WO2011049515A1 - Method and voice activity detector for a speech encoder - Google Patents

Method and voice activity detector for a speech encoder Download PDF

Info

Publication number
WO2011049515A1
WO2011049515A1 PCT/SE2010/051117 SE2010051117W WO2011049515A1 WO 2011049515 A1 WO2011049515 A1 WO 2011049515A1 SE 2010051117 W SE2010051117 W SE 2010051117W WO 2011049515 A1 WO2011049515 A1 WO 2011049515A1
Authority
WO
WIPO (PCT)
Prior art keywords
snr
noise
received frame
estimate
energy
Prior art date
Application number
PCT/SE2010/051117
Other languages
French (fr)
Inventor
Martin Sehlstedt
Original Assignee
Telefonaktiebolaget Lm Ericsson (Publ)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Telefonaktiebolaget Lm Ericsson (Publ) filed Critical Telefonaktiebolaget Lm Ericsson (Publ)
Priority to JP2012535163A priority Critical patent/JP2013508773A/en
Priority to EP10825286.7A priority patent/EP2491548A4/en
Priority to CA2778343A priority patent/CA2778343A1/en
Priority to AU2010308598A priority patent/AU2010308598A1/en
Priority to US13/502,535 priority patent/US9401160B2/en
Priority to CN201080057984.7A priority patent/CN102804261B/en
Publication of WO2011049515A1 publication Critical patent/WO2011049515A1/en
Priority to IN3323DEN2012 priority patent/IN2012DN03323A/en
Priority to US15/182,135 priority patent/US20160322067A1/en

Links

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L25/00Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00
    • G10L25/78Detection of presence or absence of voice signals
    • G10L25/87Detection of discrete points within a voice signal
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L25/00Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00
    • G10L25/78Detection of presence or absence of voice signals
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L25/00Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00
    • G10L25/03Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00 characterised by the type of extracted parameters
    • G10L25/18Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00 characterised by the type of extracted parameters the extracted parameters being spectral information of each sub-band
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L25/00Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00
    • G10L25/48Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00 specially adapted for particular use
    • G10L25/51Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00 specially adapted for particular use for comparison or discrimination
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L25/00Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00
    • G10L25/78Detection of presence or absence of voice signals
    • G10L2025/783Detection of presence or absence of voice signals based on threshold decision
    • G10L2025/786Adaptive threshold
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L21/00Speech or voice signal processing techniques to produce another audible or non-audible signal, e.g. visual or tactile, in order to modify its quality or its intelligibility
    • G10L21/02Speech enhancement, e.g. noise reduction or echo cancellation
    • G10L21/0208Noise filtering

Definitions

  • the embodiments of the present invention relates to a method and a voice activity detector, and in particular to threshold adaptation for the voice activity detector.
  • discontinuous transmission to increase the efficiency of the encoding.
  • DTX discontinuous transmission
  • the reason is that conversational speech contains large amounts of pauses embedded in the speech, e.g. while one person is talking the other one is listening. So with DTX the speech encoder is only active about 50 percent of the time on average and the rest can be encoded using comfort noise. Comfort noise is an artificial noise generated in the decoder side and only resembles the characteristics of the noise on the encoder side and therefore requires less bandwidth.
  • Some example codecs that have this feature are the AMR NB (Adaptive Multi- Rate Narrowband) and EVRC (Enhanced Variable Rate CODEC). Note AMR NB uses DTX and EVRC uses variable rate (VBR), where a Rate Determination Algorithm (RDA) decides which data rate to use for each frame, based on a VAD (voice activity detection) decision.
  • VBR variable rate
  • RDA Rate Determination Algorithm
  • VAD Voice Activity Detector
  • Figure 1 shows an overview block diagram of a generalized VAD 180, which takes the input signal 100, divided into data frames, 5-30 ms depending on the implementation, as input and produces VAD decisions as output 160. I.e. a VAD decision 160 is a decision for each frame whether the frame contains speech or noise).
  • the generic VAD 180 comprises a background estimator 130 which provides sub-band energy estimates and a feature extractor 120 providing the feature sub-band energy. For each frame, the generic VAD 180 calculates features and to identify active frames the feature(s) for the current frame are compared with an estimate of how the feature "looks" for the background signal.
  • a primary decision, "vad_prim” 150 is made by a primary voice activity detector 140 and is basically just a comparison of the features for the current frame and the background features estimated from previous input frames, where a difference larger than a threshold causes an active primary decision.
  • a hangover addition block 170 is used to extend the primary decision based on past primary decisions to form the final decision, "vad_flag" 160.
  • An operation controller 1 10 may adjust the threshold(s) for the primary detector and the length of the hangover according to the characteristics of the input signal.
  • VAD detection There are a number of different features that can be used for VAD detection. The most basic feature is to look just at the frame energy and compare this with a threshold to decide if the frame is speech or not. This scheme works reasonably well for conditions where the SNR is high but not for low SNR, (signal-to-noise ratio) cases. In low SNR cases other metrics comparing the characteristics of the speech and noise signals must be used instead. For real-time implementations an additional requirement on VAD functionality is computational complexity and this is reflected in the frequent representation of subband SNR VADs in standard codecs, e.g. AMR NB, AMR WB (Adaptive Multi-Rate Wideband), EVRC, and G.718 (ITU-T recommendation embedded scalable speech and audio codec). These example codecs also use threshold adaptation in various forms. In general
  • background and speech level estimates which also are used for SNR estimation, can be based on decision feedback or an independent secondary VAD for the update.
  • level estimates is to use minimum and maximum input energy to track the background and speech respectively.
  • For the variability of the input noise it is possible to calculate the variance of prior frames over a sliding time window.
  • Another solution is to monitor the amount of negative input SNR, This is however based on the assumption that negative SNR only arises due to variations in the input noise. Sliding time window of prior frames implies that one creates a buffer with variables of interest (frame energy or sub-band energies) for a specified number of prior frames.
  • Non-stationary noise can be difficult for all VADs, especially under low SNR conditions, which results in a higher VAD activity compared to the actual speech and reduced capacity from a system perspective. I.e. frames not comprising speech are identified to comprise speech. Of the non-stationary noise, the most difficult noise for the VADs to handle is babble noise and the reason is that its characteristics are relatively close to the speech signal that the VAD is designed to detect. Babble noise is usually characterized both by the SNR relative to the speech level of the foreground speaker and the number of background talkers, where a common definition as used in subjective evaluations is that babble should have 40 or more background speakers.
  • babble noise may have spectral variation characteristics very similar to some music pieces that the VAD algorithm shall not suppress.
  • VADs based on subband SNR principle when the input signal is divided in a plurality of sub-bands, and the SNR is determined for each band, it has been shown that the introduction of a non-linearity in the subband SNR calculation, called significance thresholds, can improve VAD performance for conditions with non-stationary noise such as babble noise and office background noise.
  • the G.718 shows problems with tracking the background noise for some types of input noise, including babble type noise.
  • This causes problems with the VAD as accurate background estimates are essential for any type of VAD comparing current input with an estimated background.
  • a failsafe VAD meaning that when in doubt it is better for the VAD to signal speech input than noise input and thereby allowing for a large amount of extra activity.
  • This may, from a system capacity point view, be acceptable as long as only a few of the users are in situations with non-stationary background noise.
  • failsafe VAD may cause significant loss of system capacity. It is therefore becoming important to work on pushing the boundary between failsafe and normal VAD operation so that a larger class of non-stationary environments are handled using normal VAD operation.
  • VAD, hr f(N lol )
  • VAD réelle f ⁇ N tol E sp
  • VAD lhr f(SNR, N v )
  • VAD thr is the VAD threshold
  • N toI is the estimated noise energy
  • E is the estimated speech energy
  • SNR is the estimated signal to noise ratio
  • N v is the estimated noise variations based on negative SNR.
  • the object of embodiments of the present invention is to provide a mechanism that provides a VAD with improved performance.
  • a VAD threshold VAD lhr be a function of a total noise energy N to t, an SNR estimate and jV var wherein N var indicates the energy variation between different frames.
  • a method in a voice activity detector for determining whether frames of an input signal comprise voice is provided.
  • a frame of the input signal is received and a first SNR of the received frame is determined.
  • the determined first SNR is then compared with an adaptive threshold.
  • the adaptive threshold is at least based on total noise energy of a noise level, an estimate of a second SNR and on energy variation between different frames. Based on said comparison it is detected whether the received frame comprises voice.
  • a voice activity detector may be a primary voice activity detector being a part of a voice activity detector for determining whether frames of an input signal comprise voice.
  • the voice activity detector comprises an input section configured to receive a frame of the input signal.
  • the voice activity detector further comprises a processor configured to determine a first SNR of the received frame, and to compare the determined first SNR with an adaptive threshold.
  • the adaptive threshold is at least based on total noise energy of a noise level, an estimate of a second SNR and on energy variation between different frames.
  • the processor is configured to detect whether the received frame comprises voice based on said comparison.
  • a further parameter referred to as E d lp is introduced and VAD thr is hence determined at least based on the total noise energy N to t, the second SNR estimate, N var and E d LP .
  • E dyn LP is a smooth input dynamics measure indicative of energy dynamics of the received frame.
  • the adaptive threshold is a smooth input dynamics measure indicative of energy dynamics of the received frame.
  • N var or N var and E d I P when selecting VAD thr , is that it is possible to avoid increasing the VAD thr although the background noise is non-stationary.
  • a more reliable VAD threshold adaptation function can be achieved.
  • new combinations of features it is possible to better characterize the input noise and to adjust the threshold accordingly.
  • the improved VAD threshold adaptation according to embodiments of the present invention it is possible to achieve considerable improvement in handling of non- stationary background noise, and babble noise in particular, while maintaining the quality for speech input and for music type input in cases where music segments are similar to spectral variations found in babble noise.
  • FIG 1 shows a generic Voice Activity Detector (VAD) with background estimation according to prior art.
  • VAD Voice Activity Detector
  • Figure 2 illustrates schematically a voice activity detector according to embodiments of the present invention.
  • FIG. 3 is a flowchart of a method according to embodiments of the present invention. Detailed description
  • Subband SNR based VAD implies that the SNR is determined for each subband and a combined SNR is determined based on those SNRs.
  • the combined SNR may be a sum of all SNRs on different subbands.
  • This kind of sensitivity in a VAD is good for speech quality as the probability of missing a speech segment is small.
  • these types of energy variations are typical in non- stationary noise, e.g. babble noise, they will cause excessive VAD activity.
  • an improved adaptive threshold for voice activity detection is introduced.
  • a first additional feature N var is introduced which indicates the noise variation which is an improved estimator of variability of frame energy for noise input. This feature is used as a variable when the improved adaptive threshold is determined.
  • a first SNR which may be a combined SNR created by different subband SNRs, is compared with the improved adaptive threshold to determine whether a received frame comprises speech or background noise.
  • the threshold adaptation for a VAD is made as a function of the features: noise energy N tol , a second SNR estimate
  • Long term SNR estimate implies that the SNR is measured over a longer time than a short term SNR estimate.
  • a second additional feature E dyn iP is introduced.
  • E d lp is a smooth input dynamics measure.
  • the threshold adaptation for subbands SNR VAD is made as a function of the features, noise energy N tot , a second SNR estimate SNR , and the new feature noise variation N var .
  • the second SNR estimate is lower than the smooth input dynamics measure, E dyn , , the second SNR is adjusted upwards before it is used for determining the adaptive threshold.
  • the first additional noise variation feature is mainly use to adjust the sensitivity depending on the non-stationary of the input background signal, while the second additional smooth input dynamics feature is used to adjust the second SNR estimate used for the threshold adaptation.
  • non- stationary noise e.g. babble noise
  • the first additional feature is a noise variation estimator N var .
  • N var is a noise variation estimate created by comparing the input energy which is the sum of all subband energies of a current frame and the energy of a previous frame the background.
  • the noise variation estimate is based on VAD decisions for the previous frame.
  • VAD 0 it is assumed that the input consists of background noise only so to estimate the variability the new metric is formed as a non-linear function of the frame to frame energy difference.
  • E m is the energy tracker from below. For each frame the value is incremented by a small constant value. If this new value is larger than the current frame energy the frame energy is used as the new value.
  • E M h is the energy tracker from above. For each frame the value is decremented by a small constant value if this new value is smaller than the current frame energy the frame energy is used as the new value.
  • E d j indicating smooth input dynamics serves as a long term estimate of the input signal dynamics, i.e. an estimate of the difference between speech and noise energy. It is based only on the input energy of each frame. It uses the energy tracker from above, the high /max energy tracker, referred to as E to t_h and the one from below, the low/min energy tracker referred to as E to tj- E_d yn _ip is then formed as a smoothed value of the difference between the high and low energy trackers.
  • the difference between the energy trackers is used as input to a low pass filter.
  • the new value replaces the current variation estimate with the condition that the current variation estimate may not increase beyond a fixed constant for each frame.
  • the voice activity detector 200 is exemplified by a primary voice activity detector.
  • the voice activity detector 200 comprises an input section 202 for receiving input signals and an output section 205 for outputting the voice activity detection decision.
  • a processor 203 is comprised in the VAD and a memory 204 may also be comprised in the voice activity detector 200.
  • the memory 204 may store software code portions and history information regarding previous noise and speech levels.
  • the processor 203 may include one or more processing units.
  • input signals 201 to the input section 202 of the primary voice activity detector are, sub-band energy estimates of the current input frame, sub-band energy estimates from the background estimator shown in figure 1 , long term noise level, long term speech level for long term SNR calculation and long term noise level variation from the feature extractor 120 of figure 1.
  • the long term speech and noise levels are estimated using the VAD flag.
  • the voice activity detector 200 comprises a processor 203 configured to compare a first SNR of the received frames and an adaptive threshold to make the VAD decision.
  • the processor 203 is according to one embodiment configured to determine the first SNR (snr_sum) and the first SNR is formed by the input subband energy levels divided by background energy levels.
  • the first SNR used to determine VAD activity is a combined SNR created by different subband SNRs, e.g. by adding the different subband SNRs.
  • the adaptive threshold is a function of the features: noise energy N lot , an estimate of a second SNR ( SNR ) and the first additional feature 7V var in a first embodiment.
  • E d is also taken into account when determining the adaptive threshold.
  • the second SNR is in the exemplified embodiments a long term SNR (lp_snr) measured over a plurality of frames.
  • the processor 203 is configured to detect whether the received frame comprises voice based on the comparison between the first SNR and the adaptive threshold. This decision is referred to as a primary decision, vad_prim 206 and is sent to a hangover addition via the output section 205. The VAD can then use the vad_prim 206 when making the final VAD decision.
  • the processor 203 is configured to adjust the estimate of the second SNR of the received frame upwards if the current estimate of the second SNR is lower than a smooth input dynamics measure, wherein the smooth input dynamics measure is indicative of energy dynamics of the received frame.
  • a method in a voice activity detector 200 for determining whether frames of an input signal comprise voice is provided as illustrated in the flowchart of figure 3.
  • the method comprises in a first step 301 receiving a frame of the input signal and determining 302 a first SNR of the received frame.
  • the first SNR may be a combined SNR of the different subbands, e.g. a sum of the SNRs of the different subbands.
  • the determined first SNR is compared 303 with an adaptive threshold, wherein the adaptive threshold is at least based on total noise energy N lot , an estimate of a second
  • SNR SNR (lp_snr) SNR SNR (lp_snr) , and the first additional feature yV var in a first embodiment.
  • E d lp is also taken into account when determining the adaptive threshold.
  • the second SNR is in the exemplified embodiments a long term SNR calculated over a plurality of frames. Further, it is detected 304 whether the received frame comprises voice based on said comparison.
  • the determined first SNR of the received frame is a combined SNR of different subbands of the received frame.
  • snr[b] ( 0.2 * enr0[b] + 0.4 * ptl++ + 0.4 * pt2++) / bckr[b];
  • snr_sum snr_sum + snr[i];
  • snr_sum 10 * logl0(snr_sum);
  • hangover_short 1 ;
  • the long term speech and noise levels are calculated as follows:
  • lp_noise 0.99 * lp_noise + 0.01 * totalNoise
  • lp_speech 0.99 * lp_speech + 0.01 * Etot;
  • the second embodiment introduces the new features: the first additional feature noise variation N vai . and the second additional feature E dyn !p which is indicative of smooth input energy dynamics.
  • N var is denoted
  • Etot_v_h and E d LP is denoted sign_dyn_lp.
  • the signal dynamics sign_dyn_lp is estimated by tracking the input energy from below Etot_l and above Etot_h. The difference is then used as input to a low passfilter to get the smoothed signal dynamics measure sign_dyn_lp.
  • the pseudo code written with bold characters relates to the new features of the embodiments while the other pseudo code relates to prior art.
  • sign_dyn Jp 0JL * (Etot Ji - EtotJ) + 0 ⁇ 9 sign_dyn Jp;
  • the noise variance estimate is made from the input total energy (in log domain) using Etot_v which measures the absolute energy variation between frames, i.e. the absolute value of the instantaneous energy variation between frames. Note that the feature Etot_vJi is limited to only increase a maximum of a small constant value 0.2 for each frame.
  • Etot_v_h Etot_v_h - 0.01 ;
  • Etot_ v_h (Etot_v - Etot_v_h) > 0 ⁇ 2 ? Etot_v_h + CL2 : Etot_v;
  • Etot_v_h also denoted N var is a feature providing a conservative estimation of the level variations between frames, which is used to characterize the input signal.
  • Etot_v_h describes an estimate of envelope tracking of energy variations frame to frame for noise frames with limitations on how quick the estimate may increase.
  • snr[i] ( 0.2 * enr0[i] + 0.4 * ptl++ + 0.4 * pt2++) / bckr[i];
  • snr_sum snr_sum + snr[i] ;
  • snr sum snr_sum + 0.1;
  • snr_sum 10 * logl0(snr_sum) ;
  • lp_noise 0.99 * lpjaoise + 0.01 * totalNoise
  • lp_speech 0/7 * lp_speech + (X3 * Etot;
  • lp_speech 0.99 * lp_speech + 0.01 * Etot;
  • lp_speech 0/7 * lp_speech + 0 ⁇ 3 * Etot_h;
  • a second modification is that the long term speech level estimate now allows for quicker tracking in case of increasing levels and the quicker tracking is also allowed for downwards
  • the basic assumption with only noise input is that the SNR is low.
  • the faster tracking input speech will quickly get a more correct long term level estimates and there by a better SNR estimate.
  • the improved logic for VAD threshold adaptation is based on both existing and new features.
  • the existing feature SNR (lp_snr) has been complemented with the new features for input noise variance (Etot_v__h) and input noise level (lp_noise) as shown in the following example implementation, note that both the long term speech and noise level estimates (lp_speech,lp_noise) also have been improved as described above.
  • lp_snr lp_speech -lp_noise;
  • lp_snr lp_snr + 1;
  • the first block of the pseudo code above shows how the smoothed input energy dynamics measure sign_dyn_lp is used. If the current SNR estimate is lower than the smoothed input energy dynamics measure sign_dyn_lp the used SNR is increased by a constant value. However, the modified SNR value can not be larger than the smoothed input energy dynamics measure sign_dyn_lp.
  • the second block of the pseudo code above shows the improved VAD threshold adaptation based on the new features Etot_v_h and lp_snr which is dependent on sign_dyn_lp that are used for the threshold adaptation.
  • Table 2 shows initial evaluation results, in descending order of improvement
  • babble noise with 128 talkers and an 15 dB SNR where the evaluation shows an activity increase
  • 2% is not that large an increase and for both the reference and the combined modification the activity is below the clean speech 51%. So in this case the increase in activity for the combined modification may actually improve subjective quality of the mixed content in comparison with the reference.
  • the reference only gives reasonable activity for Car and Babble 128 at 15 dB SNR.
  • the reference is on the boundary for reasonable operation with an activity of 57 % for a 51 % clean input.
  • the combined inventions also show improvements for Car noise at low SNR, this is illustrated by the improvement for Car noise mixture at 5 dB SNR where the reference generates 66 % activity while the activity for combined inventions is 50 %.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Signal Processing (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • Human Computer Interaction (AREA)
  • Computational Linguistics (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Telephone Function (AREA)
  • Noise Elimination (AREA)
  • Telephonic Communication Services (AREA)

Abstract

The embodiments of the present invention relates to a primary voice activity detector and a method thereof. By using the method of the embodiments it is possible to determine whether frames of an input signal comprise voice. That is achieved by receiving a frame of the input signal, determining a first SNR of the received frame, comparing the determined first SNR with an adaptive threshold, and detecting whether the received frame comprises voice based on said comparison. The adaptive threshold is at least based on total noise energy of a noise level, an estimate of a second SNR and on energy variation between different frames.

Description

Method and voice activity detector for a speech encoder
Technical Field
The embodiments of the present invention relates to a method and a voice activity detector, and in particular to threshold adaptation for the voice activity detector.
Background
In speech coding systems used for conversational speech it is common to use
discontinuous transmission (DTX) to increase the efficiency of the encoding. The reason is that conversational speech contains large amounts of pauses embedded in the speech, e.g. while one person is talking the other one is listening. So with DTX the speech encoder is only active about 50 percent of the time on average and the rest can be encoded using comfort noise. Comfort noise is an artificial noise generated in the decoder side and only resembles the characteristics of the noise on the encoder side and therefore requires less bandwidth. Some example codecs that have this feature are the AMR NB (Adaptive Multi- Rate Narrowband) and EVRC (Enhanced Variable Rate CODEC). Note AMR NB uses DTX and EVRC uses variable rate (VBR), where a Rate Determination Algorithm (RDA) decides which data rate to use for each frame, based on a VAD (voice activity detection) decision.
For high quality DTX operation, i.e. without degraded speech quality, it is important to detect the periods of speech in the input signal this is done by the Voice Activity Detector (VAD), which is used in both for DTX and RDA. It should be noted that speech is also referred to as voice. Figure 1 shows an overview block diagram of a generalized VAD 180, which takes the input signal 100, divided into data frames, 5-30 ms depending on the implementation, as input and produces VAD decisions as output 160. I.e. a VAD decision 160 is a decision for each frame whether the frame contains speech or noise).
The generic VAD 180 comprises a background estimator 130 which provides sub-band energy estimates and a feature extractor 120 providing the feature sub-band energy. For each frame, the generic VAD 180 calculates features and to identify active frames the feature(s) for the current frame are compared with an estimate of how the feature "looks" for the background signal. A primary decision, "vad_prim" 150, is made by a primary voice activity detector 140 and is basically just a comparison of the features for the current frame and the background features estimated from previous input frames, where a difference larger than a threshold causes an active primary decision. A hangover addition block 170 is used to extend the primary decision based on past primary decisions to form the final decision, "vad_flag" 160. The reason for using hangover is mainly to reduce/ remove the risk of mid speech and backend clipping of speech bursts. However, the hangover can also be used to avoid clipping in music passages. An operation controller 1 10 may adjust the threshold(s) for the primary detector and the length of the hangover according to the characteristics of the input signal.
There are a number of different features that can be used for VAD detection. The most basic feature is to look just at the frame energy and compare this with a threshold to decide if the frame is speech or not. This scheme works reasonably well for conditions where the SNR is high but not for low SNR, (signal-to-noise ratio) cases. In low SNR cases other metrics comparing the characteristics of the speech and noise signals must be used instead. For real-time implementations an additional requirement on VAD functionality is computational complexity and this is reflected in the frequent representation of subband SNR VADs in standard codecs, e.g. AMR NB, AMR WB (Adaptive Multi-Rate Wideband), EVRC, and G.718 (ITU-T recommendation embedded scalable speech and audio codec). These example codecs also use threshold adaptation in various forms. In general
background and speech level estimates, which also are used for SNR estimation, can be based on decision feedback or an independent secondary VAD for the update. In either case VAD=0 is to be interpreted that the input signal is estimated as noise and VAD= 1 that the input signal is estimated as speech. Another option for level estimates is to use minimum and maximum input energy to track the background and speech respectively. For the variability of the input noise it is possible to calculate the variance of prior frames over a sliding time window. Another solution is to monitor the amount of negative input SNR, This is however based on the assumption that negative SNR only arises due to variations in the input noise. Sliding time window of prior frames implies that one creates a buffer with variables of interest (frame energy or sub-band energies) for a specified number of prior frames. As new frames arrive the buffer is updated by removing the oldest values from the buffer and inserting the newest. Non-stationary noise can be difficult for all VADs, especially under low SNR conditions, which results in a higher VAD activity compared to the actual speech and reduced capacity from a system perspective. I.e. frames not comprising speech are identified to comprise speech. Of the non-stationary noise, the most difficult noise for the VADs to handle is babble noise and the reason is that its characteristics are relatively close to the speech signal that the VAD is designed to detect. Babble noise is usually characterized both by the SNR relative to the speech level of the foreground speaker and the number of background talkers, where a common definition as used in subjective evaluations is that babble should have 40 or more background speakers. The basic motivation being that for babble it should not be possible to follow any of the included speakers in the babble noise implying that non of the babble speakers shall become intelligible. It should also be noted that with an increasing number of talkers in the babble noise, the babble noise becomes more stationary. With only one (or a few) speaker(s) in the background they are usually called interfering talker (s). A further problematic issue is that babble noise may have spectral variation characteristics very similar to some music pieces that the VAD algorithm shall not suppress.
In the previously mentioned VAD solutions AMR NB/WB, EVRC and G.718 there are varying degrees of problem with babble noise in some cases already at reasonable SNRs (20 dB). The result is that the assumed capacity gain from using DTX can not be realized. In real mobile phone systems it has also been noted that it may not be enough to require reasonable DTX/VBR operation in 15 - 20 dB SNR. If possible one would desire reasonable DTX/VBR operation down to 5 dB even 0 dB depending on the noise type. For low frequency background noise an SNR gain of 10- 15 dB can be achieved for the VAD functionality just by highpass filtering the signal before VAD analysis. Due to the similarity of babble to speech the gain from highpass filtering the input signal is very low.
For VADs based on subband SNR principle when the input signal is divided in a plurality of sub-bands, and the SNR is determined for each band, it has been shown that the introduction of a non-linearity in the subband SNR calculation, called significance thresholds, can improve VAD performance for conditions with non-stationary noise such as babble noise and office background noise.
It has also been noted that the G.718 shows problems with tracking the background noise for some types of input noise, including babble type noise. This causes problems with the VAD as accurate background estimates are essential for any type of VAD comparing current input with an estimated background. From a quality point of view it is better to use a failsafe VAD, meaning that when in doubt it is better for the VAD to signal speech input than noise input and thereby allowing for a large amount of extra activity. This may, from a system capacity point view, be acceptable as long as only a few of the users are in situations with non-stationary background noise. However, with an increasing number of users in non-stationary environments the usage of failsafe VAD may cause significant loss of system capacity. It is therefore becoming important to work on pushing the boundary between failsafe and normal VAD operation so that a larger class of non-stationary environments are handled using normal VAD operation.
Though the usage of significance thresholds improving VAD performance it has been noted that it may also cause occasional speech clippings, mainly front end clippings of low SNR unvoiced sounds.
As was shown in above it is already common to use some form of threshold adaptation. From prior art there are examples where
VAD,hr = f(Nlol ) , VADihr = f{Ntol Esp ), or VADlhr = f(SNR, Nv )
Where: VADthr is the VAD threshold, NtoI is the estimated noise energy, E is the estimated speech energy, SNR is the estimated signal to noise ratio, and Nv is the estimated noise variations based on negative SNR.
Summary
The object of embodiments of the present invention is to provide a mechanism that provides a VAD with improved performance.
This is achieved according to one embodiment by letting a VAD threshold VADlhr be a function of a total noise energy Ntot, an SNR estimate and jVvar wherein Nvar indicates the energy variation between different frames. According to one aspect of embodiments of the present invention a method in a voice activity detector for determining whether frames of an input signal comprise voice is provided. In the method, a frame of the input signal is received and a first SNR of the received frame is determined. The determined first SNR is then compared with an adaptive threshold. The adaptive threshold is at least based on total noise energy of a noise level, an estimate of a second SNR and on energy variation between different frames. Based on said comparison it is detected whether the received frame comprises voice.
According to another aspect of embodiments of the present invention a voice activity detector is provided. The voice activity detector may be a primary voice activity detector being a part of a voice activity detector for determining whether frames of an input signal comprise voice. The voice activity detector comprises an input section configured to receive a frame of the input signal. The voice activity detector further comprises a processor configured to determine a first SNR of the received frame, and to compare the determined first SNR with an adaptive threshold. The adaptive threshold is at least based on total noise energy of a noise level, an estimate of a second SNR and on energy variation between different frames. Moreover, the processor is configured to detect whether the received frame comprises voice based on said comparison.
According to a further embodiment, a further parameter referred to as Ed lp is introduced and VADthr is hence determined at least based on the total noise energy Ntot, the second SNR estimate, Nvar and Ed LP . Edyn LP is a smooth input dynamics measure indicative of energy dynamics of the received frame. In this embodiment, the adaptive threshold
An advantage by using Nvar or Nvar and Ed I P when selecting VADthr , is that it is possible to avoid increasing the VADthr although the background noise is non-stationary. Thus, a more reliable VAD threshold adaptation function can be achieved. With new combinations of features it is possible to better characterize the input noise and to adjust the threshold accordingly. With the improved VAD threshold adaptation according to embodiments of the present invention, it is possible to achieve considerable improvement in handling of non- stationary background noise, and babble noise in particular, while maintaining the quality for speech input and for music type input in cases where music segments are similar to spectral variations found in babble noise.
Brief Description of the drawings
Figure 1 shows a generic Voice Activity Detector (VAD) with background estimation according to prior art.
Figure 2 illustrates schematically a voice activity detector according to embodiments of the present invention.
Figure 3 is a flowchart of a method according to embodiments of the present invention. Detailed description
The embodiments of the present invention will be described more fully hereinafter with reference to the accompanying drawings, in which preferred embodiments of the invention are shown. The embodiments may, however, be embodied in many different forms and should not be construed as limited to the embodiments set forth herein; rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art. In the drawings, like reference signs refer to like elements.
Moreover, those skilled in the art will appreciate that the means and functions explained herein below may be implemented using software functioning in conjunction with a programmed microprocessor or general purpose computer, and/or using an application specific integrated circuit (ASIC). It will also be appreciated that while the current embodiments are primarily described in the form of methods and devices, the embodiments may also be embodied in a computer program product as well as a system comprising a computer processor and a memory coupled to the processor, wherein the memory is encoded with one or more programs that may perform the functions disclosed herein. For a subband SNR based VAD even moderate variations of input energy can cause false positive decisions for the VAD, i.e. the VAD indicates speech when the input is only noise. Subband SNR based VAD implies that the SNR is determined for each subband and a combined SNR is determined based on those SNRs. The combined SNR, may be a sum of all SNRs on different subbands. This kind of sensitivity in a VAD is good for speech quality as the probability of missing a speech segment is small. However, since these types of energy variations are typical in non- stationary noise, e.g. babble noise, they will cause excessive VAD activity. Thus in the embodiments of the present invention an improved adaptive threshold for voice activity detection is introduced.
In a first embodiment a first additional feature Nvar is introduced which indicates the noise variation which is an improved estimator of variability of frame energy for noise input. This feature is used as a variable when the improved adaptive threshold is determined. A first SNR, which may be a combined SNR created by different subband SNRs, is compared with the improved adaptive threshold to determine whether a received frame comprises speech or background noise. Hence in the first embodiment, the threshold adaptation for a VAD is made as a function of the features: noise energy Ntol , a second SNR estimate
SNR (corresponding to lp_snr in the pseudo code below), and the first additional
feature Nvar . The noise energy Ntot is an estimate of the noise level based on the total energy of the subband energies in the background estimate when VAD=0 and the second SNR estimate is a long term SNR estimate. Long term SNR estimate implies that the SNR is measured over a longer time than a short term SNR estimate.
In a second embodiment, a second additional feature Edyn iP is introduced. Ed lp is a smooth input dynamics measure. Accordingly, the threshold adaptation for subbands SNR VAD is made as a function of the features, noise energy N tot , a second SNR estimate SNR , and the new feature noise variation Nvar . Further, if the second SNR estimate is lower than the smooth input dynamics measure, Edyn , , the second SNR is adjusted upwards before it is used for determining the adaptive threshold. By determining the adaptive threshold for making the VAD decision based on these variables, it is possible to improve the threshold adaptation with better control of when to use a highly sensitivity VAD and when the sensitivity has to be reduced. The first additional noise variation feature is mainly use to adjust the sensitivity depending on the non-stationary of the input background signal, while the second additional smooth input dynamics feature is used to adjust the second SNR estimate used for the threshold adaptation.
From a system perspective the ability to reduce the sensitivity for non- stationary noise will result in a reduction in excessive activity for non- stationary noise (e.g. babble noise) while maintaining the high quality of encoded speech for clean and stationary noise in high SNR.
In the following the features used to calculate the adaptive threshold according to the embodiments are explained:
According to the second embodiment, there are two additional features used for
determining the improved adaptive threshold. The first additional feature is a noise variation estimator Nvar .
Nvar is a noise variation estimate created by comparing the input energy which is the sum of all subband energies of a current frame and the energy of a previous frame the background. Hence the noise variation estimate is based on VAD decisions for the previous frame. When VAD = 0 it is assumed that the input consists of background noise only so to estimate the variability the new metric is formed as a non-linear function of the frame to frame energy difference.
Two input energy trackers, Etol , , Elot h , one from below and one from above are used to create the second additional feature Ed lp which indicates smooth input energy dynamics.
Em , is the energy tracker from below. For each frame the value is incremented by a small constant value. If this new value is larger than the current frame energy the frame energy is used as the new value.
EM h is the energy tracker from above. For each frame the value is decremented by a small constant value if this new value is smaller than the current frame energy the frame energy is used as the new value. Ed j indicating smooth input dynamics serves as a long term estimate of the input signal dynamics, i.e. an estimate of the difference between speech and noise energy. It is based only on the input energy of each frame. It uses the energy tracker from above, the high /max energy tracker, referred to as Etot_h and the one from below, the low/min energy tracker referred to as Etotj- E_dyn_ip is then formed as a smoothed value of the difference between the high and low energy trackers.
For each frame the difference between the energy trackers is used as input to a low pass filter.
Edynjp ~ ~" a) Edyn_ LP + a {^tot _h ~ ^tot J )
First the absolute value of the frame energy difference is calculated based on current and last frame. If VAD = 0 the current variation estimate is then first decreased using as small constant value.
If the current energy difference is larger than the current variation estimate the new value replaces the current variation estimate with the condition that the current variation estimate may not increase beyond a fixed constant for each frame.
Turning now to figure 2, showing a voice activity detector 200 wherein the embodiments of the present invention may be implemented. In the embodiments the voice activity detector 200 is exemplified by a primary voice activity detector. The voice activity detector 200 comprises an input section 202 for receiving input signals and an output section 205 for outputting the voice activity detection decision. Furthermore, a processor 203 is comprised in the VAD and a memory 204 may also be comprised in the voice activity detector 200. The memory 204 may store software code portions and history information regarding previous noise and speech levels. The processor 203 may include one or more processing units.
When the VAD is exemplified by a primary VAD, input signals 201 to the input section 202 of the primary voice activity detector are, sub-band energy estimates of the current input frame, sub-band energy estimates from the background estimator shown in figure 1 , long term noise level, long term speech level for long term SNR calculation and long term noise level variation from the feature extractor 120 of figure 1. The long term speech and noise levels are estimated using the VAD flag. When VAD==0 the long term noise estimate is updated using smoothing of the total noise, Ntot, value. Similarly a long term speech level is updated when VAD== 1 using smoothing of Etot (total energy of the input frame) based on the total subband energy of the current input frame.
Hence the voice activity detector 200 comprises a processor 203 configured to compare a first SNR of the received frames and an adaptive threshold to make the VAD decision. The processor 203 is according to one embodiment configured to determine the first SNR (snr_sum) and the first SNR is formed by the input subband energy levels divided by background energy levels. Thus the first SNR used to determine VAD activity is a combined SNR created by different subband SNRs, e.g. by adding the different subband SNRs.
The adaptive threshold is a function of the features: noise energy Nlot , an estimate of a second SNR ( SNR ) and the first additional feature 7Vvar in a first embodiment. In a second embodiment Ed , is also taken into account when determining the adaptive threshold.
The second SNR is in the exemplified embodiments a long term SNR (lp_snr) measured over a plurality of frames.
Further, the processor 203 is configured to detect whether the received frame comprises voice based on the comparison between the first SNR and the adaptive threshold. This decision is referred to as a primary decision, vad_prim 206 and is sent to a hangover addition via the output section 205. The VAD can then use the vad_prim 206 when making the final VAD decision.
According to a further embodiment, the processor 203 is configured to adjust the estimate of the second SNR of the received frame upwards if the current estimate of the second SNR is lower than a smooth input dynamics measure, wherein the smooth input dynamics measure is indicative of energy dynamics of the received frame.
A detailed description of embodiments will follow. In this description the G.718 codec (further explained in ITU-T, "Frame error robust narrowband and wideband embedded variable bit-rate coding of speech and audio from 8 - 32 kbit/s", ITU-T G.718, June 2008) is used as the basis for this description. Table 1.
Figure imgf000012_0001
According to one aspect of the present invention a method in a voice activity detector 200 for determining whether frames of an input signal comprise voice is provided as illustrated in the flowchart of figure 3. The method comprises in a first step 301 receiving a frame of the input signal and determining 302 a first SNR of the received frame. The first SNR may be a combined SNR of the different subbands, e.g. a sum of the SNRs of the different subbands. The determined first SNR is compared 303 with an adaptive threshold, wherein the adaptive threshold is at least based on total noise energy Nlot , an estimate of a second
SNR SNR (lp_snr) , and the first additional feature yVvar in a first embodiment. In the second embodiment Ed lp is also taken into account when determining the adaptive threshold. The second SNR is in the exemplified embodiments a long term SNR calculated over a plurality of frames. Further, it is detected 304 whether the received frame comprises voice based on said comparison. According to embodiments of the invention the determined first SNR of the received frame is a combined SNR of different subbands of the received frame. The combined first SNR, also referred to as snr_sum according to the table above, may be calculated as: snr_sum = 0;
for (b=0;b<20;b++) {
snr[b] = ( 0.2 * enr0[b] + 0.4 * ptl++ + 0.4 * pt2++) / bckr[b];
if (snr[i] < 1.0) {
snr[i] = 1.0;
}
snr_sum = snr_sum + snr[i];
}
snr_sum = 10 * logl0(snr_sum);
Before the threshold can be applied to the snr_sum exemplified above, the threshold must be calculated based on the current input conditions and long term SNR. It should be noted that in this example, the threshold adaptation is only dependent on long term SNR (lp_snr) according to prior art. lp_snr = lp_speech -lp_noise;
if (lp_snr < 35) {
thrl = 0.41287 * lp_snr + 13.259625;
hangover_short = 2;
if (lp_snr >= 15)
hangover_short = 1 ;
}
else {
thrl = 1.0333 * lp_snr - 18;
}
The long term speech and noise levels are calculated as follows:
if (frame < 5) {
lp_noise = totalNoise;
tmp = lp_noise+ 10;
if (lp_speech < tmp)
lp_speech =tmp;
}
else {
if (vad == 0)
lp_noise = 0.99 * lp_noise + 0.01 * totalNoise;
else
lp_speech = 0.99 * lp_speech + 0.01 * Etot;
}
Initiation of long term speech energy and frame counter
lp_speech = 45.0;
frame=0; The embodiments of the present invention use an improved logic for the VAD threshold adaptation which is based on both features used in prior art and additional features introduced with the embodiments of the invention. In the following an example
implementation is given as a modification of the pseudo code for the above described basis.
It should be noted that there are a number of constants for the thresholds and system parameters used in this description which are only examples. However, further tuning with a variety of input signals is also within the scope of the embodiments of the present invention.
As mentioned above, the second embodiment introduces the new features: the first additional feature noise variation Nvai. and the second additional feature Edyn !p which is indicative of smooth input energy dynamics. In the pseudo code below, Nvar is denoted
Etot_v_h and Ed LP is denoted sign_dyn_lp. The signal dynamics sign_dyn_lp is estimated by tracking the input energy from below Etot_l and above Etot_h. The difference is then used as input to a low passfilter to get the smoothed signal dynamics measure sign_dyn_lp. In order to further clarify the embodiments, the pseudo code written with bold characters relates to the new features of the embodiments while the other pseudo code relates to prior art.
EtotJ += 0.05;
if (Etot < EtotJ)
EtotJ = Etot;
Figure imgf000014_0001
Etotji = Etot;
sign_dyn Jp = 0JL * (Etot Ji - EtotJ) + 0^9 sign_dyn Jp;
The noise variance estimate is made from the input total energy (in log domain) using Etot_v which measures the absolute energy variation between frames, i.e. the absolute value of the instantaneous energy variation between frames. Note that the feature Etot_vJi is limited to only increase a maximum of a small constant value 0.2 for each frame.
Further the variable Etotjast is just the energy level of the previous frame. It is also possible to use the last frame where vadjlag==0 to avoid large energy drops at the end of speech bursts according to an embodiment of the present invention.
Etot_v = fabs(Etot Jast - Etot); If (vad_fiag == 0) {
Etot_v_h = Etot_v_h - 0.01 ;
if (Etot_v > Etotjv h)
Etot_ v_h = (Etot_v - Etot_v_h) > 0^2 ? Etot_v_h + CL2 : Etot_v;
}
Etotjast = Etot;
Etot_v_h also denoted Nvar is a feature providing a conservative estimation of the level variations between frames, which is used to characterize the input signal. Hence, Etot_v_h describes an estimate of envelope tracking of energy variations frame to frame for noise frames with limitations on how quick the estimate may increase.
According to an embodiment, the average SNR per frame is enhanced with the use of significance thresholds which can be implemented in the following way: snr_sum = 0
for (i=0;i<20;i++) {
snr[i] = ( 0.2 * enr0[i] + 0.4 * ptl++ + 0.4 * pt2++) / bckr[i];
if (snr[i] < 0Λ) {
snr[i] = 0.1 ;
}
if (snr[i] >= 2.5)
snr_sum = snr_sum + snr[i] ;
else {
snr[i] = 0.1 ;
snr sum= snr_sum + 0.1;
}
}
snr_sum = 10 * logl0(snr_sum) ;
In this implementation also the estimates of long term speech and noise levels have been improved for more accurate levels. Also the initiation of speech level has been improved.
Initiation: lp_speech = 20.0;
Estimation of long term speech and noise level if (frame < 5) {
lp_noise = totalNoise;
tmp = lp_noise+ 10;
if (lp_speech < tmp)
lp_speech =tmp;
}
else {
lp_noise = 0.99 * lpjaoise + 0.01 * totalNoise;
if (vad == 1) {
if (Etot >= lp_speech)
lp_speech = 0/7 * lp_speech + (X3 * Etot;
else
lp_speech = 0.99 * lp_speech + 0.01 * Etot;
}
else if (Etot_h < lp_speech)
lp_speech = 0/7 * lp_speech + 0^3 * Etot_h;
Two major modifications are introduced by embodiments of the present invention. A first modification is that the long term noise level is always updated. This is motivated as the background noise estimate can be updated downwards even if VAD= 1. A second modification is that the long term speech level estimate now allows for quicker tracking in case of increasing levels and the quicker tracking is also allowed for downwards
adjustment but only if the lp_speech estimate is higher than the Etot_h which is a VAD decision independent speech level estimate.
With this new logic for long term level estimates according to the embodiments, the basic assumption with only noise input is that the SNR is low. However with the faster tracking input speech will quickly get a more correct long term level estimates and there by a better SNR estimate.
The improved logic for VAD threshold adaptation is based on both existing and new features. The existing feature SNR (lp_snr) has been complemented with the new features for input noise variance (Etot_v__h) and input noise level (lp_noise) as shown in the following example implementation, note that both the long term speech and noise level estimates (lp_speech,lp_noise) also have been improved as described above. lp_snr = lp_speech -lp_noise;
if (lp_snr < sign_dyn_lp)
lp_snr = lp_snr + 1;
if (lp_snr > sign_dyn_lp)
lp_snr = sign_dyn_lp;
thrl = 0.10 * lp_snr + 10.0 + 0.55 * Etot_v_h + -0.15 * (lp_noise - 20.0); The first block of the pseudo code above shows how the smoothed input energy dynamics measure sign_dyn_lp is used. If the current SNR estimate is lower than the smoothed input energy dynamics measure sign_dyn_lp the used SNR is increased by a constant value. However, the modified SNR value can not be larger than the smoothed input energy dynamics measure sign_dyn_lp.
The second block of the pseudo code above shows the improved VAD threshold adaptation based on the new features Etot_v_h and lp_snr which is dependent on sign_dyn_lp that are used for the threshold adaptation.
The shown results are based on evaluation of mixtures of clean speech (level -26 dBov) with background noise of different types and SNRs. For clean speech input the activity it is possible to use a fixed threshold of the frame energy to get an activity value of the speech only without any hangover and in this case it was 51%.
Table 2 shows initial evaluation results, in descending order of improvement
Figure imgf000017_0001
As can be seen from the results the combined modifications shows considerable gains in lowered activity for many of the mixtures with babble noise and for the 5 dB car noise.
There is also one example, babble noise with 128 talkers and an 15 dB SNR, where the evaluation shows an activity increase, it should be noted that 2% is not that large an increase and for both the reference and the combined modification the activity is below the clean speech 51%. So in this case the increase in activity for the combined modification may actually improve subjective quality of the mixed content in comparison with the reference.
There are also cases where there is only a small or no improvement, however these are for reasonable SNR ( 15 and 20) and for these operating points even a much simpler energy based VAD would give reasonable performance.
Of the evaluated combinations in the table the reference only gives reasonable activity for Car and Babble 128 at 15 dB SNR. For babble 64 the reference is on the boundary for reasonable operation with an activity of 57 % for a 51 % clean input.
This can be compared with the embodiments that are capable of handling six of the eight evaluated combinations. The ones where the activity has reached 61% activity are babble 64 at 5 dB SNR and Babble 32 at 20 dB SNR, here it should be pointed out that the improvement over the reference are in the order of 30 % units.
The combined inventions also show improvements for Car noise at low SNR, this is illustrated by the improvement for Car noise mixture at 5 dB SNR where the reference generates 66 % activity while the activity for combined inventions is 50 %.
Modifications and other embodiments of the disclosed invention will come to mind to one skilled in the art having the benefit of the teachings presented in the foregoing descriptions and the associated drawings. Therefore, it is to be understood that the embodiments of the invention are not to be limited to the specific embodiments disclosed and that
modifications and other embodiments are intended to be included within the scope of this disclosure. Although specific terms may be employed herein, they are used in a generic and descriptive sense only and not for purposes of limitation.

Claims

1. A method in a voice activity detector for determining whether frames of an input signal comprise voice, comprising:
-receiving (301) a frame of the input signal,
-determining (302) a first signal-to-noise-ratio, SNR, of the received frame,
-comparing (303) the determined first SNR with an adaptive threshold, wherein the adaptive threshold is at least based on total noise energy of a noise level, an estimate of a second SNR and on energy variation between different frames, and
-detecting (304) whether the received frame comprises voice based on said comparison.
2. The method according to claim 1 , wherein the determined first SNR of the received frame is a combined SNR of different subbands of the received frame.
3. The method according to claim 2, wherein significance thresholds are used to
determine the combined first SNR.
4. The method according to any of claims 1-3, wherein the energy variation between
different frames is the energy variation between the received frame and a last received frame comprising noise.
5. The method according to any of claims 1-4, wherein the estimate of the second SNR of the received frame is a long term SNR estimate, measured over a plurality of frames.
6. The method according to claim 5, wherein the estimate of the second SNR of the
received frame is adjusted upwards if the current estimate of the second SNR is lower than a smooth input dynamics measure, wherein the smooth input dynamics measure is indicative of energy dynamics of the received frame.
7. A voice activity detector (200) for determining whether frames of an input signal
comprise voice, the voice activity detector (200) comprises an input section (202) configured to receive a frame of the input signal, a processor (203) configured to determine a first signal-to-noise-ratio, SNR, of the received frame, to compare the determined first SNR with an adaptive threshold, wherein the adaptive threshold is at least based on total noise energy of a noise level, an estimate of a second SNR and on energy variation between different frames, and to detect whether the received frame comprises voice based on said comparison.
8. The voice activity detector (200) according to claim 7, wherein the processor (203) is configured to determine the first SNR of the received frame as a combined SNR of different subbands of the received frame.
9. The voice activity detector (200) according to claim 8, wherein the processor (203) is configured to use significance thresholds to determine the combined first SNR.
10. The voice activity detector (200) according to any of claims 7-9, wherein the energy variation between different frames is the energy variation between the received frame and a last received frame comprising noise.
1 1. The voice activity detector (200) according to any of claims 7- 10, wherein the estimate of the second SNR of the received frame is a long term estimate measured over a plurality of frames.
12. The voice activity detector (200) according to claim 1 1 , wherein the processor (203) is configured to adjust the estimate of the second SNR of the received frame upwards if the current estimate of the second SNR is lower than a smooth input dynamics measure, wherein the smooth input dynamics measure is indicative of energy dynamics of the received frame.
The voice activity detector (200) according to any of claims 7- 12, wherein the activity detector is a primary voice activity detector.
PCT/SE2010/051117 2009-10-19 2010-10-18 Method and voice activity detector for a speech encoder WO2011049515A1 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2012535163A JP2013508773A (en) 2009-10-19 2010-10-18 Speech encoder method and voice activity detector
EP10825286.7A EP2491548A4 (en) 2009-10-19 2010-10-18 Method and voice activity detector for a speech encoder
CA2778343A CA2778343A1 (en) 2009-10-19 2010-10-18 Method and voice activity detector for a speech encoder
AU2010308598A AU2010308598A1 (en) 2009-10-19 2010-10-18 Method and voice activity detector for a speech encoder
US13/502,535 US9401160B2 (en) 2009-10-19 2010-10-18 Methods and voice activity detectors for speech encoders
CN201080057984.7A CN102804261B (en) 2009-10-19 2010-10-18 Method and voice activity detector for a speech encoder
IN3323DEN2012 IN2012DN03323A (en) 2009-10-19 2012-04-17
US15/182,135 US20160322067A1 (en) 2009-10-19 2016-06-14 Methods and Voice Activity Detectors for a Speech Encoders

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US25296609P 2009-10-19 2009-10-19
US61/252,966 2009-10-19

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/502,535 A-371-Of-International US9401160B2 (en) 2009-10-19 2010-10-18 Methods and voice activity detectors for speech encoders
US15/182,135 Continuation US20160322067A1 (en) 2009-10-19 2016-06-14 Methods and Voice Activity Detectors for a Speech Encoders

Publications (1)

Publication Number Publication Date
WO2011049515A1 true WO2011049515A1 (en) 2011-04-28

Family

ID=43900544

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/SE2010/051117 WO2011049515A1 (en) 2009-10-19 2010-10-18 Method and voice activity detector for a speech encoder

Country Status (8)

Country Link
US (2) US9401160B2 (en)
EP (1) EP2491548A4 (en)
JP (1) JP2013508773A (en)
CN (1) CN102804261B (en)
AU (1) AU2010308598A1 (en)
CA (1) CA2778343A1 (en)
IN (1) IN2012DN03323A (en)
WO (1) WO2011049515A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014035328A1 (en) * 2012-08-31 2014-03-06 Telefonaktiebolaget L M Ericsson (Publ) Method and device for voice activity detection
WO2015094083A1 (en) * 2013-12-19 2015-06-25 Telefonaktiebolaget L M Ericsson (Publ) Estimation of background noise in audio signals
JP2016500453A (en) * 2012-12-21 2016-01-12 フラウンホーファー−ゲゼルシャフト・ツール・フェルデルング・デル・アンゲヴァンテン・フォルシュング・アインゲトラーゲネル・フェライン Add comfort noise to model background noise at low bit rates
WO2016018186A1 (en) 2014-07-29 2016-02-04 Telefonaktiebolaget L M Ericsson (Publ) Estimation of background noise in audio signals
US9583114B2 (en) 2012-12-21 2017-02-28 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Generation of a comfort noise with high spectro-temporal resolution in discontinuous transmission of audio signals
EP3324406A1 (en) * 2016-11-17 2018-05-23 Fraunhofer Gesellschaft zur Förderung der Angewand Apparatus and method for decomposing an audio signal using a variable threshold
US11183199B2 (en) 2016-11-17 2021-11-23 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Apparatus and method for decomposing an audio signal using a ratio as a separation characteristic

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3493205B1 (en) 2010-12-24 2020-12-23 Huawei Technologies Co., Ltd. Method and apparatus for adaptively detecting a voice activity in an input audio signal
CN103903634B (en) * 2012-12-25 2018-09-04 中兴通讯股份有限公司 The detection of activation sound and the method and apparatus for activating sound detection
CN103971680B (en) * 2013-01-24 2018-06-05 华为终端(东莞)有限公司 A kind of method, apparatus of speech recognition
CN103065631B (en) * 2013-01-24 2015-07-29 华为终端有限公司 A kind of method of speech recognition, device
CN103854662B (en) * 2014-03-04 2017-03-15 中央军委装备发展部第六十三研究所 Adaptive voice detection method based on multiple domain Combined estimator
CN107293287B (en) * 2014-03-12 2021-10-26 华为技术有限公司 Method and apparatus for detecting audio signal
CN105321528B (en) * 2014-06-27 2019-11-05 中兴通讯股份有限公司 A kind of Microphone Array Speech detection method and device
US10360926B2 (en) * 2014-07-10 2019-07-23 Analog Devices Global Unlimited Company Low-complexity voice activity detection
CN105261375B (en) * 2014-07-18 2018-08-31 中兴通讯股份有限公司 Activate the method and device of sound detection
CN104134440B (en) * 2014-07-31 2018-05-08 百度在线网络技术(北京)有限公司 Speech detection method and speech detection device for portable terminal
US9953661B2 (en) * 2014-09-26 2018-04-24 Cirrus Logic Inc. Neural network voice activity detection employing running range normalization
US10366703B2 (en) * 2014-10-01 2019-07-30 Samsung Electronics Co., Ltd. Method and apparatus for processing audio signal including shock noise
US20160150315A1 (en) * 2014-11-20 2016-05-26 GM Global Technology Operations LLC System and method for echo cancellation
US10284877B2 (en) 2015-01-16 2019-05-07 Hewlett Packard Enterprise Development Lp Video encoder
CN110895930B (en) * 2015-05-25 2022-01-28 展讯通信(上海)有限公司 Voice recognition method and device
US9413423B1 (en) * 2015-08-18 2016-08-09 Texas Instruments Incorporated SNR calculation in impulsive noise and erasure channels
KR102446392B1 (en) * 2015-09-23 2022-09-23 삼성전자주식회사 Electronic device and method for recognizing voice of speech
US11631421B2 (en) * 2015-10-18 2023-04-18 Solos Technology Limited Apparatuses and methods for enhanced speech recognition in variable environments
JP6759898B2 (en) * 2016-09-08 2020-09-23 富士通株式会社 Utterance section detection device, utterance section detection method, and computer program for utterance section detection
CN107393559B (en) * 2017-07-14 2021-05-18 深圳永顺智信息科技有限公司 Method and device for checking voice detection result
KR102512614B1 (en) * 2018-12-12 2023-03-23 삼성전자주식회사 Electronic device audio enhancement and method thereof
CN111048119B (en) * 2020-03-12 2020-07-10 腾讯科技(深圳)有限公司 Call audio mixing processing method and device, storage medium and computer equipment
EP4128226B1 (en) * 2020-03-27 2024-08-28 Dolby Laboratories Licensing Corporation Automatic leveling of speech content
TWI756817B (en) * 2020-09-08 2022-03-01 瑞昱半導體股份有限公司 Voice activity detection device and method
CN114283840B (en) * 2021-12-22 2023-04-18 天翼爱音乐文化科技有限公司 Instruction audio generation method, system, device and storage medium
CN114566152B (en) * 2022-04-27 2022-07-08 成都启英泰伦科技有限公司 Voice endpoint detection method based on deep learning
KR102516391B1 (en) * 2022-09-02 2023-04-03 주식회사 액션파워 Method for detecting speech segment from audio considering length of speech segment

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1265224A1 (en) * 2001-06-01 2002-12-11 Telogy Networks Method for converging a G.729 annex B compliant voice activity detection circuit
WO2007091956A2 (en) * 2006-02-10 2007-08-16 Telefonaktiebolaget Lm Ericsson (Publ) A voice detector and a method for suppressing sub-bands in a voice detector
WO2008143569A1 (en) * 2007-05-22 2008-11-27 Telefonaktiebolaget Lm Ericsson (Publ) Improved voice activity detector
CN101320559A (en) * 2007-06-07 2008-12-10 华为技术有限公司 Sound activation detection apparatus and method

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6122384A (en) * 1997-09-02 2000-09-19 Qualcomm Inc. Noise suppression system and method
US6023674A (en) * 1998-01-23 2000-02-08 Telefonaktiebolaget L M Ericsson Non-parametric voice activity detection
US6088668A (en) * 1998-06-22 2000-07-11 D.S.P.C. Technologies Ltd. Noise suppressor having weighted gain smoothing
JP2000172283A (en) * 1998-12-01 2000-06-23 Nec Corp System and method for detecting sound
US6556967B1 (en) * 1999-03-12 2003-04-29 The United States Of America As Represented By The National Security Agency Voice activity detector
JP3759685B2 (en) * 1999-05-18 2006-03-29 三菱電機株式会社 Noise section determination device, noise suppression device, and estimated noise information update method
US7058572B1 (en) * 2000-01-28 2006-06-06 Nortel Networks Limited Reducing acoustic noise in wireless and landline based telephony
US6889187B2 (en) * 2000-12-28 2005-05-03 Nortel Networks Limited Method and apparatus for improved voice activity detection in a packet voice network
EP1271470A1 (en) * 2001-06-25 2003-01-02 Alcatel Method and device for determining the voice quality degradation of a signal
US7283956B2 (en) * 2002-09-18 2007-10-16 Motorola, Inc. Noise suppression
CA2454296A1 (en) * 2003-12-29 2005-06-29 Nokia Corporation Method and device for speech enhancement in the presence of background noise
WO2006136901A2 (en) * 2005-06-18 2006-12-28 Nokia Corporation System and method for adaptive transmission of comfort noise parameters during discontinuous speech transmission
US7366658B2 (en) * 2005-12-09 2008-04-29 Texas Instruments Incorporated Noise pre-processor for enhanced variable rate speech codec
US20080010065A1 (en) * 2006-06-05 2008-01-10 Harry Bratt Method and apparatus for speaker recognition
EP2089877B1 (en) * 2006-11-16 2010-04-07 International Business Machines Corporation Voice activity detection system and method
US8121835B2 (en) * 2007-03-21 2012-02-21 Texas Instruments Incorporated Automatic level control of speech signals
US7873114B2 (en) * 2007-03-29 2011-01-18 Motorola Mobility, Inc. Method and apparatus for quickly detecting a presence of abrupt noise and updating a noise estimate
US8990073B2 (en) * 2007-06-22 2015-03-24 Voiceage Corporation Method and device for sound activity detection and sound signal classification

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1265224A1 (en) * 2001-06-01 2002-12-11 Telogy Networks Method for converging a G.729 annex B compliant voice activity detection circuit
WO2007091956A2 (en) * 2006-02-10 2007-08-16 Telefonaktiebolaget Lm Ericsson (Publ) A voice detector and a method for suppressing sub-bands in a voice detector
WO2008143569A1 (en) * 2007-05-22 2008-11-27 Telefonaktiebolaget Lm Ericsson (Publ) Improved voice activity detector
CN101320559A (en) * 2007-06-07 2008-12-10 华为技术有限公司 Sound activation detection apparatus and method
WO2008148323A1 (en) 2007-06-07 2008-12-11 Huawei Technologies Co., Ltd. A voice activity detecting device and method
EP2159788A1 (en) * 2007-06-07 2010-03-03 Huawei Technologies Co., Ltd. A voice activity detecting device and method

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DAVIS A. ET AL: "A Low Complexity Statistical Voice Activity Detector with Performance Comparisons to ITU-T / ETSI Voice Activity Detectors", PROCEEDINGS OF THE 2003 JOINT CONFERENCE OF THE FOURTH INTERNATIONAL CONFERENCE ON INFORMATION, COMMUNICATIONS AND SIGNAL PROCESSING, 2003 AND THE FOURTH PACIFIC RIM CONFERENCE ON MULTIMEDIA, vol. 1, 15 December 2003 (2003-12-15) - 18 December 2003 (2003-12-18), pages 119 - 123, XP008155691 *
See also references of EP2491548A4

Cited By (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2670785C9 (en) * 2012-08-31 2018-11-23 Телефонактиеболагет Л М Эрикссон (Пабл) Method and device to detect voice activity
WO2014035328A1 (en) * 2012-08-31 2014-03-06 Telefonaktiebolaget L M Ericsson (Publ) Method and device for voice activity detection
US11417354B2 (en) 2012-08-31 2022-08-16 Telefonaktiebolaget Lm Ericsson (Publ) Method and device for voice activity detection
CN104603874A (en) * 2012-08-31 2015-05-06 瑞典爱立信有限公司 Method and device for voice activity detection
US11900962B2 (en) 2012-08-31 2024-02-13 Telefonaktiebolaget Lm Ericsson (Publ) Method and device for voice activity detection
US9472208B2 (en) 2012-08-31 2016-10-18 Telefonaktiebolaget Lm Ericsson (Publ) Method and device for voice activity detection
EP3113184A1 (en) * 2012-08-31 2017-01-04 Telefonaktiebolaget LM Ericsson (publ) Method and device for voice activity detection
RU2609133C2 (en) * 2012-08-31 2017-01-30 Телефонактиеболагет Л М Эрикссон (Пабл) Method and device to detect voice activity
RU2670785C1 (en) * 2012-08-31 2018-10-25 Телефонактиеболагет Л М Эрикссон (Пабл) Method and device to detect voice activity
US9997174B2 (en) 2012-08-31 2018-06-12 Telefonaktiebolaget Lm Ericsson (Publ) Method and device for voice activity detection
US10607633B2 (en) 2012-08-31 2020-03-31 Telefonaktiebolaget Lm Ericsson (Publ) Method and device for voice activity detection
EP3301676A1 (en) * 2012-08-31 2018-04-04 Telefonaktiebolaget LM Ericsson (publ) Method and device for voice activity detection
US10147432B2 (en) 2012-12-21 2018-12-04 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Comfort noise addition for modeling background noise at low bit-rates
US10339941B2 (en) 2012-12-21 2019-07-02 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Comfort noise addition for modeling background noise at low bit-rates
JP7297803B2 (en) 2012-12-21 2023-06-26 フラウンホーファー-ゲゼルシャフト・ツール・フェルデルング・デル・アンゲヴァンテン・フォルシュング・アインゲトラーゲネル・フェライン Comfort noise addition to model background noise at low bitrates
US10789963B2 (en) 2012-12-21 2020-09-29 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Comfort noise addition for modeling background noise at low bit-rates
JP2016500453A (en) * 2012-12-21 2016-01-12 フラウンホーファー−ゲゼルシャフト・ツール・フェルデルング・デル・アンゲヴァンテン・フォルシュング・アインゲトラーゲネル・フェライン Add comfort noise to model background noise at low bit rates
JP2018084834A (en) * 2012-12-21 2018-05-31 フラウンホーファー−ゲゼルシャフト・ツール・フェルデルング・デル・アンゲヴァンテン・フォルシュング・アインゲトラーゲネル・フェライン Comfort noise addition for modeling background noise at low bit-rates
US9583114B2 (en) 2012-12-21 2017-02-28 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Generation of a comfort noise with high spectro-temporal resolution in discontinuous transmission of audio signals
JP2021092816A (en) * 2012-12-21 2021-06-17 フラウンホーファー−ゲゼルシャフト・ツール・フェルデルング・デル・アンゲヴァンテン・フォルシュング・アインゲトラーゲネル・フェライン Comfort noise addition for modeling background noise at low bit-rates
US9626986B2 (en) 2013-12-19 2017-04-18 Telefonaktiebolaget Lm Ericsson (Publ) Estimation of background noise in audio signals
US10573332B2 (en) 2013-12-19 2020-02-25 Telefonaktiebolaget Lm Ericsson (Publ) Estimation of background noise in audio signals
US11164590B2 (en) 2013-12-19 2021-11-02 Telefonaktiebolaget Lm Ericsson (Publ) Estimation of background noise in audio signals
EP3438979A1 (en) 2013-12-19 2019-02-06 Telefonaktiebolaget LM Ericsson (publ) Estimation of background noise in audio signals
US10311890B2 (en) 2013-12-19 2019-06-04 Telefonaktiebolaget Lm Ericsson (Publ) Estimation of background noise in audio signals
US9818434B2 (en) 2013-12-19 2017-11-14 Telefonaktiebolaget Lm Ericsson (Publ) Estimation of background noise in audio signals
EP3719801A1 (en) 2013-12-19 2020-10-07 Telefonaktiebolaget LM Ericsson (publ) Estimation of background noise in audio signals
WO2015094083A1 (en) * 2013-12-19 2015-06-25 Telefonaktiebolaget L M Ericsson (Publ) Estimation of background noise in audio signals
RU2720357C2 (en) * 2013-12-19 2020-04-29 Телефонактиеболагет Л М Эрикссон (Пабл) Method for estimating background noise, a unit for estimating background noise and a computer-readable medium
RU2618940C1 (en) * 2013-12-19 2017-05-11 Телефонактиеболагет Л М Эрикссон (Пабл) Estimation of background noise in audio signals
US9870780B2 (en) 2014-07-29 2018-01-16 Telefonaktiebolaget Lm Ericsson (Publ) Estimation of background noise in audio signals
RU2713852C2 (en) * 2014-07-29 2020-02-07 Телефонактиеболагет Лм Эрикссон (Пабл) Estimating background noise in audio signals
WO2016018186A1 (en) 2014-07-29 2016-02-04 Telefonaktiebolaget L M Ericsson (Publ) Estimation of background noise in audio signals
EP3582221A1 (en) 2014-07-29 2019-12-18 Telefonaktiebolaget LM Ericsson (publ) Esimation of background noise in audio signals
EP3309784A1 (en) 2014-07-29 2018-04-18 Telefonaktiebolaget LM Ericsson (publ) Esimation of background noise in audio signals
US10347265B2 (en) 2014-07-29 2019-07-09 Telefonaktiebolaget Lm Ericsson (Publ) Estimation of background noise in audio signals
US11636865B2 (en) 2014-07-29 2023-04-25 Telefonaktiebolaget Lm Ericsson (Publ) Estimation of background noise in audio signals
RU2665916C2 (en) * 2014-07-29 2018-09-04 Телефонактиеболагет Лм Эрикссон (Пабл) Estimation of background noise in audio signals
US11114105B2 (en) 2014-07-29 2021-09-07 Telefonaktiebolaget Lm Ericsson (Publ) Estimation of background noise in audio signals
US11158330B2 (en) 2016-11-17 2021-10-26 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Apparatus and method for decomposing an audio signal using a variable threshold
WO2018091618A1 (en) * 2016-11-17 2018-05-24 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Apparatus and method for decomposing an audio signal using a variable threshold
US11183199B2 (en) 2016-11-17 2021-11-23 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Apparatus and method for decomposing an audio signal using a ratio as a separation characteristic
KR102391041B1 (en) * 2016-11-17 2022-04-28 프라운호퍼 게젤샤프트 쭈르 푀르데룽 데어 안겐반텐 포르슝 에. 베. Apparatus and method for decomposing an audio signal using a variable threshold
EP3324406A1 (en) * 2016-11-17 2018-05-23 Fraunhofer Gesellschaft zur Förderung der Angewand Apparatus and method for decomposing an audio signal using a variable threshold
RU2734288C1 (en) * 2016-11-17 2020-10-14 Фраунхофер-Гезелльшафт Цур Фердерунг Дер Ангевандтен Форшунг Е.Ф. Apparatus and method for decomposing an audio signal using a variable threshold value
KR20190082928A (en) * 2016-11-17 2019-07-10 프라운호퍼 게젤샤프트 쭈르 푀르데룽 데어 안겐반텐 포르슝 에. 베. Apparatus and method for decomposing an audio signal using a variable threshold
US11869519B2 (en) 2016-11-17 2024-01-09 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Apparatus and method for decomposing an audio signal using a variable threshold
JP2019537751A (en) * 2016-11-17 2019-12-26 フラウンホーファー−ゲゼルシャフト・ツール・フェルデルング・デル・アンゲヴァンテン・フォルシュング・アインゲトラーゲネル・フェライン Apparatus and method for decomposing an audio signal using a variable threshold

Also Published As

Publication number Publication date
EP2491548A1 (en) 2012-08-29
AU2010308598A1 (en) 2012-05-17
IN2012DN03323A (en) 2015-10-23
US9401160B2 (en) 2016-07-26
US20120215536A1 (en) 2012-08-23
US20160322067A1 (en) 2016-11-03
CA2778343A1 (en) 2011-04-28
EP2491548A4 (en) 2013-10-30
CN102804261A (en) 2012-11-28
JP2013508773A (en) 2013-03-07
CN102804261B (en) 2015-02-18

Similar Documents

Publication Publication Date Title
US9401160B2 (en) Methods and voice activity detectors for speech encoders
US11361784B2 (en) Detector and method for voice activity detection
US9418681B2 (en) Method and background estimator for voice activity detection
US11417354B2 (en) Method and device for voice activity detection
Sakhnov et al. Approach for Energy-Based Voice Detector with Adaptive Scaling Factor.

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080057984.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10825286

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 3323/DELNP/2012

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2012535163

Country of ref document: JP

Ref document number: 13502535

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2010308598

Country of ref document: AU

Ref document number: 2778343

Country of ref document: CA

REEP Request for entry into the european phase

Ref document number: 2010825286

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010825286

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2010308598

Country of ref document: AU

Date of ref document: 20101018

Kind code of ref document: A