WO2011050097A1 - Sensitivity enhancement system - Google Patents

Sensitivity enhancement system Download PDF

Info

Publication number
WO2011050097A1
WO2011050097A1 PCT/US2010/053424 US2010053424W WO2011050097A1 WO 2011050097 A1 WO2011050097 A1 WO 2011050097A1 US 2010053424 W US2010053424 W US 2010053424W WO 2011050097 A1 WO2011050097 A1 WO 2011050097A1
Authority
WO
WIPO (PCT)
Prior art keywords
waveform
radar system
echoes
weather radar
bandwidth
Prior art date
Application number
PCT/US2010/053424
Other languages
French (fr)
Inventor
Chandrasekaran Venkatachalam
Cuong Manh Nguyen
Nitin Bharadwaj
Original Assignee
Colorado State University Research Foundation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Colorado State University Research Foundation filed Critical Colorado State University Research Foundation
Publication of WO2011050097A1 publication Critical patent/WO2011050097A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/95Radar or analogous systems specially adapted for specific applications for meteorological use
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • G01S13/10Systems for measuring distance only using transmission of interrupted, pulse modulated waves
    • G01S13/26Systems for measuring distance only using transmission of interrupted, pulse modulated waves wherein the transmitted pulses use a frequency- or phase-modulated carrier wave
    • G01S13/28Systems for measuring distance only using transmission of interrupted, pulse modulated waves wherein the transmitted pulses use a frequency- or phase-modulated carrier wave with time compression of received pulses
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • G01S13/10Systems for measuring distance only using transmission of interrupted, pulse modulated waves
    • G01S13/30Systems for measuring distance only using transmission of interrupted, pulse modulated waves using more than one pulse per radar period
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/50Systems of measurement based on relative movement of target
    • G01S13/58Velocity or trajectory determination systems; Sense-of-movement determination systems
    • G01S13/581Velocity or trajectory determination systems; Sense-of-movement determination systems using transmission of interrupted pulse modulated waves and based upon the Doppler effect resulting from movement of targets
    • G01S13/582Velocity or trajectory determination systems; Sense-of-movement determination systems using transmission of interrupted pulse modulated waves and based upon the Doppler effect resulting from movement of targets adapted for simultaneous range and velocity measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/40Means for monitoring or calibrating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/10Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation

Definitions

  • One of the fundamental objectives of meteorological radar systems is to sample the atmosphere surrounding the Earth to provide a quantitative measure of precipitation.
  • Conventional meteorological radars provide coverage over long ranges, often on the order of hundreds of kilometers.
  • a general schematic of how such conventional radar systems function is provided in Figure 1.
  • a radar is disposed at the peak of a raised geographical feature such as a hill or mountain 104.
  • the radar generates an electromagnetic beam 108 that disperses approximately linearly with distance, with the drawing showing how the width of the beam 108 thus increases with distance from the radar.
  • Various examples of weather patterns 1 16 that might exist and which the system 100 attempts to sample are shown in different positions above the surface 112 of the Earth.
  • Sensitivity is a critical aspect of weather radar systems. Such systems not only detect atmospheric patterns but often need to precisely measure weak precipitation echoes.
  • Embodiments of the invention use pulse compression techniques to increase the sensitivity of weather radar systems. These techniques can include sending two waveforms into a region of interest, where the second waveform is designed based on knowledge about the first waveform. Such systems can enhance the sensitivity of weather radars about 10 dB.
  • Embodiments of the invention include a weather radar system that includes a transmitter, a receiver and a computer system. The transmitter can be configured to transmit a first signal and a second signal into a region of interest. The receiver can be configured to receive first echoes and second echoes scattered from the region of interest.
  • the first echoes can correspond with the first transmitted signal and the second echoes can correspond with the second transmitted signal.
  • the computer system can be coupled at least with the receiver and can be configured to filter the second echoes based on information about either or both the first waveform and the first echoes.
  • the first and second waveforms comprise pulse compression waveforms.
  • the first waveform and the second waveform can be transmitted at the same time and in different in frequency.
  • the first waveform and the second waveform can be transmitted at different times and they are different in time.
  • the second waveform can be adaptively filtered based on information about the first waveform.
  • the second waveform can be filtered based on the power of the first waveform and/or the Doppler profiles of the first waveform.
  • an iterative loop can use the outputs of the second wave form as a reference profile to filter the second waveform itself.
  • a method for increasing the sensitivity of a radar system.
  • the method can include transmitting a first waveform into the atmosphere from a weather radar system and transmitting a second waveform, different from the first waveform, into the atmosphere from the weather radar system. Echoes can be received from the atmosphere in response to the first waveform and the second waveform. And the echoes of the second waveform can be filtered based on information about either or both the first waveform and the echoes from the first waveform.
  • Figure 1 provides a schematic illustration of the operation of a conventional radar system (reproduced from the National Academy of Sciences Report, "Flash flood forecasting over complex terrain”).
  • Figure 2 shows a simplified block diagram of a computational system that can be used to implement embodiments of the invention.
  • Figure 3 shows an illustration of the discrete signal model according to some embodiments of the invention.
  • Figure 4 shows an illustration of the shifted reference plane for reflectivity calculations according to some embodiments of the invention.
  • Figure 5A shows a time-based sensitivity enhancement scheme according to some embodiments.
  • Figure 5B shows a frequency-based sensitivity enhancement scheme according to some embodiments.
  • Figure 6A is a flow chart outlining a method for selecting the first and second waveforms according to some embodiments of the invention.
  • Figure 6B is a flow chart outlining a method for calculating the adaptive filter for the second waveform and an iteration loop to update the reference power profile.
  • Figure 7 is a flowchart outlining a checking procedure for two waveforms according to some embodiments of the invention.
  • Figure 8 shows a Gaussian shaped power profile of true power, SES power and MF power.
  • Figure 9A shows a graph of a trapezoid shape profile for both true and SES power according to some embodiments of the invention.
  • Figure 9B shows a graph of the bias and standard deviation of SES power according to some embodiments of the invention.
  • Figure 1 OA shows a graph of received reflectivity for both MF and SES according to some
  • Figure 1 OB shows a graph of the bias and standard deviation of SES power according to some embodiments of the invention.
  • Figure 1 1 A compares SNR profiles from MF and SES systems according to some embodiments of the invention.
  • Figure 1 IB shows the SNR difference between MF and SES shown in Figure 1 1A.
  • Figures 12A and 12B show the comparison of PPI data for true data, MF data and SES data using various embodiments described herein.
  • Figure 13 A shows an example of a first waveform according to some embodiments of the invention.
  • Figure 13B shows an envelope and normalized phase of the first waveform shown in Figure 13A.
  • Figure 14A shows an example of a second waveform according to some embodiments of the invention.
  • Figure 14B shows an envelope and normalized phase of the second waveform shown in Figure 13 A.
  • Sensitivity is a critical aspect of any radar system. It is especially important for weather radars because such systems not only detect atmospheric patterns but often need to precisely measure weak precipitation echoes.
  • pulse compression techniques for weather radars is not widely used, for low power systems it can be beneficial.
  • conventional matched or mismatched filters used along with pulse compression techniques have some constraints that partly downgrade the sensitivity.
  • Embodiments of the invention broadly termed sensitivity enhancement systems (SES), can obtain a better sensitivity than the other systems. For instance, SES with dual- waveforms scheme is able to enhance the sensitivity about 10 dB. It also provides good performance in PSL, Doppler tolerant and dual-polarization parameter estimation. For region with strong echoes, results by the two waveforms can be combined to improve measurement accuracy.
  • Pulse compression techniques are used through embodiments of the invention. Such systems transmit long coded waveforms by a weather radar into the atmosphere. The echoes are received and compression techniques are applied to narrow the pulses. Coded pulses can be useful because they require less power while maintaining increased bandwidth. Moreover, the range resolution and/or sensitivity of weather radars can be improved using these embodiments.
  • the increased bandwidth can have a major drawbacks: system noise. Because noise is proportional to bandwidth the increase in bandwidth can also increase the noise. With the increased noise, system sensitivity decreases. Moreover, the use of a low pass filter cannot be used in ground based weather radars to mitigate noise because the natural properties of the wideband echoes and white noise increase filter loss ruining any gains from the codes.
  • a two waveform scheme can be used. That is, two waveforms can be transmitted separately in either time and/or frequency. Then, at the receiver an adaptive filter can be designed based on the self consistency of these two waveforms. For example, the adaptive filter can filter the second waveform based on the first waveform and/or the echo from the first waveform. As another example, the adaptive filter can filter each range gate based on the prior knowledge of the power profile from the alternate waveform. Using embodiments of the invention can improve the system sensitivity and the peak sidelobe level (PSL) of the return echoes.
  • PSL peak sidelobe level
  • Figure 2 shows a simplified block diagram of a computer system 200 that can be coupled with a radar system that implements various embodiments of the invention.
  • Computer system 200 can be used to perform any or all the steps shown in Figure 6 and/or Figure 7.
  • computer system 200 can perform any or all the mathematical computations disclosed here.
  • the drawing illustrates how individual system elements can be implemented in a separated or more integrated manner.
  • the computer 200 is shown having hardware elements that are electrically coupled via bus 226.
  • Network interface 252 can communicatively couple the computational device 200 with another computer, for example, through a network such as the Internet.
  • the hardware elements can include a processor 202, an input device 204, an output device 206, a storage device 208, a computer-readable storage media reader 210a, a communications system 214, a processing acceleration unit 216 such as a DSP or special- purpose processor, and memory 218.
  • the computer-readable storage media reader 210a can be further connected to a computer-readable storage medium 210b, the combination comprehensively representing remote, local, fixed, and/or removable storage devices plus storage media for temporarily and/or more permanently containing computer-readable information.
  • Radar interface 250 is coupled with bus 226.
  • radar interface 250 can be any type of communication interface.
  • radar interface 250 can be a USB interface, UART interface, serial interface, parallel interface, etc.
  • Radar interface 250 can be configured to couple directly with any type of radar system such as a dual polarization radar system.
  • the computer system 200 also comprises software elements, shown as being currently located within working memory 220, including an operating system 224 and other code 222, such as a program designed to implement methods and/or processes described herein.
  • other code 222 can include software that provides instructions for receiving user input a dual polarization radar system and manipulating the data according to various embodiments disclosed herein.
  • other code 222 can include software that can predict or forecast weather events, and/or provide real time weather reporting and/or warnings. It will be apparent to those skilled in the art that substantial variations can be used in accordance with specific requirements. For example, customized hardware might also be used and/or particular elements might be implemented in hardware, software (including portable software, such as applets), or both. Further, connection to other computing devices such as network input/output devices can be employed.
  • a pulse compression radar system can have a chirp frequency of F s . The sampling time is then
  • T s — .
  • Figure 3 shows a signal transmission model where both precipitation range profile and transmitted waveforms are sampled at frequency F s .
  • w N _ l is the N-length vector of the sampled waveform
  • ISL integrated sidelobe level
  • PSL peak sidelobe level
  • the minimization process gives a closed form solution for the case of minimum ISL.
  • a minimum ISL filter provides sufficiently low PSL. This design can be suitable for the first waveform of SES, in some embodiments, where the need of PSL is more important than the achieved resolution.
  • the reflectivity is estimated from the received power at the shifted reference plane, as shown in Figure 4.
  • the reflectivity can be given by,
  • This analysis does not account for Doppler shift; i.e. it sets all Doppler shifts of samples (range gate volumes) to zeros.
  • radial Doppler of weather echoes is not as high as in case of military targets such as aircrafts it still affects the PSL performance of the receiver filter.
  • weather radar systems need to measure precipitation echoes accurately. A strong, moving fast storm may heavily contaminate nearby weak cells due to the sidelobe problem. Therefore, when designing system, the signal Doppler needs to be taken into account.
  • the Doppler phase shift over a period of Ts is .
  • the Doppler phase shift of the signal at gate (n+k)* has impact on the covariance matrix R yy .
  • Embodiments of the invention can employ a dual- waveform scheme.
  • Knowledge about the first signal can be used to derive a second signal that can provide increased sensitivity.
  • the knowledge about the signal that can be used by the SES estimator can include the signal power and the signal Doppler.
  • Figure 5 A shows a dual-waveform scheme where the first waveform, Bi, is separated in time from waveform B 2 .
  • Figure 5B shows a dual-waveform scheme where the first waveform, Bi, is separated in frequency from waveform B 2 .
  • the two waveforms can be separated in both time an frequency.
  • the observed volume can be perfectly matched. If the two waveforms are transmitted at different times, the time difference can be selected to be small enough to ensure that the precipitation volume is statistically stationary. For example, when the two waveforms are transmitted in a sequence, as shown in Figure 5A; the difference in transmission time between the two waveforms can be equal to the integration time for the first waveform. This can be of the order of ms. With that time apart, precipitation targets can be assumed to be unchanged.
  • the first waveform can be used to estimate detailed knowledge about the signal while the second waveform can be used to utilize that information to improve the system sensitivity.
  • the second waveform for example, can be designed with native resolution (i.e. inverse of the bandwidth) smaller than the practical resolution of the first waveform. By choosing adequate waveforms, embodiments of the invention can improve the system sensitivity efficiently.
  • the second waveform estimator can use some information about the signal of interest.
  • the SES filter can be adaptive to the signal level. That matching property can be important since it always provides better signal to noise ratio (SNR).
  • SNR signal to noise ratio
  • the conventional match filter when applied to weather radar is not really the match filter since precipitation targets are volume targets, received signal is not a time-frequency shifted version of the transmitted waveform.
  • the SES waveforms can be designed to transmit in time or in frequency domain.
  • the two waveforms can be selected to transmit after each other in time.
  • both waveforms can use the whole available system bandwidth.
  • the two waveforms can be located at different frequencies within that band. Volume matching in this case can be good and/or dwell time can be reduced by half compared to the first case.
  • Figure 6 is a flow chart outlining a method for selecting the first and second waveforms.
  • the selection of waveform parameters described below is example only. Various system specification and/or requirements can change these parameters; for example, the transmitter duty circle.
  • the frequency and/or bandwidth of the first and second waveforms are chosen. In some embodiments, the bandwidth of the second waveform can be selected to be two to four times less than the bandwidth of the first waveform.
  • the duration of the waveforms is determined. In some embodiments, the first waveform duration can be set to be equal to or longer than the second waveform. Again, the selection depends on system specifications and/or design domains (e.g. waveforms can have either or both time diversity or frequency diversity).
  • the second waveform filter can require N 2 samples before and after the wanted gate (where N 2 is the number of chirps within the second waveform). Increasing the length of the second waveform (N 2 ) can lessen the number of gate where the filter can be applied.
  • the first waveform can be designed using any advanced method.
  • the goal is to obtain the best performance in terms of resolution and PSL. This can be done by assigning pulse codes to the first waveform using any known pulse compression technique.
  • the range resolution of the first waveform can be computed from the effective bandwidth of the impulse response of the first waveform.
  • the second waveform bandwidth can be determined. For example, it can be selected such as the corresponding range resolution (i.e. inverse of the bandwidth) is a multiple of the first waveform resolution (as calculated in block 615). Depending on the requirement of the final resolution; the multiplication factor can be selected appropriately.
  • the second waveform duration can be determined at block 630.
  • the second waveform can be designed.
  • Figure 6B is a flow chart outlining a method for calculating the adaptive filter for the second waveform according to some embodiments of the invention. This can be used to update the reference power profile.
  • the signal power profile and Doppler profile can be estimated from the first waveform using an ISL filter.
  • the first waveform can be filtered using an ISL filter at block 650. From this filtered data, the signal power profile and/or the Doppler profile can be computed at block 655. These profiles can then be used as inputs to compute filter coefficients for the second waveform. That is, an adaptive filter can be computed for the second waveform at each range gate at block 660. This adaptive filter can then be used to filter the second waveform. To further improve the sensitivity of the system, an iteration loop can be introduced. Outputs of the second waveform can be used as reference profiles of the filter design phase for the second waveform itself at block 670. Using an iteration loop can help increases the estimated standard deviation and/or possibly reduces the number of range gates where the filter can be applied.
  • the second waveform's output has higher sensitivity.
  • the two waveform estimates are usually good; one may combine them to lower measurement errors. For example, this can be accomplished by taking the average of both products.
  • an SES estimator can use the signal power as prior knowledge but its output may not converge to the true power.
  • a checking procedure based on the likelihood test can be used. The likelihood functions of two signal distributions can be compared: one with the first waveform power estimate and the other with the SES power from the second waveform.
  • Figure 7 shows a flowchart outlining this procedure.
  • the signal powers for both waveforms can be estimated.
  • the sample covariance matrix of the signal can be calculated for the second waveform along range:
  • the negative log-likelihood function values can be compared with power estimates from both waveforms. Powers that provide smaller value will be chosen.
  • L n TM"- l ⁇ de ⁇ R ⁇ )) + trace(R B raBge R J , J , "1 ) where R yy is shown above and p réelle is replaced by the two estimated powers.
  • power estimates corresponding to the log-likelihood function can be selected.
  • Some embodiments of the invention can be verified using pulse compression simulation data. For example, input profiles for the simulation are simulated precipitation range profiles and based on actual measurements from Collaborative Adaptive Sensing of the Atmosphere Integrative Project 1 (CASA IP 1). The simulation was done with the impact of Doppler included. Simulation input parameters are listed in the Table 1. The waveforms used in this simulation are shown in Figures 13 and 14.
  • a match filter was also applied to the simulation data for comparison purposes.
  • signals from a MF system are averaged in range to have the same resolution as provided by the SES.
  • a precipitation range profile is simulated as the sum of two Gaussian shaped echoes. The echo with narrow width is similar to an impulse while the second echo shows a high gradient in power.
  • Figure 8 shows the output of a match filter (MF) for the both waveforms.
  • Output from a match filter for the second waveform has relatively good sensitivity but is bad in terms of resolution and/or PSL, as expected for a waveform with the pulse compression ratio (BT) of only 33. Therefore, from this point, SES is compared to the MF output at the first waveform.
  • Figure 8 also shows that the SES can detect a weaker signal than the MF system.
  • the SES has PSL larger than 60 dB even at Doppler velocity of 25 m/s. These simulation results show about 8 dB improvement in sensitivity. If noise subtraction is applied, then a SES shows about 10 dB of improvement.
  • SES can improve sensitivity by introducing an iterative procedure to update the reference profiles of SES.
  • Figure 1 OA a the received reflectivity profiles for MF and SES of a Cyril radar profile at azimuth of 330 deg is shown. And Figure 10B the bias and standard deviation of the Cyril radar profile are also shown.
  • Figure 1 1A shows the SNR profiles from MF and SES.
  • Figure 1 IB shows the SNR difference between the two.
  • FIGs 12A and 12B PPI data from Cyril radar are used as the input for the SES simulation.
  • the averaged transmitted power for the SES is 100W and for MF system is 700 W.
  • Signal 14 spectral moments and dual-polarization parameters are estimated using a standard method with noise subtraction.
  • the SES with 100W transmitted power provides results comparable to the ones from MF system with 700W transmitted power. Therefore, in this case, the gain in sensitivity is about 7 times or 8.45 dB.
  • programmable processor can be configured by providing suitable executable code; a dedicated logic circuit can be configured by suitably connecting logic gates and other circuit elements; and so on.
  • Computer programs incorporating various features of the present invention may be encoded on various computer readable storage media; suitable media include magnetic disk or tape, optical storage media such as compact disk (CD) or digital versatile disk (DVD), flash memory, and the like.
  • Computer readable storage media encoded with the program code may be packaged with a compatible device or provided separately from other devices.
  • program code may be encoded and transmitted via wired optical, and/or wireless networks conforming to a variety of protocols, including the Internet, thereby allowing distribution, e.g., via Internet download.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

Sensitivity is a critical aspect of weather radar systems. Such systems not only detect atmospheric patterns but often need to precisely measure weak precipitation echoes. Embodiments of the invention use pulse compression techniques to increase the sensitivity of weather radar systems. These techniques can include sending two waveforms into a region of interest, where the second waveform is designed based on knowledge about the first waveform. Such systems can enhance the sensitivity of weather radars about 10 dB.

Description

SENSITIVITY ENHANCEMENT SYSTEM
CROSS-REFERENCE TO RELATED APPLICATIONS
This Patent Cooperation Treaty application claims the benefit of U.S. Provisional Application No. 61/253,407, entitled "SENSITIVITY ENHANCEMENT SYSTEM," filed October 20, 2009," U.S. Provisional Application No. 61/253,371, entitled "RESOLUTION ENHANCEMENT SYSTEM (RES) FOR NETWORKED RADARS," filed October 20, 2009, and Non-Provisional Application No.
12/908,657, entitled "SENSITIVITY ENHANCEMENT SYSTEM," filed on October 20, 2010. The disclosure of these applications are hereby incorporated herein by reference in their entirety for all purposes.
BACKGROUND
One of the fundamental objectives of meteorological radar systems is to sample the atmosphere surrounding the Earth to provide a quantitative measure of precipitation. Conventional meteorological radars provide coverage over long ranges, often on the order of hundreds of kilometers. A general schematic of how such conventional radar systems function is provided in Figure 1. In this illustration, a radar is disposed at the peak of a raised geographical feature such as a hill or mountain 104. The radar generates an electromagnetic beam 108 that disperses approximately linearly with distance, with the drawing showing how the width of the beam 108 thus increases with distance from the radar. Various examples of weather patterns 1 16 that might exist and which the system 100 attempts to sample are shown in different positions above the surface 112 of the Earth.
BRIEF SUMMARY
Sensitivity is a critical aspect of weather radar systems. Such systems not only detect atmospheric patterns but often need to precisely measure weak precipitation echoes. Embodiments of the invention use pulse compression techniques to increase the sensitivity of weather radar systems. These techniques can include sending two waveforms into a region of interest, where the second waveform is designed based on knowledge about the first waveform. Such systems can enhance the sensitivity of weather radars about 10 dB. Embodiments of the invention include a weather radar system that includes a transmitter, a receiver and a computer system. The transmitter can be configured to transmit a first signal and a second signal into a region of interest. The receiver can be configured to receive first echoes and second echoes scattered from the region of interest. The first echoes can correspond with the first transmitted signal and the second echoes can correspond with the second transmitted signal. The computer system can be coupled at least with the receiver and can be configured to filter the second echoes based on information about either or both the first waveform and the first echoes. In some embodiments, the first and second waveforms comprise pulse compression waveforms. In some embodiments, the first waveform and the second waveform can be transmitted at the same time and in different in frequency. In other embodiments, the first waveform and the second waveform can be transmitted at different times and they are different in time. In some embodiments, the second waveform can be adaptively filtered based on information about the first waveform. And in some embodiments, the second waveform can be filtered based on the power of the first waveform and/or the Doppler profiles of the first waveform. In some embodiments, an iterative loop can use the outputs of the second wave form as a reference profile to filter the second waveform itself. In some embodiments, the adaptive filter can comprise: F = (Sm HRz ~lSm + Rx ~l yl Sm HRz ~i .
In some embodiments, a method is provided for increasing the sensitivity of a radar system. The method can include transmitting a first waveform into the atmosphere from a weather radar system and transmitting a second waveform, different from the first waveform, into the atmosphere from the weather radar system. Echoes can be received from the atmosphere in response to the first waveform and the second waveform. And the echoes of the second waveform can be filtered based on information about either or both the first waveform and the echoes from the first waveform. The following detailed description, together with the accompanying drawings, will provide a better understanding of the nature and advantage of the embodiments disclosed herein.
Figure 1 provides a schematic illustration of the operation of a conventional radar system (reproduced from the National Academy of Sciences Report, "Flash flood forecasting over complex terrain").
Figure 2 shows a simplified block diagram of a computational system that can be used to implement embodiments of the invention.
Figure 3 shows an illustration of the discrete signal model according to some embodiments of the invention.
Figure 4 shows an illustration of the shifted reference plane for reflectivity calculations according to some embodiments of the invention.
Figure 5A shows a time-based sensitivity enhancement scheme according to some embodiments. Figure 5B shows a frequency-based sensitivity enhancement scheme according to some embodiments.
Figure 6A is a flow chart outlining a method for selecting the first and second waveforms according to some embodiments of the invention.
Figure 6B is a flow chart outlining a method for calculating the adaptive filter for the second waveform and an iteration loop to update the reference power profile.
Figure 7 is a flowchart outlining a checking procedure for two waveforms according to some embodiments of the invention.
Figure 8 shows a Gaussian shaped power profile of true power, SES power and MF power.
Figure 9A shows a graph of a trapezoid shape profile for both true and SES power according to some embodiments of the invention.
Figure 9B shows a graph of the bias and standard deviation of SES power according to some embodiments of the invention.
Figure 1 OA shows a graph of received reflectivity for both MF and SES according to some
embodiments of the invention. Figure 1 OB shows a graph of the bias and standard deviation of SES power according to some embodiments of the invention.
Figure 1 1 A compares SNR profiles from MF and SES systems according to some embodiments of the invention.
Figure 1 IB shows the SNR difference between MF and SES shown in Figure 1 1A. Figures 12A and 12B show the comparison of PPI data for true data, MF data and SES data using various embodiments described herein.
Figure 13 A shows an example of a first waveform according to some embodiments of the invention. Figure 13B shows an envelope and normalized phase of the first waveform shown in Figure 13A. Figure 14A shows an example of a second waveform according to some embodiments of the invention. Figure 14B shows an envelope and normalized phase of the second waveform shown in Figure 13 A. DETAILED DESCRIPTION
Sensitivity is a critical aspect of any radar system. It is especially important for weather radars because such systems not only detect atmospheric patterns but often need to precisely measure weak precipitation echoes. Although application of pulse compression techniques for weather radars is not widely used, for low power systems it can be beneficial. However, conventional matched or mismatched filters used along with pulse compression techniques have some constraints that partly downgrade the sensitivity. Embodiments of the invention, broadly termed sensitivity enhancement systems (SES), can obtain a better sensitivity than the other systems. For instance, SES with dual- waveforms scheme is able to enhance the sensitivity about 10 dB. It also provides good performance in PSL, Doppler tolerant and dual-polarization parameter estimation. For region with strong echoes, results by the two waveforms can be combined to improve measurement accuracy.
Pulse compression techniques are used through embodiments of the invention. Such systems transmit long coded waveforms by a weather radar into the atmosphere. The echoes are received and compression techniques are applied to narrow the pulses. Coded pulses can be useful because they require less power while maintaining increased bandwidth. Moreover, the range resolution and/or sensitivity of weather radars can be improved using these embodiments. The increased bandwidth, however, can have a major drawbacks: system noise. Because noise is proportional to bandwidth the increase in bandwidth can also increase the noise. With the increased noise, system sensitivity decreases. Moreover, the use of a low pass filter cannot be used in ground based weather radars to mitigate noise because the natural properties of the wideband echoes and white noise increase filter loss ruining any gains from the codes.
In some embodiments, a two waveform scheme can be used. That is, two waveforms can be transmitted separately in either time and/or frequency. Then, at the receiver an adaptive filter can be designed based on the self consistency of these two waveforms. For example, the adaptive filter can filter the second waveform based on the first waveform and/or the echo from the first waveform. As another example, the adaptive filter can filter each range gate based on the prior knowledge of the power profile from the alternate waveform. Using embodiments of the invention can improve the system sensitivity and the peak sidelobe level (PSL) of the return echoes.
Figure 2 shows a simplified block diagram of a computer system 200 that can be coupled with a radar system that implements various embodiments of the invention. Computer system 200 can be used to perform any or all the steps shown in Figure 6 and/or Figure 7. Moreover, computer system 200 can perform any or all the mathematical computations disclosed here. The drawing illustrates how individual system elements can be implemented in a separated or more integrated manner. The computer 200 is shown having hardware elements that are electrically coupled via bus 226. Network interface 252 can communicatively couple the computational device 200 with another computer, for example, through a network such as the Internet. The hardware elements can include a processor 202, an input device 204, an output device 206, a storage device 208, a computer-readable storage media reader 210a, a communications system 214, a processing acceleration unit 216 such as a DSP or special- purpose processor, and memory 218. The computer-readable storage media reader 210a can be further connected to a computer-readable storage medium 210b, the combination comprehensively representing remote, local, fixed, and/or removable storage devices plus storage media for temporarily and/or more permanently containing computer-readable information. Radar interface 250 is coupled with bus 226. In some embodiments, radar interface 250 can be any type of communication interface. For example, radar interface 250 can be a USB interface, UART interface, serial interface, parallel interface, etc. Radar interface 250 can be configured to couple directly with any type of radar system such as a dual polarization radar system.
The computer system 200 also comprises software elements, shown as being currently located within working memory 220, including an operating system 224 and other code 222, such as a program designed to implement methods and/or processes described herein. In some embodiments, other code 222 can include software that provides instructions for receiving user input a dual polarization radar system and manipulating the data according to various embodiments disclosed herein. In some embodiments, other code 222 can include software that can predict or forecast weather events, and/or provide real time weather reporting and/or warnings. It will be apparent to those skilled in the art that substantial variations can be used in accordance with specific requirements. For example, customized hardware might also be used and/or particular elements might be implemented in hardware, software (including portable software, such as applets), or both. Further, connection to other computing devices such as network input/output devices can be employed. A pulse compression radar system can have a chirp frequency of Fs. The sampling time is then
1 cT
Ts =— . The range resolution correspond to the sub-pulse is r =— - , where c is the speed of light in
Fs 2
a vacuum. For example, a system with a 5 MHz chirp gives a pulse range resolution of 30 m. Figure 3 shows a signal transmission model where both precipitation range profile and transmitted waveforms are sampled at frequency Fs. The range profile can then be represented by a vector of contiguous samples x = [x0 , xl , ... , xM ,■■ ·] , where x, is the signal from the ith range gate. The received signal is a convolution of the medium and the transmitted waveform. If w = [w0 , wl , ... , wN_l ] is the N-length vector of the sampled waveform, then the received signal at the antenna can be expressed as y = x * w + 7] , where (*) denotes the convolution operator and η is the noise vector.
The convolution of y can be written in matrix form,
Figure imgf000008_0001
For n > N-l we define a processing window [n-N+1, n+N-1] as,
Figure imgf000008_0002
Or in short notation,
Where ηκ is the noise vector within the processing window. It can be assumed that
2 2
ηκ ~ N(0, <7N , IB ) with σΝ as the noise power and IB is the identity matrix.
Minimization of integrated sidelobe level (ISL) is an efficient technique to design a mismatched receiver filter. ISL trades range resolution to peak sidelobe level (PSL). Given a signal model where the input signal is an impulse, and the output signal is convolution of the transmit waveform and the receiver filter; by pre-defining output resolution, compressed peaks are removed and the remainders are sidelobes. The minimization process gives a closed form solution for the case of minimum ISL. Though not providing the best range resolution for the output, a minimum ISL filter provides sufficiently low PSL. This design can be suitable for the first waveform of SES, in some embodiments, where the need of PSL is more important than the achieved resolution. For example, minimum ISL receiver filter for a non-linear piecewise FM waveform with B = 4 MHz, T = 40 μ8 can provide an output with 90m resolution and PSL less than -60 dB. The reflectivity is estimated from the received power at the shifted reference plane, as shown in Figure 4. The reflectivity can be given by,
Z„ = C'R2P r,ef '
In the above equation Pref is the received power at the reference port, R is the radar
Range, and C' is a constant given by,
at the output of the receiver by and Gr is the receiver gain. Hence, the
Figure imgf000009_0001
equivalent reflectivity can be computed from the receiver output power,
Z„ = CR2Pn
with
Figure imgf000009_0002
Figure imgf000009_0003
The unit of Ze is mrn r 1. In practical, it is expressed in decibel scale (dBZ). The radar equation can now be written as,
Ze [dBZ] = P0 [dBm] + C[dB] + 20 log(R[km])
The notations used in the above equations are explained in Bringi and Chandrasekar (2001).
The minimum detectable Ze at a given range R (km) is specified when the signal to noise ratio is unity, i.e. P0 = PN = kTB where B is the receiver equivalent noise bandwidth. Now, min(Ze )[dBZ] = \0 log(kTB) + C[dB] + 20 log(R[km])
From the above equations, it can be seen that there are several ways to improve the system sensitivity. For example, increasing the peak/average transmit power is an intuitive way. Transmitting signal with high power lets the radar system able to see weak echoes. However, arbitrary high power RF transmitters/am lifiers are not always available and are very expensive. The alternate approach is to design a receiver filter that can suppress noise but preserve signal power. Given the fact that pulse compression signal is wideband signal and has spectrum like white noise, it is easily to prove that using a conventional filter (e.g. LFP) to remove noise will also cut off a part of signal. Therefore the filter loss lr will increase. The system sensitivity cannot be improved by this technique. But embodiments described herein can provide an increase sensitivity.
For precipitation targets, signals from different range gates are zero-mean and uncorrected. They are also independent of noise. The covariance matrix of the measured signal can be represented as,
Figure imgf000010_0001
where p„+t is the signal power at the (n+k) gate. W* is a shifted version of W by k elements and the remainder is zero-padded, denoted by
Figure imgf000010_0002
k). If k is positive, the values of W are shifted down and right. If k is negative, the values of W are shifted up and left. For example,
0 0
1,1 l,N-l
Wx = circ(W,l) = and
0 w N-1,1 w N-lJf-l
Figure imgf000010_0003
W_! = circ( W -l) :
W N,2 WN,N 0
0 0
For m < N- 1, denote Xm = [xn_m, xn_m+i , -, xn+m_i,xn+m]T. We have
Figure imgf000010_0004
Now, derive the estimator of xm can be derived that is conditioned in the observed vector yn. The prior distribution only depends on the signal power. By definition, xm = ar§ „ max n (y„ I x m )/* (χ Μ ) The distributions of signals are multivariate normal,
Figure imgf000011_0001
(2,r det(Rzz ) where Rxx is shown above, z = y„ - S xm and;
Figure imgf000011_0002
Sm = [N x (2m + l)] matrix. From these equations we can determine solve for the minima to obtain the estimator for
*m = (Smff Rzz 1 Sm + R ^m^zz »
Now, returning to the form xm = yB , where
Figure imgf000011_0003
is the adaptive filter for the second SES waveform.
This analysis does not account for Doppler shift; i.e. it sets all Doppler shifts of samples (range gate volumes) to zeros. Although radial Doppler of weather echoes is not as high as in case of military targets such as aircrafts it still affects the PSL performance of the receiver filter. Especially, weather radar systems need to measure precipitation echoes accurately. A strong, moving fast storm may heavily contaminate nearby weak cells due to the sidelobe problem. Therefore, when designing system, the signal Doppler needs to be taken into account.
Let fi be the Doppler corresponding to signal at sub-pulse gate i, the Doppler phase shift over a period of Ts is . Along with the power, the Doppler phase shift of the signal at gate (n+k)* has impact on the covariance matrix Ryy. To account for that impact, the transmitted waveform matrix Wk has to be replaced by its Doppler-modulated version: ,→Wi mod =
Figure imgf000012_0001
where W! is the Doppler modulated version of W by the phase shift 6i of sub-gate i.
Embodiments of the invention can employ a dual- waveform scheme. Knowledge about the first signal can be used to derive a second signal that can provide increased sensitivity. The knowledge about the signal that can be used by the SES estimator can include the signal power and the signal Doppler.
Figure 5 A shows a dual-waveform scheme where the first waveform, Bi, is separated in time from waveform B2. And Figure 5B shows a dual-waveform scheme where the first waveform, Bi, is separated in frequency from waveform B2. In yet other configurations, the two waveforms can be separated in both time an frequency.
In embodiments where the two waveforms are transmitted simultaneously at different frequencies, the observed volume can be perfectly matched. If the two waveforms are transmitted at different times, the time difference can be selected to be small enough to ensure that the precipitation volume is statistically stationary. For example, when the two waveforms are transmitted in a sequence, as shown in Figure 5A; the difference in transmission time between the two waveforms can be equal to the integration time for the first waveform. This can be of the order of ms. With that time apart, precipitation targets can be assumed to be unchanged. In some embodiments, the first waveform can be used to estimate detailed knowledge about the signal while the second waveform can be used to utilize that information to improve the system sensitivity. The second waveform, for example, can be designed with native resolution (i.e. inverse of the bandwidth) smaller than the practical resolution of the first waveform. By choosing adequate waveforms, embodiments of the invention can improve the system sensitivity efficiently.
This can be accomplished because the second waveform has smaller bandwidth so the noise entering to the system is reduced. And the second waveform estimator can use some information about the signal of interest. Although the estimated signal distribution from the first waveform may include some uncertainty, the SES filter can be adaptive to the signal level. That matching property can be important since it always provides better signal to noise ratio (SNR). For comparison, the conventional match filter when applied to weather radar is not really the match filter since precipitation targets are volume targets, received signal is not a time-frequency shifted version of the transmitted waveform.
Depending on the specification of the wanted system, the SES waveforms can be designed to transmit in time or in frequency domain. For a system with narrow available bandwidth, the two waveforms can be selected to transmit after each other in time. In such embodiments, both waveforms can use the whole available system bandwidth. In a system with bandwidth large enough, the two waveforms can be located at different frequencies within that band. Volume matching in this case can be good and/or dwell time can be reduced by half compared to the first case.
Figure 6 is a flow chart outlining a method for selecting the first and second waveforms. The selection of waveform parameters described below is example only. Various system specification and/or requirements can change these parameters; for example, the transmitter duty circle. At block 605 the frequency and/or bandwidth of the first and second waveforms are chosen. In some embodiments, the bandwidth of the second waveform can be selected to be two to four times less than the bandwidth of the first waveform. At block 610, the duration of the waveforms is determined. In some embodiments, the first waveform duration can be set to be equal to or longer than the second waveform. Again, the selection depends on system specifications and/or design domains (e.g. waveforms can have either or both time diversity or frequency diversity). In some embodiments, the longer the second waveform the better the sensitivity that can be achieved. The second waveform filter can require N2 samples before and after the wanted gate (where N2 is the number of chirps within the second waveform). Increasing the length of the second waveform (N2) can lessen the number of gate where the filter can be applied.
At block 615, the first waveform can be designed using any advanced method. The goal is to obtain the best performance in terms of resolution and PSL. This can be done by assigning pulse codes to the first waveform using any known pulse compression technique. At block 620 the range resolution of the first waveform can be computed from the effective bandwidth of the impulse response of the first waveform.
At block 625, the second waveform bandwidth can be determined. For example, it can be selected such as the corresponding range resolution (i.e. inverse of the bandwidth) is a multiple of the first waveform resolution (as calculated in block 615). Depending on the requirement of the final resolution; the multiplication factor can be selected appropriately. Next, the second waveform duration can be determined at block 630.Then, at block 635, the second waveform can be designed. Figure 6B is a flow chart outlining a method for calculating the adaptive filter for the second waveform according to some embodiments of the invention. This can be used to update the reference power profile. The signal power profile and Doppler profile can be estimated from the first waveform using an ISL filter. That is, the first waveform can be filtered using an ISL filter at block 650. From this filtered data, the signal power profile and/or the Doppler profile can be computed at block 655. These profiles can then be used as inputs to compute filter coefficients for the second waveform. That is, an adaptive filter can be computed for the second waveform at each range gate at block 660. This adaptive filter can then be used to filter the second waveform. To further improve the sensitivity of the system, an iteration loop can be introduced. Outputs of the second waveform can be used as reference profiles of the filter design phase for the second waveform itself at block 670. Using an iteration loop can help increases the estimated standard deviation and/or possibly reduces the number of range gates where the filter can be applied.
With the SES, we have two products form the two waveforms. The second waveform's output has higher sensitivity. In case of strong echoes, the two waveform estimates are usually good; one may combine them to lower measurement errors. For example, this can be accomplished by taking the average of both products. In addition, an SES estimator can use the signal power as prior knowledge but its output may not converge to the true power. To mitigate this problem, a checking procedure based on the likelihood test can be used. The likelihood functions of two signal distributions can be compared: one with the first waveform power estimate and the other with the SES power from the second waveform. Figure 7 shows a flowchart outlining this procedure.
At block 705 the signal powers for both waveforms can be estimated. At block 710, the sample covariance matrix of the signal can be calculated for the second waveform along range:
∑hits jf
1 ¥ η Ύ n
hits
where hits is number of samples for the second waveform. At block 715, the negative log-likelihood function values can be compared with power estimates from both waveforms. Powers that provide smaller value will be chosen.
Ln™"- = l^de^R^ )) + trace(RB raBgeRJ,J,"1 ) where Ryy is shown above and p„ is replaced by the two estimated powers. At block 720, power estimates corresponding to the log-likelihood function can be selected. Some embodiments of the invention can be verified using pulse compression simulation data. For example, input profiles for the simulation are simulated precipitation range profiles and based on actual measurements from Collaborative Adaptive Sensing of the Atmosphere Integrative Project 1 (CASA IP 1). The simulation was done with the impact of Doppler included. Simulation input parameters are listed in the Table 1. The waveforms used in this simulation are shown in Figures 13 and 14.
Figure imgf000015_0001
A match filter (MF) was also applied to the simulation data for comparison purposes. In Figures 8 to 1 1, signals from a MF system are averaged in range to have the same resolution as provided by the SES. In Figure 8 a precipitation range profile is simulated as the sum of two Gaussian shaped echoes. The echo with narrow width is similar to an impulse while the second echo shows a high gradient in power.
Figure 8 shows the output of a match filter (MF) for the both waveforms. Output from a match filter for the second waveform has relatively good sensitivity but is bad in terms of resolution and/or PSL, as expected for a waveform with the pulse compression ratio (BT) of only 33. Therefore, from this point, SES is compared to the MF output at the first waveform. Figure 8 also shows that the SES can detect a weaker signal than the MF system. In addition the SES has PSL larger than 60 dB even at Doppler velocity of 25 m/s. These simulation results show about 8 dB improvement in sensitivity. If noise subtraction is applied, then a SES shows about 10 dB of improvement. In addition, SES can improve sensitivity by introducing an iterative procedure to update the reference profiles of SES.
A more detailed analysis on bias and standard deviation of power estimate was done on a trapezoid profile with gradient of 40 dB/km. Figure 9A compares the retrieve power profile, and Figure 9B shows the bias and the standard deviation of SES. Even in this extreme case, the SES provides a good power estimate with bias less than 1 dB at most locations and standard deviation of less than 2 dB .
SES has also been tested with simulation of real profiles measured by CASA IP1 Cyril radar during a tornado event that happened in Oklahoma on February 10, 2009. The only modification is that the power profiles were lowered by 20 dB for sensitivity testing purpose. All other profiles are kept as is. Figures 9A and 9B, are examples for one profile at azimuth of 330 deg. In Figure 10, due to less sensitivity, MF system has more bias compared to the SES. To quantify how much gain the SES enhances over MF system, the signal-to-noise ratios (SNR) of the two systems are calculated. For the same transmitted power and pulse width, signal from the SES has a higher SNR compared to one from MF system. For example, an 8.9 db average improvement is shown in Figure 1 IB, where the pulse width is 40 s.
In Figure 1 OA a the received reflectivity profiles for MF and SES of a Cyril radar profile at azimuth of 330 deg is shown. And Figure 10B the bias and standard deviation of the Cyril radar profile are also shown. Figure 1 1A shows the SNR profiles from MF and SES. And Figure 1 IB shows the SNR difference between the two.
In Figures 12A and 12B PPI data from Cyril radar are used as the input for the SES simulation. The averaged transmitted power for the SES is 100W and for MF system is 700 W. Signal 14 spectral moments and dual-polarization parameters are estimated using a standard method with noise subtraction. As can be observed, the SES with 100W transmitted power provides results comparable to the ones from MF system with 700W transmitted power. Therefore, in this case, the gain in sensitivity is about 7 times or 8.45 dB.
Circuits, logic modules, processors, and/or other components may be described herein as being
"configured" to perform various operations. Those skilled in the art will recognize that, depending on implementation, such configuration can be accomplished through design, setup, interconnection, and/or programming of the particular components and that, again depending on implementation, a configured component might or might not be reconfigurable for a different operation. For example, a
programmable processor can be configured by providing suitable executable code; a dedicated logic circuit can be configured by suitably connecting logic gates and other circuit elements; and so on.
While many of the figures are described with reference to particular blocks, it is to be understood that the blocks are defined for convenience of description and are not intended to imply a particular physical arrangement of component parts. Further, the blocks need not correspond to physically distinct components. While the embodiments described above may make reference to specific hardware and software components, those skilled in the art will appreciate that different combinations of hardware and/or software components may also be used and that particular operations described as being implemented in hardware might also be implemented in software or vice versa.
Computer programs incorporating various features of the present invention may be encoded on various computer readable storage media; suitable media include magnetic disk or tape, optical storage media such as compact disk (CD) or digital versatile disk (DVD), flash memory, and the like. Computer readable storage media encoded with the program code may be packaged with a compatible device or provided separately from other devices. In addition program code may be encoded and transmitted via wired optical, and/or wireless networks conforming to a variety of protocols, including the Internet, thereby allowing distribution, e.g., via Internet download.

Claims

WHAT IS CLAIMED IS:
1. A weather radar system comprising:
a transmitter configured to transmit a first signal and a second signal into a region of interest;
a receiver configured to receive first echoes and second echoes scattered from the region of interest, wherein the first echoes correspond with the first transmitted signal and the second echoes correspond with the second transmitted signal; and
a computer system coupled at least with the receiver, wherein the computer system is configured to filter the second echoes based on information about either or both the first waveform and the first echoes.
2. The weather radar system according to claim 1, wherein the first and second waveforms comprise pulse compression waveforms.
3. The weather radar system according to claim 1, wherein the first waveform and the second waveform are transmitted at the same time and they are different in frequency.
4. The weather radar system according to claim 1, wherein the first waveform and the second waveform are transmitted at different times and they are different in time.
5. The weather radar system according to claim 1, wherein the second waveform is adaptively filtered based on the first waveform.
6. The weather radar system according to claim 1, wherein the second waveform is filtered based on the power of the first waveform.
7 . The weather radar system according to claim 1 , wherein the second waveform is filtered based on the Doppler profiles of the first waveform.
8. The weather radar system according to claim 1, wherein the filtering filters the second waveform using F = (Sm HRz ~lSm + xx "1)"1 Sm ffRzz "1 .
9. The weather radar system according to claim 1, wherein the computer system is configured to iteratively use the outputs of the second waveform as a reference profile to compute the filter for the second waveform itself.
10. The method according to claim 1, wherein the computer system uses an iteration loop that uses the outputs of the second waveform as reference profiles to compute the filter for the second waveform itself.
1 1. A method for increasing the sensitivity of a radar system, the method comprising:
transmitting a first waveform into the atmosphere from a weather radar system;
transmitting a second waveform, different from the first waveform, into the atmosphere from the weather radar system;
receiving echoes from the atmosphere in response to the first waveform and the second waveform; and
filtering echoes of the second waveform based on information about either or both the first waveform and the echoes from the first waveform.
12. The method according to claim 1 1, wherein the first waveform and the second waveform are transmitted at the same time and they are different in frequency.
13. The method according to claim 1 1, wherein the first waveform and the second waveform are transmitted at different times and they are different in time.
14. The method according to claim 1 1, wherein the bandwidth of the second waveform is less than the bandwidth of the first waveform.
15. The method according to claim 1 1, wherein the filtering filters the second waveform using © the filter: F =
Figure imgf000019_0001
.
16. The method according to claim 1 1, wherein the first and second wave comprise pulse compression waveforms.
17. A method for designing waveforms for a dual- waveform weather radar system, the method comprising:
determining the frequency and bandwidth of the first waveform and the second waveform;
determining the duration of the first waveform and the second waveform; assign pulse codes to the first waveform;
compute the range resolution of the first waveform; determine the bandwidth of the second waveform from the range resolution of the first waveform; and
assign pulse codes to the second waveform.
18. The method according to claim 17, wherein the bandwidth of the second waveform is less than the bandwidth of the first waveform.
19. The method according to claim 17wherein the bandwidth of the second waveform is selected such that the range resolution of the second waveform is an integer multiple of the range resolution of the first waveform, wherein the range resolution is the inverse of the bandwidth.
20. The method according to claim 17 further comprising; transmitting the first waveform and the second waveform into a region of interest.
PCT/US2010/053424 2009-10-20 2010-10-20 Sensitivity enhancement system WO2011050097A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US25337109P 2009-10-20 2009-10-20
US25340709P 2009-10-20 2009-10-20
US61/253,371 2009-10-20
US61/253,407 2009-10-20
US12/908,657 US8274423B2 (en) 2009-10-20 2010-10-20 Sensitivity enhancement system
US12/908,657 2010-10-20

Publications (1)

Publication Number Publication Date
WO2011050097A1 true WO2011050097A1 (en) 2011-04-28

Family

ID=43900670

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2010/053424 WO2011050097A1 (en) 2009-10-20 2010-10-20 Sensitivity enhancement system

Country Status (2)

Country Link
US (1) US8274423B2 (en)
WO (1) WO2011050097A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103654844A (en) * 2012-09-26 2014-03-26 深圳市蓝韵实业有限公司 Doppler sound processing method and device
CN109358331A (en) * 2018-10-15 2019-02-19 成都信息工程大学 The real-time dynamic noise power detecting method of weather radar

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011050075A1 (en) 2009-10-20 2011-04-28 Colorado State University Research Foundation Resolution enhancement system for networked radars
US8525724B2 (en) * 2010-10-08 2013-09-03 University Of Massachusetts System and method for generating derived products in a radar network
US9097805B2 (en) * 2011-04-07 2015-08-04 Baron Services, Inc. Systems and methods for calibrating dual polarization radar systems
US9041598B2 (en) * 2011-06-22 2015-05-26 Raytheon Company Non Doppler-tolerant pulse compression in radar systems
US20200256955A1 (en) * 2019-02-07 2020-08-13 Analog Devices, Inc. System and method for adaptive illumination in a lidar system

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5465413A (en) * 1993-03-05 1995-11-07 Trimble Navigation Limited Adaptive noise cancellation
US5583512A (en) * 1995-06-06 1996-12-10 Point Loma Industries, Inc. Optimal ambiguity function radar
US6522456B2 (en) * 2001-05-04 2003-02-18 Corning Applied Technologies, Inc. Dynamic optical filter
US20040264977A1 (en) * 2001-11-15 2004-12-30 Daniel Yap Method and apparatus for waveform generation
US7103026B2 (en) * 2000-10-27 2006-09-05 L-3 Communications Corporation Use of chip repetition to produce a flexible bandwidth DS-CDMA system
US20070046526A1 (en) * 2005-08-26 2007-03-01 Vaisala Oyj Method for using pulse compression in weather radar
US20070229347A1 (en) * 2006-04-04 2007-10-04 Honeywell International Inc. Methods and systems for avoidance of partial pulse interference in radar
US20080059098A1 (en) * 2006-09-05 2008-03-06 Yu Zhang Method and apparatus for suppressing noise in a doppler system
US20090237292A1 (en) * 2008-02-22 2009-09-24 Thales Nederland B.V. Method for measuring the radial velocity of a target with a doppler radar

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6377204B1 (en) 1999-12-13 2002-04-23 University Corporation For Atmospheric Research Radar system having multiple simultaneously transmitted beams operating in a scanning mode to identify scatterers
US7274326B2 (en) * 2005-02-24 2007-09-25 Honeywell International Inc. System for digital multi-bandwidth intermediate frequency processing and tracking
US7248207B2 (en) 2005-03-29 2007-07-24 Information Systems Laboratories, Inc. System and method for sidelobe reduction using point spread function expansion
US7202812B2 (en) * 2005-06-03 2007-04-10 Raytheon Company Technique for compensation of transmit leakage in radar receiver
US7518544B2 (en) 2006-07-13 2009-04-14 Colorado State University Research Foundation Retrieval of parameters in networked radar environments
US8049663B2 (en) * 2008-05-21 2011-11-01 Raytheon Company Hardware compensating pulse compression filter system and method
WO2011050075A1 (en) 2009-10-20 2011-04-28 Colorado State University Research Foundation Resolution enhancement system for networked radars

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5465413A (en) * 1993-03-05 1995-11-07 Trimble Navigation Limited Adaptive noise cancellation
US5583512A (en) * 1995-06-06 1996-12-10 Point Loma Industries, Inc. Optimal ambiguity function radar
US7103026B2 (en) * 2000-10-27 2006-09-05 L-3 Communications Corporation Use of chip repetition to produce a flexible bandwidth DS-CDMA system
US6522456B2 (en) * 2001-05-04 2003-02-18 Corning Applied Technologies, Inc. Dynamic optical filter
US20040264977A1 (en) * 2001-11-15 2004-12-30 Daniel Yap Method and apparatus for waveform generation
US20070046526A1 (en) * 2005-08-26 2007-03-01 Vaisala Oyj Method for using pulse compression in weather radar
US20070229347A1 (en) * 2006-04-04 2007-10-04 Honeywell International Inc. Methods and systems for avoidance of partial pulse interference in radar
US20080059098A1 (en) * 2006-09-05 2008-03-06 Yu Zhang Method and apparatus for suppressing noise in a doppler system
US20090237292A1 (en) * 2008-02-22 2009-09-24 Thales Nederland B.V. Method for measuring the radial velocity of a target with a doppler radar

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103654844A (en) * 2012-09-26 2014-03-26 深圳市蓝韵实业有限公司 Doppler sound processing method and device
CN109358331A (en) * 2018-10-15 2019-02-19 成都信息工程大学 The real-time dynamic noise power detecting method of weather radar
CN109358331B (en) * 2018-10-15 2023-03-03 成都信息工程大学 Real-time dynamic noise power detection method for meteorological radar

Also Published As

Publication number Publication date
US20110102250A1 (en) 2011-05-05
US8274423B2 (en) 2012-09-25

Similar Documents

Publication Publication Date Title
EP2286511B1 (en) Dual-polarization radar processing system using time domain method
US8274423B2 (en) Sensitivity enhancement system
US8164512B2 (en) Gaussian model adaptive processing in the time domain
JP6830311B2 (en) Phase calibration of stepped chirp signals for synthetic aperture radar
Toth et al. Performance comparison of mutual automotive radar interference mitigation algorithms
US7652614B2 (en) Ground clutter mitigation using a parametric time domain method
Sun et al. A novel weighted mismatched filter for reducing range sidelobes
Zhang et al. Frequency-domain range sidelobe correction in stretch processing for wideband LFM radars
Mohr et al. Design and generation of stochastically defined, pulsed FM noise waveforms
Yu et al. Resolution enhancement technique using range oversampling
Alaee-Kerahroodi et al. Joint waveform and receive filter design for pulse compression in weather radar systems
Lim et al. Spectrum sharing in weather radar networked system: Design and experimentation
Nguyen et al. Sensitivity enhancement system for pulse compression weather radar
Toth et al. Slow-time mitigation of mutual interference in chirp sequence radar
Sun et al. Wavelet de‐noising Kalman filter‐based Global Navigation Satellite System carrier tracking in the presence of ionospheric scintillation
US9157985B1 (en) Signal agnostic matched filter parameter estimator
Betz et al. Receiver processing losses with bandlimiting and one-bit sampling
Song et al. Performance analysis for path attenuation estimation of microwave signals due to rainfall and beyond
Sokolov et al. Radio Channel Transmission of Signals with Variance Shift Keying
El-Fadl et al. Performance Analysis of Linear Frequency Modulated Pulse Compression Radars under Pulsed Noise Jamming
EP4443193A1 (en) Apparatus and method
EP4443192A1 (en) Apparatus and method
Hendy et al. Interference Localization and Mitigation in Synthetic Aperture Radars Using Variable Space-Frequency Filter
Curtis et al. The Impact of Reflectivity Gradients on the Performance of Range-Oversampling Processing
Cui et al. A deconvolution method to remove distortion caused by antenna radiation pattern from measurement

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10825620

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 10825620

Country of ref document: EP

Kind code of ref document: A1