping factor A Proteins 0.000 description 1
- 101710198481 Clumping factor B Proteins 0.000 description 1
- 206010011409 Cross infection Diseases 0.000 description 1
- 102000004127 Cytokines Human genes 0.000 description 1
- 108090000695 Cytokines Proteins 0.000 description 1
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 1
- 102100037840 Dehydrogenase/reductase SDR family member 2, mitochondrial Human genes 0.000 description 1
- 108010053187 Diphtheria Toxin Proteins 0.000 description 1
- 102000016607 Diphtheria Toxin Human genes 0.000 description 1
- 241000194032 Enterococcus faecalis Species 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 241000588724 Escherichia coli Species 0.000 description 1
- 108010037362 Extracellular Matrix Proteins Proteins 0.000 description 1
- 102000010834 Extracellular Matrix Proteins Human genes 0.000 description 1
- 102000008946 Fibrinogen Human genes 0.000 description 1
- 101710128530 Fibrinogen-binding protein Proteins 0.000 description 1
- SXRSQZLOMIGNAQ-UHFFFAOYSA-N Glutaraldehyde Chemical compound O=CCCCC=O SXRSQZLOMIGNAQ-UHFFFAOYSA-N 0.000 description 1
- BCCRXDTUTZHDEU-VKHMYHEASA-N Gly-Ser Chemical compound NCC(=O)N[C@@H](CO)C(O)=O BCCRXDTUTZHDEU-VKHMYHEASA-N 0.000 description 1
- 239000004471 Glycine Substances 0.000 description 1
- 102000002812 Heat-Shock Proteins Human genes 0.000 description 1
- 108010004889 Heat-Shock Proteins Proteins 0.000 description 1
- 108010006464 Hemolysin Proteins Proteins 0.000 description 1
- 241000711549 Hepacivirus C Species 0.000 description 1
- 241000700721 Hepatitis B virus Species 0.000 description 1
- 241000709721 Hepatovirus A Species 0.000 description 1
- 108010000540 Hexosaminidases Proteins 0.000 description 1
- 102000002268 Hexosaminidases Human genes 0.000 description 1
- NIKBMHGRNAPJFW-IUCAKERBSA-N His-Arg Chemical compound NC(N)=NCCC[C@@H](C(O)=O)NC(=O)[C@@H](N)CC1=CN=CN1 NIKBMHGRNAPJFW-IUCAKERBSA-N 0.000 description 1
- 241000282412 Homo Species 0.000 description 1
- 101100005713 Homo sapiens CD4 gene Proteins 0.000 description 1
- 206010061598 Immunodeficiency Diseases 0.000 description 1
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical compound C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 description 1
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 description 1
- 125000002061 L-isoleucyl group Chemical group [H]N([H])[C@]([H])(C(=O)[*])[C@](C([H])([H])[H])([H])C(C([H])([H])[H])([H])[H] 0.000 description 1
- KDXKERNSBIXSRK-YFKPBYRVSA-N L-lysine Chemical compound NCCCC[C@H](N)C(O)=O KDXKERNSBIXSRK-YFKPBYRVSA-N 0.000 description 1
- 125000003580 L-valyl group Chemical group [H]N([H])[C@]([H])(C(=O)[*])C(C([H])([H])[H])(C([H])([H])[H])[H] 0.000 description 1
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 1
- 108010000851 Laminin Receptors Proteins 0.000 description 1
- 102000002297 Laminin Receptors Human genes 0.000 description 1
- 241000589242 Legionella pneumophila Species 0.000 description 1
- NFNVDJGXRFEYTK-YUMQZZPRSA-N Leu-Glu Chemical compound CC(C)C[C@H](N)C(=O)N[C@H](C(O)=O)CCC(O)=O NFNVDJGXRFEYTK-YUMQZZPRSA-N 0.000 description 1
- 102000004882 Lipase Human genes 0.000 description 1
- 239000004367 Lipase Substances 0.000 description 1
- 108090001060 Lipase Proteins 0.000 description 1
- 108090001030 Lipoproteins Proteins 0.000 description 1
- 102000004895 Lipoproteins Human genes 0.000 description 1
- 241000186779 Listeria monocytogenes Species 0.000 description 1
- 102000008072 Lymphokines Human genes 0.000 description 1
- 108010074338 Lymphokines Proteins 0.000 description 1
- 239000004472 Lysine Substances 0.000 description 1
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 1
- 229930195725 Mannitol Natural products 0.000 description 1
- 108010090665 Mannosyl-Glycoprotein Endo-beta-N-Acetylglucosaminidase Proteins 0.000 description 1
- 201000005505 Measles Diseases 0.000 description 1
- WXHHTBVYQOSYSL-FXQIFTODSA-N Met-Ala-Ser Chemical compound CSCC[C@H](N)C(=O)N[C@@H](C)C(=O)N[C@@H](CO)C(O)=O WXHHTBVYQOSYSL-FXQIFTODSA-N 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- 241000588655 Moraxella catarrhalis Species 0.000 description 1
- WPNJAUFVNXKLIM-UHFFFAOYSA-N Moxonidine Chemical compound COC1=NC(C)=NC(Cl)=C1NC1=NCCN1 WPNJAUFVNXKLIM-UHFFFAOYSA-N 0.000 description 1
- 208000005647 Mumps Diseases 0.000 description 1
- 241000699666 Mus <mouse, genus> Species 0.000 description 1
- OVRNDRQMDRJTHS-FMDGEEDCSA-N N-acetyl-beta-D-glucosamine Chemical compound CC(=O)N[C@H]1[C@H](O)O[C@H](CO)[C@@H](O)[C@@H]1O OVRNDRQMDRJTHS-FMDGEEDCSA-N 0.000 description 1
- 229910019065 NaOH 1 M Inorganic materials 0.000 description 1
- 241000588652 Neisseria gonorrhoeae Species 0.000 description 1
- 241000588650 Neisseria meningitidis Species 0.000 description 1
- 241001174901 Neisseria meningitidis alpha275 Species 0.000 description 1
- 241000921898 Neisseria meningitidis serogroup A Species 0.000 description 1
- 241000588677 Neisseria meningitidis serogroup B Species 0.000 description 1
- 241000947238 Neisseria meningitidis serogroup C Species 0.000 description 1
- 241001573069 Neisseria meningitidis serogroup Y Species 0.000 description 1
- 102000005348 Neuraminidase Human genes 0.000 description 1
- 108010006232 Neuraminidase Proteins 0.000 description 1
- 102000008763 Neurofilament Proteins Human genes 0.000 description 1
- 108010088373 Neurofilament Proteins Proteins 0.000 description 1
- 108010038807 Oligopeptides Proteins 0.000 description 1
- 102000015636 Oligopeptides Human genes 0.000 description 1
- 101710116435 Outer membrane protein Proteins 0.000 description 1
- 108010058846 Ovalbumin Proteins 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 208000002606 Paramyxoviridae Infections Diseases 0.000 description 1
- 108010081690 Pertussis Toxin Proteins 0.000 description 1
- 101710124951 Phospholipase C Proteins 0.000 description 1
- 101710183389 Pneumolysin Proteins 0.000 description 1
- 208000000474 Poliomyelitis Diseases 0.000 description 1
- 229920000954 Polyglycolide Polymers 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 241000605862 Porphyromonas gingivalis Species 0.000 description 1
- 108010059712 Pronase Proteins 0.000 description 1
- 101710188053 Protein D Proteins 0.000 description 1
- 101000576806 Protobothrops flavoviridis Small serum protein 1 Proteins 0.000 description 1
- 101000576807 Protobothrops flavoviridis Small serum protein 2 Proteins 0.000 description 1
- 101900161471 Pseudomonas aeruginosa Exotoxin A Proteins 0.000 description 1
- 108091030066 RNAIII Proteins 0.000 description 1
- 206010037742 Rabies Diseases 0.000 description 1
- 101710132893 Resolvase Proteins 0.000 description 1
- 101100351057 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) PBP4 gene Proteins 0.000 description 1
- VBKBDLMWICBSCY-IMJSIDKUSA-N Ser-Asp Chemical compound OC[C@H](N)C(=O)N[C@H](C(O)=O)CC(O)=O VBKBDLMWICBSCY-IMJSIDKUSA-N 0.000 description 1
- 102100027287 Serpin H1 Human genes 0.000 description 1
- 108050008290 Serpin H1 Proteins 0.000 description 1
- 101710084578 Short neurotoxin 1 Proteins 0.000 description 1
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 description 1
- 241000191940 Staphylococcus Species 0.000 description 1
- 101100103322 Staphylococcus aureus (strain NCTC 8325 / PS 47) SAOUHSC_00052 gene Proteins 0.000 description 1
- 101100164230 Staphylococcus aureus (strain NCTC 8325 / PS 47) atl gene Proteins 0.000 description 1
- 101100439909 Staphylococcus aureus (strain NCTC 8325 / PS 47) clfA gene Proteins 0.000 description 1
- 101100439917 Staphylococcus aureus (strain NCTC 8325 / PS 47) clfB gene Proteins 0.000 description 1
- 101100501295 Staphylococcus aureus (strain NCTC 8325 / PS 47) emp gene Proteins 0.000 description 1
- 101100333827 Staphylococcus aureus (strain NCTC 8325 / PS 47) esxA gene Proteins 0.000 description 1
- 101100280092 Staphylococcus aureus (strain NCTC 8325 / PS 47) esxB gene Proteins 0.000 description 1
- 101100124415 Staphylococcus aureus (strain NCTC 8325 / PS 47) hly gene Proteins 0.000 description 1
- 101100233387 Staphylococcus aureus (strain NCTC 8325 / PS 47) isdA gene Proteins 0.000 description 1
- 101100019118 Staphylococcus aureus (strain NCTC 8325 / PS 47) isdB gene Proteins 0.000 description 1
- 101100019132 Staphylococcus aureus (strain NCTC 8325 / PS 47) isdC gene Proteins 0.000 description 1
- 101100532858 Staphylococcus aureus (strain NCTC 8325 / PS 47) sdrC gene Proteins 0.000 description 1
- 101100532867 Staphylococcus aureus (strain NCTC 8325 / PS 47) sdrD gene Proteins 0.000 description 1
- 101100096294 Staphylococcus aureus (strain NCTC 8325 / PS 47) spa gene Proteins 0.000 description 1
- 241000193985 Streptococcus agalactiae Species 0.000 description 1
- 241000193998 Streptococcus pneumoniae Species 0.000 description 1
- 241000193996 Streptococcus pyogenes Species 0.000 description 1
- 241001505901 Streptococcus sp. 'group A' Species 0.000 description 1
- 241000193990 Streptococcus sp. 'group B' Species 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- 108091008874 T cell receptors Proteins 0.000 description 1
- 102000016266 T-Cell Antigen Receptors Human genes 0.000 description 1
- 108010055044 Tetanus Toxin Proteins 0.000 description 1
- 101710182223 Toxin B Proteins 0.000 description 1
- 101710182532 Toxin a Proteins 0.000 description 1
- HDTRYLNUVZCQOY-WSWWMNSNSA-N Trehalose Natural products O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](CO)O1 HDTRYLNUVZCQOY-WSWWMNSNSA-N 0.000 description 1
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 1
- 108060008682 Tumor Necrosis Factor Proteins 0.000 description 1
- 102100040247 Tumor necrosis factor Human genes 0.000 description 1
- 108010031318 Vitronectin Proteins 0.000 description 1
- 102100035140 Vitronectin Human genes 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 239000008272 agar Substances 0.000 description 1
- 235000004279 alanine Nutrition 0.000 description 1
- 239000002776 alpha toxin Substances 0.000 description 1
- HDTRYLNUVZCQOY-LIZSDCNHSA-N alpha,alpha-trehalose Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 HDTRYLNUVZCQOY-LIZSDCNHSA-N 0.000 description 1
- 159000000013 aluminium salts Chemical class 0.000 description 1
- 229910000329 aluminium sulfate Inorganic materials 0.000 description 1
- 102000005922 amidase Human genes 0.000 description 1
- 150000001412 amines Chemical group 0.000 description 1
- 235000012538 ammonium bicarbonate Nutrition 0.000 description 1
- 239000001099 ammonium carbonate Substances 0.000 description 1
- 238000010171 animal model Methods 0.000 description 1
- 239000003957 anion exchange resin Substances 0.000 description 1
- 238000010913 antigen-directed enzyme pro-drug therapy Methods 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 125000000637 arginyl group Chemical group N[C@@H](CCCNC(N)=N)C(=O)* 0.000 description 1
- 238000013528 artificial neural network Methods 0.000 description 1
- 210000003719 b-lymphocyte Anatomy 0.000 description 1
- 239000000688 bacterial toxin Substances 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 239000001110 calcium chloride Substances 0.000 description 1
- 229910001628 calcium chloride Inorganic materials 0.000 description 1
- 229940095731 candida albicans Drugs 0.000 description 1
- 150000001718 carbodiimides Chemical class 0.000 description 1
- 150000007942 carboxylates Chemical group 0.000 description 1
- 230000010261 cell growth Effects 0.000 description 1
- 210000002421 cell wall Anatomy 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 229940038705 chlamydia trachomatis Drugs 0.000 description 1
- 230000005757 colony formation Effects 0.000 description 1
- 238000010961 commercial manufacture process Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 230000001268 conjugating effect Effects 0.000 description 1
- 239000013068 control sample Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 239000003431 cross linking reagent Substances 0.000 description 1
- MGNCLNQXLYJVJD-UHFFFAOYSA-N cyanuric chloride Chemical compound ClC1=NC(Cl)=NC(Cl)=N1 MGNCLNQXLYJVJD-UHFFFAOYSA-N 0.000 description 1
- 125000000151 cysteine group Chemical group N[C@@H](CS)C(=O)* 0.000 description 1
- 230000009089 cytolysis Effects 0.000 description 1
- 230000001086 cytosolic effect Effects 0.000 description 1
- 235000013365 dairy product Nutrition 0.000 description 1
- 230000009849 deactivation Effects 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000001784 detoxification Methods 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 229960003983 diphtheria toxoid Drugs 0.000 description 1
- 150000002016 disaccharides Chemical class 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000010828 elution Methods 0.000 description 1
- 239000003995 emulsifying agent Substances 0.000 description 1
- 239000002158 endotoxin Substances 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 229940032049 enterococcus faecalis Drugs 0.000 description 1
- 210000002615 epidermis Anatomy 0.000 description 1
- 238000011067 equilibration Methods 0.000 description 1
- 230000007717 exclusion Effects 0.000 description 1
- 210000002744 extracellular matrix Anatomy 0.000 description 1
- 238000000855 fermentation Methods 0.000 description 1
- 230000004151 fermentation Effects 0.000 description 1
- 229940012952 fibrinogen Drugs 0.000 description 1
- 235000021550 forms of sugar Nutrition 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 238000013467 fragmentation Methods 0.000 description 1
- 238000006062 fragmentation reaction Methods 0.000 description 1
- 238000001641 gel filtration chromatography Methods 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 229930195712 glutamate Natural products 0.000 description 1
- 230000012010 growth Effects 0.000 description 1
- 239000003102 growth factor Substances 0.000 description 1
- 239000001963 growth medium Substances 0.000 description 1
- 150000003278 haem Chemical class 0.000 description 1
- 229940047650 haemophilus influenzae Drugs 0.000 description 1
- 229940045808 haemophilus influenzae type b Drugs 0.000 description 1
- 238000003306 harvesting Methods 0.000 description 1
- 230000002949 hemolytic effect Effects 0.000 description 1
- 229930186900 holotoxin Natural products 0.000 description 1
- 239000005556 hormone Substances 0.000 description 1
- 229940088597 hormone Drugs 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 230000028993 immune response Effects 0.000 description 1
- 230000036039 immunity Effects 0.000 description 1
- 230000002998 immunogenetic effect Effects 0.000 description 1
- 230000006054 immunological memory Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000000338 in vitro Methods 0.000 description 1
- 230000002779 inactivation Effects 0.000 description 1
- 208000015181 infectious disease Diseases 0.000 description 1
- 206010022000 influenza Diseases 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 239000002054 inoculum Substances 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 230000002147 killing effect Effects 0.000 description 1
- 239000008101 lactose Substances 0.000 description 1
- 238000011031 large-scale manufacturing process Methods 0.000 description 1
- 229940115932 legionella pneumophila Drugs 0.000 description 1
- 235000019421 lipase Nutrition 0.000 description 1
- 150000002632 lipids Chemical class 0.000 description 1
- 239000002502 liposome Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000004811 liquid chromatography Methods 0.000 description 1
- 210000004185 liver Anatomy 0.000 description 1
- 239000013627 low molecular weight specie Substances 0.000 description 1
- 125000003588 lysine group Chemical group [H]N([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])(N([H])[H])C(*)=O 0.000 description 1
- 229920002521 macromolecule Polymers 0.000 description 1
- 239000000594 mannitol Substances 0.000 description 1
- 235000010355 mannitol Nutrition 0.000 description 1
- 230000015654 memory Effects 0.000 description 1
- MYWUZJCMWCOHBA-VIFPVBQESA-N methamphetamine Chemical compound CN[C@@H](C)CC1=CC=CC=C1 MYWUZJCMWCOHBA-VIFPVBQESA-N 0.000 description 1
- WSFSSNUMVMOOMR-NJFSPNSNSA-N methanone Chemical compound O=[14CH2] WSFSSNUMVMOOMR-NJFSPNSNSA-N 0.000 description 1
- 108010016686 methionyl-alanyl-serine Proteins 0.000 description 1
- 238000001823 molecular biology technique Methods 0.000 description 1
- 238000010369 molecular cloning Methods 0.000 description 1
- 230000001459 mortal effect Effects 0.000 description 1
- 208000010805 mumps infectious disease Diseases 0.000 description 1
- 229950006780 n-acetylglucosamine Drugs 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 229960005030 other vaccine in atc Drugs 0.000 description 1
- 229940092253 ovalbumin Drugs 0.000 description 1
- 230000033116 oxidation-reduction process Effects 0.000 description 1
- 238000005949 ozonolysis reaction Methods 0.000 description 1
- 239000006179 pH buffering agent Substances 0.000 description 1
- 230000003071 parasitic effect Effects 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 108010021711 pertactin Proteins 0.000 description 1
- 239000000546 pharmaceutical excipient Substances 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 239000008363 phosphate buffer Substances 0.000 description 1
- 239000013612 plasmid Substances 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 229920000747 poly(lactic acid) Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 230000037452 priming Effects 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 235000004252 protein component Nutrition 0.000 description 1
- 238000001814 protein method Methods 0.000 description 1
- 238000000575 proteomic method Methods 0.000 description 1
- 238000000425 proton nuclear magnetic resonance spectrum Methods 0.000 description 1
- 238000011002 quantification Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 108020003175 receptors Proteins 0.000 description 1
- 102000005962 receptors Human genes 0.000 description 1
- 238000006268 reductive amination reaction Methods 0.000 description 1
- 230000003252 repetitive effect Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 239000012465 retentate Substances 0.000 description 1
- 201000005404 rubella Diseases 0.000 description 1
- 238000013341 scale-up Methods 0.000 description 1
- 239000001632 sodium acetate Substances 0.000 description 1
- 235000017281 sodium acetate Nutrition 0.000 description 1
- 239000001488 sodium phosphate Substances 0.000 description 1
- 229910000162 sodium phosphate Inorganic materials 0.000 description 1
- 239000012086 standard solution Substances 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 229940031000 streptococcus pneumoniae Drugs 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 150000005846 sugar alcohols Chemical class 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 229960000814 tetanus toxoid Drugs 0.000 description 1
- 238000006177 thiolation reaction Methods 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 231100000765 toxin Toxicity 0.000 description 1
- 108700012359 toxins Proteins 0.000 description 1
- RYFMWSXOAZQYPI-UHFFFAOYSA-K trisodium phosphate Chemical compound [Na+].[Na+].[Na+].[O-]P([O-])([O-])=O RYFMWSXOAZQYPI-UHFFFAOYSA-K 0.000 description 1
- 241000712461 unidentified influenza virus Species 0.000 description 1
- 241001430294 unidentified retrovirus Species 0.000 description 1
- 230000003612 virological effect Effects 0.000 description 1
- 230000001018 virulence Effects 0.000 description 1
- 239000000304 virulence factor Substances 0.000 description 1
- 230000007923 virulence factor Effects 0.000 description 1
- 108010047303 von Willebrand Factor Proteins 0.000 description 1
- 102100036537 von Willebrand factor Human genes 0.000 description 1
- 229960001134 von willebrand factor Drugs 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
- 239000000080 wetting agent Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07H—SUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
- C07H1/00—Processes for the preparation of sugar derivatives
- C07H1/06—Separation; Purification
- C07H1/08—Separation; Purification from natural products
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/02—Bacterial antigens
- A61K39/085—Staphylococcus
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/04—Antibacterial agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
- A61P37/02—Immunomodulators
- A61P37/04—Immunostimulants
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P43/00—Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P19/00—Preparation of compounds containing saccharide radicals
- C12P19/04—Polysaccharides, i.e. compounds containing more than five saccharide radicals attached to each other by glycosidic bonds
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/555—Medicinal preparations containing antigens or antibodies characterised by a specific combination antigen/adjuvant
- A61K2039/55505—Inorganic adjuvants
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/60—Medicinal preparations containing antigens or antibodies characteristics by the carrier linked to the antigen
- A61K2039/6031—Proteins
- A61K2039/6037—Bacterial toxins, e.g. diphteria toxoid [DT], tetanus toxoid [TT]
Definitions
- This invention is in the field of purifying bacterial capsular polysaccharides, particularly those of Staphylococcus aureus type 5 and type 8, and particularly for use in the preparation of vaccines.
- the capsular saccharides of bacteria have been used for many years in vaccines against capsulated bacteria. As saccharides are T-independent antigens, however, they are poorly immunogenic. Conjugation to a carrier can convert T-independent antigens into T-dependent antigens, thereby enhancing memory responses and allowing protective immunity to develop.
- the most effective saccharide vaccines are therefore based on glycoconjugates, and the prototype conjugate vaccine was against Haemophilus influenzae type b ('Hib') [e.g. see chapter 14 of ref. 96].
- Another bacterium for which conjugate vaccines have been described is Staphylococcus aureus (S. aureus). Various polysaccharides have been isolated from S.
- the starting point for polysaccharide-based vaccines is the polysaccharide itself, and this is generally purified from the target bacterium.
- Fattom et al. have developed a complex process for purification of the type 5 and type 8 capsular polysaccharides that is described in detail in reference 1, and involves the following key steps after bacterial culture: suspension of bacterial cells in buffer, treatment with lysostaphin, treatment with DNase and RNase, centrifugation, dialysis against buffer, treatment with protease, further dialysis, filtration, addition of ethanol to 25% with calcium chloride to precipitate contaminants; further addition of ethanol to 75% to precipitate the polysaccharide; collection and drying of the precipitate; anion exchange chromatography; dialysis; lyophilisation; size exclusion chromatography; dialysis and final lyophilisation.
- the Fattom process involves the use of lysostaphin to lyse the bacterial cell walls and thereby release capsular polysaccharide.
- this step is time-consuming and makes the process difficult to scale- up to an industrial setting. It also increases the overall cost and complexity of the process.
- Other researchers have attempted to omit this step and develop a simpler, more efficient method of purifying the polysaccharide.
- reference [10] describes an alternative process that involves autoclaving S.anreus cells, ultrafiltration of the polysaccharide-containing supernatant, concentration, lyophilisation, treatment with sodium metaperiodate, further ultrafiltration, diafiltration, high performance size exclusion liquid chromatography, dialysis and freeze-drying.
- the invention is based on a purification process in which the polysaccharide is initially released from the bacterial cells by treatment with an acid. This step removes the need for lysostaphin treatment and can be used as an alternative to autoclaving, as in the above processes.
- the inventors have found that the process results in a purified polysaccharide with low teichoic acid contamination. This means that it is not necessary to treat the polysaccharide with sodium metaperiodate.
- the purified polysaccharide also has low peptidoglycan contamination, making it particularly suitable for medical uses.
- the inventors' process can be quick and simple because laborious steps in previous processes are not necessary.
- the invention provides a method for releasing capsular polysaccharide from S. aureus type 5 or type 8 cells, comprising the step of treating the cells with acid.
- the invention further provides a process for purifying capsular polysaccharide from S. aureus type 5 or type 8 cells comprising this method.
- Other processing steps may be included in the process, such as enzymatic treatment, e.g. to remove nucleic acid, protein and/or peptidoglycan contaminants; diafiltration, e.g. to remove low molecular weight contaminants; anion exchange chromatography, e.g. to remove residual protein; and concentration.
- the invention provides a process for purifying S.aureus type 5 or type 8 capsular polysaccharide, comprising the step of releasing the polysaccharide from S.aureus type 5 or type 8 cells by treating the cells with acid.
- the invention provides, in a process for purifying S.aureus type 5 or type 8 capsular polysaccharide, the improvement consisting of the use of acid treatment of S.aureus type 5 or type 8 cells to release the polysaccharide from the cells. Release by acid treatment removes the need for lysostaphin treatment or autoclaving to release the polysaccharide.
- the invention also provides a process for purifying S.aureus type 5 or type 8 capsular polysaccharide, wherein the process does not involve a step of lysostaphin treatment.
- the invention provides a process for purifying S.aureus type 5 or type 8 capsular polysaccharide, wherein the process does not involve a step of sodium metaperiodate treatment. Typically, the process does not involve one or both of these steps.
- the invention also provides a process for purifying S.aureus type 5 or type 8 capsular polysaccharide, wherein the process provides a composition comprising the polysaccharide and a level of peptidoglycan contamination that is less than 5% ⁇ e.g. ⁇ 4%, ⁇ 3%, ⁇ 2%, ⁇ 1%, etc.) by weight peptidoglycan relative to the total weight of the polysaccharide.
- the composition comprises less than 4%, particularly less than 3%, by weight peptidoglycan.
- levels of about 2% or even about 1% can be obtained using the methods of the invention.
- compositions with this level of peptidoglycan are useful in vaccine manufacture.
- reference 17 teaches that levels above 5% should be used for this purpose.
- the level of peptidoglycan contamination may be measured using the methods described herein.
- the invention provides a process for purifying S.aureus type 5 or type 8 capsular polysaccharide, wherein the process provides a composition comprising the polysaccharide and a level of protein contamination that is less than 5% ⁇ e.g. ⁇ 4%, ⁇ 3%, ⁇ 2%, ⁇ 1%, ⁇ 05%, etc.) by weight protein relative to the total weight of the polysaccharide.
- the composition comprises less than 3%, particularly about 2.4%, by weight protein.
- the level of protein contamination may be measured using a MicroBCA assay (Pierce).
- the invention also provides a process for purifying S.aureus type 5 or type 8 capsular polysaccharide, wherein the process provides a composition comprising the polysaccharide and a level of nucleic acid contamination that is less than 1% ⁇ e.g. ⁇ 0.75%, ⁇ 0.50%, ⁇ 0.25%, ⁇ 0.10%, ⁇ 0.01%, etc.) by weight nucleic acid relative to the total weight of the polysaccharide.
- the composition comprises less than 0.25%, particularly about 0.09%, by weight nucleic acid.
- the level of nucleic acid contamination may be measured by absorption at 260nm in a spectrophotomer.
- the invention also provides a process for purifying S.aureus type 5 or type 8 capsular polysaccharide, wherein (a) the level of peptidoglycan acid contamination is less than 5% (as described above); (b) the level of protein contamination is less than 5% (as described above); (c) the level of nucleic acid contamination that is less than 1% (as described above).
- the invention also provides a composition comprising a S.aureus type 5 or type 8 capsular polysaccharide, obtainable by any of the processes of the invention.
- the invention provides a composition comprising S.aureus type 5 or type 8 capsular polysaccharide, wherein the composition comprises a level of peptidoglycan contamination that is less than 5% (e.g. ⁇ 4%, ⁇ 3%, ⁇ 2%, ⁇ 1%, etc.) by weight peptidoglycan relative to the total weight of the polysaccharide.
- the composition comprises less than 3%, particularly less than 2%, by weight peptidoglycan.
- Compositions with levels of about 2% or even about 1% are specifically provided by the invention.
- the invention provides a composition comprising S.aureus type 5 or type 8 capsular polysaccharide, wherein the composition comprises a level of protein contamination that is less than 5% (e.g. ⁇ 4%, ⁇ 3%, ⁇ 2%, ⁇ 1%, ⁇ 05%, etc.) by weight protein relative to the total weight of the polysaccharide.
- the composition comprises less than 3%, particularly about 2.4%, by weight protein.
- the invention also provides a composition comprising S.aureus type 5 or type 8 capsular polysaccharide, wherein the composition comprises a level of nucleic acid contamination that is less than 1% (e.g. ⁇ 0.75%, ⁇ 0.50%, ⁇ 0.25%, ⁇ 0.10%, ⁇ 0.01%, etc.) by weight nucleic acid relative to the total weight of the polysaccharide.
- the composition comprises less than 0.25%, particularly about 0.09%, by weight nucleic acid.
- the invention also provides a composition comprising S.aureus type 5 or type 8 capsular polysaccharide, wherein a) a level of peptidoglycan acid contamination is less than 5% (as described above); (b) the level of protein contamination is less than 5% (as described above); (c) the level of nucleic acid contamination that is less than 1% (as described above).
- the capsular polysaccharide The capsular polysaccharide
- the invention is based on the capsular polysaccharides of S.aureus type 5 and type 8.
- the structures of type 5 and type 8 capsular polysaccharides were described in references 19 and 20 as: Type 5
- the polysaccharide may be chemically modified relative to the capsular polysaccharide as found in nature.
- the polysaccharide may be de-O-acetylated (partially or fully), de-N-acetylated (partially or fully), N-propionated (partially or fully), etc.
- De-acetylation may occur before, during or after other processing steps, but typically occurs before any conjugation step.
- de-acetylation may or may not affect immunogenicity e.g.
- the NeisVac-CTM vaccine uses a de-O-acetylated polysaccharide, whereas MenjugateTM is acetylated, but both vaccines are effective.
- the effect of de-acetylation etc. can be assessed by routine assays. For example, the relevance of O-acetylation on S.aureus type 5 or type 8 capsular polysaccharides is discussed in reference 6.
- the native polysaccharides are said in this document to have 75% O-acetylation.
- These polysaccharides induced antibodies to both the polysaccharide backbone and O-acetyl groups. Polysaccharides with 0% O-acetylation still elicited antibodies to the polysaccharide backbone.
- the type 5 or type 8 capsular polysaccharides used in the present invention may have between 0 and 100% O-acetylation.
- the degree of O- acetylation of the type 5 capsular polysaccharide may be 10-100%, 10-100%, 20-100%, 30-100%, 40- 100%, 50-100%, 60-100%, 70-100%, 80-100%, 90-100%, 50- 90%, 60-90%, 70-90% or 80-90%.
- 0% O-acetylated type 5 capsular polysaccharide may be used.
- the degree of O- acetylation of the type 8 capsular polysaccharide may be 10-100%, 10-100%, 20-100%, 30-100%, 40-100%, 50-100%, 60-100%, 70-100%, 80-100%, 90-100%, 50- 90%, 60-90%, 70-90% or 80-90%.
- 0% O-acetylated type 8 capsular polysaccharide may be used.
- the degree of O-acetylation of the type 5 and type 8 capsular polysaccharides may be 10-100%, 20-100%, 30-100%, 40-100%, 50-100%, 60-100%, 70-100%, 80-100%, 90-100%, 50-90%, 60-90%, 70-90% or 80-90%.
- 0% O-acetylated type 5 and type 8 capsular polysaccharides are used.
- the degree of N-acetylation of the type 5 capsular polysaccharide used in the invention may be 0-100%, 50-100%, 75-100%, 80-100%, 90-100%, or 95-100%.
- the degree of N-acetylation of the type 5 capsular polysaccharide is 100%.
- the degree of N-acetylation of the type 8 capsular polysaccharide used in the invention may be 0-100%, 50-100%, 75-100%, 80-100%, 90-100%, or 95- 100%>.
- the degree of N-acetylation of the type 8 capsular polysaccharide is 100%.
- the degree of N-acetylation of the type 5 and type 8 capsular polysaccharides may be 0- 100%, 50-100%, 75-100%), 80-100%), 90-100%, or 95-100%. Typically, the degree of N-acetylation of the type 5 and type 8 capsular polysaccharides are 100%.
- the degree of O-acetylation of the polysaccharide can be determined by any method known in the art, for example, by proton NMR (e.g. as described in references 22, 23, 24 or 25). A further method is described in reference 26. Similar methods may be used to determine the degree of N-acetylation of the polysaccharide.
- O-acetyl groups may be removed by hydrolysis, for example by treatment with a base such as anhydrous hydrazine [27] or NaOH [6]. Similar methods may be used to remove N-acetyl groups.
- treatments that lead to hydrolysis of the O-acetyl groups are minimised, e.g. treatments at extremes of pH.
- the process of the invention starts with S.aureus type 5 or type 8 cells.
- the cells are grown by fermentation prior to release of capsular polysaccharide.
- Suitable methods of cultivating S.aureus type 5 or type 8 cells are well known to the skilled person and are disclosed, for example, in references 1 to 21 and the references cited therein.
- the cells are usually deactivated.
- a suitable method for deactivation is treatment with phenol :ethanol, e.g. as described in reference 1.
- the cells may be centrifuged prior to release of capsular polysaccharide.
- the process may therefore start with the cells in the form of a wet cell paste.
- the cells are resuspended in an aqueous medium that is suitable for the next step in the process, e.g. in a buffer or in distilled water.
- the cells may be washed with this medium prior to re-suspension.
- the cells may be treated in suspension in their original culture medium.
- the cells are treated in a dried form.
- S.aureus type 5 or type 8 cells are treated with acid. This step results in release of capsular polysaccharide from the cells.
- previous methods have used lysostaphin treatment or autoclaving to release the polysaccharide.
- the acid treatment of the invention is preferably carried out using a mild acid, e.g. acetic acid, to minimise damage to the polysaccharide.
- suitable acids and conditions e.g. of concentration, temperature and/or time
- the inventors have found that treatment of cells suspended at about 0.5mg/ml in distilled water with 1% acetic acid (v/v) at 100°C for 2 hours is suitable. Treatment with other acids, e.g. trifluoroacetic or other organic acids, may also be suitable.
- the efficacy of different acid treatments may be tested using routine methods. For example, after acid treatment, the cells may be isolated and treated using known methods of S. aureus type 5 or type 8 capsular polysaccharide release (e.g. the lysostaphin-based method of reference 1) to see if additional capsular polysaccharide can be released. If additional capsular polysaccharide is released, then the acid treatment conditions may be altered so that a greater proportion of the capsular saccharide is released during acid treatment. In this way, it is possible to optimise the acid treatment conditions so that an optimal amount of capsular saccharide is released.
- S. aureus type 5 or type 8 capsular polysaccharide release e.g. the lysostaphin-based method of reference 1
- the acid treatment conditions may be altered so that a greater proportion of the capsular saccharide is released during acid treatment. In this way, it is possible to optimise the acid treatment conditions so that an optimal amount of capsular saccharide is released.
- the inventors have found that after treatment of cells suspended at about 0.5mg/ml in distilled water with 1% acetic acid (v/v) at 100°C for 2 hours, very little additional capsular saccharide is releasable from the cells by subsequent lysostaphin treatment.
- the degree of O-acetylation of the type 5 capsular polysaccharide may be between 60-100%.
- the degree of O-acetylation may be between the 65-95%, particularly 70-90%.
- the degree of O-acetylation is between 75-85%, e.g. about 80%. Similar values may be obtained for the type 8 capsular saccharide. If desired, the degree of O- acetylation of the capsular saccharide may then be altered by further processing steps as discussed above.
- reaction mixture is typically neutralised. This may be achieved by the addition of a base, e.g. NaOH.
- a base e.g. NaOH.
- the cells may be centrifuged and the polysaccharide-containing supernatant collected for storage and/or additional processing.
- the polysaccharide obtained after acid treatment may be impure and contaminated with bacterial nucleic acids and proteins. These contaminants may be removed by enzymatic treatment.
- RNA may be removed by treatment with R ase, DNA with DNase and protein with protease (e.g. pronase).
- protease e.g. pronase
- the skilled person would be capable of identifying suitable enzymes and conditions for removal of the contaminants.
- the inventors have found that treatment of polysaccharide-containing supernatant with 50 ⁇ g/ml each of DNase and RNase at 37°C for 6-8 hours is suitable.
- Other suitable conditions are disclosed in the literature, e.g. in reference 1.
- the polysaccharide obtained after acid treatment may also or alternatively be contaminated with peptidoglycan. This contaminant may also be removed by enzymatic treatment.
- the inventors have found that treatment with mutanolysin is effective at removing peptidoglycan contamination.
- the skilled person would be capable of identifying suitable conditions for removal of the peptidoglycan with mutanolysin.
- the inventors have found that treatment of polysaccharide-containing supernatant with 180U/ml each of mutanolysin at 37°C for 16 hours is suitable. After treatment, the suspension may be clarified by centrifugation and the polysaccharide-containing supernatant collected for storage and/or additional processing.
- the process of the invention may involve a step of diafiltration. This step is typically performed after the acid treatment and/or enzymatic treatment discussed above.
- a diafiltration step particularly by tangential flow filtration, is particularly effective for removing impurities from the polysaccharide.
- the impurities are typically low molecular weight contaminants like teichoic and/or peptidoglycan fragments.
- the tangential flow filtration is suitably carried out against 1M NaCl ⁇ e.g. against about 10 volumes) and then NaPi lOmM pH 7.2 buffer (e.g. against another 10 volumes).
- the filtration membrane should thus be one that allows passage of small molecular weight contaminants while retaining the capsular polysaccharide.
- a cut-off in the range 10kDa-30kDa is typical.
- the inventors have found that tangential flow filtration using a 30kDa cut-off membrane is particularly suitable for large-scale processes.
- At least 5 cycles of tangential flow diafiltration are usually performed e.g. 6, 7, 8, 9, 10, 11 or more.
- the polysaccharide-containing retentate from the diafiltration is collected for storage and/or additional processing.
- the polysaccharide may be further purified by a step of anion exchange chromatography.
- anion exchange chromatography is particularly effective at removing residual protein and nucleic acid contamination, while maintaining a good yield of the polysaccharide.
- the anion exchange chromatography step may be performed after the acid treatment, enzymatic treatment and/or diaflltration steps discussed above.
- the anion exchange chromatography may be carried out using any suitable anionic exchange matrix.
- anion exchange matrices are resins such as Q-resins (based on quaternary amines) and DEAE resins (based on diethylaminoethane).
- Q-resins based on quaternary amines
- DEAE resins based on diethylaminoethane
- the inventors have found that DEAE-resins (e.g. a DEAE- SepharoseTM Fast Flow resin (GE Healthcare)) are particularly suitable, although other resins may be used.
- Appropriate starting buffers and mobile phase buffers for the anion exchange chromatography can also be determined by routine experiments without undue burden.
- Typical buffers for use in anion exchange chromatography include N-methyl piperazine, piperazine, L-histidine, bis-Tris, bis-Tris propane, triethanolamine, Tris, N-methyl-diethanolamine, diethanolamine, 1,3-diaminopropane, ethanolamine, piperidine, sodium chloride and phosphate buffers.
- phosphate buffers e.g. a sodium phosphate buffer
- the buffer may be at any suitable concentration. For example, 10 mM sodium phosphate has been found to be suitable.
- Material bound to the anionic exchange resin may be eluted with a suitable buffer.
- the inventors have found that a gradient of NaCl 1M is suitable.
- Eluate fractions containing polysaccharide may be determined by measuring UV absorption at 215 nm. Fractions containing polysaccharide, usually combined together, are collected for storage and/or additional processing.
- the anion exchange chromatography step may be repeated, e.g. 1, 2, 3, 4 or 5 times. Typically the anion exchange chromatography step is carried out once.
- the process of the invention may involve one or more step(s) of gel filtration.
- This gel filtration is used to select polysaccharide molecules of a particular length and to further reduce contamination, particularly by proteins.
- a gel filtration step is not required to obtain polysaccharide of high purity. Accordingly, this step may be omitted from the processes of the invention. The omission of this step is advantageous because it simplifies the process and reduces the overall cost.
- the gel filtration step(s) may be performed after the acid treatment, enzymatic treatment, diafiltration and/or anion exchange chromatography steps discussed above. Typically, any gel filtration step(s) are carried out after the anion exchange chromatography step discussed above.
- the gel filtration step(s) may be carried out using any suitable gel filtration matrix.
- Gel filtration matrices are based on dextran gels, agarose gels, polyacrylamide gels, polyacryloylmorpholine gels, and polystyrene gels etc.
- Cross-linked dextran gels and mixed polyacrylamide/agarose gels may also be used.
- dextran gels e.g. a SephacrylTM S300 gel (GE Healthcare)
- GE Healthcare SephacrylTM S300 gel
- Typical buffers for use in gel filtration include N-methyl piperazine, piperazine, L- histidine, bis-Tris, bis-Tris propane, triethanolamine, Tris, N-methyl-diethanolamine, diethanolamine, 1,3-diaminopropane, ethanolamine, piperidine, sodium chloride and phosphate buffers.
- sodium chloride buffers may be suitable.
- the buffer may be at any suitable concentration. For example, 50 mM sodium chloride may be used for the mobile phase.
- Eluate fractions containing polysaccharide may be determined by measuring UV absorption at 215 nm. Fractions containing polysaccharide, usually combined together, are collected for storage and/or additional processing.
- the process of the invention may involve one or more steps of concentrating the polysaccharide.
- This concentration is useful for obtaining a sample of the correct concentration for any subsequent conjugation of the polysaccharide to a carrier molecule, as described below.
- this concentration step is not required to obtain polysaccharide of high purity. Accordingly, this step may be omitted from the processes of the invention.
- the concentration step(s) may be performed after the acid treatment, enzymatic treatment, diafiltration, anion exchange chromatography and/or gel filtration steps discussed above. Typically, any concentration step(s) are carried out after the anion exchange chromatography step discussed above. If used in addition to the gel filtration step(s) discussed above, the concentration step(s) may be carried out before or after the gel filtration step(s) discussed above. However, typically, concentration step(s) are used instead of gel filtration step(s).
- the concentration step(s) may be carried out by any suitable method.
- the concentration step(s) may be diafiltration step(s) as described above, for example tangential flow filtration using a 30kDa cut-off membrane.
- a HydrosartTM (Sartorius) 30kDa cut-off membrane (with a 200 cm 2 membrane area) may be used.
- the concentrated polysaccharide sample is collected for storage and/or additional processing. Further treatment of the capsular polysaccharide
- the polysaccharide may be further treated to remove contaminants. This is particularly important in situations where even minor contamination is not acceptable (e.g. for human vaccine production).
- the molecular mass of the purified S. aureus type 5 or type 8 capsular polysaccharide can be measured by gel filtration relative to pullulan standards, such as those available from Polymer Standard Service [28].
- the purified polysaccharide is a mixture of polysaccharides with masses within a range of values.
- the molecular mass of the purified polysaccharide typically is between 2-3500 kDa, e.g. between 10-2000 kDa, particularly between 20-1000 kDa and more particularly between 100-600 kDa.
- the molecular mass of the purified polysaccharide may be between 2-3500 kDa, e.g. between 10-2000 kDa, particularly between 20-1000 kDa and more particularly between 100-600 kDa.
- the purified polysaccharide may be depolymerised to form an oligosaccharide. Oligosaccharides may be preferred for use in vaccines. Depolymerisation to oligosaccharide may occur before or after any of the steps mentioned above. Typically, depolymerisation takes place after the anion exchange chromatography described above. If the polysaccharide is concentrated after this chromatography, then depolymerisation typically takes place after this concentration. Where the composition of the invention includes a depolymerised polysaccharide, it is preferred that depolymerisation precedes any conjugation
- Full-length polysaccharides may be depolymerised to give shorter fragments for use in the invention by various methods.
- the method described in reference 29 is used.
- other methods for depolymerisation of the polysaccharide may be used.
- the polysaccharide may be heated or subjected to microfluidisation [30] or sonic radiation [3].
- depolymerisation by oxidation-reduction [31] or ozonolysis [32] may be used.
- Oligosaccharides can be identified by chromatography, e.g. size exclusion chromatography.
- the products may be sized in order to remove short-length oligosaccharides. This can be achieved in various ways, such as gel filtration. Specific molecular masses can be measured by gel filtration relative to pullulan standards, such as those available from Polymer Standard Service [33].
- N-acetyl groups in the native capsular polysaccharide have been de-N-acetylated then the processes of the invention may include a step of re-N-acetylation.
- Controlled re-N-acetylation can conveniently be performed using a reagent such as acetic anhydride (CI3 ⁇ 4CO)20 e.g. in 5% ammonium bicarbonate [34].
- a reagent such as acetic anhydride (CI3 ⁇ 4CO)20 e.g. in 5% ammonium bicarbonate [34].
- the S.aureus type 5 or type 8 capsular polysaccharide preparation may be lyophilised, e.g. by freeze- drying under vacuum, or frozen in solution (e.g. as the eluate from the final concentration step, if included) for storage at any stage during the purification process. Accordingly, it is not necessary for the preparation to be transferred immediately from one step of the process to another. For example, if the polysaccharide preparation is to be purified by diafiltration, then it may be lyophilised or frozen in solution prior to this purification. Similarly, the polysaccharide may be lyophilised or frozen in solution prior to the anion exchange chromatography step.
- the polysaccharide preparation is to be purified by gel filtration, then it may be lyophilised or frozen in solution prior to this step. Similarly, if the polysaccharide preparation is to be concentrated, then it may be lyophilised or frozen in solution prior to this step. The lyophilised preparation is reconstituted in an appropriate solution prior to further treatment. Similarly, the frozen solution is defrosted prior to further treatment.
- the purified polysaccharide obtained by the process of the invention may be processed for storage in any suitable way.
- the polysaccharide may be lyophilised as described above.
- the polysaccharide may be stored in aqueous solution, typically at low temperature, e.g. at -20°C.
- the polysaccharide may be stored as the eluate from the anion exchange chromatography, gel filtration or concentration steps.
- the final purified capsular polysaccharide of the invention can be used as an antigen without further modification e.g. for use in in vitro diagnostic assays, for use in immunisation, etc.
- a carrier molecule such as a protein.
- covalent conjugation of polysaccharides to carriers enhances the immunogenicity of polysaccharides as it converts them from T-independent antigens to T-dependent antigens, thus allowing priming for immunological memory.
- Conjugation is particularly useful for paediatric vaccines [e.g. ref. 35] and is a well known technique [e.g. reviewed in refs. 36 to 44].
- the processes of the invention may include the further step of conjugating the purified polysaccharide to a carrier molecule.
- Conjugation of S. aureus type 5 and type 8 capsular polysaccharides has been widely reported e.g. see references 1 to 9.
- the typical process used in the literature for conjugation involves thiolation of a purified polysaccharide using cystamine.
- the reaction relies on the presence of carboxylate groups in the capsular polysaccharide. These groups react with cystamine in the presence of a carbodiimide, e.g. EDAC.
- the derivatised polysaccharide is then conjugated to a carrier protein such as the Pseudomononas aeruginosa endotoxin A (ETA), typically via a linker [2].
- Conjugate vaccines prepared in this manner have been shown to be safe and immunogenic in humans [5].
- Preferred carrier proteins are bacterial toxins, such as diphtheria or tetanus toxins, or toxoids or mutants thereof.
- the inventors have found that the CRM 197 diphtheria toxin mutant [47] is suitable.
- Pseudomonas aeruginosa exotoxin A (ETA) and its non-toxic mutant recombinant exoprotein A (rEPA) have been used as carrier proteins for S. aureus type 5 or type 8 capsular polysaccharides ([1] and [2]).
- S. aureus a-haemolysin ( -toxin) ([45] and [48]), ovalbumin [1 1] and human serum albumin [12] have also been used. These carriers may be used in the present invention.
- Suitable carrier proteins include the ⁇ .meningitidis outer membrane protein complex [49], synthetic peptides [50,51], heat shock proteins [52,53], pertussis proteins [54,55], cytokines [56], lymphokines [56], hormones [56], growth factors [56], human serum albumin (typically recombinant), artificial proteins comprising multiple human CD4 + T cell epitopes from various pathogen-derived antigens [57] such as N19 [58], protein D from H.influenzae [59-61], pneumococcal surface protein PspA [62], pneumolysin [63] or its non-toxic derivatives [64], iron-uptake proteins [65], toxin A or B from C. difficile [66], a GBS protein [67], a GAS protein [68] etc.
- pathogen-derived antigens such as N19 [58], protein D from H.influenzae [59-61], pneumococcal surface protein PspA [62],
- S. aureus protein antigens for example the S. aureus protein antigens set out below.
- Attachment to the carrier is preferably via a -NH 2 group e.g. in the side chain of a lysine residue in a carrier protein, or of an arginine residue. Attachment may also be via a -SH group e.g. in the side chain of a cysteine residue.
- carrier protein e.g. to reduce the risk of carrier suppression.
- different carrier proteins can be used for the type 5 and type 8 capsular polysaccharides, e.g. type 5 polysaccharide might be conjugated to CRM197 while type 8 polysaccharide might be conjugated to rEPA.
- more than one carrier protein for a particular polysaccharide antigen e.g. type 5 polysaccharide might be in two groups, with one group conjugated to CRM197 and the other conjugated to rEPA.
- the same carrier protein is used for all polysaccharides.
- a single carrier protein might carry more than one polysaccharide antigen [69,70].
- a single carrier protein might have conjugated to it type 5 and type 8 capsular polysaccharides.
- different polysaccharides can be mixed prior to the conjugation process.
- there are separate conjugates for each polysaccharide with the different polysaccharides being mixed after conjugation.
- the separate conjugates may be based on the same carrier.
- Conjugates with a polysaccharide: protein ratio (w/w) of between 1 :20 (i.e. excess protein) and 20: 1 (i.e. excess polysaccharide) are typically used.
- Ratios of 1 : 10 to 1 : 1 are preferred, particularly ratios between 1 :5 and 1 :2 and, most preferably, about 1 :3.
- type 5 and type 8 capsular polysaccharide conjugates used in the literature tend to have higher ratios, e.g. between 0.73 and 1.08 in references 1, 2 and 3.
- the polysaccharide:protein ratio (w/w) for type 5 capsular polysaccharide conjugate is between 1 : 10 and 1 :2; and/or the polysaccharide:protein ratio (w/w) for type 8 capsular polysaccharide conjugate is between 1 :5 and 7: 10.
- Conjugates may be used in conjunction with free carrier [71 ].
- the unconjugated form is preferably no more than 5% of the total amount of the carrier protein in the composition as a whole, and more preferably present at less than 2% by weight.
- Polysaccharides prepared by the methods of the invention can be mixed e.g. with each other and/or with other antigens.
- the processes of the invention may include the further step of mixing the polysaccharide with one or more further antigens.
- the invention therefore provides a composition comprising a polysaccharide prepared by the method of the invention and one or more further antigens.
- the composition is typically an immunogenic composition.
- the further antigen(s) may comprise further polysaccharides prepared by the method of the invention, and so the invention provides a composition comprising more than one polysaccharide of the invention.
- the present invention provides a composition comprising a type 5 capsular polysaccharide of the invention and a type 8 capsular polysaccharide of the invention.
- the further antigen(s) may be type 5 or type 8 capsular polysaccharides prepared by methods other than those of the invention, e.g. the methods of references 1 to 18 above.
- the invention provides a composition comprising a type 5 capsular polysaccharide and a type 8 capsular polysaccharide, wherein one of the polysaccharides (the type 5 polysaccharide or the type 8 polysaccharide) is a polysaccharide of the invention and the other polysaccharide is not a polysaccharide of the invention.
- S.aureus conjugates may include different types of conjugate from the same S.aureus serotype and/or conjugates from different S.aureus serotypes.
- the conjugates may be from S.aureus type 5 and type 8.
- the composition will be produced by preparing separate conjugates (e.g. a different conjugate for each serotype) and then combining the conjugates.
- the further antigen(s) may comprise other S. aureus antigens, including the saccharide and protein antigens set out below.
- compositions of the invention may further comprise one or more non-S.aureus antigens, including additional bacterial, viral or parasitic antigens. These may be selected from the following:
- N. meningitidis serogroup B such as those in refs. 74 to 80, with protein '287' (see below) and derivatives (e.g. 'AG287') being particularly preferred.
- OMV outer-membrane vesicle
- a saccharide antigen from N. meningitidis serogroup A, C, W135 and/or Y such as the oligosaccharide disclosed in ref. 85 from serogroup C or the oligosaccharides of ref. 86.
- an antigen from hepatitis A virus such as inactivated virus [e.g. 90, 91 ; chapter 15 of ref. 96].
- an antigen from hepatitis B virus such as the surface and/or core antigens [e.g. 91,92; chapter 16 of ref. 96].
- Bordetella pertussis such as pertussis holotoxin (PT) and filamentous haemagglutinin (FHA) from B.pertussis, optionally also in combination with pertactin and/or agglutinogens 2 and 3 [e.g. refs. 94 & 95; chapter 21 of ref. 96].
- diphtheria antigen such as a diphtheria toxoid [e.g. chapter 13 of ref. 96].
- tetanus antigen such as a tetanus toxoid [e.g. chapter 27 of ref. 96].
- N. gonorrhoeae an antigen from N. gonorrhoeae [e.g. 74, 75, 76].
- Chlamydia pneumoniae an antigen from Chlamydia pneumoniae [e.g. 97, 98, 99, 100, 101, 102, 103].
- Chlamydia trachomatis an antigen from Chlamydia trachomatis [e.g. 104].
- rabies antigen(s) e.g. 108
- lyophilised inactivated virus e.g. 109, RabAvertTM
- influenza antigen(s) e.g. chapters 17 & 18 of ref. 96
- haemagglutinin and/or neuraminidase surface proteins such as the haemagglutinin and/or neuraminidase surface proteins.
- streptococcus pyogenes group A streptococcus
- streptococcus agalactiae group B streptococcus
- S.epidermidis e.g. type I, II and/or III capsular polysaccharide obtainable from strains ATCC-31432, SE-360 and SE-10 as described in refs. 1 17, 1 18 and 1 19.
- a saccharide or carbohydrate antigen is used, it is preferably conjugated to a carrier in order to enhance immunogenicity. Conjugation of H.influenzae B, meningococcal and pneumococcal saccharide antigens is well known.
- Toxic protein antigens may be detoxified where necessary ⁇ e.g. detoxification of pertussis toxin by chemical and/or genetic means [95]).
- diphtheria antigen is included in the composition it is preferred also to include tetanus antigen and pertussis antigens. Similarly, where a tetanus antigen is included it is preferred also to include diphtheria and pertussis antigens. Similarly, where a pertussis antigen is included it is preferred also to include diphtheria and tetanus antigens.
- Antigens may be adsorbed to an aluminium salt.
- One type of preferred composition includes further antigens that affect the immunocompromised, and so the S. aureus polysaccharides of the invention can be combined with one or more antigens from the following non-S. aureus pathogens: Steptococcus agalactiae, Staphylococcus epidermis, influenza virus, Enterococcus faecalis, Pseudomonas aeruginosa, Legionella pneumophila, Listeria monocytogenes, Neisseria meningitidis, and parainfluenza virus.
- non-S. aureus pathogens Steptococcus agalactiae, Staphylococcus epidermis, influenza virus, Enterococcus faecalis, Pseudomonas aeruginosa, Legionella pneumophila, Listeria monocytogenes, Neisseria meningitidis, and parainfluenza virus.
- compositions include further antigens from bacteria associated with nosocomial infections, and so the S. aureus polysaccharides of the invention can be combined with one or more antigens from the following non-S.aureus pathogens: Clostridium difficile, Pseudomonas aeruginosa, Candida albicans, and extraintestinal pathogenic Escherichia coli.
- Antigens in the composition will typically be present at a concentration of at least ⁇ g/ml each. In general, the concentration of any given antigen will be sufficient to elicit an immune response against that antigen.
- nucleic acid encoding the antigen may be used [e.g. refs. 120 to 128]. Protein components of the compositions of the invention may thus be replaced by nucleic acid (preferably DNA e.g. in the form of a plasmid) that encodes the protein.
- compositions of the invention there may be an upper limit to the number of antigens included in compositions of the invention.
- the number of antigens (including S. aureus antigens) in a composition of the invention may be less than 20, less than 19, less than 18, less than 17, less than 16, less than 15, less than 14, less than 13, less than 12, less than 1 1, less than 10, less than 9, less than 8, less than 7, less than 6, less than 5, less than 4, or less than 3.
- the number of S. aureus antigens in a composition of the invention may be less than 6, less than 5, or less than 4.
- the invention provides processes for preparing pharmaceutical compositions, comprising the steps of mixing (a) a polysaccharide of the invention (optionally in the form of a conjugate) with (b) a pharmaceutically acceptable carrier.
- Typical 'pharmaceutically acceptable carriers' include any carrier that does not itself induce the production of antibodies harmful to the individual receiving the composition.
- Suitable carriers are typically large, slowly metabolised macromolecules such as proteins, polysaccharides, polylactic acids, polyglycolic acids, polymeric amino acids, amino acid copolymers, lactose, and lipid aggregates (such as oil droplets or liposomes). Such carriers are well known to those of ordinary skill in the art.
- the vaccines may also contain diluents, such as water, saline, glycerol, etc. Additionally, auxiliary substances, such as wetting or emulsifying agents, pH buffering substances, and the like, may be present. Sterile pyrogen-free, phosphate-buffered physiologic saline is a typical carrier. A thorough discussion of pharmaceutically acceptable excipients is available in reference 129.
- compositions of the invention may be in aqueous form (i.e. solutions or suspensions) or in a dried form (e.g. lyophilised). If a dried vaccine is used then it will be reconstituted into a liquid medium prior to injection. Lyophilisation of conjugate vaccines is known in the art e.g. the MenjugateTM product is presented in lyophilised form, whereas NeisVac-CTM and MeningitecTM are presented in aqueous form. To stabilise conjugates during lyophilisation, it may be typical to include a sugar alcohol (e.g. mannitol) or a disaccharide (e.g. sucrose or trehalose) e.g. at between lmg/ml and 30mg/ml (e.g. about 25 mg/ml) in the composition.
- a sugar alcohol e.g. mannitol
- a disaccharide e.g. sucrose or trehalose
- the pharmaceutical compositions may be packaged into vials or into syringes.
- the syringes may be supplied with or without needles.
- a syringe will include a single dose of the composition, whereas a vial may include a single dose or multiple doses.
- Aqueous compositions of polysaccharides of the invention are suitable for reconstituting other vaccines from a lyophilised form.
- the invention provides a process for reconstituting such a lyophilised vaccine, comprising the step of mixing the lyophilised material with an aqueous composition of the invention.
- the reconstituted material can be used for injection.
- S. aureus antigens can be included in compositions of the invention.
- the antigens may be protein or saccharide antigens.
- S. aureus protein antigens may be used as carrier proteins for conjugates of the invention, carrier proteins for other conjugates, or as unconjugated protein antigens.
- S. aureus saccharide antigens may be used as the saccharides for other conjugates or as unconjugated saccharide antigens.
- Suitable S.aureus saccharide antigens include the exopolysaccharide of S. aureus, which is a poly-N-acetylglucosamine (PNAG).
- PNAG poly-N-acetylglucosamine
- the saccharide antigen may be a polysaccharide having the size that arises during purification of the exopolysaccharide from bacteria, or it may be an polysaccharide achieved by fragmentation of such a polysaccharide e.g.
- the saccharide antigen can have various degrees of N-acetylation and, as described in reference 133, the PNAG may be less than 40% N-acetylated (e.g. less than 35, 30, 20, 15, 10 or 5% N-acetylated; deacetylated PNAG is also known as dPNAG).
- Deacetylated epitopes of PNAG can elicit antibodies that are capable of mediating opsonic killing.
- the preparation of dPNAG is described in reference 134.
- the PNAG may or may not be O-succinylated e.g. it may be O- succinylated on fewer less than 25, 20, 15, 10, 5, 2, 1 or 0.1% of residues.
- the PNAG may be conjugated to a carrier molecule as described above or alternatively unconjugated.
- S.aureus saccharide antigen is the type 336 antigen, which is a ⁇ -linked hexosamine with no O-acetylation [135,136].
- the type 336 antigen is cross-reactive with antibodies raised against the 336 strain (ATCC 55804).
- the type 336 antigen may be conjugated to a carrier molecule as described above or alternatively unconjugated.
- Suitable S.aureus protein antigens include the following S.aureus antigens (or antigens comprising immunogenic fragment(s) thereof) [e.g. see references 137-144]: AhpC, AhpF, Autolysin amidase, Autolysin glucosaminidase, Collagen binding protein CAN, EbhB, GehD lipase, Heparin binding protein HBP (17kDa), Laminin receptor, MAP, MntC (also known as SitC), MRPII, Npase, ORF0594, ORF0657n, ORF0826, PBP4, RAP (RNA III activating protein), Sai-1, SasK, SBI, SdrG, SdrH, SSP-1, SSP-2 and Vitronectin-binding protein.
- S.aureus antigens or antigens comprising immunogenic fragment(s) thereof
- AhpC AhpF
- Autolysin amidase Autolysin glu
- S.aureus protein antigens include a clfA antigen; a clfB antigen; a sdrE2 antigen; a sdrC antigen; a sasF antigen, a emp antigen; a sdrD antigen; a spa antigen; a esaC antigen; a esxA antigen; a esxB antigen; a sta006 antigen; a isdC antigen; a Hla antigen; a staOl l antigen; a isdA antigen; a isdB antigen; and a sta073 antigen, as described below.
- One or more i.e.
- 1, 2, 3, 4, 5, 6 or more of these antigens may be present in a composition of the invention.
- these antigens the use of one or more (i.e. 1, 2, 3, 4, 5, 6 or more) of a esxA antigen; a esxB antigen; a sta006 antigen; a Hla antigen; a staOl l antigen; and/or a sta073 antigen is specifically envisaged.
- composition of the invention may comprise one of the following combinations of S. aureus protein antigens:
- a esxA antigen, a esxB antigen, a sta006 antigen and a Hla antigen can usefully be combined as a hybrid polypeptide, as discussed below, e.g. a EsxAB hybrid with a esxB antigen downstream of a esxA antigen.
- the Hla antigen may be a detoxified mutant e.g. including a H35L mutation.
- a esxA antigen, a esxB antigen, a sta006 antigen and a staOl 1 antigen may be combined as a hybrid polypeptide, as discussed below, e.g. an EsxAB hybrid.
- a esxA antigen, a esxB antigen and a staOl 1 antigen can usefully be combined as a hybrid polypeptide, as discussed below, e.g. a EsxAB hybrid.
- a esxA antigen, a esxB antigen, a Hla antigen, a sta006 antigen and a staOl 1 antigen (4) A esxA antigen, a esxB antigen, a Hla antigen, a sta006 antigen and a staOl 1 antigen.
- the esxA and esxB antigens may be combined as a hybrid polypeptide, as discussed below, e.g. an EsxAB hybrid.
- the Hla antigen may be a detoxified mutant e.g. including a H35L mutation.
- a esxA antigen, a esxB antigen and a Hla antigen can usefully be combined as a hybrid polypeptide, as discussed below, e.g. a EsxAB hybrid.
- the Hla antigen may be a detoxified mutant e.g. including a H35L mutation.
- the Hla antigen may be a detoxified mutant e.g. including a H35L mutation.
- a esxA antigen and a esxB antigen can usefully be combined as a hybrid polypeptide, as discussed below, e.g. an EsxAB hybrid.
- a esxA antigen, a esxB antigen and a sta006 antigen can usefully be combined as a hybrid polypeptide, as discussed below, e.g. a EsxAB hybrid.
- a esxA antigen, a esxB antigen, a staOl l antigen and a sta073 antigen may be combined as a hybrid polypeptide, as discussed below, e.g. an EsxAB hybrid.
- the 'clfA' antigen is annotated as 'clumping factor A'.
- clfA is SAOUHSC 00812 and has amino acid sequence SEQ ID NO: 1 (GI:88194572).
- nwmn_0756 GI: 151220968.
- Useful clfA antigens can elicit an antibody (e.g. when administered to a human) that recognises SEQ ID NO: 1 and/or may comprise an amino acid sequence: (a) having 50% or more identity (e.g. 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5% or more) to SEQ ID NO: 1 ; and/or (b) comprising a fragment of at least 'n' consecutive amino acids of SEQ ID NO: 1, wherein ' ⁇ ' is 7 or more (e.g.
- These clfA proteins include variants of SEQ ID NO: 1.
- Preferred fragments of (b) comprise an epitope from SEQ ID NO: 1.
- Other preferred fragments lack one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the C-terminus and/or one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the N-terminus of SEQ ID NO: 1 while retaining at least one epitope of SEQ ID NO: 1.
- the final 368 C-terminal amino acids of SEQ ID NO: 1 can usefully be omitted.
- the first 39 N-terminal amino acids of SEQ ID NO: 1 can usefully be omitted.
- Other fragments omit one or more protein domains.
- SEQ ID NO: 2 is a useful fragment of SEQ ID NO: 1 This fragments omits the long repetitive region towards the C-terminal of SEQ ID NO: 1.
- the 'clfB' antigen is annotated as 'clumping factor B'.
- clfB is SAOUHSC 02963 and has amino acid sequence SEQ ID NO: 3 (GI:88196585).
- nwmn_2529 GI: 151222741.
- Useful clfB antigens can elicit an antibody (e.g. when administered to a human) that recognises SEQ ID NO: 3 and/or may comprise an amino acid sequence: (a) having 50% or more identity (e.g. 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5% or more) to SEQ ID NO: 3; and/or (b) comprising a fragment of at least 'n' consecutive amino acids of SEQ ID NO: 3, wherein ' ⁇ ' is 7 or more (e.g.
- clfB proteins include variants of SEQ ID NO: 3.
- Preferred fragments of (b) comprise an epitope from SEQ ID NO: 3.
- Other preferred fragments lack one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the C-terminus and/or one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the N-terminus of SEQ ID NO: 3 while retaining at least one epitope of SEQ ID NO: 3.
- the final 40 C-terminal amino acids of SEQ ID NO: 3 can usefully be omitted.
- the first 44 N-terminal amino acids of SEQ ID NO: 3 can usefully be omitted.
- Other fragments omit one or more protein domains.
- ClfB is naturally a long protein and so the use of fragments is helpful e.g. for purification, handling, fusion, expression, etc.
- SEQ ID NO: 4 is a useful fragment of SEQ ID NO: 3 ('ClfB ⁇ ). This fragment includes the most exposed domain of ClfB and is more easily used at an industrial scale. It also reduces the antigen's similarity with human proteins.
- Other useful fragments include: Clffl 45 -36o (also known as CLfB-N12; SEQ ID NO: 5); ClfB 2 i 2 - 5 42 (also known as CLfB-N23; SEQ ID NO: 6); and ClfB 36 o-542 (also known as CLfB-N3; SEQ ID NO: 7).
- the 'sdrE2' antigen is annotated as 'Ser-Asp rich fibrinogen/bone sialoprotein-binding protein SdrE'.
- sdrE2 is NWMN 0525 and has amino acid sequence SEQ ID NO: 8 (GI: 151220737).
- Useful sdrE2 antigens can elicit an antibody ⁇ e.g. when administered to a human) that recognises SEQ ID NO: 8 and/or may comprise an amino acid sequence: (a) having 50% or more identity ⁇ e.g. 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5% or more) to SEQ ID NO: 8; and/or (b) comprising a fragment of at least 'n' consecutive amino acids of SEQ ID NO: 8, wherein ' ⁇ ' is 7 or more ⁇ e.g.
- These sdrE2 proteins include variants of SEQ ID NO: 8.
- Preferred fragments of (b) comprise an epitope from SEQ ID NO: 8.
- Other preferred fragments lack one or more amino acids ⁇ e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the C-terminus and/or one or more amino acids ⁇ e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the N-terminus of SEQ ID NO: 8 while retaining at least one epitope of SEQ ID NO: 8.
- the final 38 C-terminal amino acids of SEQ ID NO: 8 can usefully be omitted.
- the first 52 N-terminal amino acids of SEQ ID NO: 8 can usefully be omitted.
- Other fragments omit one or more protein domains.
- SdrE2 is naturally a long protein and so the use of fragments is very helpful e.g. for purification, handling, fusion, expression, etc.
- SEQ ID NO: 9 is a useful fragment of SEQ ID NO: 8 ('SdrEss-eai')- This fragment includes the most exposed domain of SdrE2 and is more easily used at an industrial scale. It also reduces the antigen's similarity with human proteins.
- the 'sdrC antigen is annotated as 'sdrC protein'.
- sdrC is SAOUHSC_00544 and has amino acid sequence SEQ ID NO: 10 (GI: 88194324).
- Useful sdrC antigens can elicit an antibody ⁇ e.g. when administered to a human) that recognises SEQ ID NO: 10 and/or may comprise an amino acid sequence: (a) having 50% or more identity ⁇ e.g. 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5% or more) to SEQ ID NO: 10; and/or (b) comprising a fragment of at least 'n' consecutive amino acids of SEQ ID NO: 10, wherein ' ⁇ ' is 7 or more (e.g.
- These sdrC proteins include variants of SEQ ID NO: 10.
- Preferred fragments of (b) comprise an epitope from SEQ ID NO: 10.
- Other preferred fragments lack one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the C-terminus and/or one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the N-terminus of SEQ ID NO: 10 while retaining at least one epitope of SEQ ID NO: 10.
- the final 38 C-terminal amino acids of SEQ ID NO: 10 can usefully be omitted.
- the first 50 N-terminal amino acids of SEQ ID NO: 10 can usefully be omitted.
- Other fragments omit one or more protein domains.
- SdrC is naturally a long protein and so the use of fragments is helpful e.g. for purification, handling, fusion, expression, etc.
- SEQ ID NO: 11 is a useful fragment of SEQ ID NO: 10 This fragment includes the most exposed domain of SdrC and is more easily used at an industrial scale. It also reduces the antigen's similarity with human proteins.
- the 'sasF' antigen is annotated as 'sasF protein'.
- sasF is SAOUHSC_02982 and has amino acid sequence SEQ ID NO: 12 (GF88196601).
- Useful sasF antigens can elicit an antibody (e.g. when administered to a human) that recognises SEQ ID NO: 12 and/or may comprise an amino acid sequence: (a) having 50% or more identity (e.g. 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5% or more) to SEQ ID NO: 12; and/or (b) comprising a fragment of at least 'n' consecutive amino acids of SEQ ID NO: 12, wherein ' ⁇ ' is 7 or more (e.g.
- These sasF proteins include variants of SEQ ID NO: 12.
- Preferred fragments of (b) comprise an epitope from SEQ ID NO: 12.
- Other preferred fragments lack one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the C-terminus and/or one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the N-terminus of SEQ ID NO: 12 while retaining at least one epitope of SEQ ID NO: 12.
- the final 39 C-terminal amino acids of SEQ ID NO: 12 can usefully be omitted.
- the first 37 N-terminal amino acids of SEQ ID NO: 12 can usefully be omitted.
- Other fragments omit one or more protein domains.
- the 'emp' antigen is annotated as 'extracellular matrix and plasma binding protein'.
- emp is SAOUHSC 00816 and has amino acid sequence SEQ ID NO: 13 (GL88194575).
- nwmn_0758 GI: 151220970.
- Useful emp antigens can elicit an antibody (e.g. when administered to a human) that recognises SEQ ID NO: 13 and/or may comprise an amino acid sequence: (a) having 50% or more identity (e.g.
- SEQ ID NO: 13 comprising a fragment of at least 'n' consecutive amino acids of SEQ ID NO: 13, wherein ' ⁇ ' is 7 or more (e.g. 8, 10, 12, 14, 16, 18, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100, 150, 200, 250 or more).
- ' ⁇ ' is 7 or more (e.g. 8, 10, 12, 14, 16, 18, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100, 150, 200, 250 or more).
- These emp proteins include variants of SEQ ID NO: 13.
- Preferred fragments of (b) comprise an epitope from SEQ ID NO: 13.
- Other preferred fragments lack one or more amino acids (e.g.
- SEQ ID NOs: 14, 15, 16 and 17 are useful fragments of SEQ ID NO: 13 ('Empss ,
- the 'sdrD' antigen is annotated as 'sdrD protein'.
- sdrD is SAOUHSC 00545 and has amino acid sequence SEQ ID NO: 18 (GI: 88194325).
- Useful sdrD antigens can elicit an antibody (e.g. when administered to a human) that recognises SEQ ID NO: 18 and/or may comprise an amino acid sequence: (a) having 50% or more identity (e.g. 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5% or more) to SEQ ID NO: 18; and/or (b) comprising a fragment of at least 'n' consecutive amino acids of SEQ ID NO: 18, wherein 'n' is 7 or more (e.g.
- These sdrD proteins include variants of SEQ ID NO: 18.
- Preferred fragments of (b) comprise an epitope from SEQ ID NO: 18.
- Other preferred fragments lack one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the C-terminus and/or one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the N-terminus of SEQ ID NO: 18 while retaining at least one epitope of SEQ ID NO: 18.
- the final 38 C-terminal amino acids of SEQ ID NO: 18 can usefully be omitted.
- the first 52 N-terminal amino acids of SEQ ID NO: 18 can usefully be omitted.
- Other fragments omit one or more protein domains.
- SdrD is naturally a long protein and so the use of fragments is very helpful e.g. for purification, handling, fusion, expression, etc.
- SEQ ID NO: 19 is a useful fragment of SEQ ID NO: 18 ('SdrDs B ). This fragment includes the most exposed domain of SdrD and is more easily used at an industrial scale. It also reduces the antigen's similarity with human proteins. A nother useful fragment, with the same C-terminus residue, is SdrD 394 . 592 (also known as SdrD-N3; SEQ ID NO: 20). spa
- the 'spa' antigen is annotated as 'protein A' or 'SpA'.
- spa is SAOUHSC 00069 and has amino acid sequence SEQ ID NO: 21 (GI:88193885).
- nwmn_0055 GI: 151220267.
- All S.aureus strains express the structural gene for spa, a well characterized virulence factor whose cell wall-anchored surface protein product has five highly homologous immunoglobulin binding domains designated E, D, A, B, and C [146]. These domains display -80% identity at the amino acid level, are 56 to 61 residues in length, and are organized as tandem repeats [147].
- SpA is synthesized as a precursor protein with an N-terminal signal peptide and a C-terminal sorting signal [148,149].
- Cell wall-anchored spa is displayed in great abundance on the staphylococcal surface [150,151].
- Each of its immunoglobulin binding domains is composed of anti- parallel a-helices that assemble into a three helix bundle and can bind the Fc domain of immunoglobulin G (IgG) [152, 153], the VH3 heavy chain (Fab) of IgM (i.e. the B cell receptor) [154], the von Willebrand factor at its Al domain [155] and/or the TNF-a receptor I (TNFRI) [156], which is displayed on surfaces of airway epithelia.
- IgG immunoglobulin G
- Fab VH3 heavy chain
- Fab VH3 heavy chain
- TNFRI TNF-a receptor I
- Useful spa antigens can elicit an antibody ⁇ e.g. when administered to a human) that recognises SEQ ID NO: 21 and/or may comprise an amino acid sequence: (a) having 50% or more identity (e.g. 60%, 65%, 70%), 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5% or more) to SEQ ID NO: 21 ; and/or (b) comprising a fragment of at least 'n' consecutive amino acids of SEQ ID NO: 21, wherein ' ⁇ ' is 7 or more (e.g.
- spa proteins include variants of SEQ ID NO: 21.
- Preferred fragments of (b) comprise an epitope from SEQ ID NO: 21.
- Other preferred fragments lack one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the C-terminus and/or one or more amino acids (e.g. 1 , 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the N-terminus of SEQ ID NO: 21 while retaining at least one epitope of SEQ ID NO: 21.
- the final 35 C-terminal amino acids of SEQ ID NO: 21 can usefully be omitted.
- the first 36 N-terminal amino acids of SEQ ID NO: 21 can usefully be omitted.
- Other fragments omit one or more protein domains. Reference 157 suggests that individual IgG-binding domains might be useful immunogens, alone or in combination.
- SEQ ID NO: 22 is a useful fragment of SEQ ID NO: 21 ('Spans')- This fragment contains all the five SpA Ig-binding domains and includes the most exposed domain of SpA. It also reduces the antigen's similarity with human proteins.
- Other useful fragments may omit 1, 2, 3 or 4 of the natural A, B, C, D and/or E domains. As reported in reference 157, other useful fragments may include only 1, 2, 3 or 4 of the natural A, B, C, D and/or E domains e.g. comprise only the SpA(A) domain but not B to E, or comprise only the SpA(D) domain but not A, B, C or E, etc.
- a spa antigen useful with the invention may include 1, 2, 3, 4 or 5 IgG-binding domains, but ideally has 4 or fewer. If an antigen includes only one type of spa domain (e.g. only the Spa(A) or SpA(D) domain), it may include more than one copy of this domain e.g. multiple SpA(D) domains in a single polypeptide chain.
- An individual domain within the antigen may be mutated at 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 or more amino acids relative to SEQ ID NO: 21 (e.g. see ref. 157, disclosing mutations at residues 3 and/or 24 of domain D, at residue 46 and/or 53 of domain A, etc.).
- a spa antigen includes a substitution at (a) one or more amino acid substitution in an IgG Fc binding sub- domain of SpA domain A, B, C, D and/or E that disrupts or decreases binding to IgG Fc, and (b) one or more amino acid substitution in a V H 3 binding sub-domain of SpA domain A, B, C, D, and/or E that disrupts or decreases binding to VH3.
- a variant SpA comprises at least or at most 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 or more variant SpA domain D peptides. esaC
- the 'esaC antigen is annotated as 'esaC.
- NCTC 8325 strain esaC is SAOUHSC_00264 and has amino acid sequence SEQ ID NO: 23 (GI:88194069).
- Useful esaC antigens can elicit an antibody (e.g. when administered to a human) that recognises SEQ ID NO: 23 and/or may comprise an amino acid sequence: (a) having 50% or more identity (e.g. 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5% or more) to SEQ ID NO: 23; and/or (b) comprising a fragment of at least 'n' consecutive amino acids of SEQ ID NO: 23, wherein 'n' is 7 or more (e.g. 8, 10, 12, 14, 16, 18, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100 or more).
- esaC proteins include variants of SEQ ID NO: 23.
- Preferred fragments of (b) comprise an epitope from SEQ ID NO: 23.
- Other preferred fragments lack one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the C-terminus and/or one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the N-terminus of SEQ ID NO: 23 while retaining at least one epitope of SEQ ID NO: 23.
- Other fragments omit one or more protein domains.
- the 'esxA' antigen is annotated as 'protein'.
- esxA is SAOUHSC_00257 and has amino acid sequence SEQ ID NO: 24 (GI:88194063).
- Useful esxA antigens can elicit an antibody (e.g. when administered to a human) that recognises SEQ ID NO: 24 and/or may comprise an amino acid sequence: (a) having 50% or more identity (e.g. 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5% or more) to SEQ ID NO: 24; and/or (b) comprising a fragment of at least 'n' consecutive amino acids of SEQ ID NO: 24, wherein 'n' is 7 or more (e.g. 8, 10, 12, 14, 16, 18, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90 or more).
- esxA proteins include variants of SEQ ID NO: 24.
- Preferred fragments of (b) comprise an epitope from SEQ ID NO: 24.
- Other preferred fragments lack one or more amino acids (e.g. 1 , 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the C-terminus and/or one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the N-terminus of SEQ ID NO: 24 while retaining at least one epitope of SEQ ID NO: 24.
- Other fragments omit one or more protein domains.
- the 'esxB' antigen is annotated as 'esxB'.
- esxB is SAOUHSC 00265 and has amino acid sequence SEQ ID NO: 25 (GI:88194070).
- Useful esxB antigens can elicit an antibody (e.g. when administered to a human) that recognises SEQ ID NO: 25 and/or may comprise an amino acid sequence: (a) having 50% or more identity (e.g. 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5% or more) to SEQ ID NO: 25; and/or (b) comprising a fragment of at least 'n' consecutive amino acids of SEQ ID NO: 25, wherein 'n' is 7 or more (e.g. 8, 10, 12, 14, 16, 18, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100 or more).
- esxB proteins include variants of SEQ ID NO: 25.
- Preferred fragments of (b) comprise an epitope from SEQ ID NO: 25.
- Other preferred fragments lack one or more amino acids (e.g. 1 , 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the C-terminus and/or one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the N-terminus of SEQ ID NO: 25 while retaining at least one epitope of SEQ ID NO: 25.
- Other fragments omit one or more protein domains. sta006
- the 'sta006' antigen is annotated as 'ferrichrome-binding protein', and has also been referred to as 'FhuD2' in the literature [158].
- sta006 is SAOUHSC_02554 and has amino acid sequence SEQ ID NO: 26 (GI:88196199).
- nwmn_2185 GI: 151222397.
- Useful sta006 antigens can elicit an antibody (e.g. when administered to a human) that recognises SEQ ID NO: 26 and/or may comprise an amino acid sequence: (a) having 50% or more identity (e.g. 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5% or more) to SEQ ID NO: 26; and/or (b) comprising a fragment of at least 'n' consecutive amino acids of SEQ ID NO: 26, wherein ' ⁇ ' is 7 or more (e.g.
- sta006 proteins include variants of SEQ ID NO: 26.
- Preferred fragments of (b) comprise an epitope from SEQ ID NO: 26.
- Other preferred fragments lack one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the C-terminus and/or one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the N-terminus of SEQ ID NO: 26 while retaining at least one epitope of SEQ ID NO: 26.
- the first 17 N-terminal amino acids of SEQ ID NO: 26 can usefully be omitted.
- Other fragments omit one or more protein domains. Mutant forms of sta006 are reported in reference 159.
- a sta006 antigen may be lipidated e.g. with an acylated N-terminus cysteine. isdC
- the 'isdC antigen is annotated as 'protein'.
- isdC is SAOUHSC _01082 and has amino acid sequence SEQ ID NO: 27 (GI: 88194830).
- Useful isdC antigens can elicit an antibody (e.g. when administered to a human) that recognises SEQ ID NO: 27 and/or may comprise an amino acid sequence: (a) having 50% or more identity (e.g. 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5% or more) to SEQ ID NO: 27; and/or (b) comprising a fragment of at least 'n' consecutive amino acids of SEQ ID NO: 27, wherein 'n' is 7 or more (e.g. 8, 10, 12, 14, 16, 18, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100, 150, 200 or more).
- isdC proteins include variants of SEQ ID NO: 27.
- Preferred fragments of (b) comprise an epitope from SEQ ID NO: 27.
- Other preferred fragments lack one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the C-terminus and/or one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the N-terminus of SEQ ID NO: 27 while retaining at least one epitope of SEQ ID NO: 27.
- the final 39 C-terminal amino acids of SEQ ID NO: 27 can usefully be omitted.
- the first 28 N-terminal amino acids of SEQ ID NO: 27 can usefully be omitted.
- Other fragments omit one or more protein domains. Useful fragments of IsdB are disclosed in reference 165.
- Reference 160 discloses antigens which usefully include epitopes from both IsdB and IsdH.
- the 'Hla' antigen is the 'alpha-hemolysin precursor' also known as 'alpha toxin' or simply 'hemolysin'.
- Hla is SAOUHSC 01121 and has amino acid sequence SEQ ID NO: 28 (GI:88194865).
- nwmn_1073 GI: 151221285.
- Hla is an important virulence determinant produced by most strains of S.aureus, having pore-forming and haemolytic activity.
- Anti- Hla antibodies can neutralise the detrimental effects of the toxin in animal models, and Hla is particularly useful for protecting against pneumonia.
- Useful Hla antigens can elicit an antibody (e.g. when administered to a human) that recognises SEQ ID NO: 28 and/or may comprise an amino acid sequence: (a) having 50% or more identity (e.g. 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5% or more) to SEQ ID NO: 28; and/or (b) comprising a fragment of at least 'n' consecutive amino acids of SEQ ID NO: 28, wherein 'n' is 7 or more (e.g. 8, 10, 12, 14, 16, 18, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100, 150, 200, 250 or more).
- Hla proteins include variants of SEQ ID NO: 28.
- Preferred fragments of (b) comprise an epitope from SEQ ID NO: 28.
- Other preferred fragments lack one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the C-terminus and/or one or more amino acids (e.g. 1 , 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the N-terminus of SEQ ID NO: 28 while retaining at least one epitope of SEQ ID NO: 28.
- the first 26 N-terminal amino acids of SEQ ID NO: 28 can usefully be omitted.
- Truncation at the C-terminus can also be used e.g. leaving only 50 amino acids (residues 27-76 of SEQ ID NO: 28) [161].
- Other fragments omit one or more protein domains.
- Hla's toxicity can be avoided in compositions of the invention by chemical inactivation (e.g. using formaldehyde, glutaraldehyde or other cross-linking reagents). Instead, however, it is preferred to use mutant forms of Hla which remove its toxic activity while retaining its immunogenicity. Such detoxified mutants are already known in the art.
- One useful Hla antigen has a mutation at residue 61 of SEQ ID NO: 28, which is residue 35 of the mature antigen (i.e. after omitting the first 26 N-terminal amino acids). Thus residue 61 may not be histidine, and may instead be e.g. He, Val or preferably Leu. A His-Arg mutation at this position can also be used.
- SEQ ID NO: 29 is the mature mutant Hla-H35L sequence and a useful Hla antigen comprises SEQ ID NO: 29.
- Another useful mutation replaces a long loop with a short sequence e.g. to replace the 39mer at residues 136-174 of SEQ ID NO: 28 with a tetramer such as PSGS (SEQ ID NO: 30), as in SEQ ID NO: 31 (which also includes the H35L mutation) and SEQ ID NO: 32 (which does not include the H35L mutation).
- SEQ ID NOs: 33, 34 & 35 are three useful fragments of SEQ ID NO: 28 ('Hla 27 . 76 ', 'Hla 27 -89' and 'Hla 27 . 79 , respectively).
- SEQ ID NOs: 36, 37 and 38 are the corresponding fragments from SEQ ID NO: 29. staO l l
- staOl l is SAOUHSC 00052 and has amino acid sequence SEQ ID NO: 39 (GI:88193872).
- Useful staOl l antigens can elicit an antibody (e.g. when administered to a human) that recognises SEQ ID NO: 39 and/or may comprise an amino acid sequence: (a) having 50% or more identity (e.g. 60%, 65%, 70%), 75%), 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5% or more) to SEQ ID NO: 39; and/or (b) comprising a fragment of at least 'n' consecutive amino acids of SEQ ID NO: 39, wherein ' ⁇ ' is 7 or more (e.g.
- staOl l proteins include variants of SEQ ID NO: 39.
- Preferred fragments of (b) comprise an epitope from SEQ ID NO: 39.
- Other preferred fragments lack one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the C-terminus and/or one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the N-terminus of SEQ ID NO: 39 while retaining at least one epitope of SEQ ID NO: 39.
- the first 23 N-terminal amino acids of SEQ ID NO: 39 can usefully be omitted.
- Other fragments omit one or more protein domains.
- a sta006 antigen may be lipidated e.g. with an acylated N-terminus cysteine.
- SEQ ID NO: 39 which may be used for preparing staOl 1 antigens include, but are not limited to, SEQ ID NOs: 40, 41 and 42 with various Ile/Val/Leu substitutions. isdA
- the 'isdA' antigen is annotated as 'IsdA protein'.
- isdA is SAOUHSC 01081 and has amino acid sequence SEQ ID NO: 43 (GI: 88194829).
- nwmn_1041 GI: 151221253
- Useful isdA antigens can elicit an antibody (e.g. when administered to a human) that recognises SEQ ID NO: 43 and/or may comprise an amino acid sequence: (a) having 50% or more identity (e.g. 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5% or more) to SEQ ID NO: 43; and/or (b) comprising a fragment of at least 'n' consecutive amino acids of SEQ ID NO: 43, wherein 'n' is 7 or more (e.g.
- isdA proteins include variants of SEQ ID NO: 43.
- Preferred fragments of (b) comprise an epitope from SEQ ID NO: 43.
- Other preferred fragments lack one or more amino acids (e.g. 1 , 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the C-terminus and/or one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the N-terminus of SEQ ID NO: 43 while retaining at least one epitope of SEQ ID NO: 43.
- the final 38 C-terminal amino acids of SEQ ID NO: 43 can usefully be omitted.
- the first 46 N-terminal amino acids of SEQ ID NO: 43 can usefully be omitted. Truncation to exclude the C-terminal 38mer of SEQ ID NO: 43 (beginning with the LPKTG motif) is also useful. Other fragments omit one or more protein domains.
- SEQ ID NO: 44 is a useful fragment of SEQ ID NO: 43 (amino acids 40-184 of SEQ ID NO: 43; 'IsdA 4 o-i 84') which includes the natural protein's heme binding site and includes the antigen's most exposed domain. It also reduces the antigen's similarity with human proteins.
- Other useful fragments are disclosed in references 164 and 165.
- IsdA does not adsorb well to aluminium hydroxide adjuvants, so IsdA present in a composition may me unadsorbed or may be adsorbed to an alternative adjuvant e.g. to an aluminium phosphate. isdB
- the 'isdB' antigen is annotated as 'neurofilament protein isdB'.
- isdB is SAOUHSC 01079 and has amino acid sequence SEQ ID NO: 45 (GI:88194828).
- IsdB has been proposed for use as a vaccine antigen on its own [166], but this may not prevent pneumonia.
- Useful isdB antigens can elicit an antibody (e.g. when administered to a human) that recognises SEQ ID NO: 45 and/or may comprise an amino acid sequence: (a) having 50% or more identity (e.g.
- SEQ ID NO: 45 comprising a fragment of at least 'n' consecutive amino acids of SEQ ID NO: 45, wherein ' ⁇ ' is 7 or more (e.g. 8, 10, 12, 14, 16, 18, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100, 150, 200, 250 or more).
- ' ⁇ ' is 7 or more (e.g. 8, 10, 12, 14, 16, 18, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100, 150, 200, 250 or more).
- isdB proteins include variants of SEQ ID NO: 45.
- Preferred fragments of (b) comprise an epitope from SEQ ID NO: 45.
- Other preferred fragments lack one or more amino acids (e.g.
- compositions of the invention do not include an isdB antigen. sta073
- the 'sta073' antigen is annotated as 'bifunctional autolysin precursor'.
- sta073 is SAOUHSC 00994 and has amino acid sequence SEQ ID NO: 46 (GI:88194750).
- nwmn_0922 GI: 151221134. Proteomic analysis has revealed that this protein is secreted or surface-exposed.
- Useful sta073 antigens can elicit an antibody (e.g. when administered to a human) that recognises SEQ ID NO: 46 and/or may comprise an amino acid sequence: (a) having 50% or more identity (e.g. 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5% or more) to SEQ ID NO: 46; and/or (b) comprising a fragment of at least 'n' consecutive amino acids of SEQ ID NO: 46, wherein ' ⁇ ' is 7 or more (e.g.
- sta073 proteins include variants of SEQ ID NO: 46.
- Preferred fragments of (b) comprise an epitope from SEQ ID NO: 46.
- Other preferred fragments lack one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the C-terminus and/or one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the N-terminus of SEQ ID NO: 46 while retaining at least one epitope of SEQ ID NO: 46.
- the first 24 N-terminal amino acids of SEQ ID NO: 46 can usefully be omitted.
- Other fragments omit one or more protein domains.
- Sta073 does not adsorb well to aluminium hydroxide adjuvants, so Sta073 present in a composition may me unadsorbed or may be adsorbed to an alternative adjuvant e.g. to an aluminium phosphate.
- Hybrid polypeptides e.g. to an aluminium phosphate.
- S. aureus protein antigens used in the invention may be present in the composition as individual separate polypeptides. Where more than one antigen is used, however, they do not have to be present as separate polypeptides. Instead, at least two ⁇ e.g. 2, 3, 4, 5, or more) antigens can be expressed as a single polypeptide chain (a 'hybrid' polypeptide).
- Hybrid polypeptides offer two main advantages: first, a polypeptide that may be unstable or poorly expressed on its own can be assisted by adding a suitable hybrid partner that overcomes the problem; second, commercial manufacture is simplified as only one expression and purification need be employed in order to produce two polypeptides which are both antigenically useful.
- the hybrid polypeptide may comprise two or more polypeptide sequences from each of the antigens listed above, or two or more variants of the same antigen in the cases in which the sequence has partial variability across strains.
- Hybrids consisting of amino acid sequences from two, three, four, five, six, seven, eight, nine, or ten antigens are useful.
- hybrids consisting of amino acid sequences from two, three, four, or five antigens are preferred, such as two or three antigens.
- Hybrids may be combined with non-hybrid antigens selected from the first, second or third antigen groups.
- an antigen may be present in more than one hybrid polypeptide and/or as a non-hybrid polypeptide. It is preferred, however, that an antigen is present either as a hybrid or as a non-hybrid, but not as both.
- Hybrid polypeptides can be represented by the formula NH 2 -A- ⁇ -X-L- ⁇ personally-B-COOH, wherein: X is an amino acid sequence of a S. aureus antigen, as described above; L is an optional linker amino acid sequence; A is an optional N-terminal amino acid sequence; B is an optional C-terminal amino acid sequence; n is an integer of 2 or more ⁇ e.g. 2, 3, 4, 5, 6, etc.). Usually n is 2 or 3.
- a -X- moiety has a leader peptide sequence in its wild-type form, this may be included or omitted in the hybrid protein.
- the leader peptides will be deleted except for that of the -X- moiety located at the N-terminus of the hybrid protein i.e. the leader peptide of Xi will be retained, but the leader peptides of X 2 ... X n will be omitted. This is equivalent to deleting all leader peptides and using the leader peptide of Xi as moiety -A-.
- linker amino acid sequence -L- may be present or absent.
- the hybrid may be NH 2 -Xi-Li-X 2 -L 2 -COOH, NH 2 -X ! -X 2 -COOH, NH 2 -X,-L,-X 2 -COOH, NH 2 -Xi-X 2 -L 2 -COOH, etc.
- Linker amino acid sequence(s) -L- will typically be short ⁇ e.g. 20 or fewer amino acids i.e. 20, 19, 18, 17, 16, 15, 14, 13, 12, 1 1, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1).
- Other suitable linker amino acid sequences will be apparent to those skilled in the art.
- a useful linker is GSGGGG (SEQ ID NO: 47) or GS GSGGGG (SEQ ID NO: 48), with the Gly-Ser dipeptide being formed from a BamHl restriction site, thus aiding cloning and manipulation, and the (Gly) 4 tetrapeptide being a typical poly-glycine linker.
- Other suitable linkers, particularly for use as the final L n are ASGGGS (SEQ ID NO: 49 e.g. encoded by SEQ ID NO: 50) or a Leu-Glu dipeptide.
- -A- is an optional N-terminal amino acid sequence.
- This will typically be short (e.g. 40 or fewer amino acids i.e. 40, 39, 38, 37, 36, 35, 34, 33, 32, 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 1 1, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1).
- Other suitable N-terminal amino acid sequences will be apparent to those skilled in the art.
- -A- is preferably an oligopeptide (e.g. with 1, 2, 3, 4, 5, 6, 7 or 8 amino acids) which provides a N-terminus methionine e.g. Met-Ala-Ser, or a single Met residue.
- -B- is an optional C-terminal amino acid sequence.
- This will typically be short (e.g. 40 or fewer amino acids i.e. 39, 38, 37, 36, 35, 34, 33, 32, 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1).
- Other suitable C-terminal amino acid sequences will be apparent to those skilled in the art.
- One hybrid polypeptide of the invention may include both EsxA and EsxB antigens. These may be in either order, N- to C- terminus.
- SEQ ID NOs: 52 ('EsxAB'; encoded by SEQ ID NO: 53) and 54 ('EsxBA') are examples of such hybrids, both having hexapeptide linkers ASGGGS (SEQ ID NO: 49).
- GI numbering is used above.
- a GI number, or “Genlnfo Identifier” is a series of digits assigned consecutively to each sequence record processed by NCBI when sequences are added to its databases. The GI number bears no resemblance to the accession number of the sequence record.
- a sequence is updated (e.g. for correction, or to add more annotation or information) then it receives a new GI number. Thus the sequence associated with a given GI number is never changed.
- references to a percentage sequence identity between two amino acid sequences means that, when aligned, that percentage of amino acids are the same in comparing the two sequences.
- This alignment and the percent homology or sequence identity can be determined using software programs known in the art, for example those described in section 7.7.18 of ref. 176.
- a preferred alignment is determined by the Smith-Waterman homology search algorithm using an affine gap search with a gap open penalty of 12 and a gap extension penalty of 2, BLOSUM matrix of 62.
- the Smith- Waterman homology search algorithm is disclosed in ref. 177.
- this epitope may be a B-cell epitope and/or a T-cell epitope.
- Such epitopes can be identified empirically (e.g. using PEPSCAN [178,179] or similar methods), or they can be predicted (e.g. using the Jameson-Wolf antigenic index [180], matrix-based approaches [181], MAPITOPE [182], TEPITOPE [183,184], neural networks [185], OptiMer & EpiMer [186, 187], ADEPT [188], Tsites [189], hydrophilicity [190], antigenic index [191] or the methods disclosed in references 192-196, etc.).
- Epitopes are the parts of an antigen that are recognised by and bind to the antigen binding sites of antibodies or T-cell receptors, and they may also be referred to as "antigenic determinants”.
- an antigen "domain” is omitted, this may involve omission of a signal peptide, of a cytoplasmic domain, of a transmembrane domain, of an extracellular domain, etc.
- composition comprising X may consist exclusively of X or may include something additional e.g. X + Y.
- the invention can also provide a process involving less than the total number of steps.
- the different steps can be performed at very different times by different people in different places (e.g. in different countries).
- sugar rings can exist in open and closed form and that, whilst closed forms are shown in structural formulae herein, open forms are also encompassed by the invention.
- sugars can exist in pyranose and furanose forms and that, whilst pyranose forms are shown in structural formulae herein, furanose forms are also encompassed.
- Different anomeric forms of sugars are also encompassed.
- Figure 1 illustrates a process for purifying S. aureus type 5 and type 8 capsular polysaccharides based on the method of reference 13.
- Figure 2 shows a DEAE Sepharose chromatogram of capsular polysaccharide and a ⁇ NMR spectrum of capsular polysaccharide-containing fractions (fractions 68-80) prepared according to the method of Figure 1.
- Figure 3 shows a S300 Sephacryl chromatogram of capsular polysaccharide and a ⁇ NMR spectrum of capsular polysaccharide-containing fractions (fractions 22-44) prepared according to the method of Figure 1.
- Figure 4 illustrates an exemplary process of the invention for purifying S. aureus type 5 and type 8 capsular polysaccharides.
- Figure 5 shows a DEAE Sepharose chromatogram of capsular polysaccharide prepared according to a method of the invention.
- Figure 6 shows a ⁇ NMR spectrum for purified S. aureus type 5 capsular polysaccharide.
- Figure 7 shows the chemical structure of the peptidoglycan of S.aureus based on references 197, 198, 199 and 200. The repeat unit is highlighted.
- S.aureus type 5 capsular polysaccharide was purified according to the scheme illustrated in Figure 1 , based on the method of reference 13. The conditions and rationale for the various steps of this method are described in Table 1 :
- S.aureus was grown in solid medium to provide a bacterial suspension of 600-800 ml.
- the harvested pellet was washed three times with 50mM Tris-2mM MgSC1 ⁇ 4 pH7.5 and then suspended at 0.25-0.5g per ml in 50mM Tris-2mM MgS0 4 pH7.5 and treated with 0.1-0.13mg/ml of lysostaphin (Sigma-Aldrich).
- the reaction mixture was incubated at 37°C for 16hrs (ON) with mild stirring.
- 0.05 mg/ml of DNase/RNase (Sigma-Aldrich) was added to the suspension and incubated for 5-7hrs at 37°C.
- the suspension was then clarified by centrifugation.
- the material was incubated with 50mM NaI0 4 (Sigma-Aldrich) in the dark for 5-7hrs. NaI0 4 was then removed by the addition of excess glycerol for 30 minutes with stirring in the light.
- the tangential flow filtration was performed in a SartoriusTM holder for 0.1m 2 cassettes using a WatsonMarlonTM peristaltic pump. Afterwards, the membrane was washed with NaOH 1 M and stored in NaOH 0.1M at +2-8°C.
- Residual protein, nucleic acid and other impurities were removed by anion exchange chromatography carried out in accordance with Table 3:
- the chromatography was performed using an Akta system (G&E Healthcare) and the capsular polysaccharide was detected by measuring UV absorption at 215nm.
- the capsular polysaccharide solution was first added to lOOmM NaPi buffer pH7.2 to obtain a final buffer concentration of lOmM NaPi pH7.2.
- the DEAE resin was pre-equilibrated with lOOmM NaPi buffer pH7.2 to pH7.2 and then equilibrated with lOmM NaPi buffer pH7.2 to achieve the indicated conductivity (lOmM NaPi buffer pH7.2 conductivity).
- the resultant fractions were analyzed by NMR and those containing capsular polysaccharide pooled together ( Figure 2).
- the polysaccharide was further purified by gel-filtration chromatography carried out in accordance with Table 4: Resin S300 SephacrylTM resin (G&E Healthcare)
- S.aureus type 5 and type 8 capsular polysaccharides were purified according to the scheme illustrated in Figure 4. The conditions and rationale for the various steps of this method are described in Table 5:
- S.aureus was grown in solid medium to provide a bacterial suspension of 600-800 ml.
- the harvested pellet was washed three times with 50mM Tris-2mM MgS0 4 pH7.5 and then suspended at 0.5-0.6g per ml in distilled water and stirred vigorously while the temperature was raised to 100°C. Acetic acid was then added to a final concentration of 1% and the mixture kept at 100°C for 2hrs. The mixture was neutralised with NaOH 1M and centrifuged at 8000 rpm.
- the supernatant was decanted from the pellet and combined with 0.05 mg/ml of DNase/RNase (Sigma-
- the tangential flow filtration was performed in a SartoriusTM holder for 0.2m 2 cassettes using a WatsonMarlonTM peristaltic pump. Afterwards, the membrane was washed with NaOH 1M and stored in NaOH 0.1M at +2-8°C.
- Residual protein, nucleic acid and other impurities were removed by anion exchange chromatography carried out in accordance with Table 7:
- the chromatography was performed using an Akta system (G&E Healthcare) and the capsular polysaccharide was detected by measuring UV absorption at 215nm.
- the capsular polysaccharide solution was first added to lOOmM NaPi buffer pH7.2 to obtain a final buffer concentration of lOmM
- the tangential flow filtration was performed in a SartoriusTM holder for 0.2m 2 cassettes using a WatsonMarlonTM peristaltic pump. Afterwards, the membrane was washed with NaOH 1M and stored in NaOH 0.1M at +2-8°C.
- the purified polysaccharide was analysed by NMR ⁇ e.g. Figure 6 for the type 5 capsular polysaccharide).
- the peptidoglycan ( Figure 7) content of purified type 5 polysaccharide obtained according to the methods in sections A and B above was determined by amino acid analysis using HPAEC-PAD according to the Dionex AAA-DirectTM system (AminoPacTM PA 10 AAA-DirectTM, Dionex) in accordance with the manufacturer's instructions. Briefly, 20 ⁇ of ⁇ norleucine was added to 200 ⁇ of polysaccharide at 250 ⁇ g/mL in water in a 400°C treated glass tube and dried using a Speedvac system. The norleucine serves as an internal standard. Samples were hydrolyzed in vacuo using the vapor of boiling hydrochloric acid/phenol in order to yield free amino acids from residual protein and peptidoglycan contamination.
- Eluent El Deionized Water
- Eluent E2 0.250 M Sodium Hydroxide
- Eluent E3 J .0 M Sodium Acetate and Flow—0.25inL/min
- the quantification was performed using a non-hydrolyzed 17 amino acid standard solution (Fluka P/N 09428) in the range 2.5-50 ⁇ . Standard samples were analyzed with and without norleucine, at the same sample concentration. The ratio of the norleucine peak area in the sample divided by the average norleucine peak area in the standards was used as a correction factor for possible amino acid loss in the hydrolysis step. A BSA sample was used as control sample.
- Peptidoglycan content was estimated using two different methods.
- the first method (method 1) was based on the method used in reference 17, which involves a summation of the lysine, alanine, glycine and glutamate content.
- method 2 a conversion factor is calculated for each amino acid according to the following formula: (molecular mass of amino acid x (number of residues in the peptidoglycan structure)/
- the molecular mass of the repeating unit of peptidoglycan is 1233.27 Da ( Figure 7).
- the peptidoglycan content was then calculated as the average peptidoglycan concentration obtained by calculating the ratio of the amino acid concentration and the conversion factor.
- the peptidoglycan content of the purified type 5 capsular polysaccharide after anionic exchange chromatography is given in Table 1 1 :
- the method of the invention provides a very low content of peptidoglycan in the purified polysaccharide.
- the immunogenicity of lot 5 was tested in a mouse lethal model of S.aureus infection. Briefly, CD1 mice were immunised by intraperitoneal injection with a 2 ⁇ g dose of antigen in an injection volume of 200 ⁇ . Immunisations were carried out in groups of twelve mice according to the following scheme, prior to challenge by intraperitoneal injection of a bacterial suspension of 5x10 8 CFU type 5 S.aureus. Cultures of S.aureus were centrifuged, washed twice and diluted in PBS before challenge. Further dilutions were needed for the desired inoculum, which was experimentally verified by agar plating and colony formation. Animals were monitored for 14 days and lethal disease recorded.
- Group 5 - Type 5 capsular polysaccharide-CRM conjugate Lico 5) plus HlaH35L, Sta006 and StaOl 1 proteins and alum
- the conjugates prepared using polysaccharides purified by the method of the invention gave a high level of survival. Survival was enhanced by addition of S.aureus protein antigens.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Medicinal Chemistry (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Pharmacology & Pharmacy (AREA)
- Immunology (AREA)
- Animal Behavior & Ethology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Microbiology (AREA)
- Genetics & Genomics (AREA)
- Biotechnology (AREA)
- Biochemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Mycology (AREA)
- Epidemiology (AREA)
- Molecular Biology (AREA)
- General Engineering & Computer Science (AREA)
- Oncology (AREA)
- Communicable Diseases (AREA)
- Polysaccharides And Polysaccharide Derivatives (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Peptides Or Proteins (AREA)
- Saccharide Compounds (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Medicinal Preparation (AREA)
- External Artificial Organs (AREA)
Abstract
Description
Claims
Priority Applications (22)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
ES10782040.9T ES2626416T3 (en) | 2009-10-30 | 2010-11-01 | Purification of capsular saccharides of Staphilococcus aureus type 5 and type 8 |
DK10782040.9T DK2493498T3 (en) | 2009-10-30 | 2010-11-01 | Purification of Staphylococcus aureus type 5 and type 8 capsule saccharides |
RS20170528A RS56000B1 (en) | 2009-10-30 | 2010-11-01 | Purification of staphylococcus aureus type 5 and type 8 capsular saccharides |
MX2012004851A MX2012004851A (en) | 2009-10-30 | 2010-11-01 | Purification of staphylococcus aureus type 5 and type 8 capsular saccharides. |
CN2010800605540A CN102971009A (en) | 2009-10-30 | 2010-11-01 | Purification of staphylococcus aureus type 5 and type 8 capsular saccharides |
US13/504,920 US9060965B2 (en) | 2009-10-30 | 2010-11-01 | Purification of Staphylococcus aureus type 5 capsular saccharides |
BR122019005883A BR122019005883A8 (en) | 2009-10-30 | 2010-11-01 | METHOD FOR CAPSULAR POLYSACCHARIDE RELEASE, STAPHYLOCOCCUS AUREUS TYPE 5 AND TYPE 8 CAPSULAR SACCHARIDE PURIFICATION PROCESS AND COMPOSITION |
RU2012122237/10A RU2579900C2 (en) | 2009-10-30 | 2010-11-01 | Purification of staphylococcus aureus type 5 and type 8 capsular saccharides |
LTEP10782040.9T LT2493498T (en) | 2009-10-30 | 2010-11-01 | Purification of staphylococcus aureus type 5 and type 8 capsular saccharides |
CA2779578A CA2779578A1 (en) | 2009-10-30 | 2010-11-01 | Purification of staphylococcus aureus type 5 and type 8 capsular saccharides |
JP2012536006A JP5914344B2 (en) | 2009-10-30 | 2010-11-01 | Purification of Staphylococcus aureus type 5 and type 8 capsular saccharides |
AU2010310919A AU2010310919B2 (en) | 2009-10-30 | 2010-11-01 | Purification of Staphylococcus aureus type 5 and type 8 capsular saccharides |
EP10782040.9A EP2493498B1 (en) | 2009-10-30 | 2010-11-01 | Purification of staphylococcus aureus type 5 and type 8 capsular saccharides |
SI201031449A SI2493498T1 (en) | 2009-10-30 | 2010-11-01 | Purification of staphylococcus aureus type 5 and type 8 capsular saccharides |
BR112012010223A BR112012010223A2 (en) | 2009-10-30 | 2010-11-01 | purification of staphylococcus aureus type 5 and type 8 capsular saccharides |
MX2015017594A MX345967B (en) | 2009-10-30 | 2010-11-01 | Purification of staphylococcus aureus type 5 and type 8 capsular saccharides. |
US14/714,097 US9441004B2 (en) | 2009-10-30 | 2015-05-15 | Purification of staphylococcus aureus type 8 capsular saccharides |
US15/258,881 US20160376301A1 (en) | 2009-10-30 | 2016-09-07 | Purification of staphylococcus aureus type 5 and type 8 capsular saccharides |
CY20171100468T CY1118905T1 (en) | 2009-10-30 | 2017-04-26 | CLEANING OF STAPHYLOCOCCUS AUREUS TYPE 5 AND TYPE 8 |
HRP20170674TT HRP20170674T1 (en) | 2009-10-30 | 2017-05-04 | Purification of staphylococcus aureus type 5 and type 8 capsular saccharides |
US16/274,822 US11208424B2 (en) | 2009-10-30 | 2019-02-13 | Staphylococcus aureus type 5 capsular saccharides |
US17/528,426 US20220089627A1 (en) | 2009-10-30 | 2021-11-17 | Staphylococcus aureus type 8 capsular saccharides |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US25690509P | 2009-10-30 | 2009-10-30 | |
US61/256,905 | 2009-10-30 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/504,920 A-371-Of-International US9060965B2 (en) | 2009-10-30 | 2010-11-01 | Purification of Staphylococcus aureus type 5 capsular saccharides |
US14/714,097 Division US9441004B2 (en) | 2009-10-30 | 2015-05-15 | Purification of staphylococcus aureus type 8 capsular saccharides |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011051917A1 true WO2011051917A1 (en) | 2011-05-05 |
Family
ID=43513776
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/IB2010/054934 WO2011051917A1 (en) | 2009-10-30 | 2010-11-01 | Purification of staphylococcus aureus type 5 and type 8 capsular saccharides |
Country Status (22)
Country | Link |
---|---|
US (5) | US9060965B2 (en) |
EP (2) | EP3199177A1 (en) |
JP (4) | JP5914344B2 (en) |
CN (2) | CN102971009A (en) |
AU (1) | AU2010310919B2 (en) |
BR (2) | BR122019005883A8 (en) |
CA (1) | CA2779578A1 (en) |
CL (1) | CL2012001145A1 (en) |
CY (1) | CY1118905T1 (en) |
DK (1) | DK2493498T3 (en) |
ES (1) | ES2626416T3 (en) |
HR (1) | HRP20170674T1 (en) |
HU (1) | HUE034251T2 (en) |
LT (1) | LT2493498T (en) |
MX (2) | MX2012004851A (en) |
PL (1) | PL2493498T3 (en) |
PT (1) | PT2493498T (en) |
RS (1) | RS56000B1 (en) |
RU (1) | RU2579900C2 (en) |
SG (1) | SG10201407096RA (en) |
SI (1) | SI2493498T1 (en) |
WO (1) | WO2011051917A1 (en) |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102660602A (en) * | 2012-04-17 | 2012-09-12 | 江苏康泰生物医学技术有限公司 | Method for rapidly purifying bacteria capsular polysaccharide |
US8568735B2 (en) | 2009-06-22 | 2013-10-29 | Wyeth Llc | Immunogenic compositions of Staphylococcus aureus antigens |
EP2672989A1 (en) * | 2011-02-08 | 2013-12-18 | Integrated Biotherapeutics, Inc. | Immunogenic composition comprising alpha-hemolysin oligopeptides |
WO2014033190A1 (en) * | 2012-08-31 | 2014-03-06 | Novartis Ag | Stabilised proteins for immunising against staphylococcus aureus |
WO2014195280A1 (en) | 2013-06-05 | 2014-12-11 | Glaxosmithkline Biologicals S.A. | Immunogenic composition for use in therapy |
US9125951B2 (en) | 2009-06-22 | 2015-09-08 | Wyeth Llc | Compositions and methods for preparing Staphylococcus aureus serotype 5 and 8 capsular polysaccharide conjugate immunogenic compositions |
US20160158333A1 (en) * | 2013-07-26 | 2016-06-09 | University Of Saskatchewan | Methods for producing salmonella o-antigen capsules, compositions and uses thereof |
WO2016091904A1 (en) | 2014-12-10 | 2016-06-16 | Glaxosmithkline Biologicals Sa | Method of treatment |
EP2493498B1 (en) | 2009-10-30 | 2017-03-22 | GlaxoSmithKline Biologicals SA | Purification of staphylococcus aureus type 5 and type 8 capsular saccharides |
WO2020170190A1 (en) | 2019-02-22 | 2020-08-27 | Pfizer Inc. | Methods for purifying bacterial polysaccharides |
EP3789494A1 (en) | 2019-09-06 | 2021-03-10 | Serum Institute of India Private Limited | Method for obtaining purified bacterial polysaccharides |
WO2021165847A1 (en) | 2020-02-21 | 2021-08-26 | Pfizer Inc. | Purification of saccharides |
WO2022084852A1 (en) | 2020-10-22 | 2022-04-28 | Pfizer Inc. | Methods for purifying bacterial polysaccharides |
WO2023161817A1 (en) | 2022-02-25 | 2023-08-31 | Pfizer Inc. | Methods for incorporating azido groups in bacterial capsular polysaccharides |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20180221466A9 (en) * | 2006-06-12 | 2018-08-09 | Glaxosmithkline Biologicals S.A. | Use of alpha-toxin for treating and preventing staphylococcus infections |
ES2812523T3 (en) | 2009-09-30 | 2021-03-17 | Glaxosmithkline Biologicals Sa | Conjugation of Staphylococcus aureus type 5 and type 8 capsular polysaccharides |
US11260119B2 (en) | 2018-08-24 | 2022-03-01 | Pfizer Inc. | Escherichia coli compositions and methods thereof |
US10828360B1 (en) * | 2020-02-04 | 2020-11-10 | OneBioPharma, Inc. | Methods for inhibiting biofilm formation |
CN112986457B (en) * | 2021-02-25 | 2022-07-12 | 中国食品药品检定研究院 | Method for detecting polysaccharide by HPSEC-MALS method and correlating polysaccharide with Sepharose CL-4B method |
CN118345133A (en) * | 2021-06-15 | 2024-07-16 | 广州知易生物科技有限公司 | Preparation method of bacteroides fragilis capsular polysaccharide A |
CN114957509B (en) * | 2022-08-01 | 2022-10-21 | 深圳柏垠生物科技有限公司 | Scalable purification method of kola acid |
Citations (64)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4197290A (en) | 1977-09-30 | 1980-04-08 | Kosaku Yoshida | Vaccine |
EP0372501A2 (en) | 1988-12-07 | 1990-06-13 | BEHRINGWERKE Aktiengesellschaft | Synthetic antigens, method for their preparation and their use |
EP0378881A1 (en) | 1989-01-17 | 1990-07-25 | ENIRICERCHE S.p.A. | Synthetic peptides and their use as universal carriers for the preparation of immunogenic conjugates suitable for the development of synthetic vaccines |
WO1991001146A1 (en) | 1989-07-14 | 1991-02-07 | Praxis Biologics, Inc. | Cytokine and hormone carriers for conjugate vaccines |
EP0427347A1 (en) | 1989-11-10 | 1991-05-15 | ENIRICERCHE S.p.A. | Synthetic peptides useful as universal carriers for the preparation of immunogenic conjugates and their use in the development of synthetic vaccines |
EP0471177A2 (en) | 1990-08-13 | 1992-02-19 | American Cyanamid Company | Filamentous hemagglutinin of bordetella pertussis as a carrier molecule for conjugate vaccines |
EP0477508A1 (en) | 1990-09-28 | 1992-04-01 | American Cyanamid Company | Improved oligosaccharide conjugate vaccines |
WO1993017712A2 (en) | 1992-03-06 | 1993-09-16 | Biocine Spa | Conjugates formed from heat shock proteins and oligo- or polysaccharides |
WO1994003208A1 (en) | 1992-07-30 | 1994-02-17 | Yeda Research And Development Company Ltd. | Conjugates of poorly immunogenic antigens and synthetic peptide carriers and vaccines comprising them |
EP0594610A1 (en) | 1990-05-31 | 1994-05-04 | Arne Forsgren | PROTEIN D - AN IgD-BINDING PROTEIN OF HAEMOPHILUS INFLUENZAE |
WO1996029412A1 (en) | 1995-03-17 | 1996-09-26 | Biochem Vaccines Inc. | Proteinase k resistant surface protein of neisseria meningitidis |
WO1996040242A1 (en) | 1995-06-07 | 1996-12-19 | Smithkline Beecham Biologicals S.A. | Vaccine comprising a polysaccharide antigen-carrier protein conjugate and free carrier protein |
WO1998010788A1 (en) | 1996-09-11 | 1998-03-19 | Nabi | Staphylococcus aureus antigen |
WO1998042721A1 (en) | 1997-03-24 | 1998-10-01 | Andrew Lees | Uronium salt conjugate vaccines |
WO1998058668A2 (en) | 1997-06-20 | 1998-12-30 | Microbiological Research Authority | Bordetella pertussis antigens as carriers in vaccinating conjugates and oral vaccines comprising bordetella pertussis fimbriae |
WO1999024578A2 (en) | 1997-11-06 | 1999-05-20 | Chiron S.P.A. | Neisserial antigens |
WO1999027105A2 (en) | 1997-11-21 | 1999-06-03 | Genset | Chlamydia pneumoniae genomic sequence and polypeptides, fragments thereof and uses thereof, in particular for the diagnosis, prevention and treatment of infection |
WO1999028475A2 (en) | 1997-11-28 | 1999-06-10 | Genset | Chlamydia trachomatis genomic sequence and polypeptides, fragments thereof and uses thereof, in particular for the diagnosis, prevention and treatment of infection |
WO1999036544A2 (en) | 1998-01-14 | 1999-07-22 | Chiron S.P.A. | Neisseria meningitidis antigens |
WO1999042130A1 (en) | 1998-02-23 | 1999-08-26 | Connaught Laboratories Limited | Multi-oligosaccharide glycoconjugate bacterial meningitis vaccines |
WO1999057280A2 (en) | 1998-05-01 | 1999-11-11 | Chiron Corporation | Neisseria meningitidis antigens and compositions |
US6027733A (en) | 1997-03-26 | 2000-02-22 | The Brigham And Women's Hospital, Inc. | Method for generating saccharide fragments |
US6045805A (en) | 1991-10-10 | 2000-04-04 | Pasteur Merieux Serums Et Vaccines | Oligosaccharide derived from an antigenic polysaccharide obtained from a pathogenic agent |
WO2000022430A2 (en) | 1998-10-09 | 2000-04-20 | Chiron Corporation | Neisseria genomic sequences and methods of their use |
WO2000027994A2 (en) | 1998-11-12 | 2000-05-18 | The Regents Of The University Of California | Chlamydia pneumoniae genome sequence |
WO2000037494A2 (en) | 1998-12-18 | 2000-06-29 | Chiron S.P.A. | Chlamydia trachomatis antigens |
WO2000056357A2 (en) | 1999-03-19 | 2000-09-28 | Nabi | Staphylococcus antigen and vaccine |
WO2000056360A2 (en) | 1999-03-19 | 2000-09-28 | Smithkline Beecham Biologicals S.A. | Vaccine against antigens from bacteriae |
WO2000061761A2 (en) | 1999-04-09 | 2000-10-19 | Techlab, Inc. | Recombinant clostridium toxin a protein carrier for polysaccharide conjugate vaccines |
WO2001052885A1 (en) | 2000-01-17 | 2001-07-26 | Chiron Spa | Outer membrane vesicle (omv) vaccine comprising n. meningitidis serogroup b outer membrane proteins |
WO2001072337A1 (en) | 2000-03-27 | 2001-10-04 | Microbiological Research Authority | Proteins for use as carriers in conjugate vaccines |
WO2002002606A2 (en) | 2000-07-03 | 2002-01-10 | Chiron S.P.A. | Immunisation against chlamydia pneumoniae |
WO2002034771A2 (en) | 2000-10-27 | 2002-05-02 | Chiron Srl | Nucleic acids and proteins from streptococcus groups a & b |
WO2002091998A2 (en) | 2001-05-11 | 2002-11-21 | Aventis Pasteur, Inc. | Novel meningitis conjugate vaccine |
WO2003007985A2 (en) | 2001-06-20 | 2003-01-30 | Chiron Srl. | Capsular polysaccharide solubilisation and combination vaccines |
WO2003061558A2 (en) | 2001-09-19 | 2003-07-31 | Nabi Biopharmaceuticals | Glycoconjugate vaccines for use in immune-compromised populations |
WO2003093306A2 (en) | 2002-05-02 | 2003-11-13 | Chir0N Srl | Nucleic acids and proteins from streptococcus groups a & b |
WO2004011027A1 (en) | 2002-07-30 | 2004-02-05 | Baxter International Inc. | Chimeric multivalent polysaccharide conjugate vaccines |
WO2004018646A2 (en) | 2002-08-26 | 2004-03-04 | Chiron Corporation | Conserved and specific streptococcal genomes |
WO2004041157A2 (en) | 2002-09-13 | 2004-05-21 | Chiron Corporation | Group b streptococcus vaccine |
WO2004043407A2 (en) | 2002-11-12 | 2004-05-27 | The Brigham And Women's Hospital, Inc. | Methods and products for treating staphylococcal infections |
WO2004043405A2 (en) | 2002-11-12 | 2004-05-27 | The Brigham And Women's Hospital, Inc. | Polysaccharide vaccine for staphylococcal infections |
WO2004080490A2 (en) | 2003-03-07 | 2004-09-23 | Wyeth Holdings Corporation | Polysaccharide - staphylococcal surface adhesin carrier protein conjugates for immunization against nosocomial infections |
WO2005000346A1 (en) * | 2003-06-23 | 2005-01-06 | Baxter International Inc. | Carrier proteins for vaccines |
WO2005009379A2 (en) | 2003-07-24 | 2005-02-03 | Merck & Co., Inc. | Polypeptides for inducing a protective immune response against staphylococcus aureus |
WO2005009378A2 (en) | 2003-07-24 | 2005-02-03 | Merck & Co., Inc. | Polypeptides for inducing a protective immune response against staphylococcus aureus |
WO2005033148A1 (en) | 2003-10-02 | 2005-04-14 | Chiron Srl | Hypo- and hyper-acetylated meningococcal capsular saccharides |
WO2005079315A2 (en) | 2004-02-18 | 2005-09-01 | Merck & Co., Inc. | Polypeptides for inducing a protective immune response against staphylococcus aureus |
WO2005086663A2 (en) | 2004-02-27 | 2005-09-22 | Merck & Co., Inc. | Polypeptides for inducing a protective immune response against staphlococcus aureus |
WO2005115113A2 (en) | 2004-05-25 | 2005-12-08 | Merck & Co., Inc. | Polypeptides for inducing a protective immune response against staphylococcus aureus |
WO2006033918A2 (en) | 2004-09-17 | 2006-03-30 | Merck & Co., Inc. | Polypeptides for inducing a protective immune response against staphylococcus aureus |
WO2006032475A2 (en) | 2004-09-22 | 2006-03-30 | Glaxosmithkline Biologicals S.A. | Staphylococcal immunogenic compositions |
WO2006065553A2 (en) | 2004-12-14 | 2006-06-22 | Nabi Biopharmaceuticals | Glycoconjugate vaccines containing peptidoglycan |
WO2006078680A2 (en) | 2005-01-21 | 2006-07-27 | Merck & Co., Inc. | Polypeptides for inducing a protective immune response against staphylococcus aureus |
WO2006114500A2 (en) | 2005-04-25 | 2006-11-02 | Sanofi Pasteur | Method for producing strains of overproductive staphylococcus aureus |
WO2007053176A2 (en) | 2005-04-07 | 2007-05-10 | Nabi Biopharmaceuticals | Method of protecting against staphylococcal infection |
WO2007071692A2 (en) | 2005-12-21 | 2007-06-28 | Glaxosmithkline Biologicals S.A. | Immunogenic composition |
WO2007113224A2 (en) | 2006-03-30 | 2007-10-11 | Glaxosmithkline Biologicals S.A. | Conjugation process for pnag and a carrier protein |
WO2007113222A2 (en) | 2006-03-30 | 2007-10-11 | Glaxosmithkline Biologicals S.A. | Immunogenic composition |
WO2007145689A1 (en) | 2006-06-12 | 2007-12-21 | Nabi Biopharmaceuticals | Use of alpha-toxin for treating and preventing staphylococcus infections |
WO2008079315A2 (en) | 2006-12-20 | 2008-07-03 | Rules-Based Medicine, Inc. | Ilcs based pattern recognition of sepsis |
WO2008152447A2 (en) | 2006-10-30 | 2008-12-18 | The University Of Western Ontario | Staphylococcus aureus specific anti-infectives |
WO2009029132A2 (en) | 2007-05-31 | 2009-03-05 | Merck & Co., Inc. | Antigen-binding proteins targeting s. aureus orf0657n |
WO2009029831A1 (en) | 2007-08-31 | 2009-03-05 | University Of Chicago | Methods and compositions related to immunizing against staphylococcal lung diseases and conditions |
Family Cites Families (55)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2166963A (en) * | 1936-11-19 | 1939-07-25 | Sharp & Dohme Inc | Antigenic polysaccharide complex |
FI40107C (en) * | 1961-05-15 | 1968-10-10 | Parke Davis & Co | Method for preparing a novel staphylococcal antigen |
US3269913A (en) * | 1962-05-11 | 1966-08-30 | Parke Davis & Co | Staphylococcal-immunizing products and methods for their production |
GB995338A (en) * | 1963-09-20 | 1965-06-16 | Parke Davis & Co | Polysaccharides and methods for their production |
US4663160A (en) * | 1983-03-14 | 1987-05-05 | Miles Laboratories, Inc. | Vaccines for gram-negative bacteria |
US4808700A (en) * | 1984-07-09 | 1989-02-28 | Praxis Biologics, Inc. | Immunogenic conjugates of non-toxic E. coli LT-B enterotoxin subunit and capsular polymers |
US5055455A (en) * | 1988-09-28 | 1991-10-08 | Brigham And Women's Hospital | Capsular polysaccharide adhesin antigen, preparation, purification and use |
AU681573B2 (en) * | 1991-11-22 | 1997-09-04 | Glaxosmithkline Biologicals Sa | Type I and type II surface antigens associated with (staphylococcus epidermidis) |
US5679654A (en) * | 1994-09-02 | 1997-10-21 | Brigham & Women's Hospital, Inc. | Capsular polysaccharide immunomodulator |
US6743430B1 (en) * | 1995-03-29 | 2004-06-01 | Richard E. Parizek | Multicomponent vaccine containing clostridial and non-clostridial organisms in a low dose |
US6294177B1 (en) * | 1996-09-11 | 2001-09-25 | Nabi | Staphylococcus aureus antigen-containing whole cell vaccine |
GB9808932D0 (en) * | 1998-04-27 | 1998-06-24 | Chiron Spa | Polyepitope carrier protein |
US7252828B2 (en) * | 1998-07-15 | 2007-08-07 | The Brigham And Women's Hospital, Inc. | Polysaccharide vaccine for staphylococcal infections |
US6146902A (en) | 1998-12-29 | 2000-11-14 | Aventis Pasteur, Inc. | Purification of polysaccharide-protein conjugate vaccines by ultrafiltration with ammonium sulfate solutions |
US7534866B2 (en) | 2005-10-19 | 2009-05-19 | Ibc Pharmaceuticals, Inc. | Methods and compositions for generating bioactive assemblies of increased complexity and uses |
US6689567B1 (en) * | 1999-05-28 | 2004-02-10 | University Of Guelph | Method for assaying the function of FlaA1 and WbpM |
US6537577B1 (en) * | 2001-06-04 | 2003-03-25 | Bio Medical Development Corporation | Method of prophylaxis for bovine mastitis |
GB2379996B (en) * | 2001-06-05 | 2004-05-19 | Tayside Flow Technologies Ltd | Flow means |
ATE429484T1 (en) * | 2001-06-11 | 2009-05-15 | Applied Nanosystems Bv | METHOD FOR BINDING ACMA-TYPE PROTEIN ANCHOR FUSIONS TO MICROORGANISMS CELL WALL MATERIALS |
US20040161741A1 (en) | 2001-06-30 | 2004-08-19 | Elazar Rabani | Novel compositions and processes for analyte detection, quantification and amplification |
US20060121058A1 (en) * | 2002-08-08 | 2006-06-08 | Children's Medical Center Corporation | Anti-pneumococcal preparations |
GB0220198D0 (en) * | 2002-08-30 | 2002-10-09 | Chiron Spa | Modified saccharides,conjugates thereof and their manufacture |
GB0227346D0 (en) * | 2002-11-22 | 2002-12-31 | Chiron Spa | 741 |
CN101818185B (en) | 2003-03-13 | 2016-05-25 | 葛兰素史密丝克莱恩生物有限公司 | The method of purification of bacterial cytolysin |
US8048432B2 (en) * | 2003-08-06 | 2011-11-01 | The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services | Polysaccharide-protein conjugate vaccines |
ATE460498T1 (en) * | 2003-09-11 | 2010-03-15 | Staat Der Nederlanden Vert Doo | METHOD FOR PRODUCING A CAPSULE POLYSACCHARIDE FOR USE IN CONJUGATE VACCINES |
US20050250821A1 (en) * | 2004-04-16 | 2005-11-10 | Vincent Sewalt | Quaternary ammonium compounds in the treatment of water and as antimicrobial wash |
US7842479B2 (en) * | 2004-05-21 | 2010-11-30 | The Board Of Regents Of The University Of Nebraska | Methods for altering acetic acid production and enhancing cell death in bacteria |
GB0413868D0 (en) * | 2004-06-21 | 2004-07-21 | Chiron Srl | Dimensional anlaysis of saccharide conjugates |
GB0502096D0 (en) * | 2005-02-01 | 2005-03-09 | Chiron Srl | Purification of streptococcal capsular polysaccharide |
PT1896065E (en) * | 2005-06-27 | 2011-08-31 | Glaxosmithkline Biolog Sa | Process for manufacturing vaccines |
CA2620416A1 (en) * | 2005-08-24 | 2007-03-01 | Novartis Vaccines And Diagnostics S.R.L. | Zwitterionization of capsular saccharides |
JP5286089B2 (en) * | 2006-01-13 | 2013-09-11 | バクスター・インターナショナル・インコーポレイテッド | Method for purifying polysaccharides |
FR2899110A1 (en) * | 2006-03-31 | 2007-10-05 | Sanofi Pasteur Sa | Immunogenic composition, useful for immunizing against Staphylococcus aureus infection, comprises capsular polysaccharide of type 8 and 5 of Staphylococcus aureus strain overproducing type 8 and/or type 5, respectively |
GB0612854D0 (en) * | 2006-06-28 | 2006-08-09 | Novartis Ag | Saccharide analysis |
US20080240978A1 (en) * | 2006-11-08 | 2008-10-02 | Jan Sorensen | Method and apparatus for two-step sterilization |
GB0700136D0 (en) * | 2007-01-04 | 2007-02-14 | Glaxosmithkline Biolog Sa | Process for manufacturing vaccines |
GB0700135D0 (en) * | 2007-01-04 | 2007-02-14 | Glaxosmithkline Biolog Sa | Vaccine |
GB0713880D0 (en) | 2007-07-17 | 2007-08-29 | Novartis Ag | Conjugate purification |
EP2254592B1 (en) | 2008-02-28 | 2019-06-05 | Dako Denmark A/S | Mhc multimers in borrelia diagnostics and disease |
CA2737453A1 (en) * | 2008-09-17 | 2010-07-08 | Novartis Ag | Combination gas vaccines and therapeutics |
CA2739581A1 (en) * | 2008-10-06 | 2010-04-15 | University Of Chicago | Compositions and methods related to bacterial eap, emp, and/or adsa proteins |
WO2010132833A1 (en) * | 2009-05-14 | 2010-11-18 | The Regents Of The University Of Michigan | Streptococcus vaccine compositions and methods of using the same |
JP5395264B2 (en) * | 2009-06-22 | 2014-01-22 | ワイス・エルエルシー | Immunogenic composition of staphylococcus aureus antigen |
EP3461496B1 (en) * | 2009-06-22 | 2023-08-23 | Wyeth LLC | Compositions and methods for preparing staphylococcus aureus serotype 5 and 8 capsular polysaccharide conjugate immunogenic compositions |
GB0913681D0 (en) * | 2009-08-05 | 2009-09-16 | Glaxosmithkline Biolog Sa | Immunogenic composition |
ES2812523T3 (en) * | 2009-09-30 | 2021-03-17 | Glaxosmithkline Biologicals Sa | Conjugation of Staphylococcus aureus type 5 and type 8 capsular polysaccharides |
MX2012004851A (en) | 2009-10-30 | 2012-05-22 | Novartis Ag | Purification of staphylococcus aureus type 5 and type 8 capsular saccharides. |
WO2011081075A1 (en) * | 2009-12-28 | 2011-07-07 | キッコーマン株式会社 | Method for extracting staphylococcus aureus antigen, reagent for extracting staphylococcus aureus antigen, and method for testing staphylococcus aureus |
ES2707778T3 (en) | 2009-12-30 | 2019-04-05 | Glaxosmithkline Biologicals Sa | Immunogens polysaccharides conjugated with carrier proteins of E. coli |
CA2803298C (en) * | 2010-07-02 | 2020-07-14 | The University Of Chicago | Compositions and methods related to protein a (spa) variants |
GB201310008D0 (en) * | 2013-06-05 | 2013-07-17 | Glaxosmithkline Biolog Sa | Immunogenic composition for use in therapy |
WO2015082571A1 (en) | 2013-12-04 | 2015-06-11 | Glycovaxyn Ag | Prevention of staphylococcus aureus infections by glycoprotein vaccines synthesized in escherichia coli |
US9775872B2 (en) | 2014-08-20 | 2017-10-03 | Professional Compounding Centers Of America | Topical pharmaceutical bases for preventing viral diseases |
US12090198B2 (en) * | 2017-05-22 | 2024-09-17 | The Children's Medical Center Corporation | Combined vaccine against mycobacterium tuberculosis |
-
2010
- 2010-11-01 MX MX2012004851A patent/MX2012004851A/en unknown
- 2010-11-01 CA CA2779578A patent/CA2779578A1/en not_active Abandoned
- 2010-11-01 HU HUE10782040A patent/HUE034251T2/en unknown
- 2010-11-01 JP JP2012536006A patent/JP5914344B2/en active Active
- 2010-11-01 DK DK10782040.9T patent/DK2493498T3/en active
- 2010-11-01 WO PCT/IB2010/054934 patent/WO2011051917A1/en active Application Filing
- 2010-11-01 US US13/504,920 patent/US9060965B2/en active Active
- 2010-11-01 CN CN2010800605540A patent/CN102971009A/en active Pending
- 2010-11-01 CN CN201810862632.7A patent/CN109134677A/en active Pending
- 2010-11-01 AU AU2010310919A patent/AU2010310919B2/en not_active Ceased
- 2010-11-01 SG SG10201407096RA patent/SG10201407096RA/en unknown
- 2010-11-01 LT LTEP10782040.9T patent/LT2493498T/en unknown
- 2010-11-01 PL PL10782040T patent/PL2493498T3/en unknown
- 2010-11-01 RS RS20170528A patent/RS56000B1/en unknown
- 2010-11-01 EP EP17160320.2A patent/EP3199177A1/en not_active Withdrawn
- 2010-11-01 PT PT107820409T patent/PT2493498T/en unknown
- 2010-11-01 SI SI201031449A patent/SI2493498T1/en unknown
- 2010-11-01 BR BR122019005883A patent/BR122019005883A8/en not_active Application Discontinuation
- 2010-11-01 EP EP10782040.9A patent/EP2493498B1/en active Active
- 2010-11-01 RU RU2012122237/10A patent/RU2579900C2/en active
- 2010-11-01 BR BR112012010223A patent/BR112012010223A2/en not_active Application Discontinuation
- 2010-11-01 ES ES10782040.9T patent/ES2626416T3/en active Active
- 2010-11-01 MX MX2015017594A patent/MX345967B/en unknown
-
2012
- 2012-04-30 CL CL2012001145A patent/CL2012001145A1/en unknown
-
2015
- 2015-05-15 US US14/714,097 patent/US9441004B2/en not_active Expired - Fee Related
- 2015-12-30 JP JP2015257722A patent/JP2016047852A/en not_active Withdrawn
-
2016
- 2016-09-07 US US15/258,881 patent/US20160376301A1/en not_active Abandoned
-
2017
- 2017-04-26 CY CY20171100468T patent/CY1118905T1/en unknown
- 2017-05-04 HR HRP20170674TT patent/HRP20170674T1/en unknown
- 2017-09-01 JP JP2017168223A patent/JP2017206564A/en not_active Withdrawn
-
2019
- 2019-02-13 US US16/274,822 patent/US11208424B2/en active Active
- 2019-04-05 JP JP2019072625A patent/JP2019104940A/en not_active Withdrawn
-
2021
- 2021-11-17 US US17/528,426 patent/US20220089627A1/en not_active Abandoned
Patent Citations (67)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4197290A (en) | 1977-09-30 | 1980-04-08 | Kosaku Yoshida | Vaccine |
EP0372501A2 (en) | 1988-12-07 | 1990-06-13 | BEHRINGWERKE Aktiengesellschaft | Synthetic antigens, method for their preparation and their use |
EP0378881A1 (en) | 1989-01-17 | 1990-07-25 | ENIRICERCHE S.p.A. | Synthetic peptides and their use as universal carriers for the preparation of immunogenic conjugates suitable for the development of synthetic vaccines |
WO1991001146A1 (en) | 1989-07-14 | 1991-02-07 | Praxis Biologics, Inc. | Cytokine and hormone carriers for conjugate vaccines |
EP0427347A1 (en) | 1989-11-10 | 1991-05-15 | ENIRICERCHE S.p.A. | Synthetic peptides useful as universal carriers for the preparation of immunogenic conjugates and their use in the development of synthetic vaccines |
EP0594610A1 (en) | 1990-05-31 | 1994-05-04 | Arne Forsgren | PROTEIN D - AN IgD-BINDING PROTEIN OF HAEMOPHILUS INFLUENZAE |
EP0471177A2 (en) | 1990-08-13 | 1992-02-19 | American Cyanamid Company | Filamentous hemagglutinin of bordetella pertussis as a carrier molecule for conjugate vaccines |
EP0477508A1 (en) | 1990-09-28 | 1992-04-01 | American Cyanamid Company | Improved oligosaccharide conjugate vaccines |
US5306492A (en) | 1990-09-28 | 1994-04-26 | American Cyanamid Company | Oligosaccharide conjugate vaccines |
US6045805A (en) | 1991-10-10 | 2000-04-04 | Pasteur Merieux Serums Et Vaccines | Oligosaccharide derived from an antigenic polysaccharide obtained from a pathogenic agent |
WO1993017712A2 (en) | 1992-03-06 | 1993-09-16 | Biocine Spa | Conjugates formed from heat shock proteins and oligo- or polysaccharides |
WO1994003208A1 (en) | 1992-07-30 | 1994-02-17 | Yeda Research And Development Company Ltd. | Conjugates of poorly immunogenic antigens and synthetic peptide carriers and vaccines comprising them |
WO1996029412A1 (en) | 1995-03-17 | 1996-09-26 | Biochem Vaccines Inc. | Proteinase k resistant surface protein of neisseria meningitidis |
WO1996040242A1 (en) | 1995-06-07 | 1996-12-19 | Smithkline Beecham Biologicals S.A. | Vaccine comprising a polysaccharide antigen-carrier protein conjugate and free carrier protein |
WO1998010788A1 (en) | 1996-09-11 | 1998-03-19 | Nabi | Staphylococcus aureus antigen |
WO1998042721A1 (en) | 1997-03-24 | 1998-10-01 | Andrew Lees | Uronium salt conjugate vaccines |
US6027733A (en) | 1997-03-26 | 2000-02-22 | The Brigham And Women's Hospital, Inc. | Method for generating saccharide fragments |
US6274144B1 (en) | 1997-03-26 | 2001-08-14 | The Brigham And Women's Hospital, Inc. | Method for generating antibodies to saccharide fragments |
WO1998058668A2 (en) | 1997-06-20 | 1998-12-30 | Microbiological Research Authority | Bordetella pertussis antigens as carriers in vaccinating conjugates and oral vaccines comprising bordetella pertussis fimbriae |
WO1999024578A2 (en) | 1997-11-06 | 1999-05-20 | Chiron S.P.A. | Neisserial antigens |
WO1999027105A2 (en) | 1997-11-21 | 1999-06-03 | Genset | Chlamydia pneumoniae genomic sequence and polypeptides, fragments thereof and uses thereof, in particular for the diagnosis, prevention and treatment of infection |
WO1999028475A2 (en) | 1997-11-28 | 1999-06-10 | Genset | Chlamydia trachomatis genomic sequence and polypeptides, fragments thereof and uses thereof, in particular for the diagnosis, prevention and treatment of infection |
WO1999036544A2 (en) | 1998-01-14 | 1999-07-22 | Chiron S.P.A. | Neisseria meningitidis antigens |
WO1999042130A1 (en) | 1998-02-23 | 1999-08-26 | Connaught Laboratories Limited | Multi-oligosaccharide glycoconjugate bacterial meningitis vaccines |
WO1999057280A2 (en) | 1998-05-01 | 1999-11-11 | Chiron Corporation | Neisseria meningitidis antigens and compositions |
WO2000022430A2 (en) | 1998-10-09 | 2000-04-20 | Chiron Corporation | Neisseria genomic sequences and methods of their use |
WO2000027994A2 (en) | 1998-11-12 | 2000-05-18 | The Regents Of The University Of California | Chlamydia pneumoniae genome sequence |
WO2000037494A2 (en) | 1998-12-18 | 2000-06-29 | Chiron S.P.A. | Chlamydia trachomatis antigens |
WO2000056357A2 (en) | 1999-03-19 | 2000-09-28 | Nabi | Staphylococcus antigen and vaccine |
WO2000056360A2 (en) | 1999-03-19 | 2000-09-28 | Smithkline Beecham Biologicals S.A. | Vaccine against antigens from bacteriae |
WO2000061761A2 (en) | 1999-04-09 | 2000-10-19 | Techlab, Inc. | Recombinant clostridium toxin a protein carrier for polysaccharide conjugate vaccines |
WO2001052885A1 (en) | 2000-01-17 | 2001-07-26 | Chiron Spa | Outer membrane vesicle (omv) vaccine comprising n. meningitidis serogroup b outer membrane proteins |
WO2001072337A1 (en) | 2000-03-27 | 2001-10-04 | Microbiological Research Authority | Proteins for use as carriers in conjugate vaccines |
WO2002002606A2 (en) | 2000-07-03 | 2002-01-10 | Chiron S.P.A. | Immunisation against chlamydia pneumoniae |
WO2002034771A2 (en) | 2000-10-27 | 2002-05-02 | Chiron Srl | Nucleic acids and proteins from streptococcus groups a & b |
WO2002091998A2 (en) | 2001-05-11 | 2002-11-21 | Aventis Pasteur, Inc. | Novel meningitis conjugate vaccine |
WO2003007985A2 (en) | 2001-06-20 | 2003-01-30 | Chiron Srl. | Capsular polysaccharide solubilisation and combination vaccines |
WO2003061558A2 (en) | 2001-09-19 | 2003-07-31 | Nabi Biopharmaceuticals | Glycoconjugate vaccines for use in immune-compromised populations |
WO2003093306A2 (en) | 2002-05-02 | 2003-11-13 | Chir0N Srl | Nucleic acids and proteins from streptococcus groups a & b |
WO2004011027A1 (en) | 2002-07-30 | 2004-02-05 | Baxter International Inc. | Chimeric multivalent polysaccharide conjugate vaccines |
WO2004018646A2 (en) | 2002-08-26 | 2004-03-04 | Chiron Corporation | Conserved and specific streptococcal genomes |
WO2004041157A2 (en) | 2002-09-13 | 2004-05-21 | Chiron Corporation | Group b streptococcus vaccine |
WO2004043407A2 (en) | 2002-11-12 | 2004-05-27 | The Brigham And Women's Hospital, Inc. | Methods and products for treating staphylococcal infections |
WO2004043405A2 (en) | 2002-11-12 | 2004-05-27 | The Brigham And Women's Hospital, Inc. | Polysaccharide vaccine for staphylococcal infections |
WO2004080490A2 (en) | 2003-03-07 | 2004-09-23 | Wyeth Holdings Corporation | Polysaccharide - staphylococcal surface adhesin carrier protein conjugates for immunization against nosocomial infections |
WO2005000346A1 (en) * | 2003-06-23 | 2005-01-06 | Baxter International Inc. | Carrier proteins for vaccines |
WO2005009379A2 (en) | 2003-07-24 | 2005-02-03 | Merck & Co., Inc. | Polypeptides for inducing a protective immune response against staphylococcus aureus |
WO2005009378A2 (en) | 2003-07-24 | 2005-02-03 | Merck & Co., Inc. | Polypeptides for inducing a protective immune response against staphylococcus aureus |
WO2005033148A1 (en) | 2003-10-02 | 2005-04-14 | Chiron Srl | Hypo- and hyper-acetylated meningococcal capsular saccharides |
WO2005079315A2 (en) | 2004-02-18 | 2005-09-01 | Merck & Co., Inc. | Polypeptides for inducing a protective immune response against staphylococcus aureus |
WO2005086663A2 (en) | 2004-02-27 | 2005-09-22 | Merck & Co., Inc. | Polypeptides for inducing a protective immune response against staphlococcus aureus |
WO2005115113A2 (en) | 2004-05-25 | 2005-12-08 | Merck & Co., Inc. | Polypeptides for inducing a protective immune response against staphylococcus aureus |
WO2006033918A2 (en) | 2004-09-17 | 2006-03-30 | Merck & Co., Inc. | Polypeptides for inducing a protective immune response against staphylococcus aureus |
WO2006032475A2 (en) | 2004-09-22 | 2006-03-30 | Glaxosmithkline Biologicals S.A. | Staphylococcal immunogenic compositions |
WO2006032500A2 (en) | 2004-09-22 | 2006-03-30 | Glaxosmithkline Biologicals S.A. | Immunogenic composition |
WO2006065553A2 (en) | 2004-12-14 | 2006-06-22 | Nabi Biopharmaceuticals | Glycoconjugate vaccines containing peptidoglycan |
WO2006078680A2 (en) | 2005-01-21 | 2006-07-27 | Merck & Co., Inc. | Polypeptides for inducing a protective immune response against staphylococcus aureus |
WO2007053176A2 (en) | 2005-04-07 | 2007-05-10 | Nabi Biopharmaceuticals | Method of protecting against staphylococcal infection |
WO2006114500A2 (en) | 2005-04-25 | 2006-11-02 | Sanofi Pasteur | Method for producing strains of overproductive staphylococcus aureus |
WO2007071692A2 (en) | 2005-12-21 | 2007-06-28 | Glaxosmithkline Biologicals S.A. | Immunogenic composition |
WO2007113224A2 (en) | 2006-03-30 | 2007-10-11 | Glaxosmithkline Biologicals S.A. | Conjugation process for pnag and a carrier protein |
WO2007113222A2 (en) | 2006-03-30 | 2007-10-11 | Glaxosmithkline Biologicals S.A. | Immunogenic composition |
WO2007145689A1 (en) | 2006-06-12 | 2007-12-21 | Nabi Biopharmaceuticals | Use of alpha-toxin for treating and preventing staphylococcus infections |
WO2008152447A2 (en) | 2006-10-30 | 2008-12-18 | The University Of Western Ontario | Staphylococcus aureus specific anti-infectives |
WO2008079315A2 (en) | 2006-12-20 | 2008-07-03 | Rules-Based Medicine, Inc. | Ilcs based pattern recognition of sepsis |
WO2009029132A2 (en) | 2007-05-31 | 2009-03-05 | Merck & Co., Inc. | Antigen-binding proteins targeting s. aureus orf0657n |
WO2009029831A1 (en) | 2007-08-31 | 2009-03-05 | University Of Chicago | Methods and compositions related to immunizing against staphylococcal lung diseases and conditions |
Non-Patent Citations (133)
Title |
---|
"Current Protocols in Molecular Biology", 1987 |
"Handbook of Experimental Immunology", vol. I-IV, 1986, BLACKWELL SCIENTIFIC PUBLICATIONS |
"Handbook of Surface and Colloidal Chemistry", 1997, CRC PRESS |
"Methods In Enzymology", ACADEMIC PRESS, INC |
"Molecular Biology Techniques: An Intensive Laboratory Course", 1998, ACADEMIC PRESS |
"PCR (Introduction to Biotechniques Series)", 1997, SPRINGER VERLAG |
"Short protocols in molecular biology", 2002, CURRENT PROTOCOLS |
"Vaccines", 2004 |
AHMAD; CHAPNICK, INFECT DIS CLIN NORTH AM, vol. 13, 1999, pages 113 - 33 |
APOSTOLOPOULOS; PLEBANSKI, CURR OPIN MOL THER, vol. 2, 2000, pages 441 - 447 |
BARALDO ET AL., INFECT IMMUN, vol. 72, no. 8, 2004, pages 4884 - 7 |
BELL, PEDIATR INFECT DIS J, vol. 19, 2000, pages 1187 - 1188 |
BISWAS, PHD THESIS: CHARACTERIZATION OF STAPHYLOCOCCUS AUREUS PEPTIDOGLYCAN HYDROLAES AND ISOLATION OF DEFINED PEPTIDOGLYCAN STRUCTURES DER EBERHARD KARLS UNIVERSITÄT TÜBINGEN, 2006 |
BJUNE ET AL., LANCET, vol. 338, no. 8775, 1991, pages 1093 - 1096 |
BRUSIC ET AL., BIOINFORMATICS, vol. 14, no. 2, 1998, pages 121 - 30 |
BUBIL, PROTEINS, vol. 68, no. 1, 2007, pages 294 - 304 |
BUTTERY; MOXON, JR COLL PHYSICIANS LOND, vol. 34, 2000, pages 163 - 68 |
CARTER, METHODS MOL BIOL, vol. 36, 1994, pages 207 - 23 |
CESCUTTI P ET AL: "Determination of the size and degree of acetyl substitution of oligosaccharides from Neisseria meningitidis group A by ionspray mass spectrometry.", BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS 16 JUL 1996 LNKD- PUBMED:8702408, vol. 224, no. 2, 16 July 1996 (1996-07-16), pages 444 - 450, XP002620551, ISSN: 0006-291X * |
CHEN ET AL., AMINO ACIDS, vol. 33, no. 3, 2007, pages 423 - 8 |
COSTANTINO ET AL., VACCINE, vol. 10, 1992, pages 691 - 698 |
DALE, INFECT DIS CIIN NORTH AM, vol. 13, 1999, pages 227 - 43 |
DAVENPORT ET AL., IMMUNOGENETICS, vol. 42, 1995, pages 392 - 297 |
DAVIS, MT. SINAI J. MED., vol. 66, 1999, pages 84 - 90 |
DE LALLA ET AL., J IMMUNOL., vol. 163, 1999, pages 1725 - 29 |
DEDENT ET AL., EMBO J., vol. 27, 2008, pages 2656 - 2668 |
DEDENT ET AL., J. BACTERIOL., vol. 189, 2007, pages 4473 - 4484 |
DEISENHOFER ET AL., HOPPE-SEYH ZEITSCH. PHYSIOL. CHEM., vol. 359, 1978, pages 975 - 985 |
DEISENHOFER, BIOCHEMISTRY, vol. 20, 1981, pages 2361 - 2370 |
DENG L ET AL: "CHARACTERIZATION OF THE LINKAGE BETWEEN THE TYPE III CAPSULAR POLYSACCHARIDE AND THE BACTERIAL CELL WALL OF GROUP B STREPTOCOCCUS", JOURNAL OF BIOLOGICAL CHEMISTRY.(MICROFILMS), AMERICAN SOCIETY OF BIOLOGICAL CHEMISTS, BALTIMORE, MD, US, vol. 275, no. 11, 17 March 2000 (2000-03-17), pages 7497 - 7504, XP008068869 * |
DICK ET AL.: "Conjugate Vaccines", vol. 10, 1989, pages: 48 - 114 |
DONNELLY ET AL., AM J RESPIR CRIT CARE MED, vol. 162, 2000, pages 190 - 193 |
DONNELLY ET AL., ANNU REV IMMUNOL, vol. 15, 1997, pages 617 - 648 |
DREESEN, VACCINE, vol. 15, 1997, pages S2 - 6 |
DUBENSKY ET AL., MOL MED, vol. 6, 2000, pages 723 - 732 |
FALUGI ET AL., EUR J LMMUNOL, vol. 31, 2001, pages 3816 - 3824 |
FATTOM A ET AL: "Synthesis and immunologic properties in mice of vaccines composed of Staphylococcus aureus type 5 and type 8 capsular polysaccharides conjugated to Pseudomonas aeruginosa exotoxin A.", INFECTION AND IMMUNITY JUL 1990 LNKD- PUBMED:2114365, vol. 58, no. 7, July 1990 (1990-07-01), pages 2367 - 2374, XP002620550, ISSN: 0019-9567 * |
FATTOM ET AL., INFECT IMMUN., vol. 58, no. 7, 1990, pages 2367 - 74 |
FATTOM ET AL., INFECT IMMUN., vol. 60, no. 2, 1992, pages 584 - 9 |
FATTOM ET AL., INFECT IMMUN., vol. 61, no. 3, 1993, pages 1023 - 32 |
FATTOM ET AL., INFECT IMMUN., vol. 64, no. 5, 1996, pages 1659 - 65 |
FATTOM ET AL., INFECT IMMUN., vol. 66, no. 10, 1998, pages 4588 - 92 |
FATTOM ET AL., N ENGL J MED., vol. 346, no. 7, 2002, pages 491 - 6 |
FATTOM ET AL., VACCINE, vol. 17, no. 2, 1993, pages 126 - 33 |
FELLER; DE LA CRUZ, NATURE, vol. 349, no. 6311, 1991, pages 720 - 1 |
FERRETTI ET AL., PNAS USA, vol. 98, 2001, pages 4658 - 4663 |
FOURNIER ET AL., INFECT. IMMUN., vol. 45, no. 1, 1984, pages 87 - 93 |
FUKASAWA ET AL., VACCINE, vol. 17, 1999, pages 2951 - 2958 |
GENNARO: "Remington: The Science and Practice of Pharmacy", 2000 |
GERLICH ET AL., VACCINE, vol. 8, 1990, pages 63 - 68,79-80 |
GEYSEN ET AL., PNAS USA, vol. 81, 1984, pages 3998 - 4002 |
GILBERT ET AL., J. MICROB. METH., vol. 20, 1994, pages 39 - 46 |
GILBERT ET AL., VACCINE, vol. 12, no. 4, 1994, pages 369 - 74 |
GILBERT F B ET AL: "Purification of type 5 capsular polysaccharide from Straphylococcus aureus by a simple efficient method", JOURNAL OF MICROBIOLOGICAL METHODS, ELSEVIER, AMSTERDAM, NL, vol. 20, no. 1, 1 June 1994 (1994-06-01), pages 39 - 46, XP023698993, ISSN: 0167-7012, [retrieved on 19940601], DOI: DOI:10.1016/0167-7012(94)90062-0 * |
GOLDBLATT, J. MED MICROBIOL., vol. 47, 1998, pages 563 - 7 |
GOMEZ ET AL., J. BIOL. CHEM., vol. 281, 2006, pages 20190 - 20196 |
GRAILLE ET AL., PROC. NAT. ACAD SCI. USA, vol. 97, 2000, pages 5399 - 5404 |
GUSTAFSSON ET AL., N ENGL. J MED., vol. 334, 1996, pages 349 - 355 |
HERBELIN ET AL., JDAIRY SCI., vol. 80, no. 9, 1997, pages 2025 - 34 |
HERMANSON: "Bioconjugae Techniques", 1996, ACADEMIC PRESS |
HESTRIN, J BIOL. CHEM., vol. 180, 1949, pages 249 - 261 |
HOPP, PEPTIDE RESEARCH, vol. 6, 1993, pages 183 - 190 |
HSU ET AL., CLIN LIVER DIS, vol. 3, 1999, pages 901 - 915 |
ILAN, CURR OPIN MOL THER, vol. 1, 1999, pages 116 - 120 |
IWARSON, APMIS, vol. 103, 1995, pages 321 - 326 |
JAMESON, BA, CABIOS, vol. 4, no. 1, 1988, pages 181 - 186 |
JEDRZEJAS, MICROBIOL MOL BIOL REV, vol. 65, 2001, pages 187 - 207 |
JENNINGS H: "Further approaches for optimizing polysaccharide-protein conjugate vaccines for prevention of invasive bacterial disease.", THE JOURNAL OF INFECTIOUS DISEASES JUN 1992 LNKD- PUBMED:1588152, vol. 165 Suppl 1, June 1992 (1992-06-01), pages S156 - S159, XP009144149, ISSN: 0022-1899 * |
JONES, CARBOHYDRATE RES., vol. 340, no. 6, 2005, pages 1097 - 106 |
JONES; LEMERCINIER, JPHARM BIOMED ANAL., vol. 30, no. 4, 2002, pages 1233 - 47 |
JOYCE ET AL., CARBOHYDRATE RESEARCH, vol. 338, 2003, pages 903 |
KALMAN ET AL., NATURE GENETICS, vol. 21, 1999, pages 385 - 389 |
KIM ET AL., BIOCHEMISTRY, vol. 47, no. 12, 2008, pages 3822 - 3831 |
KIM; SCHAEFER, BIOCHEMISTRY, vol. 47, no. 38, 2008, pages 10155 - 10161 |
KONADU ET AL., INFECT. IMMUN., vol. 62, 1994, pages 5048 - 5054 |
KUKLIN ET AL., INFECT IMMUN., vol. 74, no. 4, 2006, pages 2215 - 23 |
KUO ET AL., INFECT IMMUN, vol. 63, 1995, pages 2706 - 13 |
KURODA ET AL., LANCET, vol. 357, no. 9264, 2001, pages 1225 - 1240 |
KWOK ET AL., TRENDS IMMUNOL, vol. 22, 2001, pages 583 - 88 |
LANCET, pages 1218 - 1219 |
LCHIMAN ET AL., J. APPL. BACTERIOL., vol. 71, 1991, pages 176 |
LCHIMAN; YOSHIDA, J. APPL. BACTERIOL., vol. 51, 1981, pages 229 |
LEE ET AL., INFECT IMMUN, vol. 61, 1993, pages 1853 - 8 |
LEFEBER D J ET AL: "Isolation of oligosaccharides from a partial-acid hydrolysate of pneumococcal type 3 polysaccharide for use in conjugate vaccines", CARBOHYDRATE RESEARCH, PERGAMON, GB, vol. 337, no. 9, 30 April 2002 (2002-04-30), pages 819 - 825, XP004355355, ISSN: 0008-6215, DOI: DOI:10.1016/S0008-6215(02)00059-9 * |
LEI ET AL., DEV BIOL, vol. 103, 2000, pages 259 - 264 |
LEMERCINIER; JONES, CARBOHYDRATE RES., vol. 296, 1996, pages 83 - 96 |
LINDBERG, VACCINE, vol. 17, no. 2, 1999, pages 28 - 36 |
MAIRA-LITRAN ET AL., INFECT. IMMUN., vol. 70, 2002, pages 4433 |
MAKSYUTOV; ZAGREBELNAYA, COMPUT APPL BIOSCI, vol. 9, no. 3, 1993, pages 291 - 7 |
MCMICHAEI, VACCINE, vol. 19, no. 1, 2000, pages 101 - 107 |
MEISTER ET AL., VACCINE, vol. 13, no. 6, 1995, pages 581 - 91 |
MICHON ET AL., VACCINE, vol. 16, 1998, pages 1732 - 41 |
MMWR MORB MORTAL WKLY REP, vol. 47, no. 1, 16 January 1998 (1998-01-16), pages 12,19 |
MOREAU ET AL., CARBOHYDRATE RES., vol. 339, no. 5, 1990, pages 285 - 91 |
O'SEAGHDHA ET AL., FEBS J., vol. 273, 2006, pages 4831 - 41 |
PATTI ET AL., BIOCHEMISTRY, vol. 47, no. 32, 2008, pages 8378 - 8385 |
PIZZA ET AL., SCIENCE, vol. 287, 2000, pages 1816 - 1820 |
RABLE; WARDENBURG, INFECT IMMUN, vol. 77, 2009, pages 2712 - 8 |
RADDRIZZANI; HAMMER, BRIEF BIOINFORM, vol. 1, no. 2, 2000, pages 179 - 89 |
RAMSAY ET AL., LANCET, vol. 357, no. 9251, 2001, pages 195 - 196 |
RAPPUOLI ET AL., TIBTECH, vol. 9, 1991, pages 232 - 238 |
READ ET AL., NUCLEIC ACIDS RES, vol. 28, 2000, pages 1397 - 406 |
RESEARCH DISCLOSURE, January 2002 (2002-01-01), pages 453077 |
REYNAUD-RONDIER ET AL., FEMS MICROBIOLOGY IMMUNOLOGY, vol. 76, 1991, pages 193 - 200 |
ROBBINS ET AL., ANN N YACAD SCI., vol. 754, 2005, pages 68 - 82 |
ROBERTS ET AL., AIDS RES HUM RETROVIRUSES, vol. 12, no. 7, 1996, pages 593 - 610 |
ROBINSON; PERTMER, ADV VIRUS RES, vol. 55, 2000, pages 1 - 74 |
ROBINSON; TORRES, SEMINARS IN IMMUNOLOGY, vol. 9, 1997, pages 271 - 283 |
ROSENQVIST ET AL., DEV. BIOL. STAND, vol. 92, 1998, pages 323 - 333 |
ROSS ET AL., VACCINE, vol. 19, 2001, pages 4135 - 4142 |
RUAN ET AL., JLMMUNOL, vol. 145, 1990, pages 3379 - 3384 |
RUBIN, PEDIATR CLIN NORTH AM, vol. 47, 2000, pages 269 - 285 |
SAMBROOK ET AL.: "Molecular Cloning: A Laboratory Manual", 2001, COLD SPRING HARBOR LABORATORY PRESS |
SCHIRLE ET AL., JIMMUNOL METHODS., vol. 257, no. 1-2, 2001, pages 1 - 16 |
SCHNEEWIND ET AL., CELL, vol. 70, 1992, pages 267 - 281 |
SCOTT-TAYLOR; DALGLEISH, EXPERT OPIN INVESTIG DRUGS, vol. 9, 2000, pages 471 - 480 |
SEBULSKY ET AL., JBIOL CHEM, vol. 278, 2003, pages 49890 - 900 |
SEBULSKY; HEINRICHS, J BACTERIOL, vol. 183, 2001, pages 4994 - 5000 |
SHIRAI ET AL., J INFECT. DIS., vol. 181, no. 3, 2000, pages 5524 - 5527 |
SJODAHL, J. BIOCHEM., vol. 73, 1977, pages 343 - 35 |
SJOQUIST ET AL., EUR. J. BIOCHEM., vol. 30, 1972, pages 190 - 194 |
SMITH; WATERMAN, ADV. APPL. MATH., vol. 2, 1981, pages 482 - 489 |
SUTTER ET AL., PEDIATR CLIN NORTH AM, vol. 47, 2000, pages 287 - 308 |
TETTELIN ET AL., SCIENCE, vol. 287, 2000, pages 1809 - 1815 |
TOLLERSRUD ET AL., VACCINE, vol. 19, no. 28-29, 2001, pages 3896 - 903 |
TONG ET AL., BRIEFBIOINFORM, vol. 8, no. 2, 2007, pages 96 - 108 |
TSURUI; TAKAHASHI, JPHARMACOL SCI., vol. 105, no. 4, 2007, pages 299 - 316 |
UHLEN ET AL., J. BIOL. CHEM., vol. 259, 1984, pages 1695 - 1702,13628 |
WATSON, PEDIATR INFECT DIS J, vol. 19, 2000, pages 331 - 332 |
WELCH ET AL., JAM SOC NEPHROL., vol. 7, no. 2, 1996, pages 247 - 53 |
WELLING ET AL., FEBSLETT, vol. 188, 1985, pages 215 - 218 |
WESSELS ET AL., INFECT IMMUN, vol. 57, 1989, pages 1089 - 94 |
ZMMERMAN; SPANN, AM FAM PHYSICIAN, vol. 59, 1999, pages 113 - 118,125-126 |
Cited By (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8568735B2 (en) | 2009-06-22 | 2013-10-29 | Wyeth Llc | Immunogenic compositions of Staphylococcus aureus antigens |
US9623100B2 (en) | 2009-06-22 | 2017-04-18 | Wyeth Llc | Compositions and methods for preparing Staphylococcus aureus serotype 5 and 8 capsular polysaccharide conjugate immunogenic compositions |
US8889145B2 (en) | 2009-06-22 | 2014-11-18 | Wyeth Llc | Immunogenic compositions of Staphylococcus aureus antigens |
US9125951B2 (en) | 2009-06-22 | 2015-09-08 | Wyeth Llc | Compositions and methods for preparing Staphylococcus aureus serotype 5 and 8 capsular polysaccharide conjugate immunogenic compositions |
US9114105B2 (en) | 2009-06-22 | 2015-08-25 | Wyeth Llc | Immunogenic compositions of Staphylococcus aureus antigens |
US11208424B2 (en) | 2009-10-30 | 2021-12-28 | Glaxosmithkline Biologicals Sa | Staphylococcus aureus type 5 capsular saccharides |
US20190169216A1 (en) * | 2009-10-30 | 2019-06-06 | Glaxosmithkline Biologicals, S.A. | Purification of staphylococcus aureus type 5 and type 8 capsular saccharides |
EP2493498B1 (en) | 2009-10-30 | 2017-03-22 | GlaxoSmithKline Biologicals SA | Purification of staphylococcus aureus type 5 and type 8 capsular saccharides |
US9109036B2 (en) | 2011-02-08 | 2015-08-18 | Integrated Biotherapeutics, Inc. | Immunogenic composition comprising alpha-hemolysin oligopeptides |
EP2672989A4 (en) * | 2011-02-08 | 2015-03-11 | Integrated Biotherapeutics Inc | Immunogenic composition comprising alpha-hemolysin oligopeptides |
EP2672989A1 (en) * | 2011-02-08 | 2013-12-18 | Integrated Biotherapeutics, Inc. | Immunogenic composition comprising alpha-hemolysin oligopeptides |
CN102660602A (en) * | 2012-04-17 | 2012-09-12 | 江苏康泰生物医学技术有限公司 | Method for rapidly purifying bacteria capsular polysaccharide |
CN104619336A (en) * | 2012-08-31 | 2015-05-13 | 诺华股份有限公司 | Stabilised proteins for immunising against staphylococcus aureus |
WO2014033190A1 (en) * | 2012-08-31 | 2014-03-06 | Novartis Ag | Stabilised proteins for immunising against staphylococcus aureus |
US9926344B2 (en) | 2012-08-31 | 2018-03-27 | Glaxosmithkline Biologicals Sa | Stabilised proteins for immunising against Staphylococcus aureus |
CN110563818A (en) * | 2012-08-31 | 2019-12-13 | 诺华股份有限公司 | Stabilized proteins for immunization against staphylococcus aureus |
WO2014195280A1 (en) | 2013-06-05 | 2014-12-11 | Glaxosmithkline Biologicals S.A. | Immunogenic composition for use in therapy |
US20160158333A1 (en) * | 2013-07-26 | 2016-06-09 | University Of Saskatchewan | Methods for producing salmonella o-antigen capsules, compositions and uses thereof |
WO2016091904A1 (en) | 2014-12-10 | 2016-06-16 | Glaxosmithkline Biologicals Sa | Method of treatment |
WO2020170190A1 (en) | 2019-02-22 | 2020-08-27 | Pfizer Inc. | Methods for purifying bacterial polysaccharides |
EP3789494A1 (en) | 2019-09-06 | 2021-03-10 | Serum Institute of India Private Limited | Method for obtaining purified bacterial polysaccharides |
WO2021165847A1 (en) | 2020-02-21 | 2021-08-26 | Pfizer Inc. | Purification of saccharides |
WO2022084852A1 (en) | 2020-10-22 | 2022-04-28 | Pfizer Inc. | Methods for purifying bacterial polysaccharides |
WO2023161817A1 (en) | 2022-02-25 | 2023-08-31 | Pfizer Inc. | Methods for incorporating azido groups in bacterial capsular polysaccharides |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11208424B2 (en) | Staphylococcus aureus type 5 capsular saccharides | |
US10736959B2 (en) | Conjugation of Staphylococcus aureus type 5 and type 8 capsular polysaccharides | |
AU2006211049B2 (en) | Purification of streptococcal capsular polysaccharide | |
BE1024282B1 (en) | IMMUNOGENIC COMPOSITIONS |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201080060554.0 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10782040 Country of ref document: EP Kind code of ref document: A1 |
|
DPE1 | Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101) | ||
WWE | Wipo information: entry into national phase |
Ref document number: MX/A/2012/004851 Country of ref document: MX |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012536006 Country of ref document: JP |
|
ENP | Entry into the national phase |
Ref document number: 2779578 Country of ref document: CA |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012001145 Country of ref document: CL Ref document number: 2010310919 Country of ref document: AU |
|
ENP | Entry into the national phase |
Ref document number: 2010310919 Country of ref document: AU Date of ref document: 20101101 Kind code of ref document: A |
|
REEP | Request for entry into the european phase |
Ref document number: 2010782040 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012122237 Country of ref document: RU Ref document number: 2010782040 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13504920 Country of ref document: US |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112012010223 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: 112012010223 Country of ref document: BR Kind code of ref document: A2 Effective date: 20120430 |
|
WWE | Wipo information: entry into national phase |
Ref document number: P-2017/0528 Country of ref document: RS |