WO2011050266A1 - Compositions and methods for treating progressive myocardial injury due to a vascular insufficiency - Google Patents

Compositions and methods for treating progressive myocardial injury due to a vascular insufficiency Download PDF

Info

Publication number
WO2011050266A1
WO2011050266A1 PCT/US2010/053744 US2010053744W WO2011050266A1 WO 2011050266 A1 WO2011050266 A1 WO 2011050266A1 US 2010053744 W US2010053744 W US 2010053744W WO 2011050266 A1 WO2011050266 A1 WO 2011050266A1
Authority
WO
WIPO (PCT)
Prior art keywords
months
cells
cxcr
years
days
Prior art date
Application number
PCT/US2010/053744
Other languages
French (fr)
Inventor
Andrew L. Pecora
Robert A. Preti
Original Assignee
Amorcyte, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Amorcyte, Inc. filed Critical Amorcyte, Inc.
Priority to ES10825743.7T priority Critical patent/ES2610241T3/en
Priority to EP16198257.4A priority patent/EP3170891B1/en
Priority to EP10825743.7A priority patent/EP2491114B8/en
Priority to CA2778664A priority patent/CA2778664C/en
Priority to GB1208457.0A priority patent/GB2487339A/en
Priority to JP2012535413A priority patent/JP5709880B2/en
Publication of WO2011050266A1 publication Critical patent/WO2011050266A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/14Blood; Artificial blood
    • A61K35/15Cells of the myeloid line, e.g. granulocytes, basophils, eosinophils, neutrophils, leucocytes, monocytes, macrophages or mast cells; Myeloid precursor cells; Antigen-presenting cells, e.g. dendritic cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/28Bone marrow; Haematopoietic stem cells; Mesenchymal stem cells of any origin, e.g. adipose-derived stem cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/18Growth factors; Growth regulators
    • A61K38/1883Neuregulins, e.g.. p185erbB2 ligands, glial growth factor, heregulin, ARIA, neu differentiation factor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/04Inotropic agents, i.e. stimulants of cardiac contraction; Drugs for heart failure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/06Antiarrhythmics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0634Cells from the blood or the immune system
    • C12N5/0647Haematopoietic stem cells; Uncommitted or multipotent progenitors

Definitions

  • the described invention relates to compositions comprising a chemotactic hematopoietic stem cell product and methods of use thereof for treating early or late adverse consequences of vascular insufficiency.
  • cardiac cycle is used to refer to all or any of the mechanical events related to the coronary blood flow or blood pressure that occurs from the beginning of one heartbeat to the beginning of the next. Blood pressure increases and decreases throughout the cardiac cycle. The frequency of the cardiac cycle is the heart rate.
  • Every single 'beat' of the heart involves five major stages: (l)"late diastole,” which is when the semilunar valves close, the atrioventricular (Av) valves open and the whole heart is relaxed; (2) “atrial systole,” which is when the myocardium of the left and right atria are contracting, AV valves open and blood flows from atrium to ventricle; (3) “isovolumic ventricular contraction,” which is when the ventricles begin to contract, AV and semilunar valves close, and there is no change in volume; (4)
  • ventricular ejection which is when the ventricles are empty but still contracting and the semilunar valves are open; and (5) “isovolumic ventricular relaxation,” when pressure decreases, no blood is entering the ventricles, the ventricles stop contracting and begin to relax, and the semilunar valves are shut because blood in the aorta is pushing them shut.
  • the cardiac cycle is coordinated by a series of electrical impulses that are produced by specialized heart cells found within the sino-atrial node and the atrioventricular node.
  • the flow of blood through the coronary arteries is pulsatile, with characteristic phasic systolic and diastolic flow components.
  • Systolic flow which relates to the contraction or pumping phase of the heart cycle, has rapid, brief, retrograde responses.
  • Diastolic flow which relates to the relaxation or filling phase of the heart cycle, occurs during the relaxation phase after myocardial contraction, with an abrupt increase above systolic levels and a gradual decline parallel with that of aortic diastolic pressures.
  • Intramural coronary blood volume changes during each heartbeat, with the myocardium accommodating the volume change brought about by muscular contraction. Coronary venous flow is out of phase with coronary arterial flow, occurring predominantly in systole and nearly absent during diastole.
  • systolic pressure refers to the peak pressure in the arteries, which occurs near the end of the cardiac cycle when the ventricles are contracting.
  • diastolic pressure refers to the minimum pressure in the arteries, which occurs near the beginning of the cardiac cycle when the ventricles are filled with blood.
  • Coronary blood flow not only is phasic but also varies with the type of vessel and location in the myocardium. Coronary arterioles appear to have specialized regulatory elements along their length that operate "in series” in an integrated manner. A system of multiple functional "valves" permits fine control of the coronary circulation. The smallest arterioles dilate during metabolic stress, resulting in reduced microvascular resistance and increased myocardial perfusion. Stenosis or narrowing of a blood vessel produces resistance to blood flow related directly to the morphologic features of the stenosis. As the upstream arteriolar pressure decreases due to a fall in distending pressure across the stenosis, myogenic dilation of slightly larger arterioles upstream occurs and causes an additional decrease in resistance. Increased flow in the largest arterioles augments shear stress and triggers flow-mediated dilation, further reducing the resistance of this network.
  • the arterial and venous pulsatile flow characteristics of the heart are dependent on intramyocardial compliance.
  • the term "compliance” refers to a measure of the tendency of a hollow organ to resist recoil toward its original dimensions upon removal of a distending or compressing force. The higher the compliance the more elastic the material. Compliance is calculated using the following equation, where AV is the change in volume, and ⁇ is the change in pressure:
  • outlet resistance is related to intramural cardiac veins.
  • the intramyocardial capillary resistance influences both arterial and venous responses but predominantly acts in concert with outlet resistance.
  • Precapillary arterioles 100 to 500 ⁇ in size are resistive vessels connecting epicardial to myocardial capillaries and are the principal controllers of coronary blood flow. They contribute approximately 25% to 35% of total coronary resistance.
  • Distal precapillary arteriolar vessels are resistive vessels connecting epicardial to myocardial capillaries and are the principal controllers of coronary blood flow. They contribute approximately 25% to 35% of total coronary resistance.
  • Distal precapillary arteriolar vessels are resistive vessels connecting epicardial to myocardial capillaries and are the principal controllers of coronary blood flow. They contribute approximately 25% to 35% of total coronary resistance.
  • Distal precapillary arteriolar vessels are resistive vessels connecting epicardial to myocardial capillaries and are the principal controllers of coronary blood flow. They contribute approximately 25% to 35% of total coronary resistance.
  • Distal precapillary arteriolar vessels are resistive vessels connecting epicardial to myocardial capillaries and are the principal controllers of coronar
  • the myocardium depends almost entirely on aerobic metabolism, since oxygen stores in the heart are meager. Myocardial oxygen supply rises and falls in response to the oxygen (energy) demands of the myocardium.
  • autoregulation refers to the ability to maintain myocardial perfusion at constant levels in the face of changing driving forces.
  • Autoregulation maintains coronary perfusion at relatively constant levels over a wide range of mean aortic pressure.
  • aortic pressure exceeds its upper or lower limits, coronary blood flow precipitously declines or increases proportionately.
  • the heart needs to be supplied with a sufficient quantity of oxygen to prevent underperfusion.
  • ischemia meaning a lack of blood supply and oxygen, occurs. Because the zone least supplied generally is the farthest out, ischemia generally appears in areas farthest away from the blood supply.
  • myocardial perfusion occurs by way of collaterals, meaning vascular channels that interconnect epicardial arteries.
  • Collateral channels may form acutely or may preexist in an under-developed state before the appearance of coronary artery disease.
  • Preexisting collaterals are thin-walled structures ranging in diameter from 20 ⁇ to 200 ⁇ , with a variable density among different species.
  • Preexisting collaterals normally are closed and nonfunctional, because no pressure gradient exists to drive flow between the arteries they connect. After coronary occlusion, the distal pressure drops precipitously and preexisting collaterals open virtually instantly.
  • the term "myocardial ischemia” refers to a decrease in blood supply and oxygen to the cells of the myocardium. The development of myocardial ischemia has been attributed to two mechanisms: (1) increased myocardial oxygen demand, and (2) decreased myocardial perfusion and oxygen delivery. (Willerson, J.T. et al., J. Am. Coll. Cardiol. 8(1): 245-50 (1986)). Myocardial ischemia generally appears first and is more extensive in the
  • Transient Ischemia refers to a reversible (meaning that the myocytes survive the insult) narrowing of a coronary artery at rest or with exercise where there is no thrombus or plaque rupture but where blood supply cannot be met. Every time the heart's oxygen demand increases, an imbalance between oxygen demand and supply is created.
  • Transient ischemia produces a cascade of events beginning with metabolic and biochemical alterations leading to impaired ventricular relaxation and diastolic dysfunction, impaired systolic function, and electrocardiographic abnormalities with ST segment alterations, followed by increased end-diastolic pressure with left ventricular dyssynchrony, hypokineses, akinesis, and dyskinesis, and lastly painful symptoms of angina.
  • ischemic myocytes experience physiological and metabolic changes within seconds of the cessation of coronary flow, resulting in T wave and sometimes ST segment abnormalities (but without serum enzyme elevation), no cell death results from the ischemia.
  • angina pectoris may be a symptom of transient ischemia, by and large transient ischemia is silent (meaning ST-segment depression of at least 1 mm is present without associated symptoms, e.g., chest pain) in 79% of subjects.
  • ST-segment depression of at least 1 mm is present without associated symptoms, e.g., chest pain
  • in most patients with stable angina for example, physical effort or emotion, with a resultant increase in heart rate, blood pressure, or contractile state, or any combination thereof, increases myocardial oxygen demand without an adequate delivery in oxygen delivery through tightly narrowed (stenosed) coronary arteries. More than 40% of patients with stable angina treated with one or more antianginal drugs have frequent episodes of silent ischemia, which has been shown to predict a higher risk of coronary events and cardiac death.
  • CMI chronic myocardial ischemia
  • myocardium still does not contract. This flow-function mismatch resulting in a slow return of cardiac function after resolution of ischemia has been called stunning.
  • the length of time for function to return is quite variable, ranging from days to months, and is dependent on a number of parameters, including the duration of the original ischemic insult, the severity of ischemia during the original insult, and the adequacy of the return of the arterial flow.
  • a number of studies have provided evidence for inflammation in hibernating myocardium. Heusch, G. et al., Am. J. Physiol. Heart Circ. Physiol. 288: 984-99 (2005).
  • AMI Acute Myocardial Infarction
  • AMI is an abrupt change in the lumen of a coronary blood vessel which results in ischemic infarction, meaning that it continues until heart muscle dies.
  • myocardial infarction can be divided into two major types: transmural infarcts, in which the myocardial necrosis involves the full or nearly full thickness of the ventricular wall, and subendocardial (nontransmural) infarcts, in which the myocardial necrosis involves the subendocardium, the intramural myocardium, or both, without extending all the way through the ventricular wall to the epicardium.
  • transmural infarcts in which the myocardial necrosis involves the full or nearly full thickness of the ventricular wall
  • subendocardial (nontransmural) infarcts in which the myocardial necrosis involves the subendocardium, the intramural myocardium, or both, without extending all the way through the ventricular wall to the epicardium.
  • the prolonged ischemic insult results in apoptotic and necrotic cardiomyocyte cell death. See Kajstura, J., et al., Lab Invest. 74: 86-107 (1996).
  • Necrosis compromises the integrity of the sarcolemmal membrane and intracellular macromolecules such that serum cardiac markers, such as cardiac-specific troponins and enzymes, such as serum creatine kinase (CK), are released.
  • the patient may have electrocardiogram (ECG) changes because of full thickness damage to the muscle.
  • ECG electrocardiogram
  • An ST-Elevation Myocardial Infarction (STEMI) is a larger injury than a non-ST-elevation myocardial infarction..
  • ST-segment elevation and Q waves on the ECG two features highly indicative of myocardial infarction, are seen in only about half of myocardial infarction cases on presentation.
  • AMI remains common with a reported annual incidence of 1.1 million cases in the United States alone (Antman, E. M., Braunwald, E., Acute Myocardial Infarction, in Principles of Internal Medicine, 15th Ed., Braunwald, E. et al., Eds., New York: McGraw-Hill (2001 )).
  • Preclinical and clinical data demonstrate that following a myocardial infarction, the acute loss of myocardial muscle cells and the accompanying peri-infarct border zone hypo-perfusion result in a cascade of events causing an immediate diminution of cardiac function, with the potential for long term persistence.
  • myocardial cells have virtually no ability to regenerate, myocardial infarction leads to permanent cardiac dysfunction due to contractile-muscle cell loss and replacement with nonfunctioning fibrotic scarring.
  • ventricular remodeling meaning changes in size, shape, and function, typically a progressive decline in function, of the heart after injury.
  • Alterations in ventricular topography meaning the shape, configuration, or morphology of a ventricle
  • Ventricular dilatation meaning a stretching, enlarging or spreading out of the ventricle causes a decrease in global cardiac function and is affected by the infarct size, infarct healing and ventricular wall stresses.
  • Coronary artery occlusion of more significant duration i.e., lasting more than five minutes, leads to myocardial ischemia (i.e. an insufficient blood flow to the heart's muscle mass) and is associated with a significant inflammatory response that begins immediately after reperfusion and can last for up to several weeks.
  • myocardial ischemia i.e. an insufficient blood flow to the heart's muscle mass
  • angiogenesis is inhibited due to the release of angiostatic substances, including interferon gamma-inducible protein (IP 10).
  • IP 10 interferon gamma-inducible protein
  • the cardiac repair process begins (about day 6 to about day 14), which eventually leads to scar formation (about day 14 to about day 21) and subsequent ventricular remodeling (about day 21 to about day 90).
  • monocytes infiltrate the infarcted myocardium.
  • complement C5a
  • TGF-B 1 transforming growth factor Bl
  • MCP-1 monocyte chemotactic protein 1
  • monocytes differentiate into macrophages that initiate the healing process by scavenging dead tissue, regulating extracellular matrix metabolism, and inducing fibroblast proliferation.
  • Secretion of interleukin 10 (IL-10) by infiltrating lymphocytes also promotes healing by down-regulating inflammatory cytokines and influencing tissue remodeling.
  • SCF Stem Cell Factor
  • Mast cell products include TGF-B, basic fibroblast growth factor (bFGF), vascular endothelial growth factor (VEGF) and gelatinases A and B
  • TGF-B basic fibroblast growth factor
  • VEGF vascular endothelial growth factor
  • gelatinases A and B induce fibroblast proliferation, influence extracellular matrix metabolism, and induce angiogenesis.
  • neoangiogenesis occurs after the "hot" phase of the inflammatory process subsides (about day 5) coincident with rising levels of VEGF (VEGF peaks at about day 7 and gradually subsides to baseline at about day 14 to about day 21 ).
  • EPCs endothelial precursor cells
  • chemokine stromal cell derived factor- 1 (SDF- 1), which is the ligand for the CXCR-4 chemokine receptor expressed by CD34+ cells, also plays a role in homing of cells to areas of ischemic damage.
  • SDF-1 chemokine stromal cell derived factor- 1
  • SDF-1 plays a role in hematopoiesis and is involved in migration, homing and survival of hematopoietic progenitors
  • SDF-1 has been implicated in ischemic neovascularization in vivo by augmenting EPC recruitment to ischemic sites
  • SDF-l 's role in neoangiogenesis is not certain.
  • SDF-1 gene expression is upregulated during hypoxia, a deficiency of oxygen in the tissues, by hypoxia inducible factor- 1.
  • CD34+ cells are capable of homing to areas of ischemia, rich in SDF-1 , including infarcted myocardium. Askari et al., Lancet 362: 697-703 (2003). Moreover, virtually all CD34+ CXCR-4+ cells co-express VEGF-2 and therefore migrate in response to VEGF as well as SDF-1. Peichev M., et al., Blood 95: 952-58 (2000). CD34+CXCR-4+VEGF-1 cells, once recruited, are capable of contributing to neoangiogenesis. Yamaguchi, J. et al., Circulation 107: 1322-34 (2003).
  • the zone of dysfunctional myocardium produced by coronary artery occlusion extends beyond the infarct region to include a variable boundary of adjacent normal appearing tissue.
  • This ischemic, but viable, perinfarct zone of tissue separates the central zone of progressive necrosis from surrounding normal myocardium.
  • the peri-infarct zone does not correlate with enzymatic parameters of infarct size and is substantially larger in small infarcts. Stork, A., et al., European Radiol. 16(10): 2350-57 (2006).
  • Ischemia due to edema and compression of the blood vessels in the border zone may be very important to outcome after an AMI. It is known, for example, that after an AMI, transient ischemia occurs in the border zones, and that percutaneous coronary interventions, which open up the infarct-related artery, can adversely affect the health of the peri-infarct border zones. It has been suggested that intermediate levels of mean blood flow can exist as the result of admixture of peninsulas of ischemic tissue intermingled with regions of normally perfused myocardium at the border of an infarct. (Hu, Q., et al., Am. J. Physiol. Heart Circ Physiol. 291 : H648-657 (2006)).
  • Heart failure is a complex clinical syndrome that arises secondary to
  • EF depressed ejection fraction
  • diastolic failure heart failure with a normal EF or heart failure with a preserved EF
  • Patients may have significant abnormalities of left ventricle (LV) contraction and relaxation and yet have no symptoms, in which case they are referred to as having "asymptomatic heart failure".
  • LV left ventricle
  • vascular insufficiency particularly vascular insufficiency after myocardial infarction.
  • Large vessel revascularization meaning the successful placement of a stent
  • infarct extension and fibrous replacement commonly occur, regardless of large vessel revascularization, appropriate medical management of ventricular wall stresses, and potential natural, albeit suboptimal, CD34+ cell-mediated neoangiogenesis (one of theories relating to the underlying cause of myocardial infarction is that the ability to mobilize these cells may be biologically limited).
  • Intense interest has developed in evaluating the ability of endothelial and myocardial precursor cells to limit damage to the myocardium after infarction and to limit or prevent ventricular remodeling.
  • Significant preclinical data and some clinical data demonstrate the safety and potential of cell therapy using a variety of cell precursors (particularly
  • hematopoietic cells to contribute to neoangiogenesis, limited cardiac myogenesis (principally by fusion), and muscle preservation in the myocardial infarct zone.
  • Bone marrow consists of a variety of precursor and mature cell types, including hematopoietic cells (the precursors of mature blood cells) and stromal cells (the precursors of a broad spectrum of connective tissue cells), both of which appear to be capable of differentiating into other cell types.
  • hematopoietic cells the precursors of mature blood cells
  • stromal cells the precursors of a broad spectrum of connective tissue cells
  • Unmodified (i.e., not fractionated) marrow or blood-derived cells have been used in several clinical studies, for example, Hamano, K. et al., Japan Cir. J. 65: 845-47 (2001); Strauer, B. E., et al., Circulation 106: 1913-18 (2002); Assmus, et al., Circulation 106: 3009-3017 (2002); Dobert, N. et al., Eur. J. Nuel. Med. Mol. Imaging, 8: 1 146-51 (2004); Wollert, . C. et al., Lancet 364: 141 -48 (2004). Since the mononuclear fraction of bone marrow contains stromal cells, hematopoietic precursors, and endothelial precursors, the relative contribution of each of these populations to the observed effects, if any, remains unknown.
  • CD34 is a hematopoietic stem cell antigen selectively expressed on hematopoietic stem and progenitor cells derived from human bone marrow, blood and fetal liver. Yin et al., Blood 90: 5002-5012 (1997); Miaglia, S. et al., Blood 90: 5013-21 (1997). Cells that express CD34 are termed CD34+. Stromal cells do not express CD34 and are therefore termed CD34-. CD34+ cells isolated from human blood may be capable of differentiating into cardiomyocytes, endothelial cells, and smooth muscle cells in vivo. See Yeh, et al., Circulation 108: 2070-73 (2003).
  • CD34+ cells represent approximately 1% of bone marrow derived nucleated cells; CD34 antigen also is expressed by immature endothelial cell precursors (mature endothelial cells do not express CD34).
  • CD34+ cells derived from adult bone marrow give rise to a majority of the granulocyte/macrophage progenitor cells (CFU- GM), some colony-forming units-mixed (CFU-Mix) and a minor population of primitive erythroid progenitor cells (burst forming units, erythrocytes or BFU-E).
  • CD34+ cells also may have the potential to differentiate into, or to contribute to, the development of new myocardial muscle, albeit at low frequency.
  • Peripheral artery disease also called peripheral vascular disease (PVD)
  • PVD peripheral vascular disease
  • PAD which commonly affects the arteries supplying the leg and includes all diseases caused by the obstruction of large arteries in the arms and legs, can result from atherosclerosis, inflammatory processes leading to stenosis, an embolism or thrombus formation. Restriction of blood flow due to arterial stenosis or occlusion often leads patients to complain of muscle pain on walking (intermittent claudication). Any further reduction in blood flow causes ischemic pain at rest.
  • This condition is called chronic limb ischemia, meaning the demand for oxygen cannot be sustained when resting. Ulceration and gangrene may then supervene in the toes, which are the furthest away from the blood supply, and can result in loss of the involved limb if not treated.
  • the closest animal model is not a good model of human disease because (i) all experiments generally are done in nonatherosclerotic animals, (ii) the animals are not treated with angioplasty, (iii) normal pigs do not embolize blood vessels; (iv) circulation of the pig is not exactly the same as human; and (iv) the peri-infarct border zone may not be the same.
  • the described invention is a therapy for preventing the long-term adverse consequences of vascular insufficiency, particularly vascular insufficiency that produces expansion of the myocardial infarct area after an AMI progressing to heart failure. It is proposed that administration of a potent dose of a nonexpanded, isolated population of autologous mononuclear cells enriched for CD34+ cells, which further contain a subpopulation of potent CD34+ cells expressing CXCR-4 and having CXCR-4-mediated chemotactic activity administered early or late after occurrence of an AMI can result in a reduction in major adverse cardiac events, including, but not limited to, premature death, recurrent myocardial infarction, the development of congestive heart failure, significant arrhythmias, and acute coronary syndrome, and the worsening of congestive heart failure, significant arrhythmias, and acute coronary syndrome.
  • major adverse cardiac events including, but not limited to, premature death, recurrent myocardial infarction, the development of con
  • the described invention provides progressive compositions and methods to treat adverse consequences of a progressive myocardial injury due to a vascular insufficiency.
  • the vascular insufficiency occurs early after an acute myocardial infarction resulting from underlying disease. According to some embodiments, the vascular insufficiency occurs late after an acute myocardial infarction resulting from underlying disease.
  • the described invention provides a method of treating a progressive myocardial injury due to a vascular insufficiency, the method comprising the steps:
  • CD34+/CXCR-4+ cells that have CXCR-4-mediated chemotactic activity from the sterile nonexpanded, isolated population of autologous mononuclear cells comprising CD34+ cells, wherein the enriched CD34+ cells which further contain a subpopulation of potent
  • CD34+/CXCR-4+ cells that have CXCR-4-mediated chemotactic activity are a chemotactic hematopoietic stem cell product; (c) administering parenterally through a catheter on a plurality of infusion dates during lifetime of subject a sterile pharmaceutical composition, the sterile pharmaceutical composition comprising: (i) a therapeutically effective amount of the sterile chemotactic hematopoietic stem cell product, wherein the therapeutically effective amount of the chemotactic hematopoietic stem cell product comprises at least 10 x 10 6 CD34+ cells which further contain a subpopulation of at least 0.5 x 10 6 potent CD34+ cells expressing CXCR-4 and having CXCR-4 mediated chemotactic activity; and (ii) a stabilizing amount of serum, wherein the stabilizing amount of serum is greater than 20% (v/v), wherein the chemotactic
  • hematopoietic stem cell product is further characterized as having the following properties for at least 24 hours when tested in vitro after passage through a catheter: (1) retains the CXCR-4- mediated activity of the chemotactic hematopoietic stem cell product; (2) at least 70% of the cells are CD34+ cells; (3) is at least 70% viable; and (4) is able to form hematopoietic colonies in vitro; (d) optionally administering the chemotactic hematopoietic stem cell product at a plurality of infusion dates during the subject's lifetime; and (e) treating at least one adverse consequence of the progressive vascular insufficiency.
  • step (a) further comprises freezing at least one aliquot of the nonexpanded, isolated population of autologous mononuclear cells containing CD34+ cells, which further contain a subpopulation of potent CD34+/CXCR-4+ cells that have CXCR-4-mediated chemotactic activity at -86°C and cryostoring the at least one aliquot in the vapor phase of a liquid nitrogen freezer.
  • step (a) further comprises (i) thawing the at least one aliquot of the frozen sterile nonexpanded, isolated population of autologous mononuclear cells containing CD34+ cells which further contain a subpopulation of potent CD34+/CXCR-4+ cells that have CXCR-4-mediated chemotactic activity; (ii) enriching the sterile nonexpanded, isolated population of autologous mononuclear cells for CD34+ cells, which further contain a subpopulation of potent CD34+/CXCR-4+ cells that have CXCR-4- mediated chemotactic activity, wherein the sterile nonexpanded, isolated population of autologous mononuclear cells enriched for CD34+ cells, which further contain a subpopulation of potent CD34+/CXCR-4+ cells that have CXCR-4-mediated chemotactic activity, is a thawed sterile chemotactic hematopo
  • enriching step (ii) occurs from at least 1 day to at least 40 years after acquisition of the sterile nonexpanded, isolated population of autologous mononuclear cells comprising CD34+ cells from the subject.
  • the sterile chemotactic hematopoietic stem cell product is administered parenterally through a catheter to the subject within about 48 hours to about 72 hours of thawing step (i).
  • the nonexpanded, isolated population of autologous mononuclear cells comprising CD34+ cells which further contain a subpopulation of CD34+/CXCR-4+ cells that have CXCR-4-mediated chemotactic activity, is acquired early after an acute myocardial infarction.
  • the nonexpanded, isolated population of autologous mononuclear cells comprising CD34+ cells which further contain a subpopulation of CD34+/CXCR-4+ cells that have CXCR-4-mediated chemotactic activity, is acquired after peak inflammatory cytokine cascade production in an infarcted area.
  • the nonexpanded, isolated population of autologous mononuclear cells comprising CD34+ cells which further contain a subpopulation of CD34+/CXCR-4+ cells that have CXCR-4-mediated chemotactic activity, is acquired late after an acute myocardial infarction.
  • the nonexpanded, isolated population of autologous mononuclear cells comprising CD34+ cells which further contain a subpopulation of CD34+/CXCR-4+ cells that have CXCR-4-mediated chemotactic activity, is acquired from at least 15 days to at least 40 years after occurrence of an acute myocardial infarction.
  • the sterile thawed chemotactic hematopoietic stem cell product is further characterized as having the following properties for at least 48 hours following thawing of the nonexpanded, isolated population of autologous mononuclear cells when tested in vitro after passage through a catheter: (i) is able to form hematopoietic colonies; and (ii) retains at least 2% of the CXCR-4-mediated activity of the subpopulation of potent CD34+/CXCR-4+ cells that have CXCR-4-mediated chemotactic activity.
  • the sterile thawed chemotactic hematopoietic stem cell product is further characterized as having the following properties for at least 72 hours following thawing of the nonexpanded, isolated population of autologous mononuclear cells when tested in vitro after passage through a catheter: (i) is able to form hematopoietic colonies; and (ii) retains at least 2% of the CXCR-4-mediated activity of the subpopulation of potent CD34+/CXCR-4+ cells that have CXCR-4-mediated chemotactic activity.
  • the vascular insufficiency is an ischemia.
  • the ischemia is a myocardial ischemia.
  • the ischemia is a transient ischemia.
  • the ischemia is a chronic myocardial ischemia.
  • the vascular insufficiency is a vascular insufficiency after an acute myocardial infarction resulting from underlying disease.
  • the ischemia is a peri-infarct border zone ischemia.
  • a first infusion date comprises a specific time interval defined by a first time and a second time, wherein the first time is after peak
  • the first time of the first infusion date is at least about 5 days post-infarction.
  • the first time of the first infusion date is about 5 days post-infarction and the second time is about 14 days post-infarction.
  • the method treats cardiomyocyte cell death in the peri-infarct border zone, relative to controls.
  • the method treats hypoperfusion in the peri-infarct border zone, relative to controls.
  • the method treats myocardial hibernation in the peri-infarct border zone, relative to controls.
  • the method decreases infarct area, relative to controls.
  • wherein the method decreases infarct mass, relative to controls.
  • the progressive myocardial injury is a progressive decline in heart muscle function following the acute myocardial infarction.
  • step (e) comprises treating at least one adverse consequence of an acute myocardial infarction selected from premature death, recurrent myocardial infarction, development of congestive heart failure, development of significant arrhythmias, development of acute coronary syndrome, worsening of congestive heart failure, worsening of significant arrhythmias, and worsening of acute coronary syndrome.
  • an acute myocardial infarction selected from premature death, recurrent myocardial infarction, development of congestive heart failure, development of significant arrhythmias, development of acute coronary syndrome, worsening of congestive heart failure, worsening of significant arrhythmias, and worsening of acute coronary syndrome.
  • the progressive myocardial injury is heart failure.
  • the catheter is a flow control catheter.
  • the catheter is a balloon dilatation catheter.
  • the catheter has an internal diameter of at least about 0.36 mm.
  • administering step (c) is through the catheter into myocardium. According to another embodiment, administering step (c) is through the catheter intravascularly.
  • the pharmaceutical composition further includes at least one compatible active agent.
  • the active agent is selected from the group consisting of an angiotensin converting enzyme inhibitor, a beta- blocker, a diuretic, an anti-arrhythmic agent, a hematopoietic stem cell mobilizing agent, a tyrosine kinase receptor agonist, an anti-anginal agent, a vasoactive agent, an anticoagulant agent, a fibrinolytic agent, and a hypercholesterolemic agent.
  • the tyrosine kinase receptor agonist is human neuregulin 1.
  • the described invention provides a regimen for treating a progressive myocardial injury due to a vascular insufficiency in a revascularized subject, which comprises (a) administering parenterally through a catheter on a plurality of infusion dates during lifetime of the subject a sterile pharmaceutical composition comprising a sterile chemotactic hematopoietic stem cell product, wherein the sterile chemotactic
  • hematopoietic stem cell product comprises (i) a nonexpanded, isolated population of autologous mononuclear cells enriched for CD34+ cells, which further contain a subpopulation of potent CD34+/CXCR-4+ cells that have CXCR-4-mediated chemotactic activity, wherein the therapeutically effective amount of the chemotactic hematopoietic stem cell product comprises at least 10 x 10 6 CD34+ cells which further contain a subpopulation of at least 0.5 x 10 6 potent CD34+ cells expressing CXCR-4 and having CXCR-4 mediated chemotactic activity; and (ii) a stabilizing amount of serum, wherein the stabilizing amount of serum is greater than 20% (v/v), wherein the chemotactic hematopoietic stem cell product is further characterized as having the following properties for at least 24 hours following acquisition of the chemotactic hematopoietic stem cell product when tested in vitro after passage through a catheter: (1) retains
  • the vascular insufficiency is an ischemia.
  • the ischemia is a myocardial ischemia.
  • the ischemia is a transient ischemia.
  • the ischemia is a chronic myocardial ischemia.
  • the vascular insufficiency is a vascular insufficiency after an acute myocardial infarction resulting from underlying disease.
  • the nonexpanded, isolated population of autologous mononuclear cells comprising CD34+ cells which further contain a subpopulation of CD34+/CXCR-4+ cells that have CXCR-4-mediated chemotactic activity, is acquired early after occurrence of an acute myocardial infarction.
  • the nonexpanded, isolated population of autologous mononuclear cells comprising CD34+ cells which further contain a subpopulation of CD34+/CXCR-4+ cells that have CXCR-4-mediated chemotactic activity, is acquired after peak inflammatory cytokine cascade production in an infarcted area.
  • the nonexpanded, isolated population of autologous mononuclear cells comprising CD34+ cells which further contain a subpopulation of CD34+/CXCR-4+ cells that have CXCR-4-mediated chemotactic activity, is acquired late after occurrence of an acute myocardial infarction.
  • the nonexpanded, isolated population of autologous mononuclear cells comprising CD34+ cells which further contain a subpopulation of CD34+/CXCR-4+ cells that have CXCR-4-mediated chemotactic activity, is acquired from at least 15 days to at least 40 years after occurrence of an acute myocardial infarction.
  • a first infusion date comprises a specific time interval defined by a first time and a second time, and wherein the first time is after peak inflammatory cytokine cascade production in an infarcted area and the second time is before myocardial scar formation in the infarcted area.
  • the first time of the first infusion date is at least about 5 days post-infarction.
  • the first time of the first infusion date is about 5 days post-infarction and the second time is about 14 days post-infarction.
  • the first infusion date is at least 5 days after occurrence of an acute myocardial infarction.
  • a second infusion date is at least 30 days after occurrence of an acute myocardial infarction.
  • the ischemia is a peri-infarct border zone ischemia.
  • step (b) comprises treating cardiomyocyte cell death in the peri-infarct border zone, relative to controls.
  • step (b) comprises treatinghypoperfusion in the peri-infarct border zone, relative to controls.
  • step (b) comprises treating myocardial hibernation in the peri-infarct border zone, relative to controls.
  • step (b) comprises decreasing infarct area, relative to controls.
  • step (b) comprises decreasing infarct mass, relative to controls.
  • step (b) comprises treating at least one adverse consequence of the acute myocardial infarction selected from premature death, recurrent myocardial infarction, development of congestive heart failure, development of significant arrhythmias, development of acute coronary syndrome, worsening of congestive heart failure, worsening of significant arrhythmias, and worsening of acute coronary syndrome.
  • acute myocardial infarction selected from premature death, recurrent myocardial infarction, development of congestive heart failure, development of significant arrhythmias, development of acute coronary syndrome, worsening of congestive heart failure, worsening of significant arrhythmias, and worsening of acute coronary syndrome.
  • the progressive myocardial injury is a progressive decline in heart muscle function following the acute myocardial infarction.
  • the progressive myocardial injury is heart failure.
  • the catheter is a flow control catheter.
  • the catheter is a balloon dilatation catheter. According to another embodiment, the catheter has an internal diameter of at least about 0.36 mm.
  • the composition is administered through the catheter into myocardium.
  • the composition is administered through the catheter intravascularly.
  • the pharmaceutical composition further includes at least one compatible active agent.
  • the active agent is selected from the group consisting of an angiotensin converting enzyme inhibitor, a beta- blocker, a diuretic, an anti-arrhythmic agent, a hematopoietic stem cell mobilizing agent, a tyrosine kinase receptor agonist, an anti-anginal agent, a vasoactive agent, an anticoagulant agent, a fibrinolytic agent, and a hypercholesterolemic agent.
  • the tyrosine kinase receptor agonist is human neuregulin 1.
  • Figure 1 shows that the functional viability of the chemotactic hematopoietic cell product of the invention at 72 hours is equivalent to that at 48 hours.
  • Figure 2 shows the migratory efficiency of the formulated chemotactic hematopoietic stem cell product comprising CD34+ cells of the invention.
  • Figure 3 shows the improved stability of CD34+ cells formulated in human serum.
  • the present invention describes compositions and methods for preventing early or late adverse consequences of vascular insufficiency, including, but not limited to, vascular insufficiency that occurs early or late after an acute myocardial infarction resulting from underlying disease.
  • compositions may be administered systemically either parenterally or topically in dosage unit formulations containing conventional nontoxic pharmaceutically acceptable carriers, adjuvants, and vehicles as desired, or may be locally administered by means such as, but not limited to, injection, implantation, grafting, topical application, or parenterally.
  • a means of administering cells may include, but is not limited to, infusion.
  • aliquot refers to a portion of a total amount.
  • angiogenesis refers to the process of formation and development of blood vessels.
  • apoptosis or "programmed cell death” refer to a highly regulated and active process that contributes to biologic homeostasis comprised of a series of biochemical events that lead to a variety of morphological changes, including blebbing, changes to the cell membrane, such as loss of membrane asymmetry and attachment, cell shrinkage, nuclear fragmentation, chromatin condensation, and chromosomal DNA fragmentation, without damaging the organism.
  • c-kit refers to a protein on the surface of some cells that binds to stem cell factor (a substance that causes certain types of cells to grow). Altered forms of this receptor may be associated with some types of cancer.
  • cardiac biomarkers refers to enzymes, proteins and hormones associated with heart function, damage or failure that are used for diagnostic and prognostic purposes. Different biomarkers have different times that their levels rise, peak, and fall within the body, allowing them to be used not only to track the progress of a heart attack but to estimate when it began and to monitor for recurrence. Some of the tests are specific for the heart while others also are elevated by skeletal muscle damage.
  • C creatine phosphokinase or creatine kinase
  • CK-MB creatine kinase- myoglobin levels (to help distinguish between skeletal and heart muscle)
  • troponin blood levels of troponin I or T will remain high for 1-2 weeks after a heart attack; troponin generally is not affected by damage to other muscles
  • myoglobin to determine whether muscle, particularly heart muscle, has been injured
  • BNP brain natriuretic peptide
  • NT-proBNP N-terminal prohormone brain natriuretic peptide (to help diagnose heart failure and grade the severity of that heart failure).
  • cardiac catheterization refers to a procedure in which a catheter is passed through an artery to the heart, and into a coronary artery. This procedure produces angiograms (i.e., x-ray images) of the coronary arteries and the left ventricle, the heart's main pumping chamber, which can be used to measure pressures in the pulmonary artery, and to monitor heart function.
  • angiograms i.e., x-ray images
  • CD34+ cells refers to hematopoietic stem and progenitor cells derived from human bone marrow that "are positive for” i.e., "express", a hematopoietic stem cell antigen, at least a subpopulation of which express CXCR-4, and that can migrate to areas of injury.
  • express a hematopoietic stem cell antigen, at least a subpopulation of which express CXCR-4, and that can migrate to areas of injury.
  • the chemotactic hematopoietic stem cell product of the described invention that is enriched for CD34+ cells does not co-express VEGF-2 ( ⁇ 1%).
  • CD38 refers to a protein marker present on macrophages, dendritic cells, and activated B and N cells, which may mediate the adhesion between lymphocytes and endothelial cells.
  • CD45 and “common leukocyte antigen” refer to a protein tyrosine phosphatase (PTP) located in hematopoietic cells except erythrocytes and platelets.
  • PTP protein tyrosine phosphatase
  • CD59 refers to a glycosylphosphatidylinositol (GPI)-linked membrane glycoprotein which protects human cells from complement-mediated lysis.
  • GPI glycosylphosphatidylinositol
  • CXCR-4" refers to a G-protein-linked chemokine receptor.
  • cytokine refers to small soluble protein substances secreted by cells which have a variety of effects on other cells. Cytokines mediate many important physiological functions including growth, development, wound healing, and the immune response. They act by binding to their cell-specific receptors located in the cell membrane, which allows a distinct signal transduction cascade to start in the cell, which eventually will lead to biochemical and phenotypic changes in target cells. Generally, cytokines act locally.
  • type I cytokines which encompass many of the interleukins, as well as several hematopoietic growth factors
  • type II cytokines including the interferons and interleukin- 10
  • tumor necrosis factor (“TNF”)-related molecules including TNFa and lymphotoxin
  • immunoglobulin super-family members including interleukin 1 ("IL-1 "); and the chemokines, a family of molecules that play a critical role in a wide variety of immune and inflammatory functions.
  • IL-1 interleukin 1
  • chemokines a family of molecules that play a critical role in a wide variety of immune and inflammatory functions.
  • the same cytokine can have different effects on a cell depending on the state of the cell. Cytokines often regulate the expression of, and trigger cascades of, other cytokines.
  • colony stimulating factor refers to a cytokine responsible for controlling the production of white blood cells.
  • Types of colony stimulating factors include granulocyte colony stimulating factor (G-CSF), macrophage colony stimulating factor (M-CSF), and granulocyte macrophage colony stimulating factor (GM-CSF).
  • hematopoietic stem cell refers to a cell isolated from the blood or from the bone marrow that can renew itself, differentiate to a variety of specialized cells, mobilize out of the bone marrow into the circulating blood, and can undergo programmed cell death
  • hematopoietic stem cells derived from human subjects express at least one type of cell surface marker, including, but not limited to, CD34, CD38, HLA-DR, c-kit, CD59, Sca-1 , Thy-1, and/or CXCR-4, or a combination thereof.
  • HLA-DR refers to a human class II histocompatibility antigen present on several cell types, including antigen-presenting cells, B cells, monocytes, macrophages, and activated T cells.
  • interleukin refers to a cytokine secreted by white blood cells as a means of communication with other white blood cells.
  • VEGF- 1 or "vascular endothelial growth factor-1" are used interchangeably herein to refer to a cytokine that mediates numerous functions of endothelial cells including proliferation, migration, invasion, survival, and permeability. VEGF is believed to be critical for angiogenesis.
  • chemokine refers to a class of chemotactic cytokines that signal leukocytes to move in a specific direction.
  • chemotaxis or “chemotactic” refer to the directed motion of a motile cell or part along a chemical concentration gradient towards environmental conditions it deems attractive and/or away from surroundings it finds repellent.
  • CBC complete blood count
  • HGB hemoglobin
  • RBC Red Blood Cell Count
  • WBC White Blood Cell Count
  • HCT Hematocrit
  • a normal hematocrit for human subjects is about 40% to about 55% for men and about 35% to about 45% for women.
  • disease or “disorder”, as used herein, refers to an impairment of health or a condition of abnormal functioning.
  • disorder refers to a pattern of symptoms indicative of some disease or condition.
  • condition refers to a variety of health states and is meant to include disorders or diseases caused by any underlying mechanism or disorder, injury, and the promotion of healthy tissues and organs.
  • the term “early” refers to being or occurring at or near the beginning of a period of time or series of events.
  • late refers to being or occurring at an advanced period of time or stage of a series of events.
  • the term “enriching” or “purifying” refers to increasing the fraction of cells of one type over the fraction of that type in a starting preparation.
  • Cells may be enriched using any of the various markers expressed, or not expressed, on certain cells in combination with suitible separation techniques. Suitable separation techniques include, but are not limited to, immunomagnetic bead separation, affinity chromatography, density gradient centrifugation, and flow cytometry.
  • nonexpanded refers to not being increased or amplified in number of cells by in vitro culture.
  • inflammation refers to a response to infection and injury in which cells involved in detoxification and repair are mobilized to the compromised site by inflammatory mediators. Inflammation often is characterized by a strong infiltration of leukocytes at the site of inflammation, particularly neutrophils (polymorphonuclear cells). These cells promote tissue damage by releasing toxic substances at the vascular wall or in uninjured tissue.
  • vasodilation which results in a net increase in blood flow, is one of the earliest s physical responses to acute tissue injury
  • endothelial cells lining the venules contract, widening the intracellular junctions to produce gaps, leading to increased vascular permeability, which permits leakage of plasma proteins and blood cells out of blood vessels
  • inflammation often is characterized by a strong infiltration of leukocytes at the site of inflammation, particularly neutrophils
  • polymorphonuclear cells These cells promote tissue damage by releasing toxic substances at the vascular wall or in uninjured tissue; and (4) fever, produced by pyrogens released from leukocytes in response to specific stimuli.
  • soluble inflammatory mediators of the inflammatory response work together with cellular components in a systemic fashion in the attempt to contain and eliminate the agents causing physical distress.
  • the terms "inflammatory" or immuno-inflammatory" as used herein with respect to mediators refers to the molecular mediators of the inflammatory process. These soluble, diffusible molecules act both locally at the site of tissue damage and infection and at more distant sites. Some inflammatory mediators are activated by the inflammatory process, while others are synthesized and/or released from cellular sources in response to acute inflammation or by other soluble inflammatory mediators.
  • inflammatory mediators of the inflammatory response include, but are not limited to, plasma proteases, complement, kinins, clotting and fibrinolytic proteins, lipid mediators, prostaglandins, leukotrienes, platelet-activating factor (PAF), peptides and amines, including, but not limited to, histamine, serotonin, and neuropeptides, proinflammatory cytokines, including, but not limited to, interleukin-1 , interleukin-4, interleukin-6, interleukin-S, tumor necrosis factor (TNF), interferon-gamma, and interleukin 12.
  • in-date refers to the time interval between completion of acquiring a preparation comprising an enriched population of potent CD34+ cells from a subject under sterile conditions and initiating sterilely purifying potent CD34+ cells from the preparation.
  • out-date refers to the time interval between completion of acquiring a preparation comprising an enriched population of potent CD34+ cells from a subject under sterile conditions and infusing the formulated pharmaceutical composition comprising a chemotactic
  • hematopoietic cell product into the subject.
  • fuse or “infusion” as used herein refer to the introduction of a fluid other than blood into a blood vessel of a subject, including humans, for therapeutic purposes.
  • the "infusion solution" of the described invention without autologous serum contains phosphate buffered saline (PBS) supplemented with 25 USP units/ml of heparin and 1% human serum albumin (HSA).
  • PBS phosphate buffered saline
  • HSA human serum albumin
  • the infusion solution is supplemented with serum.
  • the serum is autologous.
  • the term "injury” refers to damage or harm caused to the structure or function of the body of a subject caused by an agent or force, which may be physical or chemical.
  • vascular injury refers to injury to the vasculature (i.e., the vascular network, meaning the network of blood vessels or ducts that convey fluids, such as, without limitation, blood or lymph).
  • myocardial injury refers to injury to the myocardium of the heart.
  • macrophage refers to a mononuclear, actively phagocytic cell arising from monocytic stem cells in the bone marrow. These cells are widely distributed in the body and vary in morphology and motility. Phagocytic activity typically is mediated by serum recognition factors, including certain immunoglobulins and components of the complement system, but also may be nonspecific. Macrophages also are involved in both the production of antibodies and in cell-mediated immune responses, particularly in presenting antigens to lymphocytes. They secrete a variety of immunoregulatory molecules.
  • microbe or “microorganism” are used interchangeably herein to refer to an organism too small to be seen clearly with the naked eye, including, but not limited to, microscopic bacteria, fungi (molds), algae, protozoa, and viruses.
  • module means to regulate, alter, adapt, or adjust to a certain measure or proportion.
  • the term "myocardial infarction” refers to death or permanent damage to heart muscle. Most heart attacks are caused by blockage of coronary arteries that interrupts flow of blood and oxygen to the heart muscle, leading to death of heart cells in that area. The damaged heart muscle loses its ability to contract, leaving the remaining heart muscle to compensate for the weakened area.
  • the described invention includes steps related to evaluating the suitability of subjects for treatment according to the described invention by using tests to look at the size, shape, and function of the heart as it is beating, to detect changes to the rhythm of the heart, and to detect and evaluate damaged tissues and blocked arteries. Examples of such tests include, but are not limited to, electrocardiography, echocardiography, coronary angiography, and nuclear ventriculography. Cardiac biomarkers also are used to evaluate the suitability of subjects for treatment according to the described invention.
  • necrosis refers to the premature death of cells and living tissue induced by external factors, such as infection, toxins or trauma. Necrotic tissue undergoes chemical reactions different from those of apoptotic tissue. Necrosis typically begins with cell swelling, chromatin digestion, disruption of the plasma membrane and of organelle membranes. Damage to the lysosome membrane can trigger release of lysosomal enzymes, destroying other parts of the cell. Late necrosis is characterized by extensive DNA hydrolysis, vacuolation of the endoplasmic reticulum, organelle breakdown and cell lysis. The release of intracellular content after plasma membrane rupture is the cause of inflammation in necrosis. Released lysosomal enzymes can trigger a chain reaction of further cell death. Necrosis of a sufficient amount of contiguous tissue can result in tissue death or gangrene.
  • Perfusion refers to the process of nutritive delivery of arterial blood to a capillary bed in biological tissue.
  • Tissue perfusion can be measured in vivo, by, for example, but not limited to, magnetic resonance imaging (MRI) techniques. Such techniques include using an injected contrast agent and arterial spin labeling (ASL) (wherein arterial blood is magnetically tagged before it enters into the tissue of interest and the amount of labeling is measured and compared to a control recording).
  • ASL arterial spin labeling
  • the term “persisting” as used herein refers to that which is never-ceasing or indefinitely continuous.
  • potent refers to the necessary biological activity of the chemotactic hematopoietic stem cell product of the described invention, i.e., potent cells of the described invention remain viable, are capable of mediated mobility, and are able to grow, i.e., to form hematopoietic colonies in an in vitro CFU assay.
  • progenitor cell refers to an immature cell in the bone marrow that may be isolated by growing suspensions of marrow cells in culture dishes with added growth factors. Progenitor cells mature into precursor cells that mature into blood cells. Progenitor cells are referred to as colony-forming units (CFU) or colony-forming cells (CFC). The specific lineage of a progenitor cell is indicated by a suffix, such as, but not limited to, CFU- E (erythrocytic), CFU-GM (granulocytic/macrophage), and CFU-GEMM (pluripotent hematopoietic progenitor).
  • CFU- E erythrocytic
  • CFU-GM granulocytic/macrophage
  • CFU-GEMM pluripototent hematopoietic progenitor
  • repair refers to any correction, reinforcement, reconditioning, remedy, making up for, making sound, renewal, mending, patching, or the like that restores function.
  • it means to correct, to reinforce, to recondition, to remedy, to make up for, to make sound, to renew, to mend, to patch or to otherwise restore function.
  • "repair” includes full repair and partial repair.
  • reverse refers to a change to the contrary, or to a turning backward in nature or effect.
  • Sca-1 or “stem cell antigen-1” refers to a surface protein component in a signaling pathway that affects the self-renewal ability of mesenchymal stem cells.
  • stem cells refers to undifferentiated cells having high proliferative potential with the ability to self-renew that can generate daughter cells that can undergo terminal differentiation into more than one distinct cell phenotype.
  • the term "stent” is used to refer to a small tube used to prop open an artery.
  • the stent is collapsed to a small diameter, put over a balloon catheter, inserted through a main artery in the groin (femoral artery) or arm (brachial artery) and threaded up to the narrowed blocked section of the artery.
  • the balloon is inflated slightly to push any plaque out of the way and to expand the artery (balloon angioplasty).
  • the stent expands, locks in place and forms a scaffold to hold the artery open.
  • the stent stays in the artery permanently.
  • a stent reduces the renarrowing that occurs after balloon angioplasty or other procedures that use catheters.
  • a stent also may help restore normal blood flow and keep an artery open if it has been torn or injured by the balloon catheter.
  • Reclosure restenosis
  • Drug-eluting stents are stents coated with drugs that are slowly released. These drugs may help keep the blood vessel from reclosing.
  • subject and “patients” are used interchangeably herein and include animal species of mammalian origin, including humans.
  • Thy-1 refers to the Ig superfamily cell surface glycoprotein Thy-1 expressed on immune cells and neurons of rodents and humans, which is hypothesized to function in cell adhesion and signal transduction in T cell differentiation, proliferation, and apoptosis.
  • treat or “treating” are used interchangeably to include abrogating, substantially inhibiting, slowing or reversing the progression of a condition, substantially ameliorating clinical or aesthetical symptoms of a condition, substantially preventing the appearance of clinical or aesthetical symptoms of a condition, and protecting from harmful or annoying stimuli.
  • Treating further refers to accomplishing one or more of the following: (a) reducing the severity of the disorder; (b) limiting development of symptoms characteristic of the disorder(s) being treated; (c) limiting worsening of symptoms characteristic of the disorder(s) being treated; (d) limiting recurrence of the disorder(s) in patients that have previously had the disorder(s); and (e) limiting recurrence of symptoms in patients that were previously asymptomatic for the disorder(s).
  • vascular insufficiency refers to insufficient blood flow.
  • the described invention provides progressive myocardial injury-preventing pharmaceutical compositions and methods to treat or prevent a progressive myocardial injury due to a vascular insufficiency that occurs early or late.
  • formulation and
  • composition are used interchangeably herein to refer to a product of the described invention that comprises all active and inert ingredients.
  • active refers to the ingredient, component or constituent of the compositions of the described invention responsible for the intended therapeutic effect.
  • pharmaceutical formulation or “pharmaceutical composition” as used herein refer to a formulation or composition that is employed to prevent, reduce in intensity, cure or otherwise treat a target condition or disease.
  • the hematopoietic stem cells of the described invention can migrate, meaning that they can move from one place, location or area to another.
  • hematopoietic stem cell migration is driven by CXCR-4 chemotaxis.
  • the progressive myocardial injury-preventing pharmaceutical composition of the described invention comprises a chemotactic hematopoietic stem cell product, the chemotactic hematopoietic stem cell product comprising a nonexpanded, isolated population of autologous mononuclear cells enriched for CD34+ cells, which further contain a subpopulation of potent CD34+CXCR-4+ cells that have chemotactic activity.
  • this chemotactic activity is mediated by SDF-1, and/or CXCR-4.
  • the chemotactic hematopoietic stem cell product is prepared by isolating or purifying CD34+ hematopoietic stem cells from bone marrow, umbilical cord blood, peripheral blood, mobilized peripheral blood, umbilical cord, or adipose tissue harvested from the subject.
  • the chemotactic hematopoietic stem cell product is prepared by isolating or purifying CD34+ hematopoietic stem cells from mobilized peripheral blood.
  • hematopoietic growth factors Treatment with hematopoietic growth factors has been shown to cause a marked rise in the number of hematopoietic progenitor cells in the peripheral blood as measured by the presence of CD34+ cells or as measured in a colony formation assay as CFUs.
  • Such mobilized-peripheral blood hematopoietic stem cells have been used for transplantation, immunotherapy, and cardiovascular regenerative medicine.
  • Colony stimulating factors for example, are agents used for hematopoietic stem cell mobilization. Examples of colony stimulating factors include, without limitation, G-CSF, GM-CSF, and pharmaceutically acceptable analogs and derivatives thereof.
  • filgrastim a G-CSF analog produced by recombinant technology
  • Neupogen® Amgen
  • Religrast® Reliance Life Sciences
  • Nugraf® Zaenotech Laboratories, Ltd.
  • Neukine® Intas Biopharmaceuticals
  • the nonexpanded, isolated population of autologous mononuclear cells comprising CD34+ cells which further contain a subpopulation of potent CD34+/CXCR-4+ cells that have CXCR-4-mediated chemotactic activity can be acquired from the subject at any time.
  • the nonexpanded, isolated population of autologous mononuclear cells is acquired early after an AMI.
  • the nonexpanded, isolated population of autologous mononuclear cells is acquired 4 days, 5 days, 6 days, 7 days, 8 days, 9 days, 10 days, 1 1 days, 12 days, 13 days, 14 days or more after the occurrence of an AMI.
  • the nonexpanded, isolated population of autologous mononuclear cells is acquired 4 days, 5 days, 6 days, 7 days, 8 days, 9 days, 10 days, 1 1 days, 12 days, 13 days, 14 days or more after the occurrence of an AMI.
  • the nonexpanded, isolated population of autologous mononuclear cells
  • nonexpanded, isolated population of autologous mononuclear cells comprising CD34+ cells which further contain a subpopulation of potent CD34+/CXCR-4+ cells that have CXCR-4- mediated chemotactic activity is acquired late after the occurrence of an AMI.
  • the nonexpanded, isolated population of autologous mononuclear cells is acquired at least 15 days, at least 16 days, at least 17 days, at least 18 days, at least 19 days, at least 20 days, at least 21 days, at least 22 days, at least 23 days, at least 24 days, at least 25 days, at least 26 days, at least 27 days, at least 28 days, at least 29 days, at least 30 days, at least 60 days, at least 90 days, at least 120 days, at least 150 days, at least 180 days, or more from the AMI.
  • the nonexpanded, isolated population of autologous mononuclear cells comprising CD34+ cells which further contain a subpopulation of potent CD34+/CXCR-4+ cells that have CXCR-4-mediated chemotactic activity is acquired at least 1 month, at least 2 months, at least 3 months, at least 4 months, at least 5 months, at least 6 months, at least 7 months, at least 8 months, at least 9 months, at least 10 months, at least 1 1 months, at least 12 months, at least 16 months, at least 24 months, at least 30 months, at least 36 months, at least 42 months, at least 48 months, at least 54 months, at least 60 months, at least 66 months, at least 72 months, at least 78 months, at least 84 months, at least 90 months, at least 96 months, at least 102 months, at least 108 months, at least 1 14 months, at least 120 months, at least 126 months, at least 132 months, at least 138 months, at least 144 months, at least 150 months,
  • the nonexpanded, isolated population of autologous mononuclear cells comprising CD34+ cells which further contain a subpopulation of potent CD34+/CXCR-4+ cells that have CXCR-4-mediated chemotactic activity is acquired at least 3 years, 4 years, 5 years, 6 years, 7 years, 8 years, 9 years, 10 years, 11 years, 12 years, 13 years, 14 years, 15 years, 16 years 17 years, 18 years, 19 years, 20 years, 21 years, 22 years, 23 years, 24 years, 25 years, 26 years, 27 years, 28 years, 29 years, 30 years, 31 years, 32 years, 33 years, 34 years, 35 years, 36 years 37 years, 38 years, 39 years, 40 years or more after occurrence of an AMI.
  • the nonexpanded, isolated population of autologous mononuclear cells comprising CD34+ cells which further contain a subpopulation of potent CD34+/CXCR-4+ cells that have CXCR-4-mediated chemotactic activity, once acquired, is frozen at -86°C and cryostored in the vapor phase of a liquid nitrogen freezer as a plurality of aliquots for later usage.
  • at least 70% of potent cells in the nonexpanded, isolated population of autologous mononuclear cells enriched for CD34+ cells, which further contain a subpopulation of potent CD34+ cells expressing CXCR-4 and having chemotactic activity are CD34+ cells.
  • At least 75% of cells in the nonexpanded, isolated population of autologous mononuclear cells enriched for CD34+ cells containing a subpopulation of potent CD34+ cells expressing CXCR-4 and having chemotactic activity are CD34+ cells.
  • at least 80% of potent cells in the nonexpanded, isolated population of autologous mononuclear cells enriched for CD34+ cells, which further contain a subpopulation of potent CD34+ cells expressing CXCR-4 and having chemotactic activity are CD34+ cells.
  • At least 85% of potent cells in the nonexpanded, isolated population of autologous mononuclear cells enriched for CD34+ cells, which further contain a subpopulation of potent CD34+ cells expressing CXCR-4 and having chemotactic activity are CD34+ cells.
  • at least 90% of potent cells in the nonexpanded, isolated population of autologous mononuclear cells enriched for CD34+ cells, which further contain a subpopulation of potent CD34+ cells expressing CXCR-4 and having chemotactic activity are CD34+ cells.
  • At least 95% of potent cells in the nonexpanded, isolated population of autologous mononuclear cells enriched for CD34+ cells, which further contain a subpopulation of potent CD34+ cells expressing CXCR-4 and having chemotactic activity are CD34+ cells.
  • At least about 70% of the nonexpanded, isolated population of autologous mononuclear cells enriched for CD34+ cells, which further contain a subpopulation of potent CD34+ cells expressing CXCR-4 and having chemotactic activity are viable for at least about 24 hours following acquisition of the chemotactic
  • At least about 75% of the nonexpanded, isolated population of autologous mononuclear cells enriched for CD34+ cells, which further contain a subpopulation of potent CD34+ cells expressing CXCR-4 and having chemotactic activity are viable for at least about 24 hours following acquisition of the
  • chemotactic hematopoietic stem cell product At least about 80% of the nonexpanded, isolated population of autologous mononuclear cells enriched for CD34+ cells, which further contain a subpopulation of potent CD34+ cells expressing CXCR-4 and having chemotactic activity are viable for at least 24 hours following acquisition of the chemotactic hematopoietic stem cell product.
  • At least about 85% of the nonexpanded, isolated population of autologous mononuclear cells enriched for CD34+ cells, which further contain a subpopulation of potent CD34+ cells expressing CXCR-4 and having chemotactic activity are viable for at least 24 hours following acquisition of the chemotactic hematopoietic stem cell product.
  • at least about 90% of the nonexpanded, isolated population of autologous mononuclear cells enriched for CD34+ cells, which further contain a subpopulation of potent CD34+ cells expressing CXCR-4 and having chemotactic activity are viable for at least 24 hours following acquisition of the chemotactic hematopoietic stem cell product.
  • At least about 95% of the nonexpanded, isolated population of autologous mononuclear cells enriched for CD34+ cells, which further contain a subpopulation of potent CD34+ cells expressing CXCR-4 and having chemotactic activity are viable for at least about 24 following acquisition of the chemotactic hematopoietic stem cell product.
  • At least about 70% of the nonexpanded, isolated population of autologous mononuclear cells enriched for CD34+ cells, which further contain a subpopulation of potent CD34+ cells expressing CXCR-4 and having chemotactic activity are viable for at least about 48 hours following acquisition of the chemotactic hematopoietic stem cell product.
  • At least about 75% of the nonexpanded, isolated population of autologous mononuclear cells enriched for CD34+ cells, which further contain a subpopulation of potent CD34+ cells expressing CXCR-4 and having chemotactic activity are viable for at least about 48 hours following acquisition of the chemotactic hematopoietic stem cell product.
  • at least about 80% of the nonexpanded, isolated population of autologous mononuclear cells enriched for CD34+ cells, which further contain a subpopulation of potent CD34+ cells expressing CXCR-4 and having chemotactic activity are viable for at least 48 hours following acquisition of the chemotactic hematopoietic stem cell product.
  • At least about 85% of the nonexpanded, isolated population of autologous mononuclear cells enriched for CD34+ cells, which further contain a subpopulation of potent CD34+ cells expressing CXCR-4 and having chemotactic activity are viable for at least 48 hours following acquisition of the chemotactic hematopoietic stem cell product.
  • at least about 90% of the nonexpanded, isolated population of autologous mononuclear cells enriched for CD34+ cells containing a subpopulation of potent CD34+ cells expressing CXCR-4 and having chemotactic activity are viable for at least 48 hours following acquisition of the chemotactic hematopoietic stem cell product.
  • At least about 95% of the nonexpanded, isolated population of autologous mononuclear cells enriched for CD34+ cells, which further contain a subpopulation of potent CD34+ cells expressing CXCR-4 and having chemotactic activity are viable for at least about 48 following acquisition of the chemotactic hematopoietic stem cell product.
  • At least about 70% of the nonexpanded, isolated population of autologous mononuclear cells enriched for CD34+ cells, which further contain a subpopulation of potent CD34+ cells expressing CXCR-4 and having chemotactic activity are viable for at least about 72 hours following acquisition of the chemotactic hematopoietic stem cell product.
  • At least about 75% of the nonexpanded, isolated population of autologous mononuclear cells enriched for CD34+ cells, which further contain a subpopulation of potent CD34+ cells expressing CXCR-4 and having chemotactic activity are viable for at least about 72 hours following acquisition of the chemotactic hematopoietic stem cell product.
  • at least about 80% of the nonexpanded, isolated population of autologous mononuclear cells enriched for CD34+ cells, which further contain a subpopulation of potent CD34+ cells expressing CXCR-4 and having chemotactic activity are viable for at least 72 hours following acquisition of the chemotactic hematopoietic stem cell product.
  • At least about 85% of the nonexpanded, isolated population of autologous mononuclear cells enriched for CD34+ cells, which further contain a subpopulation of potent CD34+ cells expressing CXCR-4 and having chemotactic activity are viable for at least 72 hours following acquisition of the chemotactic hematopoietic stem cell product.
  • at least about 90% of the nonexpanded, isolated population of autologous mononuclear cells enriched for CD34+ cells, which further contain a subpopulation of potent CD34+ cells expressing CXCR-4 and having chemotactic activity are viable for at least 72 hours following acquisition of the chemotactic hematopoietic stem cell product.
  • At least about 95% of the nonexpanded, isolated population of autologous mononuclear cells enriched for CD34+ cells, which further contain a subpopulation of potent CD34+ cells expressing CXCR-4 and having chemotactic activity are viable for at least about 72 following acquisition of the chemotactic hematopoietic stem cell product.
  • the nonexpanded, isolated population of autologous mononuclear cells enriched for CD34+ cells, which further contain a subpopulation of potent CD34+ cells having chemotactic activity can form hematopoietic colonies in vitro for at least about 24 hours following acquisition from the subject of the chemotactic hematopoietic stem cell product.
  • the nonexpanded, isolated population of autologous mononuclear cells enriched for CD34+ cells which further contain a subpopulation of potent CD34+ cells expressing CXCR-4 and having chemotactic activity can form
  • the nonexpanded, isolated population of autologous mononuclear cells enriched for CD34+ cells which further contain a subpopulation of potent CD34+ cells expressing CXCR-4 and having chemotactic activity can form hematopoietic colonies in vitro for at least about 72 hours following acquisition from the subject of the chemotactic hematopoietic stem cell product.
  • the progressive myocardial injury-preventing composition further comprises at least about 10 million isolated CD34+ cells acquired from the subject, which further contain a subpopulation of potent CD34+ cells expressing CXCR-4 and having CXCR-4-mediated chemotactic activity. According to another embodiment, the progressive myocardial injury-preventing composition further comprises at least about 1 1 million isolated CD34+ cells acquired from the subject, which further contain a subpopulation of potent CD34+ cells expressing CXCR-4 and having CXCR-4-mediated chemotactic activity.
  • the progressive myocardial injury-preventing composition further comprises at least about 12 million isolated CD34+ cells acquired from the subject, which further contain a subpopulation of potent CD34+ cells expressing CXCR-4 and having CXCR-4- mediated chemotactic activity.
  • the progressive myocardial injury-preventing composition further comprises at least about 13 million isolated CD34+ cells acquired from the subject, which further contain a subpopulation of potent CD34+ cells expressing CXCR-4 and having CXCR-4-mediated chemotactic activity.
  • the progressive myocardial injury-preventing composition further comprises at least about 14 million isolated CD34+ cells acquired from the subject, which further contain a subpopulation of potent CD34+ cells expressing CXCR-4 and having CXCR-4-mediated chemotactic activity.
  • the progressive myocardial injury-preventing composition further comprises at least about 15 million isolated CD34+ cells acquired from the subject, which further contain a subpopulation of potent CD34+ cells expressing CXCR-4 and having CXCR-4-mediated chemotactic activity.
  • the progressive myocardial injury-preventing composition further comprises at least about 20 million isolated CD34+ cells acquired from the subject, which further contain a subpopulation of potent CD34+ cells expressing CXCR-4 and having CXCR-4-mediated chemotactic activity.
  • the progressive myocardial injury- preventing composition further comprises at least about 30 million isolated CD34+ cells acquired from the subject, which further contain a subpopulation of potent CD34+ cells expressing CXCR-4 and having CXCR-4-mediated chemotactic activity.
  • the progressive myocardial injury-preventing composition further comprises at least about 40 million isolated CD34+ cells acquired from the subject, which further contain a subpopulation of potent CD34+ cells expressing CXCR-4 and having CXCR-4-mediated chemotactic activity. According to another embodiment, the progressive myocardial injury-preventing composition further comprises at least about 50 million isolated CD34+ cells acquired from the subject, which further contain a subpopulation of potent CD34+ cells expressing CXCR-4 and having CXCR-4- mediated chemotactic activity.
  • the progressive myocardial injury-preventing composition further comprises at least about 60 million isolated CD34+ cells acquired from the subject, which further contain a subpopulation of potent CD34+ cells expressing CXCR-4 and having CXCR-4-mediated chemotactic activity. According to another embodiment, the progressive myocardial injury-preventing composition further comprises at least about 70 million isolated CD34+ cells acquired from the subject, which further contain a subpopulation of potent CD34+ cells expressing CXCR-4 and having CXCR-4-mediated chemotactic activity.
  • the progressive myocardial injury-preventing composition further comprises at least about 80 million isolated CD34+ cells acquired from the subject, which further contain a subpopulation of potent CD34+ cells expressing CXCR-4 and having CXCR-4-mediated chemotactic activity. According to another embodiment, the progressive myocardial injury-preventing composition further comprises at least about 90 million isolated CD34+ cells acquired from the subject, which further contain a subpopulation of potent CD34+ cells expressing CXCR-4 and having CXCR-4-mediated chemotactic activity.
  • the progressive myocardial injury-preventing composition further comprises at least about 100 million isolated CD34+ cells acquired from the subject, which further contain a subpopulation of potent CD34+ cells expressing CXCR-4 and having CXCR-4-mediated chemotactic activity.
  • CD34+ cells may be enriched/selected by any techniques known to the skilled artisan.
  • the isolated population of autologous mononuclear cells comprising CD34+ cells is enriched for cells expressing CD34 cell antigen and CXCR-4 cell antigen by fluorescence activated cell sorting (FACS).
  • FACS fluorescence activated cell sorting
  • the isolated population of autologous mononuclear cells comprising CD34+ cells are enriched/selected by positive or negative immunoseparation techniques.
  • isolation and/or purification of hematopoietic stem cells from the isolated population of autologous mononuclear cells comprising CD34+ cells is based on cell fractionation methods based on size and cell density, efflux of metabolic dyes, or resistance to cytotoxic agents.
  • the isolated population of autologous mononuclear cells comprising CD34+ cells in is enriched for CD34+ cells/selected using a monoclonal anti-CD34 antibody and an immunomagnetic separation technique.
  • the isolated CD34+ cells may be identified, quantified and characterized by techniques known in the art. For example, in some embodiments, the percentage of CD34+ cells in the isolated population of autologous mononuclear cells comprising CD34+ cells and in the chemotactic hematopoietic stem cell product can be determined by FACS analysis. According to another embodiment, CD34 protein expression is quantified by Western blot.
  • the term "Western blot" refers to a method for identifying proteins in a complex mixture; proteins are separated electrophoretically in a gel medium; transferred from the gel to a protein binding sheet or membrane; and the sheet or membrane containing the separated proteins exposed to specific antibodies which bind to, locate, and enable visualization of protein(s) of interest.
  • monoclonal anti-CD34 antibody can be used to detect CD34 protein adhered to a membrane in situ.
  • the expression of CD34 mRNA and DNA in the isolated CD34+ cells may be quantified.
  • the term "Northern blot" as used herein refers to a technique in which RNA from a specimen is separated into its component parts on a gel by electrophoresis and transferred to a specifically modified paper support so that the mRNA is fixed in its electrophoretic positions.
  • CD34 related sequences are identified using probes comprising a reporter molecule, such as, without limitation, a radioactive label.
  • the level of CD34 and/or CXCR-4 expression is/are determined by quantitative or semi-quantitative PCR or real time PCR ("RT-PCR") techniques.
  • PCR refers to polymerase chain reaction, which is a technique for amplifying the quantity of DNA, thus making the DNA easier to isolate, clone and sequence. See, e.g., U.S. Pat. Nos. 5,656,493, 5,333,675, 5,234,824, and 5,187,083, each of which is incorporated herein by reference.
  • Real-time PCR is a method of simultaneous DNA quantification and amplification, whereby DNA is specifically amplified by polymerase chain reaction (PCR), and after each round of amplification, the DNA is quantified.
  • the isolated CD34+ hematopoietic stem cells of the chemotactic hematopoietic stem cell product of the described invention contain a subpopulation of CD34+ cells expressing CXCR-4 and having CXCR-4 mediated chemotactic activity.
  • the hematopoietic stem cell product of the described invention comprises a minimum number of isolated CD34+ hematopoietic stem cells such that a subpopulation of at least 0.5 x 106 CD34+ cells expressing CXCR-4 and having CXCR-4 mediated chemotactic activity is present.
  • At least about 3% of the CXCR-4 mediated chemotactic activity of the isolated CD34+ cells containing a subpopulation of potent CD34+ cells expressing CXCR-4 and having chemotactic activity is retained for at least 24 hours following acquisition of the chemotactic hematopoietic stem cell product.
  • At least about 4% of the CXCR-4 mediated chemotactic activity of the isolated CD34+ cells containing a subpopulation of potent CD34+ cells expressing CXCR-4 and having chemotactic activity is retained for at least 24 hours following acquisition of the chemotactic hematopoietic stem cell product.
  • at least about 5% of the CXCR-4 mediated chemotactic activity of the isolated CD34+ cells containing a subpopulation of potent CD34+ cells expressing CXCR-4 and having chemotactic activity is retained for at least 24 hours following acquisition of the chemotactic hematopoietic stem cell product.
  • At least about 6% of the CXCR-4 mediated chemotactic activity of the isolated CD34+ cells containing a subpopulation of potent CD34+ cells expressing CXCR-4 and having chemotactic activity is retained for at least 24 hours following acquisition of the chemotactic hematopoietic stem cell product.
  • at least about 7% of the CXCR-4 mediated chemotactic activity of the isolated CD34+ cells containing a subpopulation of potent CD34+ cells expressing CXCR-4 and having chemotactic activity is retained for at least 24 hours following acquisition of the chemotactic hematopoietic stem cell product.
  • At least about 8% of the CXCR-4 mediated chemotactic activity of the isolated CD34+ cells containing a subpopulation of potent CD34+ cells expressing CXCR-4 and having chemotactic activity is retained for at least 24 hours following acquisition of the chemotactic hematopoietic stem cell product.
  • at least about 9% of the CXCR-4 mediated chemotactic activity of the isolated CD34+ cells containing a subpopulation of potent CD34+ cells expressing CXCR-4 and having chemotactic activity is retained for at least 24 hours following acquisition of the chemotactic hematopoietic stem cell product.
  • CD34+ cells containing a subpopulation of potent CD34+ cells expressing CXCR-4 and having chemotactic activity is retained for at least 24 hours following acquisition of the chemotactic hematopoietic stem cell product. According to another embodiment, at least about 10% of the
  • CXCR-4 mediated chemotactic activity of the isolated CD34+ cells containing a subpopulation of potent CD34+ cells expressing CXCR-4 and having chemotactic activity is retained for at least 24 hours following acquisition of the chemotactic hematopoietic stem cell product.
  • CXCR-4 and having chemotactic activity is retained for at least 24 hours following acquisition of the chemotactic hematopoietic stem cell product.
  • at least about 12% of the CXCR-4 mediated chemotactic activity of the isolated CD34+ cells containing a subpopulation of potent CD34+ cells expressing CXCR-4 and having chemotactic activity is retained for at least 24 hours following acquisition of the chemotactic hematopoietic stem cell product.
  • At least about 13% of the CXCR-4 mediated chemotactic activity of the isolated CD34+ cells containing a subpopulation of potent CD34+ cells expressing CXCR-4 and having chemotactic activity is retained for at least 24 hours following acquisition of the chemotactic hematopoietic stem cell product.
  • at least about 14% of the CXCR-4 mediated chemotactic activity of the isolated CD34+ cells containing a subpopulation of potent CD34+ cells expressing CXCR-4 and having chemotactic activity is retained for at least 24 hours following acquisition of the chemotactic hematopoietic stem cell product.
  • CD34+ cells containing a subpopulation of potent CD34+ cells expressing CXCR-4 and having chemotactic activity is retained for at least 24 hours following acquisition of the chemotactic hematopoietic stem cell product. According to another embodiment, at least about 15% of the
  • CXCR-4 mediated chemotactic activity of the isolated CD34+ cells containing a subpopulation of potent CD34+ cells expressing CXCR-4 and having chemotactic activity is retained for at least 24 hours following acquisition of the chemotactic hematopoietic stem cell product.
  • CXCR-4 and having chemotactic activity is retained for at least 24 hours following acquisition of the chemotactic hematopoietic stem cell product.
  • at least about 17% of the CXCR-4 mediated chemotactic activity of the isolated CD34+ cells containing a subpopulation of potent CD34+ cells expressing CXCR-4 and having chemotactic activity is retained for at least 24 hours following acquisition of the chemotactic hematopoietic stem cell product.
  • At least about 18% of the CXCR-4 mediated chemotactic activity of the isolated CD34+ cells containing a subpopulation of potent CD34+ cells expressing CXCR-4 and having chemotactic activity is retained for at least 24 hours following acquisition of the chemotactic hematopoietic stem cell product. According to another embodiment, at least about 19% of the CXCR-4 mediated chemotactic activity of the isolated CD34+ cells containing a subpopulation of potent CD34+ cells expressing CXCR-4 and having chemotactic activity is retained for at least 24 hours following acquisition of the chemotactic hematopoietic stem cell product. According to another embodiment, at least about 19% of the CXCR-4 mediated chemotactic activity of the isolated
  • CD34+ cells containing a subpopulation of potent CD34+ cells expressing CXCR-4 and having chemotactic activity is retained for at least 24 hours following acquisition of the chemotactic hematopoietic stem cell product. According to another embodiment, at least about 20% of the
  • CXCR-4 mediated chemotactic activity of the isolated CD34+ cells containing a subpopulation of potent CD34+ cells expressing CXCR-4 and having chemotactic activity is retained for at least 24 hours following acquisition of the chemotactic hematopoietic stem cell product.
  • CXCR-4 and having chemotactic activity is retained for at least 24 hours following acquisition of the chemotactic hematopoietic stem cell product.
  • at least about 22% of the CXCR-4 mediated chemotactic activity of the isolated CD34+ cells containing a subpopulation of potent CD34+ cells expressing CXCR-4 and having chemotactic activity is retained for at least 24 hours following acquisition of the chemotactic hematopoietic stem cell product.
  • At least about 23% of the CXCR-4 mediated chemotactic activity of the isolated CD34+ cells containing a subpopulation of potent CD34+ cells expressing CXCR-4 and having chemotactic activity is retained for at least 24 hours following acquisition of the chemotactic hematopoietic stem cell product.
  • at least about 24% of the CXCR-4 mediated chemotactic activity of the isolated CD34+ cells containing a subpopulation of potent CD34+ cells expressing CXCR-4 and having chemotactic activity is retained for at least 24 hours following acquisition of the chemotactic hematopoietic stem cell product.
  • CD34+ cells containing a subpopulation of potent CD34+ cells expressing CXCR-4 and having chemotactic activity is retained for at least 24 hours following acquisition of the chemotactic hematopoietic stem cell product. According to another embodiment, at least about 25% of the
  • CXCR-4 mediated chemotactic activity of the isolated CD34+ cells containing a subpopulation of potent CD34+ cells expressing CXCR-4 and having chemotactic activity is retained for at least 24 hours following acquisition of the chemotactic hematopoietic stem cell product.
  • CXCR-4 and having chemotactic activity is retained for at least 24 hours following acquisition of the chemotactic hematopoietic stem cell product.
  • at least about 27% of the CXCR-4 mediated chemotactic activity of the isolated CD34+ cells containing a subpopulation of potent CD34+ cells expressing CXCR-4 and having chemotactic activity is retained for at least 24 hours following acquisition of the chemotactic hematopoietic stem cell product.
  • At least about 28% of the CXCR-4 mediated chemotactic activity of the isolated CD34+ cells containing a subpopulation of potent CD34+ cells expressing CXCR-4 and having chemotactic activity is retained for at least 24 hours following acquisition of the chemotactic hematopoietic stem cell product.
  • at least about 29% of the CXCR-4 mediated chemotactic activity of the isolated CD34+ cells containing a subpopulation of potent CD34+ cells expressing CXCR-4 and having chemotactic activity is retained for at least 24 hours following acquisition of the chemotactic hematopoietic stem cell product.
  • CD34+ cells containing a subpopulation of potent CD34+ cells expressing CXCR-4 and having chemotactic activity is retained for at least 24 hours following acquisition of the chemotactic hematopoietic stem cell product. According to another embodiment, at least about 30% of the
  • CXCR-4 mediated chemotactic activity of the isolated CD34+ cells containing a subpopulation of potent CD34+ cells expressing CXCR-4 and having chemotactic activity is retained for at least 24 hours following acquisition of the chemotactic hematopoietic stem cell product.
  • At least about 31% of the CXCR-4 mediated chemotactic activity of the isolated CD34+ cells containing a subpopulation of potent CD34+ cells expressing CXCR-4 and having chemotactic activity is retained for at least 24 hours following acquisition of the chemotactic hematopoietic stem cell product.
  • at least about 32% of the CXCR-4 mediated chemotactic activity of the isolated CD34+ cells containing a subpopulation of potent CD34+ cells expressing CXCR-4 and having chemotactic activity is retained for at least 24 hours following acquisition of the chemotactic hematopoietic stem cell product.
  • At least about 33% of the CXCR-4 mediated chemotactic activity of the isolated CD34+ cells containing a subpopulation of potent CD34+ cells expressing CXCR-4 and having chemotactic activity is retained for at least 24 hours following acquisition of the chemotactic hematopoietic stem cell product.
  • at least about 34% of the CXCR-4 mediated chemotactic activity of the isolated CD34+ cells containing a subpopulation of potent CD34+ cells expressing CXCR-4 and having chemotactic activity is retained for at least 24 hours following acquisition of the chemotactic hematopoietic stem cell product.
  • At least about 2% of the CXCR-4 mediated chemotactic activity of the isolated CD34+ cells containing a subpopulation of potent CD34+ cells expressing CXCR-4 and having chemotactic activity is retained for at least 48 hours following acquisition of the enriched population of CD34+ cells.
  • at least about 3% of the CXCR-4 mediated chemotactic activity of the isolated CD34+ cells containing a subpopulation of potent CD34+ cells expressing CXCR-4 and having chemotactic activity is retained for at least 48 hours following acquisition of the enriched population of CD34+ cells.
  • At least about 4% of the CXCR-4 mediated chemotactic activity of the isolated CD34+ cells containing a subpopulation of potent CD34+ cells expressing CXCR-4 and having chemotactic activity is retained for at least 48 hours following acquisition of the enriched population of CD34+ cells.
  • at least about 5% of the CXCR-4 mediated chemotactic activity of the isolated CD34+ cells containing a subpopulation of potent CD34+ cells expressing CXCR-4 and having chemotactic activity is retained for at least 48 hours following acquisition of the enriched population of CD34+ cells.
  • CD34+ cells expressing CXCR-4 and having chemotactic activity is retained for at least 48 hours following acquisition of the enriched population of CD34+ cells. According to another embodiment, at least about 7% of the CXCR-4 mediated chemotactic activity of the isolated
  • CD34+ cells containing a subpopulation of potent CD34+ cells expressing CXCR-4 and having chemotactic activity is retained for at least 48 hours following acquisition of the enriched population of CD34+ cells. According to another embodiment, at least about 8% of the CXCR-4 mediated chemotactic activity of the isolated CD34+ cells containing a subpopulation of potent
  • CD34+ cells expressing CXCR-4 and having chemotactic activity is retained for at least 48 hours following acquisition of the enriched population of CD34+ cells. According to another embodiment, at least about 9% of the CXCR-4 mediated chemotactic activity of the isolated
  • CD34+ cells containing a subpopulation of potent CD34+ cells expressing CXCR-4 and having chemotactic activity is retained for at least 48 hours following acquisition of the enriched population of CD34+ cells. According to another embodiment, at least about 10% of the CXCR-
  • CD34+ cells expressing CXCR-4 and having chemotactic activity is retained for at least 48 hours following acquisition of the enriched population of CD34+ cells. According to another embodiment, at least about 1 1% of the CXCR-4 mediated chemotactic activity of the isolated
  • CD34+ cells containing a subpopulation of potent CD34+ cells expressing CXCR-4 and having chemotactic activity is retained for at least 48 hours following acquisition of the enriched population of CD34+ cells. According to another embodiment, at least about 12% of the CXCR-
  • CD34+ cells expressing CXCR-4 and having chemotactic activity is retained for at least 48 hours following acquisition of the enriched population of CD34+ cells. According to another embodiment, at least about 13% of the CXCR-4 mediated chemotactic activity of the isolated
  • CD34+ cells containing a subpopulation of potent CD34+ cells expressing CXCR-4 and having chemotactic activity is retained for at least 48 hours following acquisition of the enriched population of CD34+ cells. According to another embodiment, at least about 14% of the CXCR-
  • CD34+ cells containing a subpopulation of potent CD34+ cells expressing CXCR-4 and having chemotactic activity is retained for at least 48 hours following acquisition of the enriched population of CD34+ cells. According to another embodiment, at least about 16% of the CXCR-
  • CD34+ cells expressing CXCR-4 and having chemotactic activity is retained for at least 48 hours following acquisition of the enriched population of CD34+ cells. According to another embodiment, at least about 17% of the CXCR-4 mediated chemotactic activity of the isolated
  • CD34+ cells containing a subpopulation of potent CD34+ cells expressing CXCR-4 and having chemotactic activity is retained for at least 48 hours following acquisition of the enriched population of CD34+ cells. According to another embodiment, at least about 18% of the CXCR-
  • CD34+ cells expressing CXCR-4 and having chemotactic activity is retained for at least 48 hours following acquisition of the enriched population of CD34+ cells. According to another embodiment, at least about 19% of the CXCR-4 mediated chemotactic activity of the isolated
  • CD34+ cells containing a subpopulation of potent CD34+ cells expressing CXCR-4 and having chemotactic activity is retained for at least 48 hours following acquisition of the enriched population of CD34+ cells. According to another embodiment, at least about 20% of the CXCR-
  • CD34+ cells expressing CXCR-4 and having chemotactic activity is retained for at least 48 hours following acquisition of the enriched population of CD34+ cells. According to another embodiment, at least about 21% of the CXCR-4 mediated chemotactic activity of the isolated
  • CD34+ cells containing a subpopulation of potent CD34+ cells expressing CXCR-4 and having chemotactic activity is retained for at least 48 hours following acquisition of the enriched population of CD34+ cells. According to another embodiment, at least about 22% of the CXCR-
  • CD34+ cells expressing CXCR-4 and having chemotactic activity is retained for at least 48 hours following acquisition of the enriched population of CD34+ cells. According to another embodiment, at least about 23% of the CXCR-4 mediated chemotactic activity of the isolated
  • CD34+ cells containing a subpopulation of potent CD34+ cells expressing CXCR-4 and having chemotactic activity is retained for at least 48 hours following acquisition of the enriched population of CD34+ cells. According to another embodiment, at least about 24% of the CXCR-
  • CD34+ cells expressing CXCR-4 and having chemotactic activity is retained for at least 48 hours following acquisition of the enriched population of CD34+ cells. According to another embodiment, at least about 25% of the CXCR-4 mediated chemotactic activity of the isolated
  • CD34+ cells containing a subpopulation of potent CD34+ cells expressing CXCR-4 and having chemotactic activity is retained for at least 48 hours following acquisition of the enriched population of CD34+ cells. According to another embodiment, at least about 26% of the CXCR-
  • CD34+ cells expressing CXCR-4 and having chemotactic activity is retained for at least 48 hours following acquisition of the enriched population of CD34+ cells. According to another embodiment, at least about 27% of the CXCR-4 mediated chemotactic activity of the isolated
  • CD34+ cells containing a subpopulation of potent CD34+ cells expressing CXCR-4 and having chemotactic activity is retained for at least 48 hours following acquisition of the enriched population of CD34+ cells. According to another embodiment, at least about 28% of the CXCR-
  • CD34+ cells expressing CXCR-4 and having chemotactic activity is retained for at least 48 hours following acquisition of the enriched population of CD34+ cells. According to another embodiment, at least about 29% of the CXCR-4 mediated chemotactic activity of the isolated
  • CD34+ cells containing a subpopulation of potent CD34+ cells expressing CXCR-4 and having chemotactic activity is retained for at least 48 hours following acquisition of the enriched population of CD34+ cells. According to another embodiment, at least about 30% of the CXCR-
  • CD34+ cells expressing CXCR-4 and having chemotactic activity is retained for at least 48 hours following acquisition of the enriched population of CD34+ cells.
  • at least about 31 % of the CXCR-4 mediated chemotactic activity of the isolated CD34+ cells containing a subpopulation of potent CD34+ cells expressing CXCR-4 and having chemotactic activity is retained for at least 48 hours following acquisition of the enriched population of CD34+ cells.
  • At least about 32% of the CXCR- 4 mediated chemotactic activity of the isolated CD34+ cells containing a subpopulation of potent CD34+ cells expressing CXCR-4 and having chemotactic activity is retained for at least 48 hours following acquisition of the enriched population of CD34+ cells.
  • at least about 33% of the CXCR-4 mediated chemotactic activity of the isolated CD34+ cells containing a subpopulation of potent CD34+ cells expressing CXCR-4 and having chemotactic activity is retained for at least 48 hours following acquisition of the enriched population of CD34+ cells.
  • At least about 34% of the CXCR- 4 mediated chemotactic activity of the isolated CD34+ cells containing a subpopulation of potent CD34+ cells expressing CXCR-4 and having chemotactic activity is retained for at least 48 hours following acquisition of the enriched population of CD34+ cells.
  • At least about 2% of the CXCR-4 mediated chemotactic activity of the isolated CD34 + cells containing a subpopulation of potent CD34+ cells expressing CXCR-4 and having chemotactic activity is retained for at least 72 hours following acquisition of the chemotactic hematopoietic stem cell product.
  • at least about 3% of the CXCR-4 mediated chemotactic activity of the isolated CD34 + cells containing a subpopulation of potent CD34+ cells expressing CXCR-4 and having chemotactic activity is retained for at least 72 hours following acquisition of the chemotactic hematopoietic stem cell product.
  • At least about 4% of the CXCR-4 mediated chemotactic activity of the isolated CD34 + cells containing a subpopulation of potent CD34+ cells expressing CXCR-4 and having chemotactic activity is retained for at least 72 hours following acquisition of the chemotactic hematopoietic stem cell product.
  • at least about 5% of the CXCR-4 mediated chemotactic activity of the isolated CD34 + cells containing a subpopulation of potent CD34+ cells expressing CXCR-4 and having chemotactic activity is retained for at least 72 hours following acquisition of the chemotactic hematopoietic stem cell product.
  • at least about 4% of the CXCR-4 mediated chemotactic activity of the isolated CD34 + cells containing a subpopulation of potent CD34+ cells expressing CXCR-4 and having chemotactic activity is retained for at least 72 hours following acquisition of the chemotactic hematopoietic stem cell product.
  • CD34 + cells containing a subpopulation of potent CD34+ cells expressing CXCR-4 and having chemotactic activity is retained for at least 72 hours following acquisition of the chemotactic hematopoietic stem cell product. According to another embodiment, at least about 9% of the
  • CXCR-4 mediated chemotactic activity of the isolated CD34 + cells containing a subpopulation of potent CD34+ cells expressing CXCR-4 and having chemotactic activity is retained for at least
  • At least about 10% of the CXCR-4 mediated chemotactic activity of the isolated CD34 + cells containing a subpopulation of potent CD34+ cells expressing CXCR-4 and having chemotactic activity is retained for at least 72 hours following acquisition of the chemotactic hematopoietic stem cell product. According to another embodiment, at least about
  • CD34 + cells containing a subpopulation of potent CD34+ cells expressing CXCR-4 and having chemotactic activity is retained for at least 72 hours following acquisition of the chemotactic hematopoietic stem cell product. According to another embodiment, at least about 14% of the
  • CXCR-4 mediated chemotactic activity of the isolated CD34 + cells containing a subpopulation of potent CD34+ cells expressing CXCR-4 and having chemotactic activity is retained for at least
  • At least about 15% of the CXCR-4 mediated chemotactic activity of the isolated CD34 + cells containing a subpopulation of potent CD34+ cells expressing CXCR-4 and having chemotactic activity is retained for at least 72 hours following acquisition of the chemotactic hematopoietic stem cell product. According to another embodiment, at least about
  • CD34 + cells containing a subpopulation of potent CD34+ cells expressing CXCR-4 and having chemotactic activity is retained for at least 72 hours following acquisition of the chemotactic hematopoietic stem cell product. According to another embodiment, at least about 19% of the
  • CXCR-4 mediated chemotactic activity of the isolated CD34 + cells containing a subpopulation of potent CD34+ cells expressing CXCR-4 and having chemotactic activity is retained for at least
  • At least about 20% of the CXCR-4 mediated chemotactic activity of the isolated CD34 + cells containing a subpopulation of potent CD34+ cells expressing CXCR-4 and having chemotactic activity is retained for at least 72 hours following acquisition of the chemotactic hematopoietic stem cell product. According to another embodiment, at least about
  • CD34 + cells containing a subpopulation of potent CD34+ cells expressing CXCR-4 and having chemotactic activity is retained for at least 72 hours following acquisition of the chemotactic hematopoietic stem cell product. According to another embodiment, at least about 24% of the
  • CXCR-4 mediated chemotactic activity of the isolated CD34 + cells containing a subpopulation of potent CD34+ cells expressing CXCR-4 and having chemotactic activity is retained for at least
  • At least about 25% of the CXCR-4 mediated chemotactic activity of the isolated CD34 + cells containing a subpopulation of potent CD34+ cells expressing CXCR-4 and having chemotactic activity is retained for at least 72 hours following acquisition of the chemotactic hematopoietic stem cell product. According to another embodiment, at least about
  • CD34 + cells containing a subpopulation of potent CD34+ cells expressing CXCR-4 and having chemotactic activity is retained for at least 72 hours following acquisition of the chemotactic hematopoietic stem cell product. According to another embodiment, at least about 29% of the
  • CXCR-4 mediated chemotactic activity of the isolated CD34 + cells containing a subpopulation of potent CD34+ cells expressing CXCR-4 and having chemotactic activity is retained for at least
  • At least about 30% of the CXCR-4 mediated chemotactic activity of the isolated CD34 + cells containing a subpopulation of potent CD34+ cells expressing CXCR-4 and having chemotactic activity is retained for at least 72 hours following acquisition of the chemotactic hematopoietic stem cell product.
  • At least about 31% of the CXCR-4 mediated chemotactic activity of the isolated CD34 + cells containing a subpopulation of potent CD34+ cells expressing CXCR-4 and having chemotactic activity is retained for at least 72 hours following acquisition of the chemotactic hematopoietic stem cell product.
  • at least about 32% of the CXCR-4 mediated chemotactic activity of the isolated CD34 + cells containing a subpopulation of potent CD34+ cells expressing CXCR-4 and having chemotactic activity is retained for at least 72 hours following acquisition of the chemotactic hematopoietic stem cell product.
  • At least about 33% of the CXCR-4 mediated chemotactic activity of the isolated CD34 + cells containing a subpopulation of potent CD34+ cells expressing CXCR-4 and having chemotactic activity is retained for at least 72 hours following acquisition of the chemotactic hematopoietic stem cell product.
  • at least about 34% of the CXCR-4 mediated chemotactic activity of the isolated CD34 + cells containing a subpopulation of potent CD34+ cells expressing CXCR-4 and having chemotactic activity is retained for at least 72 hours following acquisition of the chemotactic hematopoietic stem cell product.
  • At least an average of about 17% of the CXCR-4 mediated chemotactic activity of the isolated CD34+ cells containing a subpopulation of potent CD34+ cells expressing CXCR-4 and having chemotactic activity is retained for at least 24 hours following acquisition of the chemotactic hematopoietic stem cell product.
  • At least an average of about 17% of the CXCR-4 mediated chemotactic activity of the isolated CD34+ cells containing a subpopulation of potent CD34+ cells expressing CXCR-4 and having chemotactic activity is retained for at least 48 hours following acquisition of the chemotactic hematopoietic stem cell product.
  • at least an average of about 17% of the CXCR-4 mediated chemotactic activity of the isolated CD34+ cells containing a subpopulation of potent CD34+ cells expressing CXCR-4 and having chemotactic activity is retained for at least 72 hours following acquisition of the chemotactic hematopoietic stem cell product.
  • the isolated CD34+ cells containing a subpopulation of potent CD34+ cells expressing CXCR-4 and having chemotactic activity in the chemotactic hematopoietic cell product retain at least about 2% of the CXCR-4 mediated chemotactic activity for at least 72 hours following acquisition of the chemotactic hematopoietic stem cell product.
  • the pharmaceutical composition of the invention further comprises serum at a concentration of at least 10% expressed as ml/100 cc final volume of the progressive myocardial injury-preventing composition.
  • the pharmaceutical composition of the invention further comprises serum at a concentration of at least 1 1 % expressed as ml/100 cc final volume of the progressive myocardial injury-preventing composition.
  • the pharmaceutical composition of the invention further comprises serum at a concentration of at least 12% expressed as ml/100 cc final volume of the progressive myocardial injury-preventing
  • the pharmaceutical composition of the invention further comprises serum at a concentration of at least 13% expressed as ml/100 cc final volume of the progressive myocardial injury-preventing composition.
  • the pharmaceutical composition of the invention further comprises serum at a concentration of at least 14% expressed as ml/ 100 cc final volume of the progressive myocardial injury-preventing composition.
  • the pharmaceutical composition of the invention further comprises serum at a concentration of at least 15% expressed as ml/100 cc final volume of the progressive myocardial injury-preventing
  • the pharmaceutical composition of the invention further comprises serum at a concentration of at least 16% expressed as ml/ 100 cc final volume of the progressive myocardial injury-preventing composition. According to another embodiment, the pharmaceutical composition of the invention further comprises serum at a concentration of at least 17% expressed as ml/ 100 cc final volume of the progressive myocardial injury-preventing composition. According to another embodiment, the pharmaceutical composition of the invention further comprises serum at a concentration of at least 18% expressed as ml/ 100 cc final volume of the progressive myocardial injury-preventing
  • the pharmaceutical composition of the invention further comprises serum at a concentration of at least 19% expressed as ml/100 cc final volume of the progressive myocardial injury-preventing composition.
  • the pharmaceutical composition of the invention further comprises serum at a concentration of at least 20% expressed as ml/ 100 cc final volume of the progressive myocardial injury-preventing composition.
  • the minimum concentration of serum present in the progressive myocardial injury-preventing composition is at least about 21% expressed as ml/ 100 cc final volume of the composition.
  • the minimum concentration of serum present in the progressive myocardial injury- preventing composition is at least about 22% expressed as ml/100 cc final volume of the composition. According to another embodiment, the minimum concentration of serum present in the progressive myocardial injury-preventing composition is at least about 23% expressed as ml/100 cc final volume of the composition. According to another embodiment, the minimum concentration of serum present in the progressive myocardial injury-preventing composition is at least about 24% expressed as ml/100 cc final volume of the composition. According to another embodiment, the minimum concentration of serum present in the progressive myocardial injury- preventing composition is at least about 25% expressed as ml/ 100 cc final volume of the composition.
  • the minimum concentration of serum present in the progressive myocardial injury-preventing composition is at least about 26% expressed as ml/100 cc final volume of the composition. According to another embodiment, the minimum concentration of serum present in the progressive myocardial injury-preventing composition is at least about 27% expressed as ml/ 100 cc final volume of the composition. According to another embodiment, the minimum concentration of serum present in the progressive myocardial injury- preventing composition is at least about 28% expressed as ml/100 cc final volume of the composition. According to another embodiment, the minimum concentration of serum present in the progressive myocardial injury-preventing composition is at least about 29% expressed as ml/100 cc final volume of the composition.
  • the minimum concentration of serum present in the progressive myocardial injury-preventing composition is at least about 30% expressed as ml/ 100 cc final volume of the composition. According to another embodiment, the minimum concentration of serum present in the progressive myocardial injury-preventing composition is at least about 31% expressed as ml/100 cc final volume of the composition. According to another embodiment, the minimum concentration of serum present in the progressive myocardial injury-preventing composition is at least about 32% expressed as ml/100 cc final volume of the composition. According to another embodiment, the minimum concentration of serum present in the progressive myocardial injury-preventing composition is at least about 33% expressed as ml/100 cc final volume of the composition.
  • the minimum concentration of serum present in the progressive myocardial injury- preventing composition is at least about 34% expressed as ml/100 cc final volume of the composition. According to another embodiment, the minimum concentration of serum present in the progressive myocardial injury-preventing composition is at least about 35% expressed as ml/100 cc final volume of the composition. According to another embodiment, the minimum concentration of serum present in the progressive myocardial injury-preventing composition is at least about 36% expressed as ml/100 cc final volume of the composition. According to another embodiment, the minimum concentration of serum present in the progressive myocardial injury- preventing composition is at least about 37% expressed as ml/100 cc final volume of the composition.
  • the minimum concentration of serum present in the progressive myocardial injury-preventing composition is at least about 38% expressed as ml/ 100 cc final volume of the composition. According to another embodiment, the minimum concentration of serum present in the progressive myocardial injury-preventing composition is at least about 39% expressed as ml/100 cc final volume of the composition. According to another embodiment, the minimum concentration of serum present in the progressive myocardial injury- preventing composition is at least about 40% expressed as ml/ 100 cc final volume of the composition. According to another embodiment, the minimum concentration of serum present in the progressive myocardial injury-preventing composition is at least about 41% expressed as m 1/100 cc final volume of the composition.
  • the minimum concentration of serum present in the progressive myocardial injury-preventing composition is at least about 42% expressed as ml/ 100 cc final volume of the composition. According to another embodiment, the minimum concentration of serum present in the progressive myocardial injury-preventing composition is at least about 43% expressed as ml/100 cc final volume of the composition. According to another embodiment, the minimum concentration of serum present in the progressive myocardial injury-preventing composition is at least about 44% expressed as ml/100 cc final volume of the composition. According to another embodiment, the minimum concentration of serum present in the progressive myocardial injury-preventing composition is at least about 45% expressed as ml/100 cc final volume of the composition.
  • the minimum concentration of serum present in the progressive myocardial injury- preventing composition is at least about 46% expressed as ml/100 cc final volume of the composition. According to another embodiment, the minimum concentration of serum present in the progressive myocardial injury-preventing composition is at least about 47% expressed as ml/100 cc final volume of the composition. According to another embodiment, the minimum concentration of serum present in the progressive myocardial injury-preventing composition is at least about 48% expressed as ml/100 cc final volume of the composition. According to another embodiment, the minimum concentration of serum present in the progressive myocardial injury- preventing composition is at least about 49% expressed as ml/ 100 cc final volume of the composition.
  • the minimum concentration of serum present in the progressive myocardial injury-preventing composition is at least about 50% expressed as ml/ 100 cc final volume of the composition. According to another embodiment, the minimum concentration of serum present in the progressive myocardial injury-preventing composition is at least about 51% expressed as ml/100 cc final volume of the composition. According to another embodiment, the minimum concentration of serum present in the progressive myocardial injury- preventing composition is at least about 52% expressed as ml/ 100 cc final volume of the composition. According to another embodiment, the minimum concentration of serum present in the progressive myocardial injury-preventing composition is at least about 53% expressed as ml/ 100 cc final volume of the composition.
  • the minimum concentration of serum present in the progressive myocardial injury-preventing composition is at least about 54% expressed as ml/100 cc final volume of the composition. According to another embodiment, the minimum concentration of serum present in the progressive myocardial injury-preventing composition is at least about 55% expressed as ml/100 cc final volume of the composition. According to another embodiment, the minimum concentration of serum present in the progressive myocardial injury-preventing composition is at least about 56% expressed as ml/100 cc final volume of the composition. According to another embodiment, the minimum concentration of serum present in the progressive myocardial injury-preventing composition is at least about 57% expressed as ml/ 100 cc final volume of the composition.
  • the minimum concentration of serum present in the progressive myocardial injury- preventing composition is at least about 58% expressed as ml/ 100 cc final volume of the composition. According to another embodiment, the minimum concentration of serum present in the progressive myocardial injury-preventing composition is at least about 59% expressed as ml/ 100 cc final volume of the composition. According to another embodiment, the minimum concentration of serum present in the progressive myocardial injury-preventing composition is at least about 60% expressed as ml/ 100 cc final volume of the composition. According to another embodiment, the minimum concentration of serum present in the progressive myocardial injury- preventing composition is at least about 61% expressed as ml/100 cc final volume of the composition.
  • the minimum concentration of serum present in the progressive myocardial injury-preventing composition is at least about 62% expressed as ml/ 100 cc final volume of the composition. According to another embodiment, the minimum concentration of serum present in the progressive myocardial injury-preventing composition is at least about 63% expressed as ml/100 cc final volume of the composition. According to another embodiment, the minimum concentration of serum present in the progressive myocardial injury-preventing composition is at least about 64% expressed as ml/100 cc final volume of the composition. According to another embodiment, the minimum concentration of serum present in the progressive myocardial injury-preventing composition is at least about 65% expressed as ml/ 100 cc final volume of the composition.
  • the minimum concentration of serum present in the progressive myocardial injury-preventing composition is at least about 66% expressed as ml/100 cc final volume of the composition. According to another embodiment, the minimum concentration of serum present in the progressive myocardial injury-preventing composition is at least about 67% expressed as ml/ 100 cc final volume of the composition. According to another embodiment, the minimum concentration of serum present in the progressive myocardial injury-preventing composition is at least about 68% expressed as ml/ 100 cc final volume of the composition. According to another embodiment, the minimum concentration of serum present in the progressive myocardial injury-preventing composition is at least about 69% expressed as ml/100 cc final volume of the composition. According to another embodiment, the minimum concentration of serum present in the composition is at least about 70% expressed as ml/100 cc final volume of the composition.
  • the serum is autologous. According to another embodiment, the serum is a synthetic or recombinant serum.
  • the maximum concentration of serum present in the progressive myocardial injury-preventing composition of the described invention is about 70% expressed as ml/100 cc final volume of the composition.
  • the maximum concentration of serum present in the progressive myocardial injury- preventing composition of the described invention is about 69% expressed as ml/ 100 cc final volume of the composition. According to another embodiment, the maximum concentration of serum present in the progressive myocardial injury-preventing composition of the described invention is about 68% expressed as ml/100 cc final volume of the composition. According to another embodiment, the maximum concentration of serum present in the progressive myocardial injury-preventing composition of the described invention is about 67% expressed as ml/100 cc final volume of the composition. According to another embodiment, the maximum
  • concentration of serum present in the progressive myocardial injury-preventing composition of the described invention is about 66% expressed as ml/ 100 cc final volume of the composition.
  • the maximum concentration of serum present in the progressive myocardial injury-preventing composition of the described invention is about 65% expressed as ml/100 cc final volume of the composition.
  • the maximum concentration of serum present in the progressive myocardial injury-preventing composition of the described invention is about 64% expressed as ml/100 cc final volume of the composition.
  • the maximum concentration of serum present in the progressive myocardial injury-preventing composition of the described invention is about 63% expressed as ml/100 cc final volume of the composition.
  • the maximum concentration of serum present in the progressive myocardial injury- preventing composition of the described invention is about 62% expressed as ml/100 cc final volume of the composition. According to another embodiment, the maximum concentration of serum present in the progressive myocardial injury-preventing composition of the described invention is about 61% expressed as ml/100 cc final volume of the composition. According to another embodiment, the maximum concentration of serum present in the progressive myocardial injury-preventing composition of the described invention is about 60% expressed as ml/100 cc final volume of the composition. According to another embodiment, the maximum
  • concentration of serum present in the progressive myocardial injury-preventing composition of the described invention is about 59% expressed as ml/100 cc final volume of the composition.
  • the maximum concentration of serum present in the progressive myocardial injury-preventing composition of the described invention is about 58% expressed as ml/100 cc final volume of the composition.
  • the maximum concentration of serum present in the progressive myocardial injury-preventing composition of the described invention is about 57% expressed as ml/100 cc final volume of the composition.
  • the maximum concentration of serum present in the progressive myocardial injury-preventing composition of the described invention is about 56% expressed as ml/100 cc final volume of the composition.
  • the maximum concentration of serum present in the progressive myocardial injury- preventing composition of the described invention is about 55% expressed as ml/ 100 cc final volume of the composition. According to another embodiment, the maximum concentration of serum present in the progressive myocardial injury-preventing composition of the described invention is about 54% expressed as ml/ 100 cc final volume of the composition. According to another embodiment, the maximum concentration of serum present in the progressive myocardial injury-preventing composition of the described invention is about 53% expressed as ml/100 cc final volume of the composition. According to another embodiment, the maximum
  • concentration of serum present in the progressive myocardial injury-preventing composition of the described invention is about 52% expressed as ml/100 cc final volume of the composition.
  • the maximum concentration of serum present in the progressive myocardial injury-preventing composition of the described invention is about 51% expressed as ml/ 100 cc final volume of the composition.
  • the maximum concentration of serum present in the progressive myocardial injury -preventing composition of the described invention is about 50% expressed as ml/100 cc final volume of the composition.
  • the maximum concentration of serum present in the progressive myocardial injury-preventing composition of the described invention is about 49% expressed as ml/100 cc final volume of the composition.
  • the maximum concentration of serum present in the progressive myocardial injury- preventing composition of the described invention is about 48% expressed as ml/100 cc final volume of the composition. According to another embodiment, the maximum concentration of serum present in the progressive myocardial injury-preventing composition of the described invention is about 47% expressed as ml/100 cc final volume of the composition. According to another embodiment, the maximum concentration of serum present in the progressive myocardial injury-preventing composition of the described invention is about 46% expressed as ml/ 100 cc final volume of the composition. According to another embodiment, the maximum
  • concentration of serum present in the progressive myocardial injury-preventing composition of the described invention is about 45% expressed as ml/100 cc final volume of the composition.
  • the maximum concentration of serum present in the progressive myocardial injury-preventing composition of the described invention is about 44% expressed as ml/100 cc final volume of the composition.
  • the maximum concentration of serum present in the progressive myocardial injury-preventing composition of the described invention is about 43% expressed as ml/ 100 cc final volume of the composition.
  • the maximum concentration of serum present in the progressive myocardial injury-preventing composition of the described invention is about 42% expressed as ml/100 cc final volume of the composition.
  • the maximum concentration of serum present in the progressive myocardial injury-preventing composition of the described invention is about 41% expressed as ml/100 cc final volume of the composition. According to another embodiment, the maximum concentration of serum present in the progressive myocardial injury-preventing composition of the described invention is about 40% expressed as ml/100 cc final volume of the composition.
  • the maximum concentration of serum present in the progressive myocardial injury -preventing composition of the described invention is about 39% expressed as ml/100 cc final volume of the composition.
  • the maximum concentration of serum present in the progressive myocardial injury- preventing composition of the described invention is about 38% expressed as ml/100 cc final volume of the composition. According to another embodiment, the maximum concentration of serum present in the progressive myocardial injury -preventing composition of the described invention is about 37% expressed as ml/100 cc final volume of the composition. According to another embodiment, the maximum concentration of serum present in the progressive myocardial injury-preventing composition of the described invention is about 36% expressed as ml/100 cc final volume of the composition. According to another embodiment, the maximum
  • concentration of serum present in the progressive myocardial injury-preventing composition of the described invention is about 35% expressed as ml/100 cc final volume of the composition.
  • the maximum concentration of serum present in the progressive myocardial injury-preventing composition of the described invention is about 34% expressed as ml/100 cc final volume of the composition.
  • the maximum concentration of serum present in the progressive myocardial injury-preventing composition of the described invention is about 33% expressed as ml/100 cc final volume of the composition.
  • the maximum concentration of serum present in the progressive myocardial injury-preventing composition of the described invention is about 32% expressed as ml/ 100 cc final volume of the composition.
  • the maximum concentration of serum present in the progressive myocardial injury- preventing composition of the described invention is about 31% expressed as ml/100 cc final volume of the composition. According to another embodiment, the maximum concentration of serum present in the progressive myocardial injury-preventing composition of the described invention is about 30% expressed as ml/100 cc final volume of the composition. According to another embodiment, the maximum concentration of serum present in the progressive myocardial injury-preventing composition of the described invention is about 29% expressed as ml/100 cc final volume of the composition. According to another embodiment, the maximum
  • concentration of serum present in the progressive myocardial injury-preventing composition of the described invention is about 28% expressed as ml/100 cc final volume of the composition.
  • the maximum concentration of serum present in the progressive myocardial injury-preventing composition of the described invention is about 27% expressed as ml/100 cc final volume of the composition.
  • the maximum concentration of serum present in the progressive myocardial injury-preventing composition of the described invention is about 26% expressed as ml/ 100 cc final volume of the composition.
  • the maximum concentration of serum present in the progressive myocardial injury-preventing composition of the described invention is about 25% expressed as ml/ 100 cc final volume of the composition.
  • the maximum concentration of serum present in the progressive myocardial injury- preventing composition of the described invention is about 24% expressed as ml/1 0 cc final volume of the composition. According to another embodiment, the maximum concentration of serum present in the progressive myocardial injury-preventing composition of the described invention is about 23% expressed as ml/100 cc final volume of the composition. According to another embodiment, the maximum concentration of serum present in the progressive myocardial injury-preventing composition of the described invention is about 22% expressed as ml/100 cc final volume of the composition. According to another embodiment, the maximum
  • concentration of serum present in the progressive myocardial injury-preventing composition of the described invention is about 21% expressed as ml/100 cc final volume of the composition.
  • the maximum concentration of serum present in the progressive myocardial injury-preventing composition of the described invention is about 20% expressed as ml/100 cc final volume of the composition. According to another embodiment, the maximum concentration of serum present in the progressive myocardial injury-preventing composition of the described invention is about 15% expressed as ml/ 100 cc final volume of the composition. According to another embodiment, the maximum concentration of serum present in the progressive myocardial injury-preventing composition of the described invention is about 10% expressed as ml/ 100 cc final volume of the composition.
  • the progressive myocardial injury-preventing composition may be formulated with an excipient, carrier or vehicle including, but not limited to, a solvent.
  • excipient refers to carrier materials suitable for formulation and administration of the chemotactic hematopoietic stem cell product described herein.
  • Carriers and vehicles useful herein include any such materials know in the art which are nontoxic and do not interact with other components. As used herein the phrase
  • pharmaceutically acceptable carrier refers to any substantially non-toxic carrier useable for formulation and administration of the composition of the described invention in which the chemotactic hematopoietic stem cell product of the described invention will remain stable and bioavailable.
  • the pharmaceutically acceptable carrier must be of sufficiently high purity and of sufficiently low toxicity to render it suitable for administration to the mammal being treated. It further should maintain the stability and bioavailability of an active agent.
  • the pharmaceutically acceptable carrier can be liquid or solid and is selected, with the planned manner of
  • the pharmaceutically acceptable carrier may be, without limitation, a binding agent (e.g., pregelatinized maize starch, polyvinylpyrrolidone or hydroxypropyl methylcellulose, etc.), a filler (e.g., lactose and other sugars, microcrystalline cellulose, pectin, gelatin, calcium sulfate, ethyl cellulose, polyacrylates, calcium hydrogen phosphate, etc.), a lubricant (e.g., magnesium stearate, talc, silica, colloidal silicon dioxide, stearic acid, metallic stearates, hydrogenated vegetable oils, corn starch, polyethylene glycols, sodium benzoate, sodium acetate, etc.), a disintegrant (e.g., starch, sodium starch glycolate, etc.), or a wetting agent (e.g., sodium lauentaric acid, etc.), a lubricant (e.g., magnesium stearate, talc, silic
  • compositions of the described invention include, but are not limited to, water, salt solutions, alcohols, polyethylene glycols, gelatins, amyloses, magnesium stearates, talcs, silicic acids, viscous paraffins, hydroxymethylcelluloses,
  • buffer refers to a solution or liquid whose chemical makeup neutralizes acids or bases without a significant change in pH.
  • buffers envisioned by the described invention include, but are not limited to, Dulbecco's phosphate buffered saline (PBS), Ringer's solution, 5% dextrose in water (D5W), and
  • compositions of the described invention that are for parenteral administration may include pharmaceutically acceptable carriers such as sterile aqueous solutions, non-aqueous solutions in common solvents such as alcohols, or solutions in a liquid oil base.
  • the carrier of the progressive myocardial injury-preventing composition of the described invention may include a release agent such as a sustained release or delayed release carrier.
  • the carrier may be any material capable of sustained or delayed release of the active to provide a more efficient administration, e.g., resulting in less frequent and/or decreased dosage of the composition, improve ease of handling, and extend or delay effects on diseases, disorders, conditions, syndromes, and the like, being treated, prevented or promoted.
  • Non-limiting examples of such carriers include liposomes, microsponges, microspheres, or microcapsules of natural and synthetic polymers and the like.
  • Liposomes may be formed from a variety of phospholipids such as cholesterol, stearylamines or phosphatidylcholines.
  • the progressive myocardial injury-preventing compositions of the described invention may be administered parenterally in the form of a sterile injectable aqueous or oleaginous suspension.
  • parenteral or “parenterally” as used herein refers to introduction into the body by way of an injection (i.e., administration by injection), including, but not limited to, infusion techniques.
  • the progressive myocardial injury-preventing composition of the described invention comprising a chemotactic
  • hematopoietic stem cell product is delivered to the subject by means of a balloon catheter adapted for delivery of the fluid compositions (i.e., compositions capable of flow) into a selected anatomical structure.
  • a balloon catheter adapted for delivery of the fluid compositions (i.e., compositions capable of flow) into a selected anatomical structure.
  • the sterile progressive myocardial injury-preventing composition of the described invention may be a sterile solution or suspension in a nontoxic parenterally acceptable diluent or solvent.
  • a solution generally is considered as a homogeneous mixture of two or more substances; it is frequently, though not necessarily, a liquid.
  • the molecules of the solute (or dissolved substance) are uniformly distributed among those of the solvent.
  • a suspension is a dispersion (mixture) in which a finely-divided species is combined with another species, with the former being so finely divided and mixed that it does not rapidly settle out. In everyday life, the most common suspensions are those of solids in liquid water.
  • acceptable vehicles and solvents that may be employed are water, Ringer's solution, and isotonic sodium chloride (saline) solution. In some embodiments, hypertonic solutions are employed. In addition, sterile, fixed oils conventionally are employed as a solvent or suspending medium.
  • suitable vehicles consist of solutions, e.g., oily or aqueous solutions, as well as suspensions, emulsions, or implants.
  • Aqueous suspensions may contain substances, which increase the viscosity of the suspension and include, for example, sodium carboxymethyl cellulose, sorbitol and/or dextran.
  • Additional progressive myocardial injury-preventing compositions of the described invention readily may be prepared using technology, which is known in the art, such as described in Remington's Pharmaceutical Sciences, 18th or 19th editions, published by the Mack Publishing Company of Easton, Pa., which is incorporated herein by reference.
  • the terms “therapeutically effective”, “myocardial injury preventing amount”, “vascular insufficiency repairing amount”, “adverse consequence preventing amount”, adverse consequence-reversing amount”, or “pharmaceutically effective amount” refer to the amount of the compositions of the invention that result in a therapeutic or beneficial effect following its administration to a subject.
  • the vascular insufficiency repairing, myocardial injury repairing, therapeutic, adverse consequence reversing or pharmaceutical effect may be curing, minimizing, preventing or ameliorating a disease or disorder, or may have any other vascular insufficiency-repairing, myocardial injury-repairing, adverse consequence reversing, or pharmaceutical beneficial effect.
  • the concentration of the substance is selected so as to exert its vascular insufficiency-repairing, myocardial injury-repairing, adverse consequence reversing, therapeutic, or pharmaceutical effect, but low enough to avoid significant side effects within the scope and sound judgment of the physician.
  • the effective amount of the composition may vary with the age and physical condition of the biological subject being treated, the severity of the condition, the duration of the treatment, the nature of concurrent therapy, the timing of the infusion, the specific compound, composition or other active ingredient employed, the particular carrier utilized, and like factors.
  • a skilled artisan may determine a pharmaceutically effective amount of the inventive compositions by determining the dose in a dosage unit (meaning unit of use) that elicits a given intensity of effect, hereinafter referred to as the "unit dose.”
  • dose-intensity relationship refers to the manner in which the intensity of effect in an individual recipient relates to dose.
  • the intensity of effect generally designated is 50% of maximum intensity.
  • the corresponding dose is called the 50% effective dose or individual ED50.
  • the use of the term “individual” distinguishes the ED50 based on the intensity of effect as used herein from the median effective dose, also abbreviated ED50, determined from frequency of response data in a population.
  • Effectiveness refers to the property of the compositions of the described invention to achieve the desired response, and “maximum efficacy” refers to the maximum achievable effect.
  • the amount of the chemotactic hematopoietic stem cell product in the pharmaceutical compositions of the described invention that will be effective in the treatment of a particular disorder or condition will depend on the nature of the disorder or condition, and may be determined by standard clinical techniques. (See, for example, Goodman and Gilman's THE PHARMACOLOGICAL BASIS OF THERAPEUTICS, Joel G. Harman, Lee E. Limbird, Eds.; McGraw Hill, New York, 2001 ; THE PHYSICIAN'S DESK REFERENCE, Medical Economics Company, Inc., Oradell, N.
  • the pharmaceutical compositions according to the described invention contain a minimum number of CD34+ hematopoietic stem cells having a subpopulation of at least 0.5 x 10 6 CD34+ cells expressing CXCR-4 and having CXCR-4 mediated chemotactic activity per dosage unit for parenteral administration at the physician's discretion.
  • subjects can benefit from multiple administrations of the pharmaceutical compositions according to the described invention comprising a minimum number of CD34+ hematopoietic stem cells having a subpopulation of at least 0.5 x 10 6 CD34+ cells expressing CXCR-4 and having CXCR-4 mediated chemotactic activity.
  • the progressive myocardial injury- preventing pharmaceutical compositions of the described invention may further include one or more compatible active ingredients, which are aimed at providing the progressive myocardial injury-preventing composition with another pharmaceutical effect in addition to that provided by the sterile chemotactic hematopoietic stem cell product of the described invention.
  • “Compatible” as used herein means that the active ingredients of such a composition are capable of being combined with each other in such a manner so that there is no interaction that would substantially reduce the efficacy of each active ingredient or the composition under ordinary use conditions.
  • the combination therapy comprises administering to a subject in need thereof a progressive myocardial injury-preventing pharmaceutical composition
  • a progressive myocardial injury-preventing pharmaceutical composition comprising a sterile chemotactic hematopoietic stem cell product of the described invention combined with an agent selected from the group consisting of an angiotensin converting enzyme (ACE) inhibitor, a beta-blocker, a diuretic, an anti-arrhythmic agent, a hematopoietic stem cell mobilizing agent, a tyrosine kinase receptor agonist, an anti-anginal agent, a vasoactive agent or inotrope, an anticoagulant agent, a fibrinolytic agent, and a hypercholesterolemic agent.
  • ACE angiotensin converting enzyme
  • beta-blocker a diuretic
  • an anti-arrhythmic agent a hematopoietic stem cell mobilizing agent
  • a tyrosine kinase receptor agonist an anti-anginal
  • the tyrosine kinase receptor agonist is neuregulin 1.
  • the neuregulin 1 is a recombinant protein.
  • the hematopoietic stem cell mobilizing agent is a colony stimulating factor.
  • the hematopoietic stem cell mobilizing agent comprises G-CSF, GM-CSF, or a pharmaceutically acceptable analog or derivative thereof.
  • the hematopoietic stem cell mobilizing agent is a recombinant analog or derivative of a colony stimulating factor.
  • the hematopoietic stem cell mobilizing agent is filgrastim.
  • the composition of the described invention further comprises about 0.5% to about 5% albumin.
  • the minimum amount of albumin is about 0.5% expressed as ml/100 cc volume of the composition.
  • the minimum amount of albumin is about 0.75% expressed as ml/100 cc volume of the composition. In some embodiments, the minimum amount of albumin is about 1.0% expressed as ml/ 100 cc volume of the composition. In some embodiments, the minimum amount of albumin is about 1.25% expressed as ml/100 cc volume of the composition. In some embodiments, the minimum amount of albumin is about 1.5% expressed as ml/1 0 cc volume of the composition. In some embodiments, the minimum amount of albumin is about 1.75% expressed as ml/ 100 cc volume of the composition. In some embodiments, the minimum amount of albumin is about 2.0% expressed as ml/100 cc volume of the composition.
  • the minimum amount of albumin is about 2.5% expressed as ml/100 cc volume of the composition. In some embodiments, the minimum amount of albumin is about 2.75% expressed as ml/ 100 cc volume of the composition. In some embodiments, the minimum amount of albumin is about 3.0% expressed as ml/100 cc volume of the composition. In some embodiments, the minimum amount of albumin is about 3.5% expressed as ml/100 cc volume of the composition. In some embodiments, the minimum amount of albumin is about 4.0% expressed as ml/100 cc volume of the composition. In some embodiments, the minimum amount of albumin is about 4.5% expressed as ml/100 cc volume of the composition. In some embodiments, the minimum amount of albumin is about 5.0% expressed as ml/100 cc volume of the composition.
  • the maximum amount of albumin in the compositions of the described invention is about 5.0% expressed as ml/100 cc volume of the composition. In some embodiments, the maximum amount of albumin in the compositions of the described invention is about 4.75% expressed as ml/100 cc volume of the composition. In some embodiments, the maximum amount of albumin in the compositions of the described invention is about 4.5% expressed as ml/100 cc volume of the composition. In some embodiments, the maximum amount of albumin in the compositions of the described invention is about 4.0% expressed as ml/ 100 cc volume of the composition.
  • the maximum amount of albumin in the compositions of the described invention is about 4.25% expressed as ml/100 cc volume of the composition. In some embodiments, the maximum amount of albumin in the compositions of the described invention is about 4.0% expressed as ml/100 cc volume of the composition. In some embodiments, the maximum amount of albumin in the compositions of the described invention is about 3.75% expressed as ml/100 cc volume of the composition. In some embodiments, the maximum amount of albumin in the compositions of the described invention is about 3.5% expressed as ml/100 cc volume of the composition. In some
  • the maximum amount of albumin in the compositions of the described invention is about 3.25% expressed as ml/100 cc volume of the composition. In some embodiments, the maximum amount of albumin in the compositions of the described invention is about 3.0% expressed as ml/ 100 cc volume of the composition. In some embodiments, the maximum amount of albumin in the compositions of the described invention is about 2.75% expressed as ml/100 cc volume of the composition. In some embodiments, the maximum amount of albumin in the compositions of the described invention is about 2.0% expressed as ml/100 cc volume of the composition. In some embodiments, the maximum amount of albumin in the compositions of the described invention is about 1.75% expressed as ml/ 100 cc volume of the composition. In some embodiments, the maximum amount of albumin in the compositions of the described invention is about 1.5% expressed as ml/100 cc volume of the composition. In some embodiments,
  • the maximum amount of albumin in the compositions of the described invention is about 1.25% expressed as ml/100 cc volume of the composition. In some embodiments, the maximum amount of albumin in the compositions of the described invention is about 1% expressed as ml/ 100 cc volume of the composition. In some embodiments, the albumin is human albumin. In some embodiments the albumin is recombinant human albumin.
  • the described invention provides a method of preparing a progressive myocardial injury-preventing pharmaceutical composition comprising a sterile chemotactic hematopoietic stem cell product for treating a subject in need thereof.
  • the method comprises the steps of
  • step (2) optionally freezing at least one aliquot of the nonexpanded, isolated population of autologous mononuclear cells of step (1) at -86°C and cryostoring the at least one aliquot in the vapor phase of a liquid nitrogen freezer; and thawing the at least one aliquot of step (2) when needed; [000175] (3) sterilely purifying the CD34+ cells from the sterile nonexpanded, isolated population of autologous mononuclear cells comprising CD34+ cells of (1) or (2) so as to yield a chemotactic hematopoietic stem cell product comprising the nonexpanded, isolated population of autologous mononuclear cells enriched for CD34+ cells, which further contain a subpopulation of potent CD34+ cells that express CXCR-4 and that have CXCR-4-mediated chemotactic activity;
  • the nonexpanded, isolated population of autologous mononuclear cells can be acquired from the subject at any time.
  • the nonexpanded, isolated population of autologous mononuclear cells is acquired early after an AMI.
  • the nonexpanded, isolated population of autologous mononuclear cells is acquired 5 days, 6 days, 7 days, 8 days, 9 days, 10 days, 1 1 days, 12 days, 13 days, 14 days or more after the occurrence of an AMI.
  • the nonexpanded, isolated population of autologous mononuclear cells is acquired late after the occurrence of an AMI.
  • the nonexpanded, isolated population of autologous mononuclear cells is acquired at least 15 days, at least 16 days, at least 17 days, at least 18 days, at least 19 days, at least 20 days, at least 21 days, at least 22 days, at least 23 days, at least 24 days, at least 25 days, at least 26 days, at least 27 days, at least 28 days, at least 29 days, at least 30 days, at least 60 days, at least 90 days, at least 120 days, at least 150 days, at least 180 days or more after the occurrence of the AMI.
  • the nonexpanded, isolated population of autologous mononuclear cells is acquired at least 1 month, at least 2 months, at least 3 months, at least 4 months, at least 5 months, at least 6 months, at least 7 months, at least 8 months, at least 9 months, at least 10 months, at least 1 1 months, at least 12 months, at least 16 months, at least 24 months, at least 30 months, at least 36 months, at least 42 months, at least 48 months, at least 54 months, at least 60 months, at least 66 months, at least 72 months, at least 78 months, at least 84 months, at least 90 months, at least 96 months, at least 102 months, at least 108 months, at least 1 14 months, at least 120 months, at least 126 months, at least 132 months, at least 138 months, at least 144 months, at least 150 months, at least 156 months, at least 162 months, at least 168 months, at least 174 months, at least 180 months, at least 186 months, at least 192 months,
  • the nonexpanded, isolated population of autologous mononuclear cells is acquired at least at least 3 years, 4 years, 5 years, 6 years, 7 years, 8 years, 9 years, 10 years, 1 1 years, 12 years, 13 years, 14 years, 15 years, 16 years 17 years, 18 years, 19 years, 20 years, 21 years, 22 years, 23 years, 24 years, 25 years, 26 years, 27 years, 28 years, 29 years, 30 years, 31 years, 32 years, 33 years, 34 years, 35 years, 36 years 37 years, 38 years, 39 years, 40 years or more after occurrence of an AMI.
  • step (3) is initiated within about 12 hours to about 24 hours of completion of acquiring step (1).
  • releasing step (6) proceeds only if the sterile formulated cell product is to be infused into the subject within about 48 hours to about 72 hours of completion of acquiring step (1).
  • step (3) is initiated within about 12 hours to about 24 hours of completion of acquiring step (1), and releasing step (6) proceeds only if the sterile formulated cell product is to be infused into the subject within about 48 hours to about 72 hours of completion of acquiring step (l).
  • releasing step (6) proceeds only if the sterile formulated cell product is to be infused into the subject within about 48 hours to about 72 hours of thawing of the at least one frozen aliquot of optional step (2).
  • step (3) is initiated within about 12 hours to about 24 hours of thawing of the at least one frozen aliquot of optional step (2), and releasing step (6) proceeds only if the sterile formulated cell product is to be infused into the subject within about 48 hours to about 72 hours of thawing of the at least one frozen aliquot of optional step (2).
  • a frozen aliquot of step (2) is thawed at least 10 days, at least 1 1 days, at least 12 days, at least 13 days, at least 14 days, at least 15 days, at least 16 days, at least 17 days, at least 18 days, at least 19 days, at least 20 days, at least 21 days, at least 22 days, at least 23 days, at least 24 days, at least 25 days, at least 26 days, at least 27 days, at least 28 days, at least 29 days, at least 30 days, at least 60 days, at least 90 days, at least 120 days, at least 150 days, or at least 180 days, from the date the nonexpanded, isolated population of autologous mononuclear cells is acquired from the subject in step (1 ).
  • the frozen aliquot of step (4) is thawed at least 1 month, at least 2 months, at least 3 months, at least 4 months, at least 5 months, at least 6 months, at least 7 months, at least 8 months, at least 9 months, at least 10 months, at least 1 1 months, at least 12 months, at least 16 months, at least 24 months, at least 30 months, at least 36 months, at least 42 months, at least 48 months, at least 54 months, at least 60 months, at least 66 months, at least 72 months, at least 78 months, at least 84 months, at least 90 months, at least 96 months, at least 102 months, at least 108 months, at least 1 14 months, at least 120 months, at least 126 months, at least 132 months, at least 138 months, at least 144 months, at least 150 months, at least 156 months, at least 162 months, at least 168 months, at least 174 months, at least 180 months, at least 186 months, at least 192 months, at least 198 months,
  • the frozen aliquot of step (2) is thawed at least 3 years, 4 years, 5 years, 6 years, 7 years, 8 years, 9 years, 10 years, 1 1 years, 12 years, 13 years, 14 years, 15 years, 16 years 17 years, 18 years, 19 years, 20 years, 21 years, 22 years, 23 years, 24 years, 25 years, 26 years, 27 years, 28 years, 29 years, 30 years, 31 years, 32 years, 33 years, 34 years, 35 years, 36 years 37 years, 38 years, 39 years, 40 years or more from the date the nonexpanded, isolated population of autologous mononuclear cells is acquired from the subject in step (1).
  • the chemotactic hematopoietic stem cell product produced from the frozen aliquot is further characterized as having the following properties for at least 24 hours following thawing when tested in vitro after passage through a catheter: (1) retains at least 10%, at least 20%, at least 30%, at least 40%, at least 50%, at least 60%, at least 70,%, at least 80%, at least 90%, or 100% of the CXCR-4-mediated activity of the of the subpopulation of potent CD34+/CXCR-4+ cells that have CXCR-4-mediated chemotactic activity; (2) at least 70% of the cells are CD34+ cells; (3) is at least 70% viable; and (4) is able to form
  • step (5) i.e., the step of assessing sterility of the pharmaceutical composition, further comprises the steps of (i) centrifuging the sterile chemotactic hematopoietic stem cell product comprising potent CD34+/CXCR-4+ cells to form a cell pellet and a supernatant, the cell pellet comprising the potent CD34+/CXCR-4+ cells; (ii) sterilely removing the supernatant without disturbing the cell pellet; and (iii) analyzing whether the supernatant is contaminated by a microbe thereby determining the sterility of the cell pellet.
  • the chemotactic cell acquisition process is a mini-bone marrow harvest technique used to acquire the nonexpanded isolated population of autologous mononuclear cells comprising potent CD34+/CXCR-4+ cells from the bone marrow of the subject under sterile conditions.
  • step (1 ) of the method further comprises the steps: (i) preloading harvesting syringes with heparin prior to harvesting bone marrow from a subject; (ii) aspirating the bone marrow from a left posterior iliac crest and a right posterior iliac crest of the subject using the harvesting syringes and a mini-bone marrow harvest technique to form harvested bone marrow; and (iii) infusing the harvested bone marrow into a collecting bag.
  • the harvesting syringes in step (i) and the collecting bag in step (iii) contain a preservative free heparinized solution comprising 0.9% normal saline.
  • the final concentration of heparin in the heparinized saline solution is about 20 units per ml to about 25 units per ml.
  • the harvested bone marrow is transported to a processing facility different from the facility from which the bone marrow was harvested.
  • the method for transporting the harvested bone marrow to the processing facility comprises the steps (a) placing the harvested bone marrow in a collection bag; (b) placing the collection bag in a secondary bag; (c) placing the secondary bag containing the collection bag in a shipping container comprising an interior compartment containing frozen wet ice and at least one sheet of bubble wrap; (d) affixing a temperature tag monitor to the interior compartment of the shipping container; (e) sealing the shipping container; and (f) shipping the shipping container to the processing facility.
  • the described invention provides a method for treating or preventing progressive myocardial injury due to a vascular insufficiency that occurs early or late.
  • the method comprising the steps: (a) evaluating whether the subject qualifies for therapy with the pharmaceutical composition of the described invention; (b) preparing the pharmaceutical composition comprising a chemotactic hematopoietic stem cell product; (c) loading the pharmaceutical composition into a chemotactic hematopoietic stem cell product delivery apparatus; (d) delivering a therapeutically effective amount of the pharmaceutical composition to the subject; and (e) monitoring the subject's cardiac function.
  • the therapeutically effective amount of the pharmaceutical composition is delivered to the subject intravascularly (meaning inside a blood vessel).
  • the vascular insufficiency that occurs early or late is an ischemia.
  • the ischemia is a myocardial ischemia.
  • the ischemia is a transient myocardial ischemia.
  • the ischemia is a chronic myocardial ischemia.
  • the ischemia is a peri-infarct border zone ischemia.
  • the vascular insufficiency that occurs early or late is a vascular insufficiency after an acute myocardial infarction resulting from underlying disease.
  • the progressive myocardial injury is heart failure.
  • the subject in need thereof is a revascularized myocardial infarction patient.
  • revascularized refers to the successful placement of a stent.
  • Clinical evaluations for example, of coronary insufficiency using non-laboratory tests, cardiac catheterization, measurement of inflammatory cytokines, and measurement of cardiac biomarkers may be used to determine the appropriate time to administer the pharmaceutical compositions in accordance with the methods of the described invention.
  • detection of peak inflammatory cytokine cascade production enables the administration to be tailored to the therapeutic window most crucial for the particular subject.
  • peak inflammatory cytokine cascade production is determined by measuring the levels of the appropriate cytokine(s) in the plasma and or urine.
  • the level(s) of the appropriate cytokine(s) is/are measured immunochemical ly, for example, by a sandwich enzyme
  • immunoassay by enzyme-linked immunosorbent assays (ELISA) or by multiplex bead kits.
  • ELISA enzyme-linked immunosorbent assays
  • the composition is administered at a first infusion date.
  • the first infusion date is a time after an
  • the first infusion date at which the composition is administered to a revascularized myocardial infarction patient is about 5 days to about 14 days post-infarction.
  • the minimum first infusion date in which to administer the composition to a revascularized myocardial infarction patient is about 5, 6, 7 , 8, 9, 10, 1 1, 12, 13, or 14 days post-infarction.
  • the maximum first infusion date in which to administer the composition to a revascularized myocardial infarction patient is about 14, 12, 1 1, 10, 9, 8, 7, 6, or 5 days postinfarction.
  • the composition is administered multiple times, or as needed in the judgment of the treating physician.
  • the composition is administered at the first infusion date, and optionally at a second infusion date, a third infusion date, a fourth infusion date, a fifth infusion date, a sixth infusion date, a seventh infusion date, an eighth infusion date, a ninth infusion date, a tenth infusion date, and so on.
  • the first infusion date at which the composition is administered to a revascularized subject suffering from a vascular insufficiency that occurs early or late after a myocardial infarction resulting from underlying disease comprises a specific time interval defined by a first time and a second time, wherein the first time is after peak inflammatory cytokine cascade production in the infarcted area and the second time is before myocardial scar formation in the infarcted area.
  • the first infusion date is at least about one day, at least about two days, at least about three days, at least about four days, at least about five days, at least about six days, at least about 7 days, at least about 8 days, at least about 9 days, at least about 10 days, at least about 1 1 days, at least about 12 days, at least about 13 days, at least about 14 days, at least about 15 days, at least about 16 days, at least about 17 days, at least about 18 days, at least about 19 days, at least about 20 days, at least about 21 days, at least about 22 days, at least about 23 days, at least about 24 days, at least about 25 days, at least about 26 days, at least about 27 days, at least about 28 days, at least about 29 days, at least about 30 days or more after occurrence of anAMl.
  • the second infusion date is at least about 1 month, at least about 2 months, at least about 3 months, at least about 4 months, at least about 5 months, at least about 6 months, at least about 7 months, at least about 8 months, at least about 9 months, at least about 10 months, at least about 1 1 months, at least about 12 months, at least about 13 months, at least about 14 months, at least about 15 months, at least about 16 months, at least about 17 months, at least about 18 months, at least about 19 months, at least about 20 months, at least about 21 months, at least about 22 months, at least about 23 months, at least about 24 months, at least about 30 months, at least about 36 months, at least about 42 months, at least about 48 months, at least about 54 months, at least about 60 months, at least about 66 months, at least about 72 months, at least about 78 months, at least about 84 months, at least about 90 months, at least about 96 months, at least about 102 months, at least about 108 months, at least about 1 14 months, at
  • the first infusion date is at least 3 years, 4 years, 5 years, 6 years, 7 years, 8 years, 9 years, 10 years, 1 1 years, 12 years, 13 years, 14 years, 15 years, 16 years 17 years, 18 years, 19 years, 20 years, 21 years, 22 years, 23 years, 24 years, 25 years, 26 years, 27 years, 28 years, 29 years, 30 years, 31 years, 32 years, 33 years, 34 years, 35 years, 36 years 37 years, 38 years, 39 years, 40 years or more after occurrence of an AMI.
  • the third infusion date is at least about one day, at least about two days, at least about three days, at least about four days, at least about five days, at least about six days, at least about 7 days, at least about 8 days, at least about 9 days, at least about 10 days, at least about 1 1 days, at least about 12 days, at least about 13 days, at least about 14 days, at least about 15 days, at least about 16 days, at least about 17 days, at least about 18 days, at least about 19 days, at least about 20 days, at least about 21 days, at least about 22 days, at least about 23 days, at least about 24 days, at least about 25 days, at least about 26 days, at least about 27 days, at least about 28 days, at least about 29 days, at least about 30 days or more after occurrence of an AMI.
  • the third infusion date is at least about 1 month, at least about 2 months, at least about 3 months, at least about 4 months, at least about 5 months, at least about 6 months, at least about 7 months, at least about 8 months, at least about 9 months, at least about 10 months, at least about 11 months, at least about 12 months, at least about 13 months, at least about 14 months, at least about 15 months, at least about 16 months, at least about 17 months, at least about 18 months, at least about 19 months, at least about 20 months, at least about 21 months, at least about 22 months, at least about 23 months, at least about 24 months, at least about 30 months, at least about 36 months, at least about 42 months, at least about 48 months, at least about 54 months, at least about 60 months, at least about 66 months, at least about 72 months, at least about 78 months, at least about 84 months, at least about 90 months, at least about 96 months, at least about 102 months, at least about 108 months, at least about 1 14 months, at least
  • the third infusion date is at least 3 years, 4 years, 5 years, 6 years, 7 years, 8 years, 9 years, 10 years, 1 1 years, 12 years, 13 years, 14 years, 15 years, 16 years 17 years, 18 years, 19 years, 20 years, 21 years, 22 years, 23 years, 24 years, 25 years, 26 years, 27 years, 28 years, 29 years, 30 years, 31 years, 32 years, 33 years, 34 years, 35 years, 36 years 37 years, 38 years, 39 years, 40 years or more after occurrence of an AMI.
  • the fourth infusion date is at least about one day, at least about two days, at least about three days, at least about four days, at least about five days, at least about six days, at least about 7 days, at least about 8 days, at least about 9 days, at least about 10 days, at least about 1 1 days, at least about 12 days, at least about 13 days, at least about 14 days, at least about 15 days, at least about 16 days, at least about 17 days, at least about 18 days, at least about 19 days, at least about 20 days, at least about 21 days, at least about 22 days, at least about 23 days, at least about 24 days, at least about 25 days, at least about 26 days, at least about 27 days, at least about 28 days, at least about 29 days, at least about 30 days or more after occurrence of an AMI.
  • the fourth infusion date is at least about 1 month, at least about 2 months, at least about 3 months, at least about 4 months, at least about 5 months, at least about 6 months, at least about 7 months, at least about 8 months, at least about 9 months, at least about 10 months, at least about 1 1 months, at least about 12 months, at least about 13 months, at least about 14 months, at least about 15 months, at least about 16 months, at least about 17 months, at least about 18 months, at least about 19 months, at least about 20 months, at least about 21 months, at least about 22 months, at least about 23 months, at least about 24 months, at least about 30 months, at least about 36 months, at least about 42 months, at least about 48 months, at least about 54 months, at least about 60 months, at least about 66 months, at least about 72 months, at least about 78 months, at least about 84 months, at least about 90 months, at least about 96 months, at least about 102 months, at least about 108 months, at least about 1 14 months, at
  • the third infusion date is at least 3 years, 4 years, 5 years, 6 years, 7 years, 8 years, 9 years, 10 years, 1 1 years, 12 years, 13 years, 14 years, 15 years, 16 years 17 years, 18 years, 19 years, 20 years, 21 years, 22 years, 23 years, 24 years, 25 years, 26 years, 27 years, 28 years, 29 years, 30 years, 31 years, 32 years, 33 years, 34 years, 35 years, 36 years 37 years, 38 years, 39 years, 40 years or more after occurrence of an AMI..
  • the fifth infusion date is at least about one day, at least about two days, at least about three days, at least about four days, at least about five days, at least about six days, at least about 7 days, at least about 8 days, at least about 9 days, at least about 10 days, at least about 1 1 days, at least about 12 days, at least about 13 days, at least about 14 days, at least about 15 days, at least about 16 days, at least about 17 days, at least about 18 days, at least about 19 days, at least about 20 days, at least about 21 days, at least about 22 days, at least about 23 days, at least about 24 days, at least about 25 days, at least about 26 days, at least about 27 days, at least about 28 days, at least about 29 days, at least about 30 days or more after occurrence of an AMI.
  • the fifth infusion date is at least about 1 month, at least about 2 months, at least about 3 months, at least about 4 months, at least about 5 months, at least about 6 months, at least about 7 months, at least about 8 months, at least about 9 months, at least about 10 months, at least about 1 1 months, at least about 12 months, at least about 13 months, at least about 14 months, at least about 15 months, at least about 16 months, at least about 17 months, at least about 18 months, at least about 19 months, at least about 20 months, at least about 21 months, at least about 22 months, at least about 23 months, at least about 24 months, at least about 30 months, at least about 36 months, at least about 42 months, at least about 48 months, at least about 54 months, at least about 60 months, at least about 66 months, at least about 72 months, at least about 78 months, at least about 84 months, at least about 90 months, at least about 96 months, at least about 102 months, at least about 108 months, at least about 1 14 months, at
  • the first infusion date is at least 3 years, 4 years, 5 years, 6 years, 7 years, 8 years, 9 years, 10 years, 1 1 years, 12 years, 13 years, 14 years, 15 years, 16 years 7 years, 18 years, 19 years, 20 years, 21 years, 22 years, 23 years, 24 years, 25 years, 26 years, 27 years, 28 years, 29 years, 30 years, 31 years, 32 years, 33 years, 34 years, 35 years, 36 years 37 years, 38 years, 39 years, 40 years or more after occurrence of an AMI.
  • the sixth infusion date is at least about one day, at least about two days, at least about three days, at least about four days, at least about five days, at least about six days, at least about 7 days, at least about 8 days, at least about 9 days, at least about 10 days, at least about 1 1 days, at least about 12 days, at least about 13 days, at least about
  • the sixth infusion date is at least about 1 month, at least about 2 months, at least about 3 months, at least about 4 months, at least about 5 months, at least about 6 months, at least about 7 months, at least about 8 months, at least about 9 months, at least about 10 months, at least about 1 1 months, at least about 12 months, at least about 13 months, at least about 14 months, at least about 15 months, at least about 16 months, at least about 17 months, at least about 18 months, at least about 19 months, at least about 20 months, at least about 21 months, at least about 22 months, at least about 23 months, at least about 24 months, at least about 30 months, at least about 36 months, at least about 42 months, at least about 48 months, at least about 54 months, at least about 60 months, at least about 66 months, at least about 72 months, at least about 78 months, at least about 84 months, at least about 90 months, at least about 96 months, at least about 102 months, at least about 108 months, at least about 1 14 months, at
  • the third infusion date is at least 3 years, 4 years, 5 years, 6 years, 7 years, 8 years, 9 years, 10 years, 1 1 years, 12 years, 13 years, 14 years, 15 years, 16 years 17 years, 18 years, 19 years, 20 years, 21 years, 22 years, 23 years 24 years, 25 years, 26 years, 27 years, 28 years, 29 years, 30 years, 31 years, 32 years, 33 years, 34 years, 35 years, 36 years 37 years, 38 years, 39 years, 40 years or more after occurrence of an AMI.
  • the seventh infusion date is at least about one day, at least about two days, at least about three days, at least about four days, at least about five days, at least about six days, at least about 7 days, at least about 8 days, at least about 9 days, at least about 10 days, at least about 1 1 days, at least about 12 days, at least about 13 days, at least about 14 days, at least about 15 days, at least about 16 days, at least about 17 days, at least about 18 days, at least about 19 days, at least about 20 days, at least about 21 days, at least about 22 days, at least about 23 days, at least about 24 days, at least about 25 days, at least about 26 days, at least about 27 days, at least about 28 days, at least about 29 days, at least about 30 days or more after occurrence of an AMI.
  • the seventh infusion date is at least about 1 month, at least about 2 months, at least about 3 months, at least about 4 months, at least about 5 months, at least about 6 months, at least about 7 months, at least about 8 months, at least about 9 months, at least about 10 months, at least about 1 1 months, at least about 12 months, at least about 13 months, at least about 14 months, at least about 15 months, at least about 16 months, at least about 17 months, at least about 18 months, at least about 19 months, at least about 20 months, at least about 21 months, at least about 22 months, at least about 23 months, at least about 24 months, at least about 30 months, at least about 36 months, at least about 42 months, at least about 48 months, at least about 54 months, at least about 60 months, at least about 66 months, at least about 72 months, at least about 78 months, at least about 84 months, at least about 90 months, at least about 96 months, at least about 102 months, at least about 108 months, at least about 1 14 months, at
  • the third infusion date is at least 3 years, 4 years, 5 years, 6 years, 7 years, 8 years, 9 years, 10 years, 1 1 years, 12 years, 13 years, 14 years, 15 years, 16 years 17 years, 18 years, 19 years, 20 years, 21 years, 22 years, 23 years, 24 years, 25 years, 26 years, 27 years, 28 years, 29 years, 30 years, 31 years, 32 years, 33 years, 34 years, 35 years, 36 years 37 years, 38 years, 39 years, 40 years or more after occurrence of an AMI.
  • the eighth infusion date is at least about one day, at least about two days, at least about three days, at least about four days, at least about five days, at least about six days, at least about 7 days, at least about 8 days, at least about 9 days, at least about 10 days, at least about 1 1 days, at least about 12 days, at least about 13 days, at least about 14 days, at least about 15 days, at least about 16 days, at least about 17 days, at least about 18 days, at least about 19 days, at least about 20 days, at least about 21 days, at least about 22 days, at least about 23 days, at least about 24 days, at least about 25 days, at least about 26 days, at least about 27 days, at least about 28 days, at least about 29 days, at least about 30 days or more after occurrence of an AMI.
  • the eighth infusion date is at least about 1 month, at least about 2 months, at least about 3 months, at least about 4 months, at least about 5 months, at least about 6 months, at least about 7 months, at least about 8 months, at least about 9 months, at least about 10 months, at least about 11 months, at least about 12 months, at least about 13 months, at least about 14 months, at least about 15 months, at least about 16 months, at least about 17 months, at least about 18 months, at least about 19 months, at least about 20 months, at least about 21 months, at least about 22 months, at least about 23 months, at least about 24 months, at least about 30 months, at least about 36 months, at least about 42 months, at least about 48 months, at least about 54 months, at least about 60 months, at least about 66 months, at least about 72 months, at least about 78 months, at least about 84 months, at least about 90 months, at least about 96 months, at least about 102 months, at least about 108 months, at least about 1 14 months, at least
  • the third infusion date is at least 3 years, 4 years, 5 years, 6 years, 7 years, 8 years, 9 years, 10 years, 1 1 years, 12 years, 13 years, 14 years, 15 years, 16 years 17 years, 18 years, 19 years, 20 years, 21 years, 22 years, 23 years, 24 years, 25 years, 26 years, 27 years, 28 years, 29 years, 30 years, 31 years, 32 years, 33 years, 34 years, 35 years, 36 years 37 years, 38 years, 39 years, 40 years or more after occurrence of an AMI.
  • the ninth infusion date is at least about one day, at least about two days, at least about three days, at least about four days, at least about five days, at least about six days, at least about 7 days, at least about 8 days, at least about 9 days, at least about 10 days, at least about 1 1 days, at least about 12 days, at least about 13 days, at least about 14 days, at least about 15 days, at least about 1 days, at least about 17 days, at least about 18 days, at least about 19 days, at least about 20 days, at least about 21 days, at least about 22 days, at least about 23 days, at least about 24 days, at least about 25 days, at least about 26 days, at least about 27 days, at least about 28 days, at least about 29 days, at least about 30 days or more after occurrence of an AMI.
  • the ninth infusion date is at least about 1 month, at least about 2 months, at least about 3 months, at least about 4 months, at least about 5 months, at least about 6 months, at least about 7 months, at least about 8 months, at least about 9 months, at least about 10 months, at least about 11 months, at least about 12 months, at least about 13 months, at least about 14 months, at least about 15 months, at least about 16 months, at least about 17 months, at least about 18 months, at least about 19 months, at least about 20 months, at least about 21 months, at least about 22 months, at least about 23 months, at least about 24 months, at least about 30 months, at least about 36 months, at least about 42 months, at least about 48 months, at least about 54 months, at least about 60 months, at least about 66 months, at least about 72 months, at least about 78 months, at least about 84 months, at least about 90 months, at least about 96 months, at least about 102 months, at least about 108 months, at least about 1 14 months, at least
  • the third infusion date is at least 3 years, 4 years, 5 years, 6 years, 7 years, 8 years, 9 years, 10 years, 1 1 years, 12 years, 13 years, 14 years, 1 years, 16 years 17 years, 18 years, 19 years, 20 years, 21 years, 22 years, 23 years, 24 years, 25 years, 26 years, 27 years, 28 years, 29 years, 30 years, 31 years, 32 years, 33 years, 34 years, 35 years, 36 years 37 years, 38 years, 39 years, 40 years or more after occurrence of an AMI.
  • the tenth infusion date is at least about one day, at least about two days, at least about three days, at least about four days, at least about five days, at least about six days, at least about 7 days, at least about 8 days, at least about 9 days, at least about 10 days, at least about 1 1 days, at least about 12 days, at least about 13 days, at least about 14 days, at least about 15 days, at least about 16 days, at least about 17 days, at least about 18 days, at least about 19 days, at least about 20 days, at least about 21 days, at least about 22 days, at least about 23 days, at least about 24 days, at least about 25 days, at least about 26 days, at least about 27 days, at least about 28 days, at least about 29 days, at least about 30 days or more after occurrence of an AMI.
  • the tenth infusion date is at least about 1 month, at least about 2 months, at least about 3 months, at least about 4 months, at least about 5 months, at least about 6 months, at least about 7 months, at least about 8 months, at least about 9 months, at least about 10 months, at least about 11 months, at least about 12 months, at least about 13 months, at least about 14 months, at least about 15 months, at least about 16 months, at least about 17 months, at least about 18 months, at least about 19 months, at least about 20 months, at least about 21 months, at least about 22 months, at least about 23 months, at least about 24 months, at least about 30 months, at least about 36 months, at least about 42 months, at least about 48 months, at least about 54 months, at least about 60 months, at least about 66 months, at least about 72 months, at least about 78 months, at least about 84 months, at least about 90 months, at least about 96 months, at least about 102 months, at least about 108 months, at least about 1 14 months,
  • the third infusion date is at least 3 years, 4 years, 5 years, 6 years, 7 years, 8 years, 9 years, 10 years, 1 1 years, 12 years, 13 years, 14 years, 15 years, 16 years 17 years, 18 years, 19 years, 20 years, 21 years, 22 years, 23 years, 24 years, 25 years, 26 years, 27 years, 28 years, 29 years, 30 years, 31 years, 32 years, 33 years, 34 years, 35 years, 36 years 37 years, 38 years, 39 years, 40 years or more after occurrence of an AMI, and so on.
  • the chemotactic hematopoietic stem cell product of the composition administered at the second, third, fourth, fifth, sixth, seventh, eighth, ninth and/or tenth infusion date is prepared from a frozen and thawed aliquot of a nonexpanded, isolated population of autologous mononuclear cells containing CD34+ cells.
  • the chemotactic hematopoietic stem cell product delivery apparatus used to deliver the pharmaceutical composition of the described invention to a subject in need thereof comprises an infusion syringe, a flushing syringe, a four- way stopcock, and a balloon catheter.
  • the intravascular delivery comprises (a) an infusion device attached to a sterile four-way stopcock containing the pharmaceutical composition comprising the chemotactic hematopoietic stem cell product; (b) a flushing device attached to the sterile four-way stopcock, the flushing device containing a flushing solution, and (c) a catheter attached to the delivery apparatus by the sterile four-way stopcock.
  • the infusion device is a syringe made of any suitable material. The body and handle of suitable four way stopcocks may be made of the same or a different material.
  • Suitable four-way stopcocks includes, without limitation, a stopcock having a polycarbonate body/polycarbonate handle, a stopcock having a polyethylene body/polyethylene handle, a stopcock having a polycarbonate body/polyethylene handle, or a disposable stopcock.
  • a device is further attached to the stopcock to regulate the pressure exerted on the delivered solution.
  • an integral flush device or syringe is attached to the stopcock.
  • the catheter is a balloon catheter.
  • the term "balloon catheter” refers to a type of "soft" thin flexible tube having an inflatable "balloon" at its tip, which is used during a catheterization procedure to enlarge a narrow opening or passage within the body. The deflated balloon catheter is positioned, inflated to perform the necessary procedure, and deflated again to be removed.
  • the viability and potential efficacy of the chemotactic hematopoietic stem cell product of the described invention comprising potent CD34+/CXCR-4+ cells depends on the cells maintaining their potency as they pass through a catheter.
  • the catheter used in the methods of the described invention has an internal diameter of at least 0.36 mm. Any type of catheter having an internal diameter of at least 0.36 mm may be effective in delivering the pharmaceutical compositions of the described invention.
  • a flow control catheter which slows drainage of blood through the coronary artery vasculature, allows the cells time to transit through the blood vessel wall and into the tissue.
  • the catheter is a balloon catheter.
  • balloon catheter for example, without limitation, the following balloon dilatation catheters available from Cordis, Boston Scientific, Medtronic and Guidant having an internal diameter of about 0.36 mm have been validated (see Table 1).
  • catheters have been described having a fluid delivery port adjacent to the balloon such that the balloon may be inflated against a vessel wall to isolate the delivery site from hemodynamics opposite the balloon from the port, which may be located distally of the balloon.
  • balloon catheters have been disclosed having lumens ending in side ports disposed proximally to the balloon catheter; these balloon catheters generally may be referred to as "balloon/delivery" catheters, although particular references may use different descriptors. See, e.g., U.S. Pat. No. 5,415,636 to Forman, incorporated by reference herein.
  • the method of treating or preventing a progressive myocardial injury due to a vascular insufficiency that occurs early or late comprises administering the progressive myocardial injury-preventing pharmaceutical composition via balloon catheterization into an artery at a first infusion date.
  • a delivery balloon catheter is inserted via a femoral artery into a desired coronary artery, such as the left anterior descending coronary artery.
  • a catheter is used to directly inject cells into the myocardium.
  • the described invention provides a regimen for treating a progressive myocardial injury due to a vascular insufficiency that occurs early or late , which comprises:
  • a first sterile pharmaceutical composition parenterally through a catheter comprising: (i) a therapeutically effective amount of a first sterile chemotactic hematopoietic stem cell product, wherein the first chemotactic hematopoietic stem cell product comprises a nonexpanded, isolated population of autologous mononuclear cells enriched for CD34+ cells, which further contain a subpopulation of potent CD34+/CXCR-4+ cells that have CXCR-4-mediated chemotactic activity, wherein the therapeutically effective amount of the first chemotactic hematopoietic stem cell product comprises at least 10 x 10 6 CD34+ cells containing at least 0.5 x 10 6 potent CD34+ cells expressing CXCR-4 and having CXCR-4 mediated chemotactic activity; (ii) a stabilizing amount of serum, where
  • composition comprising a therapeutic amount of a secondchemotactic hematopoietic stem cell product, ; wherein the therapeutically effective amount of the second chemotactic hematopoietic stem cell product comprises at least 10 x 10 6 CD34+ cells which further contain a subpopulation of at least 0.5 x 10 6 potent CD34+ cells expressing CXCR-4 and having CXCR-4 mediated chemotactic activity; (ii) a stabilizing amount of serum, wherein the stabilizing amount of serum is greater than 20% (v/v), wherein the secondchemotactic hematopoietic stein cell product is further characterized as having ihe following properties for at least 24 hours when tested in vitro after passage through a catheter: (1 ) retains the CXCR-4- mediated activity of the subpopulation of potent C034 +/CXCR-4-i- cells that have CXCR-4- mediaied chemotactic activity; (2) at least 70% of the cells are CD34+ cells; (3 ) is at
  • a sterile pharmaceutical composition comprising a third chemotactic hematopoietic stem cell product comprising at least 10 x 10* isolated CD34 cells, which further contain a subpopulation of at least 0.5 x 10* .potent CD34+ ceils expressing CXCR-4 and having CXCR-4 mediated chemotactic activity; (ii) a stabilizing amount of serum, wherein the stabilizing amount of serum is greater than 20% (v/v), wherein the third chemotactic hematopoietic stem cell product is further characterized as having ihe following properties for at least 24 hours when tested in vitro after passage through a catheter:: (1) retains the CXCR-4-.mediated activity of the subpopulation of potent
  • CD34+/CXCR-4+ cells that have CXCR-4-mediated chemotactic activity; (2) at least 70% of the cells are CD34 cells; (3) is at least 70% viable; and (4) is able to form hematopoietic colonies in vitro, such that the regimen improves at least one measure of cardiac function.
  • At least one aliquot of the sterile nonexpanded, isolated population of autologous mononuclear cells comprising CD34+ cells, which further contain a subpopulation of potent CD34+/ XCR-4+ cells that have CXCR-4-mediated chemotactic activity acquired from the subject under sterile conditions is frozen at -86 C and cryostored at least one aliquot in the vapor phase of a liquid nitrogen freezer until needed.
  • the at least one aliquot of the frozen nonexpanded, isolated population of autologous mononuclear ceils containing CD34+ cells which further contain a subpopulation of potent GD34+/CXCR-4T ceils that have CXCR-4-mediated chemotactic activity is thawed and enriched for CD34+ cells, which further contain a subpopulation of potent CD34+/CXCR-4+ cells that have CXCR-4-mediated chemotactic activity.
  • This frozen and thawed nonexpanded, isolated population of autologous mononuclear cells enriched for CD34+ cells which further contain a subpopu on of potent CD34+/CXCR ⁇ 4- cells that have CXCR ⁇ 4 ⁇ mediated chemotactic activity constitutes a thawed sterile chemotaciie hematopoietic stem cell product.
  • the thawed sterile chemotactic hematopoietic stem cell product car* be used in step (b), step (c). or steps (b) and .step (e) of the regimen.
  • The term "regimen” as used herein refers to a course or plan of treatment to preserve or resiore the health of a subject suffering from a progressive myocardial injury due to a vascular insufficiency that occurs early or late.
  • the thawed sterile chemotaciie hematopoietic stem, cell product when passed through the catheter and tested in vitro, (i) is able to ' fbrm hematopoietic colonies; and (ii) retains at least ' 2% of the CXCR-4-med;aied activity of the subpopulation of potent CD$4*/CXCR-4* ceils that have CXC 4-mediated.chemotactic activity, for at least 48 " hours following thawing of the eryostored nonexpanded, isolated population of .autologous mononuclear cells comprising CD34+ cells, which further contain a subpopulation of potent CD34+/CXCR.-4--?- cells that have CXC -4-mediated chemotaciie activity.
  • the thawed chemotaciie hematopoietic stem cell product when passed through the catheter and tested in. vitro, (i) is able to form hematopoietic, colonies; and (it) retains at least 2% of the CXCR-4- ediated activity of the subpopulation of potent CD34+/CXGR-4+ cells tha have GXC -4-mediated chemotactic acti vity for at .least 72 hours following thawing ofnonexpanded, isolated population of autologous mononuclear cells comprisin CD34+ cells, which further contain a subpopulation of potent CD3 f/CXCR-4-+ cells that have CXGR ⁇ 4 ⁇ mediated chemotactic activity.
  • the first infusion date of (a) is at least is at least about one da . at least about two days, at least about three days, at feast about four days, at least about live day s, at least about six days, at least about 7 days, at least about 8 days, at least about 9 days, at least about 10 days, at least about 3 1 days, at least abou 12 days, at least about 13 days, at least about 14 days, at least about 15 days, at least about 16 days, at least, about i? days, at least abou 18.
  • ' days at least about 1 days, at least about 20 days, at least about 21 days, at least about 22 days, at least about 23 days, at least about 24 days, at least about 25 days, at least about 26 days, at least about 27 days, at least about 28 days, at least about 29 days, at least about 30 days or more after occurrence of an AMI.
  • the first infusion date of (a) is at least about 1 month, at least about 2 months, at least about 3 months, at least about 4 months, at least about 5 months, at least about 6 months, at .least about 7 months, at least about 8 months, at least about 9 months, at least about 10 months, at least about 1 1 months, at least about 12 months, at least about .13 months, at least about .14 .months, at least about 15 months, at least about 16 months, at least about 17 months, at least about 18 months, at least about 19 ' months, at least about 20 months, at least about 21.
  • months - at least about 22 months, at least about 23 months, at least about 24 months, at least about 30 months, at least about 36 months, at least about 42 months, at least about 48 months, at least about 54 months, at least about 60 months, at least about 66 mouths, at least about 72 months,, at least about. 78 months, at least about 84 months,, at least about 90 months, at least about 96 months, at .least about 102 months, at least about 108 months, at least about 114 months, at least about 1.20 months, at least about 126 months, at least about 132 months,. t.
  • the first infusion date is at least 3 years, 4 years, 5 years, 6 years, 7 years, 8 years, 9 years, 10 years.
  • the second infusion date of (b) is at least about is at least about one day, at least about two days, at least about three days, at least about four davs, at least about five days, at least about six days, at least about 7 days, at least about 8 days, at least about 9 days, at least about 30 days, at least about 11. days, at least about 12 days, at least about 13 days, at least about 14 days, at least about 15 days, at least about 16 days, at least about
  • the third infusion date of (c) is at least about 1 month, at least about 2 months, at least about 3 months, at least about 4 months, at least about 5 months, at least about 6 months, at least about 7 months, at least about 8 months, at least about 9 months, at least about 10 months, at least about
  • the first infusion date is at least 3. years, 4 years, 5 years, 6 years, 7 years, S years, 9 years, 10 years, 1 1 years, 12 years, 13 years, 14 years, 15 years,
  • the third in&sion dale of (c) is at least about is. at least about one day, at least about two days, at least about three days, at .least about four days * at least about five days, at least about six days, at least about 7 days, at leas* about 8 days, at least about 9 days, at least about 10 days, at least about 1 1 days, at least about 12 days, at least about
  • the third infusion date of (c) is at least about 1 month, at least about 2 months, at. least about 3 months, at least about 4 months, ai least about 5 months, at least..
  • the first infusion date is at least 3 years, 4 years, 5 years, 6 years, 7 years, 8 years, 9 years, 10 years, 11 years, 12 years, 13 years, 14 years, 15 years,
  • the vascular insufficiency that occurs early or late is an ischemia.
  • the ischemia is a myocardial schemi
  • the ischemia is a transient ischemia.
  • the ischemia is a chronic myocardial ischemia.
  • the ischemia is a peri-infaret border zone ischemia.
  • the catheter is a flow control catheter.
  • the catheter is a balloon dilatation catheter.
  • the catheter has an internal diameter of at least about 0.36 mm.
  • the composition is administered through the catheter into myocardium.
  • the composition is administered through, the catheter mtravascularly.
  • the pharmaceutical composition .further includes at least one compatible active agent.
  • the active agent is selected from the group consisting of an angiotensin converting enzyme inhibitor, a beta-blocker, a diuretic, an antf -arrhythmic agent, a. hematopoietic stem cell mobilizin agent, a tyrosine kinase receptor agonist, an anti-anginal agent, a vasoactive agent, an anticoagulant agent, a fibrinolytic agent, and a hypereholesterolemie agent.
  • the tyrosine kinase receptor -agonist is.
  • the hematopoietic stem cell mobilizing agent is a colony stimulating, factor.
  • the hematopoietic stem cell mobilizing agent comprises G-CSF, GM-CSF, or a pharmaceutically acceptable analog or derivative thereof:
  • the hematopoietic stem cell mobilizing agent is a. recombinant analog or derivative of a colony stimulatin factor.
  • the hematopoietic stem ceil mobi!mng agent is filgrastim,
  • the vascular insufficiency that occurs early or late is a vascular insufficiency after an acute myocardial infarction resulting from underlying disease.
  • the first infusion date comprises a specific time interval defined by a . first time and a second time, wherein the first time is after peak inflammator cytokine cascade production in the infected area and the second time is before myocardial scar formation in the iafarcted area.
  • the first time of the first infusion date is at least about 5 days post-infarction.
  • the first time of the first infusion date is about 5 days postinfarction and the second time is about 1.4 days post-infarction.
  • the regimen treats eardiomyocyte cell death in the peri -infarct border zone, relative to controls.
  • the regimen treats hypoperfusion in the peri- infarct border ?.one, relative to controls.
  • the regimen treats myocardial hibernation in the peri-infarct border zone, relative to controls.
  • the .regimen decreases infarct area, relative to controls.
  • the regimen decreases infarct mass, relative to controls
  • the progressive myocardial injury is a progressi ve decline in heart muscle function following the acute n eocardial infection.
  • the progressive myocardial injury is heart failure.
  • stents including drug-eiutmg stents (e.g.,. paclitaxel or sirolirnus) are acceptable for use in the revascularization of the infarct related artery f'lRA* ⁇ .
  • drug-eiutmg stents e.g.,. paclitaxel or sirolirnus
  • Previous studies employing balloon catheters to infuse cell products have reported no limits for reference vessel diameter for the pl acement of the stent. Since thi study is designed to distribute the cell product into the IRA circulation, and in an attempt to limit the potential for damage to very small, vessels, the described invention requires that stents be placed prior to .infusion of the ehemotaetic hematopoietic stem cell product of the. described invention.
  • CD34+ cells in the ehemotaetic hematopoietic stem cell product is expected.
  • prior clinical studies have shown that by 96 hours after drug-eluting stent placements whole blood levels of either paciitaxel or sirolimus are below the limits of detection.. Therefore, tissue levels in the myocardial sites to which the infused CD34+ cells expressing CXCR-4 and having
  • CXCR-4-mediated ehemotaetic activit are intended to migrate are. expected to be.
  • a.subject's cardiac function and perfusion will he assessed by standard methods. Relevant measures of cardiac function include assessment of global and regional ejection fraction, ventricular volumes, resting and stress perfusion., segmented wall motion, and, following a myocardial infarction, infarct size.
  • ' 0O236 The term, "diastole” refers to the normal pqstsystolic- dilation of the heart cavities during which they fill with blood. The term “systole” refers to contraction of the heart, especially of the ventricles, by which the blood is driven through the aorta and pulmonary artery to traverse the systemic and pulmonary circulations, respectively.
  • BP injection traction
  • SV stroke volume
  • EDV end-diastolie volume
  • the difference between end-diastolie and end- systoiic volumes is the stroke volume, the volume of blood ejected with each beat, in a healthy ?0 ⁇ kg (I S44b) male, the SV is approximatel ' 70.ml. and the. left ventricular EDV is 120 mi, giving an ejection fraction of 70/120, or 0.58. (58%).
  • An EF within the range of from 55-60% is considered normal.
  • the ejection fraction of the right ventricle (“RVBF”) normally is equal to thai of the left ventricle f'LVEF") within narrow limits.
  • Other measures of cardiac function include assessment of the stroke volume index and velocity of circumferential fiber shortening. Strauer, et ah. Circulation 106: 1913-18
  • Stroke volume is the amount of blood the left ventricle ejects in one beat, measured in milliliters per beat (ml/beat).
  • SV can be indexed to a patient's body size by dividing SV by Body Surface Area (BSA) to yield the Stroke Index (SI).
  • BSA Body Surface Area
  • Consented subjects will .have a study entry SPECT no sooner than 96 hours after stent placement. Subjects are eligible to proceed on study if the LVEF is less than or equal to 50% on echocardioaraphv and a segmental ventricular wall abnormality is observed in the IRA. Eligible subjects .immediately can complete baseline cardiac function and perfusion assessment.
  • baseline cardiac function includes:
  • Cardiac Perfusion Perfusion will be assessed using routing Technetium (Te ⁇ 99m) Sesiamibi radionuclide scan at rest and after intravenous adenosine.
  • the Emory Cardiac Toolbox will be used for image quantification. Evaluation will use a 17-seg.roent model.
  • a core review lab will assess the perfusion studies with the interpreter blinded to the study cohort. Improvements in perfusion will be expressed in semi-quantitative terms (yes no). The percentage of patients observed to have improvement in. perfusion will ' be compared between dose cohorts.
  • MRI Regional and global wall motion, infarct size, and left ventricular ("LV") volumes vvi!l be measured using MM.
  • Subjects will receive Gadolinium contrast during scanning.
  • MR! scan will use the breath holding technique.
  • Steady state precession imaging to obtain global and regional LV function will be performed as will Gadolinium imaging.
  • LVEF Left ventricular end systolic and diastolic volumes
  • LV end diastolic dimension wall thickness in systole and diastole of the infareted region
  • infarct size will be reported using the AHA/ AW ⁇ 7-segment model with transmural extent of the infarct reported as ⁇ 25%, 26%- 50%, Sl%-75% and >76%.
  • a core review laboratory will assess MRJ with the interpreter blinded to the study cohort,
  • inclusion criteria To be selected for this study, subjects must meet all of the following clinical criteria ("inclusion criteria"):
  • PCI percutaneous coronary intervention
  • Hgb hemoglobin content
  • WBC white blood cell count
  • OMR international normalized ratio
  • Drug elating stents should be limited to paclitaxel or siroircnus ty pes;
  • INR INR International Normalized Ratio, which is a system established by the World Health Organization (WHO) and, the International Committee on. Thrombosis •aad.Hemostasis for reporting the ' results of blood coagulation (clotting) tests;
  • Subjects with less than three months of planned anti-platelet therapy post index procedure • Subjects with mnitl vessel disease after revascularization requiring subsequent planned intervention during She next 6 months;
  • the subject will be brought into the. Cardiac Catheterization Laboratory after the investigator has obtained an informed consent.
  • the subject will receive a .sterile preparation and draping m the Cardiac Catheterization Laboratory.
  • Vascular access will be obtained, by standard technique using right or left groin.
  • a sheath will be placed in the femoral artery or the right or left brachial artery.
  • Coronary arteriographie examination will be performed by obtaining standard views of both right and left coronar arteries. Multiple views will be obtained to identify the- previously stenied infarct related artery. Ail subjects will receive standard medications during the eatheterfea&m procedure in accordance with routine practice.
  • Example 3 Acquisition Process For Acquirin Chemotaeiic Hematopoietic Stem Cell Product That is Then Enriched For CD34+ Cells
  • an acquisition process appropriate for acquiring the chemoiactie hematopoietic stem cell product comprising potent CD34+ cells is within the scope of the described invention, the following example iUustrates one such process referred to herein as a mini-bone marrow harvest technique.
  • the harvesting needle is inserted until the iliac -crest is . punct red.
  • the cap and stylet i removed and 2-ml of marrow is harvested into the 10-ral harvesting syringe containing 2-ml of the heparin solution.
  • the syringe then is removed and placed on the sterile field.
  • the harvesting needle is advanced slightly and then .rotated 90°.
  • the stylet is then removed and an additional .2 -mi of marrow is drawn into the harvesting syringe retrieved from the -sterile , field.
  • the full harvesting syringe is infused in the sterile collecting bag as follows.
  • the harvesting assistant is handed the full, harvesting syringe and empties it in the 500-ml collecting hag though the sterile adaptor attached to the bag. Then the harvesting needle is flushed with the heparin ' solution in the flushing syringe and returned to the . sterile field.
  • the collecting bag is sealed by tying off the connecting tube, three times and ' then clamped distal to the ties.
  • the bag is appropriately labeled "Human Bone Marrow Collection” and. the results of the harvesting proceed ure, including final volume collected and any procedure related complication, are recorded on the Mayo Clinical Risk Score (MCRS) ease report form.
  • MCRS Mayo Clinical Risk Score
  • the completed label is affixed to the bone marrow bag.
  • the bag then is placed in a sterile carrying bag to be transported to the processing facility.
  • the harvested bone marrow is transported to the processing facility as follows.
  • the clinical site is prepared to ship the bone marrow preparation, 24- hour notice will, be provided to the processing facility.
  • the processing laboratory will make
  • the bone marrow product will be placed in the supplied shipping container.
  • the shipping container contains two small blocks of frozen wet ice on the bottom and a sheet of bubble wrap on top of the wet ice.
  • the bone marrow product is placed into a secondary bag and the secondary bag is placed on top of the bubble wrap.
  • a temperature tag monitor fa sensor used to monitor the internal temperature is affixed to the interior of the box.
  • Another layer of bubble wrap then is placed on. top of the product before the shipping container is sealed off.
  • C.D34+ ceils will be isolated from the harvested bone marrow product.
  • CD34- cells will be isolated using the. anti-CD monoclonal .antibody (Mab), Dyirabeadsi M 50 Sheep anti-Mouse IgG, and PR34+ ( ⁇ ) Stem Cell Releasing Agent components of the isoiex 3001 Magnetic Cell Selection System (Baxter Healthcare Corp. Cat. No. 4R9734) as described in U.S. Pat. Nos. 5,536,475, .5,035,994, 5,130,144, ,965204, 5,968,753, 6,017,719,6,251,295, 5,980,887, 6,676,937, U.S. Published Application No..
  • the harvested bone marrow product (in the collecting bag) is inspected immediately and the bag checked for any leakage.
  • the collection should be free Rowing ' with no apparent clomps and should not be hemolyzed. The collection will not be used if the integrity of the bag has been breached in any way.
  • the bone marrow product should be processed within about 12 hours to about 24 hours of inspection.
  • a 300-ml or 400-rni transfer pack container is obtained, and a plasma transfer set is attached to the sampling port of the container.
  • the bone marrow product is transferred from the collecting bag to the transfer pack container.
  • the pooled bone marrow collection product is mixed thoroughly by inverting the container twenty (20) times.
  • a total volume of 2.0 ml of the product is remo ved and aliquoted as follows: 0,3 ml is used for a duplicate run of Complete Blood Count (CBC) using a hematology analyzer; 0,2-nil is dispensed into a 75x.!00 «mm glass tube for the detection of Gram positive and Gram negative bacteria by Gram Stain (Gram Stain Kit, VWR, Cat. NO. B.B23140I); as a sterility check.
  • 0.6-mi is dispensed into a !ryptic Soy Broth (TSB) (VWR, Cat. No.
  • the number of Total Nucleated Cells (TNC) in the. bone marrow product is calculated using, the white blood cell (WBC) count obtained, from the CBC according to the following relationship:
  • the number of CD34+ cells in the bone marrow product is calculated from the following relationship:
  • Total CD34+- ceils in the bone marrow product ::: Number of CD34+ cell/ ⁇ x 1 ,000 x Produc volume (ml) (Formula 3 ⁇ 1000275)
  • the Red Blood Cell (RBC) volume of the bone marrow collection product is calculated from the following relationship:
  • RBCs are depleted by eentrifugation. Cenirifugation at 1000 x g for 20 minutes at ambient temperature s performed to separate the huffy coat from the RBCs..
  • the term ''bufiy coat refers to a thin grayish white traction, of a blood, sample thai contains most of the white blood cells (ieokocyt.es).
  • a 60 ml syringe is connected to the bottom of the cenirifugation bag and the RBCs are removed. More than one syringe may be needed to collect all the packed RBC, The RBC depleted bone marrow product then is washed to remove fat contents.
  • a 1-ml syringe is used to remove 0.3 -m i of the RBC-deplete bone marrow cell, product through the transfer set attached to the product bag and a CBC performed.
  • the TNC of the RBC depleted bone marrow product is determined from the relationship:
  • the total RBC volume is calculated as described supra; the RBC volume in the RBC depleted product should be less than 20-ml.
  • the Isolex 3001 system is used to process the RB €-depkted product or the ' bone .marrow product whose RBC votume is ⁇ 20 ml according to the following processing steps:
  • CDS 4 positive (CD34+) cells are labeled specifically for selection by incubation with the Isolex 3001 CD34 monoclonal antibody (Mab);
  • PR34+ Stem Cell Releasing Agent .releases CD34+ cells from the column, and the CD34 + cells are collected in the Bud Product Bag, The system performs several washing s e S j. disposing of most of the liquid into the Buffer Waste Bag.
  • the JsoIex(R) selected CD34 ⁇ fraction is assayed as follows to determine WBC and CD34+ cell yields.
  • the volume of the CD34 Positive Fraction is determined by mixing the cells in the End Product Bag; the hag is gently .massaged by hand to ensure even eel! distribution.
  • a transfer set is inserted into the sampling port of the End Product Bag and a 60-ml syringe attached.
  • the cell suspension is withdrawn into the: syringe (maximum 50-mi at a time) in order to measure the total volume, [000285 ⁇
  • a 3-ml or 5-ml syringe is used to remove a 2.0-ml sample from the End Product- Bag through the transfer set for quality control testing.
  • TNC recovery Total TNC of the Positive Fraction -: ⁇ Total TNC of the unprocessed product x 100% (Formula 8)
  • CD34+- cel l recovery Total CD34+ cells of the Positive Fraction - Total CD34+ cells of the unprocessed product x 100% (Formula. 10),
  • CD34+ ceils are characterized by flow cytometric analys s featuring CD34bnght and CD45dim fluorescence by double labeling with anti- CD34 and anti « CP45 antibodies (Beckraan Coulter, PN IM3630). CD34+ cells and CD45+ cell viability is determined by excluding the dying cells which take up the intercalating DNA dye 7-amraoactmomycin D (7 A AD).
  • any flow cytotneter or an equivalent device can be used for ..conducting analysis of CD34 ⁇ cell enumeration and viability
  • the processing laboratory employs a BD FACSCalibur(TM) flow cytometer and BD FACSCompfTM) software is used for instrument setup and monitoring.
  • a template and a panel of legend labels are preinstaLIed for acqu sition and analysis,
  • the reagents namely CP45FITC/CD34PE, Stem-Count Fluorospheres, Concentrated Ammonium Chloride Lysrng Solution, and 7AA.D Viability Dye
  • CD34+ cell controls are run. as a positi e control to affirm, that the instrument is set up for analyzing CD34+ ceils, and the .results are compared with, the manufacturers predetermined C 34 percent range.
  • the unprocessed bone marrow product and Isolex processed chemotaciic hemaiopoietie stern cell products may be analyzed by man different procedures, in one embodiment,, or example, immediately upon receiving the sample, if the WBC coun of the sample is greater than 2 x 107 cells per ml, the sample is diluted with Sheath fluid to achieve a cell count, of about 2 x 107 WBC per ml 1 0 al of the diluted product is alicmoted into two 1 x 100 mm tubes.
  • LCD34 is the averaged number of events fo Li e CD34+/A11 CD 45-;
  • FAC Fluorospheres Assayed Concentration; and F s the averaged ouraber of Fluorosphere singlets counted,
  • the volume of CD34+ Positive Fraction is calculated to obtain the number of CD34+ cells ' required for the required dosing.
  • the Required Positive Fraction ' Volume (ml) is defined as:
  • the remaining 10 ml of suspension in the Supernatant tube will be used for sterility testing (5 ml each into a TSB (Trypticase Soy Broth) bottle and an FT. (Fluid Th gh/collate) boitk).
  • the ceils in the CD34+ Cell Positive Fraction are resuspended by slowly withdrawing and aspirating through a blunt end needle affixed to a 1 ml syringe (Infusion Syringe) several, times.
  • the cell suspension is withdrawn into the syringe, any air bubbles re aspirated off, and the blunt end needle removed.
  • the infusion syringe is attached to the injection port of a 4- way stopcock.
  • f ' 000304 The eheraotaetic hematopoietic stem cell, product of the described invention will be released for infusion only if it meets the following criteria:.
  • Endotoxin Levels less than about 0.5 endotoxin units/mi:
  • CD34 ' ' ' cells are at least about 70%, 75%, 80%, 85%, 90% or 95% viable by 7-A.AD;
  • the ehemotactic hematopoietic stem ceil product After meeting these release criteria, the ehemotactic hematopoietic stem ceil product will be released for infusion and packaged for transportation to the catheterization facility, A sample also will be sent for in vitro testing,
  • product will be released only ifCD34* cell selection is initiated within 12 hours to about .24 hours of completion of bone marrow harvest and only if it is to be infused within about 48 hours to about 72 hours of completion of bone marrow harvest.
  • the none panded, isolated population of autologous mononuclear cells containing CD34-f cells which further contain potent
  • CD34+/CXG + cells that have CXCR-4-mediated ehemotactic activity is divided into aliquots, which are frozen at -86°C and exyostored in the vapor phase of a liquid nitrogen freezer for subsequent administration. Each of these aliquots can be used to prepare a thawed ehemotactic hematopoietic stem cell product as follows. The frozen nonexpanded.
  • Isolated population of autologous mononuclear ceils are thawed at a sufficient time before planned administration the sterile nonexpanded, isolated population of autologous mononuclear cells comprising CD34+ cells, which further contain a subpopu!aiion of potent CD34+/CXC -4+ celis that have CXCR-4-medtated ehemotactic activity will be enriched for CD34+ cells, which further contain a.subpopulation of .potent CX)34-b ⁇ CXCR4-t- cells that have CXCR4-mediated ehemotactic activity so as to yield the thawed ehemotactic hematopoietic stem cell product.
  • the chemotaetic hematopoietic stem cell product is formulated in 10-ml of saline (0.9% Sodium Chloride, Injection, USP, Hospira, Cat# 7983-09) supplemented with 1 % HSA (Human Albumin DSP, Alpha, Cat. # 521303 ⁇ ("Infusion Solution”) and more than 20% autologous serum.
  • HSA Human Albumin DSP, Alpha, Cat. # 521303 ⁇
  • Dulbeccd's Phosphate Buffered S ' aime- Ca ⁇ --h g ++ Free D-PBS
  • Baxter, Cat. ED 9865 Sodium Citrate
  • Baxter/PemvaL Cat, # 4B7867 Hetastareh.
  • IVIg Gammagard® Immune Glotedin Intravenous, Baxter. Cat, # 060384
  • the ' reagents in the Isoiexi 300i Stem Cell Reagent Kit (Baxter, Cat. 4R.9734) including aoii--CD34 monoclonal antibody, stem cell releasing agent and Sheep anti-mouse magnetic-beads.
  • hematopoietic stem cell product was suspended in iO-mS PBS supplemented with HSA and the container labeled in accordance with release criteria.
  • the original plan called for four dosing- cohorts consistin -of .five subjects each in each cohort. The first was to receive about 5 x 10 6 CD34+ cells, the second abou -10 x 10* CD34-i- cells, the third about 20 x 10 6 CD34+ cells and the fourth about 30 x 10*01)34+ cells. Subjects in the higher dosing cohorts with . inadequate CD34+ cell quantities to meet the assigned cohort dose were to be added to a prior cohort at the greatest possible CD34+ cell dose.
  • the loaded infusion syringe was attached to a four- way stopcock along with a flushing syringe, capped and have safety guards applied to prevent leakage.
  • the delivery apparatus was sealed in. a double steri le bag and placed in a secure transportation box for iransportaiion to the cardiac catheterization facility.
  • the chemotactic hematopoietic stem cell, product was shipped to the catheterization site for direct inf arct-reiated artery infusion ("intravascular administration').
  • an internal diameter of at least about 0.36 nun compatible with the chemotactic hematopoietic stem-cell product infusion can be used, After positioning, the- balloon wire was removed.
  • the chemotactic hematopoietic stem cell product delivery apparatus was removed from the transportation case. [000317] The delivery apparatus was in a sterile bag and . had safety blocks attached to the . infusion -syringe ⁇ containing the ehemotaetic hematopoietic stem ceil -product) and ' the flushing syringe.
  • the apparatus consisted of the infusion syringe (containing 10 mi of the ehemotaetic hematopoietic stem cell product) and the flushing syringe (containing 6 ml of Hushing solution) wherein both were attached to a sterile four-way stopcock.
  • the entire delivery apparatus was shaken gently to resuspend the CD34+ ceils in the infusion solution.
  • the .flushing syringe was used to eliminate all air hubbies in the apparatus (to prevent air emboli) and the delivery apparatus, then attached to th balloon dilatation catheter via the stopcock.
  • troponin and CPK MB about every 8 hours for about 24 hours was obtained.
  • Anliythmia assessment 24 hour Holier monitor was performed .immediately post-chemotaetic
  • the power of rejecting a false null hypothesis is 0.68 at the 0.05 alpha level of significance for -a high correlation of 0.5 between dosing and improvement in cardiac function.
  • the 95% confidence interval about the slope of the regression line was. used to assess the medical significance of the increase in dosing level. If the slope of the regression line was not significantly different from zero but the intercept of the. regression line is different from zero, then all treatment -groups was combined and a paired t-tesi will be performed io assess the overall treatment effectiveness.
  • the null hypothesis is that the mean of the differences Is equal to ze o.
  • a Wilcoxon signer-ranks test also was performed as an additional test to determine the treatment effectiveness.
  • Subjects having fewer than 5 x JO 6 CD34+ cells available for infusion were removed from the study, did not undergo repeat catheterization and were not counted as part of the 20-subject study group.
  • the ehemotactic hematopoietic cell product of the described invention did not meet release criteria, the subject did not receive .the ceil product and was not counted as a study candidate to be replaced by the next subject.
  • the chemotactic hematopoietic stem cell product of the described invention was not administered to any subject in the higher dose cohort until all the subjects from the prior dose cohort had. completed their follow-up assessments two weeks after product administration.
  • Table 2 Effect of donor age on nucleated cell yield of the MH.
  • the average cell count of the bone marrow products from, older donors (N-6) was 28.4 106 (based on a range of 15,8 x 10 3 ⁇ 4 - 49.5 x 10*) nucleated cells per ml [ w NC/mi' ' j s with an average viability, as. determined by 7»AAD dye exclusion arid flow cytometry, of 90,42% (based o» a- range of 80.95%-98.21%) and €D34 ⁇ content of 3.06 ⁇ W/ml (based on a range of 1.27 x 107ml - 5.58 x iOVml). In the younger subject group (N ;::: 3 ⁇ ⁇ the average cell count collected from.
  • marrow aspiration was 46.2 x 10* NC/ml (based on a range of 39.9 x 1 * NC/ml -50.6 x Hf NC mi), with an average 7-AAD viability of 93.5% (based on a range of 87.17%-96.90%) and total CDW content of 8.5 x 103 ⁇ 4nl (based on a range of 5.99 x.10 s CD34" cells/ml - 11.60 JO 5 CD34 cells/ml).
  • Table 3 CD34+ cell .recovery after RBC de letion of MMH from oider age grou (4557) donors.
  • Transmembrane migration of CD34+ cells from the upper chamber to the Sower chamber of a transwell polystyrene plate (6.5 mra diameter, 5 um pore size, Coslar) is induced by SDF-1 placed in the lower chamber.
  • the number of migrated viable CD34+ cells in the lower chamber then is determined by How cytometry analysis using CD34/CD45 antibodies and 7-AAD. Control spontaneous migration of CD34+ cells is performed without SDF-i in the lower chamber,
  • hematopoietic stem cell product comprising isolated CD34- - cells enriched following MMH was stored at 4° € to C as indicated.
  • cells were stored at about 4 3 ⁇ 4 C to about S°C for 12 hours and about 24 hours prior to reassessment ⁇ simulate products infused at about 36 hours and at about 48 hours, respectively, following MMH.
  • the isolated CD34 cells of the chemolactic hematopoietic stem cell product had an average viability of 97.24% (based on a range of 96.90%-97.59%) and average CXCR-4-mediaied migratory capacity of 7.60% (based on. a range of 7.50% -7.70%).
  • the average viability of the cells was 96.81% (based on a range of 96.39% - 97.2%) and maintained an average CXCR-4-raediaied migratory capacity of 4,75% (based on a range of 4.50% - 5.00%).
  • Table 7 CIB4+ cell viability as a function of time after MMH: 12- hou in-da ing and 48 hour outdating (ail time points measure from completion of
  • time point "X" was considered me reference point, as this was ⁇ ' determined to represent the earliest time point following MMH at which ceils reasonably could be expected to be returned to the subject in a finished formulation.
  • Table 8 SDF-l/CXC -4 mediated CD34+CXCR-4+ ceil migration ⁇ migrating 0 ) 3 cells) as a function of time after MMH: 12 ⁇ h «ur in-dating and 48-hour outdattag (all time points measured from completion of MMH).
  • Table 9 shows the number of colony forming units (CFU) per 100 viable CD34+ceiIs plated as a function of time after MMH; 1.2-hdur in-dating and 48 hour-oot- dating (ail time points measured .from completion of MMH).
  • CD34 - cells from ,12-hours (in-date) and from 48-hours (out-date) (12/48), respectively, to 24-hours (in-date) and 72-hours (outdate) (24/72), respectively, CD34 cells were purified about 12 hours after MMH harvest ' (12 ' hour in-date) and about 24 hours ate MMH harvest (24 hour in-date) and analyzed for functional viability at about 48 hours and at about 72 hours total time from MMH to time of testing/anticipated infusion (48 hour out-date and 72 hour out-date, respectively).
  • Tables 10-12 show that at 33 hours (based on 32,5 ⁇ 0.71 , N- 2), 48 hour (based on one data point at.49 hours), and at 72 hours (based on 72.5b ⁇ 0.71, N ::;: 2), the isolated CD34 cells of the chemotactie hematopoietic stem cell product of the described invention maintained 1) over 90% viability (Table 10), 2) 102.19 * 32.69% of their SDF- I VEOF/CX.CR-4 mediated migratory ability (1 able 1 1), and 3) their ability to generate hematopoietic colonies in vitro (Table 1 ).
  • Table 11 SDF CXCR-4 mediated CD34+ cell migration (% population of migrated CD34t cells as a fcmction of lime after MMH): .24-b in-dating and 72-h
  • chemotactie hematopoietic stem cell product comprising isolated CD34- cells of the described inven ion ("clinical product") at .8 hours (8.6 ⁇ i . O, ;i: 4), 12 hows (i . 2,87hi- 1.92, N- 4), 32 hours (one time point at 33.5 h).
  • Figure 1 indicates .the equivalence of the functional viability of the cherootactk- hematopoietic cell product of the described invention at 72 hours ' to the • same- indices evaluated at 48 hours.
  • the viability and potential efficacy of the eheraotaciic hematopoietic stem cell product of the described invention comprising potent CD34+ cells depends on the cells maintaining their potency as they pass through a catheter.
  • the catheter used in the .methods of the described invention has an internal diameter of at. least 0.36 mm. Any type of catheter having an internal diameter of at least 0.36 mm may be effective in delivering the pharmaceutical compositions of the described- invention.
  • the catheter is a balloon catheter.
  • Balloon catheter safety studies were conducted to determine whether high ceil concentrations and repeated perfusions adversely affect cel.! viability,, cell recover or cmheter integrity, n- mobiltzed peripheral blood progenitors were used in order to obtain aa adequate- number of cel ls to pertbrtn the analysis.
  • Catheters were assessed for infusion of the cell product of the described invention comprising selected CD34* cells through, the IRA. None of the 0.36 m interna! diameter catheters tested adversely affected CD34+ selected ceil viability, growth in culture, or mobility in CXCR-4 assays.
  • Table 16 Viability of COM ' cells before and after infusions through the catheters.
  • the average viability of the cells was 96.5% (range 92,5% - 98,6%, H 6); the DC s maintained both CXCR-4 migratory capacity (data not shown) and their ability to form hematopoietic colonies in meihylcellulose (average 25.8 C!FU/IOO cells seeded (range 21.0% -30,5%)
  • the chemotactic hematopoietic stem cell product comprising a n e of about 5.73 x 106 CD34+ cells to about 21.10 x 106 CD3 + ceils (i.e., dosages reflective of the treatment cohort) obtained from individual donors wa infused sequentially through three catheters of the same brand, one type of catheter lot each donor (Sprinter, Voyager or. Maverick), and the cell, product assessed for CD34+ ceil recovery, colony formation arid viability,
  • Table IS CB34+ cell recovery and sterility after sequential infusions through the catheters.
  • colony forming unit (CFU) growth derived from the CD34+ cells after passing through the third catheter was 95,27% (based on a range of 43.47%- 163.64%) of the infusion product (i.e., the infused chemotactic hematopoietic stem cell product comprising CD34+ cells),
  • FIGS. 2 and 3 further illustrate that isolex selected CD34 - cells retain their migratory capacity longer when formulated in the presence of human serum.
  • the bone marrow derived hematopoietic stem cell product comprising selected (1)3 + ceils was formulated either in (1) phosphate buffered saline (Dulbecco's phosphate buffered saline, £'&+--*-, Mg++ Free (Baxter Cat. No.
  • PBS KDR9865
  • human serum albumin 25U/ml of heparin sodium and vario us concentrations, (about 0%, about 10%, about 20%, or about 70%) of autologous serum; or (2) normal saline ⁇ 0.9%) containing 1% human -serum .albumin,- ' 25U/mi of heparin sodium and (aboitt 0% or about 10%) autologous serum.
  • eherootactic hematopoietic ceil products comprising selected (1)34+ cells was (i) formulated either in PBS-serum or in saline-serum and (ii) either passed through the catheter immediately or passed through the catheter after a prolonged stability testing storage interval at about 4°C to about 8°C, they maintained an average of 96.6% viability (range 92.5% - 98.6%) and an average CXC -mediated migratory capacity of 1 1.4% (range 2.4%- 30.6%), representing a total time .from harvest to mobility analysis of up to 4$ hours,
  • Fig. 3 the product of the described invention comprising selected CD34' cells when formulated in 10% serum, retained 3 .25%, ⁇ 1%, 6%, and 5.8% of its CX)3 +CXC 4-mediaied migratory capacity about 24, about 32, about 48 and about 56 hours after harvest, respectively.
  • Fig. 3 further shows that the product of the described invention comprising selected CD34+ cells when formulated in 20% serum retained 18.25%, 10,25%, 17% and. 1.1% of its CD34+ ⁇ CXCR, ⁇ niediated, migratory capacity about 24, about 32, about 48 and about 56 hours after harvest, respectively.
  • stabilizing amount refers to the amount of serum that, when included in the formulation of the product of the described invention ..comprising selected CD34 ⁇ cells, enables these cells: to retain their CXC -4 mediated chemotactic activity and hematopoietic colony .forming-ability.
  • CD34+CXCR-4+ cells obtained from healthy volunteers and from patients to which autologous serum was added maintained, theirrao li lv out to 72 hours.
  • CD34+ cells were isolated from the bone marrow of healthy vol unteers and of patients by the mini-bone marrow harvest procedure as described in Example 3 under identical conditions; and the chemotactic hematopoietic stem ceil product was created as described in Examples 4 and 5,.. The products then were formulated with or without >20% autologous serum, and tested at 24, 48 and 72 hours.
  • Table 25 14-day sterility testing of nucleated cell (NQ ' Samples inoculated with specific species of microorganism (4 ⁇ H) microbes in 21-rol C sample' ⁇ .
  • Example 1 In accordance with the disclosure in Example 1 , a total of 31 subjects were consented, .eligible and enrolled in the study.
  • The. 31 patients enrolled, in the phase ! study were randomly assigned to an autologous -stem cell .harvest . treatment group or to a control group five days after an ST elevation myocardial infarction (STEM!) characterized by a prolonged period of hypoperfusion . ⁇ meaning blocked blood supply)
  • STEM ST elevation myocardial infarction
  • 16 were in the treatment group and 15 in the control group.
  • the first subject at each Center was randomized, to either treatment or control, and each subsequen patient was enrolled into alternating treatment or control groups.
  • CD34+ cells were isolated, from the one marrow by the mku-boae marrow harvest procedure as described In Example 3 within 5-8 days post stent replacement. Harvested marrow then was shipped to the cOMP cell processing facility as described in Example 4 and isolated as described in Example 5.
  • the dosing cohorts consisted of 5 subjects in cohorts 1 and 2. 6 subjects in cohort 3. and 1.5 control subjects.
  • the ehemoiactic hematopoietic stem ceil product of the invention comprised 5 x 1 f isolated CD34+ hematopoietic stem cells containing a
  • hematopoietic stem cell product of the invention comprised 10 x IO 6 isolated €1)34+
  • hematopoietic stem cells containing a snbpopulation of at least 0.5 x 10* potent CD34+ ceils expressing CXCR-4 and having CXGR-4 mediated chemotaetic activity [ epresented as " 10 M”j.
  • the ehemoiactic hematopoietic stem cell product of the invention comprised .
  • a sterile pharmaceutical composition of the described invention was delivered to each subject in cohorts 1 , 2, and 3 parenteral!" by infusion via the infarcf-related artery through a catheter seven to eleven days following the STEMI
  • the sterile pharmaceutical composition comprised: (a) a therapeutically effective amount of a sterile chemotactic hematopoietic stem cell product, the chemotactic hematopoietic stem cell product comprising an enriched population of isolated €D34- ⁇ - cells containing subpopulation of potent, cells having chemotactic activity; which, when passed through the catheter remained potent, and (b) a stabilizing amount of serum.
  • Cardiac function follow-up was performed at 3 and 6 months post-infusion.
  • Cardiac infarct region perfusion was assessed at 6 months post infusion. Both perfusion and functional follow-up testing, was assessed by a core lab facility ' blinded, to the study treatment status of each subject Comparison of these results to baseline indices wag performed. Long term iMIow-up visits ' are conducted at 1-2 ' onths nd telephone i nterview with subjects will he made annually a years 2 through 5.
  • SPECT single-photon emission computerized tomograph
  • SPECT SCAN Resting Total Severity Score
  • the data from Resting Total Severity Score represents cardiac perfusion, i.e., blood flo at the microvascular level, and muscle function, in brief the technetium dye used in a SPECT SCAN is taken up by the heart muscle. If the heart muscle is healthy and takes up the dye, it appears white.
  • RTSS data for .oomreated control subjects show neither neoangiogenesis or prevention of cell death.
  • a subtherapeutic dose of cells i.e., 5 x 106 CD34-i- cells containing a subpppulation of at least 0,5 x 106 potent CD34+ cells expressing CXCR-4 and having CXCR-4 mediated chemotactic activity
  • RTSS data showed neither neoangiogenesis or prevention of ceil death, improvement ' in RTSS was seen only in subjects treated with 10 % 106 or more CD34 cells containing a subpopukom of at least 0.5 x 106 potent CD34+ cells expressing CXCR-4 and having CXCR-4 mediated chemotactic activity.
  • This dose is the minimal t ⁇ erapeudcdly-eliective dose.
  • a first aliquot of the composition is administered a a first infusion date
  • a second aliquot, of the composition is administered at a second infusion date
  • a third aliquot of the composition is administered at a third infusion date, and so on.
  • the scheduling, of infusion dates is d.etemiined for a given patient by the treating practitioner according to Ms/her medical judgment
  • the first infusion date is at least about one day, at least about two days, at least about three days, at least about four days, at least about five days, at least about six days, at least about 7 days, at least about 8 days, at least about 9 days, at least about 10 days, at least about 1 1. days, at least about 12 days, at. least about 1 days, at least about 14 days, at least about 15 days, at least about 16 days, at least about 17 days, at least about 18 days, at least about 1 days, -at least about 20 days, at least about 21 days, at least about 22 days, at least about 23 days, at least about 24 days, at least about 25 days, at least about 26 days, at least about 2?
  • the first infusion date is at least about 1 month, at least about 2 months, at least about. 3 months, at least about 4 months, at least about 5 months, at least about 6 months, at least about 7 months, at least: about 8 months, at least about 9 months, at least about 10 months, at least about 1 1 months,- at least about 12 months, at least about 13 months, at. least about 14 months, at least about 1.5 months, at least about 16 months, at least about 1.7 months, at least about 18 . months, at least about ⁇ 9 months, at least about 20 months, at least about 21 months, at least about 2.2 months, at.
  • At least about 23 mouths at least about 24 months, at least about 30 months, at least about 36 months, at least about 42 months, at least about 48 months, at least about 54 months, at least about 60 months, at least about.66 months, at least about 72 months, at least about 78 months* at least about 84 months, a least about 90 months, at least about 96 months, at least about 102 months, at least about 1 8 months, at least about.
  • the first infusion date is at least 3 years, 4 years, 5 years, 6 years, 7 years, 8 years, 9 years, 10 years, 1. 1 years, 12 years, 13 years, 14 years, 15 years, 16 years 17 years, 18 years, 1 years, 20 years, 21 years, 22 years, 23 years, 24 years, 25 years, 26 years, 27 years, 28 years, 29 years, 30 years, 31 years, 32 years, 33 years, 34 years. 35 years, 36 years 37 years, 38 years, 3 years, 40 years or more after occurrence of an AMI.
  • the second infusion date is at least, about one day, at least about two days, at least, about three days, at least about four days, at least about five days, at least about six days, at least about 7 days, at least about 8 days, at least about 9 days, at least about 10 days, at least about 1 1 days, at least about 12 days, at least about 13 days, at least about 14 days, at least about 15 days, at least about 16 days, at least about 17 days, at least about I S days, at least about 19 days, at least about 20 days, at least about 21 days, at least about 22 days, at least about 23 days, at least about 24 days, at least about 25 days, at least about 26 days, at least about 27 days, at least about 28 days, at least about 29 days, at least about 30 days or more after occurrence of an AMI.
  • the second infusion, date is at least about 1 month, at least about 2 months* at leas! about 3 months, at least about 4 months, at least about 5 months, at least about 6 months, at least about 7 months, at least about 8 months, at least about 9 months, at least about.10 months, at least about 1 1 months, at least about 12 months, at least about 1.3 months, at least about 14 months, at least about 15 months, at least about 16 moBths, at least about 17 months, at least about 18 months, at least about 19 months, at least about 0 ⁇ months, at least .about 2.1.
  • .months at least about 22 .months, at least about 23 months, at leas about 24 mouths, at least about 30 months, at least about 36 months, si least about 42 months, at least about 48 months, at least about 54 months, at least abo u t 60 mon hs, at least about 66 months, at least about 72 months, at least about 78 months, at least about 84 months, at least about 90 months, at least about.96 months, at least about 102 months, at least about 108 mouths, at least about 1 14 months, at- least about 120 months, at least about 126 months, at least about 132 months, at least about 13 months, at. least about 144 months, at least about 150 months, at least about. 156 months, at least about.
  • 162 months 162 months,, at least about 1 8 months, at least about 174 months, at least about 1 SO months, at least about 1 86 months, at least about 192 months, at least about 1 8 months, at least about 204 months, at least about 2.10 months, at least about 216 months., at least, about 222 months, at least abou 228 months, at least about 234 months, at least about 240 months, or more after occurrence of an AMI.
  • the second infusion date is at least 3 years, 4 years, 5 years, 6 years, 7 years, .8 years, 9 years, 10 years, 1 1 years, 12 years, 13 years, 14 years, 15 years, 16 years 17 years, I S years, 1 years, 20 years, 21 years, 22 years, 23 years, 24 years. 25 years, 26 years, 27 years, 28 years, 29 years, 30 years, 31. years, 32 years, 33 years, 34 years, 35 years, 36 years 37 years, 38 years, 39 years, 40 years or more after occurrence of an AMI.
  • the third infusion date is at least about one day, at least about two days, at least about three days, at least about four days, at least about five days, at least about six days, at least abo t 7 days, at least about 8. days, at least about days, at least about 10 days, al least about 11 days, at least about 12 days, ai least about 13 days, at least about 14 days, at least, about 15 days, at least about 16 days, at least about 1 ? days, at least about 18 days, at least about 19 days, at least about 20 days, at least about 21 days, at least about 22 days, at least about 23 days, at least about 24 days, at least about 25 days, at least about 26 days, at least about 2?
  • the third infusion date is at least about 1 month, at least about 2 months, at least about 3 months, at least about months, at least about 5 months, at least about 6 months, , at least about 7 months, at .least about 8 months, at least about 9 months, at least about 10 months, at least about 1 1 months, at least about 12 months, a least about 13..months, at least about 14 months, at least about 15. months, at least about 1.6 months, at least, about 17 months, at least about 18 months, at least about.
  • the first infusion date is at least. 3 years, 4 years, 5 years, 6 years, 7 years, 8 years, 9 years, 10 years, 11 years, 12 years, 1 years, 14 years, 15 years, 16 year 17 years, 18 years, 1 years, 20 years, 21 years, 22 years, 23 years, 24 years, 25 years, 26 years, 27 years, 28 years, 29 years, 30 years, 31 years, 32 years.
  • Eligible subjects patients presenting with symptoms and clinical findings suggestive of a myocardial infarction and eligible for inclusion in the study will be selected as described in Example I and catheterized as described in Example 2.
  • the nonexpanded, isolated population of autologous mononuclear cells comprising potent CD34+ cells will be acquired from the subject/patient as described in Example 3 and, in some embodiments, the harvested bone marrow will be transported to the processing facility as described in Example 4.
  • CD34+ cells will be selected from the harvested bone marrow product as described in Example 5.
  • the Isolex 300i system will be used to process the EBC-depleted product or the bone- marrow product whose RBC volume is ⁇ 20 ml according to the following processing steps
  • CD34 positive (CD34+) cells are labeled specifically for selection by incubation with the Isolex 300? CD34 monoclonal antibody (Mab);
  • hematopoietic stem cell product containing at least 10 x l( CD34r cells will be formulated a described in Example 7. transported to the catheterization facility as described in Example 8, and infused into the patient as described in Example 9 at the first infusion date.
  • a plurality of aliquots of the nonexpanded, isolated population of autologous mononuclear cells containing CD34* cells, which further contain a sub/population of CD34+/CXCR4+ cells that ' have CXCR- 4-mediated chemotactic activity will be frozen at -86 ' °C and cryosiored in the vapor phase of a liquid nitrogen iieezer for subsequent administration, (see ryopreservation Study" below).
  • the ⁇ ⁇ from both donors will, be pooled and then divided into two equal fractions. One fraction will be used as a fresh (u frozen) product control and the other fraction will be used for the cryopreservation test.
  • Table 28 Age and gender of the bone marrow donors for the
  • Table 29 summarizes the sample volume, RBC content and the yield, viability and purity of the cells in the pre-processed MMH following 24-h storage in a 2-8 C refrigerator.
  • fable 30 presents the RBC content, viability and cell recovery of pooled MMH alter RBC reduction: fOWeOJ Table 30: Post RBC redaction - RBC content and cell qualify
  • each of the pooled MMH samples was divided into two equal fractions. One was used as a fresh (unfrozen) control and the other one was used fer the cryopreservation test.
  • cryoproteeiant was loaded evenly into two 250 ml. Cryocyte containers, frozen in a mechanical freezer (--86 a C) and hen stored eryopreserved in the vapor phase of a LNF according to the Protocol. Table 31 presents data obtained from post-thawed and washed MMH:
  • PBS Working Solution contained 1% HSA and 0.41 % sodium citrate ( /v) in PBS (i.V ' and Mg *+ free). Washing of cells with this solution was performed according to that instructed in the Protocol.
  • This wash solution contained 2% Dextran 40, ⁇ 3 ⁇ 4 HSA and 0.4% Na citrate in PBS (Ca M and Mg vv -free).
  • the thawed sample was expanded with 200 ml of this solution and was then washed twice each with 200 mi of this solution. Centrifiigation was set for 600 g, 10 tniautes at 20°C. The washed cells were resuspended with 150 ml PBS Working Solution for Isoiex process.
  • This solution contained Dextrao 40 and 4,2% HSA in saline.
  • the washing procedure was essentially as described for the 2 Dextran 40 was solution.
  • Table 32 summarizes the Cl>34+ cell quality and recovery of the ehemotaetk hematopoietic stem ceil product prepared from the unfrozen and cryopreserved MMH following isolex processing. 000465J Table 32: Pos Isolex - Cell quality and recovery of cells
  • Table 33 Post infusion through catheter - CD34+ cell purity, viability and recovery
  • Table 34 Post infusion through catheter ⁇ CXCR-4 expressing €034+ cells ⁇ % of .total CD34+ cells).
  • the catheter and the central lumen were 1 st washed aud flushed with 70% isopropyl alcohol and then with sterile PBS, The central lumen was then injected with air in order to remove the residaal liquid inside. The washing procedure was performed inside a bio-safety cabinet.
  • cryopreservati n test RBC reduced MMH samples were eryopreserved according to PCX protocol for cryopreservation of bone marrow for transplantation where MMH samples mixed with equal volume of cryoprotectant with final concentration of 5% DMSO, 2,5% MSA. nd 2, 1 % Hetastareh. (from liquid source 6% ' Hetastarch,. Hospira). were- frozen at >83 ⁇ 4 3 ⁇ 4 C and then eryostored in the vapor phase of a LNF.
  • a chemotactic hematopoietic stem cell product prepared from frozen and thawed aliquots of a sterile nonexpanded, isolated population of autologous mononuclear cells comprising CD34- - cells, which further contain a subpop lation of potent CD34 ⁇ /CXCR -t- cells thai have CXCR-4-roediated chemotactic activity will be used for infusion. Samples of thisc-hemotactic hematopoietic stem cell product will be removed to be assayed for WRC count, by flow cytometry (for CD34-t cell enumeration and viability), Gram stain, and sterility.
  • the chemotactic hematopoietic stem cell product will be released for infusion, within about 48 hours to about 72 bouts of thawing of the sterile nonexpaodcd, isolated population of autologous mononuclear cells only if it meets the following criteria:

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Hematology (AREA)
  • Zoology (AREA)
  • Immunology (AREA)
  • Biotechnology (AREA)
  • Cell Biology (AREA)
  • Developmental Biology & Embryology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Cardiology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Epidemiology (AREA)
  • General Engineering & Computer Science (AREA)
  • Virology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Vascular Medicine (AREA)
  • Urology & Nephrology (AREA)
  • Hospice & Palliative Care (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Medicinal Preparation (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

The described invention provides methods and regimens for treating adverse consequences of a persistent and progressive myocardial injury-due to a vascular insufficiency that occurs early or late in a subject in need thereof, and progressive myocardial injury-preventing compositions that contain a chemotactic hematopoietic stem cell product, and, optionally, an additional active agent.

Description

COMPOSITIONS AND METHODS FOR TREATING PROGRESSIVE MYOCARDIAL INJURY DUE TO A VASCULAR INSUFFICIENCY
CROSS REFERENCE TO RELATED APPLICATIONS
[0001] This application claims the benefit of the filing date of U.S. Application
1 1/552,396 (filed October 24, 2006), which issued as U.S. Patent No. 7,794,705, U.S.
12/401,291 (filed March 10, 2009), which is a divisional application of Application 1 1/552,396, U.S. provisional applications 61/1 19,552 (filed December 3, 2008) and U.S. 61/169,850 (filed April 16, 2009). Each of these applications are incorporated herein by reference in their entirety.
FIELD OF THE INVENTION
[0002] The described invention relates to compositions comprising a chemotactic hematopoietic stem cell product and methods of use thereof for treating early or late adverse consequences of vascular insufficiency.
BACKGROUND OF THE INVENTION
The Cardiac Cycle
[0003] The term "cardiac cycle" is used to refer to all or any of the mechanical events related to the coronary blood flow or blood pressure that occurs from the beginning of one heartbeat to the beginning of the next. Blood pressure increases and decreases throughout the cardiac cycle. The frequency of the cardiac cycle is the heart rate. Every single 'beat' of the heart involves five major stages: (l)"late diastole," which is when the semilunar valves close, the atrioventricular (Av) valves open and the whole heart is relaxed; (2) "atrial systole," which is when the myocardium of the left and right atria are contracting, AV valves open and blood flows from atrium to ventricle; (3) "isovolumic ventricular contraction," which is when the ventricles begin to contract, AV and semilunar valves close, and there is no change in volume; (4)
"ventricular ejection," which is when the ventricles are empty but still contracting and the semilunar valves are open; and (5) "isovolumic ventricular relaxation," when pressure decreases, no blood is entering the ventricles, the ventricles stop contracting and begin to relax, and the semilunar valves are shut because blood in the aorta is pushing them shut. The cardiac cycle is coordinated by a series of electrical impulses that are produced by specialized heart cells found within the sino-atrial node and the atrioventricular node.
Coronary Blood Flow
[0004] The flow of blood through the coronary arteries is pulsatile, with characteristic phasic systolic and diastolic flow components. Systolic flow, which relates to the contraction or pumping phase of the heart cycle, has rapid, brief, retrograde responses. Diastolic flow, which relates to the relaxation or filling phase of the heart cycle, occurs during the relaxation phase after myocardial contraction, with an abrupt increase above systolic levels and a gradual decline parallel with that of aortic diastolic pressures. Intramural coronary blood volume changes during each heartbeat, with the myocardium accommodating the volume change brought about by muscular contraction. Coronary venous flow is out of phase with coronary arterial flow, occurring predominantly in systole and nearly absent during diastole.
[0005] For each heartbeat, blood pressure varies between systolic and diastolic pressures.
The term "systolic pressure" refers to the peak pressure in the arteries, which occurs near the end of the cardiac cycle when the ventricles are contracting. The term "diastolic pressure" refers to the minimum pressure in the arteries, which occurs near the beginning of the cardiac cycle when the ventricles are filled with blood.
[0006] Coronary blood flow not only is phasic but also varies with the type of vessel and location in the myocardium. Coronary arterioles appear to have specialized regulatory elements along their length that operate "in series" in an integrated manner. A system of multiple functional "valves" permits fine control of the coronary circulation. The smallest arterioles dilate during metabolic stress, resulting in reduced microvascular resistance and increased myocardial perfusion. Stenosis or narrowing of a blood vessel produces resistance to blood flow related directly to the morphologic features of the stenosis. As the upstream arteriolar pressure decreases due to a fall in distending pressure across the stenosis, myogenic dilation of slightly larger arterioles upstream occurs and causes an additional decrease in resistance. Increased flow in the largest arterioles augments shear stress and triggers flow-mediated dilation, further reducing the resistance of this network.
[0007] The arterial and venous pulsatile flow characteristics of the heart are dependent on intramyocardial compliance. The term "compliance" refers to a measure of the tendency of a hollow organ to resist recoil toward its original dimensions upon removal of a distending or compressing force. The higher the compliance the more elastic the material. Compliance is calculated using the following equation, where AV is the change in volume, and ΔΡ is the change in pressure:
C=AV/AP
[0008] The capacity of the heart as a reservoir is controlled by resistance arterioles to coronary vascular inflow. Outlet resistance is related to intramural cardiac veins. The intramyocardial capillary resistance influences both arterial and venous responses but predominantly acts in concert with outlet resistance.
[0009] Approximately 75% of total coronary resistance occurs in the arterial system, which comprises conductance (Rl), prearteriolar (R2) and arteriolar and intramyocardial capillary vessels (R3). Normal epicardial coronary arteries in humans typically are 0.3 to 5 mm in diameter, and do not offer appreciable resistance to blood flow. Normally, large epicardial vessel resistance (Rl) is trivial until atherosclerotic obstructions compromise the lumen.
Precapillary arterioles (R2), 100 to 500 μπι in size) are resistive vessels connecting epicardial to myocardial capillaries and are the principal controllers of coronary blood flow. They contribute approximately 25% to 35% of total coronary resistance. Distal precapillary arteriolar vessels
(<100 μηι in diameter), the main site of metabolic regulation of coronary blood flow, are responsible for 40-50% of coronary flow resistance. The dense network of about 4000 capillaries per square millimeter ensures that each myocyte is adjacent to a capillary. Capillaries are not uniformly patent (meaning open; affording free passage), because precapillary sphincters regulate flow according to the needs of the myocardium.
[00010] Several conditions, such as left ventricular hypertrophy, myocardial ischemia, or diabetes, can impair the microcirculatory resistance (R3), blunting the maximal absolute increase in coronary flow in times of increased oxygen demand.
Ischemia
[00011] The myocardium depends almost entirely on aerobic metabolism, since oxygen stores in the heart are meager. Myocardial oxygen supply rises and falls in response to the oxygen (energy) demands of the myocardium. The term "autoregulation" refers to the ability to maintain myocardial perfusion at constant levels in the face of changing driving forces.
Autoregulation maintains coronary perfusion at relatively constant levels over a wide range of mean aortic pressure. When aortic pressure exceeds its upper or lower limits, coronary blood flow precipitously declines or increases proportionately.
[00012] The heart needs to be supplied with a sufficient quantity of oxygen to prevent underperfusion. When reduced perfusion pressure distal to stenoses is not compensated by autoregulatory dilation of the resistance vessels, ischemia, meaning a lack of blood supply and oxygen, occurs. Because the zone least supplied generally is the farthest out, ischemia generally appears in areas farthest away from the blood supply.
[00013] After total or near-total occlusion of a coronary artery, myocardial perfusion occurs by way of collaterals, meaning vascular channels that interconnect epicardial arteries.
Collateral channels may form acutely or may preexist in an under-developed state before the appearance of coronary artery disease. Preexisting collaterals are thin-walled structures ranging in diameter from 20 μιη to 200 μπι, with a variable density among different species. Preexisting collaterals normally are closed and nonfunctional, because no pressure gradient exists to drive flow between the arteries they connect. After coronary occlusion, the distal pressure drops precipitously and preexisting collaterals open virtually instantly. [00014] The term "myocardial ischemia" refers to a decrease in blood supply and oxygen to the cells of the myocardium. The development of myocardial ischemia has been attributed to two mechanisms: (1) increased myocardial oxygen demand, and (2) decreased myocardial perfusion and oxygen delivery. (Willerson, J.T. et al., J. Am. Coll. Cardiol. 8(1): 245-50 (1986)). Myocardial ischemia generally appears first and is more extensive in the
subendocardial region, since these deeper myocardial layers are farthest from the blood supply, with greater need for oxygen.
[00015] Transient ischemia, hibernating myocardium, and myocardial infarction are clinically different conditions.
[00016] Transient Ischemia. The term "transient ischemia" as used herein refers to a reversible (meaning that the myocytes survive the insult) narrowing of a coronary artery at rest or with exercise where there is no thrombus or plaque rupture but where blood supply cannot be met. Every time the heart's oxygen demand increases, an imbalance between oxygen demand and supply is created. Transient ischemia produces a cascade of events beginning with metabolic and biochemical alterations leading to impaired ventricular relaxation and diastolic dysfunction, impaired systolic function, and electrocardiographic abnormalities with ST segment alterations, followed by increased end-diastolic pressure with left ventricular dyssynchrony, hypokineses, akinesis, and dyskinesis, and lastly painful symptoms of angina. Even though ischemic myocytes experience physiological and metabolic changes within seconds of the cessation of coronary flow, resulting in T wave and sometimes ST segment abnormalities (but without serum enzyme elevation), no cell death results from the ischemia. Kloner, R.A. and Jennings, RB, Circulation 104: 2981-89 (2001). Once blood flow is re-established, a complete recovery of myocyte contractile function takes place.
[00017] Although angina pectoris (chest pain) may be a symptom of transient ischemia, by and large transient ischemia is silent (meaning ST-segment depression of at least 1 mm is present without associated symptoms, e.g., chest pain) in 79% of subjects. In most patients with stable angina, for example, physical effort or emotion, with a resultant increase in heart rate, blood pressure, or contractile state, or any combination thereof, increases myocardial oxygen demand without an adequate delivery in oxygen delivery through tightly narrowed (stenosed) coronary arteries. More than 40% of patients with stable angina treated with one or more antianginal drugs have frequent episodes of silent ischemia, which has been shown to predict a higher risk of coronary events and cardiac death. Deedwania, PC, Carbajal, EV, Arch. Intern. Med. 150:
2373-2382 (1991).
[00018] Chronic Myocardial Ischemia. The term "chronic myocardial ischemia (CMI)" as used herein refers to a prolonged subacute or chronic state of myocardial ischemia due to narrowing of a coronary blood vessel in which the myocardium "hibernates", meaning that the myocardium downregulates or reduces its contractility, and hence its myocardial oxygen demand, to match reduced perfusion, thereby preserving cellular viability and preventing myocardial necrosis. This hibernating myocardium is capable of returning to normal or near- normal function on restoration of an adequate blood supply. Once coronary blood flow has been restored to normal or near normal and ischemia is resolved, however, the hibernating
myocardium still does not contract. This flow-function mismatch resulting in a slow return of cardiac function after resolution of ischemia has been called stunning. The length of time for function to return is quite variable, ranging from days to months, and is dependent on a number of parameters, including the duration of the original ischemic insult, the severity of ischemia during the original insult, and the adequacy of the return of the arterial flow. A number of studies have provided evidence for inflammation in hibernating myocardium. Heusch, G. et al., Am. J. Physiol. Heart Circ. Physiol. 288: 984-99 (2005). A study conducted in a porcine model of myocardial hibernation in which the mean rest (left anterior descending coronary artery (LAD) coronary blood flow was reduced to about 60% of baseline for a period of 24 hours to four weeks, detected apoptotic myocytes in all experimental pigs in the hibernating regions supplied by the stenotic LAD, suggesting that functional downregulation may not be adequate to prevent gradual, ongoing myocyte death through apoptosis in hibernating myocardium. Chen, C, et al., J. Am. Coll. Cardiol. 30: 1407-12 (1 97). [00019] Acute Myocardial Infarction (AMI). Another type of insult occurs during AMI. AMI is an abrupt change in the lumen of a coronary blood vessel which results in ischemic infarction, meaning that it continues until heart muscle dies. On gross inspection, myocardial infarction can be divided into two major types: transmural infarcts, in which the myocardial necrosis involves the full or nearly full thickness of the ventricular wall, and subendocardial (nontransmural) infarcts, in which the myocardial necrosis involves the subendocardium, the intramural myocardium, or both, without extending all the way through the ventricular wall to the epicardium. There often is total occlusion of the vessel with ST segment elevation because of thrombus formation within the lumen as a result of plaque rupture. The prolonged ischemic insult results in apoptotic and necrotic cardiomyocyte cell death. See Kajstura, J., et al., Lab Invest. 74: 86-107 (1996). Necrosis compromises the integrity of the sarcolemmal membrane and intracellular macromolecules such that serum cardiac markers, such as cardiac-specific troponins and enzymes, such as serum creatine kinase (CK), are released. In addition, the patient may have electrocardiogram (ECG) changes because of full thickness damage to the muscle. An ST-Elevation Myocardial Infarction (STEMI) is a larger injury than a non-ST-elevation myocardial infarction.. ST-segment elevation and Q waves on the ECG, two features highly indicative of myocardial infarction, are seen in only about half of myocardial infarction cases on presentation.
[00020] AMI remains common with a reported annual incidence of 1.1 million cases in the United States alone (Antman, E. M., Braunwald, E., Acute Myocardial Infarction, in Principles of Internal Medicine, 15th Ed., Braunwald, E. et al., Eds., New York: McGraw-Hill (2001 )). Preclinical and clinical data demonstrate that following a myocardial infarction, the acute loss of myocardial muscle cells and the accompanying peri-infarct border zone hypo-perfusion result in a cascade of events causing an immediate diminution of cardiac function, with the potential for long term persistence. The extent of myocardial cell loss is dependent on the duration of coronary artery occlusion, existing collateral coronary circulation and the condition of the cardiac microvasculature. Paul et al., Am. Heart J. 131 : 710-15 (1996); Pfeffer, M. A.,
Braunwald, E., Circulation 81 : 1 161-72 (1990); Sheilban, I. e. al., J. Am. Coll. Cardiol. 38: 464- 71 (2001); Braunwald E., Bristow, M. R., Circulation 102: IV- 14-23 (2000); Rich et al., Am. J. Med. 92:7-13 (1992); Ren et al., J. Histochem. Cytochem. 49: 71-79 (2002); Hirai, T. et al., Circulation 79: 791-96 (1989); Ejiri, M. et al., J. Cardiology 20: 31-37 (1990). Because myocardial cells have virtually no ability to regenerate, myocardial infarction leads to permanent cardiac dysfunction due to contractile-muscle cell loss and replacement with nonfunctioning fibrotic scarring. Frangogiannis, N. G., et al., Cardiovascular Res. 53(1): 31-47 (2002).
Moreover, compensatory hypertrophy of viable cardiac muscle leads to microvascular insufficiency that results in further demise in cardiac function by causing myocardial muscle hibernation and apoptosis of hypertrophied myocytes in the peri-infarct border zone.
[00021] Among survivors of myocardial infarction, residual cardiac function is influenced by the extent of ventricular remodeling (meaning changes in size, shape, and function, typically a progressive decline in function, of the heart after injury). Alterations in ventricular topography (meaning the shape, configuration, or morphology of a ventricle) occur in both infarcted and healthy cardiac tissue after myocardial infarction. Pfeffer, M. A., Braunwald, E., Circulation 81 : 1 161-72 (1990). Ventricular dilatation (meaning a stretching, enlarging or spreading out of the ventricle) causes a decrease in global cardiac function and is affected by the infarct size, infarct healing and ventricular wall stresses. Recent efforts to minimize remodeling have been successful by limiting infarct size through rapid reperfusion (meaning restoration of blood flow) using thromobolytic agents, and mechanical interventions, including, but not limited to, placement of a stent, along with reducing ventricular wall stresses by judicious use of pre-load therapies and proper after-load management. Id. Regardless of these interventions, a substantial percentage of patients experience clinically relevant and long-term cardiac dysfunction after myocardial infarction. Sheiban, I. et al., J. Am. Coll. Cardiol. 38: 464-71 (2001). Despite revascularization of the infarct related artery circulation and appropriate medical management to minimize ventricular wall stresses, a significant percentage of these patients experience ventricular remodeling, permanent cardiac dysfunction, and consequently remain at an increased lifetime risk of experiencing adverse cardiac events, including death. Paul et al., Am. Heart J. 131 : 710-15 (1996); Pfeffer, M. A., Braunwald, E., Circulation 81 : 1161-72 (1990).. [00022] At the cellular level, immediately following a myocardial infarction, transient generalized cardiac dysfunction uniformly occurs. In the setting of a brief (i.e., lasting three minutes to five minutes) coronary artery occlusion, energy metabolism is impaired, leading to demonstrable cardiac muscle dysfunction that can persist for up to 48 hours despite immediate reperfusion. This so-called "stunned myocardium phenomenon" occurs subsequent to or after reperfusion and is thought to be a result of reactive oxygen species. The process is transient and is not associated with an inflammatory response. Frangogiannis, N. G., et al., Cardiovascular Res. 53(1): 31 -47 (2002). After successful revascularization, significant recovery from stunning occurs within three to four days, although complete recovery may take much longer. Boli, R., Prog. Cardiovascular Disease 40(6): 477-515 (1998); Sakata, K. et al., Ann. Nucleic Med. 8: 153-57 (1994); Wollert, K. C. et al., Lancet 364: 141-48 (2004).
[00023] Coronary artery occlusion of more significant duration, i.e., lasting more than five minutes, leads to myocardial ischemia (i.e. an insufficient blood flow to the heart's muscle mass) and is associated with a significant inflammatory response that begins immediately after reperfusion and can last for up to several weeks. Frangogiannis, N. G., et al., Cardiovascular Res. 53(1 ): 31-47 (2002); Frangogiannis, N. G. et al., Circulation 98: 687-798 (1998).
[00024] The inflammatory process following reperfusion is complex. Initially it contributes to myocardial damage but later leads to healing and scar formation. This complex process appears to occur in two phases. In the first so-called "hot" phase (within the first five days), reactive oxygen species (in the ischemic myocardial tissue) and complement activation generate a signal chemotactic for leukocytes (chemotaxis is the directed motion of a motile cell, organism or part towards environmental conditions it deems attractive and/or away from surroundings it finds repellent) and initiate a cytokine cascade. Lefer, D. J., Granger, D. N., Am. J. Med. 4:315-23 (2000); Frangogiannis, N. G., et al., Circulation 7:699-710 (1998). Mast cell degranulation, tumor necrosis factor alpha (TNFa) release, and increased interleukin-6 (IL-6), intercellular adhesion molecule 1 ("ICAM-1 " or CD-54, a receptor typically expressed on endothelial cells and cells of the immune system), selectin (L, E and P) and integrin (CD1 la, CD1 lb and CD 18) expression all appear to contribute to neutrophil accumulation and degranulation in ischemic myocardium. Frangogiannis, N. G. et al., Circulation 7: 699-710 (1998), urrelmeyer, K. M, et al., Proc. Natl Acad. Sci USA. 10: 5456-61 (2000); Lasky, L. A., Science 258: 964-69 (1992); Ma, X. L., et al., Circulation 88(2): 649-58 (1993); Simpson, P. J. et al., J. Clin. Invest. 2: 624-29 (1998). Neutrophils contribute significantly to myocardial cell damage and death through microvascular obstruction and activation of neutrophil respiratory burst pathways after ligand-specific adhesion to cardiac myocytes. Entman, M. L., et al., J. Clin. Invest. 4: 1335-45 (1992). During the "hot" phase, angiogenesis is inhibited due to the release of angiostatic substances, including interferon gamma-inducible protein (IP 10). Frangogiannis, N. G., et al., FASEB J. 15: 1428-30 (2001).
[00025] In the second phase, the cardiac repair process begins (about day 6 to about day 14), which eventually leads to scar formation (about day 14 to about day 21) and subsequent ventricular remodeling (about day 21 to about day 90). Soon after reperfusion, monocytes infiltrate the infarcted myocardium. Attracted by complement (C5a), transforming growth factor Bl ("TGF-B 1 ") and monocyte chemotactic protein 1 ("MCP-1 "), monocytes differentiate into macrophages that initiate the healing process by scavenging dead tissue, regulating extracellular matrix metabolism, and inducing fibroblast proliferation. Birdshall, H. H., et al., Circulation 3: 684-92 (1997). Secretion of interleukin 10 (IL-10) by infiltrating lymphocytes also promotes healing by down-regulating inflammatory cytokines and influencing tissue remodeling.
Frangogiannis, N. G. et al., J. Immunol. 5:2798-2808 (2000). Mast cells also appear to be involved in the later stages of myocardial repair by participating in the formation of fibrotic scar tissue. Stem Cell Factor (SCF) is a potent attractor of mast cells. SCF mRNA has been shown to be up-regulated in ischemic myocardial segments in a canine model of myocardial infarction and thus may contribute to mast cell accumulation at ischemic myocardial sites. Franigogiannis, N. G. et al., Circulation 98: 687-798 (1998). Mast cell products (including TGF-B, basic fibroblast growth factor (bFGF), vascular endothelial growth factor (VEGF) and gelatinases A and B) induce fibroblast proliferation, influence extracellular matrix metabolism, and induce angiogenesis. Fang, K. C, et al., J. Immunol. 162: 5528-35 (1999); Takeshi, S., et al., Cardiology 93: 168-74 (2000).
[00026] Following a myocardial infarction, neoangiogenesis occurs after the "hot" phase of the inflammatory process subsides (about day 5) coincident with rising levels of VEGF (VEGF peaks at about day 7 and gradually subsides to baseline at about day 14 to about day 21 ). During this phase of the healing process, endothelial precursor cells (EPCs) are mobilized and recruited to the infarct site. Shinitani, S., et al., Circulation 103: 2776-79 (2001). Without being limited by theory, it has been suggested that the chemokine stromal cell derived factor- 1 (SDF- 1), which is the ligand for the CXCR-4 chemokine receptor expressed by CD34+ cells, also plays a role in homing of cells to areas of ischemic damage. Ceredini, D. J., et al., Nature Medicine 10: 858-63 (2004); Askari, A., et al., Lancet 362: 697-703 (2003); Yamaguchi, J. et al., Circulation 107: 1322-34 (2003). While it is known that SDF-1 plays a role in hematopoiesis and is involved in migration, homing and survival of hematopoietic progenitors, and while SDF-1 has been implicated in ischemic neovascularization in vivo by augmenting EPC recruitment to ischemic sites (Yamaguchi et al. Circulation 107: 1322-1328 (2003), SDF-l 's role in neoangiogenesis is not certain. There is suggestive evidence implicating SDF-1. For example, SDF-1 gene expression is upregulated during hypoxia, a deficiency of oxygen in the tissues, by hypoxia inducible factor- 1. Furthermore, CD34+ cells are capable of homing to areas of ischemia, rich in SDF-1 , including infarcted myocardium. Askari et al., Lancet 362: 697-703 (2003). Moreover, virtually all CD34+ CXCR-4+ cells co-express VEGF-2 and therefore migrate in response to VEGF as well as SDF-1. Peichev M., et al., Blood 95: 952-58 (2000). CD34+CXCR-4+VEGF-1 cells, once recruited, are capable of contributing to neoangiogenesis. Yamaguchi, J. et al., Circulation 107: 1322-34 (2003).
[00027] The Peri-Infarct Border Zone
[00028] The zone of dysfunctional myocardium produced by coronary artery occlusion extends beyond the infarct region to include a variable boundary of adjacent normal appearing tissue. (Hu, Q., et al., Am. J. Physiol. Heart Circ. Physiol. 291 : H648-657 (2006)). This ischemic, but viable, perinfarct zone of tissue separates the central zone of progressive necrosis from surrounding normal myocardium. The peri-infarct zone does not correlate with enzymatic parameters of infarct size and is substantially larger in small infarcts. Stork, A., et al., European Radiol. 16(10): 2350-57 (2006).
[00029] Ischemia due to edema and compression of the blood vessels in the border zone may be very important to outcome after an AMI. It is known, for example, that after an AMI, transient ischemia occurs in the border zones, and that percutaneous coronary interventions, which open up the infarct-related artery, can adversely affect the health of the peri-infarct border zones. It has been suggested that intermediate levels of mean blood flow can exist as the result of admixture of peninsulas of ischemic tissue intermingled with regions of normally perfused myocardium at the border of an infarct. (Hu, Q., et al., Am. J. Physiol. Heart Circ Physiol. 291 : H648-657 (2006)). However, the boundary of the intermingled coronary microvessels, which in dogs is no more than 3 mm in width, cannot explain the relatively broad region of dysfunctional myocardium surrounding an infarct. Murdock, RH, Jr., et al., Cir. Res. 52: 451-59 (1983); Buda, AJ, et al., J. Am. Coll. Cardiol. 8: 150-58 (1986). Progressive dysfunction of this peri- infarct myocardium over time may contribute to the transition from compensated remodeling to progressive heart failure after an AMI.
Heart Failure
[00030] Heart failure is a complex clinical syndrome that arises secondary to
abnormalities of cardiac structure and/or function that impair the ability of the left ventricle to fill or eject blood. See Hunt, S. J. Am. Coll. Cardiol. 46: el-e82 (2005). It is a progressive condition where the heart muscle weakens and cannot pump blood efficiently. Patients may be categorized as having heart failure with depressed ejection fraction ("EF")(referred to as "systolic failure"), or having heart failure with a normal EF or heart failure with a preserved EF (referred to as "diastolic failure"). Patients may have significant abnormalities of left ventricle (LV) contraction and relaxation and yet have no symptoms, in which case they are referred to as having "asymptomatic heart failure". When a patient with chronic heart failure deteriorates, the patient is referred to as having "decompensated heart failure", or, if the symptoms arise abruptly, as having "acute decompensated heart failure".
[00031] The various diagnostic criteria used to determine the presence of heart failure are shown in the following Table (V. L. Roger, Intl. J. Environ. Res. Public Health 7(4): 1807-30 (2010)):.
Figure imgf000014_0001
Figure imgf000015_0001
Figure imgf000016_0001
[00032] The prognosis of heart failure is poor with reported survival estimates of 50% at 5 years and 10% at 10 years; left ventricular dysfunction is associated with an increase in the risk of sudden death. Id.
[00033] To date, no ideal therapy exists for preventing the long term adverse
consequences of vascular insufficiency, particularly vascular insufficiency after myocardial infarction. Large vessel revascularization (meaning the successful placement of a stent) is insufficient in addressing increased demands posed by compensatory myocardial hypertrophy. As a result, infarct extension and fibrous replacement commonly occur, regardless of large vessel revascularization, appropriate medical management of ventricular wall stresses, and potential natural, albeit suboptimal, CD34+ cell-mediated neoangiogenesis (one of theories relating to the underlying cause of myocardial infarction is that the ability to mobilize these cells may be biologically limited).
[00034] Intense interest has developed in evaluating the ability of endothelial and myocardial precursor cells to limit damage to the myocardium after infarction and to limit or prevent ventricular remodeling. Significant preclinical data and some clinical data demonstrate the safety and potential of cell therapy using a variety of cell precursors (particularly
hematopoietic cells) to contribute to neoangiogenesis, limited cardiac myogenesis (principally by fusion), and muscle preservation in the myocardial infarct zone. See, e.g., Jackson, et al., J. Clin. Invest. 107: 1395-1402 (2001); Edelberg, J. M, et al., Cir. Res. 90: e89-e93 (2002); Schichinger, V. et al., New Engl. J. Med. 355 (12): 1210-21 (2006) (using bone marrow-derived progenitor cells); Assmus, B. et al., New Engl. J. Med. 355 (12) 1222-32 (2006) (using bone marrow- derived progenitor cells), but see Lunde, . et al., New Eng. J. Med. 355 (12): 1 199-209 (2006) (using bone marrow-derived progenitor cells).
[00035] Bone marrow consists of a variety of precursor and mature cell types, including hematopoietic cells (the precursors of mature blood cells) and stromal cells (the precursors of a broad spectrum of connective tissue cells), both of which appear to be capable of differentiating into other cell types. Wang, J. S. et al., J. Thorac. Cardiovasc. Surg. 122: 699-705 (2001); Tomita, S. et al., Circulation 100 (Suppl. II): 247-256 (1999); Saito, T. et al., Tissue Eng. 1 : 327- 43 (1995). Unmodified (i.e., not fractionated) marrow or blood-derived cells have been used in several clinical studies, for example, Hamano, K. et al., Japan Cir. J. 65: 845-47 (2001); Strauer, B. E., et al., Circulation 106: 1913-18 (2002); Assmus, et al., Circulation 106: 3009-3017 (2002); Dobert, N. et al., Eur. J. Nuel. Med. Mol. Imaging, 8: 1 146-51 (2004); Wollert, . C. et al., Lancet 364: 141 -48 (2004). Since the mononuclear fraction of bone marrow contains stromal cells, hematopoietic precursors, and endothelial precursors, the relative contribution of each of these populations to the observed effects, if any, remains unknown.
[00036] CD34 is a hematopoietic stem cell antigen selectively expressed on hematopoietic stem and progenitor cells derived from human bone marrow, blood and fetal liver. Yin et al., Blood 90: 5002-5012 (1997); Miaglia, S. et al., Blood 90: 5013-21 (1997). Cells that express CD34 are termed CD34+. Stromal cells do not express CD34 and are therefore termed CD34-. CD34+ cells isolated from human blood may be capable of differentiating into cardiomyocytes, endothelial cells, and smooth muscle cells in vivo. See Yeh, et al., Circulation 108: 2070-73 (2003). CD34+ cells represent approximately 1% of bone marrow derived nucleated cells; CD34 antigen also is expressed by immature endothelial cell precursors (mature endothelial cells do not express CD34). Peichev, M. et al., Blood 95: 952-58 (2000). In vitro, CD34+ cells derived from adult bone marrow give rise to a majority of the granulocyte/macrophage progenitor cells (CFU- GM), some colony-forming units-mixed (CFU-Mix) and a minor population of primitive erythroid progenitor cells (burst forming units, erythrocytes or BFU-E). Yeh, et al., Circulation 108: 2070-73 (2003). CD34+ cells also may have the potential to differentiate into, or to contribute to, the development of new myocardial muscle, albeit at low frequency.
[00037] Techniques have been developed using immunomagnetic bead separation to isolate a highly purified and viable population of CD34+ cells from bone narrow mononuclear cells. See U.S. Pat. Nos. 5,536,475, 5,035,994, 5, 130,144, 4,965,205, the contents of each of which is incorporated herein by reference. Two clinical studies support the clinical application of bone marrow derived CD34+ cells after myocardial infarction. See C. Stamm, et al., Lancet 361 : 45-46 (2003); Herenstein, B. et al., Blood Supplement, Abs. 2696 (2004).
Animal Models
[00038] Peripheral artery disease (PAD), also called peripheral vascular disease (PVD), is modeled by the hind limb model of ischemia in which the femoral artery of the mouse is tied off to simulate peripheral artery disease. PAD, which commonly affects the arteries supplying the leg and includes all diseases caused by the obstruction of large arteries in the arms and legs, can result from atherosclerosis, inflammatory processes leading to stenosis, an embolism or thrombus formation. Restriction of blood flow due to arterial stenosis or occlusion often leads patients to complain of muscle pain on walking (intermittent claudication). Any further reduction in blood flow causes ischemic pain at rest. This condition is called chronic limb ischemia, meaning the demand for oxygen cannot be sustained when resting. Ulceration and gangrene may then supervene in the toes, which are the furthest away from the blood supply, and can result in loss of the involved limb if not treated.
[00039] Therapies for limb ischemia have the goals of collateral development and blood supply replenishment. Bone marrow derived CD34+ mononuclear cells have been tested in such hindlimb ischemia models, but the hindlimb ischemia model does not model what takes place in the heart. A preferred therapy after AMI would stop cells from dying during recovery that leads to reverse remodeling and failure, or replace the dying cells with cardiomyocytes.
[00040] The closest animal model, the pig model, is not a good model of human disease because (i) all experiments generally are done in nonatherosclerotic animals, (ii) the animals are not treated with angioplasty, (iii) normal pigs do not embolize blood vessels; (iv) circulation of the pig is not exactly the same as human; and (iv) the peri-infarct border zone may not be the same.
[00041] A marginal improvement in angina symptoms recently was reported when CD34+ cells were mobilized with G-CSF, apheresed after 5 days, and then injected into an ischemic area of the heart based on Noga mapping. [Northwestern University (2009, April 1). Adult Stem Cell Injections May Reduce Pain And Improve Walking In Severe Angina Patients. ScienceDaily. Retrieved October 21 , 2010, from http://www.sciencedaily.com-
/releases/2009/03/090330091706.htm] Data from a phase I trial conducted by the present inventors has provided evidence that subjects treated with at least 10 x 106 isolated autologous CD34+ hematopoietic stem cells containing a subpopulation of at least 0.5 x 106 potent CD34+ cells expressing CXCR-4 and having CXCR-4 mediated chemotactic activity (n=9) experienced significant improvement in resting perfusion rates at 6 months compared to subjects receiving 5 million cells (n=6) and control (n=15), as measured by the SPECT Total Severity Score (-256 versus +13, p=0.01 ). U.S. Patent Applications 61/169,850 and 61/1 19,552, incorporated herein by reference.
[00042] The described invention is a therapy for preventing the long-term adverse consequences of vascular insufficiency, particularly vascular insufficiency that produces expansion of the myocardial infarct area after an AMI progressing to heart failure. It is proposed that administration of a potent dose of a nonexpanded, isolated population of autologous mononuclear cells enriched for CD34+ cells, which further contain a subpopulation of potent CD34+ cells expressing CXCR-4 and having CXCR-4-mediated chemotactic activity administered early or late after occurrence of an AMI can result in a reduction in major adverse cardiac events, including, but not limited to, premature death, recurrent myocardial infarction, the development of congestive heart failure, significant arrhythmias, and acute coronary syndrome, and the worsening of congestive heart failure, significant arrhythmias, and acute coronary syndrome.
SUMMARY OF THE INVENTION
[00043] The described invention provides progressive compositions and methods to treat adverse consequences of a progressive myocardial injury due to a vascular insufficiency.
According to some embodiments, the vascular insufficiency occurs early after an acute myocardial infarction resulting from underlying disease. According to some embodiments, the vascular insufficiency occurs late after an acute myocardial infarction resulting from underlying disease.
[00044] According to one aspect, the described invention provides a method of treating a progressive myocardial injury due to a vascular insufficiency, the method comprising the steps:
(a) acquiring a sterile nonexpanded, isolated population of autologous mononuclear cells comprising CD34+ cells, which further contain a subpopulation of potent CD34+/CXCR-4+ cells that have CXCR-4-mediated chemotactic activity from a subject under sterile conditions;
(b) sterilely enriching the CD34+ cells which further contain a subpopulation of potent
CD34+/CXCR-4+ cells that have CXCR-4-mediated chemotactic activity from the sterile nonexpanded, isolated population of autologous mononuclear cells comprising CD34+ cells, wherein the enriched CD34+ cells which further contain a subpopulation of potent
CD34+/CXCR-4+ cells that have CXCR-4-mediated chemotactic activity are a chemotactic hematopoietic stem cell product; (c) administering parenterally through a catheter on a plurality of infusion dates during lifetime of subject a sterile pharmaceutical composition, the sterile pharmaceutical composition comprising: (i) a therapeutically effective amount of the sterile chemotactic hematopoietic stem cell product, wherein the therapeutically effective amount of the chemotactic hematopoietic stem cell product comprises at least 10 x 106 CD34+ cells which further contain a subpopulation of at least 0.5 x 106 potent CD34+ cells expressing CXCR-4 and having CXCR-4 mediated chemotactic activity; and (ii) a stabilizing amount of serum, wherein the stabilizing amount of serum is greater than 20% (v/v), wherein the chemotactic
hematopoietic stem cell product is further characterized as having the following properties for at least 24 hours when tested in vitro after passage through a catheter: (1) retains the CXCR-4- mediated activity of the chemotactic hematopoietic stem cell product; (2) at least 70% of the cells are CD34+ cells; (3) is at least 70% viable; and (4) is able to form hematopoietic colonies in vitro; (d) optionally administering the chemotactic hematopoietic stem cell product at a plurality of infusion dates during the subject's lifetime; and (e) treating at least one adverse consequence of the progressive vascular insufficiency. [00045] According to one embodiment, step (a) further comprises freezing at least one aliquot of the nonexpanded, isolated population of autologous mononuclear cells containing CD34+ cells, which further contain a subpopulation of potent CD34+/CXCR-4+ cells that have CXCR-4-mediated chemotactic activity at -86°C and cryostoring the at least one aliquot in the vapor phase of a liquid nitrogen freezer.
[00046] According to another embodiment, step (a) further comprises (i) thawing the at least one aliquot of the frozen sterile nonexpanded, isolated population of autologous mononuclear cells containing CD34+ cells which further contain a subpopulation of potent CD34+/CXCR-4+ cells that have CXCR-4-mediated chemotactic activity; (ii) enriching the sterile nonexpanded, isolated population of autologous mononuclear cells for CD34+ cells, which further contain a subpopulation of potent CD34+/CXCR-4+ cells that have CXCR-4- mediated chemotactic activity, wherein the sterile nonexpanded, isolated population of autologous mononuclear cells enriched for CD34+ cells, which further contain a subpopulation of potent CD34+/CXCR-4+ cells that have CXCR-4-mediated chemotactic activity, is a thawed sterile chemotactic hematopoietic stem cell product; and (iii) administering to the subject on a second infusion date a therapeutically effective amount of the sterile thawed sterile chemotactic hematopoietic stem cell product, comprising (a) at least 10 x 106 CD34+ cells, which further contain a subpopulation of at least 0.5 x 106 potent CD34+ cells expressing CXCR-4 and having CXCR-4 mediated chemotactic activity; and (b) a stabilizing amount of serum, wherein the stabilizing amount of serum is greater than 20% (v/v), wherein the sterile thawed chemotactic hematopoietic stem cell product is further characterized as having the following properties for at least 24 hours following thawing of the nonexpanded, isolated population of autologous mononuclear cells comprising CD34+ cells, which further contain a subpopulation of potent CD34+/CXCR-4-+ cells that have CXCR-4-mediated chemotactic activity when tested in vitro after passage through a catheter: (1) retains the CXCR-4-mediated activity of the subpopulation of potent CD34+/CXCR-4+ cells that have CXCR-4-mediated chemotactic activity; (2) at least 70% of the cells are CD34+ cells; (3) is at least 70% viable; and (4) is able to form
hematopoietic colonies in vitro. [00047] According to another embodiment, enriching step (ii) occurs from at least 1 day to at least 40 years after acquisition of the sterile nonexpanded, isolated population of autologous mononuclear cells comprising CD34+ cells from the subject.
[00048] According to another embodiment, the sterile chemotactic hematopoietic stem cell product is administered parenterally through a catheter to the subject within about 48 hours to about 72 hours of thawing step (i).
[00049] According to another embodiment, the nonexpanded, isolated population of autologous mononuclear cells comprising CD34+ cells, which further contain a subpopulation of CD34+/CXCR-4+ cells that have CXCR-4-mediated chemotactic activity, is acquired early after an acute myocardial infarction.
[00050] According to another embodiment, the nonexpanded, isolated population of autologous mononuclear cells comprising CD34+ cells, which further contain a subpopulation of CD34+/CXCR-4+ cells that have CXCR-4-mediated chemotactic activity, is acquired after peak inflammatory cytokine cascade production in an infarcted area.
[00051] According to another embodiment, the nonexpanded, isolated population of autologous mononuclear cells comprising CD34+ cells, which further contain a subpopulation of CD34+/CXCR-4+ cells that have CXCR-4-mediated chemotactic activity, is acquired late after an acute myocardial infarction.
[00052] According to another embodiment, the nonexpanded, isolated population of autologous mononuclear cells comprising CD34+ cells, which further contain a subpopulation of CD34+/CXCR-4+ cells that have CXCR-4-mediated chemotactic activity, is acquired from at least 15 days to at least 40 years after occurrence of an acute myocardial infarction.
[00053] According to another embodiment, the sterile thawed chemotactic hematopoietic stem cell product is further characterized as having the following properties for at least 48 hours following thawing of the nonexpanded, isolated population of autologous mononuclear cells when tested in vitro after passage through a catheter: (i) is able to form hematopoietic colonies; and (ii) retains at least 2% of the CXCR-4-mediated activity of the subpopulation of potent CD34+/CXCR-4+ cells that have CXCR-4-mediated chemotactic activity.
[00054] According to another embodiment, the sterile thawed chemotactic hematopoietic stem cell product is further characterized as having the following properties for at least 72 hours following thawing of the nonexpanded, isolated population of autologous mononuclear cells when tested in vitro after passage through a catheter: (i) is able to form hematopoietic colonies; and (ii) retains at least 2% of the CXCR-4-mediated activity of the subpopulation of potent CD34+/CXCR-4+ cells that have CXCR-4-mediated chemotactic activity.
[00055] According to another embodiment, the vascular insufficiency is an ischemia. According to another embodiment, the ischemia is a myocardial ischemia. According to another embodiment, the ischemia is a transient ischemia. According to another embodiment, the ischemia is a chronic myocardial ischemia. According to another embodiment, the vascular insufficiency is a vascular insufficiency after an acute myocardial infarction resulting from underlying disease. According to another embodiment, the ischemia is a peri-infarct border zone ischemia.
[00056] According to another embodiment, a first infusion date comprises a specific time interval defined by a first time and a second time, wherein the first time is after peak
inflammatory cytokine cascade production in an infarcted area and the second time is before myocardial scar formation in the infarcted area. According to another embodiment, the first time of the first infusion date is at least about 5 days post-infarction. According to another embodiment, the first time of the first infusion date is about 5 days post-infarction and the second time is about 14 days post-infarction.
[00057] According to another embodiment, the method treats cardiomyocyte cell death in the peri-infarct border zone, relative to controls. According to another embodiment, the method treats hypoperfusion in the peri-infarct border zone, relative to controls. According to another embodiment, the method treats myocardial hibernation in the peri-infarct border zone, relative to controls.According to another embodiment, the method decreases infarct area, relative to controls. According to another embodiment, wherein the method decreases infarct mass, relative to controls.
[00058] According to another embodiment, the progressive myocardial injury is a progressive decline in heart muscle function following the acute myocardial infarction.
[00059] According to another embodiment, step (e) comprises treating at least one adverse consequence of an acute myocardial infarction selected from premature death, recurrent myocardial infarction, development of congestive heart failure, development of significant arrhythmias, development of acute coronary syndrome, worsening of congestive heart failure, worsening of significant arrhythmias, and worsening of acute coronary syndrome.
[00060] According to another embodiment, the progressive myocardial injury is heart failure.
[00061] According to another embodiment, the catheter is a flow control catheter.
[00062] According to another embodiment, the catheter is a balloon dilatation catheter.
[00063] According to another embodiment, the catheter has an internal diameter of at least about 0.36 mm.
[00064] According to another embodiment, administering step (c) is through the catheter into myocardium. According to another embodiment, administering step (c) is through the catheter intravascularly.
[00065] According to another embodiment, the pharmaceutical composition further includes at least one compatible active agent. According to another embodiment, the active agent is selected from the group consisting of an angiotensin converting enzyme inhibitor, a beta- blocker, a diuretic, an anti-arrhythmic agent, a hematopoietic stem cell mobilizing agent, a tyrosine kinase receptor agonist, an anti-anginal agent, a vasoactive agent, an anticoagulant agent, a fibrinolytic agent, and a hypercholesterolemic agent.
[00066] According to another embodiment, the tyrosine kinase receptor agonist is human neuregulin 1.
[00067] According to another aspect, the described invention provides a regimen for treating a progressive myocardial injury due to a vascular insufficiency in a revascularized subject, which comprises (a) administering parenterally through a catheter on a plurality of infusion dates during lifetime of the subject a sterile pharmaceutical composition comprising a sterile chemotactic hematopoietic stem cell product, wherein the sterile chemotactic
hematopoietic stem cell product comprises (i) a nonexpanded, isolated population of autologous mononuclear cells enriched for CD34+ cells, which further contain a subpopulation of potent CD34+/CXCR-4+ cells that have CXCR-4-mediated chemotactic activity, wherein the therapeutically effective amount of the chemotactic hematopoietic stem cell product comprises at least 10 x 106 CD34+ cells which further contain a subpopulation of at least 0.5 x 106 potent CD34+ cells expressing CXCR-4 and having CXCR-4 mediated chemotactic activity; and (ii) a stabilizing amount of serum, wherein the stabilizing amount of serum is greater than 20% (v/v), wherein the chemotactic hematopoietic stem cell product is further characterized as having the following properties for at least 24 hours following acquisition of the chemotactic hematopoietic stem cell product when tested in vitro after passage through a catheter: (1) retains the CXCR-4- mediated activity of the subpopulation of potent CD34+/CXCR-4+ cells that have CXCR-4- mediated chemotactic activity; (2) at least 70% of the cells are CD34+ cells; (3) is at least 70% viable; and (4) is able to form hematopoietic colonies in vitro; and (b) treating at least one adverse consequence of the progressive vascular insufficiency.
[00068] According to one embodiment, the vascular insufficiency is an ischemia.
According to another embodiment, the ischemia is a myocardial ischemia. According to another embodiment, the ischemia is a transient ischemia. According to another embodiment, the ischemia is a chronic myocardial ischemia. According to another embodiment, the vascular insufficiency is a vascular insufficiency after an acute myocardial infarction resulting from underlying disease.
[00069] According to another embodiment, the nonexpanded, isolated population of autologous mononuclear cells comprising CD34+ cells, which further contain a subpopulation of CD34+/CXCR-4+ cells that have CXCR-4-mediated chemotactic activity, is acquired early after occurrence of an acute myocardial infarction.
[00070] According to another embodiment, the nonexpanded, isolated population of autologous mononuclear cells comprising CD34+ cells, which further contain a subpopulation of CD34+/CXCR-4+ cells that have CXCR-4-mediated chemotactic activity, is acquired after peak inflammatory cytokine cascade production in an infarcted area.
[00071] According to another embodiment, the nonexpanded, isolated population of autologous mononuclear cells comprising CD34+ cells, which further contain a subpopulation of CD34+/CXCR-4+ cells that have CXCR-4-mediated chemotactic activity, is acquired late after occurrence of an acute myocardial infarction.
[00072] According to another embodiment, the nonexpanded, isolated population of autologous mononuclear cells comprising CD34+ cells, which further contain a subpopulation of CD34+/CXCR-4+ cells that have CXCR-4-mediated chemotactic activity, is acquired from at least 15 days to at least 40 years after occurrence of an acute myocardial infarction.
[00073] According to another embodiment, a first infusion date comprises a specific time interval defined by a first time and a second time, and wherein the first time is after peak inflammatory cytokine cascade production in an infarcted area and the second time is before myocardial scar formation in the infarcted area.
[00074] According to another embodiment, the first time of the first infusion date is at least about 5 days post-infarction. According to another embodiment, the first time of the first infusion date is about 5 days post-infarction and the second time is about 14 days post-infarction. According to another embodiment, the first infusion date is at least 5 days after occurrence of an acute myocardial infarction. According to another embodiment, a second infusion date is at least 30 days after occurrence of an acute myocardial infarction.
[00075] According to another embodiment, the ischemia is a peri-infarct border zone ischemia. According to another embodiment, step (b) comprises treating cardiomyocyte cell death in the peri-infarct border zone, relative to controls. According to another embodiment, step (b) comprises treatinghypoperfusion in the peri-infarct border zone, relative to controls.
[00076] According to another embodiment, step (b) comprises treating myocardial hibernation in the peri-infarct border zone, relative to controls. According to another
embodiment, step (b) comprises decreasing infarct area, relative to controls. According to another embodiment,step (b) comprises decreasing infarct mass, relative to controls.
[00077] According to another embodiment, step (b) comprises treating at least one adverse consequence of the acute myocardial infarction selected from premature death, recurrent myocardial infarction, development of congestive heart failure, development of significant arrhythmias, development of acute coronary syndrome, worsening of congestive heart failure, worsening of significant arrhythmias, and worsening of acute coronary syndrome.
[00078] According to another embodiment, the progressive myocardial injury is a progressive decline in heart muscle function following the acute myocardial infarction.
According to another embodiment, the progressive myocardial injury is heart failure.
[00079] According to another embodiment, the catheter is a flow control catheter.
According to another embodiment, the catheter is a balloon dilatation catheter. According to another embodiment, the catheter has an internal diameter of at least about 0.36 mm.
[00080] According to another embodiment, the composition is administered through the catheter into myocardium. According to another embodiment, the composition is administered through the catheter intravascularly. [00081] According to another embodiment, the pharmaceutical composition further includes at least one compatible active agent. According to another embodiment, the active agent is selected from the group consisting of an angiotensin converting enzyme inhibitor, a beta- blocker, a diuretic, an anti-arrhythmic agent, a hematopoietic stem cell mobilizing agent, a tyrosine kinase receptor agonist, an anti-anginal agent, a vasoactive agent, an anticoagulant agent, a fibrinolytic agent, and a hypercholesterolemic agent.
[00082] According to another embodiment, the tyrosine kinase receptor agonist is human neuregulin 1.
BRIEF DESCRIPTION OF THE FIGURES
[00083] Figure 1 shows that the functional viability of the chemotactic hematopoietic cell product of the invention at 72 hours is equivalent to that at 48 hours.
[00084] Figure 2 shows the migratory efficiency of the formulated chemotactic hematopoietic stem cell product comprising CD34+ cells of the invention.
[00085] Figure 3 shows the improved stability of CD34+ cells formulated in human serum.
DETAILED DESCRIPTION
[00086] The present invention describes compositions and methods for preventing early or late adverse consequences of vascular insufficiency, including, but not limited to, vascular insufficiency that occurs early or late after an acute myocardial infarction resulting from underlying disease.
Glossary
[00087] The term "administer" and its various grammatical forms as used herein means to give or to apply. The term "administering" as used herein includes in vivo administration, as well as administration directly to tissue ex vivo. Generally, compositions may be administered systemically either parenterally or topically in dosage unit formulations containing conventional nontoxic pharmaceutically acceptable carriers, adjuvants, and vehicles as desired, or may be locally administered by means such as, but not limited to, injection, implantation, grafting, topical application, or parenterally. A means of administering cells may include, but is not limited to, infusion.
[00088] As used herein, the term "aliquot" refers to a portion of a total amount.
[00089] As used herein, the term "angiogenesis" refers to the process of formation and development of blood vessels.
[00090] The terms "apoptosis" or "programmed cell death" refer to a highly regulated and active process that contributes to biologic homeostasis comprised of a series of biochemical events that lead to a variety of morphological changes, including blebbing, changes to the cell membrane, such as loss of membrane asymmetry and attachment, cell shrinkage, nuclear fragmentation, chromatin condensation, and chromosomal DNA fragmentation, without damaging the organism.
[00091] The term "c-kit" refers to a protein on the surface of some cells that binds to stem cell factor (a substance that causes certain types of cells to grow). Altered forms of this receptor may be associated with some types of cancer.
[00092] The term "cardiac biomarkers" refers to enzymes, proteins and hormones associated with heart function, damage or failure that are used for diagnostic and prognostic purposes. Different biomarkers have different times that their levels rise, peak, and fall within the body, allowing them to be used not only to track the progress of a heart attack but to estimate when it began and to monitor for recurrence. Some of the tests are specific for the heart while others also are elevated by skeletal muscle damage. Current cardiac biomarkers include, but are not limited to C (creatine phosphokinase or creatine kinase) and CK-MB (creatine kinase- myoglobin levels (to help distinguish between skeletal and heart muscle)), troponin (blood levels of troponin I or T will remain high for 1-2 weeks after a heart attack; troponin generally is not affected by damage to other muscles), myoglobin (to determine whether muscle, particularly heart muscle, has been injured), and BNP (brain natriuretic peptide) or NT-proBNP (N-terminal prohormone brain natriuretic peptide (to help diagnose heart failure and grade the severity of that heart failure).
[00093] The term "cardiac catheterization" refers to a procedure in which a catheter is passed through an artery to the heart, and into a coronary artery. This procedure produces angiograms (i.e., x-ray images) of the coronary arteries and the left ventricle, the heart's main pumping chamber, which can be used to measure pressures in the pulmonary artery, and to monitor heart function.
[00094] The term "CD34+ cells" as used herein refers to hematopoietic stem and progenitor cells derived from human bone marrow that "are positive for" i.e., "express", a hematopoietic stem cell antigen, at least a subpopulation of which express CXCR-4, and that can migrate to areas of injury. The chemotactic hematopoietic stem cell product of the described invention that is enriched for CD34+ cells does not co-express VEGF-2 (<1%).
[00095] The term "CD38" refers to a protein marker present on macrophages, dendritic cells, and activated B and N cells, which may mediate the adhesion between lymphocytes and endothelial cells.
[00096] The terms "CD45" and "common leukocyte antigen" refer to a protein tyrosine phosphatase (PTP) located in hematopoietic cells except erythrocytes and platelets.
[00097[ The term "CD59" refers to a glycosylphosphatidylinositol (GPI)-linked membrane glycoprotein which protects human cells from complement-mediated lysis.
[00098] The term "CXCR-4" as used herein refers to a G-protein-linked chemokine receptor. [00099] The term "cytokine" as used herein refers to small soluble protein substances secreted by cells which have a variety of effects on other cells. Cytokines mediate many important physiological functions including growth, development, wound healing, and the immune response. They act by binding to their cell-specific receptors located in the cell membrane, which allows a distinct signal transduction cascade to start in the cell, which eventually will lead to biochemical and phenotypic changes in target cells. Generally, cytokines act locally. They include type I cytokines, which encompass many of the interleukins, as well as several hematopoietic growth factors; type II cytokines, including the interferons and interleukin- 10; tumor necrosis factor ("TNF")-related molecules, including TNFa and lymphotoxin;
immunoglobulin super-family members, including interleukin 1 ("IL-1 "); and the chemokines, a family of molecules that play a critical role in a wide variety of immune and inflammatory functions. The same cytokine can have different effects on a cell depending on the state of the cell. Cytokines often regulate the expression of, and trigger cascades of, other cytokines.
[000100] The term "colony stimulating factor" refers to a cytokine responsible for controlling the production of white blood cells. Types of colony stimulating factors include granulocyte colony stimulating factor (G-CSF), macrophage colony stimulating factor (M-CSF), and granulocyte macrophage colony stimulating factor (GM-CSF).
[000101] The term "hematopoietic stem cell" refers to a cell isolated from the blood or from the bone marrow that can renew itself, differentiate to a variety of specialized cells, mobilize out of the bone marrow into the circulating blood, and can undergo programmed cell death
(apoptosis). In some embodiments of the described invention, hematopoietic stem cells derived from human subjects express at least one type of cell surface marker, including, but not limited to, CD34, CD38, HLA-DR, c-kit, CD59, Sca-1 , Thy-1, and/or CXCR-4, or a combination thereof.
[000102] "HLA-DR" refers to a human class II histocompatibility antigen present on several cell types, including antigen-presenting cells, B cells, monocytes, macrophages, and activated T cells. [000103] The term "interleukin" as used herein refers to a cytokine secreted by white blood cells as a means of communication with other white blood cells.
[000104] The terms "VEGF- 1 " or "vascular endothelial growth factor-1 " are used interchangeably herein to refer to a cytokine that mediates numerous functions of endothelial cells including proliferation, migration, invasion, survival, and permeability. VEGF is believed to be critical for angiogenesis.
[000105] The term "chemokine" as used herein refers to a class of chemotactic cytokines that signal leukocytes to move in a specific direction. The terms "chemotaxis" or "chemotactic" refer to the directed motion of a motile cell or part along a chemical concentration gradient towards environmental conditions it deems attractive and/or away from surroundings it finds repellent.
[000106] The term "complete blood count" (CBC) refers to a laboratory test that provides detailed information about the amount and the quality of each of the blood cell types. It usually includes a measurement of each of the three major blood cells (red blood cells, white blood cells, and platelets) and a measure of the hemoglobin and hematocrit. "Hemoglobin" (HGB) refers to the number of grams of hemoglobin in a deciliter of blood (g/dL). Normal hemoglobin levels in healthy adult human subjects are about 14 g/dL to about 18 g/dL for men and about 12 g/dL to about 16 g/dL for women. As a rough guideline, hemoglobin generally should be about one-third the hematocrit. "Red Blood Cell Count" (RBC) refers to the total number of red blood cells in a quantity of blood. Normal ranges in human subjects are about 4.5 million cells/mm3 to about 6.0 million cells/mm"' for men and about 4.0 million cells/mm3 to about 5.5 million cells/mm3 for women. "White Blood Cell Count" (WBC) refers to the total number of while blood cells or leukocytes in a quantity of blood. Normal ranges in human subjects are about 4.3 x 103 cells/mm3 to about 10.8 x 103 cells/mm3. "Hematocrit" (HCT) refers to the proportion of red blood cells as a percentage of total blood volume. A normal hematocrit for human subjects is about 40% to about 55% for men and about 35% to about 45% for women. [000107] The term "disease" or "disorder", as used herein, refers to an impairment of health or a condition of abnormal functioning. The term "syndrome," as used herein, refers to a pattern of symptoms indicative of some disease or condition. The term "condition", as used herein, refers to a variety of health states and is meant to include disorders or diseases caused by any underlying mechanism or disorder, injury, and the promotion of healthy tissues and organs.
[000108] As used herein, the term "early" refers to being or occurring at or near the beginning of a period of time or series of events. As used herein, the term "late" refers to being or occurring at an advanced period of time or stage of a series of events.
[000109] As used herein, the term "enriching" or "purifying" refers to increasing the fraction of cells of one type over the fraction of that type in a starting preparation. Cells may be enriched using any of the various markers expressed, or not expressed, on certain cells in combination with suitible separation techniques. Suitable separation techniques include, but are not limited to, immunomagnetic bead separation, affinity chromatography, density gradient centrifugation, and flow cytometry.
[000110] As used herein, the term "nonexpanded" refers to not being increased or amplified in number of cells by in vitro culture.
[000111] As used herein, the term "inflammation" refers to a response to infection and injury in which cells involved in detoxification and repair are mobilized to the compromised site by inflammatory mediators. Inflammation often is characterized by a strong infiltration of leukocytes at the site of inflammation, particularly neutrophils (polymorphonuclear cells). These cells promote tissue damage by releasing toxic substances at the vascular wall or in uninjured tissue.
[000112] Regardless of the initiating agent, the physiologic changes accompanying acute inflammation encompass four main features: (1) vasodilation, which results in a net increase in blood flow, is one of the earliest s physical responses to acute tissue injury; (2) in response to inflammatory stimuli, endothelial cells lining the venules contract, widening the intracellular junctions to produce gaps, leading to increased vascular permeability, which permits leakage of plasma proteins and blood cells out of blood vessels; (3) inflammation often is characterized by a strong infiltration of leukocytes at the site of inflammation, particularly neutrophils
(polymorphonuclear cells). These cells promote tissue damage by releasing toxic substances at the vascular wall or in uninjured tissue; and (4) fever, produced by pyrogens released from leukocytes in response to specific stimuli.
[000113] During the inflammatory process, soluble inflammatory mediators of the inflammatory response work together with cellular components in a systemic fashion in the attempt to contain and eliminate the agents causing physical distress. The terms "inflammatory" or immuno-inflammatory" as used herein with respect to mediators refers to the molecular mediators of the inflammatory process. These soluble, diffusible molecules act both locally at the site of tissue damage and infection and at more distant sites. Some inflammatory mediators are activated by the inflammatory process, while others are synthesized and/or released from cellular sources in response to acute inflammation or by other soluble inflammatory mediators. Examples of inflammatory mediators of the inflammatory response include, but are not limited to, plasma proteases, complement, kinins, clotting and fibrinolytic proteins, lipid mediators, prostaglandins, leukotrienes, platelet-activating factor (PAF), peptides and amines, including, but not limited to, histamine, serotonin, and neuropeptides, proinflammatory cytokines, including, but not limited to, interleukin-1 , interleukin-4, interleukin-6, interleukin-S, tumor necrosis factor (TNF), interferon-gamma, and interleukin 12.
[000114] The term "in-date" refers to the time interval between completion of acquiring a preparation comprising an enriched population of potent CD34+ cells from a subject under sterile conditions and initiating sterilely purifying potent CD34+ cells from the preparation. The term "out-date" refers to the time interval between completion of acquiring a preparation comprising an enriched population of potent CD34+ cells from a subject under sterile conditions and infusing the formulated pharmaceutical composition comprising a chemotactic
hematopoietic cell product into the subject. [000115] The terms "infuse" or "infusion" as used herein refer to the introduction of a fluid other than blood into a blood vessel of a subject, including humans, for therapeutic purposes.
[000116] The "infusion solution" of the described invention without autologous serum contains phosphate buffered saline (PBS) supplemented with 25 USP units/ml of heparin and 1% human serum albumin (HSA). In some embodiments, the infusion solution is supplemented with serum. In some embodiments, the serum is autologous.
[000117] The term "injury" refers to damage or harm caused to the structure or function of the body of a subject caused by an agent or force, which may be physical or chemical. The term "vascular injury" refers to injury to the vasculature (i.e., the vascular network, meaning the network of blood vessels or ducts that convey fluids, such as, without limitation, blood or lymph). The term "myocardial injury" refers to injury to the myocardium of the heart.
[000118] The term "macrophage" as used herein refers to a mononuclear, actively phagocytic cell arising from monocytic stem cells in the bone marrow. These cells are widely distributed in the body and vary in morphology and motility. Phagocytic activity typically is mediated by serum recognition factors, including certain immunoglobulins and components of the complement system, but also may be nonspecific. Macrophages also are involved in both the production of antibodies and in cell-mediated immune responses, particularly in presenting antigens to lymphocytes. They secrete a variety of immunoregulatory molecules.
[000119] The terms "microbe" or "microorganism" are used interchangeably herein to refer to an organism too small to be seen clearly with the naked eye, including, but not limited to, microscopic bacteria, fungi (molds), algae, protozoa, and viruses.
[000120] The term "modulate" as used herein means to regulate, alter, adapt, or adjust to a certain measure or proportion.
[000121] The term "myocardial infarction" refers to death or permanent damage to heart muscle. Most heart attacks are caused by blockage of coronary arteries that interrupts flow of blood and oxygen to the heart muscle, leading to death of heart cells in that area. The damaged heart muscle loses its ability to contract, leaving the remaining heart muscle to compensate for the weakened area. The described invention includes steps related to evaluating the suitability of subjects for treatment according to the described invention by using tests to look at the size, shape, and function of the heart as it is beating, to detect changes to the rhythm of the heart, and to detect and evaluate damaged tissues and blocked arteries. Examples of such tests include, but are not limited to, electrocardiography, echocardiography, coronary angiography, and nuclear ventriculography. Cardiac biomarkers also are used to evaluate the suitability of subjects for treatment according to the described invention.
[000122] The term "necrosis" refers to the premature death of cells and living tissue induced by external factors, such as infection, toxins or trauma. Necrotic tissue undergoes chemical reactions different from those of apoptotic tissue. Necrosis typically begins with cell swelling, chromatin digestion, disruption of the plasma membrane and of organelle membranes. Damage to the lysosome membrane can trigger release of lysosomal enzymes, destroying other parts of the cell. Late necrosis is characterized by extensive DNA hydrolysis, vacuolation of the endoplasmic reticulum, organelle breakdown and cell lysis. The release of intracellular content after plasma membrane rupture is the cause of inflammation in necrosis. Released lysosomal enzymes can trigger a chain reaction of further cell death. Necrosis of a sufficient amount of contiguous tissue can result in tissue death or gangrene.
[000123] The term "perfusion" as used herein refers to the process of nutritive delivery of arterial blood to a capillary bed in biological tissue. Perfusion ("F") can be calculated with the formula F=((PA-Pv)/R) wherein PA is mean arterial pressure, Pv is mean venous pressure, and R is vascular resistance. Tissue perfusion can be measured in vivo, by, for example, but not limited to, magnetic resonance imaging (MRI) techniques. Such techniques include using an injected contrast agent and arterial spin labeling (ASL) (wherein arterial blood is magnetically tagged before it enters into the tissue of interest and the amount of labeling is measured and compared to a control recording). [000124] The term "persisting" as used herein refers to that which is never-ceasing or indefinitely continuous.
[000125] As used herein, the term "potent" or "potency" refers to the necessary biological activity of the chemotactic hematopoietic stem cell product of the described invention, i.e., potent cells of the described invention remain viable, are capable of mediated mobility, and are able to grow, i.e., to form hematopoietic colonies in an in vitro CFU assay.
[000126] The term "progenitor cell" as used herein refers to an immature cell in the bone marrow that may be isolated by growing suspensions of marrow cells in culture dishes with added growth factors. Progenitor cells mature into precursor cells that mature into blood cells. Progenitor cells are referred to as colony-forming units (CFU) or colony-forming cells (CFC). The specific lineage of a progenitor cell is indicated by a suffix, such as, but not limited to, CFU- E (erythrocytic), CFU-GM (granulocytic/macrophage), and CFU-GEMM (pluripotent hematopoietic progenitor).
[000127] The term "progressive" as used herein refers to that which gradually advances in extent.
[000128] The term "repair" as used herein as a noun refers to any correction, reinforcement, reconditioning, remedy, making up for, making sound, renewal, mending, patching, or the like that restores function. When used as a verb, it means to correct, to reinforce, to recondition, to remedy, to make up for, to make sound, to renew, to mend, to patch or to otherwise restore function. In some embodiments "repair" includes full repair and partial repair.
[000129] The term "reverse" as used herein refers to a change to the contrary, or to a turning backward in nature or effect.
[000130] The term "Sca-1 " or "stem cell antigen-1 " refers to a surface protein component in a signaling pathway that affects the self-renewal ability of mesenchymal stem cells. [000131] The term "stem cells" refers to undifferentiated cells having high proliferative potential with the ability to self-renew that can generate daughter cells that can undergo terminal differentiation into more than one distinct cell phenotype.
[000132] The term "stent" is used to refer to a small tube used to prop open an artery. The stent is collapsed to a small diameter, put over a balloon catheter, inserted through a main artery in the groin (femoral artery) or arm (brachial artery) and threaded up to the narrowed blocked section of the artery. When it reaches the right location, the balloon is inflated slightly to push any plaque out of the way and to expand the artery (balloon angioplasty). When the balloon is inflated, the stent expands, locks in place and forms a scaffold to hold the artery open. The stent stays in the artery permanently. In certain subjects, a stent reduces the renarrowing that occurs after balloon angioplasty or other procedures that use catheters. A stent also may help restore normal blood flow and keep an artery open if it has been torn or injured by the balloon catheter. Reclosure (restenosis) may be a problem with the stent procedure. Drug-eluting stents are stents coated with drugs that are slowly released. These drugs may help keep the blood vessel from reclosing.
[000133] The terms "subject" and "patients" are used interchangeably herein and include animal species of mammalian origin, including humans.
[000134] The term "Thy-1 " refers to the Ig superfamily cell surface glycoprotein Thy-1 expressed on immune cells and neurons of rodents and humans, which is hypothesized to function in cell adhesion and signal transduction in T cell differentiation, proliferation, and apoptosis.
[000135] As used herein the terms "treat" or "treating" are used interchangeably to include abrogating, substantially inhibiting, slowing or reversing the progression of a condition, substantially ameliorating clinical or aesthetical symptoms of a condition, substantially preventing the appearance of clinical or aesthetical symptoms of a condition, and protecting from harmful or annoying stimuli. Treating further refers to accomplishing one or more of the following: (a) reducing the severity of the disorder; (b) limiting development of symptoms characteristic of the disorder(s) being treated; (c) limiting worsening of symptoms characteristic of the disorder(s) being treated; (d) limiting recurrence of the disorder(s) in patients that have previously had the disorder(s); and (e) limiting recurrence of symptoms in patients that were previously asymptomatic for the disorder(s).
[000136] The term "vascular insufficiency" refers to insufficient blood flow.
[000137] The described invention provides progressive myocardial injury-preventing pharmaceutical compositions and methods to treat or prevent a progressive myocardial injury due to a vascular insufficiency that occurs early or late. The terms "formulation" and
"composition" are used interchangeably herein to refer to a product of the described invention that comprises all active and inert ingredients. The term "active" refers to the ingredient, component or constituent of the compositions of the described invention responsible for the intended therapeutic effect. The terms "pharmaceutical formulation" or "pharmaceutical composition" as used herein refer to a formulation or composition that is employed to prevent, reduce in intensity, cure or otherwise treat a target condition or disease.
[000138] In one aspect of the described invention, the hematopoietic stem cells of the described invention can migrate, meaning that they can move from one place, location or area to another. In one embodiment, hematopoietic stem cell migration is driven by CXCR-4 chemotaxis.
Compositions
[000139] The progressive myocardial injury-preventing pharmaceutical composition of the described invention comprises a chemotactic hematopoietic stem cell product, the chemotactic hematopoietic stem cell product comprising a nonexpanded, isolated population of autologous mononuclear cells enriched for CD34+ cells, which further contain a subpopulation of potent CD34+CXCR-4+ cells that have chemotactic activity. In some embodiments, this chemotactic activity is mediated by SDF-1, and/or CXCR-4. According to some embodiments, the chemotactic hematopoietic stem cell product is prepared by isolating or purifying CD34+ hematopoietic stem cells from bone marrow, umbilical cord blood, peripheral blood, mobilized peripheral blood, umbilical cord, or adipose tissue harvested from the subject. According to some embodiments, the chemotactic hematopoietic stem cell product is prepared by isolating or purifying CD34+ hematopoietic stem cells from mobilized peripheral blood. Treatment with hematopoietic growth factors has been shown to cause a marked rise in the number of hematopoietic progenitor cells in the peripheral blood as measured by the presence of CD34+ cells or as measured in a colony formation assay as CFUs. Such mobilized-peripheral blood hematopoietic stem cells (HSCs) have been used for transplantation, immunotherapy, and cardiovascular regenerative medicine. Colony stimulating factors, for example, are agents used for hematopoietic stem cell mobilization. Examples of colony stimulating factors include, without limitation, G-CSF, GM-CSF, and pharmaceutically acceptable analogs and derivatives thereof. For example, filgrastim, a G-CSF analog produced by recombinant technology, is marketed under the brand names Neupogen®( Amgen); Religrast® (Reliance Life Sciences), Nugraf® (Zenotech Laboratories, Ltd., and Neukine® (Intas Biopharmaceuticals).
[000140] According to some embodiments, the nonexpanded, isolated population of autologous mononuclear cells comprising CD34+ cells which further contain a subpopulation of potent CD34+/CXCR-4+ cells that have CXCR-4-mediated chemotactic activity can be acquired from the subject at any time. According to some embodiments, the nonexpanded, isolated population of autologous mononuclear cells is acquired early after an AMI. According to some such embodiments, the nonexpanded, isolated population of autologous mononuclear cells is acquired 4 days, 5 days, 6 days, 7 days, 8 days, 9 days, 10 days, 1 1 days, 12 days, 13 days, 14 days or more after the occurrence of an AMI. According to some embodiments, the
nonexpanded, isolated population of autologous mononuclear cells comprising CD34+ cells which further contain a subpopulation of potent CD34+/CXCR-4+ cells that have CXCR-4- mediated chemotactic activity is acquired late after the occurrence of an AMI. According to some such embodiments, the nonexpanded, isolated population of autologous mononuclear cells is acquired at least 15 days, at least 16 days, at least 17 days, at least 18 days, at least 19 days, at least 20 days, at least 21 days, at least 22 days, at least 23 days, at least 24 days, at least 25 days, at least 26 days, at least 27 days, at least 28 days, at least 29 days, at least 30 days, at least 60 days, at least 90 days, at least 120 days, at least 150 days, at least 180 days, or more from the AMI. According to some embodiments, the nonexpanded, isolated population of autologous mononuclear cells comprising CD34+ cells which further contain a subpopulation of potent CD34+/CXCR-4+ cells that have CXCR-4-mediated chemotactic activity is acquired at least 1 month, at least 2 months, at least 3 months, at least 4 months, at least 5 months, at least 6 months, at least 7 months, at least 8 months, at least 9 months, at least 10 months, at least 1 1 months, at least 12 months, at least 16 months, at least 24 months, at least 30 months, at least 36 months, at least 42 months, at least 48 months, at least 54 months, at least 60 months, at least 66 months, at least 72 months, at least 78 months, at least 84 months, at least 90 months, at least 96 months, at least 102 months, at least 108 months, at least 1 14 months, at least 120 months, at least 126 months, at least 132 months, at least 138 months, at least 144 months, at least 150 months, at least 156 months, at least 162 months, at least 168 months, at least 174 months, at least 180 months, at least 186 months, at least 192 months, at least 198 months, at least 204 months, at least 210 months, at least 216 months, at least 222 months, at least 228 months, at least 234 months, at least 240 months or more after occurrence of an AMI. According to some such embodiments, the nonexpanded, isolated population of autologous mononuclear cells comprising CD34+ cells which further contain a subpopulation of potent CD34+/CXCR-4+ cells that have CXCR-4-mediated chemotactic activity is acquired at least 3 years, 4 years, 5 years, 6 years, 7 years, 8 years, 9 years, 10 years, 11 years, 12 years, 13 years, 14 years, 15 years, 16 years 17 years, 18 years, 19 years, 20 years, 21 years, 22 years, 23 years, 24 years, 25 years, 26 years, 27 years, 28 years, 29 years, 30 years, 31 years, 32 years, 33 years, 34 years, 35 years, 36 years 37 years, 38 years, 39 years, 40 years or more after occurrence of an AMI. According to some embodiments, the nonexpanded, isolated population of autologous mononuclear cells comprising CD34+ cells which further contain a subpopulation of potent CD34+/CXCR-4+ cells that have CXCR-4-mediated chemotactic activity, once acquired, is frozen at -86°C and cryostored in the vapor phase of a liquid nitrogen freezer as a plurality of aliquots for later usage. [000141] According to the described invention, at least 70% of potent cells in the nonexpanded, isolated population of autologous mononuclear cells enriched for CD34+ cells, which further contain a subpopulation of potent CD34+ cells expressing CXCR-4 and having chemotactic activity are CD34+ cells. In some embodiments, at least 75% of cells in the nonexpanded, isolated population of autologous mononuclear cells enriched for CD34+ cells containing a subpopulation of potent CD34+ cells expressing CXCR-4 and having chemotactic activity are CD34+ cells. In some embodiments, at least 80% of potent cells in the nonexpanded, isolated population of autologous mononuclear cells enriched for CD34+ cells, which further contain a subpopulation of potent CD34+ cells expressing CXCR-4 and having chemotactic activity are CD34+ cells. In some embodiments, at least 85% of potent cells in the nonexpanded, isolated population of autologous mononuclear cells enriched for CD34+ cells, which further contain a subpopulation of potent CD34+ cells expressing CXCR-4 and having chemotactic activity are CD34+ cells. In some embodiments, at least 90% of potent cells in the nonexpanded, isolated population of autologous mononuclear cells enriched for CD34+ cells, which further contain a subpopulation of potent CD34+ cells expressing CXCR-4 and having chemotactic activity are CD34+ cells. In some embodiments, at least 95% of potent cells in the nonexpanded, isolated population of autologous mononuclear cells enriched for CD34+ cells, which further contain a subpopulation of potent CD34+ cells expressing CXCR-4 and having chemotactic activity are CD34+ cells.
[000142] According to another embodiment, at least about 70% of the nonexpanded, isolated population of autologous mononuclear cells enriched for CD34+ cells, which further contain a subpopulation of potent CD34+ cells expressing CXCR-4 and having chemotactic activity are viable for at least about 24 hours following acquisition of the chemotactic
hematopoietic stem cell product. According to another embodiment, at least about 75% of the nonexpanded, isolated population of autologous mononuclear cells enriched for CD34+ cells, which further contain a subpopulation of potent CD34+ cells expressing CXCR-4 and having chemotactic activity are viable for at least about 24 hours following acquisition of the
chemotactic hematopoietic stem cell product. According to another embodiment, at least about 80% of the nonexpanded, isolated population of autologous mononuclear cells enriched for CD34+ cells, which further contain a subpopulation of potent CD34+ cells expressing CXCR-4 and having chemotactic activity are viable for at least 24 hours following acquisition of the chemotactic hematopoietic stem cell product. According to another embodiment, at least about 85% of the nonexpanded, isolated population of autologous mononuclear cells enriched for CD34+ cells, which further contain a subpopulation of potent CD34+ cells expressing CXCR-4 and having chemotactic activity are viable for at least 24 hours following acquisition of the chemotactic hematopoietic stem cell product. In some embodiments, at least about 90% of the nonexpanded, isolated population of autologous mononuclear cells enriched for CD34+ cells, which further contain a subpopulation of potent CD34+ cells expressing CXCR-4 and having chemotactic activity are viable for at least 24 hours following acquisition of the chemotactic hematopoietic stem cell product. In some embodiments, at least about 95% of the nonexpanded, isolated population of autologous mononuclear cells enriched for CD34+ cells, which further contain a subpopulation of potent CD34+ cells expressing CXCR-4 and having chemotactic activity are viable for at least about 24 following acquisition of the chemotactic hematopoietic stem cell product.
[000143] According to another embodiment, at least about 70% of the nonexpanded, isolated population of autologous mononuclear cells enriched for CD34+ cells, which further contain a subpopulation of potent CD34+ cells expressing CXCR-4 and having chemotactic activity are viable for at least about 48 hours following acquisition of the chemotactic hematopoietic stem cell product. According to another embodiment, at least about 75% of the nonexpanded, isolated population of autologous mononuclear cells enriched for CD34+ cells, which further contain a subpopulation of potent CD34+ cells expressing CXCR-4 and having chemotactic activity are viable for at least about 48 hours following acquisition of the chemotactic hematopoietic stem cell product. According to another embodiment, at least about 80% of the nonexpanded, isolated population of autologous mononuclear cells enriched for CD34+ cells, which further contain a subpopulation of potent CD34+ cells expressing CXCR-4 and having chemotactic activity are viable for at least 48 hours following acquisition of the chemotactic hematopoietic stem cell product. According to another embodiment, at least about 85% of the nonexpanded, isolated population of autologous mononuclear cells enriched for CD34+ cells, which further contain a subpopulation of potent CD34+ cells expressing CXCR-4 and having chemotactic activity are viable for at least 48 hours following acquisition of the chemotactic hematopoietic stem cell product. In some embodiments, at least about 90% of the nonexpanded, isolated population of autologous mononuclear cells enriched for CD34+ cells containing a subpopulation of potent CD34+ cells expressing CXCR-4 and having chemotactic activity are viable for at least 48 hours following acquisition of the chemotactic hematopoietic stem cell product. In some embodiments, at least about 95% of the nonexpanded, isolated population of autologous mononuclear cells enriched for CD34+ cells, which further contain a subpopulation of potent CD34+ cells expressing CXCR-4 and having chemotactic activity are viable for at least about 48 following acquisition of the chemotactic hematopoietic stem cell product.
[000144] According to another embodiment, at least about 70% of the nonexpanded, isolated population of autologous mononuclear cells enriched for CD34+ cells, which further contain a subpopulation of potent CD34+ cells expressing CXCR-4 and having chemotactic activity are viable for at least about 72 hours following acquisition of the chemotactic hematopoietic stem cell product. According to another embodiment, at least about 75% of the nonexpanded, isolated population of autologous mononuclear cells enriched for CD34+ cells, which further contain a subpopulation of potent CD34+ cells expressing CXCR-4 and having chemotactic activity are viable for at least about 72 hours following acquisition of the chemotactic hematopoietic stem cell product. According to another embodiment, at least about 80% of the nonexpanded, isolated population of autologous mononuclear cells enriched for CD34+ cells, which further contain a subpopulation of potent CD34+ cells expressing CXCR-4 and having chemotactic activity are viable for at least 72 hours following acquisition of the chemotactic hematopoietic stem cell product. According to another embodiment, at least about 85% of the nonexpanded, isolated population of autologous mononuclear cells enriched for CD34+ cells, which further contain a subpopulation of potent CD34+ cells expressing CXCR-4 and having chemotactic activity are viable for at least 72 hours following acquisition of the chemotactic hematopoietic stem cell product. In some embodiments, at least about 90% of the nonexpanded, isolated population of autologous mononuclear cells enriched for CD34+ cells, which further contain a subpopulation of potent CD34+ cells expressing CXCR-4 and having chemotactic activity are viable for at least 72 hours following acquisition of the chemotactic hematopoietic stem cell product. In some embodiments, at least about 95% of the nonexpanded, isolated population of autologous mononuclear cells enriched for CD34+ cells, which further contain a subpopulation of potent CD34+ cells expressing CXCR-4 and having chemotactic activity are viable for at least about 72 following acquisition of the chemotactic hematopoietic stem cell product.
[000145] According to another embodiment, the nonexpanded, isolated population of autologous mononuclear cells enriched for CD34+ cells, which further contain a subpopulation of potent CD34+ cells having chemotactic activity can form hematopoietic colonies in vitro for at least about 24 hours following acquisition from the subject of the chemotactic hematopoietic stem cell product. According to another embodiment, the nonexpanded, isolated population of autologous mononuclear cells enriched for CD34+ cells, which further contain a subpopulation of potent CD34+ cells expressing CXCR-4 and having chemotactic activity can form
hematopoietic colonies in vitro for at least about 48 hours following acquisition from the subject of the chemotactic hematopoietic stem cell product. According to another embodiment, the nonexpanded, isolated population of autologous mononuclear cells enriched for CD34+ cells, which further contain a subpopulation of potent CD34+ cells expressing CXCR-4 and having chemotactic activity can form hematopoietic colonies in vitro for at least about 72 hours following acquisition from the subject of the chemotactic hematopoietic stem cell product.
[000146] According to another embodiment, the progressive myocardial injury-preventing composition further comprises at least about 10 million isolated CD34+ cells acquired from the subject, which further contain a subpopulation of potent CD34+ cells expressing CXCR-4 and having CXCR-4-mediated chemotactic activity. According to another embodiment, the progressive myocardial injury-preventing composition further comprises at least about 1 1 million isolated CD34+ cells acquired from the subject, which further contain a subpopulation of potent CD34+ cells expressing CXCR-4 and having CXCR-4-mediated chemotactic activity.
According to another embodiment, the progressive myocardial injury-preventing composition further comprises at least about 12 million isolated CD34+ cells acquired from the subject, which further contain a subpopulation of potent CD34+ cells expressing CXCR-4 and having CXCR-4- mediated chemotactic activity. According to another embodiment, the progressive myocardial injury-preventing composition further comprises at least about 13 million isolated CD34+ cells acquired from the subject, which further contain a subpopulation of potent CD34+ cells expressing CXCR-4 and having CXCR-4-mediated chemotactic activity. According to another embodiment, the progressive myocardial injury-preventing composition further comprises at least about 14 million isolated CD34+ cells acquired from the subject, which further contain a subpopulation of potent CD34+ cells expressing CXCR-4 and having CXCR-4-mediated chemotactic activity. According to another embodiment, the progressive myocardial injury- preventing composition further comprises at least about 15 million isolated CD34+ cells acquired from the subject, which further contain a subpopulation of potent CD34+ cells expressing CXCR-4 and having CXCR-4-mediated chemotactic activity. According to another
embodiment, the progressive myocardial injury-preventing composition further comprises at least about 20 million isolated CD34+ cells acquired from the subject, which further contain a subpopulation of potent CD34+ cells expressing CXCR-4 and having CXCR-4-mediated chemotactic activity. According to another embodiment, the progressive myocardial injury- preventing composition further comprises at least about 30 million isolated CD34+ cells acquired from the subject, which further contain a subpopulation of potent CD34+ cells expressing CXCR-4 and having CXCR-4-mediated chemotactic activity. According to another embodiment, the progressive myocardial injury-preventing composition further comprises at least about 40 million isolated CD34+ cells acquired from the subject, which further contain a subpopulation of potent CD34+ cells expressing CXCR-4 and having CXCR-4-mediated chemotactic activity. According to another embodiment, the progressive myocardial injury-preventing composition further comprises at least about 50 million isolated CD34+ cells acquired from the subject, which further contain a subpopulation of potent CD34+ cells expressing CXCR-4 and having CXCR-4- mediated chemotactic activity. According to another embodiment, the progressive myocardial injury-preventing composition further comprises at least about 60 million isolated CD34+ cells acquired from the subject, which further contain a subpopulation of potent CD34+ cells expressing CXCR-4 and having CXCR-4-mediated chemotactic activity. According to another embodiment, the progressive myocardial injury-preventing composition further comprises at least about 70 million isolated CD34+ cells acquired from the subject, which further contain a subpopulation of potent CD34+ cells expressing CXCR-4 and having CXCR-4-mediated chemotactic activity. According to another embodiment, the progressive myocardial injury- preventing composition further comprises at least about 80 million isolated CD34+ cells acquired from the subject, which further contain a subpopulation of potent CD34+ cells expressing CXCR-4 and having CXCR-4-mediated chemotactic activity. According to another embodiment, the progressive myocardial injury-preventing composition further comprises at least about 90 million isolated CD34+ cells acquired from the subject, which further contain a subpopulation of potent CD34+ cells expressing CXCR-4 and having CXCR-4-mediated chemotactic activity. According to another embodiment, the progressive myocardial injury-preventing composition further comprises at least about 100 million isolated CD34+ cells acquired from the subject, which further contain a subpopulation of potent CD34+ cells expressing CXCR-4 and having CXCR-4-mediated chemotactic activity.
[000147] For use in the present invention, CD34+ cells may be enriched/selected by any techniques known to the skilled artisan. For example, in some embodiments, the isolated population of autologous mononuclear cells comprising CD34+ cells is enriched for cells expressing CD34 cell antigen and CXCR-4 cell antigen by fluorescence activated cell sorting (FACS). In some embodiments, the isolated population of autologous mononuclear cells comprising CD34+ cells are enriched/selected by positive or negative immunoseparation techniques. In some embodiments, isolation and/or purification of hematopoietic stem cells from the isolated population of autologous mononuclear cells comprising CD34+ cells is based on cell fractionation methods based on size and cell density, efflux of metabolic dyes, or resistance to cytotoxic agents. In one embodiment, for example, the isolated population of autologous mononuclear cells comprising CD34+ cells in is enriched for CD34+ cells/selected using a monoclonal anti-CD34 antibody and an immunomagnetic separation technique.
[000148] The isolated CD34+ cells may be identified, quantified and characterized by techniques known in the art. For example, in some embodiments, the percentage of CD34+ cells in the isolated population of autologous mononuclear cells comprising CD34+ cells and in the chemotactic hematopoietic stem cell product can be determined by FACS analysis. According to another embodiment, CD34 protein expression is quantified by Western blot. The term "Western blot" refers to a method for identifying proteins in a complex mixture; proteins are separated electrophoretically in a gel medium; transferred from the gel to a protein binding sheet or membrane; and the sheet or membrane containing the separated proteins exposed to specific antibodies which bind to, locate, and enable visualization of protein(s) of interest. For example, monoclonal anti-CD34 antibody can be used to detect CD34 protein adhered to a membrane in situ.
[000149] According to another embodiment, the expression of CD34 mRNA and DNA in the isolated CD34+ cells may be quantified. The term "Northern blot" as used herein refers to a technique in which RNA from a specimen is separated into its component parts on a gel by electrophoresis and transferred to a specifically modified paper support so that the mRNA is fixed in its electrophoretic positions. CD34 related sequences are identified using probes comprising a reporter molecule, such as, without limitation, a radioactive label. According to another embodiment, the level of CD34 and/or CXCR-4 expression is/are determined by quantitative or semi-quantitative PCR or real time PCR ("RT-PCR") techniques. The
abbreviation "PCR" refers to polymerase chain reaction, which is a technique for amplifying the quantity of DNA, thus making the DNA easier to isolate, clone and sequence. See, e.g., U.S. Pat. Nos. 5,656,493, 5,333,675, 5,234,824, and 5,187,083, each of which is incorporated herein by reference. Real-time PCR is a method of simultaneous DNA quantification and amplification, whereby DNA is specifically amplified by polymerase chain reaction (PCR), and after each round of amplification, the DNA is quantified.
[000150] According to another embodiment, the isolated CD34+ hematopoietic stem cells of the chemotactic hematopoietic stem cell product of the described invention contain a subpopulation of CD34+ cells expressing CXCR-4 and having CXCR-4 mediated chemotactic activity. According to another embodiment, the hematopoietic stem cell product of the described invention comprises a minimum number of isolated CD34+ hematopoietic stem cells such that a subpopulation of at least 0.5 x 106 CD34+ cells expressing CXCR-4 and having CXCR-4 mediated chemotactic activity is present. According to another embodiment, at least about 2% of the CXCR-4 mediated chemotactic activity of the isolated CD34+ cells containing a
subpopulation of potent CD34+ cells expressing CXCR-4 and having chemotactic activity is retained for at least 24 hours following acquisition of the chemotactic hematopoietic stem cell product. According to another embodiment, at least about 3% of the CXCR-4 mediated chemotactic activity of the isolated CD34+ cells containing a subpopulation of potent CD34+ cells expressing CXCR-4 and having chemotactic activity is retained for at least 24 hours following acquisition of the chemotactic hematopoietic stem cell product. According to another embodiment, at least about 4% of the CXCR-4 mediated chemotactic activity of the isolated CD34+ cells containing a subpopulation of potent CD34+ cells expressing CXCR-4 and having chemotactic activity is retained for at least 24 hours following acquisition of the chemotactic hematopoietic stem cell product. According to another embodiment, at least about 5% of the CXCR-4 mediated chemotactic activity of the isolated CD34+ cells containing a subpopulation of potent CD34+ cells expressing CXCR-4 and having chemotactic activity is retained for at least 24 hours following acquisition of the chemotactic hematopoietic stem cell product.
According to another embodiment, at least about 6% of the CXCR-4 mediated chemotactic activity of the isolated CD34+ cells containing a subpopulation of potent CD34+ cells expressing CXCR-4 and having chemotactic activity is retained for at least 24 hours following acquisition of the chemotactic hematopoietic stem cell product. According to another embodiment, at least about 7% of the CXCR-4 mediated chemotactic activity of the isolated CD34+ cells containing a subpopulation of potent CD34+ cells expressing CXCR-4 and having chemotactic activity is retained for at least 24 hours following acquisition of the chemotactic hematopoietic stem cell product. According to another embodiment, at least about 8% of the CXCR-4 mediated chemotactic activity of the isolated CD34+ cells containing a subpopulation of potent CD34+ cells expressing CXCR-4 and having chemotactic activity is retained for at least 24 hours following acquisition of the chemotactic hematopoietic stem cell product. According to another embodiment, at least about 9% of the CXCR-4 mediated chemotactic activity of the isolated
CD34+ cells containing a subpopulation of potent CD34+ cells expressing CXCR-4 and having chemotactic activity is retained for at least 24 hours following acquisition of the chemotactic hematopoietic stem cell product. According to another embodiment, at least about 10% of the
CXCR-4 mediated chemotactic activity of the isolated CD34+ cells containing a subpopulation of potent CD34+ cells expressing CXCR-4 and having chemotactic activity is retained for at least 24 hours following acquisition of the chemotactic hematopoietic stem cell product.
According to another embodiment, at least about 1 1% of the CXCR-4 mediated chemotactic activity of the isolated CD34+ cells containing a subpopulation of potent CD34+ cells expressing
CXCR-4 and having chemotactic activity is retained for at least 24 hours following acquisition of the chemotactic hematopoietic stem cell product. According to another embodiment, at least about 12% of the CXCR-4 mediated chemotactic activity of the isolated CD34+ cells containing a subpopulation of potent CD34+ cells expressing CXCR-4 and having chemotactic activity is retained for at least 24 hours following acquisition of the chemotactic hematopoietic stem cell product. According to another embodiment, at least about 13% of the CXCR-4 mediated chemotactic activity of the isolated CD34+ cells containing a subpopulation of potent CD34+ cells expressing CXCR-4 and having chemotactic activity is retained for at least 24 hours following acquisition of the chemotactic hematopoietic stem cell product. According to another embodiment, at least about 14% of the CXCR-4 mediated chemotactic activity of the isolated
CD34+ cells containing a subpopulation of potent CD34+ cells expressing CXCR-4 and having chemotactic activity is retained for at least 24 hours following acquisition of the chemotactic hematopoietic stem cell product. According to another embodiment, at least about 15% of the
CXCR-4 mediated chemotactic activity of the isolated CD34+ cells containing a subpopulation of potent CD34+ cells expressing CXCR-4 and having chemotactic activity is retained for at least 24 hours following acquisition of the chemotactic hematopoietic stem cell product.
According to another embodiment, at least about 16% of the CXCR-4 mediated chemotactic activity of the isolated CD34+ cells containing a subpopulation of potent CD34+ cells expressing
CXCR-4 and having chemotactic activity is retained for at least 24 hours following acquisition of the chemotactic hematopoietic stem cell product. According to another embodiment, at least about 17% of the CXCR-4 mediated chemotactic activity of the isolated CD34+ cells containing a subpopulation of potent CD34+ cells expressing CXCR-4 and having chemotactic activity is retained for at least 24 hours following acquisition of the chemotactic hematopoietic stem cell product. According to another embodiment, at least about 18% of the CXCR-4 mediated chemotactic activity of the isolated CD34+ cells containing a subpopulation of potent CD34+ cells expressing CXCR-4 and having chemotactic activity is retained for at least 24 hours following acquisition of the chemotactic hematopoietic stem cell product. According to another embodiment, at least about 19% of the CXCR-4 mediated chemotactic activity of the isolated
CD34+ cells containing a subpopulation of potent CD34+ cells expressing CXCR-4 and having chemotactic activity is retained for at least 24 hours following acquisition of the chemotactic hematopoietic stem cell product. According to another embodiment, at least about 20% of the
CXCR-4 mediated chemotactic activity of the isolated CD34+ cells containing a subpopulation of potent CD34+ cells expressing CXCR-4 and having chemotactic activity is retained for at least 24 hours following acquisition of the chemotactic hematopoietic stem cell product.
According to another embodiment, at least about 21% of the CXCR-4 mediated chemotactic activity of the isolated CD34+ cells containing a subpopulation of potent CD34+ cells expressing
CXCR-4 and having chemotactic activity is retained for at least 24 hours following acquisition of the chemotactic hematopoietic stem cell product. According to another embodiment, at least about 22% of the CXCR-4 mediated chemotactic activity of the isolated CD34+ cells containing a subpopulation of potent CD34+ cells expressing CXCR-4 and having chemotactic activity is retained for at least 24 hours following acquisition of the chemotactic hematopoietic stem cell product. According to another embodiment, at least about 23% of the CXCR-4 mediated chemotactic activity of the isolated CD34+ cells containing a subpopulation of potent CD34+ cells expressing CXCR-4 and having chemotactic activity is retained for at least 24 hours following acquisition of the chemotactic hematopoietic stem cell product. According to another embodiment, at least about 24% of the CXCR-4 mediated chemotactic activity of the isolated
CD34+ cells containing a subpopulation of potent CD34+ cells expressing CXCR-4 and having chemotactic activity is retained for at least 24 hours following acquisition of the chemotactic hematopoietic stem cell product. According to another embodiment, at least about 25% of the
CXCR-4 mediated chemotactic activity of the isolated CD34+ cells containing a subpopulation of potent CD34+ cells expressing CXCR-4 and having chemotactic activity is retained for at least 24 hours following acquisition of the chemotactic hematopoietic stem cell product.
According to another embodiment, at least about 26% of the CXCR-4 mediated chemotactic activity of the isolated CD34+ cells containing a subpopulation of potent CD34+ cells expressing
CXCR-4 and having chemotactic activity is retained for at least 24 hours following acquisition of the chemotactic hematopoietic stem cell product. According to another embodiment, at least about 27% of the CXCR-4 mediated chemotactic activity of the isolated CD34+ cells containing a subpopulation of potent CD34+ cells expressing CXCR-4 and having chemotactic activity is retained for at least 24 hours following acquisition of the chemotactic hematopoietic stem cell product. According to another embodiment, at least about 28% of the CXCR-4 mediated chemotactic activity of the isolated CD34+ cells containing a subpopulation of potent CD34+ cells expressing CXCR-4 and having chemotactic activity is retained for at least 24 hours following acquisition of the chemotactic hematopoietic stem cell product. According to another embodiment, at least about 29% of the CXCR-4 mediated chemotactic activity of the isolated
CD34+ cells containing a subpopulation of potent CD34+ cells expressing CXCR-4 and having chemotactic activity is retained for at least 24 hours following acquisition of the chemotactic hematopoietic stem cell product. According to another embodiment, at least about 30% of the
CXCR-4 mediated chemotactic activity of the isolated CD34+ cells containing a subpopulation of potent CD34+ cells expressing CXCR-4 and having chemotactic activity is retained for at least 24 hours following acquisition of the chemotactic hematopoietic stem cell product.
According to another embodiment, at least about 31% of the CXCR-4 mediated chemotactic activity of the isolated CD34+ cells containing a subpopulation of potent CD34+ cells expressing CXCR-4 and having chemotactic activity is retained for at least 24 hours following acquisition of the chemotactic hematopoietic stem cell product. According to another embodiment, at least about 32% of the CXCR-4 mediated chemotactic activity of the isolated CD34+ cells containing a subpopulation of potent CD34+ cells expressing CXCR-4 and having chemotactic activity is retained for at least 24 hours following acquisition of the chemotactic hematopoietic stem cell product. According to another embodiment, at least about 33% of the CXCR-4 mediated chemotactic activity of the isolated CD34+ cells containing a subpopulation of potent CD34+ cells expressing CXCR-4 and having chemotactic activity is retained for at least 24 hours following acquisition of the chemotactic hematopoietic stem cell product. According to another embodiment, at least about 34% of the CXCR-4 mediated chemotactic activity of the isolated CD34+ cells containing a subpopulation of potent CD34+ cells expressing CXCR-4 and having chemotactic activity is retained for at least 24 hours following acquisition of the chemotactic hematopoietic stem cell product.
[000151 ] According to another embodiment, at least about 2% of the CXCR-4 mediated chemotactic activity of the isolated CD34+ cells containing a subpopulation of potent CD34+ cells expressing CXCR-4 and having chemotactic activity is retained for at least 48 hours following acquisition of the enriched population of CD34+ cells. According to another embodiment, at least about 3% of the CXCR-4 mediated chemotactic activity of the isolated CD34+ cells containing a subpopulation of potent CD34+ cells expressing CXCR-4 and having chemotactic activity is retained for at least 48 hours following acquisition of the enriched population of CD34+ cells. According to another embodiment, at least about 4% of the CXCR-4 mediated chemotactic activity of the isolated CD34+ cells containing a subpopulation of potent CD34+ cells expressing CXCR-4 and having chemotactic activity is retained for at least 48 hours following acquisition of the enriched population of CD34+ cells. According to another embodiment, at least about 5% of the CXCR-4 mediated chemotactic activity of the isolated CD34+ cells containing a subpopulation of potent CD34+ cells expressing CXCR-4 and having chemotactic activity is retained for at least 48 hours following acquisition of the enriched population of CD34+ cells. According to another embodiment, at least about 6% of the CXCR-4 mediated chemotactic activity of the isolated CD34+ cells containing a subpopulation of potent
CD34+ cells expressing CXCR-4 and having chemotactic activity is retained for at least 48 hours following acquisition of the enriched population of CD34+ cells. According to another embodiment, at least about 7% of the CXCR-4 mediated chemotactic activity of the isolated
CD34+ cells containing a subpopulation of potent CD34+ cells expressing CXCR-4 and having chemotactic activity is retained for at least 48 hours following acquisition of the enriched population of CD34+ cells. According to another embodiment, at least about 8% of the CXCR-4 mediated chemotactic activity of the isolated CD34+ cells containing a subpopulation of potent
CD34+ cells expressing CXCR-4 and having chemotactic activity is retained for at least 48 hours following acquisition of the enriched population of CD34+ cells. According to another embodiment, at least about 9% of the CXCR-4 mediated chemotactic activity of the isolated
CD34+ cells containing a subpopulation of potent CD34+ cells expressing CXCR-4 and having chemotactic activity is retained for at least 48 hours following acquisition of the enriched population of CD34+ cells. According to another embodiment, at least about 10% of the CXCR-
4 mediated chemotactic activity of the isolated CD34+ cells containing a subpopulation of potent
CD34+ cells expressing CXCR-4 and having chemotactic activity is retained for at least 48 hours following acquisition of the enriched population of CD34+ cells. According to another embodiment, at least about 1 1% of the CXCR-4 mediated chemotactic activity of the isolated
CD34+ cells containing a subpopulation of potent CD34+ cells expressing CXCR-4 and having chemotactic activity is retained for at least 48 hours following acquisition of the enriched population of CD34+ cells. According to another embodiment, at least about 12% of the CXCR-
4 mediated chemotactic activity of the isolated CD34+ cells containing a subpopulation of potent
CD34+ cells expressing CXCR-4 and having chemotactic activity is retained for at least 48 hours following acquisition of the enriched population of CD34+ cells. According to another embodiment, at least about 13% of the CXCR-4 mediated chemotactic activity of the isolated
CD34+ cells containing a subpopulation of potent CD34+ cells expressing CXCR-4 and having chemotactic activity is retained for at least 48 hours following acquisition of the enriched population of CD34+ cells. According to another embodiment, at least about 14% of the CXCR-
4 mediated chemotactic activity of the isolated CD34+ cells containing a subpopulation of potent CD34+ cells expressing CXCR-4 and having chemotactic activity is retained for at least 48 hours following acquisition of the enriched population of CD34+ cells. According to another embodiment, at least about 15% of the CXCR-4 mediated chemotactic activity of the isolated
CD34+ cells containing a subpopulation of potent CD34+ cells expressing CXCR-4 and having chemotactic activity is retained for at least 48 hours following acquisition of the enriched population of CD34+ cells. According to another embodiment, at least about 16% of the CXCR-
4 mediated chemotactic activity of the isolated CD34+ cells containing a subpopulation of potent
CD34+ cells expressing CXCR-4 and having chemotactic activity is retained for at least 48 hours following acquisition of the enriched population of CD34+ cells. According to another embodiment, at least about 17% of the CXCR-4 mediated chemotactic activity of the isolated
CD34+ cells containing a subpopulation of potent CD34+ cells expressing CXCR-4 and having chemotactic activity is retained for at least 48 hours following acquisition of the enriched population of CD34+ cells. According to another embodiment, at least about 18% of the CXCR-
4 mediated chemotactic activity of the isolated CD34+ cells containing a subpopulation of potent
CD34+ cells expressing CXCR-4 and having chemotactic activity is retained for at least 48 hours following acquisition of the enriched population of CD34+ cells. According to another embodiment, at least about 19% of the CXCR-4 mediated chemotactic activity of the isolated
CD34+ cells containing a subpopulation of potent CD34+ cells expressing CXCR-4 and having chemotactic activity is retained for at least 48 hours following acquisition of the enriched population of CD34+ cells. According to another embodiment, at least about 20% of the CXCR-
4 mediated chemotactic activity of the isolated CD34+ cells containing a subpopulation of potent
CD34+ cells expressing CXCR-4 and having chemotactic activity is retained for at least 48 hours following acquisition of the enriched population of CD34+ cells. According to another embodiment, at least about 21% of the CXCR-4 mediated chemotactic activity of the isolated
CD34+ cells containing a subpopulation of potent CD34+ cells expressing CXCR-4 and having chemotactic activity is retained for at least 48 hours following acquisition of the enriched population of CD34+ cells. According to another embodiment, at least about 22% of the CXCR-
4 mediated chemotactic activity of the isolated CD34+ cells containing a subpopulation of potent
CD34+ cells expressing CXCR-4 and having chemotactic activity is retained for at least 48 hours following acquisition of the enriched population of CD34+ cells. According to another embodiment, at least about 23% of the CXCR-4 mediated chemotactic activity of the isolated
CD34+ cells containing a subpopulation of potent CD34+ cells expressing CXCR-4 and having chemotactic activity is retained for at least 48 hours following acquisition of the enriched population of CD34+ cells. According to another embodiment, at least about 24% of the CXCR-
4 mediated chemotactic activity of the isolated CD34+ cells containing a subpopulation of potent
CD34+ cells expressing CXCR-4 and having chemotactic activity is retained for at least 48 hours following acquisition of the enriched population of CD34+ cells. According to another embodiment, at least about 25% of the CXCR-4 mediated chemotactic activity of the isolated
CD34+ cells containing a subpopulation of potent CD34+ cells expressing CXCR-4 and having chemotactic activity is retained for at least 48 hours following acquisition of the enriched population of CD34+ cells. According to another embodiment, at least about 26% of the CXCR-
4 mediated chemotactic activity of the isolated CD34+ cells containing a subpopulation of potent
CD34+ cells expressing CXCR-4 and having chemotactic activity is retained for at least 48 hours following acquisition of the enriched population of CD34+ cells. According to another embodiment, at least about 27% of the CXCR-4 mediated chemotactic activity of the isolated
CD34+ cells containing a subpopulation of potent CD34+ cells expressing CXCR-4 and having chemotactic activity is retained for at least 48 hours following acquisition of the enriched population of CD34+ cells. According to another embodiment, at least about 28% of the CXCR-
4 mediated chemotactic activity of the isolated CD34+ cells containing a subpopulation of potent
CD34+ cells expressing CXCR-4 and having chemotactic activity is retained for at least 48 hours following acquisition of the enriched population of CD34+ cells. According to another embodiment, at least about 29% of the CXCR-4 mediated chemotactic activity of the isolated
CD34+ cells containing a subpopulation of potent CD34+ cells expressing CXCR-4 and having chemotactic activity is retained for at least 48 hours following acquisition of the enriched population of CD34+ cells. According to another embodiment, at least about 30% of the CXCR-
4 mediated chemotactic activity of the isolated CD34+ cells containing a subpopulation of potent
CD34+ cells expressing CXCR-4 and having chemotactic activity is retained for at least 48 hours following acquisition of the enriched population of CD34+ cells. According to another embodiment, at least about 31 % of the CXCR-4 mediated chemotactic activity of the isolated CD34+ cells containing a subpopulation of potent CD34+ cells expressing CXCR-4 and having chemotactic activity is retained for at least 48 hours following acquisition of the enriched population of CD34+ cells. According to another embodiment, at least about 32% of the CXCR- 4 mediated chemotactic activity of the isolated CD34+ cells containing a subpopulation of potent CD34+ cells expressing CXCR-4 and having chemotactic activity is retained for at least 48 hours following acquisition of the enriched population of CD34+ cells. According to another embodiment, at least about 33% of the CXCR-4 mediated chemotactic activity of the isolated CD34+ cells containing a subpopulation of potent CD34+ cells expressing CXCR-4 and having chemotactic activity is retained for at least 48 hours following acquisition of the enriched population of CD34+ cells. According to another embodiment, at least about 34% of the CXCR- 4 mediated chemotactic activity of the isolated CD34+ cells containing a subpopulation of potent CD34+ cells expressing CXCR-4 and having chemotactic activity is retained for at least 48 hours following acquisition of the enriched population of CD34+ cells.
[000152] According to another embodiment, at least about 2% of the CXCR-4 mediated chemotactic activity of the isolated CD34+ cells containing a subpopulation of potent CD34+ cells expressing CXCR-4 and having chemotactic activity is retained for at least 72 hours following acquisition of the chemotactic hematopoietic stem cell product. According to another embodiment, at least about 3% of the CXCR-4 mediated chemotactic activity of the isolated CD34+ cells containing a subpopulation of potent CD34+ cells expressing CXCR-4 and having chemotactic activity is retained for at least 72 hours following acquisition of the chemotactic hematopoietic stem cell product. According to another embodiment, at least about 4% of the CXCR-4 mediated chemotactic activity of the isolated CD34+ cells containing a subpopulation of potent CD34+ cells expressing CXCR-4 and having chemotactic activity is retained for at least 72 hours following acquisition of the chemotactic hematopoietic stem cell product. According to another embodiment, at least about 5% of the CXCR-4 mediated chemotactic activity of the isolated CD34+ cells containing a subpopulation of potent CD34+ cells expressing CXCR-4 and having chemotactic activity is retained for at least 72 hours following acquisition of the chemotactic hematopoietic stem cell product. According to another embodiment, at least about
6% of the CXCR-4 mediated chemotactic activity of the isolated CD34+ cells containing a subpopulation of potent CD34+ cells expressing CXCR-4 and having chemotactic activity is retained for at least 72 hours following acquisition of the chemotactic hematopoietic stem cell product. According to another embodiment, at least about 7% of the CXCR-4 mediated chemotactic activity of the isolated CD34+ cells containing a subpopulation of potent CD34+ cells expressing CXCR-4 and having chemotactic activity is retained for at least 72 hours following acquisition of the chemotactic hematopoietic stem cell product. According to another embodiment, at least about 8% of the CXCR-4 mediated chemotactic activity of the isolated
CD34+ cells containing a subpopulation of potent CD34+ cells expressing CXCR-4 and having chemotactic activity is retained for at least 72 hours following acquisition of the chemotactic hematopoietic stem cell product. According to another embodiment, at least about 9% of the
CXCR-4 mediated chemotactic activity of the isolated CD34+ cells containing a subpopulation of potent CD34+ cells expressing CXCR-4 and having chemotactic activity is retained for at least
72 hours following acquisition of the chemotactic hematopoietic stem cell product. According to another embodiment, at least about 10% of the CXCR-4 mediated chemotactic activity of the isolated CD34+ cells containing a subpopulation of potent CD34+ cells expressing CXCR-4 and having chemotactic activity is retained for at least 72 hours following acquisition of the chemotactic hematopoietic stem cell product. According to another embodiment, at least about
1 1 % of the CXCR-4 mediated chemotactic activity of the isolated CD34+ cells containing a subpopulation of potent CD34+ cells expressing CXCR-4 and having chemotactic activity is retained for at least 72 hours following acquisition of the chemotactic hematopoietic stem cell product. According to another embodiment, at least about 12% of the CXCR-4 mediated chemotactic activity of the isolated CD34+ cells containing a subpopulation of potent CD34+ cells expressing CXCR-4 and having chemotactic activity is retained for at least 72 hours following acquisition of the chemotactic hematopoietic stem cell product. According to another embodiment, at least about 13% of the CXCR-4 mediated chemotactic activity of the isolated
CD34+ cells containing a subpopulation of potent CD34+ cells expressing CXCR-4 and having chemotactic activity is retained for at least 72 hours following acquisition of the chemotactic hematopoietic stem cell product. According to another embodiment, at least about 14% of the
CXCR-4 mediated chemotactic activity of the isolated CD34+ cells containing a subpopulation of potent CD34+ cells expressing CXCR-4 and having chemotactic activity is retained for at least
72 hours following acquisition of the chemotactic hematopoietic stem cell product. According to another embodiment, at least about 15% of the CXCR-4 mediated chemotactic activity of the isolated CD34+ cells containing a subpopulation of potent CD34+ cells expressing CXCR-4 and having chemotactic activity is retained for at least 72 hours following acquisition of the chemotactic hematopoietic stem cell product. According to another embodiment, at least about
16% of the CXCR-4 mediated chemotactic activity of the isolated CD34+ cells containing a subpopulation of potent CD34+ cells expressing CXCR-4 and having chemotactic activity is retained for at least 72 hours following acquisition of the chemotactic hematopoietic stem cell product. According to another embodiment, at least about 17% of the CXCR-4 mediated chemotactic activity of the isolated CD34+ cells containing a subpopulation of potent CD34+ cells expressing CXCR-4 and having chemotactic activity is retained for at least 72 hours following acquisition of the chemotactic hematopoietic stem cell product. According to another embodiment, at least about 18% of the CXCR-4 mediated chemotactic activity of the isolated
CD34+ cells containing a subpopulation of potent CD34+ cells expressing CXCR-4 and having chemotactic activity is retained for at least 72 hours following acquisition of the chemotactic hematopoietic stem cell product. According to another embodiment, at least about 19% of the
CXCR-4 mediated chemotactic activity of the isolated CD34+ cells containing a subpopulation of potent CD34+ cells expressing CXCR-4 and having chemotactic activity is retained for at least
72 hours following acquisition of the chemotactic hematopoietic stem cell product. According to another embodiment, at least about 20% of the CXCR-4 mediated chemotactic activity of the isolated CD34+ cells containing a subpopulation of potent CD34+ cells expressing CXCR-4 and having chemotactic activity is retained for at least 72 hours following acquisition of the chemotactic hematopoietic stem cell product. According to another embodiment, at least about
21% of the CXCR-4 mediated chemotactic activity of the isolated CD34+ cells containing a subpopulation of potent CD34+ cells expressing CXCR-4 and having chemotactic activity is retained for at least 72 hours following acquisition of the chemotactic hematopoietic stem cell product. According to another embodiment, at least about 22% of the CXCR-4 mediated chemotactic activity of the isolated CD34+ cells containing a subpopulation of potent CD34+ cells expressing CXCR-4 and having chemotactic activity is retained for at least 72 hours following acquisition of the chemotactic hematopoietic stem cell product. According to another embodiment, at least about 23% of the CXCR-4 mediated chemotactic activity of the isolated
CD34+ cells containing a subpopulation of potent CD34+ cells expressing CXCR-4 and having chemotactic activity is retained for at least 72 hours following acquisition of the chemotactic hematopoietic stem cell product. According to another embodiment, at least about 24% of the
CXCR-4 mediated chemotactic activity of the isolated CD34+ cells containing a subpopulation of potent CD34+ cells expressing CXCR-4 and having chemotactic activity is retained for at least
72 hours following acquisition of the chemotactic hematopoietic stem cell product. According to another embodiment, at least about 25% of the CXCR-4 mediated chemotactic activity of the isolated CD34+ cells containing a subpopulation of potent CD34+ cells expressing CXCR-4 and having chemotactic activity is retained for at least 72 hours following acquisition of the chemotactic hematopoietic stem cell product. According to another embodiment, at least about
26% of the CXCR-4 mediated chemotactic activity of the isolated CD34+ cells containing a subpopulation of potent CD34+ cells expressing CXCR-4 and having chemotactic activity is retained for at least 72 hours following acquisition of the chemotactic hematopoietic stem cell product. According to another embodiment, at least about 27% of the CXCR-4 mediated chemotactic activity of the isolated CD34+ cells containing a subpopulation of potent CD34+ cells expressing CXCR-4 and having chemotactic activity is retained for at least 72 hours following acquisition of the chemotactic hematopoietic stem cell product. According to another embodiment, at least about 28% of the CXCR-4 mediated chemotactic activity of the isolated
CD34+ cells containing a subpopulation of potent CD34+ cells expressing CXCR-4 and having chemotactic activity is retained for at least 72 hours following acquisition of the chemotactic hematopoietic stem cell product. According to another embodiment, at least about 29% of the
CXCR-4 mediated chemotactic activity of the isolated CD34+ cells containing a subpopulation of potent CD34+ cells expressing CXCR-4 and having chemotactic activity is retained for at least
72 hours following acquisition of the chemotactic hematopoietic stem cell product. According to another embodiment, at least about 30% of the CXCR-4 mediated chemotactic activity of the isolated CD34+ cells containing a subpopulation of potent CD34+ cells expressing CXCR-4 and having chemotactic activity is retained for at least 72 hours following acquisition of the chemotactic hematopoietic stem cell product. According to another embodiment, at least about 31% of the CXCR-4 mediated chemotactic activity of the isolated CD34+ cells containing a subpopulation of potent CD34+ cells expressing CXCR-4 and having chemotactic activity is retained for at least 72 hours following acquisition of the chemotactic hematopoietic stem cell product. According to another embodiment, at least about 32% of the CXCR-4 mediated chemotactic activity of the isolated CD34+ cells containing a subpopulation of potent CD34+ cells expressing CXCR-4 and having chemotactic activity is retained for at least 72 hours following acquisition of the chemotactic hematopoietic stem cell product. According to another embodiment, at least about 33% of the CXCR-4 mediated chemotactic activity of the isolated CD34+ cells containing a subpopulation of potent CD34+ cells expressing CXCR-4 and having chemotactic activity is retained for at least 72 hours following acquisition of the chemotactic hematopoietic stem cell product. According to another embodiment, at least about 34% of the CXCR-4 mediated chemotactic activity of the isolated CD34+ cells containing a subpopulation of potent CD34+ cells expressing CXCR-4 and having chemotactic activity is retained for at least 72 hours following acquisition of the chemotactic hematopoietic stem cell product.
[000153] According to another embodiment, at least an average of about 17% of the CXCR-4 mediated chemotactic activity of the isolated CD34+ cells containing a subpopulation of potent CD34+ cells expressing CXCR-4 and having chemotactic activity is retained for at least 24 hours following acquisition of the chemotactic hematopoietic stem cell product.
According to another embodiment, at least an average of about 17% of the CXCR-4 mediated chemotactic activity of the isolated CD34+ cells containing a subpopulation of potent CD34+ cells expressing CXCR-4 and having chemotactic activity is retained for at least 48 hours following acquisition of the chemotactic hematopoietic stem cell product. According to another embodiment, at least an average of about 17% of the CXCR-4 mediated chemotactic activity of the isolated CD34+ cells containing a subpopulation of potent CD34+ cells expressing CXCR-4 and having chemotactic activity is retained for at least 72 hours following acquisition of the chemotactic hematopoietic stem cell product. According to another embodiment, the isolated CD34+ cells containing a subpopulation of potent CD34+ cells expressing CXCR-4 and having chemotactic activity in the chemotactic hematopoietic cell product retain at least about 2% of the CXCR-4 mediated chemotactic activity for at least 72 hours following acquisition of the chemotactic hematopoietic stem cell product.
[000154] According to another embodiment, the pharmaceutical composition of the invention further comprises serum at a concentration of at least 10% expressed as ml/100 cc final volume of the progressive myocardial injury-preventing composition. According to another embodiment, the pharmaceutical composition of the invention further comprises serum at a concentration of at least 1 1 % expressed as ml/100 cc final volume of the progressive myocardial injury-preventing composition. According to another embodiment, the pharmaceutical composition of the invention further comprises serum at a concentration of at least 12% expressed as ml/100 cc final volume of the progressive myocardial injury-preventing
composition. According to another embodiment, the pharmaceutical composition of the invention further comprises serum at a concentration of at least 13% expressed as ml/100 cc final volume of the progressive myocardial injury-preventing composition. According to another embodiment, the pharmaceutical composition of the invention further comprises serum at a concentration of at least 14% expressed as ml/ 100 cc final volume of the progressive myocardial injury-preventing composition. According to another embodiment, the pharmaceutical composition of the invention further comprises serum at a concentration of at least 15% expressed as ml/100 cc final volume of the progressive myocardial injury-preventing
composition. According to another embodiment, the pharmaceutical composition of the invention further comprises serum at a concentration of at least 16% expressed as ml/ 100 cc final volume of the progressive myocardial injury-preventing composition. According to another embodiment, the pharmaceutical composition of the invention further comprises serum at a concentration of at least 17% expressed as ml/ 100 cc final volume of the progressive myocardial injury-preventing composition. According to another embodiment, the pharmaceutical composition of the invention further comprises serum at a concentration of at least 18% expressed as ml/ 100 cc final volume of the progressive myocardial injury-preventing
composition. According to another embodiment, the pharmaceutical composition of the invention further comprises serum at a concentration of at least 19% expressed as ml/100 cc final volume of the progressive myocardial injury-preventing composition. According to another embodiment, the pharmaceutical composition of the invention further comprises serum at a concentration of at least 20% expressed as ml/ 100 cc final volume of the progressive myocardial injury-preventing composition. According to another embodiment, the minimum concentration of serum present in the progressive myocardial injury-preventing composition is at least about 21% expressed as ml/ 100 cc final volume of the composition. According to another
embodiment, the minimum concentration of serum present in the progressive myocardial injury- preventing composition is at least about 22% expressed as ml/100 cc final volume of the composition. According to another embodiment, the minimum concentration of serum present in the progressive myocardial injury-preventing composition is at least about 23% expressed as ml/100 cc final volume of the composition. According to another embodiment, the minimum concentration of serum present in the progressive myocardial injury-preventing composition is at least about 24% expressed as ml/100 cc final volume of the composition. According to another embodiment, the minimum concentration of serum present in the progressive myocardial injury- preventing composition is at least about 25% expressed as ml/ 100 cc final volume of the composition. According to another embodiment, the minimum concentration of serum present in the progressive myocardial injury-preventing composition is at least about 26% expressed as ml/100 cc final volume of the composition. According to another embodiment, the minimum concentration of serum present in the progressive myocardial injury-preventing composition is at least about 27% expressed as ml/ 100 cc final volume of the composition. According to another embodiment, the minimum concentration of serum present in the progressive myocardial injury- preventing composition is at least about 28% expressed as ml/100 cc final volume of the composition. According to another embodiment, the minimum concentration of serum present in the progressive myocardial injury-preventing composition is at least about 29% expressed as ml/100 cc final volume of the composition. According to another embodiment, the minimum concentration of serum present in the progressive myocardial injury-preventing composition is at least about 30% expressed as ml/ 100 cc final volume of the composition. According to another embodiment, the minimum concentration of serum present in the progressive myocardial injury- preventing composition is at least about 31% expressed as ml/100 cc final volume of the composition. According to another embodiment, the minimum concentration of serum present in the progressive myocardial injury-preventing composition is at least about 32% expressed as ml/100 cc final volume of the composition. According to another embodiment, the minimum concentration of serum present in the progressive myocardial injury-preventing composition is at least about 33% expressed as ml/100 cc final volume of the composition. According to another embodiment, the minimum concentration of serum present in the progressive myocardial injury- preventing composition is at least about 34% expressed as ml/100 cc final volume of the composition. According to another embodiment, the minimum concentration of serum present in the progressive myocardial injury-preventing composition is at least about 35% expressed as ml/100 cc final volume of the composition. According to another embodiment, the minimum concentration of serum present in the progressive myocardial injury-preventing composition is at least about 36% expressed as ml/100 cc final volume of the composition. According to another embodiment, the minimum concentration of serum present in the progressive myocardial injury- preventing composition is at least about 37% expressed as ml/100 cc final volume of the composition. According to another embodiment, the minimum concentration of serum present in the progressive myocardial injury-preventing composition is at least about 38% expressed as ml/ 100 cc final volume of the composition. According to another embodiment, the minimum concentration of serum present in the progressive myocardial injury-preventing composition is at least about 39% expressed as ml/100 cc final volume of the composition. According to another embodiment, the minimum concentration of serum present in the progressive myocardial injury- preventing composition is at least about 40% expressed as ml/ 100 cc final volume of the composition. According to another embodiment, the minimum concentration of serum present in the progressive myocardial injury-preventing composition is at least about 41% expressed as m 1/100 cc final volume of the composition. According to another embodiment, the minimum concentration of serum present in the progressive myocardial injury-preventing composition is at least about 42% expressed as ml/ 100 cc final volume of the composition. According to another embodiment, the minimum concentration of serum present in the progressive myocardial injury- preventing composition is at least about 43% expressed as ml/100 cc final volume of the composition. According to another embodiment, the minimum concentration of serum present in the progressive myocardial injury-preventing composition is at least about 44% expressed as ml/100 cc final volume of the composition. According to another embodiment, the minimum concentration of serum present in the progressive myocardial injury-preventing composition is at least about 45% expressed as ml/100 cc final volume of the composition. According to another embodiment, the minimum concentration of serum present in the progressive myocardial injury- preventing composition is at least about 46% expressed as ml/100 cc final volume of the composition. According to another embodiment, the minimum concentration of serum present in the progressive myocardial injury-preventing composition is at least about 47% expressed as ml/100 cc final volume of the composition. According to another embodiment, the minimum concentration of serum present in the progressive myocardial injury-preventing composition is at least about 48% expressed as ml/100 cc final volume of the composition. According to another embodiment, the minimum concentration of serum present in the progressive myocardial injury- preventing composition is at least about 49% expressed as ml/ 100 cc final volume of the composition. According to another embodiment, the minimum concentration of serum present in the progressive myocardial injury-preventing composition is at least about 50% expressed as ml/ 100 cc final volume of the composition. According to another embodiment, the minimum concentration of serum present in the progressive myocardial injury-preventing composition is at least about 51% expressed as ml/100 cc final volume of the composition. According to another embodiment, the minimum concentration of serum present in the progressive myocardial injury- preventing composition is at least about 52% expressed as ml/ 100 cc final volume of the composition. According to another embodiment, the minimum concentration of serum present in the progressive myocardial injury-preventing composition is at least about 53% expressed as ml/ 100 cc final volume of the composition. According to another embodiment, the minimum concentration of serum present in the progressive myocardial injury-preventing composition is at least about 54% expressed as ml/100 cc final volume of the composition. According to another embodiment, the minimum concentration of serum present in the progressive myocardial injury- preventing composition is at least about 55% expressed as ml/100 cc final volume of the composition. According to another embodiment, the minimum concentration of serum present in the progressive myocardial injury-preventing composition is at least about 56% expressed as ml/100 cc final volume of the composition. According to another embodiment, the minimum concentration of serum present in the progressive myocardial injury-preventing composition is at least about 57% expressed as ml/ 100 cc final volume of the composition. According to another embodiment, the minimum concentration of serum present in the progressive myocardial injury- preventing composition is at least about 58% expressed as ml/ 100 cc final volume of the composition. According to another embodiment, the minimum concentration of serum present in the progressive myocardial injury-preventing composition is at least about 59% expressed as ml/ 100 cc final volume of the composition. According to another embodiment, the minimum concentration of serum present in the progressive myocardial injury-preventing composition is at least about 60% expressed as ml/ 100 cc final volume of the composition. According to another embodiment, the minimum concentration of serum present in the progressive myocardial injury- preventing composition is at least about 61% expressed as ml/100 cc final volume of the composition. According to another embodiment, the minimum concentration of serum present in the progressive myocardial injury-preventing composition is at least about 62% expressed as ml/ 100 cc final volume of the composition. According to another embodiment, the minimum concentration of serum present in the progressive myocardial injury-preventing composition is at least about 63% expressed as ml/100 cc final volume of the composition. According to another embodiment, the minimum concentration of serum present in the progressive myocardial injury- preventing composition is at least about 64% expressed as ml/100 cc final volume of the composition. According to another embodiment, the minimum concentration of serum present in the progressive myocardial injury-preventing composition is at least about 65% expressed as ml/ 100 cc final volume of the composition. According to another embodiment, the minimum concentration of serum present in the progressive myocardial injury-preventing composition is at least about 66% expressed as ml/100 cc final volume of the composition. According to another embodiment, the minimum concentration of serum present in the progressive myocardial injury- preventing composition is at least about 67% expressed as ml/ 100 cc final volume of the composition. According to another embodiment, the minimum concentration of serum present in the progressive myocardial injury-preventing composition is at least about 68% expressed as ml/ 100 cc final volume of the composition. According to another embodiment, the minimum concentration of serum present in the progressive myocardial injury-preventing composition is at least about 69% expressed as ml/100 cc final volume of the composition. According to another embodiment, the minimum concentration of serum present in the composition is at least about 70% expressed as ml/100 cc final volume of the composition.
[000155] According to another embodiment, the serum is autologous. According to another embodiment, the serum is a synthetic or recombinant serum.
[000156] According to another embodiment, the maximum concentration of serum present in the progressive myocardial injury-preventing composition of the described invention is about 70% expressed as ml/100 cc final volume of the composition. According to another
embodiment, the maximum concentration of serum present in the progressive myocardial injury- preventing composition of the described invention is about 69% expressed as ml/ 100 cc final volume of the composition. According to another embodiment, the maximum concentration of serum present in the progressive myocardial injury-preventing composition of the described invention is about 68% expressed as ml/100 cc final volume of the composition. According to another embodiment, the maximum concentration of serum present in the progressive myocardial injury-preventing composition of the described invention is about 67% expressed as ml/100 cc final volume of the composition. According to another embodiment, the maximum
concentration of serum present in the progressive myocardial injury-preventing composition of the described invention is about 66% expressed as ml/ 100 cc final volume of the composition. According to another embodiment, the maximum concentration of serum present in the progressive myocardial injury-preventing composition of the described invention is about 65% expressed as ml/100 cc final volume of the composition. According to another embodiment, the maximum concentration of serum present in the progressive myocardial injury-preventing composition of the described invention is about 64% expressed as ml/100 cc final volume of the composition. According to another embodiment, the maximum concentration of serum present in the progressive myocardial injury-preventing composition of the described invention is about 63% expressed as ml/100 cc final volume of the composition. According to another
embodiment, the maximum concentration of serum present in the progressive myocardial injury- preventing composition of the described invention is about 62% expressed as ml/100 cc final volume of the composition. According to another embodiment, the maximum concentration of serum present in the progressive myocardial injury-preventing composition of the described invention is about 61% expressed as ml/100 cc final volume of the composition. According to another embodiment, the maximum concentration of serum present in the progressive myocardial injury-preventing composition of the described invention is about 60% expressed as ml/100 cc final volume of the composition. According to another embodiment, the maximum
concentration of serum present in the progressive myocardial injury-preventing composition of the described invention is about 59% expressed as ml/100 cc final volume of the composition. According to another embodiment, the maximum concentration of serum present in the progressive myocardial injury-preventing composition of the described invention is about 58% expressed as ml/100 cc final volume of the composition. According to another embodiment, the maximum concentration of serum present in the progressive myocardial injury-preventing composition of the described invention is about 57% expressed as ml/100 cc final volume of the composition. According to another embodiment, the maximum concentration of serum present in the progressive myocardial injury-preventing composition of the described invention is about 56% expressed as ml/100 cc final volume of the composition. According to another
embodiment, the maximum concentration of serum present in the progressive myocardial injury- preventing composition of the described invention is about 55% expressed as ml/ 100 cc final volume of the composition. According to another embodiment, the maximum concentration of serum present in the progressive myocardial injury-preventing composition of the described invention is about 54% expressed as ml/ 100 cc final volume of the composition. According to another embodiment, the maximum concentration of serum present in the progressive myocardial injury-preventing composition of the described invention is about 53% expressed as ml/100 cc final volume of the composition. According to another embodiment, the maximum
concentration of serum present in the progressive myocardial injury-preventing composition of the described invention is about 52% expressed as ml/100 cc final volume of the composition. According to another embodiment, the maximum concentration of serum present in the progressive myocardial injury-preventing composition of the described invention is about 51% expressed as ml/ 100 cc final volume of the composition. According to another embodiment, the maximum concentration of serum present in the progressive myocardial injury -preventing composition of the described invention is about 50% expressed as ml/100 cc final volume of the composition.
[000157] According to another embodiment, the maximum concentration of serum present in the progressive myocardial injury-preventing composition of the described invention is about 49% expressed as ml/100 cc final volume of the composition. According to another
embodiment, the maximum concentration of serum present in the progressive myocardial injury- preventing composition of the described invention is about 48% expressed as ml/100 cc final volume of the composition. According to another embodiment, the maximum concentration of serum present in the progressive myocardial injury-preventing composition of the described invention is about 47% expressed as ml/100 cc final volume of the composition. According to another embodiment, the maximum concentration of serum present in the progressive myocardial injury-preventing composition of the described invention is about 46% expressed as ml/ 100 cc final volume of the composition. According to another embodiment, the maximum
concentration of serum present in the progressive myocardial injury-preventing composition of the described invention is about 45% expressed as ml/100 cc final volume of the composition. According to another embodiment, the maximum concentration of serum present in the progressive myocardial injury-preventing composition of the described invention is about 44% expressed as ml/100 cc final volume of the composition. According to another embodiment, the maximum concentration of serum present in the progressive myocardial injury-preventing composition of the described invention is about 43% expressed as ml/ 100 cc final volume of the composition. According to another embodiment, the maximum concentration of serum present in the progressive myocardial injury-preventing composition of the described invention is about 42% expressed as ml/100 cc final volume of the composition. According to another
embodiment, the maximum concentration of serum present in the progressive myocardial injury- preventing composition of the described invention is about 41% expressed as ml/100 cc final volume of the composition. According to another embodiment, the maximum concentration of serum present in the progressive myocardial injury-preventing composition of the described invention is about 40% expressed as ml/100 cc final volume of the composition.
[000158] According to another embodiment, the maximum concentration of serum present in the progressive myocardial injury -preventing composition of the described invention is about 39% expressed as ml/100 cc final volume of the composition. According to another
embodiment, the maximum concentration of serum present in the progressive myocardial injury- preventing composition of the described invention is about 38% expressed as ml/100 cc final volume of the composition. According to another embodiment, the maximum concentration of serum present in the progressive myocardial injury -preventing composition of the described invention is about 37% expressed as ml/100 cc final volume of the composition. According to another embodiment, the maximum concentration of serum present in the progressive myocardial injury-preventing composition of the described invention is about 36% expressed as ml/100 cc final volume of the composition. According to another embodiment, the maximum
concentration of serum present in the progressive myocardial injury-preventing composition of the described invention is about 35% expressed as ml/100 cc final volume of the composition. According to another embodiment, the maximum concentration of serum present in the progressive myocardial injury-preventing composition of the described invention is about 34% expressed as ml/100 cc final volume of the composition. According to another embodiment, the maximum concentration of serum present in the progressive myocardial injury-preventing composition of the described invention is about 33% expressed as ml/100 cc final volume of the composition. According to another embodiment, the maximum concentration of serum present in the progressive myocardial injury-preventing composition of the described invention is about 32% expressed as ml/ 100 cc final volume of the composition. According to another embodiment, the maximum concentration of serum present in the progressive myocardial injury- preventing composition of the described invention is about 31% expressed as ml/100 cc final volume of the composition. According to another embodiment, the maximum concentration of serum present in the progressive myocardial injury-preventing composition of the described invention is about 30% expressed as ml/100 cc final volume of the composition. According to another embodiment, the maximum concentration of serum present in the progressive myocardial injury-preventing composition of the described invention is about 29% expressed as ml/100 cc final volume of the composition. According to another embodiment, the maximum
concentration of serum present in the progressive myocardial injury-preventing composition of the described invention is about 28% expressed as ml/100 cc final volume of the composition. According to another embodiment, the maximum concentration of serum present in the progressive myocardial injury-preventing composition of the described invention is about 27% expressed as ml/100 cc final volume of the composition. According to another embodiment, the maximum concentration of serum present in the progressive myocardial injury-preventing composition of the described invention is about 26% expressed as ml/ 100 cc final volume of the composition. According to another embodiment, the maximum concentration of serum present in the progressive myocardial injury-preventing composition of the described invention is about 25% expressed as ml/ 100 cc final volume of the composition. According to another
embodiment, the maximum concentration of serum present in the progressive myocardial injury- preventing composition of the described invention is about 24% expressed as ml/1 0 cc final volume of the composition. According to another embodiment, the maximum concentration of serum present in the progressive myocardial injury-preventing composition of the described invention is about 23% expressed as ml/100 cc final volume of the composition. According to another embodiment, the maximum concentration of serum present in the progressive myocardial injury-preventing composition of the described invention is about 22% expressed as ml/100 cc final volume of the composition. According to another embodiment, the maximum
concentration of serum present in the progressive myocardial injury-preventing composition of the described invention is about 21% expressed as ml/100 cc final volume of the composition.
According to another embodiment, the maximum concentration of serum present in the progressive myocardial injury-preventing composition of the described invention is about 20% expressed as ml/100 cc final volume of the composition. According to another embodiment, the maximum concentration of serum present in the progressive myocardial injury-preventing composition of the described invention is about 15% expressed as ml/ 100 cc final volume of the composition. According to another embodiment, the maximum concentration of serum present in the progressive myocardial injury-preventing composition of the described invention is about 10% expressed as ml/ 100 cc final volume of the composition.
[000159] In some embodiments, the progressive myocardial injury-preventing composition may be formulated with an excipient, carrier or vehicle including, but not limited to, a solvent. The terms "excipient", "carrier", or "vehicle" as used herein refers to carrier materials suitable for formulation and administration of the chemotactic hematopoietic stem cell product described herein. Carriers and vehicles useful herein include any such materials know in the art which are nontoxic and do not interact with other components. As used herein the phrase
"pharmaceutically acceptable carrier" refers to any substantially non-toxic carrier useable for formulation and administration of the composition of the described invention in which the chemotactic hematopoietic stem cell product of the described invention will remain stable and bioavailable.
[000160] The pharmaceutically acceptable carrier must be of sufficiently high purity and of sufficiently low toxicity to render it suitable for administration to the mammal being treated. It further should maintain the stability and bioavailability of an active agent. The pharmaceutically acceptable carrier can be liquid or solid and is selected, with the planned manner of
administration in mind, to provide for the desired bulk, consistency, etc., when combined with an active agent and other components of a given composition. For example, the pharmaceutically acceptable carrier may be, without limitation, a binding agent (e.g., pregelatinized maize starch, polyvinylpyrrolidone or hydroxypropyl methylcellulose, etc.), a filler (e.g., lactose and other sugars, microcrystalline cellulose, pectin, gelatin, calcium sulfate, ethyl cellulose, polyacrylates, calcium hydrogen phosphate, etc.), a lubricant (e.g., magnesium stearate, talc, silica, colloidal silicon dioxide, stearic acid, metallic stearates, hydrogenated vegetable oils, corn starch, polyethylene glycols, sodium benzoate, sodium acetate, etc.), a disintegrant (e.g., starch, sodium starch glycolate, etc.), or a wetting agent (e.g., sodium lauryl sulfate, etc.). Other suitable pharmaceutically acceptable carriers for the compositions of the described invention include, but are not limited to, water, salt solutions, alcohols, polyethylene glycols, gelatins, amyloses, magnesium stearates, talcs, silicic acids, viscous paraffins, hydroxymethylcelluloses,
polyvinylpyrrolidones and the like. Such carrier solutions also can contain buffers, diluents and other suitable additives. The term "buffer" as used herein refers to a solution or liquid whose chemical makeup neutralizes acids or bases without a significant change in pH. Examples of buffers envisioned by the described invention include, but are not limited to, Dulbecco's phosphate buffered saline (PBS), Ringer's solution, 5% dextrose in water (D5W), and
normal/physiologic saline (0.9% NaCl). In some embodiments, the infusion solution is isotonic to subject tissues. In some embodiments, the infusion solution is hypertonic to subject tissues. Compositions of the described invention that are for parenteral administration may include pharmaceutically acceptable carriers such as sterile aqueous solutions, non-aqueous solutions in common solvents such as alcohols, or solutions in a liquid oil base.
[000161 J In some embodiments, the carrier of the progressive myocardial injury-preventing composition of the described invention may include a release agent such as a sustained release or delayed release carrier. In such embodiments, the carrier may be any material capable of sustained or delayed release of the active to provide a more efficient administration, e.g., resulting in less frequent and/or decreased dosage of the composition, improve ease of handling, and extend or delay effects on diseases, disorders, conditions, syndromes, and the like, being treated, prevented or promoted. Non-limiting examples of such carriers include liposomes, microsponges, microspheres, or microcapsules of natural and synthetic polymers and the like. Liposomes may be formed from a variety of phospholipids such as cholesterol, stearylamines or phosphatidylcholines. [000162] The progressive myocardial injury-preventing compositions of the described invention may be administered parenterally in the form of a sterile injectable aqueous or oleaginous suspension. The term "parenteral" or "parenterally" as used herein refers to introduction into the body by way of an injection (i.e., administration by injection), including, but not limited to, infusion techniques. In some embodiments, the progressive myocardial injury-preventing composition of the described invention comprising a chemotactic
hematopoietic stem cell product is delivered to the subject by means of a balloon catheter adapted for delivery of the fluid compositions (i.e., compositions capable of flow) into a selected anatomical structure.
[000163] The sterile progressive myocardial injury-preventing composition of the described invention may be a sterile solution or suspension in a nontoxic parenterally acceptable diluent or solvent. A solution generally is considered as a homogeneous mixture of two or more substances; it is frequently, though not necessarily, a liquid. In a solution, the molecules of the solute (or dissolved substance) are uniformly distributed among those of the solvent. A suspension is a dispersion (mixture) in which a finely-divided species is combined with another species, with the former being so finely divided and mixed that it does not rapidly settle out. In everyday life, the most common suspensions are those of solids in liquid water. Among the acceptable vehicles and solvents that may be employed are water, Ringer's solution, and isotonic sodium chloride (saline) solution. In some embodiments, hypertonic solutions are employed. In addition, sterile, fixed oils conventionally are employed as a solvent or suspending medium. For parenteral application, suitable vehicles consist of solutions, e.g., oily or aqueous solutions, as well as suspensions, emulsions, or implants. Aqueous suspensions may contain substances, which increase the viscosity of the suspension and include, for example, sodium carboxymethyl cellulose, sorbitol and/or dextran.
[000164] Additional progressive myocardial injury-preventing compositions of the described invention readily may be prepared using technology, which is known in the art, such as described in Remington's Pharmaceutical Sciences, 18th or 19th editions, published by the Mack Publishing Company of Easton, Pa., which is incorporated herein by reference.
[000165] As used herein the terms "therapeutically effective", "myocardial injury preventing amount", "vascular insufficiency repairing amount", "adverse consequence preventing amount", adverse consequence-reversing amount", or "pharmaceutically effective amount" refer to the amount of the compositions of the invention that result in a therapeutic or beneficial effect following its administration to a subject. The vascular insufficiency repairing, myocardial injury repairing, therapeutic, adverse consequence reversing or pharmaceutical effect may be curing, minimizing, preventing or ameliorating a disease or disorder, or may have any other vascular insufficiency-repairing, myocardial injury-repairing, adverse consequence reversing, or pharmaceutical beneficial effect. The concentration of the substance is selected so as to exert its vascular insufficiency-repairing, myocardial injury-repairing, adverse consequence reversing, therapeutic, or pharmaceutical effect, but low enough to avoid significant side effects within the scope and sound judgment of the physician. The effective amount of the composition may vary with the age and physical condition of the biological subject being treated, the severity of the condition, the duration of the treatment, the nature of concurrent therapy, the timing of the infusion, the specific compound, composition or other active ingredient employed, the particular carrier utilized, and like factors.
[000166] A skilled artisan may determine a pharmaceutically effective amount of the inventive compositions by determining the dose in a dosage unit (meaning unit of use) that elicits a given intensity of effect, hereinafter referred to as the "unit dose." The term "dose-intensity relationship" refers to the manner in which the intensity of effect in an individual recipient relates to dose. The intensity of effect generally designated is 50% of maximum intensity. The corresponding dose is called the 50% effective dose or individual ED50. The use of the term "individual" distinguishes the ED50 based on the intensity of effect as used herein from the median effective dose, also abbreviated ED50, determined from frequency of response data in a population. "Efficacy" as used herein refers to the property of the compositions of the described invention to achieve the desired response, and "maximum efficacy" refers to the maximum achievable effect. The amount of the chemotactic hematopoietic stem cell product in the pharmaceutical compositions of the described invention that will be effective in the treatment of a particular disorder or condition will depend on the nature of the disorder or condition, and may be determined by standard clinical techniques. (See, for example, Goodman and Gilman's THE PHARMACOLOGICAL BASIS OF THERAPEUTICS, Joel G. Harman, Lee E. Limbird, Eds.; McGraw Hill, New York, 2001 ; THE PHYSICIAN'S DESK REFERENCE, Medical Economics Company, Inc., Oradell, N. J., 1995; and DRUG FACTS AND COMPARISONS, FACTS AND COMPARISONS, INC., St. Louis, Mo., 1993), each of which is incorporated by reference herein. The precise dose to be employed in the formulations of the described invention also will depend on the route of administration and the seriousness of the disease or disorder, and should be decided according to the judgment of the practitioner and each subject's circumstances.
[000167] According to another embodiment, the pharmaceutical compositions according to the described invention contain a minimum number of CD34+ hematopoietic stem cells having a subpopulation of at least 0.5 x 106 CD34+ cells expressing CXCR-4 and having CXCR-4 mediated chemotactic activity per dosage unit for parenteral administration at the physician's discretion. According to another embodiment, it is envisioned that subjects can benefit from multiple administrations of the pharmaceutical compositions according to the described invention comprising a minimum number of CD34+ hematopoietic stem cells having a subpopulation of at least 0.5 x 106 CD34+ cells expressing CXCR-4 and having CXCR-4 mediated chemotactic activity.
[000168] In another aspect of the described invention, the progressive myocardial injury- preventing pharmaceutical compositions of the described invention may further include one or more compatible active ingredients, which are aimed at providing the progressive myocardial injury-preventing composition with another pharmaceutical effect in addition to that provided by the sterile chemotactic hematopoietic stem cell product of the described invention. "Compatible" as used herein means that the active ingredients of such a composition are capable of being combined with each other in such a manner so that there is no interaction that would substantially reduce the efficacy of each active ingredient or the composition under ordinary use conditions. In some embodiments, the combination therapy comprises administering to a subject in need thereof a progressive myocardial injury-preventing pharmaceutical composition comprising a sterile chemotactic hematopoietic stem cell product of the described invention combined with an agent selected from the group consisting of an angiotensin converting enzyme (ACE) inhibitor, a beta-blocker, a diuretic, an anti-arrhythmic agent, a hematopoietic stem cell mobilizing agent, a tyrosine kinase receptor agonist, an anti-anginal agent, a vasoactive agent or inotrope, an anticoagulant agent, a fibrinolytic agent, and a hypercholesterolemic agent.
According to some embodiments, the tyrosine kinase receptor agonist is neuregulin 1.
According to some embodiments, the neuregulin 1 is a recombinant protein. According to some embodiments, the hematopoietic stem cell mobilizing agent is a colony stimulating factor.
According to some such embodiments, the hematopoietic stem cell mobilizing agent comprises G-CSF, GM-CSF, or a pharmaceutically acceptable analog or derivative thereof. According to some embodiments, the hematopoietic stem cell mobilizing agent is a recombinant analog or derivative of a colony stimulating factor. According to some embodiments, the hematopoietic stem cell mobilizing agent is filgrastim.
[000169] In some embodiments, the composition of the described invention further comprises about 0.5% to about 5% albumin. In some embodiments, the minimum amount of albumin is about 0.5% expressed as ml/100 cc volume of the composition. In some
embodiments, the minimum amount of albumin is about 0.75% expressed as ml/100 cc volume of the composition. In some embodiments, the minimum amount of albumin is about 1.0% expressed as ml/ 100 cc volume of the composition. In some embodiments, the minimum amount of albumin is about 1.25% expressed as ml/100 cc volume of the composition. In some embodiments, the minimum amount of albumin is about 1.5% expressed as ml/1 0 cc volume of the composition. In some embodiments, the minimum amount of albumin is about 1.75% expressed as ml/ 100 cc volume of the composition. In some embodiments, the minimum amount of albumin is about 2.0% expressed as ml/100 cc volume of the composition. In some embodiments, the minimum amount of albumin is about 2.5% expressed as ml/100 cc volume of the composition. In some embodiments, the minimum amount of albumin is about 2.75% expressed as ml/ 100 cc volume of the composition. In some embodiments, the minimum amount of albumin is about 3.0% expressed as ml/100 cc volume of the composition. In some embodiments, the minimum amount of albumin is about 3.5% expressed as ml/100 cc volume of the composition. In some embodiments, the minimum amount of albumin is about 4.0% expressed as ml/100 cc volume of the composition. In some embodiments, the minimum amount of albumin is about 4.5% expressed as ml/100 cc volume of the composition. In some embodiments, the minimum amount of albumin is about 5.0% expressed as ml/100 cc volume of the composition.
[000170] In some embodiments, the maximum amount of albumin in the compositions of the described invention is about 5.0% expressed as ml/100 cc volume of the composition. In some embodiments, the maximum amount of albumin in the compositions of the described invention is about 4.75% expressed as ml/100 cc volume of the composition. In some embodiments, the maximum amount of albumin in the compositions of the described invention is about 4.5% expressed as ml/100 cc volume of the composition. In some embodiments, the maximum amount of albumin in the compositions of the described invention is about 4.0% expressed as ml/ 100 cc volume of the composition. In some embodiments, the maximum amount of albumin in the compositions of the described invention is about 4.25% expressed as ml/100 cc volume of the composition. In some embodiments, the maximum amount of albumin in the compositions of the described invention is about 4.0% expressed as ml/100 cc volume of the composition. In some embodiments, the maximum amount of albumin in the compositions of the described invention is about 3.75% expressed as ml/100 cc volume of the composition. In some embodiments, the maximum amount of albumin in the compositions of the described invention is about 3.5% expressed as ml/100 cc volume of the composition. In some
embodiments, the maximum amount of albumin in the compositions of the described invention is about 3.25% expressed as ml/100 cc volume of the composition. In some embodiments, the maximum amount of albumin in the compositions of the described invention is about 3.0% expressed as ml/ 100 cc volume of the composition. In some embodiments, the maximum amount of albumin in the compositions of the described invention is about 2.75% expressed as ml/100 cc volume of the composition. In some embodiments, the maximum amount of albumin in the compositions of the described invention is about 2.0% expressed as ml/100 cc volume of the composition. In some embodiments, the maximum amount of albumin in the compositions of the described invention is about 1.75% expressed as ml/ 100 cc volume of the composition. In some embodiments, the maximum amount of albumin in the compositions of the described invention is about 1.5% expressed as ml/100 cc volume of the composition. In some
embodiments, the maximum amount of albumin in the compositions of the described invention is about 1.25% expressed as ml/100 cc volume of the composition. In some embodiments, the maximum amount of albumin in the compositions of the described invention is about 1% expressed as ml/ 100 cc volume of the composition. In some embodiments, the albumin is human albumin. In some embodiments the albumin is recombinant human albumin.
[000171] Methods of the Described Invention
[000172] In another aspect, the described invention provides a method of preparing a progressive myocardial injury-preventing pharmaceutical composition comprising a sterile chemotactic hematopoietic stem cell product for treating a subject in need thereof. The method comprises the steps of
[000173] (1 ) acquiring a sterile nonexpanded, isolated population of autologous mononuclear cells comprising CD34+ cells, which further contain a subpopulation of potent CD34+/CXCR-4+ cells that have CXCR-4-mediated chemotactic activity from the subject under sterile conditions by a chemotactic cell acquisition process;
[000174] (2) optionally freezing at least one aliquot of the nonexpanded, isolated population of autologous mononuclear cells of step (1) at -86°C and cryostoring the at least one aliquot in the vapor phase of a liquid nitrogen freezer; and thawing the at least one aliquot of step (2) when needed; [000175] (3) sterilely purifying the CD34+ cells from the sterile nonexpanded, isolated population of autologous mononuclear cells comprising CD34+ cells of (1) or (2) so as to yield a chemotactic hematopoietic stem cell product comprising the nonexpanded, isolated population of autologous mononuclear cells enriched for CD34+ cells, which further contain a subpopulation of potent CD34+ cells that express CXCR-4 and that have CXCR-4-mediated chemotactic activity;
[000176] (4) sterilely formulating the sterile chemotactic hematopoietic stem cell product to form a sterile pharmaceutical composition;
[000177] (5) confirming sterility of the pharmaceutical composition;
[000178] (6) releasing the sterile pharmaceutical composition as eligible for infusion into the subject;
[000179] (7) loading a therapeutically effective amount of the pharmaceutical composition into a chemotactic hematopoietic stem cell product delivery apparatus; and
[000180] (8) optionally transporting the delivery apparatus containing the therapeutically effective amount of the sterile pharmaceutical composition comprising the sterile chemotactic hematopoietic stem cell product to a cardiac catheterization facility for infusion into the subject.
[000181] According to some embodiments, the nonexpanded, isolated population of autologous mononuclear cells can be acquired from the subject at any time. According to some embodiments, the nonexpanded, isolated population of autologous mononuclear cells is acquired early after an AMI. According to some such embodiments, the nonexpanded, isolated population of autologous mononuclear cells is acquired 5 days, 6 days, 7 days, 8 days, 9 days, 10 days, 1 1 days, 12 days, 13 days, 14 days or more after the occurrence of an AMI. According to some embodiments, the nonexpanded, isolated population of autologous mononuclear cells is acquired late after the occurrence of an AMI. According to some such embodiments, the nonexpanded, isolated population of autologous mononuclear cells is acquired at least 15 days, at least 16 days, at least 17 days, at least 18 days, at least 19 days, at least 20 days, at least 21 days, at least 22 days, at least 23 days, at least 24 days, at least 25 days, at least 26 days, at least 27 days, at least 28 days, at least 29 days, at least 30 days, at least 60 days, at least 90 days, at least 120 days, at least 150 days, at least 180 days or more after the occurrence of the AMI. According to some embodiments, the nonexpanded, isolated population of autologous mononuclear cells is acquired at least 1 month, at least 2 months, at least 3 months, at least 4 months, at least 5 months, at least 6 months, at least 7 months, at least 8 months, at least 9 months, at least 10 months, at least 1 1 months, at least 12 months, at least 16 months, at least 24 months, at least 30 months, at least 36 months, at least 42 months, at least 48 months, at least 54 months, at least 60 months, at least 66 months, at least 72 months, at least 78 months, at least 84 months, at least 90 months, at least 96 months, at least 102 months, at least 108 months, at least 1 14 months, at least 120 months, at least 126 months, at least 132 months, at least 138 months, at least 144 months, at least 150 months, at least 156 months, at least 162 months, at least 168 months, at least 174 months, at least 180 months, at least 186 months, at least 192 months, at least 198 months, at least 204 months, at least 210 months, at least 216 months, at least 222 months, at least 228 months, at least 234 months , at least 240 months or more after occurrence of an AMI. According to some embodiments, the nonexpanded, isolated population of autologous mononuclear cells is acquired at least at least 3 years, 4 years, 5 years, 6 years, 7 years, 8 years, 9 years, 10 years, 1 1 years, 12 years, 13 years, 14 years, 15 years, 16 years 17 years, 18 years, 19 years, 20 years, 21 years, 22 years, 23 years, 24 years, 25 years, 26 years, 27 years, 28 years, 29 years, 30 years, 31 years, 32 years, 33 years, 34 years, 35 years, 36 years 37 years, 38 years, 39 years, 40 years or more after occurrence of an AMI.
[000182] According to one embodiment, step (3) is initiated within about 12 hours to about 24 hours of completion of acquiring step (1). According to some embodiments, , releasing step (6) proceeds only if the sterile formulated cell product is to be infused into the subject within about 48 hours to about 72 hours of completion of acquiring step (1). According to another embodiment, step (3) is initiated within about 12 hours to about 24 hours of completion of acquiring step (1), and releasing step (6) proceeds only if the sterile formulated cell product is to be infused into the subject within about 48 hours to about 72 hours of completion of acquiring step (l).
[000183] According to some embodiments, , releasing step (6) proceeds only if the sterile formulated cell product is to be infused into the subject within about 48 hours to about 72 hours of thawing of the at least one frozen aliquot of optional step (2). According to another embodiment, step (3) is initiated within about 12 hours to about 24 hours of thawing of the at least one frozen aliquot of optional step (2), and releasing step (6) proceeds only if the sterile formulated cell product is to be infused into the subject within about 48 hours to about 72 hours of thawing of the at least one frozen aliquot of optional step (2).
[000184] According to some embodiments, a frozen aliquot of step (2) is thawed at least 10 days, at least 1 1 days, at least 12 days, at least 13 days, at least 14 days, at least 15 days, at least 16 days, at least 17 days, at least 18 days, at least 19 days, at least 20 days, at least 21 days, at least 22 days, at least 23 days, at least 24 days, at least 25 days, at least 26 days, at least 27 days, at least 28 days, at least 29 days, at least 30 days, at least 60 days, at least 90 days, at least 120 days, at least 150 days, or at least 180 days, from the date the nonexpanded, isolated population of autologous mononuclear cells is acquired from the subject in step (1 ).. According to some embodiments, the frozen aliquot of step (4) is thawed at least 1 month, at least 2 months, at least 3 months, at least 4 months, at least 5 months, at least 6 months, at least 7 months, at least 8 months, at least 9 months, at least 10 months, at least 1 1 months, at least 12 months, at least 16 months, at least 24 months, at least 30 months, at least 36 months, at least 42 months, at least 48 months, at least 54 months, at least 60 months, at least 66 months, at least 72 months, at least 78 months, at least 84 months, at least 90 months, at least 96 months, at least 102 months, at least 108 months, at least 1 14 months, at least 120 months, at least 126 months, at least 132 months, at least 138 months, at least 144 months, at least 150 months, at least 156 months, at least 162 months, at least 168 months, at least 174 months, at least 180 months, at least 186 months, at least 192 months, at least 198 months, at least 204 months, at least 210 months, at least 216 months, at least 222 months, at least 228 months, at least 234 months or at least 240 months from the date the nonexpanded, isolated population of autologous mononuclear cells is acquired from the subject in step (1). According to some embodiments, the frozen aliquot of step (2) is thawed at least 3 years, 4 years, 5 years, 6 years, 7 years, 8 years, 9 years, 10 years, 1 1 years, 12 years, 13 years, 14 years, 15 years, 16 years 17 years, 18 years, 19 years, 20 years, 21 years, 22 years, 23 years, 24 years, 25 years, 26 years, 27 years, 28 years, 29 years, 30 years, 31 years, 32 years, 33 years, 34 years, 35 years, 36 years 37 years, 38 years, 39 years, 40 years or more from the date the nonexpanded, isolated population of autologous mononuclear cells is acquired from the subject in step (1).
[000185] According to such embodiments, the chemotactic hematopoietic stem cell product produced from the frozen aliquot is further characterized as having the following properties for at least 24 hours following thawing when tested in vitro after passage through a catheter: (1) retains at least 10%, at least 20%, at least 30%, at least 40%, at least 50%, at least 60%, at least 70,%, at least 80%, at least 90%, or 100% of the CXCR-4-mediated activity of the of the subpopulation of potent CD34+/CXCR-4+ cells that have CXCR-4-mediated chemotactic activity; (2) at least 70% of the cells are CD34+ cells; (3) is at least 70% viable; and (4) is able to form
hematopoietic colonies in vitro.
[000186] According to another embodiment, step (5), i.e., the step of assessing sterility of the pharmaceutical composition, further comprises the steps of (i) centrifuging the sterile chemotactic hematopoietic stem cell product comprising potent CD34+/CXCR-4+ cells to form a cell pellet and a supernatant, the cell pellet comprising the potent CD34+/CXCR-4+ cells; (ii) sterilely removing the supernatant without disturbing the cell pellet; and (iii) analyzing whether the supernatant is contaminated by a microbe thereby determining the sterility of the cell pellet.
[000187] According to one embodiment, in step (1), the chemotactic cell acquisition process is a mini-bone marrow harvest technique used to acquire the nonexpanded isolated population of autologous mononuclear cells comprising potent CD34+/CXCR-4+ cells from the bone marrow of the subject under sterile conditions. For the bone marrow harvest technique, step (1 ) of the method further comprises the steps: (i) preloading harvesting syringes with heparin prior to harvesting bone marrow from a subject; (ii) aspirating the bone marrow from a left posterior iliac crest and a right posterior iliac crest of the subject using the harvesting syringes and a mini-bone marrow harvest technique to form harvested bone marrow; and (iii) infusing the harvested bone marrow into a collecting bag. In one embodiment, the harvesting syringes in step (i) and the collecting bag in step (iii) contain a preservative free heparinized solution comprising 0.9% normal saline. The final concentration of heparin in the heparinized saline solution is about 20 units per ml to about 25 units per ml.
[000188] Optionally, according to one embodiment of the method, the harvested bone marrow is transported to a processing facility different from the facility from which the bone marrow was harvested. According to one embodiment, the method for transporting the harvested bone marrow to the processing facility comprises the steps (a) placing the harvested bone marrow in a collection bag; (b) placing the collection bag in a secondary bag; (c) placing the secondary bag containing the collection bag in a shipping container comprising an interior compartment containing frozen wet ice and at least one sheet of bubble wrap; (d) affixing a temperature tag monitor to the interior compartment of the shipping container; (e) sealing the shipping container; and (f) shipping the shipping container to the processing facility.
[000189] In another aspect, the described invention provides a method for treating or preventing progressive myocardial injury due to a vascular insufficiency that occurs early or late. The method comprising the steps: (a) evaluating whether the subject qualifies for therapy with the pharmaceutical composition of the described invention; (b) preparing the pharmaceutical composition comprising a chemotactic hematopoietic stem cell product; (c) loading the pharmaceutical composition into a chemotactic hematopoietic stem cell product delivery apparatus; (d) delivering a therapeutically effective amount of the pharmaceutical composition to the subject; and (e) monitoring the subject's cardiac function. According to one embodiment, in step (d) the therapeutically effective amount of the pharmaceutical composition is delivered to the subject intravascularly (meaning inside a blood vessel). According to another embodiment, the vascular insufficiency that occurs early or late is an ischemia. According to some such embodiments, the ischemia is a myocardial ischemia. According to some such embodiments, the ischemia is a transient myocardial ischemia. According to some such embodiments, the ischemia is a chronic myocardial ischemia. According to some such embodiments, the ischemia is a peri-infarct border zone ischemia. According to one embodiment, the vascular insufficiency that occurs early or late is a vascular insufficiency after an acute myocardial infarction resulting from underlying disease. According to some such embodiments, the progressive myocardial injury is heart failure.
[000190] According to one embodiment of the described invention, the subject in need thereof is a revascularized myocardial infarction patient. The term "revascularized" as used in this embodiment refers to the successful placement of a stent. Clinical evaluations, for example, of coronary insufficiency using non-laboratory tests, cardiac catheterization, measurement of inflammatory cytokines, and measurement of cardiac biomarkers may be used to determine the appropriate time to administer the pharmaceutical compositions in accordance with the methods of the described invention. According to n some embodiments, detection of peak inflammatory cytokine cascade production enables the administration to be tailored to the therapeutic window most crucial for the particular subject. According to some embodiments, peak inflammatory cytokine cascade production is determined by measuring the levels of the appropriate cytokine(s) in the plasma and or urine. According to other embodiments, the level(s) of the appropriate cytokine(s) is/are measured immunochemical ly, for example, by a sandwich enzyme
immunoassay, by enzyme-linked immunosorbent assays (ELISA) or by multiplex bead kits.
[000191 J According to some embodiments, the composition is administered at a first infusion date. According to one embodiment, the first infusion date is a time after an
inflammatory cytokine cascade production peaks. According to some embodiments, the first infusion date at which the composition is administered to a revascularized myocardial infarction patient is about 5 days to about 14 days post-infarction. In some embodiments, the minimum first infusion date in which to administer the composition to a revascularized myocardial infarction patient is about 5, 6, 7 , 8, 9, 10, 1 1, 12, 13, or 14 days post-infarction. According to some embodiments, the maximum first infusion date in which to administer the composition to a revascularized myocardial infarction patient is about 14, 12, 1 1, 10, 9, 8, 7, 6, or 5 days postinfarction.
[000192] According to some embodiments, the composition is administered multiple times, or as needed in the judgment of the treating physician. According to one such embodiment, the composition is administered at the first infusion date, and optionally at a second infusion date, a third infusion date, a fourth infusion date, a fifth infusion date, a sixth infusion date, a seventh infusion date, an eighth infusion date, a ninth infusion date, a tenth infusion date, and so on.
[000193] According to some embodiments, the first infusion date at which the composition is administered to a revascularized subject suffering from a vascular insufficiency that occurs early or late after a myocardial infarction resulting from underlying disease comprises a specific time interval defined by a first time and a second time, wherein the first time is after peak inflammatory cytokine cascade production in the infarcted area and the second time is before myocardial scar formation in the infarcted area.
[000194] According to some embodiments, the first infusion date is at least about one day, at least about two days, at least about three days, at least about four days, at least about five days, at least about six days, at least about 7 days, at least about 8 days, at least about 9 days, at least about 10 days, at least about 1 1 days, at least about 12 days, at least about 13 days, at least about 14 days, at least about 15 days, at least about 16 days, at least about 17 days, at least about 18 days, at least about 19 days, at least about 20 days, at least about 21 days, at least about 22 days, at least about 23 days, at least about 24 days, at least about 25 days, at least about 26 days, at least about 27 days, at least about 28 days, at least about 29 days, at least about 30 days or more after occurrence of anAMl. According to some embodiments, the second infusion date is at least about 1 month, at least about 2 months, at least about 3 months, at least about 4 months, at least about 5 months, at least about 6 months, at least about 7 months, at least about 8 months, at least about 9 months, at least about 10 months, at least about 1 1 months, at least about 12 months, at least about 13 months, at least about 14 months, at least about 15 months, at least about 16 months, at least about 17 months, at least about 18 months, at least about 19 months, at least about 20 months, at least about 21 months, at least about 22 months, at least about 23 months, at least about 24 months, at least about 30 months, at least about 36 months, at least about 42 months, at least about 48 months, at least about 54 months, at least about 60 months, at least about 66 months, at least about 72 months, at least about 78 months, at least about 84 months, at least about 90 months, at least about 96 months, at least about 102 months, at least about 108 months, at least about 1 14 months, at least about 120 months, at least about 126 months, at least about 32 months, at least about 138 months, at least about 144 months, at least about 150 months, at least about 156 months, at least about 162 months, at least about 168 months, at least about 174 months, at least about 180 months, at least about 186 months, at least about 192 months, at least about 198 months, at least about 204 months, at least about 210 months, at least about 216 months, at least about 222 months, at least about 228 months, at least about 234 months, at least about 240 months or more after occurrence of an AMI. According to some embodiments, the first infusion date is at least 3 years, 4 years, 5 years, 6 years, 7 years, 8 years, 9 years, 10 years, 1 1 years, 12 years, 13 years, 14 years, 15 years, 16 years 17 years, 18 years, 19 years, 20 years, 21 years, 22 years, 23 years, 24 years, 25 years, 26 years, 27 years, 28 years, 29 years, 30 years, 31 years, 32 years, 33 years, 34 years, 35 years, 36 years 37 years, 38 years, 39 years, 40 years or more after occurrence of an AMI.
[000195] According to some embodiments, the third infusion date is at least about one day, at least about two days, at least about three days, at least about four days, at least about five days, at least about six days, at least about 7 days, at least about 8 days, at least about 9 days, at least about 10 days, at least about 1 1 days, at least about 12 days, at least about 13 days, at least about 14 days, at least about 15 days, at least about 16 days, at least about 17 days, at least about 18 days, at least about 19 days, at least about 20 days, at least about 21 days, at least about 22 days, at least about 23 days, at least about 24 days, at least about 25 days, at least about 26 days, at least about 27 days, at least about 28 days, at least about 29 days, at least about 30 days or more after occurrence of an AMI. According to some embodiments, the third infusion date is at least about 1 month, at least about 2 months, at least about 3 months, at least about 4 months, at least about 5 months, at least about 6 months, at least about 7 months, at least about 8 months, at least about 9 months, at least about 10 months, at least about 11 months, at least about 12 months, at least about 13 months, at least about 14 months, at least about 15 months, at least about 16 months, at least about 17 months, at least about 18 months, at least about 19 months, at least about 20 months, at least about 21 months, at least about 22 months, at least about 23 months, at least about 24 months, at least about 30 months, at least about 36 months, at least about 42 months, at least about 48 months, at least about 54 months, at least about 60 months, at least about 66 months, at least about 72 months, at least about 78 months, at least about 84 months, at least about 90 months, at least about 96 months, at least about 102 months, at least about 108 months, at least about 1 14 months, at least about 120 months, at least about 126 months, at least about 132 months, at least about 138 months, at least about 144 months, at least about 150 months, at least about 156 months, at least about 162 months, at least about 168 months, at least about 174 months, at least about 180 months, at least about 186 months, at least about 1 2 months, at least about 198 months, at least about 204 months, at least about 210 months, at least about 216 months, at least about 222 months, at least about 228 months, at least about 234 months, at least about 240 months after occurrence of an AMI. According to some such embodiments, the third infusion date is at least 3 years, 4 years, 5 years, 6 years, 7 years, 8 years, 9 years, 10 years, 1 1 years, 12 years, 13 years, 14 years, 15 years, 16 years 17 years, 18 years, 19 years, 20 years, 21 years, 22 years, 23 years, 24 years, 25 years, 26 years, 27 years, 28 years, 29 years, 30 years, 31 years, 32 years, 33 years, 34 years, 35 years, 36 years 37 years, 38 years, 39 years, 40 years or more after occurrence of an AMI.
[000196] According to some embodiments, the fourth infusion date is at least about one day, at least about two days, at least about three days, at least about four days, at least about five days, at least about six days, at least about 7 days, at least about 8 days, at least about 9 days, at least about 10 days, at least about 1 1 days, at least about 12 days, at least about 13 days, at least about 14 days, at least about 15 days, at least about 16 days, at least about 17 days, at least about 18 days, at least about 19 days, at least about 20 days, at least about 21 days, at least about 22 days, at least about 23 days, at least about 24 days, at least about 25 days, at least about 26 days, at least about 27 days, at least about 28 days, at least about 29 days, at least about 30 days or more after occurrence of an AMI. According to some embodiments, the fourth infusion date is at least about 1 month, at least about 2 months, at least about 3 months, at least about 4 months, at least about 5 months, at least about 6 months, at least about 7 months, at least about 8 months, at least about 9 months, at least about 10 months, at least about 1 1 months, at least about 12 months, at least about 13 months, at least about 14 months, at least about 15 months, at least about 16 months, at least about 17 months, at least about 18 months, at least about 19 months, at least about 20 months, at least about 21 months, at least about 22 months, at least about 23 months, at least about 24 months, at least about 30 months, at least about 36 months, at least about 42 months, at least about 48 months, at least about 54 months, at least about 60 months, at least about 66 months, at least about 72 months, at least about 78 months, at least about 84 months, at least about 90 months, at least about 96 months, at least about 102 months, at least about 108 months, at least about 1 14 months, at least about 120 months, at least about 126 months, at least about 132 months, at least about 138 months, at least about 144 months, at least about 150 months, at least about 156 months, at least about 162 months, at least about 168 months, at least about 174 months, at least about 180 months, at least about 186 months, at least about 192 months, at least about 198 months, at least about 204 months, at least about 210 months, at least about 216 months, at least about 222 months, at least about 228 months, at least about 234 months, at least about 240 months or more after occurrence of an AMI.. According to some such embodiments, the third infusion date is at least 3 years, 4 years, 5 years, 6 years, 7 years, 8 years, 9 years, 10 years, 1 1 years, 12 years, 13 years, 14 years, 15 years, 16 years 17 years, 18 years, 19 years, 20 years, 21 years, 22 years, 23 years, 24 years, 25 years, 26 years, 27 years, 28 years, 29 years, 30 years, 31 years, 32 years, 33 years, 34 years, 35 years, 36 years 37 years, 38 years, 39 years, 40 years or more after occurrence of an AMI..
[000197] According to some embodiments, the fifth infusion date is at least about one day, at least about two days, at least about three days, at least about four days, at least about five days, at least about six days, at least about 7 days, at least about 8 days, at least about 9 days, at least about 10 days, at least about 1 1 days, at least about 12 days, at least about 13 days, at least about 14 days, at least about 15 days, at least about 16 days, at least about 17 days, at least about 18 days, at least about 19 days, at least about 20 days, at least about 21 days, at least about 22 days, at least about 23 days, at least about 24 days, at least about 25 days, at least about 26 days, at least about 27 days, at least about 28 days, at least about 29 days, at least about 30 days or more after occurrence of an AMI. According to some embodiments, the fifth infusion date is at least about 1 month, at least about 2 months, at least about 3 months, at least about 4 months, at least about 5 months, at least about 6 months, at least about 7 months, at least about 8 months, at least about 9 months, at least about 10 months, at least about 1 1 months, at least about 12 months, at least about 13 months, at least about 14 months, at least about 15 months, at least about 16 months, at least about 17 months, at least about 18 months, at least about 19 months, at least about 20 months, at least about 21 months, at least about 22 months, at least about 23 months, at least about 24 months, at least about 30 months, at least about 36 months, at least about 42 months, at least about 48 months, at least about 54 months, at least about 60 months, at least about 66 months, at least about 72 months, at least about 78 months, at least about 84 months, at least about 90 months, at least about 96 months, at least about 102 months, at least about 108 months, at least about 1 14 months, at least about 120 months, at least about 126 months, at least about 132 months, at least about 138 months, at least about 144 months, at least about 150 months, at least about 156 months, at least about 162 months, at least about 168 months, at least about 174 months, at least about 180 months, at least about 186 months, at least about 192 months, at least about 198 months, at least about 204 months, at least about 210 months, at least about 216 months, at least about 222 months, at least about 228 months, at least about 234 months, at least about 240 months or more after occurrence of an AMI. According to some embodiments, the first infusion date is at least 3 years, 4 years, 5 years, 6 years, 7 years, 8 years, 9 years, 10 years, 1 1 years, 12 years, 13 years, 14 years, 15 years, 16 years 7 years, 18 years, 19 years, 20 years, 21 years, 22 years, 23 years, 24 years, 25 years, 26 years, 27 years, 28 years, 29 years, 30 years, 31 years, 32 years, 33 years, 34 years, 35 years, 36 years 37 years, 38 years, 39 years, 40 years or more after occurrence of an AMI. [000198] According to some embodiments, the sixth infusion date is at least about one day, at least about two days, at least about three days, at least about four days, at least about five days, at least about six days, at least about 7 days, at least about 8 days, at least about 9 days, at least about 10 days, at least about 1 1 days, at least about 12 days, at least about 13 days, at least about
14 days, at least about 15 days, at least about 16 days, at least about 17 days, at least about 18 days, at least about 19 days, at least about 20 days, at least about 21 days, at least about 22 days, at least about 23 days, at least about 24 days, at least about 25 days, at least about 26 days, at least about 27 days, at least about 28 days, at least about 29 days, at least about 30 days or more after occurrence of an AMI. According to some embodiments, the sixth infusion date is at least about 1 month, at least about 2 months, at least about 3 months, at least about 4 months, at least about 5 months, at least about 6 months, at least about 7 months, at least about 8 months, at least about 9 months, at least about 10 months, at least about 1 1 months, at least about 12 months, at least about 13 months, at least about 14 months, at least about 15 months, at least about 16 months, at least about 17 months, at least about 18 months, at least about 19 months, at least about 20 months, at least about 21 months, at least about 22 months, at least about 23 months, at least about 24 months, at least about 30 months, at least about 36 months, at least about 42 months, at least about 48 months, at least about 54 months, at least about 60 months, at least about 66 months, at least about 72 months, at least about 78 months, at least about 84 months, at least about 90 months, at least about 96 months, at least about 102 months, at least about 108 months, at least about 1 14 months, at least about 120 months, at least about 126 months, at least about 132 months, at least about 138 months, at least about 144 months, at least about 150 months, at least about 156 months, at least about 162 months, at least about 168 months, at least about 174 months, at least about 180 months, at least about 186 months, at least about 192 months, at least about 198 months, at least about 204 months, at least about 210 months, at least about 216 months, at least about 222 months, at least about 228 months, at least about 234 months, at least about 240 months or more after occurrence of an AMI. . According to some such embodiments, the third infusion date is at least 3 years, 4 years, 5 years, 6 years, 7 years, 8 years, 9 years, 10 years, 1 1 years, 12 years, 13 years, 14 years, 15 years, 16 years 17 years, 18 years, 19 years, 20 years, 21 years, 22 years, 23 years 24 years, 25 years, 26 years, 27 years, 28 years, 29 years, 30 years, 31 years, 32 years, 33 years, 34 years, 35 years, 36 years 37 years, 38 years, 39 years, 40 years or more after occurrence of an AMI.
[000199] According to some such embodiments, the seventh infusion date is at least about one day, at least about two days, at least about three days, at least about four days, at least about five days, at least about six days, at least about 7 days, at least about 8 days, at least about 9 days, at least about 10 days, at least about 1 1 days, at least about 12 days, at least about 13 days, at least about 14 days, at least about 15 days, at least about 16 days, at least about 17 days, at least about 18 days, at least about 19 days, at least about 20 days, at least about 21 days, at least about 22 days, at least about 23 days, at least about 24 days, at least about 25 days, at least about 26 days, at least about 27 days, at least about 28 days, at least about 29 days, at least about 30 days or more after occurrence of an AMI. According to some embodiments, the seventh infusion date is at least about 1 month, at least about 2 months, at least about 3 months, at least about 4 months, at least about 5 months, at least about 6 months, at least about 7 months, at least about 8 months, at least about 9 months, at least about 10 months, at least about 1 1 months, at least about 12 months, at least about 13 months, at least about 14 months, at least about 15 months, at least about 16 months, at least about 17 months, at least about 18 months, at least about 19 months, at least about 20 months, at least about 21 months, at least about 22 months, at least about 23 months, at least about 24 months, at least about 30 months, at least about 36 months, at least about 42 months, at least about 48 months, at least about 54 months, at least about 60 months, at least about 66 months, at least about 72 months, at least about 78 months, at least about 84 months, at least about 90 months, at least about 96 months, at least about 102 months, at least about 108 months, at least about 1 14 months, at least about 120 months, at least about 126 months, at least about 132 months, at least about 138 months, at least about 144 months, at least about 150 months, at least about 156 months, at least about 162 months, at least about 168 months, at least about 174 months, at least about 180 months, at least about 186 months, at least about 192 months, at least about 198 months, at least about 204 months, at least about 210 months, at least about 216 months, at least about 222 months, at least about 228 months, at least about 234 months, at least about 240 months or more after occurrence of an AMI. . According to some such embodiments, the third infusion date is at least 3 years, 4 years, 5 years, 6 years, 7 years, 8 years, 9 years, 10 years, 1 1 years, 12 years, 13 years, 14 years, 15 years, 16 years 17 years, 18 years, 19 years, 20 years, 21 years, 22 years, 23 years, 24 years, 25 years, 26 years, 27 years, 28 years, 29 years, 30 years, 31 years, 32 years, 33 years, 34 years, 35 years, 36 years 37 years, 38 years, 39 years, 40 years or more after occurrence of an AMI.
[000200] According to some such embodiments, the eighth infusion date is at least about one day, at least about two days, at least about three days, at least about four days, at least about five days, at least about six days, at least about 7 days, at least about 8 days, at least about 9 days, at least about 10 days, at least about 1 1 days, at least about 12 days, at least about 13 days, at least about 14 days, at least about 15 days, at least about 16 days, at least about 17 days, at least about 18 days, at least about 19 days, at least about 20 days, at least about 21 days, at least about 22 days, at least about 23 days, at least about 24 days, at least about 25 days, at least about 26 days, at least about 27 days, at least about 28 days, at least about 29 days, at least about 30 days or more after occurrence of an AMI. According to some embodiments, the eighth infusion date is at least about 1 month, at least about 2 months, at least about 3 months, at least about 4 months, at least about 5 months, at least about 6 months, at least about 7 months, at least about 8 months, at least about 9 months, at least about 10 months, at least about 11 months, at least about 12 months, at least about 13 months, at least about 14 months, at least about 15 months, at least about 16 months, at least about 17 months, at least about 18 months, at least about 19 months, at least about 20 months, at least about 21 months, at least about 22 months, at least about 23 months, at least about 24 months, at least about 30 months, at least about 36 months, at least about 42 months, at least about 48 months, at least about 54 months, at least about 60 months, at least about 66 months, at least about 72 months, at least about 78 months, at least about 84 months, at least about 90 months, at least about 96 months, at least about 102 months, at least about 108 months, at least about 1 14 months, at least about 120 months, at least about 126 months, at least about 132 months, at least about 138 months, at least about 144 months, at least about 150 months, at least about 156 months, at least about 162 months, at least about 168 months, at least about 174 months, at least about 180 months, at least about 186 months, at least about 192 months, at least about 198 months, at least about 204 months, at least about 210 months, at least about 216 months, at least about 222 months, at least about 228 months, at least about 234 months, at least about 240 months or more after occurrence of an AMI. . According to some such embodiments, the third infusion date is at least 3 years, 4 years, 5 years, 6 years, 7 years, 8 years, 9 years, 10 years, 1 1 years, 12 years, 13 years, 14 years, 15 years, 16 years 17 years, 18 years, 19 years, 20 years, 21 years, 22 years, 23 years, 24 years, 25 years, 26 years, 27 years, 28 years, 29 years, 30 years, 31 years, 32 years, 33 years, 34 years, 35 years, 36 years 37 years, 38 years, 39 years, 40 years or more after occurrence of an AMI.
[000201] According to some such embodiments, the ninth infusion date is at least about one day, at least about two days, at least about three days, at least about four days, at least about five days, at least about six days, at least about 7 days, at least about 8 days, at least about 9 days, at least about 10 days, at least about 1 1 days, at least about 12 days, at least about 13 days, at least about 14 days, at least about 15 days, at least about 1 days, at least about 17 days, at least about 18 days, at least about 19 days, at least about 20 days, at least about 21 days, at least about 22 days, at least about 23 days, at least about 24 days, at least about 25 days, at least about 26 days, at least about 27 days, at least about 28 days, at least about 29 days, at least about 30 days or more after occurrence of an AMI. According to some embodiments, the ninth infusion date is at least about 1 month, at least about 2 months, at least about 3 months, at least about 4 months, at least about 5 months, at least about 6 months, at least about 7 months, at least about 8 months, at least about 9 months, at least about 10 months, at least about 11 months, at least about 12 months, at least about 13 months, at least about 14 months, at least about 15 months, at least about 16 months, at least about 17 months, at least about 18 months, at least about 19 months, at least about 20 months, at least about 21 months, at least about 22 months, at least about 23 months, at least about 24 months, at least about 30 months, at least about 36 months, at least about 42 months, at least about 48 months, at least about 54 months, at least about 60 months, at least about 66 months, at least about 72 months, at least about 78 months, at least about 84 months, at least about 90 months, at least about 96 months, at least about 102 months, at least about 108 months, at least about 1 14 months, at least about 120 months, at least about 126 months, at least about 132 months, at least about 138 months, at least about 144 months, at least about 150 months, at least about 156 months, at least about 162 months, at least about 168 months, at least about 174 months, at least about 180 months, at least about 186 months, at least about 192 months, at least about 1 8 months, at least about 204 months, at least about 210 months, at least about 216 months, at least about 222 months, at least about 228 months, at least about 234 months, at least about 240 months or more after occurrence of an AMI. . According to some such embodiments, the third infusion date is at least 3 years, 4 years, 5 years, 6 years, 7 years, 8 years, 9 years, 10 years, 1 1 years, 12 years, 13 years, 14 years, 1 years, 16 years 17 years, 18 years, 19 years, 20 years, 21 years, 22 years, 23 years, 24 years, 25 years, 26 years, 27 years, 28 years, 29 years, 30 years, 31 years, 32 years, 33 years, 34 years, 35 years, 36 years 37 years, 38 years, 39 years, 40 years or more after occurrence of an AMI.
[000202] According to some such embodiments, the tenth infusion date is at least about one day, at least about two days, at least about three days, at least about four days, at least about five days, at least about six days, at least about 7 days, at least about 8 days, at least about 9 days, at least about 10 days, at least about 1 1 days, at least about 12 days, at least about 13 days, at least about 14 days, at least about 15 days, at least about 16 days, at least about 17 days, at least about 18 days, at least about 19 days, at least about 20 days, at least about 21 days, at least about 22 days, at least about 23 days, at least about 24 days, at least about 25 days, at least about 26 days, at least about 27 days, at least about 28 days, at least about 29 days, at least about 30 days or more after occurrence of an AMI. According to some embodiments, the tenth infusion date is at least about 1 month, at least about 2 months, at least about 3 months, at least about 4 months, at least about 5 months, at least about 6 months, at least about 7 months, at least about 8 months, at least about 9 months, at least about 10 months, at least about 11 months, at least about 12 months, at least about 13 months, at least about 14 months, at least about 15 months, at least about 16 months, at least about 17 months, at least about 18 months, at least about 19 months, at least about 20 months, at least about 21 months, at least about 22 months, at least about 23 months, at least about 24 months, at least about 30 months, at least about 36 months, at least about 42 months, at least about 48 months, at least about 54 months, at least about 60 months, at least about 66 months, at least about 72 months, at least about 78 months, at least about 84 months, at least about 90 months, at least about 96 months, at least about 102 months, at least about 108 months, at least about 1 14 months, at least about 120 months, at least about 126 months, at least about 132 months, at least about 138 months, at least about 144 months, at least about 150 months, at least about 156 months, at least about 162 months, at least about 168 months, at least about 174 months, at least about 180 months, at least about 186 months, at least about 1 2 months, at least about 198 months, at least about 204 months, at least about 210 months, at least about 216 months, at least about 222 months, at least about 228 months, at least about 234 months, at least about 240 months or more after occurrence of an AMI. . According to some such embodiments, the third infusion date is at least 3 years, 4 years, 5 years, 6 years, 7 years, 8 years, 9 years, 10 years, 1 1 years, 12 years, 13 years, 14 years, 15 years, 16 years 17 years, 18 years, 19 years, 20 years, 21 years, 22 years, 23 years, 24 years, 25 years, 26 years, 27 years, 28 years, 29 years, 30 years, 31 years, 32 years, 33 years, 34 years, 35 years, 36 years 37 years, 38 years, 39 years, 40 years or more after occurrence of an AMI, and so on.
[000203] According to some embodiments, the chemotactic hematopoietic stem cell product of the composition administered at the second, third, fourth, fifth, sixth, seventh, eighth, ninth and/or tenth infusion date is prepared from a frozen and thawed aliquot of a nonexpanded, isolated population of autologous mononuclear cells containing CD34+ cells.
[000204] According to some embodiments, the chemotactic hematopoietic stem cell product delivery apparatus used to deliver the pharmaceutical composition of the described invention to a subject in need thereof comprises an infusion syringe, a flushing syringe, a four- way stopcock, and a balloon catheter. In one embodiment, the intravascular delivery comprises (a) an infusion device attached to a sterile four-way stopcock containing the pharmaceutical composition comprising the chemotactic hematopoietic stem cell product; (b) a flushing device attached to the sterile four-way stopcock, the flushing device containing a flushing solution, and (c) a catheter attached to the delivery apparatus by the sterile four-way stopcock. According to one embodiment, the infusion device is a syringe made of any suitable material. The body and handle of suitable four way stopcocks may be made of the same or a different material.
Examples of suitable four-way stopcocks includes, without limitation, a stopcock having a polycarbonate body/polycarbonate handle, a stopcock having a polyethylene body/polyethylene handle, a stopcock having a polycarbonate body/polyethylene handle, or a disposable stopcock. According to some embodiments, a device is further attached to the stopcock to regulate the pressure exerted on the delivered solution. According to some embodiments, an integral flush device or syringe is attached to the stopcock. According to one embodiment, the catheter is a balloon catheter. The term "balloon catheter" refers to a type of "soft" thin flexible tube having an inflatable "balloon" at its tip, which is used during a catheterization procedure to enlarge a narrow opening or passage within the body. The deflated balloon catheter is positioned, inflated to perform the necessary procedure, and deflated again to be removed.
[000205] The viability and potential efficacy of the chemotactic hematopoietic stem cell product of the described invention comprising potent CD34+/CXCR-4+ cells depends on the cells maintaining their potency as they pass through a catheter. The catheter used in the methods of the described invention has an internal diameter of at least 0.36 mm. Any type of catheter having an internal diameter of at least 0.36 mm may be effective in delivering the pharmaceutical compositions of the described invention.
[000206] For example, a flow control catheter, which slows drainage of blood through the coronary artery vasculature, allows the cells time to transit through the blood vessel wall and into the tissue.
[000207] In some embodiments, the catheter is a balloon catheter. For example, without limitation, the following balloon dilatation catheters available from Cordis, Boston Scientific, Medtronic and Guidant having an internal diameter of about 0.36 mm have been validated (see Table 1).
[000208] Table 1. Balloon catheter validated for infusion of selected CD34+ cells through the IRA
Figure imgf000099_0001
[000209] In addition, catheters have been described having a fluid delivery port adjacent to the balloon such that the balloon may be inflated against a vessel wall to isolate the delivery site from hemodynamics opposite the balloon from the port, which may be located distally of the balloon. Additionally, balloon catheters have been disclosed having lumens ending in side ports disposed proximally to the balloon catheter; these balloon catheters generally may be referred to as "balloon/delivery" catheters, although particular references may use different descriptors. See, e.g., U.S. Pat. No. 5,415,636 to Forman, incorporated by reference herein.
[000210] According to some embodiments, the method of treating or preventing a progressive myocardial injury due to a vascular insufficiency that occurs early or late comprises administering the progressive myocardial injury-preventing pharmaceutical composition via balloon catheterization into an artery at a first infusion date. In some embodiments, following angioplasty, a delivery balloon catheter is inserted via a femoral artery into a desired coronary artery, such as the left anterior descending coronary artery. Some medical conditions may require both a balloon catheter and a fluid delivery catheter to facilitate treatment.
[000211] According to some embodiments, a catheter is used to directly inject cells into the myocardium.
Treatment Regimens [000212] According to another aspect, the described invention provides a regimen for treating a progressive myocardial injury due to a vascular insufficiency that occurs early or late , which comprises:
[000213] (a) first administering to the subject on a first infusion date a first sterile pharmaceutical composition parenterally through a catheter , the first sterile pharmaceutical composition of (a) comprising: (i) a therapeutically effective amount of a first sterile chemotactic hematopoietic stem cell product, wherein the first chemotactic hematopoietic stem cell product comprises a nonexpanded, isolated population of autologous mononuclear cells enriched for CD34+ cells, which further contain a subpopulation of potent CD34+/CXCR-4+ cells that have CXCR-4-mediated chemotactic activity, wherein the therapeutically effective amount of the first chemotactic hematopoietic stem cell product comprises at least 10 x 106 CD34+ cells containing at least 0.5 x 106 potent CD34+ cells expressing CXCR-4 and having CXCR-4 mediated chemotactic activity; (ii) a stabilizing amount of serum, wherein the stabilizing amount of serum is greater than 20% (v/v), wherein the chemotactic hematopoietic stem cell product is further characterized as having the following properties for at least 24 hours following acquisition of the chemotactic hematopoietic stem cell product when tested in vitro after passage through a catheter: (1) retains the CXCR-4-mediated activity of the subpopulation of potent CD34+/CXCR-4+ cells that have CXCR-4-mediated chemotactic activity; (2) at least 70% of the cells are CD34+ cells; (3) is at least 70% viable; and (4) is able to form
hematopoietic colonies in vitro;
[000214] (b) second, administering at a second infusion date a second sterile
pharmaceutical composition comprising a therapeutic amount of a secondchemotactic hematopoietic stem cell product, ; wherein the therapeutically effective amount of the second chemotactic hematopoietic stem cell product comprises at least 10 x 106 CD34+ cells which further contain a subpopulation of at least 0.5 x 106 potent CD34+ cells expressing CXCR-4 and having CXCR-4 mediated chemotactic activity; (ii) a stabilizing amount of serum, wherein the stabilizing amount of serum is greater than 20% (v/v), wherein the secondchemotactic hematopoietic stein cell product is further characterized as having ihe following properties for at least 24 hours when tested in vitro after passage through a catheter: (1 ) retains the CXCR-4- mediated activity of the subpopulation of potent C034 +/CXCR-4-i- cells that have CXCR-4- mediaied chemotactic activity; (2) at least 70% of the cells are CD34+ cells; (3 ) is at least 70% viable; and (4) is able to form hematopoietic colonies in vitro; and
|0 0215} (e) third, optionally administering at a third infusion date a sterile pharmaceutical composition comprising a third chemotactic hematopoietic stem cell product comprising at least 10 x 10* isolated CD34 cells, which further contain a subpopulation of at least 0.5 x 10* .potent CD34+ ceils expressing CXCR-4 and having CXCR-4 mediated chemotactic activity; (ii) a stabilizing amount of serum, wherein the stabilizing amount of serum is greater than 20% (v/v), wherein the third chemotactic hematopoietic stem cell product is further characterized as having ihe following properties for at least 24 hours when tested in vitro after passage through a catheter:: (1) retains the CXCR-4-.mediated activity of the subpopulation of potent
CD34+/CXCR-4+ cells that have CXCR-4-mediated chemotactic activity; (2) at least 70% of the cells are CD34 cells; (3) is at least 70% viable; and (4) is able to form hematopoietic colonies in vitro, such that the regimen improves at least one measure of cardiac function.
(0002161 According to some embodiments, at least one aliquot of the sterile nonexpanded, isolated population of autologous mononuclear cells comprising CD34+ cells, which further contain a subpopulation of potent CD34+/ XCR-4+ cells that have CXCR-4-mediated chemotactic activity acquired from the subject under sterile conditions is frozen at -86 C and cryostored at least one aliquot in the vapor phase of a liquid nitrogen freezer until needed. At that time, the at least one aliquot of the frozen nonexpanded, isolated population of autologous mononuclear ceils containing CD34+ cells which further contain a subpopulation of potent GD34+/CXCR-4T ceils that have CXCR-4-mediated chemotactic activity is thawed and enriched for CD34+ cells, which further contain a subpopulation of potent CD34+/CXCR-4+ cells that have CXCR-4-mediated chemotactic activity. This frozen and thawed nonexpanded, isolated population of autologous mononuclear cells enriched for CD34+ cells which further contain a subpopu on of potent CD34+/CXCR~4- cells that have CXCR~4~mediated chemotactic activity constitutes a thawed sterile chemotaciie hematopoietic stem cell product.
| O 217j According to some embodiments, the thawed sterile chemotactic hematopoietic stem cell product car* be used in step (b), step (c). or steps (b) and .step (e) of the regimen. 0002 8| The term "regimen" as used herein refers to a course or plan of treatment to preserve or resiore the health of a subject suffering from a progressive myocardial injury due to a vascular insufficiency that occurs early or late.
[000219] According to one embodiment of the regimen, the thawed sterile chemotaciie hematopoietic stem, cell product,, when passed through the catheter and tested in vitro, (i) is able to'fbrm hematopoietic colonies; and (ii) retains at least '2% of the CXCR-4-med;aied activity of the subpopulation of potent CD$4*/CXCR-4* ceils that have CXC 4-mediated.chemotactic activity, for at least 48" hours following thawing of the eryostored nonexpanded, isolated population of .autologous mononuclear cells comprising CD34+ cells, which further contain a subpopulation of potent CD34+/CXCR.-4--?- cells that have CXC -4-mediated chemotaciie activity. According to an.other embodiment, the thawed chemotaciie hematopoietic stem cell product, when passed through the catheter and tested in. vitro, (i) is able to form hematopoietic, colonies; and (it) retains at least 2% of the CXCR-4- ediated activity of the subpopulation of potent CD34+/CXGR-4+ cells tha have GXC -4-mediated chemotactic acti vity for at .least 72 hours following thawing ofnonexpanded, isolated population of autologous mononuclear cells comprisin CD34+ cells, which further contain a subpopulation of potent CD3 f/CXCR-4-+ cells that have CXGR~4~mediated chemotactic activity.
[000220] According to another embodiment, the first infusion date of (a) is at least is at least about one da . at least about two days, at least about three days, at feast about four days, at least about live day s, at least about six days, at least about 7 days, at least about 8 days, at least about 9 days, at least about 10 days, at least about 3 1 days, at least abou 12 days, at least about 13 days, at least about 14 days, at least about 15 days, at least about 16 days, at least, about i? days, at least abou 18.' days, at least about 1 days, at least about 20 days, at least about 21 days, at least about 22 days, at least about 23 days, at least about 24 days, at least about 25 days, at least about 26 days, at least about 27 days, at least about 28 days, at least about 29 days, at least about 30 days or more after occurrence of an AMI. According to some embodiments, the first infusion date of (a) is at least about 1 month, at least about 2 months, at least about 3 months, at least about 4 months, at least about 5 months, at least about 6 months, at .least about 7 months, at least about 8 months, at least about 9 months, at least about 10 months, at least about 1 1 months, at least about 12 months, at least about .13 months, at least about .14 .months, at least about 15 months, at least about 16 months, at least about 17 months, at least about 18 months, at least about 19' months, at least about 20 months, at least about 21. months,- at least about 22 months, at least about 23 months, at least about 24 months, at least about 30 months, at least about 36 months, at least about 42 months, at least about 48 months, at least about 54 months, at least about 60 months, at least about 66 mouths, at least about 72 months,, at least about. 78 months, at least about 84 months,, at least about 90 months, at least about 96 months, at .least about 102 months, at least about 108 months, at least about 114 months, at least about 1.20 months, at least about 126 months, at least about 132 months,. t. least about 138 months, at least about 144 months, at least about ISO months, at least about 156 months, at least about 162 months, at least about 168 months, at least about 174 months, at least about 180 months, at least about 186 months, at least about 192 months, at least about 198 months, at leas about 204 months, at. least about 2.10 months, a least about 21.6 months, at least about 222 months, at least about 228 months, at least about 234 months, at least about 240 months' or more after occurrence of an AMI. According to some embodiments, the first infusion date is at least 3 years, 4 years, 5 years, 6 years, 7 years, 8 years, 9 years, 10 years. 1 1 years, 12 years, 13 years, 14 years, 15 years, 1 years 17 years, 18 years, 19 years, 20 years, 21 years. 22 years, 23 years, 24 years, 25 years, 26 years, 27 years, 28 years, 29 years, 30 years, 31 years, 32 years, 33 years, 34 years, 35 years, 36 years 37 years, 38 years, 39 years, 40 years or more after occurrence of* n AMI.
[000221 } According to another embodiment, the second infusion date of (b) is at least about is at least about one day, at least about two days, at least about three days, at least about four davs, at least about five days, at least about six days, at least about 7 days, at least about 8 days, at least about 9 days, at least about 30 days, at least about 11. days, at least about 12 days, at least about 13 days, at least about 14 days, at least about 15 days, at least about 16 days, at least about
1? days, at least about 18 days, at least about 1 days, at least about 20 days, at least about 21 days, at least about 22 days, at least about 23 days, at least about.24 days, at least about 25 days, at least about 26 days, a least about 2? days, at .least about 28 days, at least about 29 days, at least about 30 days or more after occurrence of an AMI According to some embodiments, the third infusion date of (c) is at least about 1 month, at least about 2 months, at least about 3 months, at least about 4 months, at least about 5 months, at least about 6 months, at least about 7 months, at least about 8 months, at least about 9 months, at least about 10 months, at least about
1 1 months, at least about 12 months, at least about 1.3 months, at least about 14 months, at least about 15. months, at least about 16 months, at least about 1.7 months, a least about 18.months,, at least about 19 months, at leas about 20 months, at least about .21 months, at least about 22 months, at leas about 23 months, at least about 24 months, at least about 30 months, at least about 36 months, at least about 42 months, at least about 48 months, at least about 54 months, at least about 60 months, at leastabout 66 months, at least about 72 months, at least about 78 months, at least about 84 months, at least about 90 months, at least about 96 months, at least about 102 months, at least about 108 months, at least about 1 14 months, at least about 120 months, at least about 126 months, at least about 1.32 months, at least about 138 months, at least about 144 months, at least about 150 months, at. least about. 156 months, at least about 1 2 months, at least. bout 168 months, at least about 174 months,, at least about I SO months, at least about 186 months, at least about 192 months, at least about 198 months, at least about 204
.months, at least, about 210 months, at least about.216 months, at least about 222 months, at least about 228 months, at least about 234 months, at least about 240 months or more after occurrence of an AMI. According to some embodiments, the first infusion date is at least 3. years, 4 years, 5 years, 6 years, 7 years, S years, 9 years, 10 years, 1 1 years, 12 years, 13 years, 14 years, 15 years,
16 years 17 years, 18 years, 1 years, 20 years, 21 years, 22 years, 23 years, 24 years, 25 years,
26 years, 27 years, 28 years, 29 years, 30 years, 3 years, 32 years, 33 years, 34 years, 35 years,
36 years 37 years, 38 years, 39 years, 40 years or more after occurrence of an AMI. |¾00222] According to another embodiment, the third in&sion dale of (c) is at least about is. at least about one day, at least about two days, at least about three days, at .least about four days* at least about five days, at least about six days, at least about 7 days, at leas* about 8 days, at least about 9 days, at least about 10 days, at least about 1 1 days, at least about 12 days, at least about
13 days, at least about 14 days, at least about 15 days, at least about 16 days, at least abou 17 days, at least about 18 days, at least about 1 days, at least about 20 days, at least about 21 days, at least about 22 days, at least about 23 days, at least about 24 days, at least about 25 days, at least about .26 days, at least about 27 days, at least about 28 days, at least about 29 days, or at least about 30 days after occurrence of an AMI. According to some embodiments, the third infusion date of (c) is at least about 1 month, at least about 2 months, at. least about 3 months, at least about 4 months, ai least about 5 months, at least.. about 6 months, at least about 7.months, a least .about 8- mQnfhs,.-st least.abowi 9 months, at .least about 10 months, at least about 1 1 months, at least about 12 months* at least about 13 months, at least about 14 months, at least about 15 months, at least about .16.months, at least about 17 .months, at least about 18 months, at least about 19 months, at least about 20 months, at least about 21 months, at least about 22 months, at least about 23 months, ai least about 24 m nths, at least about 30 months, at least about 36 months, at least about 42 months, at least about 48 months, at least about 54 months, at least about 60 months, ai least about 66 -months, at least about 72 months, at leas about 78. months, at least -about 84 months, at least about 90 months, at least about 96 months, at least, about 102. months, at least about 1.08 months, at least about 114 months, at least about 120 months, at least about 126 months, at leas about 132 months,. at least about 138 months, at least about 144 months, at least about .150 months, at least about 156 months, at least about. 1 2 months, at least about 168 months, at least about 174 months,, at least about 180 months, at least about 186 months, at least about 192 months, at least about 1.98 months, at least about 204 months,. at least about 210 months, at least about 21 months, at least about 222 months, at least about 228 months,, at least about 234 months, at least about 240 months ot more after occurrence of an
AMI. According to some embodiments, the first infusion date is at least 3 years, 4 years, 5 years, 6 years, 7 years, 8 years, 9 years, 10 years, 11 years, 12 years, 13 years, 14 years, 15 years,
16 years 17 years, 18 years, 19 years, 20 years, 21 years, 22 years, 23 years, 24 years, 25 years.* 26 years, 27 years, 28 years, 29 years, 30 years, 31 years, 32 years, 33 years, 34 years, 35 years, 36 years 37 years, 38 years, 39 years, 40 years or more after occurrence of an AMI.
[800223] According to another embodiment, the vascular insufficiency that occurs early or late is an ischemia. According to another embodiment, the ischemia is a myocardial schemi According to another embodiment, the ischemia is a transient ischemia. According to another embodiment, the ischemia is a chronic myocardial ischemia. According to another embodiment, the ischemia is a peri-infaret border zone ischemia. According to another embodiment, the catheter is a flow control catheter. According to. another embodiment the catheter is a balloon dilatation catheter. According to another embodiment, the catheter has an internal diameter of at least about 0.36 mm. According to another embodiment,, the composition is administered through the catheter into myocardium. According to another embodiment, the composition is administered through, the catheter mtravascularly. According to another embodiment, the pharmaceutical composition .further includes at least one compatible active agent. According to another embodiment, the active agent is selected from the group consisting of an angiotensin converting enzyme inhibitor, a beta-blocker, a diuretic, an antf -arrhythmic agent, a. hematopoietic stem cell mobilizin agent, a tyrosine kinase receptor agonist, an anti-anginal agent, a vasoactive agent, an anticoagulant agent, a fibrinolytic agent, and a hypereholesterolemie agent. According to another embodiment, the tyrosine kinase receptor -agonist is. human neureguhn I . According to some embodiments, the hematopoietic stem cell mobilizing agent is a colony stimulating, factor. According to some such embodiments, the hematopoietic stem cell mobilizing agent comprises G-CSF, GM-CSF, or a pharmaceutically acceptable analog or derivative thereof: According to some embodiments, the hematopoietic stem cell mobilizing agent is a. recombinant analog or derivative of a colony stimulatin factor. According to some embodiments, the hematopoietic stem ceil mobi!mng agent is filgrastim,
[0002241 According to another embodiment, the vascular insufficiency that occurs early or late is a vascular insufficiency after an acute myocardial infarction resulting from underlying disease. According to some such embodiments, the first infusion date comprises a specific time interval defined by a .first time and a second time, wherein the first time is after peak inflammator cytokine cascade production in the infected area and the second time is before myocardial scar formation in the iafarcted area. According to another embodiment, in ste (a), the first time of the first infusion date is at least about 5 days post-infarction. According to another embodiment, in step (a) the first time of the first infusion date is about 5 days postinfarction and the second time is about 1.4 days post-infarction. According to another embodiment, the regimen treats eardiomyocyte cell death in the peri -infarct border zone, relative to controls. According to another embodiment the regimen treats hypoperfusion in the peri- infarct border ?.one, relative to controls. According to another embodiment, the regimen treats myocardial hibernation in the peri-infarct border zone, relative to controls. According to another embodiment, the .regimen decreases infarct area, relative to controls. According to another embodiment the regimen decreases infarct mass, relative to controls, According to another embodiment, the progressive myocardial injury is a progressi ve decline in heart muscle function following the acute n eocardial infection. According to another embodiment, the progressive myocardial injury is heart failure. 0 02251 Where a range of values is provided, it is understood that each intervening value, to the tenth of the unit of the lower limit unless the context clearly dictates otherwise, between the upper and lower limit of that range and any other 'stated or intervening, value in that stated range is encompassed within the invention. The upper and lower limits of these 'smaller ranges which may independently be .included in the smaller ranges also is encompassed within the invention, subject to any specifically excluded limit in the stated range. Where the stated range includes one or both of the limits, ranges excluding either both, of those included l imits are also included in the invention.
10002261 Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Although any methods and materials similar or equivalent to those described herein ca also be used in the practice or testing of the described in vention, the preferred methods and materials are now described. All publications mentioned 'herein are incorporated/herein by reference to disclose and describe the methods and/or materials in connection with which the publications are cited.
!0{H)227J As used herein and in the appended claims, the singular forms " ", "and", and "the" include plural referents unless the context clearly dictates otherwise. All technical and scientific terms used herein have the same meaning.
[009228] The publications discussed herein are provided solely for their disclosure prior to the filing date of the present -application. Nothing herein is to be construed as an admission that the described invention is not entitled to antedate such publication by virtue of prior invention. Further, the dates of publication provided may he different from the actual publication dates whic may need- to be eoniinned independ ntly,
EXAMPLES
[000229] The following examples are put forth so as to provide those of ordinary skill in the art with a complete disclosure and description of how to make and use the described invention, and are not intended to limit the scope of what the inventors regard as their invention nor are they intended to represent that the experiments below are all or the only experiments performed. Efforts have been made to ensure accuracy with respect to .numbers, used (e.g.
amounts, temperature, etc.) but some experimental errors and deviations should be accounted for. Unless indicated otherwise, parts are parts by weight , molecular wei ght is weight average molecular weight, temperature is in degrees Centigrade, and pressure is at or near 'atmospheric.
[000230] Phase I Clinical Trial
[000231] Example L Scteetleii of Eligible Subjects
1000232} Suhjeets/patiems presenting with symptoms and clinical findings suggestive of a myocardial infarction will receive emergency diagnostic- and clinical management according to institutional guidelines. If a transmural, (meaiiing thro iigh the wall) myocardial infarction is confirmed, the time of first symptoms and. the time of successful stent placement will be recorded, evascularized subjects will receive appropriate medical management to reduce ventricular wail stresses according to institutional guidelines. The term "re vascularized" as used in this embodiment, refers to the successful placement of a stent .
[§00233] All types of stents, including drug-eiutmg stents (e.g.,. paclitaxel or sirolirnus) are acceptable for use in the revascularization of the infarct related artery f'lRA*}. Previous studies employing balloon catheters to infuse cell products have reported no limits for reference vessel diameter for the pl acement of the stent. Since thi study is designed to distribute the cell product into the IRA circulation, and in an attempt to limit the potential for damage to very small, vessels, the described invention requires that stents be placed prior to .infusion of the ehemotaetic hematopoietic stem cell product of the. described invention.
{000234] 'S tent-related drug effects occur predominantl at the site of contact of the stent with the vessel wall Consequent to balloon dilatation, there is limited blood flow across the stent, during cell infusion, and therefore n significant adverse drug-mediated effect on the
CD34+ cells in the ehemotaetic hematopoietic stem cell product is expected. Moreover, prior clinical studies have shown that by 96 hours after drug-eluting stent placements whole blood levels of either paciitaxel or sirolimus are below the limits of detection.. Therefore, tissue levels in the myocardial sites to which the infused CD34+ cells expressing CXCR-4 and having
CXCR-4-mediated ehemotaetic activit are intended to migrate are. expected to be.
inconsequential. See Sousa, J. ei ah, Circulation 1.07: 2274-79, 2383-89 (2003),.
{000235] During revascularization, a.subject's cardiac function and perfusion will he assessed by standard methods. Relevant measures of cardiac function include assessment of global and regional ejection fraction, ventricular volumes, resting and stress perfusion., segmented wall motion, and, following a myocardial infarction, infarct size. | '0O236] The term, "diastole" refers to the normal pqstsystolic- dilation of the heart cavities during which they fill with blood. The term "systole" refers to contraction of the heart, especially of the ventricles, by which the blood is driven through the aorta and pulmonary artery to traverse the systemic and pulmonary circulations, respectively.
[000237] The term "ejection traction" ("BP") refers to the percentage of blood emptied from the ventricle during contraction More specifically, it is the fraction of the end-diastolie volume that is ejected with each beat; that is, it is stroke volume (SV) divided by end-diastolie volume (EDV), The volume of blood within a ventricle immediately before a contraction is known as the end-diastolic volume, while the volume of blood left in a ventricle at the end of contraction is known as end-systolic volume. The difference between end-diastolie and end- systoiic volumes is the stroke volume, the volume of blood ejected with each beat, in a healthy ?0~kg (I S44b) male, the SV is approximatel ' 70.ml. and the. left ventricular EDV is 120 mi, giving an ejection fraction of 70/120, or 0.58. (58%). An EF within the range of from 55-60% is considered normal. The ejection fraction of the right ventricle ("RVBF") normally is equal to thai of the left ventricle f'LVEF") within narrow limits. 000238] Other measures of cardiac function include assessment of the stroke volume index and velocity of circumferential fiber shortening. Strauer, et ah. Circulation 106: 1913-18
(2002). Stroke volume (SV) is the amount of blood the left ventricle ejects in one beat, measured in milliliters per beat (ml/beat). SV can be indexed to a patient's body size by dividing SV by Body Surface Area (BSA) to yield the Stroke Index (SI).
[000239] Assessment of repair of infarcted myocardium also has included eval uation of peri-infarct region. erfusion using thallium scintigraphy, id. The term "'perfusion" refers to the process of nutritive delivery of arterial blood to a capillary bed in biological tissue. Perfusion (" F) may be calculated using the formula F= (Pa-PvJ/R, where Pa is mean arterial pressure, Pv is mean venous pressure, and R is vascular resistance: [000240] Magneti resonance imaging (MRI) is a useful tool for assessing cardiac function and viability (infarct size) in this setting. See Yin. A, et aL Blood 90: 5002-5012 ( 1 97),
[000241] The day after successful stenting, subjects will be assessed for study eligibility and, if appropriate, will, be offered informed consent to art cip te in the study. Subjects exhibiting symptoms for no more than three (3) days prior to successful stent placement will be assessed, prior to discharge, for study eligibility. Subjects found to meet eligibility criteria (see infra) will be offered informed consent to participate.
1000242] Consented subjects will .have a study entry SPECT no sooner than 96 hours after stent placement. Subjects are eligible to proceed on study if the LVEF is less than or equal to 50% on echocardioaraphv and a segmental ventricular wall abnormality is observed in the IRA. Eligible subjects .immediately can complete baseline cardiac function and perfusion assessment.
[000243] Specifically, baseline cardiac function includes:
1000244] Cardiac Perfusion, Perfusion will be assessed using routing Technetium (Te~ 99m) Sesiamibi radionuclide scan at rest and after intravenous adenosine. The Emory Cardiac Toolbox will be used for image quantification. Evaluation will use a 17-seg.roent model. A core review lab will assess the perfusion studies with the interpreter blinded to the study cohort. Improvements in perfusion will be expressed in semi-quantitative terms (yes no). The percentage of patients observed to have improvement in. perfusion will 'be compared between dose cohorts.
[000245] MRI. Regional and global wall motion, infarct size, and left ventricular ("LV") volumes vvi!l be measured using MM.. Subjects will receive Gadolinium contrast during scanning. MR! scan will use the breath holding technique. Steady state precession imaging to obtain global and regional LV function will be performed as will Gadolinium imaging. Left ventricular end systolic and diastolic volumes, LVEF, LV end diastolic dimension, wall thickness in systole and diastole of the infareted region, and infarct size will be reported using the AHA/ AW ί 7-segment model with transmural extent of the infarct reported as <25%, 26%- 50%, Sl%-75% and >76%. A core review laboratory will assess MRJ with the interpreter blinded to the study cohort,
(000246] To be selected for this study, subjects must meet all of the following clinical criteria ("inclusion criteria"):
* Age: 18 - 75 years;
• Acute ST segment elevation myocardial infarction meeting ACC/ARA criteria, with symptoms of chest pain within 3 days of admission. Criteria include (ST elevation > lrnm in limb leads or 2 mm in two or more precordial leads and increased levels of troponin, creatine kinase MB (CPK .MB) o both), New York ileart Association ( YI-IA) heart failure class (to be recorded) of I, II or HI;
• Eligible for percutaneous coronary intervention (PCI);
* Eligible for RI;
• Eligible for Single Proton Emission Competed Tomograph (SPEC'O imaging;
* Subject must be able, to provide informed written consent and must be willing to participate in all required study follow-up assessments;
* Subjects must have a hemoglobin content (Hgb) > 10 grarns/dL, white blood cell count (WBC) > 3500 cells mm3, a platelet count > 100,000 ceils/mm'' and an international normalized ratio (OMR, a blood coagulation test) < 2,0 the day before the bone marrow collection;.
• Subjects must have a serum creatinine 2.5, total bilirubin < 2.0 within 7 days of the bone marrow collection; * IRA and target lesion must be clearly identifiable when disease is present in more than one vessel;
» Successful repermsion and intraeoronary stem placement, with "{Thrombolysis In Myocardial Infarction (Γ Ι) 2 or 3 flow and IRA with < 20% stenosis after revascularization;
* Subjects must be deemed eligible to receive conscious sedation, mini- one marrow harvest, and. second catheterization for Chemotactic Hematopoietic Stem Cell Product infusion:
* The type of stent used and time and date inserted must be recorded;
« Drug elating stents should be limited to paclitaxel or siroircnus ty pes;
» included subjects must have an expected survival, of at least one year and must not have multiple vessel disease after revascularization, or be expected to require intervention within 6 months of study entry.
10002471 Subjects who satisfy any one of the following criteria do ot qualify for,, and will be excluded from, the study .(Exclusion criteria"*);
* Subjects who are not candidates for percutaneous intervention, conscious sedation, MR1, SPECT imaging or mini-bone marrow harvest;
* History of sustained chest, pain unrelieved by nitrates, occurring 4 or more days before revascularization;
* Subjects who fail to re-perfuse the infarct related coronary arter or to have successful sten placement;
Ϊ 12 * Subjects presenting with cardiogenic shock (systolic pressure < 80 on vasopressors or intra aortic counterpulsation);
* Subjects with a side branch of the target lesion > 2 mm ar d with ostiai narrowing > 50% diameter stenosis after revascularization:
* Subjects unable to receive aspirin, clopidogre! or iic!opkline;
♦ Subjects receiving warfarinjimst have an INK less than or equal to 2; the term INR refers to INR International Normalized Ratio, which is a system established by the World Health Organization (WHO) and, the International Committee on. Thrombosis •aad.Hemostasis for reporting the 'results of blood coagulation (clotting) tests;
♦ Subjects with severe aortic stenosis*
* Subjects with, severe immuuodeficienc states (e.g.. AIDS);
» Subjects with cirrhosis requiring active medical management
♦ Subjects with malignancy requiring active treatment (except basal cell skin cancer):
• Subjects with documented active alcohol and /or oilier substance abuse;
• Females of child bearing potential unless a pregnancy test i negative within 7 days of the mini-bone marrow harvest:
• Subjects with ejection fractions greater- than 50% on stud entry by SPEC! (96 to 144 hours after sientpkeemenl);
* Subjects with less than three months of planned anti-platelet therapy post index procedure: • Subjects with mnitl vessel disease after revascularization requiring subsequent planned intervention during She next 6 months;
• Subjects with participation in an ongoing investigational trial;
• Subjects with active bacterial infection requiring systemic antibiotics.
100024 1 Baseline assessments of cardiac function and cardiac perfusion will be obtained one day prior to the planned mini-bone marrow harvest and infusion of the chemotactic hematopoietic stem cell product (see infra). A mini-bone marrow harvest f 'MMH") will be performed the day following baseline assessment of cardiac function and cardiac perfusion.
1000249] Example 2. Cardiac Catheterization 09250] Sterile Preparation and Draping.
[0002511 The subject will be brought into the. Cardiac Catheterization Laboratory after the investigator has obtained an informed consent. The subject will receive a .sterile preparation and draping m the Cardiac Catheterization Laboratory.
[0002521 Cardiac Catheterization
('000253') Vascular access will be obtained, by standard technique using right or left groin. A sheath will be placed in the femoral artery or the right or left brachial artery. Coronary arteriographie examination will be performed by obtaining standard views of both right and left coronar arteries. Multiple views will be obtained to identify the- previously stenied infarct related artery. Ail subjects will receive standard medications during the eatheterfea&m procedure in accordance with routine practice.
[000254] Example 3: Acquisition Process For Acquirin Chemotaeiic Hematopoietic Stem Cell Product That is Then Enriched For CD34+ Cells [000255] While it is. contemplated that, an acquisition process appropriate for acquiring the chemoiactie hematopoietic stem cell product comprising potent CD34+ cells is within the scope of the described invention, the following example iUustrates one such process referred to herein as a mini-bone marrow harvest technique.
[000256} Preparation of Harvesting Syringes
[000257} Prior to the bone marrow harvest, forty lOce. syringes loaded with about 2 -ml of a preservative: free heparinized saline solution (about 100 units/nil to about 125 units/ml, APP Cat, No, 425 2B or equivalent) will be prepared under sterile conditions. Heparin will be injected via a sterile port into each of two iOO-rni bags of sterile 0.9% normal saline solution ("Normal Saline", Hospira Cat No. 7983-09 or equivalent) following removal .of 10 ec to 12,5 ccof normal saline from each bag, resulting in a final heparin concentration of about 100 units/ml (U/ml) to about 125 units/ml (U/ral), 2-ml of the preservative: fee heparin solution (about 100 U/ml to about 125 U/ml) will be loaded under sterile conditions into each of the forty lOce syringes, which then are capped and placed into a sterile bag for transport to the harvesting site.
[00025$] Subjects will be prepared for bone marro harvest after written informed -consent is obtained as detailed in Example 1. Conscious sedation will be provided using standard institutional procedures and guidelines. Bone marrow harvest will be.- conducted under sterile conditions. The term "sterile conditions" as used herein includes proper scrubbing and gowning with a sterile, mask and gloves worn by the harvesting attending and assistant. The harvesting procedure can he performed outside of an operating room as follows: after sterile propping and. draping, each iliac crest should be anaesthetized with a 1% lidocaine solution using a minimum of 1.0-mJ for each crest. The area of anesthesi should be a circular area no less than 10 cm in diameter. The harvesting needle is inserted until the iliac -crest is.punct red. The cap and stylet i removed and 2-ml of marrow is harvested into the 10-ral harvesting syringe containing 2-ml of the heparin solution. The syringe then is removed and placed on the sterile field. After reinserting the stylet, the harvesting needle is advanced slightly and then .rotated 90°. The stylet is then removed and an additional .2 -mi of marrow is drawn into the harvesting syringe retrieved from the -sterile, field. This procedure is repeated two more times until the harvesting syringe contains 8-ml of marrow for a total of 10-nil of heparinized marrow at a final heparin concentration of about 20 U/ml to about 25U/mL Finally the ftill harvesting syringe is handed to the harvesting assistant and shaken and infused in the sterile collecting bag as described below. The harvesting physician .then lakes the other harvesting needle that had been flushed previously with the heparin solution and repeats this process,
|000259J The full harvesting syringe is infused in the sterile collecting bag as follows. The harvesting assistant is handed the full, harvesting syringe and empties it in the 500-ml collecting hag though the sterile adaptor attached to the bag. Then the harvesting needle is flushed with the heparin 'solution in the flushing syringe and returned to the . sterile field.
[000260] The harvesting process is repeated on one iliac crest until about 19 syringes have been collected and emptied, in the collecting bag. The same process is repeated on. the other .iliac crest until anot her about 1.9 sy ringes have been filled. A total of thirty-eight 8 ml aspirations from both iliac crest (ideally 1 from each iliac crest) will result in 302-ml of bone marrow harvested in a final volume of 380 ml. at a heparin concentration of about 20 U/ml to about 25 U/ml.
1000261] The collecting bag is sealed by tying off the connecting tube, three times and' then clamped distal to the ties. The bag is appropriately labeled "Human Bone Marrow Collection" and. the results of the harvesting proced ure, including final volume collected and any procedure related complication, are recorded on the Mayo Clinical Risk Score (MCRS) ease report form. The completed label is affixed to the bone marrow bag. The bag then is placed in a sterile carrying bag to be transported to the processing facility.
[000262] Example 4. Preparation of the Bone Marro Product for Transportation
[000263] m one embodiment, the harvested bone marrow is transported to the processing facility as follows. When the clinical site is prepared to ship the bone marrow preparation, 24- hour notice will, be provided to the processing facility. The processing laboratory will make
1 36 shipping arr n ements at the earliest possible time for pickup for same day delivery to the processing laboratory. Immediately after the bone marrow is collected, the bone marrow product will be placed in the supplied shipping container. The shipping container contains two small blocks of frozen wet ice on the bottom and a sheet of bubble wrap on top of the wet ice. The bone marrow product is placed into a secondary bag and the secondary bag is placed on top of the bubble wrap. A temperature tag monitor fa sensor used to monitor the internal temperature) is affixed to the interior of the box. Another layer of bubble wrap then is placed on. top of the product before the shipping container is sealed off.
[0O026 J Example 5; Selection of CD34+ Ceils from the Harvested one Man*
Product
1000265] C.D34+ ceils will be isolated from the harvested bone marrow product. In one embodiment, CD34- cells will be isolated using the. anti-CD monoclonal .antibody (Mab), Dyirabeadsi M 50 Sheep anti-Mouse IgG, and PR34+ (ΪΜ) Stem Cell Releasing Agent components of the isoiex 3001 Magnetic Cell Selection System (Baxter Healthcare Corp. Cat. No. 4R9734) as described in U.S. Pat. Nos. 5,536,475, .5,035,994, 5,130,144, ,965204, 5,968,753, 6,017,719,6,251,295, 5,980,887, 6,676,937, U.S. Published Application No..
2003/0232050, and the Isolex 300i Package Insert, each of which is incorporated herein by reference. This operating system has been adapted for isolation of CD34 ceils from bone marrow according to the described invention.
1000266] Upon arrival at the processing laboratory, the harvested bone marrow product (in the collecting bag) is inspected immediately and the bag checked for any leakage. The collection should be free Rowing 'with no apparent clomps and should not be hemolyzed. The collection will not be used if the integrity of the bag has been breached in any way.
[000267] The bone marrow product should be processed within about 12 hours to about 24 hours of inspection. A 300-ml or 400-rni transfer pack container is obtained, and a plasma transfer set is attached to the sampling port of the container. The bone marrow product is transferred from the collecting bag to the transfer pack container. The pooled bone marrow collection product is mixed thoroughly by inverting the container twenty (20) times.
(000268} The pooled bone .marrow collection product then is sampled for analysis. In one embodiment a total volume of 2.0 ml of the product is remo ved and aliquoted as follows: 0,3 ml is used for a duplicate run of Complete Blood Count (CBC) using a hematology analyzer; 0,2-nil is dispensed into a 75x.!00«mm glass tube for the detection of Gram positive and Gram negative bacteria by Gram Stain (Gram Stain Kit, VWR, Cat. NO. B.B23140I); as a sterility check. 0.6-mi is dispensed into a !ryptic Soy Broth (TSB) (VWR, Cat. No. 29446-184) bottle for aerobic bacteria growth assay, 0.6-ml is dispensed into a Fluid Thioglycollate Media (FTM) (VWR Cat, # 29446-138) bottle for anaerobic bacteria growth .assay, and 0.3~m! is used in flow analysis far CD34÷ cell enumeration and cell viability,
(000269) The collection is weighed on an electronic scale, and the appropriate tare weight of the collection bag recorded. The relationship of the volume of the bone marrow product to the weight of the product, can be expressed as
[ O270j Volume (ml) [Weight (gm) of product - Tare weight of bag (gm)| ÷ 1.06 (gm/m.S) (Formula 1 )
[0(MI271| The number of Total Nucleated Cells (TNC) in the. bone marrow product is calculated using, the white blood cell (WBC) count obtained, from the CBC according to the following relationship:
{000272} TNC - WBCM x 1000 x Product volume (ml) (Formula 2)
{000273} The number of CD34+ cells in the bone marrow product, is calculated from the following relationship:
[000274] Total CD34+- ceils in the bone marrow product ::: Number of CD34+ cell/μΐ x 1 ,000 x Produc volume (ml) (Formula 3} 1000275) The Red Blood Cell (RBC) volume of the bone marrow collection product is calculated from the following relationship:
[000276] RBC volume (ml) - Product volume (ml) x Hematocrit 00 (Formula 4),
[000277) If the collection contains more than 20 ml of RBC, red blood cell depletion is required. RBCs are depleted by eentrifugation. Cenirifugation at 1000 x g for 20 minutes at ambient temperature s performed to separate the huffy coat from the RBCs.. The term ''bufiy coat" refers to a thin grayish white traction, of a blood, sample thai contains most of the white blood cells (ieokocyt.es). Immediately after eentrifugation, a 60 ml syringe is connected to the bottom of the cenirifugation bag and the RBCs are removed. More than one syringe may be needed to collect all the packed RBC, The RBC depleted bone marrow product then is washed to remove fat contents.
(000278] A 1-ml syringe is used to remove 0.3 -m i of the RBC-deplete bone marrow cell, product through the transfer set attached to the product bag and a CBC performed. The TNC of the RBC depleted bone marrow product is determined from the relationship:
[0002791 Total TNC of the RBC depleted product * WBC/μ! of RBC depleted product x. 1000 x I SO-ml (Formula 5)
|'00O280| The TNC recovery of the RBC depleted product, which must be at least 80% of the original product, count, is calculated from the relationship:
[000281 ] TNC recovery * TNC of the RBC depleted product ÷ TNC of the unprocessed product 100% (Formula 6)
[000282] The total RBC volume is calculated as described supra; the RBC volume in the RBC depleted product should be less than 20-ml. |Θ 0283| In one embodiinent according to the described invention,, the Isolex 3001 system is used to process the RB€-depkted product or the 'bone .marrow product whose RBC votume is < 20 ml according to the following processing steps:
(i) The bone marrow is washed automatically to remove platelets;
(ii) CDS 4 positive (CD34+) cells are labeled specifically for selection by incubation with the Isolex 3001 CD34 monoclonal antibody (Mab);
(iii) Unbound reagent, is removed by washing the cell suspension with, buffer solution;
(iv) Sensitized CD34+ cells (meaning CD3 + cells labeled with CD34 Mab) are captured by fJynabeads M-450 Shee anti-Mouse IgO;
(v) A selection, column is used to separate the magnetically-labeled. Dynabeads having captured CD34:' cells from unwanted cells, which are washed through the selection column and collected in the Negative Fraction Bag; and
(vi.) PR34+ Stem Cell Releasing Agent, .releases CD34+ cells from the column, and the CD34+ cells are collected in the Bud Product Bag, The system performs several washing s e Sj. disposing of most of the liquid into the Buffer Waste Bag.
[000284] The JsoIex(R) selected CD34÷ fraction, is assayed as follows to determine WBC and CD34+ cell yields. The volume of the CD34 Positive Fraction is determined by mixing the cells in the End Product Bag; the hag is gently .massaged by hand to ensure even eel! distribution. A transfer set is inserted into the sampling port of the End Product Bag and a 60-ml syringe attached. The cell suspension is withdrawn into the: syringe (maximum 50-mi at a time) in order to measure the total volume, [000285} A 3-ml or 5-ml syringe is used to remove a 2.0-ml sample from the End Product- Bag through the transfer set for quality control testing. The aliquoted volumes of the -samples and the analyses performed on those samples are as previously described, i.e., CBC: ,3-nil; Gram slain; 0.3-mi; CD34+ cell enumeration and cell viability: 0.2-ml.
10602861 ¾ total 'tNC of the CD34 Positive Fraction is calculated fern the relationship:
1000287] Total TNC of the Positive Fraction * WBC/μΙ of the Positive Fraction x 1000 x Volume of the Positive Fraction (Formula 7)
[ 028S] The TNC recovery of the Positive Fraction, which most be less than. 5% of the original product count, is calculated from the following relationship:
(000289] TNC recovery = Total TNC of the Positive Fraction -:·· Total TNC of the unprocessed product x 100% (Formula 8)
[000290) The total number of viable CD34+ cells in the Positive Fraction is determined from the following relationship:
10002911 Total CD34+ cells in the Positive Fraction ::ϊ Number of CD34+ ceiis/μ! of the final product x 1 ,000 x Final product volume (ml) (Formula 9)
[Θ00292Ι The CD34+ cell recovery of the Positive Fraction, s calculated from the following relationship:
[000293J CD34+- cel l recovery = Total CD34+ cells of the Positive Fraction - Total CD34+ cells of the unprocessed product x 100% (Formula. 10),
[000294! Example 6, Preparation of Selected€034+ Celts for 'Transfusion
[000295} Samples of the chemotactic hematopoietic stem cell product will be removed to be assayed for WBC count, by How cytometry (for CD34+ cell enumeration and viability). Gram stain, and sterility. [00029 1 CD34+ ceils are characterized by flow cytometric analys s featuring CD34bnght and CD45dim fluorescence by double labeling with anti- CD34 and anti«CP45 antibodies (Beckraan Coulter, PN IM3630). CD34+ cells and CD45+ cell viability is determined by excluding the dying cells which take up the intercalating DNA dye 7-amraoactmomycin D (7 A AD). See Broeklcbank AM, Sparrow RL Cytometry. 2001 ;46:254-261 (2001); Barneit D, et al. Br. J Haematol 106:10594062 (1999); Sutherland, et al, J He atotherap 5:213-226 (1996), and US Patent Nos. 4.520, 1 10; 4,859,582; 5,055,556; European Patent No. 76.695; Canadian Patent No. 1479,942 (PE, APC); US Patent No. 4,876,190 (PerCP ; US Patent Nos. 5,268,486; 5,486,616; 5,569,587; 5,569,766; 5,627,027 (Cy); US Patent Nos. 4,714,680;
4,965,204; 5,035,994 (CD34); US Patent No. 5.776,709 (Lyse no-wash method); US Patent Nos. 5,723,2 8 and 5,187,288 (TruCOtJ T Tubes), the contents of eac of which is incorporated by reference herein in its entirety.
[000297] Any flow cytotneter or an equivalent device can be used for ..conducting analysis of CD34÷ cell enumeration and viability, in one embodiment, the processing laboratory employs a BD FACSCalibur(TM) flow cytometer and BD FACSCompfTM) software is used for instrument setup and monitoring. A template and a panel of legend labels are preinstaLIed for acqu sition and analysis, Prior to use, the reagents, namely CP45FITC/CD34PE, Stem-Count Fluorospheres, Concentrated Ammonium Chloride Lysrng Solution, and 7AA.D Viability Dye, are brought to ambient temperature. CD34+ cell controls are run. as a positi e control to affirm, that the instrument is set up for analyzing CD34+ ceils, and the .results are compared with, the manufacturers predetermined C 34 percent range.
1000298] The unprocessed bone marrow product and Isolex processed chemotaciic hemaiopoietie stern cell products may be analyzed by man different procedures, in one embodiment,, or example, immediately upon receiving the sample, if the WBC coun of the sample is greater than 2 x 107 cells per ml, the sample is diluted with Sheath fluid to achieve a cell count, of about 2 x 107 WBC per ml 1 0 al of the diluted product is alicmoted into two 1 x 100 mm tubes. Using a mieropipetter, 20 μ.1 of CD45FITC CIB4 PE and 7 -A AD viability dye reagent are added into each tube and the samples gently vortexed. The tubes are covered with aluminum foil and left at ambient temperature for 15 to 20 minutes, RBCs are'iysed by adding 3.5 mi of Ix Lysing Solution lo each tube, vortexing gently. The tubes are incubated for te minutes at ambient temperature, protected from light The samples are stored at about.2°C - about 8 °C (i.e., on an ice bath) protected from light until data acquisition is performed. Data acquisition must be performed within one hour of adding the lysing buffer. Before data acquisition, Stem-Count Fluorospheres are resuspended by end-over-end roiation (10 times). 100 μΐ of Fluorospheres is added to each tube and gently vortexed taking care not to generate air bubbles. The absolute count of CD34+ cells in the product is.. calculated from the relationship:
|0i)02991 Number of viable CD34+ ceils per μΐ of prodact:::lCP34 x FAG (Formula 1 1)
]00030O| where LCD34 is the averaged number of events fo Li e CD34+/A11 CD 45-; "FAC" is Fluorospheres Assayed Concentration; and F s the averaged ouraber of Fluorosphere singlets counted,
[00030.1] The volume of CD34+ Positive Fraction is calculated to obtain the number of CD34+ cells 'required for the required dosing. The Required Positive Fraction 'Volume (ml) is defined as:
1000302] The Requested CD34+ cell dosage -'-(Total CD34+ cells per μΐ in the. Positive Fraction x L000), (Formula 1.2)
(000303] An appropriate number of cells is dispensed into a SO mi conical tube and oentrifuged at 500 x g for ί 0 minutes. Th supernatant is removed using a 30 mi serological pipette and disposed of as waste while exercising care not to disperse the cell pellets at the bottom of die tubes during this process. The infusion solution (20 ml) is added into the CD34-
Cell Positive Fraction tiihe and the cells dispersed using a 10 ml serological pipette by repeat pipetting. The resuspended. cells are oentriiugecl for 1.0 minutes at 500 g. A.30 ml serological pipette is used (without disturbing the cell pellet) to transfer the supernatant infusion solution into a 50 mi conical tube with a label "Positive Fraction Supernatant'' affixed. The tube containing tie supernatant is vpriexed to homogenize the solution. A 10 mi serological pipette is used to transfer 10 ml of the homogenized supernatant back to the CD34÷ Cell Positive Fraction tube. The remaining 10 ml of suspension in the Supernatant tube will be used for sterility testing (5 ml each into a TSB (Trypticase Soy Broth) bottle and an FT. (Fluid Th gh/collate) boitk). The ceils in the CD34+ Cell Positive Fraction are resuspended by slowly withdrawing and aspirating through a blunt end needle affixed to a 1 ml syringe (Infusion Syringe) several, times. The cell suspension is withdrawn into the syringe, any air bubbles re aspirated off, and the blunt end needle removed. The infusion syringe is attached to the injection port of a 4- way stopcock. f'000304) The eheraotaetic hematopoietic stem cell, product of the described invention will be released for infusion only if it meets the following criteria:.
• 0034 ' ceil purity of at least about 70%, 75%, 80%, 85%, 90% or 95%; » A negative Oram stain result for the selected positive fraction;
* Endotoxin Levels: less than about 0.5 endotoxin units/mi:
• Viable CD34'1' eel! yield of the Themotactio hematopoietic stem 'cell product" meets the required dosing as per the treatment cohort;
* CD34''' cells are at least about 70%, 75%, 80%, 85%, 90% or 95% viable by 7-A.AD;
• USP sterility result for "Positive Fraction Supernatant": negative (14 days later); and
* Bone marrow CD34* cell selection was initiated within about 12 hours to about 24 hours of completion of bone marrow harvest.
[000305) Sterility assessment on 'the stem cell product including gram staining and endotoxin will be performed prior to product release for infusion, USP'sieriiity (bacterial and fungal) culture will be performed and the results wili be reported to the principal investigator, in the event of a positive USP sterility result, the subject and attending physician on call will be notified immediately, provided with identification and sensitivity of the organism when available, and'do nnentation of appropriate anti-microb.ial treatment and treatment outcome will, be recorded by the investigative site and the sponsor,
[000306] After meeting these release criteria, the ehemotactic hematopoietic stem ceil product will be released for infusion and packaged for transportation to the catheterization facility, A sample also will be sent for in vitro testing,
[000307] According to some embodiments, product will be released only ifCD34* cell selection is initiated within 12 hours to about .24 hours of completion of bone marrow harvest and only if it is to be infused within about 48 hours to about 72 hours of completion of bone marrow harvest.
[000308] According to some embodiments, the none panded, isolated population of autologous mononuclear cells containing CD34-f cells, which further contain potent
CD34+/CXG + cells that have CXCR-4-mediated ehemotactic activity is divided into aliquots, which are frozen at -86°C and exyostored in the vapor phase of a liquid nitrogen freezer for subsequent administration. Each of these aliquots can be used to prepare a thawed ehemotactic hematopoietic stem cell product as follows. The frozen nonexpanded. Isolated population of autologous mononuclear ceils are thawed at a sufficient time before planned administration the sterile nonexpanded, isolated population of autologous mononuclear cells comprising CD34+ cells, which further contain a subpopu!aiion of potent CD34+/CXC -4+ celis that have CXCR-4-medtated ehemotactic activity will be enriched for CD34+ cells, which further contain a.subpopulation of .potent CX)34-b<CXCR4-t- cells that have CXCR4-mediated ehemotactic activity so as to yield the thawed ehemotactic hematopoietic stem cell product. Samples of this thawed ehemotactic hematopoietic stem cell product will be removed to be assayed for WBC count, by How cytometry (for CD34r cell enumeration and viability). Gram stain, and sterility. Γΐιε thawed ehemotactic hematopoietic stem cel l product will be released for infusion within about 48 hours to about 72 hours of thawing of the frozen aliquot of the sterile nonexpanded, isolated populatio o autologous mononuclear cells comprising CD34+ cells. |C>003 91 Examp e 7. Formulation Of The Chemotaetic Hematopoietic Stem Cell Product Comprising€1X34+ Cells
{000310] The chemotaetic hematopoietic stem cell product is formulated in 10-ml of saline (0.9% Sodium Chloride, Injection, USP, Hospira, Cat# 7983-09) supplemented with 1 % HSA (Human Albumin DSP, Alpha, Cat. # 521303} ("Infusion Solution") and more than 20% autologous serum. In addition, there may be some trace amount of materials (quantities not determined) in the Chemotaetic hematopoietic stem cell product thai are used and left over during the product processing. These materials include: Dulbeccd's Phosphate Buffered S'aime- Ca÷--h g ++ Free (D-PBS) (Baxter, Cat. ED 9865), Sodium Citrate (Baxter/PemvaL Cat, # 4B7867), Hetastareh. (Abbott Laboratories, Cat. # 0074-7248-03), IVIg (Gammagard® Immune Glotedin Intravenous, Baxter. Cat, # 060384) and the 'reagents in the Isoiexi 300i Stem Cell Reagent Kit (Baxter, Cat. 4R.9734) including aoii--CD34 monoclonal antibody, stem cell releasing agent and Sheep anti-mouse magnetic-beads.
[000311 Example $. Transporting Chemotaetic Hematopoietic Stem Ceil Product to the Catheterization Facility j'0003.12] According to the original plan, the chemotaetic hematopoietic stem cell product that met the release criteria was to be loaded into a sterile 10 cc. syringe in a Clas 100 biological safety cabinet located within a controlled aseptic environment, e.g., at minimum, a Class 100,000 cell processing facility; class 1 ,000 is preferable, but not required. The chemotaetic
hematopoietic stem cell product was suspended in iO-mS PBS supplemented with HSA and the container labeled in accordance with release criteria. The original plan called for four dosing- cohorts consistin -of .five subjects each in each cohort. The first was to receive about 5 x 106 CD34+ cells, the second abou -10 x 10* CD34-i- cells, the third about 20 x 106 CD34+ cells and the fourth about 30 x 10*01)34+ cells. Subjects in the higher dosing cohorts with . inadequate CD34+ cell quantities to meet the assigned cohort dose were to be added to a prior cohort at the greatest possible CD34+ cell dose. The loaded infusion syringe was attached to a four- way stopcock along with a flushing syringe, capped and have safety guards applied to prevent leakage. The delivery apparatus was sealed in. a double steri le bag and placed in a secure transportation box for iransportaiion to the cardiac catheterization facility. Following release of the ehemotaetie hematopoietic stem cell product and cohort assignment, the chemotactic hematopoietic stem cell, product was shipped to the catheterization site for direct inf arct-reiated artery infusion ("intravascular administration').
[0003131 Exam le 9, Inira-Coronary Infusion, of Chemotactic Hematopoietic Stem Cell Product
[000314] Upon notification -from the cell processing facility that the chemotactic hematopoietic stem cell product had been released for infusion (see supra), the subject/patient was scheduled to arriv at the catheterization facility, at a time to coincide with the arrival of the chemotactic hematopoietic -stem cell product, f 0003X5} Cardiac enzymes (brain natriuretic peptide (BMP), troponin and CP MB), complete blood counts, a full chemistry panel (renal, and liver function test) and an EKG were performed just prior to chemotactic hematopoietic stem cell product infusion. Clinical assessment of the stage of heart failure according to the New York Heart Association's (NYHA) functional classification system was recorded.
[060316| Upon receipt of the chemotactic hematopoietic stem cell product and final quality assurance release- (by facsimile) for infusion, thesubject I did undergo cardiac catheterization as detailed above. Coronary arteriography was performed to assess for patency (meaning openness, freedom from blockage) of the infarct related artery and Thrombolysis in Myocardial Infarction (TIMf) angiographic flow, A balloon catheter over a wire was placed in the siented. segment o the Infarct related artery. An appropriate balloon dilatation catheter having. an internal diameter of at least about 0.36 nun compatible with the chemotactic hematopoietic stem-cell product infusion can be used, After positioning, the- balloon wire was removed. The chemotactic hematopoietic stem cell product delivery apparatus was removed from the transportation case. [000317] The delivery apparatus was in a sterile bag and. had safety blocks attached to the. infusion -syringe {containing the ehemotaetic hematopoietic stem ceil -product) and 'the flushing syringe. The apparatus consisted of the infusion syringe (containing 10 mi of the ehemotaetic hematopoietic stem cell product) and the flushing syringe (containing 6 ml of Hushing solution) wherein both were attached to a sterile four-way stopcock. The entire delivery apparatus was shaken gently to resuspend the CD34+ ceils in the infusion solution. The .flushing syringe was used to eliminate all air hubbies in the apparatus (to prevent air emboli) and the delivery apparatus, then attached to th balloon dilatation catheter via the stopcock.
1008318} Delivery of the cheraotactic hematopoietic stem cell product to the subject by infusion proceeded as follows. First, with the stopcock open between the flushing, syringe (6 ml solution) and the central lumen of the balloon catheter, 1 ml of flushing solution -was infused (after removal of the guard) into -the central lumen, of the catheter over 1.5 seconds. Second, the balloon was inflated at two atmospheres of pressure within the stent to avoid damage to the coronary artery endothelium and then the stopcock valve adjusted to allow infusion of the eheraotaelic hematopoietic stem cell, product, distal to the inflated balloon (after removal of the guard). With the balloon inflated, about 3 cc to about 4 cc from the infusion syringe was infused by hand over a period of about 30 seconds to about 45 seconds (to be timed and documented). The balloon remained inflated to allow adhesion of the CD34+ cells and to prevent back flow for a total of about 2 minutes to about 3 minutes (includin the time for infusion). In between infusions, the balloon remain deflated for 3 minutes to allow restoration of blood flow
(reperfusion). It. was expected that 3 infusions will be required to empty the infusion syringe. Third, upon completion of infusing the chemoiactic hematopoietic stem cell product and with the balloon deflated, the valve on the stopcock was adjusted to allow filling of the infusion syringe from the .flushing syringe. Finally, with the balloon inflated (about 2. minutes to about 3 minutes), the 4 ml. of flushing -solution now in the infusion syringe- was infused over a period of about. 30 seconds to about 45 seconds to dislodge any residual CD34-+ cells from the syringe and catheter into the IRA circulation. Tire catheter then was removed. [0003 9] An mfusiba-ielated ischemia (inadequate blood flow) assessment was performed during the first 24 hours after chemotactic hematopoietic stem cell product infusion. An EKG at about 12 hours and at about 24 hours a d analytical chemistry of cardiac enzymes (BNP.
troponin and CPK MB) about every 8 hours for about 24 hours was obtained. Anliythmia assessment (24 hour Holier monitor) was performed .immediately post-chemotaetic
hematopoietic stem cell product infusion.
[0003201 All subjects were provided with digital thermometers and a log book to record twice dally temperatures for 30 days post infusion of the eherrjotactic- hematopoietic stem ceil, product. Subjects were instructed to notify the investigator site immediately for temperatures recorded above 100.5° P. Rapid, follow-up with appropriate cultures and radiographic assessments was performed according to routine clinical standards. Documented bacterial infections, if any, were reported to the TUB and the FDA.
[000321 j Additional foUcrw-up visits lor safety assessments included visits at 1 week and 2 weeks alter product administration, 'Visit assessment included a comprehensive medical history and physical examination, EKG, complete blood counts, full chemistry panel (renal and liver function test), and measure of -serum cardiac markers (BNP, troponin and CPK MB). Clinical assessment of NYHA functional class was recorded, on week 1 and 2. At 4 weeks post
c'hemotactic hematopoietic stem cell product infusion, an .EKG and cardiac enzymes (B P troponin and CPK MB) was obtained. A 24 ί loiter monitor was used to assess for arrhythmias. Clinical assessment of NYHA flmctioiial class was recorded. Treadmill exercise testing using a symptom limiting Bruce protocol, was performed as well.
[000322J At about 3 months and about 6 months post chemotactic hematopoietic stem eel! product infusion at the first infusion time, a 24 hour Halter monitor was performed. Clinical assessment of NYHA functional class was recorded. At about 6 months post chemotactic - hematopoietic stem ceil product infusion, a symptom limited treadmill exercise testing using the Bruce protocol was recorded. | 00Θ323| A safety assessment at about 12 months post eheraotactie hematopoietic stern cell product infusion will include a comprehensive medical history and physical examination, BKG. complete blood counts, full chemistry panel (renal and liver function test), and measure of serum cardiac markers (BNP. troponin and CP'K MB). A 24 hour Holier monitor will be performed. Clinical assessment of NYBA functional class will be recorded.
Statistical analysis
[00632 1 A paired design, where each subject serves as his or her own control, was used in some embodiments. Differences between before and after treatment, per subject, were analyzed for each of the four numeric- cardiac functions (i .e., myocardial contractility; end. systolic volume, end diastolic volume; and perfusion). Linear regression .analysis- was used to assess the significance- of increased dosing levels. The null hypothesis is that the slope of the regression line (dosing. level serving. as the independent variable and the '"after" minus the "before" difference servin as the dependant variable) is equal to zero. The power of rejecting a false null hypothesis is 0.68 at the 0.05 alpha level of significance for -a high correlation of 0.5 between dosing and improvement in cardiac function. The 95% confidence interval about the slope of the regression line was. used to assess the medical significance of the increase in dosing level. If the slope of the regression line was not significantly different from zero but the intercept of the. regression line is different from zero, then all treatment -groups was combined and a paired t-tesi will be performed io assess the overall treatment effectiveness. The null hypothesis is that the mean of the differences Is equal to ze o. A Wilcoxon signer-ranks test also was performed as an additional test to determine the treatment effectiveness. This: test is more powerful (rejecting a false null hypothesis), than a t-test if the observations are not. normally .distributed. The powe of the t-test is 0.7 for rejecting a false mil) hypothesis at the alpha level of 0,05 and the treatment having a medium size effect (an effect large enough to he discerna'ble by the naked eye). The medical significance of the treatment effect size was determined, by computin : a 95 % confidence interval about the mean of the differences (the true mean of the differences will lay in this interval in 95% of tested samples). [000325] To assess improvement in perfusion, logistic regression was used with dosing level as the independent variable and perfusion change ( i:::yes. 0::::no) as the dependant variable. Odds ratios of the .four dosing levels was computed separately with 5,0 x 106 cells serving as the index group,
{000326] A binomial test was used to assess the significance ofCD3 cell dosing on perfusion. It was expected tha there would be no spontaneous improvement m a perfusion defect if present on the baseline perfusion scan. Therefore, any clinically significant improvement in a perfusion detect when assessed at 6 months and compared to baseline was considered a treatment effect,
[000327) A concurrent group (non-treated, controls) meeting eligibility but not receiving €1)34*· cells was evaluated similar to the treated group and assessed tor significant improvement in cardiac function/perrusion. Each study site alternated accrual of treated and non-treated controls, A coin flip was used to determine the initial (treated or non-treated.) subject sequence at each site. Comparison of outcomes between treated and non- treated groups was made. The core lab was blinded regarding treatment or no-treatment.
(0003281 An assessment was performed to determine if a correlation existed between clinical outcome and cell content (CD3.4+) and/or in. vitro colony growth (CFU-GM, CFU~ GEMM, BFU-E), CXC .4 mobility, and CXCR-4 surface antigen expression.
[600329] As originally planned, a total of .20 subjects were to receive the che.iaotaet.ic hematopoietic cell, product of the described i nvention. There were to be four dose cohorts (about 5 x 10^ about 10 x 10% about 20 Τ06 5 and about 30 x 106 CD34+ cells). If the ehemotactic hematopoietic stem eelf product content in any subject was not sufficient for Ihe assigned cohort, that subject was reassigned to a p ior cohort at the greatest possible dose. Subjects having fewer than 5 x JO6 CD34+ cells available for infusion were removed from the study, did not undergo repeat catheterization and were not counted as part of the 20-subject study group. In addition, if the ehemotactic hematopoietic cell product of the described invention did not meet release criteria, the subject did not receive .the ceil product and was not counted as a study candidate to be replaced by the next subject. In any cohort dosing group, if a subject experienced an acute (meaning immediate to about 7 days post infusion) unexpected toxicity considered to (probably) be a result of the celt product infusion, dose escalation was halted and 3 additional, subjects were accrued to that dose level, if no other unexpected toxicity was observed, then dose escalation resumed, however the total of 20 subjects was not exceeded. If another toxicity occurs at that dose level, then all subsequent subjects were accrued to the next lower dose level.
1000330] The chemotactic hematopoietic stem cell product of the described invention was not administered to any subject in the higher dose cohort until all the subjects from the prior dose cohort had. completed their follow-up assessments two weeks after product administration.
[000331] Example .1.0. E per neniat Results of" Preliminary Studies
1000332 A series of preliminary preclinical studies were .performed in an attempt, t accomplish the following goals:;
(1 ) Optimize the manufacturing process for the Mini bone-Marrow Harvest (MMH);
(2) Evaluate the stability of the inbound. MMH product and the outbound hematopoietic cell product,
(3) Evaluate the internal diameter allowance and safety of the catheters;
(4) Evaluate the compatibility of the cell product with the catheters intended to be used in the study; and
(5) Evaluate the suitability of using the supernatant of the final hematopoietic cell product to represent the final hematopoietic cell product for stability testing.
[000333] Study t: Optimizing The Manufacturing Process for the Mini Bone-Marrow Harvest (MMH) [000334] The effect of key manufacturing variables on the yield of viable CD34 cells from representative bone marrow products was evaluated. A total of six (6) volunteer donors over the age of 45 {based on a range of 45-57) and thre under 30 years of age (based a range of 21-28) agreed to donate an average of 45 .ml (based on a range of 31 m!-54 ml) bone marrow and provided written Informed Consent for the procedure. The marrow aspiration technique employed was identical to that to be performed for the clinical scale MMH (see Example 3, supra). As shown in Table 2, the cell counts of nucleated cell (NC) and CD34+ cells of Mini bone-Marrow Harvest ("MMH") derived cells collected from volunteer donors appeared to be age related.
[000335] Table 2: Effect of donor age on nucleated cell yield of the MH.
Figure imgf000134_0001
I O0O33& I The average cell count of the bone marrow products from, older donors (N-6) was 28.4 106 (based on a range of 15,8 x 10¾- 49.5 x 10*) nucleated cells per ml [wNC/mi' 'js with an average viability, as. determined by 7»AAD dye exclusion arid flow cytometry, of 90,42% (based o» a- range of 80.95%-98.21%) and€D34÷ content of 3.06 χ W/ml (based on a range of 1.27 x 107ml - 5.58 x iOVml). In the younger subject group (N;:::3}} the average cell count collected from. marrow aspiration was 46.2 x 10* NC/ml (based on a range of 39.9 x 1 * NC/ml -50.6 x Hf NC mi), with an average 7-AAD viability of 93.5% (based on a range of 87.17%-96.90%) and total CDW content of 8.5 x 10¾nl (based on a range of 5.99 x.10s CD34" cells/ml - 11.60 JO5 CD34 cells/ml). f000337f Red Cell Depletion and CD34 Selection
[000338! Table 3: CD34+ cell .recovery after RBC de letion of MMH from oider age grou (4557) donors.
Figure imgf000135_0001
1000339] As shown in Table 3, following red cell depletion of the MH-deri ved bone .marrow products collected from the older donors, an average of 79.83% (based on a range of 65.68% - 92,36%) of the CD34 cells from the -initial MMH was recovered. There was no signi icant difference between the initial CD34 cel.! purit ( 1.58%, based on a range of I .09 ~ 139%) and that following red cell depletion ( 7%, based o a range of 1.33 - 1 ,84%). Assay methods to quantify clieniotaxis are well known in the art, and a wide variety of techniques are used to evaluate chemotactic ability of a variety of cel l types. Furthermore, cell migration assays are commercially available. f 08Θ34{)1 The assay used for the dete iittatioii of in vitro migratory activity of CD34 cells mediated by CXCR~4. which is adapted from an assay described in lo et al (j. Clin. Invest, 105: 101-1 i (2000)}, relies on transmembrane migration of CD34+ cells. Transmembrane migration of CD34+ cells from the upper chamber to the Sower chamber of a transwell polystyrene plate (6.5 mra diameter, 5 um pore size, Coslar) is induced by SDF-1 placed in the lower chamber. The number of migrated viable CD34+ cells in the lower chamber then is determined by How cytometry analysis using CD34/CD45 antibodies and 7-AAD. Control spontaneous migration of CD34+ cells is performed without SDF-i in the lower chamber,
(000341] The subpopulation of potent ceils that (i) express CXCR-4 and (it) have CXCR-4 mediated chemotactic activity, expressed VEGFR-2. at very low levels (mean 0,84%, range 0 to 2.39%). Because the suhpopulation of potent CJD34+ cells co-expresses GXC -4, {CXCR-4 co- expression; mean 60.63 %, median 52% range 31-98% of 01)34+ cells, capable of migrating in an SDF-1 gradient) while less- than 2.5% of the CD34* cells co-expresses VEGFR-2, functionally, these cells are VEGFR-2-, i.e., VEGFR-2 is not what drives the cells into the. peri - infarct zone.
[000342J Table 4: C034+ cell recovery, purity, CXCR-4 migratory activity, viability and hematopoietic CFU growth Immediatel after Isolex processin of MMH from older age grou (age 45-age 57) donors.
Figure imgf000137_0002
Figure imgf000137_0001
fO0O343j As shown in Table 4, following C 34 selection using the Isolex system, which includes iramimomagneiie Dynabeads(R) and anti-CD34 mAb, an .average of 32.11% (based on a range of 15.3 i%- 43.60%) of the CD34 cells' was recovered, with an average purity of 73,32% (based cm a .range of 71.66% - 73.64%) and an average viability of 97.27% (based on a range of 93.80% - 9.8.49%), In addition, these CD34+- cells displayed an average of 17.26% (based on a range of 2.60% - '22.10 %) CXCR-4 migratory ability immediately after selection and were capable of generating hematopoietic colonies (21.89 colonies/i CD3 + cells plated (based on a range of 17.0 colonies iOO CD3 + cells plated - 27.5 colonies./.! 00 CD34+ cells plated) in MeihoCult culture,
|O00344) Study 2: Evaluation of the stability of the inbound mini-bone marrow harvest and of the outbound chemotactk hematopoietic cell product
|OO0345j A aeries of experiments, using healthy volunteers, was performed in order to evaluate the stability of the inbound MMH and of the outbound chemolactic hematopoietic stem ceil product of the described invention. Assessment of the functional viability of the inbound and outbound products was evaluated by cell viability (7-AAD), SDF-1 /CXCR-4 mediated CD34 cell migration, and the ability to form hematopoietic colonies in methylcellulose (CFU colony forming ability).
[000346] To evaluate the inbound product stability for shipping and logistic purposes and for coordination with, clinical schedules, MMH products were stored at 4* C to 8°C as indicated. To evaluate the outbound product stability for shipping and logistic purposes, the chemotaet.sc
hematopoietic stem cell product comprising isolated CD34- - cells enriched following MMH was stored at 4°€ to C as indicated.
[000347} In preliminary studies, cells either were processed immediately or maintained at 4-8 °C for 12 hours prior to processing to evaluate the impact of shipping and logistic duration on the
manut dure-of a suitable cell product for infusion. Despite the duration of storage prior to processing (inbound product expiration), the results did not vary significantly (data not shown):.
[060348] In another series of experiments, cells were stored at about 4¾C to about S°C for 12 hours and about 24 hours prior to reassessment^ simulate products infused at about 36 hours and at about 48 hours, respectively, following MMH.
[0003491 Table 5: C 34+ cell viability, growth and CXCR-4 migratory activity 13-13.5 hoars after Isolex processing of MMH,
Donor j
I 1 2 i Average j
i C 34 - ce It viability (%) 97,59 j 96.90 I 97.24 |
! CD3:4- eell CXCR- 4 migratory activity (%) 7.70 ] 7.50 1 7.60 j
Hematopoietic CFU / 100 CD34+ cells cultured 18,00 1 25,00 j 21.5 "1
[000350] As sho wn in 'Fable 5, the isolated CD34 cells of the chemolactic hematopoietic stem cell product had an average viability of 97.24% (based on a range of 96.90%-97.59%) and average CXCR-4-mediaied migratory capacity of 7.60% (based on. a range of 7.50% -7.70%). As shown in Table 6, alter storage for an average of 26.3 hours (based on a range of 26.0 h - 26.5 hj, these ceils had an average viability of 96.81% (based on a ranae of 96.39% - 97.22%) and an average CXCR-4-mediated migratory capacity of 4.75% (based on a range of 4.50 % - 5.00 %). Further;, the cells stillmaintained their abilit to generate hematopoietic colonies in vitro.
[0003511 Table 6: CD34+ cell viability, growth a»d CXC migratory activity 26.0-26.5 hours after Isolex processing of MMH,
Donor
i 1 2 I Average
I CD34+ cell viability (%} 97.22 j 96.39 j 96.81 | jcp34÷CXCR-4+ cell CXCR-4 migratory activity (%) 4.50 5.00 i 4.75 j j Hematopoietic CPU / 100 CD34-?- cells cultured 28.00 j 14.00 21.00 j
[000352} Thus, an average of 135 hours (based on a range of 13.0h - 13.5h) after CD34 ceil selection, representing 26.0-26.5 hr ost- . Us th CD34 cell population had an average viability of 97.24% (based on a range of 96.90% ~ 97,59%), with average CXCR-4 mediated migratory capacity of 7.60% (based on a range of 7,50% -7.70%). At an average of 26.3 hours (based o a range of 26.0 fa - 26.5h) following MMH, the average viability of the cells was 96.81% (based on a range of 96.39% - 97.2%) and maintained an average CXCR-4-raediaied migratory capacity of 4,75% (based on a range of 4.50% - 5.00%).
[000353} Formulation of the composition of the described invention comprising this
product occurred an. average of 8 hours (8.63 ± 1 ,80 = 4) hours after MMH collection,
and infusion occurred within 24 hours of MMH,
[000354] Table 7: CIB4+ cell viability as a function of time after MMH: 12- hou in-da ing and 48 hour outdating (ail time points measure from completion of
MMH.)
Figure imgf000140_0001
[Θ0Ο355) in a subsequent experiment, four (4) MMH products (A-D) were collected and stored at 4°C for an average of 12.8 hours (based on a range of I2.5h.-I3.0h) before the GD34+ cells were isolated by the Isolex procedure. This group, representing the "12 hour in-daie" group (meaning that the product was formii!ated within he in-date m of about 12 hours), was evaluated for functional viability out-date at ""24 hours" (22,9h ± 1.63, Ν~· 4), "33 hours" (33.38 ± 1.1 I , - 2), and "48 hours" (4833 ± 0.82, N~ 4) post MMH harvest. The data, summarized in Tables 7-9, demonstrate that following MMH, the c emotactie hematopoietic stem cell product comprising enriched CD34+ cells maintains 1) high, viability (> 90,0 % average viability, Tabic 7), 2) 76.85% {± 21.66) of their SDF-l/CXC -4 mediated migratory ability (Table 8), and 3) their ability to form hematopoietic colonies in vitro (Table 9), respectively, imm ] TaMe 8 shows SDF /CXCR-4 mediated CD34÷ cell migration (¾ migrating CD34+ cells) as a function of time after MMH: 12-hour in-dating and 48-hour outdaring (all time poin ts measured from completion of MMH). For the purpose of determining the impact of time p st-MMH on the migratory ability of the GD34+ cells, time point "X" was considered me reference point, as this was■ 'determined to represent the earliest time point following MMH at which ceils reasonably could be expected to be returned to the subject in a finished formulation. The remaining migratory activity at the following time points ( Y:::33 tours, =48 horns) was calculated as percent migratory ability remaining following the 24 hour (X) time point
1000357] Table 8: SDF-l/CXC -4 mediated CD34+CXCR-4+ ceil migration { migrating 0)3 cells) as a function of time after MMH: 12~h«ur in-dating and 48-hour outdattag (all time points measured from completion of MMH).
Figure imgf000141_0001
[000358] Table 9 shows the number of colony forming units (CFU) per 100 viable CD34+ceiIs plated as a function of time after MMH; 1.2-hdur in-dating and 48 hour-oot- dating (ail time points measured .from completion of MMH).
[000359] 'Fable 9: CFU per 100 viable CD34 -ceHs plated as a function of time after MMH
Figure imgf000141_0002
Figure imgf000142_0001
[000360) in an attempt to extend both the in-date and om-date stability parameters for the ehemotaedc hematopoietic stem cell product of the described invention comprising CD34 - cells, from ,12-hours (in-date) and from 48-hours (out-date) (12/48), respectively, to 24-hours (in-date) and 72-hours (outdate) (24/72), respectively, CD34 cells were purified about 12 hours after MMH harvest '(12 'hour in-date) and about 24 hours ate MMH harvest (24 hour in-date) and analyzed for functional viability at about 48 hours and at about 72 hours total time from MMH to time of testing/anticipated infusion (48 hour out-date and 72 hour out-date, respectively). Specifically, the functional viability characteristics of two MMH chemotaetic hematopoietic: stem cell products of the described invention were evaluated at 48 hours and 72 hours. The resulting data were further compared to the same indices derived at the previous 12/48 time points (Tables 7-9).
[0ββ361| Tables 10-12 show that at 33 hours (based on 32,5 ± 0.71 , N- 2), 48 hour (based on one data point at.49 hours), and at 72 hours (based on 72.5b ·± 0.71, N::;: 2), the isolated CD34 cells of the chemotactie hematopoietic stem cell product of the described invention maintained 1) over 90% viability (Table 10), 2) 102.19 * 32.69% of their SDF- I VEOF/CX.CR-4 mediated migratory ability (1 able 1 1), and 3) their ability to generate hematopoietic colonies in vitro (Table 1 ).
[0003621 Table 10: CD34+ ceil viability as a function of time after MMH: 24-h in-dating and 72-h outdaring (all time points measured front completion of MMH)
Figure imgf000143_0001
Table 11 : SDF CXCR-4 mediated CD34+ cell migration (% population of migrated CD34t cells as a fcmction of lime after MMH): .24-b in-dating and 72-h
Oiitdaliag (all time points measuied lirom completion of MMH)
Figure imgf000143_0002
'080365J The % remaining ratios In Table 1 1 wer determined as in Table 8 above. \MW%4] Table.12: N amber of CFU per 100 viable CD34+ cells plated as a function of time after MMH: 24-h in-dating and 72~h outdaring (all time points meas red from completion of MMH)
Figure imgf000144_0001
000365] Further evaluation of the funetio.aaf viability parameters of the
chemotactie hematopoietic stem cell product comprising isolated CD34- cells of the described inven ion ("clinical product") at .8 hours (8.6 ± i . O, ;i:4), 12 hows (i.2,87hi- 1.92, N- 4), 32 hours (one time point at 33.5 h). 48 hours (47.50h ± 2.5, N 2), and 72 hours (7i .5h ά 0.50, -2) after MMH shows that after 72 hows, the product retains its 1 } viability (Table 13), 2) SD1 /CXCR mediated migratory ability (Table 14) and 3) ability to form hematopoietic colonies in vitro (Table .15), equivalent to the 24-hoitr time point.
(000366] Table 13: Clinieal Product Experience: CB34+ cell viability as a function of t m after MMH,
Figure imgf000144_0002
Figure imgf000145_0001
[0003671 Table 14: Clinical Product Experience: SDF-l/ XCR-4 mediated
Cl)34r cell migration {% migrating CD34"" cells as a function of time after MMH)
Figure imgf000145_0002
{$00368} All remaining ratios were calculated as in Table 8 above. 060369] Table 15; Clinical Product Experience: # of CFU per 100 viable
CD34+ cells plated as a func ion of time after MMH
Figure imgf000146_0001
[000370} Based on these data, extension of the in-datmg to 24 hours (from 12- ho.urs) nd the oui-dat g to 7:2 hours (from 48 hours) for the CD34+ cell .clinical product of the described invention is justified.
[0003711 Figure 1 indicates .the equivalence of the functional viability of the cherootactk- hematopoietic cell product of the described invention at 72 hours' to thesame- indices evaluated at 48 hours.
1000372} Study & Catheter Safety,
[000373} The viability and potential efficacy of the eheraotaciic hematopoietic stem cell product of the described invention comprising potent CD34+ cells depends on the cells maintaining their potency as they pass through a catheter. The catheter used in the .methods of the described invention has an internal diameter of at. least 0.36 mm. Any type of catheter having an internal diameter of at least 0.36 mm may be effective in delivering the pharmaceutical compositions of the described- invention.
[0003741 In one embodiment, the catheter is a balloon catheter. Balloon catheter safety studies were conducted to determine whether high ceil concentrations and repeated perfusions adversely affect cel.! viability,, cell recover or cmheter integrity, n- mobiltzed peripheral blood progenitors were used in order to obtain aa adequate- number of cel ls to pertbrtn the analysis. Catheters were assessed for infusion of the cell product of the described invention comprising selected CD34* cells through, the IRA. None of the 0.36 m interna! diameter catheters tested adversely affected CD34+ selected ceil viability, growth in culture, or mobility in CXCR-4 assays.
10011375] Table 16: Viability of COM ' cells before and after infusions through the catheters.
Figure imgf000147_0001
f000376| As shown in Table 1 f in all catheters tested, average CD34+ cell viability was at or above 70% following passage through the catheters.
100 3771 To demonstrate that infusion of the CD34+ cell prod uci does not pose any safety breach of the catheter used and that a significant percentage of cell product does not adhere to the interior walls of the catheter, catheters were challenged with repeat infusions of a€034·+· cell product having a. considerably higher cell concentration than that used clinically. Four brands of catheters (Sprinter, Voyager, Maverick and Raptor) were evaluated using 5 catheters of each type. Non-mobilized apheresis products were used in order to obtain an adequate number of cells to perform the analysis. A cell concentration greater than three times thai planned as treatment doses for the trial .i.e.. 160 x 106 nucleated ceils containing CD34+ cells in 10 ml' of infusion solution, was passed twice through each catheter. The average CD34+- cell recovery was 100.59% (based on a range of 76.99% to 228.70%) following passage through the catheters.
I'000378'l All twenty catheters were tested for integrity using a methylene blue dye leak test alter two perfusions with the nucleated cells. There was no evidence of leakage and the contact points and catheter tips were normal upon inspection.
1000379] As shown in Tables 17a and i 7 b, the effect on the cells of their perfusion through a catheter appears to be independent of catheter model and mak among those, catheters tested and was independent of the amount of time the ceils were stored either prior to processing and/or alter CD34+ celi. selection and prior to perfusion, resulting in a final formulation containing an average recovery of 96, 0% (range 80.8% - 102.2%) of the CD34+ celis (Table 17 b) and 86.36% of the GD45+ ceils perfused through the catheter. Further, the average viability of the cells was 96.5% (range 92,5% - 98,6%, H 6); the cei s maintained both CXCR-4 migratory capacity (data not shown) and their ability to form hematopoietic colonies in meihylcellulose (average 25.8 C!FU/IOO cells seeded (range 21.0% -30,5%)
PCX Patent Application
11.7472-010702 PCX
Figure imgf000149_0002
Recovery of CD 5+ ceiis * {# of CD 5 cells after infusion * # of CD45 before infusion) x 100%
b ed
ueSort of CD45+ ce» viabiiitv « p- {C045+ ceil viability % after infusion C045+ c ll vsabiiitv.% bef re infusion)] x 100%
Figure imgf000149_0001
N.J 227,039,371Υ1
WO 2011/050266 &Ί ' p pi PCT/US2010/053744
Z. -T
! 1
! > i-i . >. :;: :.: ■*·· :::· .. < .: :? ·?> <:· <··;:>·· ·
: 7* · *' : rs :'· :υ· w <··:.:; -\f «· %-:t\ <
S HQ » £, cj g
^ "i:e ::> i
:· w* j s »?> «c <··.· · ·*:
Figure imgf000150_0001
*·*( -:¾ί .
.<£:· w ?=:
? .«
¾ . ¾S■
Figure imgf000150_0002
(000380) Collective! y t hese experiments demonstrate that the serial passage of a chemotactic hematopoietic stem cell product compiismg- CD34+- cells through a cardiac catheter with an internal diameter of at least about 0.36 mm does not adversely affect either catheter integrity or CD34+ cell potency, i.e., CD34+ cell viability, CFU colony growth, or CD34+
CXCR mediated, migratory capacity/mobility.
10003811 Study 4: Compatibilit of the Cell Product With The Catheters
1000382] To further test the compatibiiiiy of the chemotactic hematopoietic stem cell product comprising CD34÷ cells with each of the catheters that may be used for delivery of the cell product in the. study, ceil products were tested after multiple passages through each catheter type to evaluate the effects of extreme condi tions of stress that would be greater than those expected daring the treatment protocol.
1000383} At 48: hours pos - M H harvest, the chemotactic hematopoietic stem cell product comprising a n e of about 5.73 x 106 CD34+ cells to about 21.10 x 106 CD3 + ceils (i.e., dosages reflective of the treatment cohort) obtained from individual donors wa infused sequentially through three catheters of the same brand, one type of catheter lot each donor (Sprinter, Voyager or. Maverick), and the cell, product assessed for CD34+ ceil recovery, colony formation arid viability,
(000384] Table IS: CB34+ cell recovery and sterility after sequential infusions through the catheters.
Figure imgf000151_0001
I SO (000385) As shown in Table IS, viable, colony forming cells were recovered in all ex eriment for all. three catheters tested (cel.! recovery 99%, 99% and 106%). f 000386) As shown in Table 19S the average viability of the CD34+ cells after passing through the third catheter was 94.000% (based on a range of 93.55%-94,40%) versus 96.01% (based on range of 94, ί 8%-97.93%) of tlie pre-mfusion cell prodaci.
(000387) Table 19, C&34+ ceil viability after sequential infusions through the catheters.
Figure imgf000152_0001
(000388] As shown in Table 20, colony forming unit (CFU) growth derived from the CD34+ cells after passing through the third catheter was 95,27% (based on a range of 43.47%- 163.64%) of the infusion product (i.e., the infused chemotactic hematopoietic stem cell product comprising CD34+ cells),
[000389] Table 20, CFU growth of CB34+ eelis after sequential infusions through the catheters.
CFU per 100 CD34+ ceils
euitiired
Cond tion
Sprinter Voyager Maverick
Fre~itifijisio.« 30,5 1 1 ,5 1 1.0 C O per 109 CB34' celts
cultured
Condition
Sprinter Voyager Maverick
After 1st catheter j 22.0 14,0 22,0 j
After 2nd catheter 20.5 4,0 19.0 I
After 3rd catheter 24.0 5.0 18,0 j
Recovery f om the pre- iufused product after the 3rd 78,69 1 43.47% 163.64%:
catheter
Average recovery 95,27% MB. 0] To determine the: effect of catheter perfusion on CD34+ cell mobility and abil ty to grow in culture, a series of experiments .were perforated where MMH ceils obtained from healthy donors were stored at 4° G for 12 or 24 hours before initiation of Isolex processing, isolated CD34+ cell product that had been stored for about 12 hours pre-Iso!ex processing, then were stored at 4°€ until about 36 hours had elapsed from the end of processing . for a total of about 48 hours post. MMH. At that time they were assessed for DF- l CXCR-4 mobility and CFU growth pre and post perfusion through a 0.36 mm inner diameter (id.) cardiac balloon catheter. Similarly, cells that were stored pre-lsolex processing for 24 hours then were stored, at 4° C until 8 hours had elapsed from the end of Isolex processing, for a total of 72 hours, and then assessed.
[00 )391 j Table 21: .12 in ound / 48 outbotmd and 48 hour iiibouBti / '72 hour outbound from MMH: SBF-i/CXCR-4 mobility (% population of migrated CD34+ ceils) and CFU (per 1 0 viable€1)34+ plated) pre catheter perfusion ("PRE") and post catheter perfusion 'POST")
Figure imgf000154_0001
[000392J The results in Table 21 demonstrate that .neither CD34+ CXCR~4~mediated cell mobility nor the cell's ability to gro w in culture at n of the time points tested was affected adversely by perfusion through a catheter having an internal diameter of at least 0.36 mm,
1000393] The Siabilktag Effect Of Serum
00039 The following data confirm the importance of the stabilizing effect of serum to the migratory capability of the: selected CD34+ cells.
[000395] As shown In Table 22, no CXCR-4 migratory activity was observed for all samples tested including the pre-catheter infusion samples when the composition comprising a ehemolaetic hematopoietic stem ceil product was formulated without serum,
[000396] able tlx Che otaiis of€D34÷ cells after sequential infusions through the catheters In the absence of serum.
Figure imgf000154_0002
|00039?| Figures 2 and 3 further illustrate that isolex selected CD34 - cells retain their migratory capacity longer when formulated in the presence of human serum. Following isolex processing, the bone marrow derived hematopoietic stem cell product comprising selected (1)3 + ceils was formulated either in (1) phosphate buffered saline (Dulbecco's phosphate buffered saline, £'&+--*-, Mg++ Free (Baxter Cat. No. KDR9865) ("PBS") containing 1% human serum albumin, 25U/ml of heparin sodium and vario us concentrations, (about 0%, about 10%, about 20%, or about 70%) of autologous serum; or (2) normal saline {0.9%) containing 1% human -serum .albumin,- '25U/mi of heparin sodium and (aboitt 0% or about 10%) autologous serum. SDF-1 /CX.C -4 mediated CD34+ cell, migratory capacity was evaluated at different times during final product storage (at 2°C-8*C) and after passing the cells through the catheter at the same rate and 'duration as anticipated by the clinical protocol None of these formulations -affected CD34+ cell viability or the recovery of CD34+ ceils after they had been passed through the catheter.
{'000398] Regardless of whether the eherootactic hematopoietic ceil products comprising selected (1)34+ cells was (i) formulated either in PBS-serum or in saline-serum and (ii) either passed through the catheter immediately or passed through the catheter after a prolonged stability testing storage interval at about 4°C to about 8°C, they maintained an average of 96.6% viability (range 92.5% - 98.6%) and an average CXC -mediated migratory capacity of 1 1.4% (range 2.4%- 30.6%), representing a total time .from harvest to mobility analysis of up to 4$ hours,
|ΐΝ)0399] As shown in Fig, 2 panel (a), cells formulated in PBS lone at about -25 hours retained about 10% of their CXCR-4 migratory capacity, which dropped off to near i) at about 48 hours. As shown in pane! (b), cells formulated in normal saline alone retained little, if any; of their migratory capacity. As shown in panels (e) and(d), ceils formulated with PBS containing at least, about 10% serum retained abou 10-1 % of their migratory capacity for up to about 55 hours .(c), while cells formulated with saline and at leas about 10% serum retained about 20% of their migratory capacity for up to about 50 hours. As shown in panels (e) and (i), cells retained a higher migrator capacity for a longer duration in PBS supplemented with even higher concentrations of serum.
[000 00} As shown, in Fig. 3, the product of the described invention comprising selected CD34' cells when formulated in 10% serum, retained 3 .25%, <1%, 6%, and 5.8% of its CX)3 +CXC 4-mediaied migratory capacity about 24, about 32, about 48 and about 56 hours after harvest, respectively. Fig. 3 further shows that the product of the described invention comprising selected CD34+ cells when formulated in 20% serum retained 18.25%, 10,25%, 17% and. 1.1% of its CD34+~CXCR, ~niediated, migratory capacity about 24, about 32, about 48 and about 56 hours after harvest, respectively. The term "stabilizing amount" as used herein therefore refers to the amount of serum that, when included in the formulation of the product of the described invention ..comprising selected CD34÷ cells, enables these cells: to retain their CXC -4 mediated chemotactic activity and hematopoietic colony .forming-ability.
[000401] As shown in Table 23, CD34+CXCR-4+ cells obtained from healthy volunteers and from patients to which autologous serum was added maintained, theirrao li lv out to 72 hours. CD34+ cells were isolated from the bone marrow of healthy vol unteers and of patients by the mini-bone marrow harvest procedure as described in Example 3 under identical conditions; and the chemotactic hematopoietic stem ceil product was created as described in Examples 4 and 5,.. The products then were formulated with or without >20% autologous serum, and tested at 24, 48 and 72 hours. As shown in column 2, CXCR-4 cell mobility of CD34TCXCR-4+ cells obtained from healthy volunteers, when form lated without serum, decreased 72% after 48 hours. As shown in column 3, CXCR-4 cell mobility of CD34-5-CXCR-4+ ceils obtained from healthy volunteers, when formulated with Sef m showed no change in mean '-€D34÷CXCR~4+ cell motility, meaning tha the serum .stabilizes SDF-1 /CXCR-4 motility. Column 4 shows that.' CD34÷CXCR~4+ cells obtained from patients showed less motility than did cells from healthy volunteers, but that the motility of the CD34+CXCR-4+ cells was maintained out to 72 hours. 000402]' Table 23. Mean GD34+ -Cell Mobility and % Change Over Time.
Figure imgf000157_0001
Hours from bone marrow aspiration
'CP34÷ cells suspended in. PBS only
rt amber of individuals tested
SCD3 + cells suspended in PGS and autologous: se mn
% CD34 t- mi ratin to. lower chamber
" ot Done
"Sum of % change of each experiment number, of 'experiments
Study 5: Final Product Sterility .Testing
[ί)01Ι4 3| Due to he limited, yield of CD34+ cells obtained from .300-τηΙ M H, final ceil product sterility is assessed using the supernatant remo ved from the final product formulation in order to preserve cell product for infusion. Supernatant samples are loaded into the syringes in a manner identical to that used to load the cell product into the .syringes, used for infusion (see supra). f 0 04O4J To demonstrate that, such a sample Is representative of the final cell product formulation, we inoculated selected CD34+ cells in infusion solution prior to cenirifogation of the So l' roduct. with C sp0fogen.es (13 CPU/ml), P. aeruginosa (2 CFlJ rr ). S. aureus (18 CFU ), A. niger (17 CFU/ml), C. albicans (3 CFU/ml) and B, subtilis ( 17 CFU ml) (See table 24), After cenoifligation, the sterility of both cell, pellet and non-cell supernatant fractions was assessed using USP aerobic and anaerobic testing. PHMH051 Table 24; Bacteria and fungi nsed for the sterility study. Each source microorganism vial prepared by Microbiological Environments contained 400 microbes per ml, but the numbers of CF'CJ derived from each species are varied.
Figure imgf000158_0001
[000406] As shown ..in Table 25. both the cell pel let fraction and suspension ractions from all tested samples shewed outgrowth of the inoculated microorganisffis, while un-moculaied controls showed no growth. Further, no apparent differential growth rate was observed between testing of cell pellet fractions and the suspension .fractions for all microorganisms tested.
Samples taken before, each step of the processing procedure and following the final perfusion 'through the catheters -all tested negative for microbial contamination.
[000407] Table 25: 14-day sterility testing of nucleated cell (NQ 'Samples inoculated with specific species of microorganism (4{H) microbes in 21-rol C sample'}.
Figure imgf000158_0002
Sample .with microbe Mi!iliuixi Test I Test 2 Tost 3 iao iilated Sample fraction
Cell pellet Positive Positive Positive
5, re PTM
Suspension Positive Positive Positive
Cell pellet Positive Positive. Positive
P. aeruginosa M M
Suspension Positive Positive Positive
Cell pellet. Positive, Pos ti e Positive
A. niger TSBb
Suspension Positive Positive Positive
Cell pellet Positive Positive Positive
C. albicans TSB
Suspension Positive Positive 'Positive
Ceil pellet ositive Positive Positive-
B. subtilis TSB
Suspension Positive Positive Positiv
Positiv control: C.
FTM' Positive
spomgums
Positive control: S aureus FTM Positive
Positive control: P.
aeruginosa FTM Positive
Cell
susp.e»si«ii
Positive control: /!, niger TSB Positive-
Positive control: C, albicans TSB Positive
Positive control: B. subtilis TSB Positive
Negative control: Mo microbes PTM Negative.
Negative control: No microbes TSB Ceil Negative
suspension
Fluid itiiogiycoiliiie medium [006408] Preclinical Study Summary
[000409} Collectively, these preclinical data indicate that the ma ifaeturing and testing procedures described are capable of generating adequate numbers of viable cells with adequate stability to withstand shipment and perfusion through the catheter in a manner thai should pose no additional safety concerns to the subject other than those associated with the routine use of fluid infusion through the balloon catheter.
[000410] Example 11. Preliminar Phase Ϊ Efficacy Data, with a Single infusion Bate
10004111 The following preliminary phase 3 efficacy data show that within about 10 x 10'v isolated CD34+ cells, there are enough potent CD34+ ceils expressing CXCR-4 and having CXCR- -.roediaied chemotactic activity to effect a paracrine effect, which affects immediate eel! death and later changes consistent with ventricular remodeling.
['000412') In accordance with the disclosure in Example 1 , a total of 31 subjects were consented, .eligible and enrolled in the study. The. 31 patients enrolled, in the phase ! study were randomly assigned to an autologous -stem cell .harvest .treatment group or to a control group five days after an ST elevation myocardial infarction (STEM!) characterized by a prolonged period of hypoperfusion .{meaning blocked blood supply) Of the 3.1 subjects enrolled, 16 were in the treatment group and 15 in the control group. The first subject at each Center was randomized, to either treatment or control, and each subsequen patient was enrolled into alternating treatment or control groups. If the subject was assigned to treatment, he she continued into the Treatment Phase as long as ail inclusion/exclusion criteria continued to be met. Subjects assigned t the control group progressed to the fbilow-up phase. There were significant differences' between groups in any of the baseline' demographic or clinical characteristics. Patients' enrolled were from 34 to 71 years of age, 87% male, 77% white, 61% in NYHA Class 11 or 10 and 49% in ΝΥΉΑ Class f 74% experienced aninfareted left anterior descending coronary artery., and 55% recei ved a drag eiutmg stent. (000413] CD34+ cells were isolated, from the one marrow by the mku-boae marrow harvest procedure as described In Example 3 within 5-8 days post stent replacement. Harvested marrow then was shipped to the cOMP cell processing facility as described in Example 4 and isolated as described in Example 5.
(000414] As originally planned, and as described in Example 8, there were to be four dosing cohorts (5 million, 10 million, 15 million and 20 million CD34+ ceils) m the study.
However more than 15 million cells post CD34+ selection could not be obtained reliably.
Therefore enrollment, terminated at the end of cohort 3 with 15 x 1 6 bein the highest cell dose assessed,
(000415] Following cell product release and cohort assignmen the CD34+ cell product was shipped to the catheterization site for direct infarct related artery infusion. Treatment Infusion occurred 6-9 days post stent replacement (and within 48 hours of mini-bone marro harvest). Subjects were brought to the catheterization laboratory only after the CD34 cell product had arrived at the facility and had received final release for infusion.
(000416] The dosing cohorts consisted of 5 subjects in cohorts 1 and 2. 6 subjects in cohort 3. and 1.5 control subjects. For cohort 1, the ehemoiactic hematopoietic stem ceil product of the invention comprised 5 x 1 f isolated CD34+ hematopoietic stem cells containing a
subpopnlation of at least 0,5 x. 1.0{s potent CD34+ cells expressing CXCR-4 and having CXCR-4 mediated chemotaetic activit [represented as "5 M"}. For cohort 2, the ehemoiactic
hematopoietic stem cell product of the invention comprised 10 x IO6 isolated€1)34+
hematopoietic stem cells containing a snbpopulation of at least 0.5 x 10* potent CD34+ ceils expressing CXCR-4 and having CXGR-4 mediated chemotaetic activity [ epresented as " 10 M"j. For cohort 3 , the ehemoiactic hematopoietic stem cell product of the invention comprised . 15 x 10* isolated€034·+ hematopoietic -stem cells containing a subpopulation of at least 0.5 x IO6 potent CD34+ cells expressing CXCR-4 and having CXCR-4 mediated chemotaetic activity [represented as "15 '*} , Control subjects (i.e., those not receiving CD34+ cell infusion) were not expected to have significant improvements in cardiac function (ejection fraction, end systolic and diastolic volumes), or infarct region perfusion at 6 months follow up. (000417)' A sterile pharmaceutical composition of the described invention was delivered to each subject in cohorts 1 , 2, and 3 parenteral!)" by infusion via the infarcf-related artery through a catheter seven to eleven days following the STEMI The sterile pharmaceutical composition comprised: (a) a therapeutically effective amount of a sterile chemotactic hematopoietic stem cell product, the chemotactic hematopoietic stem cell product comprising an enriched population of isolated€D34-÷- cells containing subpopulation of potent, cells having chemotactic activity; which, when passed through the catheter remained potent, and (b) a stabilizing amount of serum.
1000418] Cardiac function follow-up was performed at 3 and 6 months post-infusion.
Cardiac infarct region perfusion was assessed at 6 months post infusion. Both perfusion and functional follow-up testing, was assessed by a core lab facility' blinded, to the study treatment status of each subject Comparison of these results to baseline indices wag performed. Long term iMIow-up visits' are conducted at 1-2' onths nd telephone i nterview with subjects will he made annually a years 2 through 5. For those subjects completing the.2-year ibllow-up telephone call, no -serious adverse events were reported, and thus, there ha ve been BO long term safety events detected at this point 00 41 1 The cardiac performance measures Resting Total Severity Score (RTS'S), percent infarct (4<% Infarct"), End Systolic "Volume (ESV) and Ejection Fraction ("EE") were assessed at 3 months post treatment and -at 6 months post treatment and compared with controls to assess efficacy of the compositions compared to controls. Preliminary results are shown in Table 26. SPECT SCAN. As used herein, a single-photon emission computerized tomograph (SPECT) scan is a type of nuclear imaging test, which uses a radioactive substance and a special camera to create three dimensional images of the heart to show blood flows to the heart. Generally, the "Resting Total Severity Score (RTSS) is a score based on the amount of dye not taken up in a. SPECT SCAN. The data from Resting Total Severity Score represents cardiac perfusion, i.e., blood flo at the microvascular level, and muscle function, in brief the technetium dye used in a SPECT SCAN is taken up by the heart muscle. If the heart muscle is healthy and takes up the dye, it appears white. If the heart muscle is not healthy, dye uptake is diminished or does not occur at all, and the muscle appears gray to black. f 000420] Pcreeiii Infarct (M I). The size of a heart attack matters for determining how well a patient will recover from the trauma. A patient who has suffered damage to more than 30 percent of the left ventricle of the heart is twice as likely to die within a year from the injury as a patient who has suffered less damage, and bigger infarcts often require more aggressive (herapy A computer method calculates the amount of damaged tissue by comparing MRI signal strength between damaged and undamaged tissue. Damaged heart tissue is denser than undamaged tissue- because the muscle structur has collapsed, and MRI can distinguish between tissues of varyi ng density. The term "percent (%) infarct" as used herein refers to the iniareted area compared to the . rest of the heart . For purposes of this study, a % infarct greater than 20% is considered significant
(#004211 Preliminary results arc shown in Tables 26 and 27. in order: to assess statistical significance, data for the control group and the 5 M group were pooled and data for the 10 M group and 15 M group were pooled (NM? for each pooled group). The preliminary-results for these pooled groups- are shown in Table 27. Note that only the SPEC! data, reached statistical significance; the other measures did not reach.statistical sigmiicariee because of the small numbers of patients involved.
Figure imgf000164_0001
Table 27, Simple .Changes I S EGT Rest Reperfeslyii .Severity Seore'by'Treatraent
Group - 6 Month Completers
Chiiiige from P-valae Baseline to 6 Months Month
Baseline Fost-lnfosion Change freatmeiit. Group 1
Mean 714,200 7,8000 0.940
Sid, Deviation 657.850 216.054
Minimum, (0.000, 1787.000) (-322.000, 222.000)
Maximum freatmeiit Group 2- N 9 9
Mean 814.333 -255.7778 0.033
Sid. Deviation 635.641 297,644
Minimum, (97.000, 1868.000} (-859.000, 263,000)
Max mum
Control Group 13
Mean. 259,000 14, 62 0.803
Std. Deviation. 282.698 210.078
Μ ίΓΗΠ'ϋί-ϊ ·, (0.000, 858,000) (-250.000. 528.000)
Max mu
Control + Treatment N
Groyp I
Figure imgf000165_0001
Note p-vahies estimated from paired differences Mests. 95% co fidence interval from t-distrtbution.
|0β0422| As for Resting. Total Severity Score, Table 27 shows that for the 5 M and control pooled group, the change in Resting Total Severity Score after '6 months was + 12.6, indicating that the infarct -area pew in these patients. The Resting Total Severity Score data farther shows that patients in the 10M and ISM groups had bigger infarct. areas at risk. The 10 M and ! SM group showed a drop of 31 A% in infarct size with a p of <0.01 , Based on this data, infusion of at least 10 x 106 isolated CD34+ hematopoietic stem cells containing a snhpopulation of at least .0,3 x 1 6 potent CD34+ ceils expressing. CX'Cll-4 -and having CXCR-4 mediated chemotactic activity results in a statistically significant improvement in infarct area perfusion.
[000423] The RTSS data for .oomreated control subjects show neither neoangiogenesis or prevention of cell death. When subjects were treated with a subtherapeutic dose of cells (i.e., 5 x 106 CD34-i- cells containing a subpppulation of at least 0,5 x 106 potent CD34+ cells expressing CXCR-4 and having CXCR-4 mediated chemotactic activity ), RTSS data showed neither neoangiogenesis or prevention of ceil death, improvement' in RTSS was seen only in subjects treated with 10 % 106 or more CD34 cells containing a subpopuktion of at least 0.5 x 106 potent CD34+ cells expressing CXCR-4 and having CXCR-4 mediated chemotactic activity. This dose . therefore is the minimal t^erapeudcdly-eliective dose.
{000424] Example 12. Multiple Administrations of Chemot act ie Hematopoietic Stem Cell Fr du ct To Sub j ects
[0O0425J The blood supply in. the peri-infarci ischemic border zones is marginal, placing the cardiomyocyies of the border zone in jeopardy, Multi le: infusions of chemotactic hematopoietic stem cell product, by supporting cells in the border zone, can preserve/restore viability -of the peri-infarct myocardium,
[000426] According to this aspect of the described invention, a first aliquot of the composition is administered a a first infusion date, a second aliquot, of the composition, is administered at a second infusion date, a third aliquot of the composition is administered at a third infusion date, and so on. The scheduling, of infusion dates is d.etemiined for a given patient by the treating practitioner according to Ms/her medical judgment
[000427] According to one embodiment, the first infusion date is at least about one day, at least about two days, at least about three days, at least about four days, at least about five days, at least about six days, at least about 7 days, at least about 8 days, at least about 9 days, at least about 10 days, at least about 1 1. days, at least about 12 days, at. least about 1 days, at least about 14 days, at least about 15 days, at least about 16 days, at least about 17 days, at least about 18 days, at least about 1 days, -at least about 20 days, at least about 21 days, at least about 22 days, at least about 23 days, at least about 24 days, at least about 25 days, at least about 26 days, at least about 2? days, at least about 28 davs, at least about 29 davs. at least about 30 davs or more after occurrence of an AMI. According to another embodiment, the first infusion date is at least about 1 month, at least about 2 months, at least about. 3 months, at least about 4 months, at least about 5 months, at least about 6 months, at least about 7 months, at least: about 8 months, at least about 9 months, at least about 10 months, at least about 1 1 months,- at least about 12 months, at least about 13 months, at. least about 14 months, at least about 1.5 months, at least about 16 months, at least about 1.7 months, at least about 18. months, at least about \ 9 months, at least about 20 months, at least about 21 months, at least about 2.2 months, at. least about 23 mouths, at least about 24 months, at least about 30 months, at least about 36 months, at least about 42 months, at least about 48 months, at least about 54 months, at least about 60 months, at least about.66 months, at least about 72 months, at least about 78 months* at least about 84 months, a least about 90 months, at least about 96 months, at least about 102 months, at least about 1 8 months, at least about. 114 months, at least about 120 months, at least about 126 motiths, at least about 132 months, at least aboui 13-8 months, at least about J 44 months, at least about 150 months, at least about 156 months, at least, about 1.62 months, at least about 168 months, at least about 174 months, at least about 180 months, at least about 186 months, at least about 192 months, at least about 1 8 months, at least about 204 months, at least abou 21 mouths, at least about 216 months, at least about 222 months, at least about 228 months, at least about 234 months, at least about 240 months or more after occurrence of an. AMI. According to some embodiments, the first infusion date is at least 3 years, 4 years, 5 years, 6 years, 7 years, 8 years, 9 years, 10 years, 1. 1 years, 12 years, 13 years, 14 years, 15 years, 16 years 17 years, 18 years, 1 years, 20 years, 21 years, 22 years, 23 years, 24 years, 25 years, 26 years, 27 years, 28 years, 29 years, 30 years, 31 years, 32 years, 33 years, 34 years. 35 years, 36 years 37 years, 38 years, 3 years, 40 years or more after occurrence of an AMI. 009428] According to another embodiment, the second infusion date is at least, about one day, at least about two days, at least, about three days, at least about four days, at least about five days, at least about six days, at least about 7 days, at least about 8 days, at least about 9 days, at least about 10 days, at least about 1 1 days, at least about 12 days, at least about 13 days, at least about 14 days, at least about 15 days, at least about 16 days, at least about 17 days, at least about I S days, at least about 19 days, at least about 20 days, at least about 21 days, at least about 22 days, at least about 23 days, at least about 24 days, at least about 25 days, at least about 26 days, at least about 27 days, at least about 28 days, at least about 29 days, at least about 30 days or more after occurrence of an AMI. According to another embodiment, the second infusion, date is at least about 1 month, at least about 2 months* at leas! about 3 months, at least about 4 months, at least about 5 months, at least about 6 months, at least about 7 months, at least about 8 months, at least about 9 months, at least about.10 months, at least about 1 1 months, at least about 12 months, at least about 1.3 months, at least about 14 months, at least about 15 months, at least about 16 moBths, at least about 17 months, at least about 18 months, at least about 19 months, at least about 0months, at least .about 2.1. .months, at least about 22 .months, at least about 23 months, at leas about 24 mouths, at least about 30 months, at least about 36 months, si least about 42 months, at least about 48 months, at least about 54 months, at least abo u t 60 mon hs, at least about 66 months, at least about 72 months, at least about 78 months, at least about 84 months, at least about 90 months, at least about.96 months, at least about 102 months, at least about 108 mouths, at least about 1 14 months, at- least about 120 months, at least about 126 months, at least about 132 months, at least about 13 months, at. least about 144 months, at least about 150 months, at least about. 156 months, at least about. 162 months,, at least about 1 8 months, at least about 174 months, at least about 1 SO months, at least about 1 86 months, at least about 192 months, at least about 1 8 months, at least about 204 months, at least about 2.10 months, at least about 216 months., at least, about 222 months, at least abou 228 months, at least about 234 months, at least about 240 months, or more after occurrence of an AMI. According to some embodiments, the second infusion date is at least 3 years, 4 years, 5 years, 6 years, 7 years, .8 years, 9 years, 10 years, 1 1 years, 12 years, 13 years, 14 years, 15 years, 16 years 17 years, I S years, 1 years, 20 years, 21 years, 22 years, 23 years, 24 years. 25 years, 26 years, 27 years, 28 years, 29 years, 30 years, 31. years, 32 years, 33 years, 34 years, 35 years, 36 years 37 years, 38 years, 39 years, 40 years or more after occurrence of an AMI.
|'000429| According to another embodiment, the third infusion date is at least about one day, at least about two days, at least about three days, at least about four days, at least about five days, at least about six days, at least abo t 7 days, at least about 8. days, at least about days, at least about 10 days, al least about 11 days, at least about 12 days, ai least about 13 days, at least about 14 days, at least, about 15 days, at least about 16 days, at least about 1 ? days, at least about 18 days, at least about 19 days, at least about 20 days, at least about 21 days, at least about 22 days, at least about 23 days, at least about 24 days, at least about 25 days, at least about 26 days, at least about 2? days, ai least about 28 days, at least about 29 days, at least about 30 days or more after occurrence of an AMI. According to another embodiment, the third infusion date is at least about 1 month, at least about 2 months, at least about 3 months, at least about months, at least about 5 months, at least about 6 months,, at least about 7 months, at .least about 8 months, at least about 9 months, at least about 10 months, at least about 1 1 months, at least about 12 months, a least about 13..months, at least about 14 months, at least about 15. months, at least about 1.6 months, at least, about 17 months, at least about 18 months, at least about. 'months, at least about 20 months, at least about .21 months, at least, about 22 months, at least about 23 months, at least about .24 months, at least about 30' months, at least about 36 months, at. least about 42 months, at. least, about 48 months, at least about 54 months, at least about 60 months, at least about 66 months, at. least, about 72 months, at least, about 7 months, at leas about 84 months, at least about 90 months, at least about 96 months, at least about 102 months, at least about 108 months, at least about 1 14 months, at least about 1.20 months, at least about 1.26 months, at least about 132 months, at least about 1,38 months, at least, about 144 months, at least about 150 months, at least about 156 months, at least about 162 months, at least about 168 months, a least about i?4 months, at least about 180 months, at least about. 186 months, at least about 1 2 months, at least about. 198 months, at least about 204 months, at least about 210 months, at least about 216 months, at least about 222 months, at least about 228 months, at least, about 234 months, at least about 240 months or more after occurrence of an AMI. According to some embodiments, the first infusion date is at least. 3 years, 4 years, 5 years, 6 years, 7 years, 8 years, 9 years, 10 years, 11 years, 12 years, 1 years, 14 years, 15 years, 16 year 17 years, 18 years, 1 years, 20 years, 21 years, 22 years, 23 years, 24 years, 25 years, 26 years, 27 years, 28 years, 29 years, 30 years, 31 years, 32 years. 33 years, 34 years, 35 years, 36 years 37 years, 38 years, 39 years, 40 years or more after occurrence of an A L [000430] Eligible subjects patients presenting with symptoms and clinical findings suggestive of a myocardial infarction and eligible for inclusion in the study will be selected as described in Example I and catheterized as described in Example 2. In some embodiments, the nonexpanded, isolated population of autologous mononuclear cells comprising potent CD34+ cells will be acquired from the subject/patient as described in Example 3 and, in some embodiments, the harvested bone marrow will be transported to the processing facility as described in Example 4. CD34+ cells will be selected from the harvested bone marrow product as described in Example 5.
(000431.1 'The Isolex 300i system will be used to process the EBC-depleted product or the bone- marrow product whose RBC volume is < 20 ml according to the following processing steps
(000432] (i) The bone marrow is washed -automatically' to remove platelets;
[000433] (ii) CD34 positive (CD34+) cells are labeled specifically for selection by incubation with the Isolex 300? CD34 monoclonal antibody (Mab);
(000434] (iii) Unbound reagent is removed by washing the cell suspension with buffer solution;
[000 351 (iv) Sensitized CD34+ cells (meaning GD34+ cells labeled with CD34
Mab) are captured by Dynabeads M-450 Sheep anil-Mouse IgG;
[000436] (v) A selection column is used to separate the magnetically-labeled
Dynabeads having captured CD34† cells from .unwanted cells,, which .are washed through the selection column and collected in the Negative Fraction Bag: and
[00043?! (vi) PR34+ Stem Cell Releasing Agent releases CD34+ ceils from the column, and the CD34+ cells are collected in the End Product Bag. The system performs several washing steps, disposing of most of the liquid into the Buffer Waste Bag. $00438} The Isolex( ) selected. C D34+ fraction then will be assayed to. determine WBC and CD34+ cell yields as described in Example 6, A first aliquot of the chemotactic
hematopoietic stem cell product containing at least 10 x l( CD34r cells will be formulated a described in Example 7. transported to the catheterization facility as described in Example 8, and infused into the patient as described in Example 9 at the first infusion date. A plurality of aliquots of the nonexpanded, isolated population of autologous mononuclear cells containing CD34* cells, which further contain a sub/population of CD34+/CXCR4+ cells that 'have CXCR- 4-mediated chemotactic activity will be frozen at -86'°C and cryosiored in the vapor phase of a liquid nitrogen iieezer for subsequent administration, (see ryopreservation Study" below).
1 004391 Cr oPresemtioii Study, fO00440| This study was conducted to evaluate the: ability of die Isolex-based portion of the chemotaciie hematopoietic stem, cell produet manufacturing process to effectively enrich for CD34-1- cells of the cryopreserved MMH. The protocol has been designed to evaluate the yield, viabilit functionality and stabilit of the CD34+ cells derived from the enrichment of cryopreserved MMH. The study has been designed to evaluate and describe the effect on. the chemotactic hematopoietic stem cell product of eryopreservation of the IIBC reduced MMH prior to the Iso lex-based CD34 selection.
[000441} The following experimental conditions have been applied:
[000442} (1) wo (2) MMH for each of three (3) replicates in order to provide for adequate cell yield to meet with requirements of the experimental design; with a twenty four (24) hour interval 'between MMH and commencement of RBC depletion procedure,
((1004431 (2) Study control: Freshly prepared chemotactic hematopoietic stem cell product, with full product characterization after perfusion of the chemotactic hematopoietic stem ceil product through a catheter at 48 and 72 hours after MMH.
[000444} (3) Experimental: the chemotactic hematopoietic stem cell product derived from cryopreserved MMH, with full product characterization after perfusion of the chemotactic .Hematopoietic stem cell p oduct
Figure imgf000172_0001
MMH through a catheter at 48 and 72 hours after MMH, minus the time the cryopreserved MMH remains in storage (defined as >24 hours)
[060445] Study Design
[000446] In order to yield sufficient CD34+ cells to perform the intended experiment, two (2) donors will he required. More than or equal to SO ml MMH and > 30 ml of peripheral blood will be collected from each donor,
[00044?] in bound storage: Samples will be stored at 2 to 8eC for twenty four (24) ours before commencing the RBC reduction procedure,
1000448] Following RBC reduction,, the Μ Ή from both donors will, be pooled and then divided into two equal fractions. One fraction will be used as a fresh (u frozen) product control and the other fraction will be used for the cryopreservation test.
1000449) For the cryopreservation test RBC reduced MMH will be frozen in a -86*0 freezer and then cryosfored in the. vapor phase. ( -150l,C) of a liquid .nitrogen freezer (L' F) using the eryoprotectant containing the liquid source Hetastarch (6% Heiastajrch in 0.9% Sodium Chloride manufactured by Hospira.)..
[000450] Both control (unfrozen) and cryopreserved (after thaw) samples will be fsolex processed essentially as described in Example 5 above. Samples in two 10 ml syringes will be prepared from the selected CD34+ cells. Full product characterization will be performed at the following time points:: (i) After perfusion of the product through a catheter at 48 hours after MMH; and (ii) after perfusion of the product through a catheter at 72 hours after MMH. For- the cryopreserved samples, the term "72 hours of collection", for example, means the time from collection to the time of testing, excluding the time elapsed from freezing and cryostorage of the RBC depleted bone marrow. $000451] Key determinants for the C034f cell quality of the hematopoietic stem eel! product include: (iO CD34+ cell enumeration and 7-AAD viability; (ii) SDF-l/CXCR-4 mediated CD34+ ceil migratory activity; (in) expression ofCXC -4 cell surface antigen on CD34- cells: and (iv) growth of hematopoietic progenitor cell colonies (CFU). This experiment will be repeated three times. f'000452j Summary Of Results
[000453] The study was conducted in accordance with the methods described above. All deviations Iraro methodology and materials used are detailed in the related result sections prese ted below. f'00O $41 Tablets st«nmari_?es the relevant information on the donors of the .bone.marrow used in this -study.
1000455} Table 28: Age and gender of the bone marrow donors for the
cn opr servation study.
Figure imgf000173_0001
[00O456J Table 29 summarizes the sample volume, RBC content and the yield, viability and purity of the cells in the pre-processed MMH following 24-h storage in a 2-8 C refrigerator.
Table 29: Post 24 hours storage at 2~$oC - Volume, cell yield and qualit of
Figure imgf000174_0001
Determined by Sow cytometric analysis of CD45-F1TC/CD34-PE aotibodies and 7- AA staining of the sample
Determined by flow cytometric analysts of CD34~FIT€ and CXC -4-PE antibodies staining of the sample
f 0084581 x each of the experiments* the MMH. from each pair of donors were pooled foHowmg RBC reduction.
[000459] "fable 30 presents the RBC content, viability and cell recovery of pooled MMH alter RBC reduction: fOWeOJ Table 30: Post RBC redaction - RBC content and cell qualify
Figure imgf000175_0001
* As compared to fibs pre-p 'oeessed samples
{0004611 Following RBC reduction, each of the pooled MMH samples was divided into two equal fractions. One was used as a fresh (unfrozen) control and the other one was used fer the cryopreservation test.
[000462] For cryopreservaiion, MMH mixed with an equal volume of chilled
cryoproteeiant was loaded evenly into two 250 ml. Cryocyte containers, frozen in a mechanical freezer (--86aC) and hen stored eryopreserved in the vapor phase of a LNF according to the Protocol. Table 31 presents data obtained from post-thawed and washed MMH:
[0OO463J Table 31: Post ibawed■& washed MMH - Cell qualif and recovery of cells
Figure imgf000175_0002
Ke :
As compared to the RBC reduced MMH before cryopreservation,
PBS Working Solution contained 1% HSA and 0.41 % sodium citrate ( /v) in PBS (i.V ' and Mg*+ free). Washing of cells with this solution was performed according to that instructed in the Protocol.
This wash solution contained 2% Dextran 40, \¾ HSA and 0.4% Na citrate in PBS (CaM and Mgvv -free). The thawed sample was expanded with 200 ml of this solution and was then washed twice each with 200 mi of this solution. Centrifiigation was set for 600 g, 10 tniautes at 20°C. The washed cells were resuspended with 150 ml PBS Working Solution for Isoiex process.
* This solution contained Dextrao 40 and 4,2% HSA in saline. The washing procedure was essentially as described for the 2 Dextran 40 was solution.
\ 06464] Table 32 summarizes the Cl>34+ cell quality and recovery of the ehemotaetk hematopoietic stem ceil product prepared from the unfrozen and cryopreserved MMH following isolex processing. 000465J Table 32: Pos Isolex - Cell quality and recovery of cells
Figure imgf000176_0001
As compared to the RBC reduced sample- far unfrozen samples and pos thawed and washed samples for frozen samples.
| O0466] Following !solex processing of each RBC reduced MMH pooled pair, two chemotactic hematopoietic stem cell product (KAMR-O0,W) samples with equal number of CD34+ cells, each in a. 10 ml syringe, were prepared. Both AMR-001 samples were stored at 2~ 8oC for stability testing. At 48 and 72 hours front MMH (For cryopreserved MMH samples, the time for cryostorage was not included), a prepared AMR-00T was perfused through a balloon dilatation catheter perlbraied in a -manner as for a clinical AMR-001. A full CD34+ cell characterization was performed on the perfused AMR-001 samples and the results are presented i» Tables 33, 34, 35,. and 36. Table 37 shows the balloon dilatation catheter used.
{000467] Table 33: Post infusion through catheter - CD34+ cell purity, viability and recovery
Figure imgf000177_0001
As compared with the prepared AMR-001 before perfusion
(000448] Table 34: Post infusion through catheter ~ CXCR-4 expressing€034+ cells {% of .total CD34+ cells).
Figure imgf000177_0002
[000469] Table 35: Post kfusion through catheter ~* Migratory C»34* cells (% of total viable CD34+ cells),
Figure imgf000178_0001
% Natural migration (no- SDF-l added)
('080470] Table 36: Post infusion through catheter - Number of CFU per 100 viable CD34+ cells cultured.
Figure imgf000178_0003
0 li471 j Table 37: Balloon dilatation catheters used
Figure imgf000178_0002
Exp MMH Time of Manufacture Balloon Catalog # L«t # Comment source perfusion ieogfh/dm.
of the (H&urs
AMR- f
001 MMH)
sample
nun
72 h Sprinter 15 / 3.5 S.PR3515W 443152 Outdated nun
Frozen 48 h Voyager 15 / 3.0 1009443- 8111462 - mm 15
72 h Voyager 15 / 3,0 1009443- 8092561. - mm 15
3 Unfrozen 48 h Voyager Ϊ5 / 3.0 1009443- 8111462 Reused* mm 15
72 Sprinter 15 / 3.0 SPR3015 476734 Outdated mm
Frozen 48 h Sprinter 15 / 3,0 SP 3015W 476734 Outdated mm
72 h Sprinter 15 / 3.0 SPR3015W 476734 Outdated mm
'Prior to be used for the 25 : time, the catheter and the central lumen were 1st washed aud flushed with 70% isopropyl alcohol and then with sterile PBS, The central lumen was then injected with air in order to remove the residaal liquid inside. The washing procedure was performed inside a bio-safety cabinet.
[0iMM72f Discussion
|Ό00 ?3| The aim of this study was to evaluate the quality of AMR-001 manufactured from cryopreserved MMH, HI4741 Post isolex CD34+ cell recovery of the AMR-001 manufactured from unfrozen MMH (Control samples) was on average 34,6±4.35% (range 303% to 39%) which is within the acceptance range for manufacture of AMR-001 for clinical use. It. should be noted that the data presented above ate estimated without taking .account for the cells, removed, for the in-process tests, therefore the actual CD34+ eell recovery will be slightly higher than that presented.
[000475] Post catheter CD34+ ceil recovery was 100.52 ± 4.39% (95.65% to 104.17%) at 48 hours post MMH and 94,50 ± 6.67% (89.20% to 101.99%) at 72 hours post MMH. There was no substantial reduction in viability (Table 33), CXCR-4 expression (Table 34), migratory activity (Table 35) and CFU growth (Table 36) of CD34+ cells at 72 hours post MMH as compared to those monitored at 48 hours post MMH
[000476] For the cryopreservati n test, RBC reduced MMH samples were eryopreserved according to PCX protocol for cryopreservation of bone marrow for transplantation where MMH samples mixed with equal volume of cryoprotectant with final concentration of 5% DMSO, 2,5% MSA. nd 2, 1 % Hetastareh. (from liquid source 6%' Hetastarch,. Hospira). were- frozen at >8¾¾C and then eryostored in the vapor phase of a LNF.
[000477] Post xyopreservaiion and thaw, the stability, viability , .mobility and growth in culture of !solex selected CD34+ cells is maintained. Thus the frozen-thawed cells meet the criteria for clinical use.
1000478] In some embodiments, a chemotactic hematopoietic stem cell product prepared from frozen and thawed aliquots of a sterile nonexpanded, isolated population of autologous mononuclear cells comprising CD34- - cells, which further contain a subpop lation of potent CD34÷/CXCR -t- cells thai have CXCR-4-roediated chemotactic activity will be used for infusion. Samples of thisc-hemotactic hematopoietic stem cell product will be removed to be assayed for WRC count, by flow cytometry (for CD34-t cell enumeration and viability), Gram stain, and sterility. The chemotactic hematopoietic stem cell product will be released for infusion, within about 48 hours to about 72 bouts of thawing of the sterile nonexpaodcd, isolated population of autologous mononuclear cells only if it meets the following criteria:
CD34-3- cell purity of at least about 70%, 75%, 80%, 85%, 90% or 95%;
* A negati e Gram stain result for the selected positive fraction; * Endotoxin Levels: less than about 0,5 endotoxin, units/ml:
Viable CD34+ ceil yield of the "Chemotactic hematopoietic stem cell product" meets the required dosing as per the treatment cohort;
CD34+ cells are at least about 70%, 75%, 80%, 85%, 90% or 95% viable by 7-
AAD;
* USP sterility result for "Positive Fraction Supernatant''; negative (14 days later),
[000479} Sterility -assessment on the stem cell product including gram staining and endotoxin will be performed prio to product release: for infusion. USP sterility (bacterial and fungal) culture will be performed and the results 'will be reported to the principal investigator. In the event of a positive USP sterility result, the subject- and attending physician on call will 'be. notified 'immediately* provided with .identification and sensitivity of the organism when available, and documentation of appropriate anti-niierobiai treatment and treatment outcome will be recorded by the investigative site and the sponsor,
[01)0480] The- chemotactic hematopoietic stem eel! product prepared from the frozen and thawed autologous .mononuclear cells will b formulated a described in Example 7, transported to the- catheterissition facility as described in Example 8, and infused into the patient -as described in. Example 9.
[000481) It is proposed that administration of a potent dose of CD34- CXCR-4+ cells that have CXCR~4~mediaied chemotactic activity, early or late after occurrence of an acute myocardial infarction according to the described invention eamesult in a reduction in
persistent/chronic and progressive adverse cardiac events, including, but not limited to, premature death, recurrent myocardial infarction, 'the- development - of congestive heart failure, significant arrhythmias, and acute coronary- syndrome, and the worsening of congestive heart failure, significant arrhythmias, and acute coronary syndrome. [000482] Example 13. Co-administration of the eheinotaetie hematopoietic stem eel! product and Neureguliii 1.
[000483] Ne regttlm 1 (NRG 3.) is an agonist for receptor ty rosine kinases of the epidermal growth factor receptor family, consisting ofErbBl, 2, 3, and 4. {Fuller, SJ, et al., J. Mol. Cell Cariol. 44: 831-54 (2008). Binding of NRG 1 to Erb4 increases its kinase activity and leads to eterodimerizaiion with erbB2 or homodimertzation with ErhB4 and stimulation of intracellular signal, transduction pathways, id, NFRGi receptor suboaits ErbB2 and ErbB4 also are expressed in differentiated cardiomyocyt.es. id. Recently it has been shown in mice that NRGl induces proliferation of differentiated mononucleated cardiomyocytes in vivo by inducing' differentiated cardiomyocytes to leave proliferative quiescence. BerselL ei al (Berseli., K. et al,. Cell 138: 257-70 (21)09). Undifferentiated stem and progenitor cells did. not contribute to this proliferation;, (id). Using a mouse model in. which the' left anterior descending coronary artery (LAD) of two month old mice- was ligated permanently and NRG1 administered:, dail -one week later lor 12 weeks, it was shown that administration of NRGl l¾r 12 weeks resulted in a sustained improvement in myocardial function, determined by ejection fraction, a reduced infarct sear size, and attenuation of cardiomyoeyte .hypertrophy, (id).
[000484] Following acute myocardial infarction, in addition to necrotic cell death as a consequence of ischemia, ongoing apopioiie ceil death and eardiomyocyte hibernation collectively lead to a decrement in cardiac function that can worsen over time and ultimately causing major adverse cardiac events. Once lost, cardiomyocytes are unable to significantl regenerate to restore cardiac function. Carbon 14 dating of cardiomyocytes show the
regenerative capacity of cardiac muscle to be less than 1 % annually (Bergman O. Science. 2009; 324:98-101 ). The described.. invention demonstrates the prevention of eardiomyocyte loss after AMI through enhancement of perfusion and prevention ofapoptosis. F urther restoration, of cardiac function requires significantly increasing the regenerative capacity of cardiomyocytes. Regenerating cardi myocytes will require adequate perfusion, or will, suffer the consequences of ischemia inc luding hibernation and apoptosis. [000485 it Is proposed that the combination of the described invention with significant augmentation of the natural regenerative capacity of cardiomyocytes would be synergistic in restoring cardiac function after AMI and preventing major adverse cardiac events. Coadministration therefore of the chemotaetic hematopoietic stem cell product of the described invention with neuregulin I is proposed as a therapeutic capable of restoring cardiac function after AMI through increasing perfusion, which prevents apoptotoic eardiomyoeyte cell death and rescues cardiomyocytes from hibernation, and by providing the infrastructure needed for generation of new cardiomypcytes to replace lost cardiomyocytes.
[000486) Recombinant human neuregulin 1 will he obtained twin commercial sources. (Cell Sciences, Novus- .Biplpgieals, R & Systems, Raybiotech, Inc., Shenandoah
Biotechnolog , Spring Bioscience).
(000487} Increased doses of euregulin 1 will be admixed with the chemotaetic
hematopoietic stem cell product of the described invention and. tested in vitro after passage through a catheter for product viability, sterility, purity and potency, meaning viability, migratory' capacity and CPU-growth, after storage for up to 72 hours. If potency, purity and viability are maintained, a preclinical experiment is proposed in which purified, sterile human derived CD34f cells containing a subpopulation of potent CD34+ cells expressing CXCR-4 and. having. CXCR-4-mediated chemotaetic activity will be infused via the tail vein in Nod SOD mice after coronary artery ligation and relief (induced AMI model). The effect of this treatment on cardiac perfusion, cardiac muscle function, histopathology, apoptosis, and scarring will be assessed post infusion and compared to controls (i.e., Nod SCO) mice not receiving cells). Prior studies have demonstrated an improvement in perfusion, human neoangiogenesis, prevention of apoptosis, and preserved cardiac junction in treated, versus control animals. Next, increasing doses of neuregulin 1 will be added- to the purified, sterile human deri ved C.D34+ cells containing a suhpopulation of potent CD34+ cells expressing CXCR-4 and having CXCR-4- mediated chemotaetic activity of the described invention and the results will be compared to control animals and to animals treated with the purified, sterile human derived CD34+ cells containing a subpopiUationof poten GD34+ cells expressing CXCR-4. and having CXC -4- mediated . chemotactic activity of the described invention alone.
[00 488J If preclinical models show a potential synergistic beneficial effect with the purified, sterile human derived CD34+ cells containing a subpopulation of potent 0034+ cells expressing CXCR-4 and having CXC -4-mediated chemotactic activity of the described invention combined with neuregulm L a dose escalation safety and efficac trial in sustaining and in AMI patients is proposed. For this study, patients will receive the purified, sterile human derived CD34-* ceils containing a subpopolation of potent CD34+ cells expressing CXCR-4 and having CX R-4-mediated chemotactic activity of the in vention with or without neuregulin 1. Neuregului 1 will be administered in increasing doses to determine (i.) the mean therapeutic close (MIX)} and (si) whether perfusion, and cardiac function are enhanced by the combination of neureguiiri 1 and the purified, sterile human derived CD34+ cells containing a subpopolation of potent CD344 ceils expressing CXCR-4 and having CXCR-4-raediated chemotactic activity of the described invention compared to the purified, sterile human derived CD34 - cells containing a suhpopulation of potent CD34+ cells expressing CXCR-4 and having CXCR-4-mediated chemotactie act vity of the described invention aioue,
[000489] While the described invention has been described with reference to the specific embodiments thereof, it should be understood by those skilled in the art thai various changes may be made and equivalents may be substituted without departing from the true spirit and scope of the invention. In addition, many modifications may be made to adapt a particular situation, material, composition of matter, process, process step or steps, to the objective, spirit and scope of the described invention. All such modificati ns are intended to be within the scope of the claims appended hereto.

Claims

CLAIMS What is claimed is:
1. A method of treating a progressive myocardial injury due to a vascular insufficiency, the method comprising the steps of:
(a) acquiring a sterile nonexpanded, isolated population of autologous mononuclear cells comprising CD344- cells, which further contain a subpopuhtionof potent CD344 CXCR- 4-f- cells that have C CR-4-mediaied ehemotactic activity from a subject under sterile conditions;
(b) sierile!y enriching- the autologous mononuclear cells comprising CD34+ cells, wherein the enriched CD34+ ceils which further contain a sub-population of potent
CD34- CXCR-4 - cells' that have CXCR-4-mediated ehemotactic activity are a ehemotactic hematopoietic stem eel! product
(e) administering parenteraiiy through a catheter on. a plurality of infusion dates during lifetime of subject a sterile pharmaceutical composition, the sterile pharmaceutical com osition comprising :
(I) a therapeutically efieciive amount of the sterile ehemotactic hematopoietic stem eel! product, wherein the therapeutically effective amount of the ehemotactic hematopoietic stem cell product comprises at least 1.0 x \<f CD34+ cells which further contain a subpopulation of at least 0.5 x 10 potent 03344· cells expressing CXCR-4 and - having CXCR-4 mediated ehemotactic activity; and
(if) a stabilizing amount of serum, wherein the stabilizing amount of serum is greater than 20% (v/v), wherein the chemoiactic hematopoietic stem cell product is further characterized as having the following properties for at least 24 hours when tested in vitro after passage through a catheter:
( 1 ) retains the CXC -4-nrediaied activity of the chemotactic hematopoietic stem eel! product;
(2) at least 70% of the cells are CD34 cells;
(3) is at least 70% viable; and
(4) is able to .form hematopoietic colonies in vitro:
(d) optionally administering the chemotaetie hematopoietic stem cell product at a plurality .of infusion dates during the subject's lifetime; and
'(e) treating at least one adverse consequence of the progressive vascular
insufficiency.
2. The method according t claim 1, step (a) further, comprising freezing at least one aliquot of the nonexpanded, isolated -population of autologous mononucl ear cell s containing CD341 cells, which further contain a subpopuiation of potent€D34T/CXCR-4+ cells thai have CXC -4-mediaied chemotactic activity at -86°C and cryostoring the at least one aliquot in the vapor phase of a liquid nitrogen freezer.
3. The method according to claim 2, step (a) further comprising
(i) thawing the at least one aliquot of the 'frozen sterile nonexpanded, isolated .population of autologous mononuclear cells containing CD34+ cells which further contain a subpopuiation of potent CD34+ CXCR-4 cells that have CXCR-4- mediated chemotactic activity;
(it) enriching the sterile nonexpanded, isolated population of autologous mononuclear cells for CD34+ cells, which further contain a subpopuiation of potent CD34+/CXCR-4+ cells that have CXCR~4~mediated chemotactic activity. wherein the sterile nonexpanded, isolated population of autologous mononuclear cells enriched for CD34+ cells which further contain a subpopu!ation of potent CD34-h''CXCR~4 cells that have CXCR-4 -mediated chemotactic activity is a thawed sterile chemotactic hematopoietic stem cell product; and
(hi) administering to the subject on a second infusion date a therapeutically effective amount of the sterile thawed sterile chemotactic hematopoietic stem cell product, comprising
(a) at least 10 x 10* CD34-feeli.s, which further contain a
su po ukton of at least 0.5 x 10° potent.€D34t cells expressing CXCR-4 and having CXCR-4 mediated chemotactic activity: and
(b) a stabilizing amount of serum, wherein the stabilizing amount of serum is greater than 20% (v/v), wherein the sterile thawed chemotactic hematopoietic stem cell product is further characterized as having, the following properties for at least 24 hours following thawing of the nonexpanded, isolated population of autologous mononuclear cells comprising CD34+ ceils, which further contain a subpopuklion of potent D34+/CXCR-4+ cells that have CXCR-4- mediated chemotactic .activity when tested in vitro after passage through a catheter:
( 1 ) retains the CXC -4-raediated activity of the subpopulaiion of potent CD3 +/CXCR-4+ cells that have CXCR-4-mediated chemotactic activity;
(2 } at leas 70% of the cells are CP34-f cells;
(3) is at least 70% viable: and
(4) is able to form hematopoietic colonies in vitro.
m
4. The: method according to claim 3, wherein enriching step (if) occurs at least I day after acquisition of the sterile nonexpanded, isolated population of autologous mononuclear cells comprising CD34+ ceils from the subject
5. The method according to claim 3, wherein the sterile chemotactk hematopoietic stem cell product is adniinistered parcnterall through a catheter to the subject within about 48 hours to about 72 hours of thawing step (i).
.
6, The method according to claim 1, wherein the nonexpanded, isolated population of autologous mononuclear cells comprising CD34+ cells, which further contain a subpopulation of CD34+/CXCR4-r cells thai have CXCR-4-mediated cheraotaetie activity, is acquired early after an acute .myocardial, infarction.
7. The method according to claim 6, vvheretn the nonexpanded, isolated population of autologous mononuclear cells comprising CD34+ cells, which further contain a siibpopulatkm of C.[)34- /GXCR-4+ cells that have CXCR-4-mediated chemoiaetic activity, is acquired after peak inflammatory cytokine cascade production in an infarcted area.
8. The method according to claim 1 , wherein the nonexpanded, isolated population of autologous mononuclear cells comprising CD34+ cells, which further contaisn. a subpopulation of CD34+/CXCR4T ceils that have CXCR4-mcdiated cheraotaetie activity, is acquired late after an acute myocardial infarction.
9. The method according to claim 8, wherein the nonexpanded, isolated population of autologous mononuclear cells comprising CD34+ cells, which further contain subpopulation of
CD34-f/CXCR4+ cells that have CXCR.4»mediated. cheniotactic activity, is acquired at least 15 days after an acute myocardial infection,
10. The method according to claim 3, wherein the sterile thawed cheniotactic hematopoietic stem cell product is further characterized as having the following properties for at least 48 hours following thawing of the nonexpanded, isolated population of autologous mononuclear cells when tested in vitro alter passage through a catheter: (i) Is able to form hematopoietic colonies: and
(ii) retains at least 2% of the CXCR-4-mediated activity of the subpopulation of potent CD34+/CXCR-4- cells that 'have CXCR~4-raediated chemotactic activity,
1 1 , The method according to claim 3, wherein the sterile thawed cherootaet c hematopoietic stem cell product is further characterized as having the following properties for at least 72 hours following thawing of the.aonexpanded, isolated population of autologous mononuclear cells when tested in. vitro after passage through a catheter:
(i) is able to form- hematopoietic colonies; and
(ii) retains at least 2% of the CXCR-4-medi ted activity of the siibpopu!ahon of potent CD34+/CXCR + -cells that have XCR~4-mediated .chemotactic activity.
12, The method according to claim 1, wherein the vascular insufficiency is an ischemia
1 , The method according to claim 12. wherein the ischemia is a myocardial ischemia.
I ** The method according to claim 1.2, wherein the ischemia is a transient ischemia.
15, The method according to claim 1.2, wherein the ischemia is a chronic myocardial ischemia.
16. The method according to claim 1 , wherein the vascular insufficiency is a vascular insufficiency after an acute myocardial infarction resulting from underlying disease,
17, The method according to claim 16, wherein the ischemia is a .pe.ri.- arct border zone ischemia.
18. The method according to claim 16, wherein a first infusion date comprises a specific time interval defined by a first time and a second time, and wherein the first time is after peak inflammatory cy tokine cascade production in an infected area and the second time is before myocardial scar formation in the iniketed area,
19. The method according to claim 18, wherein the first time of the first Mus on date is at least about 5 days rH').st½iarction.
20. The method according to claim 18. wherein the first time of the first infusion date is about 5 days post-infarction and the second time is about 14 days post-infection,
21. The method according to ei im 16, wherein the method treats cardiomyoeyte cei I death in the peri-infarct border zone, relative to controls.
22. The method according to claim 16, wherein the method treats hypoperfusion in the peri- infarct border zone, relative to controls.
23. The method according to claim I (S, wherein the method treats myocardial hibernation in the perwniarci ' border zone, relati e to controls.,
24. The method according to claim 16, wherein the method decreases infarct area, relative to controls,
25. The method according to claim 1 , wherein the method decreases infarct mass, relative to controls.
26. The method according to claim 16, wherein the progressive myocardial injury is a progressive decline in heart, muscle function following the acute myocardial infarction,
27. The method according to claim 11 wherein step (e) comprises treating at least one adverse consequence of an acute myocardial infarction selected from premature death, recurrent myocardial infection, development of congestive heart failure,, development of significant arrhythmias, development, of acute coronary syndrome, worsening of congest e heart failure, worsening of significant arrhythmias, and worsening of acute coronary syndrome.
28. The method according to claim 1 , wherein the progressive myocardial injury is heart, failure,
29. The method according to claim 1 , wherein the catheter is a flow control catheter,
30. The method, according to claim 1 , wherein the catheter. Is a balloon dilatation catheter,
31. The method according to claim 1, wherein the catheter has an internal diameter of at least about 036 mm.
32. The method according to claim I , wherein the administering step (c) is through the catheter into myocardium.
33., The method according to claim .1 , wherein the administering step (c) is through the: catheter intravascular^.
34. The method according to claim.1.. wherein the pharmaceutical composition further includes at least one compatible: ctive agent.
35. The method according to. claim 34, wherein the active agent is selected from the group consisting of an angiotensin converting enzyme inhibitor, a beta-blocker, a diuretic, an anii-arrhythmic agent a hematopoietic stem cell mobilizing agent, a tyrosine kinase receptor agonist, an anti-anginal agent, a vasoactive, agent, an. anticoagulant agent a iibri.hol.ytic agent and a hvpercholesterolemic agent,
36» The method according to claim.35. wherein the tyrosine: kinase receptor agonist is human neureguiin 1.
37. A regimen for treating a progressive myocardial injury due to a vascular insufficiency in a tevasci iarked subject which comprises
(a) adminisieririg parenteral!.}' through a catheter on a plurality of infusion 'dates daring lifetime of the subject a sterile pharmaceutical .composition comprising a sterile ehernotactio hematopoietic stem cell product, wherein the stenie cheraoiactic hematopoietic stem cell product comprises (1) a nonexpanded, Isolated population of autologous mononuclear cells enriched for CD34+ cells, which forthcr contain a subpopulation. of potent
Q}34 /CXC -4-r cells that have CXCR~4-mediated chemotactie activity, wherein the therapeutically effective aracamt of the chemoiaciic hematopoietic stem cell product comprises at least 10 x 10" CD34+ cells which further contain a sab-population of at least 0.5 x 10* potent CD34+ cells expressing CXC -4 and having CXCR-4-mediated chemoiaciic activity; and
(is) a stabilizing amount of serum, wherein the stabilizing amount of serum is greater hai! 20% (v v), wherein the cheniotactic hematopoietic stem cell product is farther characterized as having the following properties for: at feast 24 hoars following acquisition of the chemotactie hematopoietic stem cell product when fested in vitro after passage through a catheter:
( ! ) retains the CXCR- -mediated activity of the siibpopulation of potent CD34+/CXCR-4+ ceils that have CXCR-4-mediated chemotactie activity:
(2 ) at least 70% of the cells axe CD34* cells;
(3) is at least 70% -viable; .and
(4) is able to form hematopoietic colonies in vitro; and
(b) treating at. least one adverse consequence of the progressive vascular
insufficiency,
38. The e men according to claim 37, wherein the vascul r insufficiency is an ischemia,
39. The regimen according to claim 38, wherein the ischemia is a myocardial ischemia.
40. The reg men according to claim 38, wherein the ischemia is a transient ischemia.
41. The regimen according to claim.38, wherein, the ischemia is a chronic .myocardial ischemia,
42. The regimen according to claim. 37, wherein the vascular insufficiency is a vascular insufficiency alter an acute myocardial infarction resulting from underlying disease.
43. The regimen according to claim 37, wherein the nonex.pao.ded, isolated population of autologous 'mononuclear cells comprising CD34÷ cells, which further contain a-subpopulation o C 34÷/CXCR.-4+ cells that have CXCR-4-mediated chemotactic activity, is acquired early after occurrence of an acute myocardi al infarction.
44. The regimen according to claim 43, wherein the nonexpanded. isolated .'population of autologous mononuclear cells, comprising CD34 >- cells, which further contain a ; subpopulation of CD34÷/CXCR~4+ cells that have CXCR-4-mediated chemotactic activity, is acquired after peak inflammatory cytokine cascade production in an. mfareted area.
45. The regimen according to claim 37, wherein the noiiexpanded, isolated population of autologous mononuclear cel ls comprising CD34 »- cells, which further contaisn a subpopulation of C 34+ CXCR-4 - cells that have CXCR-4»mediated chemotactic activity, is acquired late after occurrence of an acute myocardial, infarction.
46. The method according to claim 45, wherein the npnexpanded, isolated population of autologous mononuclear cells comprising CD34+ cells, which further contain a siibpopulation of Q 4 /€XCR-4 cells that have€X€R -mediate chemotactic activity, is acquired at least 15 days after occurrence of an acute myocardial infarction,
47. The regimen according to claim 42, wherein a first infusion date comprises a.
specific time interval defined by a first time and a second time, and wherein the first time is after peak inflammatory cytokine cascade production in an iufareted area and the second, time Is before myocardial scar formation in the infarcted area.
1.92
48. The regimen according id claim 47, wherein the first time of the first, infksion date is at least about 5 days post-mfarction.
49 , The regimen according to claim 47, wherein the first time of the first infusion dale is about 5 days postinfarction and the second time is about 14 days post-infarction,
50. The regimen accord ng to claim 42, wherein the a first infusion date s at least 5 days after occurrence of an acute myocardial infarction,
51. The regimen according to claim 42, wherein a second infusion date is at least 30 days after occurrence of an acute .myocardial, infarction.
52. The regimen according to claim 37. wherein theischemia is a peri -infarct border zone ischemia.
53. The regimen according to claim 52, wherein step (b) comprises treating cardiomyocyte cell, death in the peri-mfaret border zone, relative to controls,
54. The regimen according to claim 52. wherein step (b) comprises treating hypoperfusion in the .peri-infaret border zone, relative to controls,
55; 'The regimen accordin to claim 52. wherein step (b) comprises treating myocardial hibernation' in .the peri-infarct border zone, relative to controls.
56. The.. regimen according to claim 52, wherein step (b) comprises decreasing infarct area, relative to controls.
57. The regimen according to claim 52, wherein step (b) comprises decreasing infarct mass, relative to controls.
58. The regimen according to claim 52, wherein step (b) comprises treating at least one adverse consequence of the acute myocardial infarction selected from premature death, recurrent myocardial infarction, development of congestive heart failure, development of significant arrhythmias, development o acu e coronary- syndrome, worsening of congestive, heart failure, worsening of significant arrh}ihmias,.and worsening of acute coronary syndrome.
59. The regimen according to claim 42, wherein the progressive myocardial, injury is a progressive decline in heart muscle function following the acute myocardial infarction.
60. The regimes according to claim. 37, wherein the progressive myocardial injury is heart failure.
61. , The regimen according to claim 37, wherein the catheter is a flow control, catheter.
62. The regimen according to claim '37, wherein the catheter is a balloon dilatation
63 The regimen according to claim 37, wherein the catheter has an internal diameter of at least about 0.36 mm
64. The regimen according to claim 37. wherein the composition is administered 'through the catheter into myocardium.
65. The regimen according to claim 37, wherein the composition is administered through the catheter' intravascular iy,
66. The regimen according to claim 37, wherein the .pharmaceutical composition further includes at least one compatible active agent.
67. The regimen according to claim 66, wherei the active agent is selected, from the group consisting of an angiotensin converting enzyme inhibitor, a beta-blocker, a diuretic, an anti-arrhythmic agent a hematopoietic stem cell mobilizing agent, a tyrosine kinase receptor agonist, an anti-anginal agent, a vasoactive agent, an anticoagulant agent, a fibrinolytic agent and a hypercholesterolemie agent
68. The regimen according to claim 67, wherein the tyrosine kinase receptor agonistn neureguliii 1.
PCT/US2010/053744 2009-10-23 2010-10-22 Compositions and methods for treating progressive myocardial injury due to a vascular insufficiency WO2011050266A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
ES10825743.7T ES2610241T3 (en) 2009-10-23 2010-10-22 Compositions and uses for the treatment of progressive myocardial lesions due to vascular insufficiency
EP16198257.4A EP3170891B1 (en) 2009-10-23 2010-10-22 Compositions and uses for treating progressive myocardial injury due to a vascular insufficiency
EP10825743.7A EP2491114B8 (en) 2009-10-23 2010-10-22 Compositions and uses for treating progressive myocardial injury due to a vascular insufficiency
CA2778664A CA2778664C (en) 2009-10-23 2010-10-22 Compositions and methods for treating progressive myocardial injury due to a vascular insufficiency
GB1208457.0A GB2487339A (en) 2009-10-23 2010-10-22 Compositions and methods for treating progressive myocardial injury due to a vascular insufficiency
JP2012535413A JP5709880B2 (en) 2009-10-23 2010-10-22 Compositions and methods for the treatment of progressive myocardial injury due to vascular dysfunction

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US25453909P 2009-10-23 2009-10-23
US61/254,539 2009-10-23

Publications (1)

Publication Number Publication Date
WO2011050266A1 true WO2011050266A1 (en) 2011-04-28

Family

ID=43900703

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2010/053744 WO2011050266A1 (en) 2009-10-23 2010-10-22 Compositions and methods for treating progressive myocardial injury due to a vascular insufficiency

Country Status (6)

Country Link
EP (2) EP3170891B1 (en)
JP (5) JP5709880B2 (en)
CA (1) CA2778664C (en)
ES (2) ES2610241T3 (en)
GB (1) GB2487339A (en)
WO (1) WO2011050266A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3068872A1 (en) * 2013-11-14 2016-09-21 The University of Miami Non-expanded post-natal multilineage-inducible cells
US9533010B2 (en) 2011-10-31 2017-01-03 Amorcyte, Llc Compositions and methods for treating progressive myocardial injury due to a vascular insufficiency
US9534202B2 (en) 2005-11-07 2017-01-03 Amorcyte, Inc. Compositions and methods for treating progressive myocardial injury due to a vascular insufficiency
EP2367432B1 (en) * 2008-12-03 2017-08-30 Amorcyte, Inc. Infarct area perfusion-improving composition
CN109996535A (en) * 2016-12-28 2019-07-09 日本乐敦制药株式会社 Cell drug composition, disease treatment kit and cell suspension solution

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2778664C (en) * 2009-10-23 2019-12-24 Amorcyte, Inc. Compositions and methods for treating progressive myocardial injury due to a vascular insufficiency
US20150228115A1 (en) 2014-02-10 2015-08-13 Kabushiki Kaisha Toshiba Medical-image processing apparatus and medical-image diagnostic apparatus
EP3247808B1 (en) 2015-01-21 2021-05-05 Fred Hutchinson Cancer Research Center Point-of-care and/or portable platform for gene therapy

Citations (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0076695A1 (en) 1981-10-06 1983-04-13 The Board Of Trustees Of The Leland Stanford Junior University Fluorescent conjugates for analysis of molecules and cells
US4520110A (en) 1981-10-06 1985-05-28 The Board Of Trustees Of The Leland Stanford Junior University Fluorescent immunoassay employing a phycobiliprotein labeled ligand or receptor
US4714680A (en) 1984-02-06 1987-12-22 The Johns Hopkins University Human stem cells
US4859582A (en) 1981-10-06 1989-08-22 The Board Of Trustees Of The Leland Stanford Jr. University Fluorescent conjugates for analysis of molecules and cells
US4876190A (en) 1987-10-21 1989-10-24 Becton Dickinson & Company Peridinin-chlorophyll complex as fluorescent label
US4965205A (en) 1986-03-27 1990-10-23 Institut Merieux Culture medium for bacteria of the bordetella genus containing etherified derivative of D-glucose and a cyclodextrin
US4965204A (en) 1984-02-06 1990-10-23 The Johns Hopkins University Human stem cells and monoclonal antibodies
US5055556A (en) 1981-10-06 1991-10-08 The Board Of Trustees Of The Leland Stanford Jr. Univ. Fluorescent conjugates for analysis of molecules and cells
US5130144A (en) 1984-02-06 1992-07-14 The Johns Hopkins University Human stem cells and monoclonal antibodies
US5187288A (en) 1991-05-22 1993-02-16 Molecular Probes, Inc. Ethenyl-substituted dipyrrometheneboron difluoride dyes and their synthesis
US5187083A (en) 1990-11-13 1993-02-16 Specialty Laboratories, Inc. Rapid purification of DNA
US5234824A (en) 1990-11-13 1993-08-10 Specialty Laboratories, Inc. Rapid purification of DNA
US5268486A (en) 1986-04-18 1993-12-07 Carnegie-Mellon Unversity Method for labeling and detecting materials employing arylsulfonate cyanine dyes
US5333675A (en) 1986-02-25 1994-08-02 Hoffmann-La Roche Inc. Apparatus and method for performing automated amplification of nucleic acid sequences and assays using heating and cooling steps
US5415636A (en) 1994-04-13 1995-05-16 Schneider (Usa) Inc Dilation-drug delivery catheter
US5536475A (en) 1988-10-11 1996-07-16 Baxter International Inc. Apparatus for magnetic cell separation
US5569587A (en) 1986-04-18 1996-10-29 Carnegie Mellon University Method for labeling and detecting materials employing luminescent arysulfonate cyanine dyes
US5627027A (en) 1986-04-18 1997-05-06 Carnegie Mellon University Cyanine dyes as labeling reagents for detection of biological and other materials by luminescence methods
US5656493A (en) 1985-03-28 1997-08-12 The Perkin-Elmer Corporation System for automated performance of the polymerase chain reaction
US5723218A (en) 1990-04-16 1998-03-03 Molecular Probes, Inc. Dipyrrometheneboron difluoride labeled flourescent microparticles
US5776709A (en) 1991-08-28 1998-07-07 Becton Dickinson And Company Method for preparation and analysis of leukocytes in whole blood
US5968753A (en) 1994-06-14 1999-10-19 Nexell Therapeutics, Inc. Positive and positive/negative cell selection mediated by peptide release
US5980887A (en) 1996-11-08 1999-11-09 St. Elizabeth's Medical Center Of Boston Methods for enhancing angiogenesis with endothelial progenitor cells
US6251295B1 (en) 1998-01-08 2001-06-26 Nexell Therapeutics Inc. Method for recirculation washing of blood cells
US20030232050A1 (en) 1999-01-11 2003-12-18 Isner Jeffrey M. Compositions and methods for regulating angiogenesis
US6676937B1 (en) 1998-03-09 2004-01-13 Caritas St. Elizabeth's Medical Center Of Boston Inc. Compositions and methods for modulating vascularization
US20070105217A1 (en) * 2005-11-07 2007-05-10 Pecora Andrew L Compositions and methods of vascular injury repair
US20070190127A1 (en) * 2005-12-30 2007-08-16 Mingdong Zhou Extended release of neuregulin for improved cardiac function
US20070275362A1 (en) * 2000-12-06 2007-11-29 James Edinger Placental stem cell populations
US20100143317A1 (en) * 2006-10-24 2010-06-10 Andrew Pecora Infarct area perfusion-improving compositions and methods of vascular injury repair
US11955208B2 (en) 2016-09-12 2024-04-09 Cornell University Computational systems and methods for improving the accuracy of drug toxicity predictions

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2002304965A1 (en) * 2002-05-24 2003-12-12 Zensun (Shanghai) Sci-Tech.Ltd Neuregulin based methods and compositions for treating viral myocarditis and dilated cardiomyopathy
US7160935B2 (en) * 2003-04-04 2007-01-09 E. I. Du Pont De Nemours And Company Tubular reactor ethylene/alkyl acrylate copolymer as polymeric modifiers for asphalt
US20060165667A1 (en) * 2004-12-03 2006-07-27 Case Western Reserve University Novel methods, compositions and devices for inducing neovascularization
CA2778664C (en) * 2009-10-23 2019-12-24 Amorcyte, Inc. Compositions and methods for treating progressive myocardial injury due to a vascular insufficiency

Patent Citations (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0076695A1 (en) 1981-10-06 1983-04-13 The Board Of Trustees Of The Leland Stanford Junior University Fluorescent conjugates for analysis of molecules and cells
CA1179942A (en) 1981-10-06 1984-12-27 Lubert Stryer Fluorescent conjugates for analysis of molecules and cells
US4520110A (en) 1981-10-06 1985-05-28 The Board Of Trustees Of The Leland Stanford Junior University Fluorescent immunoassay employing a phycobiliprotein labeled ligand or receptor
US5055556A (en) 1981-10-06 1991-10-08 The Board Of Trustees Of The Leland Stanford Jr. Univ. Fluorescent conjugates for analysis of molecules and cells
US4859582A (en) 1981-10-06 1989-08-22 The Board Of Trustees Of The Leland Stanford Jr. University Fluorescent conjugates for analysis of molecules and cells
US5130144A (en) 1984-02-06 1992-07-14 The Johns Hopkins University Human stem cells and monoclonal antibodies
US5035994A (en) 1984-02-06 1991-07-30 The Johns Hopkins University Human stem cells and monoclonal antibodies
US4714680A (en) 1984-02-06 1987-12-22 The Johns Hopkins University Human stem cells
US4965204A (en) 1984-02-06 1990-10-23 The Johns Hopkins University Human stem cells and monoclonal antibodies
US5035994B1 (en) 1984-02-06 1995-02-14 Univ Johns Hopkins Human stem cells and monoclonal antibodies
US5130144B1 (en) 1984-02-06 1995-08-15 Univ Johns Hopkins Human stem cells and monoclonal antibodies
US4714680B1 (en) 1984-02-06 1995-06-27 Univ Johns Hopkins Human stem cells
US5656493A (en) 1985-03-28 1997-08-12 The Perkin-Elmer Corporation System for automated performance of the polymerase chain reaction
US5333675C1 (en) 1986-02-25 2001-05-01 Perkin Elmer Corp Apparatus and method for performing automated amplification of nucleic acid sequences and assays using heating and cooling steps
US5333675A (en) 1986-02-25 1994-08-02 Hoffmann-La Roche Inc. Apparatus and method for performing automated amplification of nucleic acid sequences and assays using heating and cooling steps
US4965205A (en) 1986-03-27 1990-10-23 Institut Merieux Culture medium for bacteria of the bordetella genus containing etherified derivative of D-glucose and a cyclodextrin
US5486616A (en) 1986-04-18 1996-01-23 Carnegie Mellon University Method for labeling and detecting materials employing arylsulfonate cyanine dyes
US5268486A (en) 1986-04-18 1993-12-07 Carnegie-Mellon Unversity Method for labeling and detecting materials employing arylsulfonate cyanine dyes
US5569766A (en) 1986-04-18 1996-10-29 Carnegie Mellon University Method for labeling and detecting materials employing arylsulfonate cyanine dyes
US5569587A (en) 1986-04-18 1996-10-29 Carnegie Mellon University Method for labeling and detecting materials employing luminescent arysulfonate cyanine dyes
US5627027A (en) 1986-04-18 1997-05-06 Carnegie Mellon University Cyanine dyes as labeling reagents for detection of biological and other materials by luminescence methods
US4876190A (en) 1987-10-21 1989-10-24 Becton Dickinson & Company Peridinin-chlorophyll complex as fluorescent label
US5536475A (en) 1988-10-11 1996-07-16 Baxter International Inc. Apparatus for magnetic cell separation
US5723218A (en) 1990-04-16 1998-03-03 Molecular Probes, Inc. Dipyrrometheneboron difluoride labeled flourescent microparticles
US5234824A (en) 1990-11-13 1993-08-10 Specialty Laboratories, Inc. Rapid purification of DNA
US5187083A (en) 1990-11-13 1993-02-16 Specialty Laboratories, Inc. Rapid purification of DNA
US5187288A (en) 1991-05-22 1993-02-16 Molecular Probes, Inc. Ethenyl-substituted dipyrrometheneboron difluoride dyes and their synthesis
US5776709A (en) 1991-08-28 1998-07-07 Becton Dickinson And Company Method for preparation and analysis of leukocytes in whole blood
US5415636A (en) 1994-04-13 1995-05-16 Schneider (Usa) Inc Dilation-drug delivery catheter
US5968753A (en) 1994-06-14 1999-10-19 Nexell Therapeutics, Inc. Positive and positive/negative cell selection mediated by peptide release
US6017719A (en) 1994-06-14 2000-01-25 Nexell Therapeutics, Inc. Positive and positive/negative cell selection mediated by peptide release
US5980887A (en) 1996-11-08 1999-11-09 St. Elizabeth's Medical Center Of Boston Methods for enhancing angiogenesis with endothelial progenitor cells
US6251295B1 (en) 1998-01-08 2001-06-26 Nexell Therapeutics Inc. Method for recirculation washing of blood cells
US6676937B1 (en) 1998-03-09 2004-01-13 Caritas St. Elizabeth's Medical Center Of Boston Inc. Compositions and methods for modulating vascularization
US20030232050A1 (en) 1999-01-11 2003-12-18 Isner Jeffrey M. Compositions and methods for regulating angiogenesis
US20070275362A1 (en) * 2000-12-06 2007-11-29 James Edinger Placental stem cell populations
US20070105217A1 (en) * 2005-11-07 2007-05-10 Pecora Andrew L Compositions and methods of vascular injury repair
US20070190127A1 (en) * 2005-12-30 2007-08-16 Mingdong Zhou Extended release of neuregulin for improved cardiac function
US20100143317A1 (en) * 2006-10-24 2010-06-10 Andrew Pecora Infarct area perfusion-improving compositions and methods of vascular injury repair
US11955208B2 (en) 2016-09-12 2024-04-09 Cornell University Computational systems and methods for improving the accuracy of drug toxicity predictions

Non-Patent Citations (84)

* Cited by examiner, † Cited by third party
Title
"Guidelines for the diagnosis of heart failure The Task Force on Heart Failure of the European Society of Cardiology", EUR. HEART J., vol. 16, 1995, pages 741 - 751
"PHYSICIAN'S DESK REFERENCE", 1995, MEDICAL ECONOMICS COMPANY, INC.
ANTMAN, E. M.; BRAUNWALD, E. ET AL.: "Principles of Internal Medicine, 15th Ed.", 2001, MCGRAW-HILL, article "Acute Myocardial Infarction"
ASKARI ET AL., LANCET, vol. 362, 2003, pages 697 - 703
ASKARI, A. ET AL., LANCET, vol. 362, 2003, pages 697 - 703
ASSMUS ET AL., CIRCULATION, vol. 106, 2002, pages 3009 - 3017
ASSMUS, B. ET AL., NEW ENGL. J. MED., vol. 355, no. 12, 2006, pages 1222 - 32
BARNETT D ET AL., BR. J HAEMATOL., vol. 106, 1999, pages 1059 - 1062
BERGMAN O., SCIENCE, vol. 324, 2009, pages 98 - 101
BERSELL, K. ET AL., CELL, vol. 138, 2009, pages 257 - 70
BIRDSHALL, H. H. ET AL., CIRCULATION, vol. 3, 1997, pages 684 - 92
BOLI, R., PROG. CARDIOVASCULAR DISEASE, vol. 40, no. 6, 1998, pages 477 - 515
BRAUNWALD E.; BRISTOW, M. R., CIRCULATION, vol. 102, 2000, pages IV-14 - 23
BROCKLEBANK AM; SPARROW RL, CYTOMETRY. 2001, vol. 46, 2001, pages 254 - 261
BUDA, AJ ET AL., J. AM. COLL. CARDIOL., vol. 8, 1986, pages 150 - 58
C. STAMM ET AL., LANCET, vol. 361, 2003, pages 45 - 46
CARLSON K J; LEE DC; GOROLL AH; LEHY M; JOHNSON RA: "an analysis of physicians' reasons for prescribing long-term digitalis therapy in outpatients", J. CHRONIC DIS., vol. 38, 1985, pages 733 - 39, XP023090152, DOI: doi:10.1016/0021-9681(85)90115-8
CEREDINI, D. J. ET AL., NATURE MEDICINE, vol. 10, 2004, pages 858 - 63
CHEN, C ET AL., J. AM. COLL. CARDIOL., vol. 30, 1997, pages 1407 - 12
DEEDWANIA, PC; CARBAJAL, EV, ARCH. INTERN. MED., vol. 150, 1991, pages 2373 - 2382
DOBERT, N. ET AL., EUR. J. NUEL. MED. MOL. IMAGING, vol. 8, 2004, pages 1146 - 51
DRUG FACTS AND COMPARISONS, FACTS AND COMPARISONS, INC., 1993
EDELBERG, J. M. ET AL., CIR. RES., vol. 90, 2002, pages E89 - E93
EJIRI, M. ET AL., J. CARDIOLOGY, vol. 20, 1990, pages 31 - 37
ENTMAN, M. L. ET AL., J. CLIN. INVEST., vol. 4, 1992, pages 1335 - 45
ERIKSSON H; CAIDAHL K; LARSSON B; OHLSON LO; WELIN L; WILHELMSEN L; SVARDSUDD K: "Cardiac and pulmonary causes of dyspnoea-validation of a scoring test for clinical-epidemiological use: the Study of Men Born in 1913", EUR. HEART J., vol. 8, 1987, pages 1007 - 1014
FANG, K. C. ET AL., J. IMMUNOL., vol. 162, 1999, pages 5528 - 35
FRANGOGIANNIS, N. G. ET AL., CARDIOVASCULAR RES., vol. 53, no. 1, 2002, pages 31 - 47
FRANGOGIANNIS, N. G. ET AL., CIRCULATION, vol. 7, 1998, pages 699 - 710
FRANGOGIANNIS, N. G. ET AL., CIRCULATION, vol. 98, 1998, pages 687 - 798
FRANGOGIANNIS, N. G. ET AL., FASEB J., vol. 15, 2001, pages 1428 - 30
FRANGOGIANNIS, N. G. ET AL., J. IMMUNOL., vol. 5, 2000, pages 2798 - 2808
FRANIGOGIANNIS, N. G. ET AL., CIRCULATION, vol. 98, 1998, pages 687 - 798
FULLER, SJ ET AL., J. MOL. CELL CARIOL., vol. 44, 2008, pages 831 - 54
GOODMAN; GILMAN'S: "THE PHARMACOLOGICAL BASIS OF THERAPEUTICS", 2001, MCGRAW HILL
HAMANO, K. ET AL., JAPAN CIR. J., vol. 65, 2001, pages 845 - 47
HERENSTEIN, B. ET AL., BLOOD SUPPLEMENT, 2004
HEUSCH, G. ET AL., AM. J. PHYSIOL. HEART CIRC. PHYSIOL., vol. 288, 2005, pages 984 - 99
HIRAI, T. ET AL., CIRCULATION, vol. 79, 1989, pages 791 - 96
HU, Q. ET AL., AM. J. PHYSIOL. HEART CIRC PHYSIOL., vol. 291, 2006, pages H648 - 657
HU, Q. ET AL., AM. J. PHYSIOL. HEART CIRC. PHYSIOL., vol. 291, 2006, pages H648 - 657
HUNT, S., J. AM. COLL. CARDIOL., vol. 46, 2005, pages E1 - E82
JACKSON ET AL., J. CLIN. INVEST., vol. 107, 2001, pages 1395 - 1402
JO ET AL., J. CLIN. INVEST., vol. 105, 2000, pages 101 - 11
KAJSTURA, J. ET AL., LAB INVEST., vol. 74, 1996, pages 86 - 107
KLONER, R.A.; JENNINGS, RB, CIRCULATION, vol. 104, 2001, pages 2981 - 89
KURRELMEYER, K. M ET AL., PROC. NATL ACAD. SCI USA., vol. 10, 2000, pages 5456 - 61
LASKY, L. A., SCIENCE, vol. 258, 1992, pages 964 - 69
LEFER, D. J.; GRANGER, D. N., AM. J. MED., vol. 4, 2000, pages 315 - 23
LUNDE, K. ET AL., NEW ENG. J. MED., vol. 355, no. 12, 2006, pages 1199 - 209
MA, X. L. ET AL., CIRCULATION, vol. 88, no. 2, 1993, pages 649 - 58
MCKEE PA; CASTELLI WP; MCNAMARA PM; KANNEL WB: "The natural history of congestive heart failure: the Framingham study", N. ENGL. J. MED., vol. 285, 1971, pages 1441 - 1446
MIAGLIA, S. ET AL., BLOOD, vol. 90, 1997, pages 5013 - 21
MURDOCK, RH, JR. ET AL., CIR. RES., vol. 52, 1983, pages 451 - 59
PAUL ET AL., AM. HEART J., vol. 131, 1996, pages 710 - 15
PEICHEV M. ET AL., BLOOD, vol. 95, 2000, pages 952 - 58
PEICHEV, M. ET AL., BLOOD, vol. 95, 2000, pages 952 - 58
PFEFFER, M. A.; BRAUNWALD, E., CIRCULATION, vol. 81, 1990, pages 1161 - 72
REN ET AL., J. HISTOCHEM. CYTOCHEM., vol. 49, 2002, pages 71 - 79
RICH ET AL., AM. J. MED., vol. 92, 1992, pages 7 - 13
SAITO, T. ET AL., TISSUE ENG., vol. 1, 1995, pages 327 - 43
SAKATA, K. ET AL., ANN. NUCLEIC MED., vol. 8, 1994, pages 153 - 57
SCHICHINGER, V. ET AL., NEW ENGL. J. MED., vol. 355, no. 12, 2006, pages 1210 - 21
See also references of EP2491114A4
SHEIBAN, I. ET AL., J. AM. COLL. CARDIO, vol. 38, 2001, pages 464 - 71
SHEILBAN, I., J. AM. COLL. CARDIOL., vol. 38, 2001, pages 464 - 71
SHINITANI, S. ET AL., CIRCULATION, vol. 103, 2001, pages 2776 - 79
SIMPSON, P. J. ET AL., J. CLIN. INVEST., vol. 2, 1998, pages 624 - 29
SOUSA, J. ET AL., CIRCULATION, vol. 107, 2003, pages 2274 - 79,2383-89
STORK, A. ET AL., EUROPEAN RADIOL., vol. 16, no. 10, 2006, pages 2350 - 57
STRAUER ET AL., CIRCULATION, vol. 106, 2002, pages 1913 - 18
STRAUER, B. E. ET AL., CIRCULATION, vol. 106, 2002, pages 1913 - 18
SUTHERLAND ET AL., J HEMATOTHERAPY, vol. 5, 1996, pages 213 - 226
TAKESHI, S. ET AL., CARDIOLOGY, vol. 93, 2000, pages 168 - 74
TOMITA, S. ET AL., CIRCULATION, vol. 100, no. II, 1999, pages 247 - 256
V. L. ROGER, INTL. J. ENVIRON. RES. PUBLIC HEALTH, vol. 7, no. 4, 2010, pages 1807 - 30
WANG, J. S. ET AL., J. THORAC. CARDIOVASC. SURG., vol. 122, 2001, pages 699 - 705
WILLERSON, J.T. ET AL., J. AM. COLL. CARDIOL., vol. 8, no. 1, 1986, pages 245 - 50
WOLLERT, K. C. ET AL., LANCET, vol. 364, 2004, pages 141 - 48
YAMAGUCHI ET AL., CIRCULATION, vol. 107, 2003, pages 1322 - 1328
YAMAGUCHI, J. ET AL., CIRCULATION, vol. 107, 2003, pages 1322 - 34
YEH ET AL., CIRCULATION, vol. 108, 2003, pages 2070 - 73
YIN ET AL., BLOOD, vol. 90, 1997, pages 5002 - 5012
YIN, A ET AL., BLOOD, vol. 90, 1997, pages 5002 - 5012

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9534202B2 (en) 2005-11-07 2017-01-03 Amorcyte, Inc. Compositions and methods for treating progressive myocardial injury due to a vascular insufficiency
EP2367432B1 (en) * 2008-12-03 2017-08-30 Amorcyte, Inc. Infarct area perfusion-improving composition
US9533010B2 (en) 2011-10-31 2017-01-03 Amorcyte, Llc Compositions and methods for treating progressive myocardial injury due to a vascular insufficiency
EP3068872A1 (en) * 2013-11-14 2016-09-21 The University of Miami Non-expanded post-natal multilineage-inducible cells
EP3068872A4 (en) * 2013-11-14 2017-05-03 The University of Miami Non-expanded post-natal multilineage-inducible cells
CN109996535A (en) * 2016-12-28 2019-07-09 日本乐敦制药株式会社 Cell drug composition, disease treatment kit and cell suspension solution
CN109996535B (en) * 2016-12-28 2024-02-23 日本乐敦制药株式会社 Cell pharmaceutical composition, kit for disease treatment, and solution for cell suspension

Also Published As

Publication number Publication date
JP5709880B2 (en) 2015-04-30
EP2491114B1 (en) 2016-11-23
EP3170891B1 (en) 2020-11-25
GB2487339A (en) 2012-07-18
EP2491114A1 (en) 2012-08-29
JP2020105216A (en) 2020-07-09
EP2491114B8 (en) 2017-01-25
JP2014037433A (en) 2014-02-27
CA2778664C (en) 2019-12-24
JP2013508408A (en) 2013-03-07
EP2491114A4 (en) 2013-11-06
ES2845691T3 (en) 2021-07-27
GB201208457D0 (en) 2012-06-27
JP6761236B2 (en) 2020-09-23
JP2016029095A (en) 2016-03-03
ES2610241T3 (en) 2017-04-26
JP2018043991A (en) 2018-03-22
EP3170891A1 (en) 2017-05-24
CA2778664A1 (en) 2011-04-28

Similar Documents

Publication Publication Date Title
US9034316B2 (en) Infarct area perfusion-improving compositions and methods of vascular injury repair
US7794705B2 (en) Compositions and methods of vascular injury repair
US8425899B2 (en) Compositions and methods for treating progressive myocardial injury due to a vascular insufficiency
US9533010B2 (en) Compositions and methods for treating progressive myocardial injury due to a vascular insufficiency
EP2491114B1 (en) Compositions and uses for treating progressive myocardial injury due to a vascular insufficiency
US8709403B2 (en) Compositions and methods of vascular injury repair

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10825743

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012535413

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2778664

Country of ref document: CA

REEP Request for entry into the european phase

Ref document number: 2010825743

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010825743

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 1208457

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20101022

WWE Wipo information: entry into national phase

Ref document number: 1208457.0

Country of ref document: GB