WO2011044750A1 - 风力机叶片结构及其加工成型方法 - Google Patents

风力机叶片结构及其加工成型方法 Download PDF

Info

Publication number
WO2011044750A1
WO2011044750A1 PCT/CN2010/001527 CN2010001527W WO2011044750A1 WO 2011044750 A1 WO2011044750 A1 WO 2011044750A1 CN 2010001527 W CN2010001527 W CN 2010001527W WO 2011044750 A1 WO2011044750 A1 WO 2011044750A1
Authority
WO
WIPO (PCT)
Prior art keywords
wedge
blade
layer
fiber cloth
column
Prior art date
Application number
PCT/CN2010/001527
Other languages
English (en)
French (fr)
Inventor
黄争鸣
Original Assignee
Huang Zhengming
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huang Zhengming filed Critical Huang Zhengming
Publication of WO2011044750A1 publication Critical patent/WO2011044750A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D1/00Wind motors with rotation axis substantially parallel to the air flow entering the rotor 
    • F03D1/06Rotors
    • F03D1/065Rotors characterised by their construction elements
    • F03D1/0675Rotors characterised by their construction elements of the blades
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/08Blades for rotors, stators, fans, turbines or the like, e.g. screw propellers
    • B29L2031/082Blades, e.g. for helicopters
    • B29L2031/085Wind turbine blades
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • Wind turbine blade structure and processing method thereof Wind turbine blade structure and processing method thereof
  • the present invention relates to a wind turbine blade structure and a method and a forming method for realizing such a structure using different materials. Background technique
  • the way to achieve this is to use the wind wheel to drive the wind wheel to rotate, to drive the wind turbine to generate electricity or to do mechanical work, that is, to convert the kinetic energy of the wind into electrical energy or mechanical energy.
  • the wind wheel usually consists of several blades. Since the power output of the wind turbine is proportional to the surface area of the blade and is also proportional to the cube of the wind speed, the blades of the high power wind turbine are often very large.
  • a 1.5 MW wind turbine with a rated wind speed of 11 m per second typically has a blade length of more than 37 m, while a 5 MW wind turbine has a blade length of more than 60 m and stands up to or above 20 stories. If the available wind speed is reduced, such as the rated wind speed is reduced to 9 m per second, the same 1.5 watts of power is emitted, and the required length of the rotor blades will be 50 m. It is not difficult to predict that the length of the wind turbine blades will be longer and longer in the future.
  • the blade is fixed to the wind wheel through the root connecting bolt and suspended in the space, which is a space cantilever beam structure. Therefore, the basic requirements for the blade are:
  • the weight should be as light as possible, the stiffness should be as large as possible, and the strength, especially the fatigue strength and stability, should be sufficient.
  • Light-weight blades are not only installed (the ground blade installation height is generally 2 times the length or the length is more than 30m).
  • wind turbine blades are mainly made of fiber (mainly glass fiber) reinforced resin-based composite materials, and also made of wood planing chips or bamboo planing chips and resin dipping or bonding.
  • materials made of fiber cloth, wood planer or bamboo planer and resin base are collectively referred to as FRP.
  • the structural form of the medium-sized blade is mainly composed of the main beam and the skin.
  • the skin is made of a small number of layers of fiber cloth sandwiched between lightweight material sheets, such as structural foam boards, light bamboo boards, and light wood boards, to provide strength to the blade structure.
  • the fiber layer of the main beam is thick and provides rigidity to the blade structure.
  • the main beam fiber layer thickness of a 38m long blade is as high as 50 layers. After soaking the fiber, the amount of heat released during curing is large and the cumulative shrinkage is also large.
  • the mechanical properties, anti-aging properties, weather resistance (high temperature and low temperature of the wind field, salt acid rain and corrosion resistance) of the unsaturated resin and fiber composite are comparable to those of the epoxy resin, and processing Better performance (lower viscosity), but the cost is much lower than the former, but in order to control the amount of heat release and shrinkage deformation within the allowable range, the base material of large and very large blades is generally epoxy resin, and rarely An unsaturated resin which is much larger in heat release and shrinkage deformation than epoxy. This is because excessive shrinkage deformation will make it difficult to guarantee the machining accuracy and aerodynamic characteristics of the blade, and excessive heat release may cause the blade mold to be scrapped.
  • the paving of the blade root section is often thick, although the length of the blade root section is only about 1/10 of the total length of the blade, but the weight accounts for 1 of the total weight of the blade. /3 or so. This is because the blade root section is the most stressed and needs sufficient rigidity and strength to be rich. Another more important aspect is to effectively realize the fixed connection of the blade to the wind wheel at the blade root section. Since the use of metal bolts to secure the blade to the hub is currently the most convenient way to connect, metal bolts or metal nuts must be embedded in the blade root, collectively referred to as metal connectors.
  • the first way is called For the metal pre-buried type, the metal connecting member is preset in the root layer, and after the fiber cloth is dipped and solidified, it is integrated with the blade root section; the other method is called the end hole type, and is to be the blade. After the whole molding, the hole is drilled in the longitudinal and transverse directions at the root.
  • the horizontal hole is for embedding the T-shaped nut, and the vertical hole is for providing the passage for the connection bolt to screw the bolt into the T-shaped nut.
  • the weight of the bolt or nut in the first metal pre-buried type is often much higher than the weight of the ⁇ -shaped nut in the second way.
  • the root of a 1.5MW wind turbine blade is metal-buried, and the total weight of 54 connectors is 250kg. If the end hole is used, the total weight of the 54 T-shaped nuts buried will generally be less than 70kg, the former is more than four times the weight of the latter.
  • the metal embedded parts (usually circular) and the thick fiber wraps of the blade roots are also difficult to harmonize, especially the inevitable shrinkage deformation during curing will be more difficult to ensure the accuracy of the positioning of the metal embedded parts after forming. Therefore, metal pre-buried type usually requires another mold to perform prefabrication of the blade root section, which increases the cost of the blade and is detrimental to the overall characteristics of the blade structure.
  • the disadvantage of the second type of end hole type is:
  • the blade manufacturer must add an expensive punching device (currently, a set of devices capable of punching the end of a 1.5 MW fan blade is generally not less than 4 million RMB), equipped with a special Punch workshop. Given the sheer size of large blades, these inputs increase blade costs.
  • the lateral punching partially cuts the continuity of the fiber layup, posing a hidden danger to the strength of the blade.
  • Other deficiencies include the difficulty in determining the initial longitudinal hole position, the difficulty in concentricity between the longitudinal hole and the laterally placed nut hole, and even the improper hole punching. Since the roots of the perforations are thick, the large blades are generally graded. Summary of the invention
  • the technical problem to be solved by the present invention is to provide a wind turbine blade structure comprising a blade root section of the blade, a new structure of the main beam, and a new structure for connecting the blade to the wind wheel, using a novel sectional shape Combined with materials, the blade is light in weight, high in rigidity, high in strength and improved in blade forming efficiency.
  • the method comprises a method of processing the blade root section, the main beam and the connecting piece.
  • a further technical problem to be solved by the present invention is to expand the use of the wind turbine blade structure described above.
  • the technical solution adopted by the present invention to solve the above technical problems is: a wind turbine blade structure, wherein the blade is composed of a blade root section, a main beam and a skin covered on the blade root section and the outside of the main beam, and the blade passes through the blade root
  • the connecting piece of the segment is fixed with the wind wheel to form a space cantilever structure, wherein, in the main beam region and the blade root segment, one or more solid or hollow wedge columns are arranged between the top layer and the bottom layer, and the blade root
  • the innermost wedge-shaped column of the end is solid, and a connecting member is embedded therein, wherein at least the innermost adjacent wedge-shaped column of the blade root section is formed by a continuous insertion of a fiber cloth in a transverse direction to form an interlayer, see FIG.
  • top layer layer, the bottom layer layer and the fiber cloth interlayer are dipped as shown in FIG. 5, and after solidification, a skeleton of a honeycomb section is formed (wrapping the wedge column) to form a main beam and a leaf as a main bearing member. Root segment.
  • the layup is one or more of bamboo planing slices, wood planing slices, and fiber cloth
  • the fiber cloth is glass fiber cloth, basalt fiber cloth, carbon fiber cloth, carbonization.
  • the laminates referred to in the following statements have the same meaning. These laminates may be dry, and may be dipped by injection of a resin after the completion of the layup, or may be a wet layup previously impregnated with the resin, or It is painted with resin on the side of the layer. After the layer dipping is cured, it is collectively referred to as FRP, as described in the above scheme.
  • the skin is composed of a plurality of layers, or a lightweight material is sandwiched between the plurality of layers, preferably a structural foam sheet is stacked.
  • a structural foam sheet is stacked.
  • one or more solid or hollow wedge-shaped columns may be arranged between the skin bottom layer and the top layer, similar to the fabrication of the main beam and the blade root, and the fiber cloth is used in the transverse direction between the adjacent wedge columns.
  • the continuous interlacing and winding constitutes an interlayer, and the top layer, the bottom layer and the fiber cloth are dipped and solidified to form a skeleton of a honeycomb section.
  • the wedge-shaped column in the blade, may be wrapped in the skeleton of the honeycomb section or removed after the skeleton of the honeycomb section is formed to further reduce the weight of the blade, and the removal method may be adopted. Hot melt, water soluble or other organic medium is dissolved and removed.
  • the cross-sectional shape of the wedge-shaped column is a shape formed by a combination of a triangle, a quadrangle (such as a parallelogram or an isosceles trapezoid), a hexagon, or a combination of the above shapes.
  • Figure 6 is a cross section of several typical hollow wedge columns
  • Figure 7 is a cross section of several typical solid wedge columns.
  • the invention utilizes the unique properties of the honeycomb cross-section skeleton structure, and greatly improves the strength, rigidity and stability of the blade, and reduces the consumption of the FRP material in the blade and reduces the weight.
  • the typical honeycomb skeleton structure is based on a honeycomb shape of a regular hexagon, based on an equilateral triangle with an internal angle of 60°, a parallelogram with internal angles of 60° and 120°, or a trapezoid, thereby forming a honeycomb structure of any shape. Section shape.
  • the internal angle of the atypical honeycomb structure can be any other angle.
  • the honeycomb structure may be continuously arranged by triangular wedge blocks to form a honeycomb cavity, as shown in Figs. 6h, 6k ; or a trapezoidal wedge block may be used to form a honeycomb cavity, as shown in Fig. 6m, but in order to compensate for the strength of the trapezoidal honeycomb cavity,
  • the support bar is added, the support bar is the vertical support bar in Fig. 6m, and the inclined support bar can also be set as shown in Fig. 6h, 6k.
  • Fig. 6d it is known that it is also possible to use a quadrilateral with an internal angle of 90° between two triangles having internal angles of 60°, 30° and 90°, which also constitutes a desired trapezoid.
  • the wedge-shaped block which can constitute the honeycomb structure is not limited to the above-described shape having a specific inner angle.
  • the wedge block of the blade root segment since most of the wedge blocks must form a ring shape, the inner angle of the wedge block must not be the standard 30°, 60° or 120°, but the arrangement of the wedge block should also be classified as
  • the "honeycomb structure" of the invention has the same design concept as the other parts, and the bevel faces of the plurality of wedge blocks are in contact, which increases the stability of the structure.
  • the wedge-shaped column is inclined from the root end to the tip end in a stepwise manner from thick to thin, wherein the connection of the adjacent wedge-shaped columns is inclined. Transition block, see Figure 1.
  • the connecting member is composed of a metal bolt or a metal nut/nut, and one or more bolts are pierced outward from the end face of the wedge-shaped column closest to the root end, or along the wedge shape.
  • the axial end of the column end face is provided with a long hole, and the axial long hole is provided with one or more, and a corresponding number of blade root connecting bolts can be inserted in the axial long hole, and embedded in the middle or the other end of the wedge column
  • the nut/nut is concentric and is threadedly attached to it.
  • a metal bolt one or more bolts are outwardly protruded from the innermost wedge-shaped column end face of the blade root end, and the overhanging section is threaded; if a metal nut/nut is used, along the end of the wedge-shaped column
  • the axial direction is provided with a long hole, and the axial long hole is provided with one or more, and a corresponding number of blade root connecting bolts can be inserted in the axial long hole, and a nut embedded in the middle or the other end of the wedge column/
  • the nuts are concentric and threadedly attached to them.
  • the method of embedding the connector can be implemented in one of three ways:
  • An axial long hole is drilled in one end surface of the solid wedge column, and a transverse hole perpendicular to the axial long hole is drilled and milled from the top surface, the side surface or the bottom surface of the wedge column at a position long enough from the end surface. Insert the nut/nut into the transverse hole, make sure that the bolt is concentric with the nut/nut, and plug the horizontal surface hole with the sealing material (mud, etc.), as shown in Figure 3.
  • the processing method for the wind turbine blade structure described above includes the following steps:
  • Step 1 Lay the bottom skin layer on the surface of the blade mold according to the design requirements:
  • the blade skin consists of several layers of relatively thin fiber cloth, bamboo planing slices or wood planing slices. From the root end to the tip end, the thickness of the bottom skin is reduced in steps from thick to thin. When the bottom skin is finished, the blade root and the main beam can be laid;
  • Step 2 Lay the root section, including:
  • the bottom layer is laid, preferably also in the form of a stepped ⁇ ! reduction (that is, the more the layer is laid closer to the root end), on the basis of the bottom layer layer, the blade root can be pressed along the blade axial direction
  • a stepped arrangement is used to construct a polygonal wedge-shaped column of a honeycomb structure, such as a trapezoidal column or a triangular column.
  • the trapezoidal column (Fig. 2) is used to represent an arbitrary polygonal wedge column.
  • each connecting bolt should have a trapezoidal column as shown in Figure 3.
  • trapezoidal columns that need to be embedded with metal connectors in addition to being as light as possible, it must also have a sufficiently high shear strength.
  • mechanical properties such as extrusion strength, compressive strength, fatigue creep resistance, etc.
  • glass fiber basalt fiber, carbon fiber, silicon carbide fiber, aramid fiber, ultra high molecular weight polyethylene fiber, cotton fiber or reed fiber cloth
  • a composite material made of one or more of a reinforced resin-based composite material, an aluminum alloy, or a magnesium alloy, or a general plastic, bamboo, wood, or a composite thereof combined with the above-mentioned higher strength materials.
  • Other trapezoidal columns without connectors are available in lightweight materials such as low specific gravity foam, honeycomb, bamboo, wood, paper, and of course high-strength materials such as FRP Composite with foam.
  • a fiber cloth is used to form a sandwich in a continuous shape.
  • the width of the upper and lower bottoms of the wedge-shaped column such as the trapezoidal column can be determined, and the trapezoidal column is determined.
  • the wedge section of the blade root is fixed by the connecting bolt to the rigid positioning plate at the end of the blade mold. It ensures the precise positioning of the connecting bolts at the rear end of the blade.
  • Step 3 Lay the main beam area.
  • the current main beam of the blade is made of fiber cloth or bamboo and wood planing.
  • the specific strength (ratio of section strength to cross-sectional area) and specific stiffness (ratio of section stiffness to cross-sectional area) of the solid section main beam are relative. Both are relatively low.
  • the present invention employs a honeycomb cavity section having a specific strength and specific stiffness much higher than that of a conventional solid section as the main beam of the blade.
  • the bottom layer In the main beam region of the blade structure, several layups are laid from the root end of the main beam to the tip end of the main beam, generally a unidirectional fiber band, called the bottom layer, and one or more wedge columns are placed on the bottom layer, and the bottom layer is laid.
  • the width of the base should be more than 10 ⁇ 400mm beyond the arrangement of the bottom of the wedge column. Then, if there is only one wedge column in the main beam section, apply several layers of layers, preferably the same number of layers as the bottom layer, from the wedge column.
  • the top of the long beam structure is outsourced to obtain the cross-sectional shape shown in Figure 8.
  • the trapezoidal column is firstly stretched with a fiber cloth in the shape of " ⁇ " between adjacent wedge-shaped columns. After interspersed to form the inner cladding, the outer cladding is then carried out, see Fig. 10.
  • Step 4 After the leaf root layup and the main beam layup are completed, the top skin is layered.
  • the lightweight materials are arranged in the non-leaf root section or the main beam area, and finally the top layer of the skin is layered from the blade root section to the tip of the blade, and the front and rear edges are partially reinforced if necessary.
  • the top skin is laid on the top layer, and the middle layer of the skin and the bottom layer are generally sandwiched with a lightweight material board, preferably a structural foam board or a light board to increase the local stiffness and stability of the blade.
  • a lightweight material board preferably a structural foam board or a light board to increase the local stiffness and stability of the blade.
  • one or more solid or hollow wedge-shaped columns may be arranged between the top layer of the skin and the bottom layer, and the adjacent wedge-shaped columns are formed by interlacing with a fiber cloth in a continuous shape.
  • the honeycomb section skeleton of glass fiber reinforced plastic material, fiber cloth, bamboo planing slice or wood planing slice layer is generally symmetrical with respect to light material plate or wedge column, and is called bottom skin and top skin, respectively.
  • Step 5 After the laying is completed or during the laying process, the skin, the blade root and the main beam layer are dipped, and the resin is cured to form the blade.
  • the wedge column can be obtained by one of the following five methods:
  • A. Made of a lightweight material by cutting, pultrusion or mold processing to form a solid wedge-shaped column;
  • B After preparing the slab of lightweight material, the majority of the slats are spliced by bonding, welding, riveting or hot and cold pressing to form a hollow wedge-shaped column with a honeycomb structure;
  • the upper and lower thin shells are made of fiber cloth dipping, and the support plates are arranged in the middle to be bonded or hot and cold pressed to form a hollow wedge-shaped column with a honeycomb structure.
  • the lightweight material comprises glass fiber, basalt fiber, carbon fiber, silicon carbide fiber, aramid fiber, ultra high molecular weight polyethylene fiber, cotton fiber or reed fiber reinforced resin matrix composite material, aluminum A composite material of one or more of alloys, magnesium alloys, plastics, bamboo, wood, paperboard, solid foam, honeycomb materials.
  • the method of dipping and solidifying molding adopts one of the following three types:
  • the wrapped fiber cloth is undiluted, and after all the fiber cloth layers are completed, the fiber cloth is injected (injected with resin) and solidified. Then, a hollow wedge shape is required before the injection.
  • the holes at both ends of the column are closed to ensure that the resin does not enter the cavity during injection. If it is formed by wet molding, it will be used.
  • the fiber cloth pre-soaked with the resin is layered, or a layer of dry fiber cloth is applied and a layer of resin is applied. Then, the holes at both ends of the main beam need not be blocked.
  • one of the key technologies of the present invention is to replace the solid FRP section of the current main beam and the root section of the blade with a honeycomb section skeleton of a FRP material with superior stiffness and specific strength.
  • One of the ways to achieve this is to use a lightweight material such as foam to form the same cross-section as the hole, by fiber cloth wrapping, vacuum infusion, or by hand-paste or prepreg, the resin-impregnated fiber cloth is wrapped around the lightweight material. Post-curing molding.
  • the prior art avoids too much layup in the large and super large blades, resulting in high curing heat release and large molding shrinkage, which can not only achieve large and super
  • the large blade is molded by one injection, and the low cost resin such as unsaturated resin can be used as the base material, which has obvious technical and economic advantages.
  • Another key technique of the present invention is to embed a metal bolt cap in a prefabricated trapezoid or other polygonal shape such as a triangular short post for sealing the honeycomb cavity at the root end of the blade.
  • one or more solid or hollow wedge columns are arranged to form a honeycomb core structure and disposed between the top layer and the bottom layer, and the adjacent wedge columns are continuous with a fiber cloth. Interspersed winding constitutes the interlayer, and the laminate and the fiber cloth dipped to form a cross-sectional shape of the FRP honeycomb wall, which will play a role in other wider fields.
  • the wedge-shaped column of the embedded metal bolt cap is trapezoidal or polygonal rather than circular, and is placed in the root casing. Easy, stable and reliable, the package between the fiber cloth is uniform and reliable, there is no local fiber filling and local stress concentration, and uniform stress transmission can be realized;
  • the surface area of the wedge-shaped column is large. Even if the blade root section is connected by multiple bolts (for example, the root of the 38m long blade is changed from 54 to 64 or even more connecting bolts), a wedge-shaped column with a large enough surface area can be designed, so that the blade root is paved.
  • the shear force transmitted by the layer is sufficient to balance the tensile force generated by the connecting bolt on the trapezoidal column;
  • Figure 1 is a schematic view showing the axial arrangement of the blade root end of the present invention.
  • Figure 2a is a side elevational view showing the wedge-shaped column of the blade root section of the present invention.
  • Fig. 2b is a front view showing the structure of the wedge-shaped column of the blade root section of the present invention.
  • Fig. 3a is a side elevational view showing the wedge-shaped column in which the blade root portion is embedded with the connecting member of the present invention.
  • Fig. 3b is a front perspective view showing the wedge-shaped column in which the connecting member is embedded in the blade root section of the present invention.
  • FIG. 4 is a schematic cross-sectional structural view of a blade root section intercalated and wrapped wedge-shaped column of the present invention.
  • Fig. 5 is a schematic cross-sectional view showing the top layer and the bottom layer of the blade root section of the present invention.
  • Fig. 6a is a schematic structural view of a hexagonal honeycomb cross-section skeleton of the present invention.
  • Fig. 6b is a schematic view showing the structure of a reinforcing hexagonal honeycomb cross-section skeleton according to the present invention.
  • Fig. 6c is a structural schematic view of a corrugated reinforced regular hexagon honeycomb cross-section skeleton of the present invention.
  • Figure 6d is a schematic view showing the structure of a rhombic honeycomb cross-section skeleton of the present invention.
  • Figure 6e is a schematic view showing the structure of a rectangular honeycomb cross-section skeleton of the present invention.
  • Figure 6f is a schematic view showing the structure of a flat hexagonal honeycomb cross-section skeleton of the present invention.
  • Figure 6g is a schematic view showing the structure of a square honeycomb cross-section skeleton of the present invention.
  • 6h, 6k are schematic structural views of a triangular honeycomb cross-section skeleton of the present invention.
  • Fig. 6m is a structural schematic view of the isosceles trapezoidal honeycomb cross-section skeleton of the present invention.
  • Fig. 6n is a schematic structural view of a flex-core shaped honeycomb cross-section skeleton of the present invention.
  • Fig. 6p is a schematic view showing the structure of a tube-core honeycomb cross-section skeleton of the present invention.
  • FIG. 7a, 7b, 7c are schematic views of a honeycomb cross-sectional structure based on a lightweight trapezoidal filler construction of the present invention.
  • FIG. 8 is a schematic cross-sectional structural view of a main beam composed of a layered triangular column according to the present invention.
  • FIG. 9 is a side view showing the structure of a lightweight material trapezoidal column of the present invention.
  • FIG. 10 is a schematic cross-sectional structural view of a main beam formed by laminating trapezoidal columns of the present invention.
  • Figure 11 is a diagram showing the bending stiffness distribution of the blade root section of the present invention.
  • Fig. 12 is a cross-sectional view showing the cross section of a trapezoidal column of a blade root section in which the bamboo planer slice and the chopped strand mat are combined.
  • Fig. 13a is a side view showing the structure of the T-bolt embedded in the trapezoidal column of Fig. 12.
  • Figure 13b is a front view showing the structure of the T-bolt embedded in the trapezoidal column of Figure 12.
  • Figure 14a is a side view structural view of a trapezoidal column II made of a composite of FRP and foam board.
  • Figure 14b is a front view showing the dimensions of a trapezoidal column made of FRP and foam sheets.
  • Figure 15a is a side view structural view of a trapezoidal column made of a composite of FRP and foam board.
  • Figure 15b is a front view of a trapezoidal column III made of a composite of FRP and foam board.
  • Fig. 16 is a schematic view showing the cross-sectional structure of the main beam of the embodiment 2 in which the triangular columns are bonded.
  • the main beam design consists of a unidirectional fiberglass reinforced epoxy resin composite material.
  • the main beam is 310mm wide, the single layer is 0.9mm thick, the density is 1950kg/m 3 , and the thickest layer is 50 layers.
  • PVC foam with a specific gravity of 60kg/m 3 is pre-processed into the trapezoidal column shown in Figure 9.
  • the beam section is constructed using the same FRP material and has the same modulus of elasticity, the main beam wielding stiffness is 24% higher than the current design and the staggering stiffness is 8% higher.
  • the thickest section of the main beam of the present invention also weighs only 39.2% of the current weight. Since the blade is a beam structure, the beam theory is adopted.
  • the analytical design has sufficient accuracy, and the moment of inertia of the beam section along the two perpendicular axes is the most important section geometry parameter (the torsional moment of inertia is the algebraic sum of the two vertical axis moments of inertia), which indicates that the invention not only makes The weight of the main beam of the blade is greatly reduced, and the rigidity of the main beam is also improved. Further, according to the beam theory, we know that the stress at any point on the beam cross section is also inversely proportional to the stiffness of the section. In the case of increased stiffness, the stress in the beam is also reduced.
  • the operation is the same if a fiber prepreg which has been previously impregnated with resin but is not cured is used in place of the dry fiber.
  • the length of the beam is the same as the length of the thickest section of the blade, and the ends are closed.
  • the bottom skin is layered first. Two layers of unidirectional cloth are laid on the foundation, that is, the bottom layer is 2" (the bottom layer fiber belt), the single layer is 0.9mm thick, and the elastic modulus E 2 in the axial direction after RIM (Resin infusion moulding) is dipped.
  • RIM Resin infusion moulding
  • the flapping stiffness of the blade main beam E/ & ⁇ , + ⁇ ; 561.7 KN-m 2
  • the cross-sectional area of the bamboo planing slice is 5229.5 mm 2
  • the cross-sectional area of the surrounding fiber cloth is 2410.3 mm 2 , thereby calculating that the weight of the thickest section of the main beam is only 32.7% of the current weight.
  • the operation is the same if the fiber prepreg which has been previously impregnated with the resin but is not cured is used in place of the dry fiber cloth.
  • the both ends of the wedge column may not be closed at this time.
  • the root length is 1m, including the root embedded bolt sleeve
  • the 1 m long leaf segment of the root weighs 888kg.
  • the bending stiffness distribution along the two orthogonal axes is shown in Figure 11 ( The figure is labeled as the current structure).
  • the design of the blade blade root section of the present invention is as follows.
  • the bamboo planer section F and the chopped strand mat D are alternately laminated in the mold, wherein the bottom layer and the topmost layer are chopped strand mats, and a total of 34 layers of bamboo planing slices F, 35 layers of chopped strand mats D, RIM or RTM are laid. (Resin transfer moulding), formed into a trapezoidal wedge column 1, with a cut length of 400 mm, a total of 54 pieces, the cross-sectional dimensions of which are shown in Fig. 12;
  • the trapezoidal-shaped column 1 is located at the innermost side of the blade root section, and is used to form the blade root casing and connect the blade to the wind wheel. fixed.
  • the first type a PVC60 plate with a thickness of 7mm and a unidirectional cloth B are alternately laminated in the mold, wherein the bottom layer and the top layer are both unidirectional cloth B, and a total of ten layers of PVC60 foam board and eleven layers are laid.
  • the trapezoidal wedge-shaped column 1 formed by cloth B, RIM or RTM has a cut length of 300 mm, a total of 54 pieces, and its cross-sectional dimension is as shown in Fig.
  • the second type a PVC foam board with a thickness of 9 mm and a unidirectional cloth B are alternately laminated in the mold, wherein the bottom layer and the top layer are both unidirectional cloth B, and a total of six layers of PVC60 foam board and seven layers are laid.
  • Forming cloth B, RIM or RTM into trapezoidal column 1 ', cut length 300mm, total 54 pieces, cross section The inch is shown in Fig. 15; according to the mixing ratio, the density of the trapezoidal column can be calculated to be 257 kg/m 3 ; and by the classical laminate theory, the axial elastic modulus of the trapezoidal column is calculated to be B 3.6 GPa.
  • the bottom layer is layered in the mold as shown in Table 1. First, the 5C (5-layer double-axis cloth) is laid and then the triaxial cloth A is laid;
  • the ladder trapezoidal columns are respectively wrapped with three layers of unidirectional cloth B having a width of 700 mm and 300 mm, and a cross-sectional view thereof is shown in Fig. 4;
  • the blade section section stiffness of the present invention is substantially greater than the current blade stiffness, wherein the blade bending stiffness margin of the present invention exceeds 80% in the Z ⁇ 0.4 m section.
  • the weight of the 1 m long blade root segment (including the connecting bolt cap) of the present invention is 608 kg, which is 280 kg less than the current blade root structure design. Therefore, the present invention not only causes the weight of the blade to be significantly lowered, but also the rigidity is greatly improved.
  • Example 4 The material used in the embodiment and the implementation steps are basically the same as those in the above-mentioned Embodiment 3. Only the T-bolt head cover in the material column is replaced with a special hex nut, and the pre-embedded T-bolt head cover is changed into a pre-embedded special hex nut, that is, The second step in Embodiment 3 is replaced by the following:
  • the first step the bamboo planing slice F and the chopped strand mat D are alternately laminated in the mold, wherein the bottom layer and the top layer are chopped strand mats, and a total of 34 layers of bamboo planing chips F and 35 layers of chopped strand mats D are laid.
  • RIM or RTM is formed into trapezoidal column 1, with a cut length of 400mm, a total of 54 pieces, the cross-sectional dimensions are shown in Figure 12;
  • the hexagonal hole is milled from the outer end surface of the trapezoidal wedge column 1.
  • the depth of the milling hole is determined according to the depth of the other end of the connecting bolt.
  • Special hex nut 6, and then the nut 6 is fixed with the trapezoidal wedge column 1 and the end of the hexagonal hole is closed.
  • Embodiment 5 is basically the same as Embodiment 3 or Embodiment 4, except that the trapezoidal column formed by laminating the bamboo planing chips is replaced by a trapezoidal column made of glass fiber reinforced resin, regardless of the use of the unidirectional cloth, the triaxial cloth, Biaxial cloth or chopped strand mat, as long as the geometry of the trapezoidal column reaches the size given in Figure 13 and the fiber volume content is not less than 50%, it is assumed that a one-way cloth is used and a trapezoidal column is prepared by the RIM method, and its density is 1950 kg/m. 2 o At this time, the weight of the 1 m long section of the root is 789 kg, which is 99 kg less than the current structure. Of course, the stiffness of the blade roots far exceeds the current stiffness. Table 1 Description of the bottom layer (the thickness of the finished layer 1 is 11.7mm)
  • 5C+10A 0 1000 Note: 5C+1A is laid after laying 5 layers of biaxial cloth and then laying 1 layer of triaxial cloth, as shown in Table 2, layer 2
  • 1 C+10A is to lay 10 layers of triaxial cloth after laying 1 layer of double-axis cloth.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Moulding By Coating Moulds (AREA)
  • Wind Motors (AREA)

Description

说 明 书
风力机叶片结构及其加工成型方法 技术领域
本发明涉及一种风力机叶片结构,以及采用不同材料实现这种结构的途径和 加工成型方法。 背景技术
化石能源的短缺以致最终将面临枯竭促使世界各国大力开发可再生的风能。 其实现的途径是借助风轮, 由风推动风轮旋转,带动风力机发电或做机械功,即, 将风的动能转化成电能或机械能。风轮通常由若干只叶片组成。 由于风力机输出 的功率与叶片的表面积成正比, 并且还与风速的立方成正比, 因此大功率风力机 的叶片往往十分庞大。 一台额定风速为每秒 11m的 1.5MW (兆瓦)风力机的叶 片长度一般在 37m以上, 而一台 5兆瓦风力机的叶片长度则超过 60m, 立起来 达到或超过 20层楼高。 若可利用的风速减小如额定风速降低到每秒 9m, 同样 发出 1.5兆瓦的电力, 所需风轮叶片的长度将要达到 50m才行。 不难预料, 未 来风力机叶片的长度将会越来越长。
叶片是通过根部连接螺栓与风轮固定, 悬置在空间, 为空间悬臂梁结构。 因 此, 对叶片的基本要求是: 重量要尽可能轻, 刚度要尽可能大, 强度尤其疲劳强 度、 稳定性要足够。 重量轻的叶片不仅安装(陆上叶片安装高度一般为长度的 2 倍或者长度基础上附加 30m以上)容易、 变浆(即变动叶片在空间的相对方位, 以最大可能利用风速获取动能或必要时避开风速保护设备)方便, 而且可以大大 缓解自身重力(由于旋转产生的离心力)对风力机的作用, 提高整个风力机系统 的可靠性和运行成本。除了这些结构性能要求外,对风力机叶片的另一个基本要 求是: 成本要尽可能低。减轻叶片重量、 降低材料消耗固然是降低叶片成本的一 条很好途径, 但另一条重要途径是尽可能选用相对低廉的原材料。
目前,风力机叶片主要由纤维(主要是玻璃纤维)增强树脂基复合材料制成, 也有采用木刨切片或竹刨切片与树脂浸胶或粘接制成。 为方便起见, 将纤维布、 木刨切片或竹刨切片与树脂基复合制成的材料统称为玻璃钢。除了叶根过渡段之 外, 中型以上叶片的结构形式主要由主梁和蒙皮构成。蒙皮由很少几层纤维布中 间夹轻质材料板, 如结构泡沫板、 轻竹板、 轻木板制成, 为叶片结构提供强度。 主梁的纤维铺层则很厚, 为叶片结构提供刚度, 比如某 38m长叶片的主梁纤维 铺层厚度高达 50层。 如此多的纤维铺层在浸胶后, 固化时放热量大, 并且累积 的收缩率也很大。
尽管不饱和树脂与纤维复合后的力学性能、抗老化性能、 耐候性能(叶片抵 抗所在风场的高低温、盐雾酸雨腐蚀能力)等都与使用环氧树脂后的性能不相上 下, 而且加工性能更好 (粘度更低), 而成本却比前者低很多, 但是为了将放热 量和收缩变形量控制在容许范围,大型、超大型叶片的基体材料一般都采用环氧 树脂, 而很少会采用放热量和收缩变形量都比环氧大很多的不饱和树脂。这是因 为过大的收缩变形将难以保证叶片的加工精度和气动特性,而过高的放热量将可 能导致叶片模具报废。 即便如此, 对大型和超大型叶片, 由于涉及的纤维铺层太 多, 往往会选择分级固化, 就是先铺设一部分纤维、 浸胶固化后, 在其基础上再 铺设另一部分纤维、浸胶固化, 这种逐级固化不仅降低了效率, 而且还带来叶片 的质量隐患。
除了主梁是铺层材料的一个聚集区外, 叶片叶根段的铺层往往也很厚,尽管 叶根段的长度只有叶片总长的大约 1/10, 但重量却占据了叶片总重量的 1/3左 右。这一方面是因为叶根段受力最大, 需要有足够的刚度和强度富裕, 另一个更 重要方面是为了有效实现叶片在叶根段与风轮的固定连接。由于采用金属螺栓将 叶片与轮毂固定是目前最为便捷的连接途径,必须在叶片根部嵌入金属螺栓或金 属螺帽, 统称为金属连接件。 对大型叶片, 通常有两种嵌入方式: 第一种方式称 为金属预埋式, 是将金属连接件预置在根部铺层内, 待纤维布浸胶、 固化后, 与 叶根段成为一体; 另一种方式称为端部打孔式, 是待叶片整体成型后, 再在其根 部纵、 横双向打孔, 横向打孔是为了埋入 T形螺帽, 纵向打孔则是为连接螺栓 的穿过提供通道, 以便将螺栓拧入 T形螺帽。 这两种方式都还存在不足。
第一种金属预埋式中的螺栓或螺帽的重量往往远高于采用第二种方式的 τ 形螺帽的重量。 比如, 某 1.5MW风机叶片的根部采用金属预埋式, 54只连接件 的总重为 250kg, 而若采用端部打孔式, 所埋入的 54个 T形螺帽总重一般将少 于 70kg, 前者是后者重量的 4倍多。 此外, 金属预埋件 (通常为圆形) 与叶根 段厚厚的纤维包裹层也比较难以协调一致,尤其固化时不可避免的收缩变形将比 较难保证成型后金属预埋件定位的准确性。因此,金属预埋式通常都需要另开模 具进行叶片根部段的预制来实现,这既增加了叶片成本又不利于叶片结构的整体 特性。
第二种端部打孔式的不足是: 叶片厂家必须添置昂贵的打孔装置(目前, 可 进行 1.5MW风机叶片端部打孔的一套装置一般不低于 400万元人民币), 配备 专门的打孔车间。 鉴于大型叶片十分庞大, 这些投入都增加了叶片成本。 而且, 横向打孔局部切断了纤维铺层的连续性,给叶片的强度带来隐患。其它的不足包 括初始纵向孔位置不易确定、纵向孔与横向置入的螺帽孔之间难保同心, 甚至打 孔不当导致叶片报废。 由于打孔对应的根部铺层都很厚,大型叶片一般都要采用 分级固化。 发明内容
本发明所要解决的技术问题在于提供一种风力机叶片结构,包括叶片的叶根 段、 主梁的新结构, 以及用于将叶片与风轮固定的连接件的新结构, 采用新型的 截面形状和材料组合, 使叶片质量轻、 刚度大、 强度高并提高叶片的成型效率。
本发明所要解决的另一技术问题在于提供上述风力机叶片结构的加工成型 方法, 包括叶根段、 主梁和连接件的加工方法。
本发明所要解决的再一技术问题在于拓展上述风力机叶片结构的用途。 本发明解决上述技术问题所采取的技术方案是: 一种风力机叶片结构, 叶片 由叶根段、主梁和包覆在叶根段及主梁外侧的蒙皮构成, 叶片通过设在叶根段的 连接件与风轮固定, 构成空间悬臂梁结构, 其中, 在主梁区域及叶根段, 一个或 以上实心或者空心的楔形柱排列布置在顶层铺层和底层铺层之间,叶根端最内侧 的楔形柱为实心, 其内埋设有连接件, 其中, 至少在叶根段最内侧的相邻楔形柱 之间沿横向用纤维布以" 形连续穿插缠绕构成夹层, 参见图 4, 再对如图 5所 示的顶层铺层、底层铺层以及纤维布夹层浸胶,固化后形成蜂窝状截面的骨架 (将 楔形柱包裹在内), 形成作为主承力件的主梁及叶根段。
在上述方案的基础上, 所述的铺层为竹质刨切片、木质刨切片、 纤维布中的 一种或多种, 所述的纤维布为玻璃纤维布、 玄武岩纤维布、 碳纤维布、 碳化硅纤 维布、 芳纶纤维布、 超高分子量聚乙烯纤维布、 棉麻纤维布、 芦苇纤维布中的一 种或多种或它们之间的复合纤维布。 在以下的陈述中所涉及的铺层具有相同含 义, 这些铺层可以是干的, 待铺层全部完成后再通过注射树脂而浸胶, 也可以是 预先浸润过树脂的湿铺层, 还可以是边铺层边涂刷树脂。铺层浸胶固化后统称为 玻璃钢, 如上述方案中所说。
在上述方案的基础上,所述的蒙皮由若干铺层构成, 或在若干铺层中间夹有 轻质材料, 最好是结构泡沫板叠置构成。或者, 也可以在蒙皮底层铺层和顶层铺 层之间排列布置一个或以上实心或空心的楔形柱,类似主梁和叶根的制作,在相 邻楔形柱之间沿横向用纤维布以" 形连续穿插缠绕构成夹层, 顶层铺层、 底层 铺层及纤维布夹层浸胶固化后形成蜂窝状截面的骨架。
在上述方案的基础上,在叶片中,所述的楔形柱可包裹在蜂窝状截面的骨架 内, 或在蜂窝状截面的骨架成型后被除去, 以进一步减轻叶片的重量, 除去的方 法可以通过热熔、 水溶或其他有机介质溶解后除去。 在上述方案的基础上, 所述楔形柱的截面形状为三角形、 四边形(如平行四 边形或等腰梯形)、 六边形、 或以上形状拼装组合构成的形状。 图 6为若干典型 的空心楔形柱横截面, 图 7则为若干典型的实心楔形柱横截面。
本发明利用了蜂窝状截面骨架结构的独特性能, 使叶片的强度、 刚度、稳定 性大大提高的同时, 降低叶片中玻璃钢材料的消耗、减轻重量。 典型蜂窝状骨架 结构是以正六边形的蜂窝形状出发, 以内角为 60° 的正三角形、 内角为 60° 和 120° 的平行四边形或梯形为基础, 由此可以构成任意形状的类似蜂窝结构的截 面形状。 非典型的蜂窝状结构的内角可以是其它任意角度。
这种蜂窝状结构可以由三角形楔形块连续排列构成蜂窝孔穴, 见图 6h, 6k; 也可以由一个梯形楔形块构成蜂窝孔穴, 见图 6m, 但为了弥补该梯形蜂窝孔穴 的强度, 还可在其中增加支撑条, 支撑条是图 6m中的垂直支撑条, 也可以模仿 图 6h, 6k设置倾斜支撑条。 由图 6d启发, 我们知道还可以采用在两个内角为 60° 、 30° 和 90° 的三角形之间夹一个以上内角为 90° 的四边形, 同样也可构 成需要的梯形。
但必须指出的是,可以构成蜂窝状结构的楔形块并不局限于上述具有特定内 角的形状。例如叶根段的楔形块, 由于多数个楔形块必须构成一个环形, 因此楔 形块的内角必然不为标准的 30° 、 60° 或 120° , 但这种楔形块的排列也应归 类于本发明所述的 "蜂窝状结构"之列, 因为其采用了与其他部分相同的设计理 念, 多数个楔形块的斜面相接触, 增加了结构的稳定性。
因此无论采用什么形状进行拼接,只要拼接后构成蜂窝状结构均应当认为属 于本发明的保护范围之内。但是形状不易复杂, 以降低楔形柱的制造难度和玻璃 钢蜂窝壁的加工成本。
在上述方案的基础上,在所述主梁区域及叶根段,楔形柱从根端向尖端方向, 厚度按由厚至薄的阶梯状递减,其中相邻楔形柱的连接处设有斜坡形过渡块,参 见图 1。 在上述方案的基础上, 在叶根段, 所述连接件由金属螺栓或者金属螺母 /螺 帽构成, 一条或以上的螺栓自最靠近叶根端的楔形柱端面向外穿出, 或者沿该楔 形柱端面的轴向幵设有长孔, 该轴向长孔设有一条或以上,对应数量的叶根连接 螺栓将能够插设在该轴向长孔中, 与埋设在楔形柱中部或另一端的螺母 /螺帽同 心并以螺纹与之固定连接。
具体的, 如果采用金属螺栓, 则一条或以上的螺栓自叶根端最内侧的楔形柱 端面向外穿出, 外伸段带有螺纹; 如果采用金属螺母 /螺帽, 则沿该楔形柱端面 的轴向开设有长孔, 该轴向长孔设有一条或以上,对应数量的叶根连接螺栓将能 够插设在该轴向长孔中, 与埋设在楔形柱中部或另一端的螺母 /螺帽同心并以螺 纹与之固定连接。
埋设连接件的方法可采用以下三种之一实现:
A、 在实心楔形柱的一个端面上钻出轴向长孔, 在距离该端面足够长的位置处自 楔形柱的顶面、 侧面或底面钻、 铣出与轴向长孔相垂直的横向孔, 将螺母 /螺帽 嵌入该横向孔中, 确保螺栓与螺母 /螺帽同心, 用封堵材料 (胶泥等) 将横向表 孔封堵, 如图 3所示;
B、 在实心楔形柱的一个端面上钻出轴向长孔, 在该楔形柱的另一端面钻、 铣出 多边形孔, 嵌入多边形螺母 /螺帽, 确保螺栓与螺母 /螺帽同心, 将螺帽 /螺母在孔 内用封堵材料 (胶泥等) 定位后将该多边形孔封堵;
C、 在实心楔形柱的一个端面上钻出轴向长孔, 在该楔形柱的另一端面钻、 铣出 多边形孔,将一端固定有多边形螺帽、另一端带有螺纹的螺杆自多边形孔的一端 穿过, 螺帽用封堵材料(胶泥等) 固定在多边形孔内, 定位后将该多边形孔用封 堵材料封堵。
针对上述的风力机叶片结构的加工成型方法, 包括下述步骤:
第一步: 根据设计要求在叶片模具的表面铺设底层蒙皮铺层:
通常,叶片蒙皮由若干层相对较薄的纤维布、竹质刨切片或木质刨切片构成, 从根端向尖端方向,底层蒙皮厚度按由厚至薄的阶梯状递减, 当底层蒙皮铺层完 成后, 可随之进行叶根段和主梁铺设;
第二步: 进行叶根段铺设, 依次包括:
在叶根段进行底层铺层, 最好也按阶梯状^!减铺设(即越靠近根端铺设的层 数越多), 在底层铺层的基础上从叶根端沿叶片轴向可按阶梯状布置用于构造蜂 窝状结构的多边形楔形柱, 如梯形柱或三角形柱, 如图 1所示, 以下皆用梯形柱 (图 2) 代表任意多边形楔形柱。
上述楔形柱的最内侧一段 (即最靠近叶根端的一段) 内埋设有金属连接件。 一般而言,每一个连接螺栓都应对应有一个图 3所示梯形柱,对于需要埋设金属 连接件的梯形柱而言, 除了质量要尽可能轻以外, 同时还必须具有足够高的剪切 强度、挤压强度、压缩强度、抗疲劳蠕变能力等力学性能,可以选择用玻璃纤维、 玄武岩纤维、 碳纤维、 碳化硅纤维、 芳纶纤维、 超高分子量聚乙烯纤维、 棉麻纤 维或芦苇纤维布增强树脂基复合材料、铝合金、镁合金中的一种材料或多种的复 合体材料制成, 也可以采用一般的塑料、竹材、 木材或者它们与以上强度较高的 材料相结合的复合体材料制成; 而不设连接件的其它梯形柱则可选用轻质材料, 如低比重的泡沫材料、 蜂窝材料、 竹材、 木材、 纸材制成, 当然也可与高强度材 料复合, 如玻璃钢与泡沫的复合材料。
在相邻楔形柱之间用纤维布以" 形连续穿插缠绕构成夹层, 如图 4所示, 夹层的厚度选定后,便能够确定楔形柱如梯形柱的上底和下底宽度,梯形柱叠加 上夹层厚度后, 依次沿环向排列, 必须要能够围绕成截面为环形的叶根壳体。 与 此同时,将叶根段楔形柱通过连接螺栓与叶片模具端部的刚性定位板固定, 能够 确保叶片成型后端部连接螺栓的精确定位。
最后, 当所有楔形柱之间皆由纤维布包裹后, 如按图 4所示包裹后, 在楔形 柱上方进行叶根的顶层铺层。可以采用与叶根段底层铺层对应的纤维布或竹、木 质刨切片进行对称铺层, 也可以实施非对称铺层, 取决于具体叶片的结构设计方 案。 由此得到的叶根段截面如图 5所示的结构。
第三步: 进行主梁区域铺设。 目前的叶片主梁都是采用纤维布或者竹、木质 刨切片层叠构成, 这种实心截面主梁的比强度(截面强度与截面面积之比)和比 刚度(截面刚度与截面面积之比)相对都比较低下。本发明采用比强度和比刚度 远远高于传统实心截面的蜂窝孔穴截面作为叶片的主梁。
在叶片结构的主梁区域内, 从主梁根端到主梁尖端铺设若干铺层, 一般应 为单向纤维带, 称为底层铺层, 在底层铺层上布置一个或以上楔形柱, 底层铺层 的宽度一般应超出楔形柱排列后的底边宽度 10〜400mm, 然后, 若主梁截面仅 有一个楔形柱, 则应用若干层铺层, 最好与底层铺层的层数相同, 从楔形柱长梁 结构的上方进行外包, 得到图 8 所示截面形状; 若有两个或以上楔形柱如图 9 所示梯形柱, 则先在相邻楔形柱之间用纤维布以 "^"形连续穿插缠绕构成内包层 后, 再进行外包铺层, 参见图 10。
第四步: 在叶根铺层和主梁铺层都完成之后, 进行顶层蒙皮铺层。
根据结构设计要求在非叶根段或主梁区域排列轻质材料,最后从叶根段到叶 尖进行蒙皮的顶层铺层, 必要时对前、 后缘局部补强。 再在其上铺设顶层蒙皮, 蒙皮的顶层铺层与底层铺层的中间一般都夹有轻质材料板,最好是结构泡沫板或 轻木板以增加叶片的局部刚度和稳定性, 必要时, 也可以在蒙皮的顶层铺层与底 层铺层之间排列布置一个或以上实心或空心的楔形柱,相邻楔形柱之间用纤维布 以" 形连续穿插缠绕构成夹层, 用于构成玻璃钢类材质的蜂窝状截面骨架, 纤 维布、竹质刨切片或木质刨切片铺层相对轻质材料板或者楔形柱一般对称, 分别 称为底层蒙皮和顶层蒙皮。
第五步: 铺设完毕后或在铺设过程中对蒙皮、 叶根及主梁铺层进行浸胶, 待树脂 固化后制成叶片。
在上述方案的基础上, 所述的楔形柱可采用以下五种方法之一得到:
A、 由轻质材料通过切割、 拉挤或者模具加工而成, 制成实心楔形柱; B、 制备轻质材料板条后, 通过粘结、 焊接、 铆接或热、 冷压复合将多数块板条 拼接, 制成蜂窝状结构的空心楔形柱;
C、 以轻质原材料通过拉挤成型, 制成蜂窝状结构的空心楔形柱, 或进一步将上 述楔形柱进行拼接;
D、 将纤维布包裹在气囊或水袋外侧, 对纤维布进行浸胶, 待树脂固化, 去除气 囊或水袋, 制成蜂窝状结构的空心楔形柱, 或进一步将上述楔形柱进行拼接;
E、 由纤维布浸胶固化制成上下薄壳, 中间布置支撑板后粘接或热、 冷压复合, 制成蜂窝状结构的空心楔形柱。
在可能的情况下, 楔形柱的下表面应与所 ¾≡位置的叶片模具型腔面吻合。 在上述方案的基础上,所述的轻质材料包括玻璃纤维、玄武岩纤维、碳纤维、 碳化硅纤维、 芳纶纤维、超高分子量聚乙烯纤维、棉麻纤维或芦苇纤维增强树脂 基复合材料、 铝合金、 镁合金、 塑料、 竹材、 木材、 纸材纸板、 固体泡沫、 蜂窝 材料中的一种材料或多种的复合体材料。
在上述方案的基础上, 所述浸胶、 固化成型的方法采用以下三种之一:
A、 将所有未浸胶的蒙皮、 叶根及主梁铺层及干纤维布全部铺设完之后, 再布置 导流布、 注胶管、 真空袋, 先将空心楔形柱两端的孔穴封闭, 向蒙皮、 叶根及主 梁铺层及纤维布内注射树脂, 待树脂固化后, 制成叶片或者所需要的构件;
B、 将蒙皮、 叶根及主梁铺层已经缠包的纤维布预先浸润树脂或涂刷树脂 (湿纤 维布) 后, 进行铺层或包裹, 待树脂固化后, 制成叶片或者所需要的构件;
C、 在蒙皮、 叶根及主梁内铺设一层纤维布涂刷一层树脂, 再铺设一层纤维布后 再涂刷一层树脂, 直至铺设到规定层数, 待树脂固化后, 制成叶片或者所需要的 构件。
如果采用干法成型, 即包裹的纤维布为未浸胶的千布, 待所有纤维布铺层完 成之后再向纤维布内注胶 (注射树脂)、 固化, 那么, 注胶前需要将空心楔形柱 两端的孔穴封闭, 确保注胶时树脂不会进入孔穴内。若是采用湿法成型, 即釆用 预先浸润树脂后的纤维布进行铺层包裹, 或者铺一层干纤维布、 涂刷一层树脂, 那么, 主梁两端的孔穴可不必封堵。
从以上的技术描述不难看出,本发明的关键技术之一是用比刚度和比强度性 能卓越的玻璃钢类材料蜂窝状截面骨架代替目前叶片主梁、叶根段铺层的实心玻 璃钢截面, 可以大幅减少材料用量、 降低叶片结构的重量。 实现的途径之一是用 轻质如泡沫材料加工成与孔穴截面相同的杆件, 通过纤维布包裹、 真空灌注, 或 者通过手糊或预浸料,将浸有树脂的纤维布包裹轻质材料杆后固化成型。 由于整 个叶片中不再出现有厚纤维布铺层, 避免了现有技术在大型、超大型叶片中铺层 太多造成固化放热量高、成型收缩量大的不足, 不仅可以实现对大型、 超大型叶 片一次注胶固化成型, 而且可以使用成本低廉的树脂如不饱和树脂作为基体材 料, 具有十分明显的技术、 经济优势。 叶片越大, 叶根段和主梁铺层越厚, 采用 本发明的技术经济优势也就越明显。本发明的另一项关键技术是将金属螺栓帽埋 置在预制的梯形或其它多边形如三角形短柱内, 用于封堵叶片根端的蜂窝孔穴。
作为上述风力机叶片结构的拓展用途,一个或以上实心或空心的楔形柱排列 形成蜂窝芯部结构并布置在顶层铺层和底层铺层之间,相邻楔形柱之间用纤维布 以 形连续穿插缠绕构成夹层, 铺层和纤维布浸胶固化后形成玻璃钢蜂窝壁截 面形状, 将在其它更为广泛的领域发挥作用。 比如可以应用于玻璃钢游艇、潜艇 壳体或者其它船舶壳体的建造, 用于飞机机身壳体, 导弹壳体, 运载火箭壳体的 建造, 用于卫星的星体、 航天飞机机身、 宇宙飞船船身、 空间站用板壳结构的建 造, 用于高速列车车厢、 地铁车厢、 一般旅客列车车厢、 汽车及其它特种车厢壳 体的建造, 用于输送液、 气体等管道或坑道的建造, 更方便应用于钻井平台、 水 上浮板、集装箱板等板式结构物的建造, 以及其它具有高比强度、 高比刚度要求 的板壳结构的建造。
本发明的有益效果是:
1、 预埋金属螺栓帽的楔形柱是梯形或多边形而不是圆形, 在叶根壳体中安放容 易、 稳固可靠, 与纤维布之间的包裹均一、 牢靠, 不存在局部纤维填充和局部应 力集中, 能实现均匀的应力传递;
2、 楔形柱表面积大, 哪怕叶根段采用多螺栓连接 (比如 38m 长叶片根部由 54 根变为 64根甚至更多连接螺栓) 也可以设计出足够大表面积的楔形柱, 使得由 叶根铺层传递的剪力足以平衡连接螺栓对梯形柱产生的拉力;
3、 重量轻、 耗材少、 成本低、 加工方便。
上述两项关键技术的应用将使得大型、超大型叶片一次灌注树脂、一次固化 成型并同时实现根部连接件的预埋成为可能, 具有十分广阔的应用前景。另一方 面, 底层铺层与顶层铺层之间夹有足够高的楔形柱, 分散了底层与顶层铺层(浸 胶纤维布)固化放热的协同效应以及固化时的收缩量,使釆用放热峰温度和收缩 变形量显著高于环氧树脂的不饱和树脂作为基体材料成为可能,可进一步降低材 料成本。 附图说明
图 1为本发明叶根端的轴向布置结构示意图。
图 2a为本发明叶根段楔形柱的侧视结构示意图。
图 2b为本发明叶根段楔形柱的主视结构示意图。
图 3a为本发明叶根段埋设有连接件的楔形柱的侧视结构示意图。
图 3b为本发明叶根段埋设有连接件的楔形柱的主视结构示意图。
图 4为本发明叶根段夹层穿插包裹楔形柱的横截面结构示意图。
图 5为本发明叶根段顶层、 底层铺层的横截面结构示意图。
图 6a为本发明正六角形蜂窝截面骨架的结构示意图。
图 6b为本发明加强正六角形蜂窝截面骨架的结构示意图。
图 6c为本发明波纹加强正六角形蜂窝截面骨架的结构示意图。
图 6d为本发明菱形蜂窝截面骨架的结构示意图。 u 图 6e为本发明长方形蜂窝截面骨架的结构示意图。
图 6f为本发明扁六角形蜂窝截面骨架的结构示意图。
图 6g为本发明正方形蜂窝截面骨架的结构示意图。
图 6h, 6k为本发明三角形蜂窝截面骨架的结构示意图。
图 6m为本发明等腰梯形蜂窝截面骨架的结构示意图。
图 6n为本发明 flex-core形蜂窝截面骨架的结构示意图。
图 6p为本发明 tube-core形蜂窝截面骨架的结构示意图。
图 7a, 7b, 7c为本发明基于轻质梯形填充物构造的蜂窝状横截面结构示意图。 图 8为本发明铺层包裹三角形柱构成的主梁横截面结构示意图。
图 9为本发明轻质材料梯形柱的侧视结构示意图。
图 10为本发明铺层包裹梯形柱构成的主梁横截面结构示意图。
图 11为本发明叶根段的弯曲刚度分布图。
图 12为实施例 3竹刨切片与短切毡复合的叶根段梯形柱截面尺寸图。
图 13a为图 12的梯形柱内埋设 T型螺栓的侧视结构示意图。
图 13b为图 12的梯形柱内埋设 T型螺栓的主视结构示意图。
图 14a为玻璃钢与泡沫板复合制成的梯形柱 II的侧视结构尺寸图。
图 14b为玻璃钢与泡沫板复合制成的梯形柱 Π的主视结构尺寸图。
图 15a为玻璃钢与泡沫板复合制成的梯形柱 ΠΙ的侧视结构尺寸图。
图 15b为玻璃钢与泡沫板复合制成的梯形柱 III的主视结构尺寸图。
图 16为实施例 2三角形柱粘接构成的主梁截面结构尺寸示意图。
附图中标号说明
叶根段中,
1一楔形柱 1'一楔形柱
2—底层铺层 3—夹层
4一顶层铺层 5— T型螺栓 6—螺母 主梁区域中,
2, 3—楔形柱 2', 2"—底层铺层 3'—内包层
4', 4"一顶层铺层 具体实施方式
实施例 1
某 38m长叶片, 其主梁设计由单向玻璃纤维布增强环氧树脂基复合材料组 成, 主梁宽 310mm, 单层布厚 0.9mm, 密度 1950kg/m3, 最厚铺层为 50层。 最厚铺层所产生的挥舞方向 (沿叶片轴向) 惯性矩为 /1= 2354062.5mm4, 所产 生的摆振方向 (与叶片轴向垂直) 惯性矩为 /2= 111716250mm4
现在, 采用比重为 60kg/m3的 PVC泡沫材料预先加工成图 9所示梯形柱, 梯形柱 I上底宽 i)=105mm, 夹角^ =60Q, 柱高 /7=50mm, 据此, 计算出梯形柱 下底宽 162.7mm, 由三根梯形楔形柱 1 '和与目前设计完全相同的单向布包裹组 合成图 10所示截面, 其中, 底层铺层 2' (底层纤维布)、 内包层 3' (内包纤维 布) 和顶层铺层 4' (外包纤维布) 分别都取三层, 单层布厚 0.9mm, 底层铺层 IV的宽度为8= 543mm,该宽度是由最外层的顶层铺层 4'的底部向外延伸 50mm 确定的, 以确保底层铺层 2'、 内包层 3'和顶层铺层 4'在外伸段能形成良好粘结。 由此得到的主梁截面图 10, 即便完全忽略 PVC泡沫杆的刚度贡献, 所具有的挥 舞方向惯性矩为/; =2908427mm4、摆振方向惯性矩为 /2 =121129177.9mm4。与 目前的实心截面惯性矩相比,分别有 /;//,=1.24和 /; //2=1.08。由于采用完全相同 的玻璃钢材料构造梁截面, 具有相同的弹性模量, 从而, 主梁挥舞刚度比目前设 计高出 24%、 摆振刚度则高出 8%。 截面中的玻璃钢面积仅为 4857.1 mm2, 只 占目前实心截面玻璃钢面积 l=13950mm2的 34.8%, 在叠加上 PVC泡沫杆的 重量 (三根 PVC泡沫杆的截面面积为 20080.1 mm2) 贡献后, 本发明的主梁最 厚截面段的重量也只有目前重量的 39.2%。由于叶片是一个梁结构,采用梁理论 分析设计具有足够的精确度,而梁截面沿两个垂直轴方向的惯性矩是最为重要的 截面几何参数 (扭转惯性矩为两个垂直轴惯性矩的代数和), 这表明, 本发明不 仅使得叶片的主梁重量大大降低, 而且主梁刚度也得到提高。进一步, 根据梁理 论我们知道, 梁横截面上任意点的应力同样与截面的刚度成反比, 在刚度提高的 情况下, 梁中的应力也就降低。
在上述实施方案中,若采用预先浸润过树脂但未固化的纤维预浸料代替干纤 维布, 则操作过程相同。
实施例 2
针对上述实施例 1中的叶片主梁结构, 采用 3mm厚轴向竹刨切片板条, 板 条宽 160mm, 板条轴向弹性模量 E^ GPa, 其比重 p=800kg/m3, 按图 6(b) 所示粘接, 三角形楔形柱 Γ的内角为 60Q, 得到图 16所示蜂窝孔穴截面梁, 梁 长与叶片最厚段主梁的长度相同, 两端封闭。根据所给截面的几何尺寸, 不难计 算出该截面的挥舞方向惯性矩为 / ΙδδΤΖβθΥ^ηιπΊ4 摆振方向惯性矩为 /2 =100882233.3mm 用作为叶片主梁时, 先在底部蒙皮铺层基础上铺设两层 单向布, 即底层铺层 2" (底层纤维带), 单层厚 0.9mm, RIM ( Resin infusion moulding, 真空吸塑) 浸胶后沿轴向的弹性模量 E2=39.5GPa, 比重 p=1950kg/m3, 单向布宽度(参见图 8) S=591 mm, 然后, 放置图 16所示的蜂 窝孔穴截面楔形柱, 再在该楔形柱上方外表包两层单向布, 即顶层铺层 4" (顶 层纤维带) 参见图 8。 当这上、 下各两层共四层纤维布经 RIM注胶 (可以待叶 片所有纤维铺层完成后再注胶)、 浸润、 固化后, 对挥舞和摆振方向惯性矩的贡 献分别是/ 9457822.6mm4、 i 73087549.6mm4。 因此, 叶片主梁的挥舞刚 度 E/ & ί、+Ε ; =561.7 KN-m2、 摆振刚度 E/2= ϊ22Ϊ2 = 4097.5KN-m2。 将本发明设计的刚度分别与目前主梁 (弹性模量 E=39.5GPa) 的挥舞刚度 93 KN-m2、 摆振刚度 4412.8 KN-m2相比, 可见, 挥舞刚度提高了 5.04倍, 摆振刚 度则只有原主梁结构摆振刚度的 92.9%。鉴于目前叶片的摆振刚度都有较大程度 富裕, 因此, 本发明设计在大幅提高主梁挥舞刚度的情况下, 降低主梁摆振刚度
7.1 %是可行的。 本发明设计的主梁中, 竹刨切片横截面面积 5229.5mm2、 周边 所包纤维布的横截面面积 2410.3mm2, 由此计算出主梁最厚截面段的重量只有 目前重量的 32.7%。
在上述实施方案中,若釆用预先浸润过树脂但未固化的纤维预浸料代替干纤 维布, 则操作过程相同。但是, 由于不必担心树脂流入蜂窝孔穴截面楔形柱的内 部, 因此, 这时楔形柱的两端可不必封闭。
实施例 3
某 38m长叶片的根圆外径 D=1890mm,根圆长 1m,包括根部预埋螺栓套, 根部 1 m长叶片段重 888kg, 沿两个正交轴方向的弯曲刚度分布图见图 11 (图 中标注为目前结构)。
本发明对该叶片叶根段的设计说明如下。
一、 原材料 (0Q方向沿叶片轴向)
( 1 ) 三轴布 [+45D/0Q/-45D】, 单层厚 0.87mm, RIM浸胶后沿叶片轴向弹性模量 £=25.5 GPa, 密度 =1950kg/m3, 代号 A;
(2)单向布 [0Q],单层厚 0.9mm, RIM浸胶后沿叶片轴向弹性模量 & =39.5GPa、 横向弹性模量 E2=14GPa、 剪切模量 G12=14GPa、 泊松比 12=0.21, 密度 =1950kg/m3, 代号 B;
( 3 ) 双轴布 [+45Q/-45Q], 单层厚 0.6mm, RIM 浸胶后沿叶片轴向弹性模量 E=7.8GPa, 密度 =1950kg/m3, 代号 C;
(4) 短切毡, 单层厚度 0.34mm, RIM浸胶后沿叶片轴向弹性模量 E≥10GPa, 密度 =1700kg/m3, 代号 D;
(5)单向竹刨切片, 2mm厚,沿叶片轴向弹性模量 E≥10GPa,密度 =800kg/m3, 代号 F; ( 6 ) PVC60 泡沫板, 密度 60kg/m3, 弹性模量 £=0.035GPa、 剪切模量 G=0.022GPa、 泊松比 =0.3, 厚度分别为 7mm和 9mm;
(7) T型螺栓头套, 圆柱 φ60χ70, 柱体表面横穿 Μ30χ3.5螺孔, 54只总共重 68kg。
注: 上述 (1)、 (2)、 (3)、 (6)与目前设计所用材料的几何与材料特性相同。 二、 预埋螺栓头套梯形柱的预制
( 1 )将竹刨切片 F和短切毡 D交错层叠在模具内, 其中最底层和最顶层为短切 毡, 总共铺有 34层竹刨切片 F、 35层短切毡 D, RIM或 RTM ( Resin transfer moulding, 树脂传递模塑) 成型为梯形楔形柱 1, 截断长度 400mm, 共计 54 根, 其横截面尺寸如图 12所示;
(2 )将 T型螺栓 5嵌入梯形柱并用胶泥固定, 见图 13, 其中, 根据螺栓中心圆 直径 D'=1800mm, 得知梯形楔形柱 1上螺栓孔中心 底边 e交替分别取值为: e1 =31.8mm和 e2=29.1 mm,得到埋设 T型螺栓 5的梯形楔形柱 1,此梯形 ¾形 柱 1位于叶根段的最内侧, 用于构成叶根壳体并将叶片与风轮连接固定。
三、 轻质梯形柱预制, 包括两种:
第一种: 将厚度为 7mm的 PVC60板与单向布 B交错层叠在模具内, 其中底层 铺层和顶层铺层均为单向布 B, 总共铺有十层 PVC60泡沫板、十一层单向布 B, RIM或 RTM成型的梯形楔形柱 1, 截断长度 300mm, 共计 54根, 其横截面尺 寸如图 14所示; 根据混合率, 可以计算出该梯形柱的密度为 295kg/m3; 再由经 典层板理论, 计算出该梯形柱的轴向弹性模量为 E=4.5Gpa, 此梯形楔形柱 1也 用于构成叶根壳体。
第二种: 将厚度为 9mm的 PVC60泡沫板与单向布 B交错层叠在模具内, 其中 底层铺层和顶层铺层均为单向布 B, 总共铺有六层 PVC60泡沫板、 七层单向布 B, RIM或 RTM成型为梯形柱 1 ', 截断长度 300mm, 共计 54根, 其横截面尺 寸如图 15所示; 根据混合率, 可以计算出该梯形柱的密度为 257kg/m3; 再由经 典层板理论, 计算出该梯形柱的轴向弹性模量为 B=3.6GPa。
四、 叶根段铺层
Π )按表 1所示在模具内进行底层铺层, 先将 5C (5层双轴布)铺设完成后再 铺设三轴布 A;
(2) 从根部 (Z=0)开始, 在底层铺层 2的基础上, 由内向外依次放置如图 13、 图 14和图 15所代表的楔形柱 (可以将这些梯形柱首尾粘结后再沿环向放置);
( 3)在横向 (垂直于纵向)截面内, 分别将阶梯梯形柱之间用三层宽度为 700mm 以及 300mm的单向布 B包裹, 其横截面示意图见图 4;
(4 ) 将根端梯形柱用连接螺栓与叶片模具根部金属定位环连接固定;
( 5) 将包裹纤维布后的不同高度梯形结构件之间的台阶用 PVC60泡沫板楔形 块平滑过渡, 见示意图 1 ;
(6) 按表 2所示在结构件上表面进行干布顶层铺层 4, 得到叶片根部截面如图 5所示, 其中, 将 10A ( 10层三轴布) 铺设完成后再铺设双轴布 C。
5、 RIM注射树脂成型 (可以待叶片蒙皮、 主梁等全部铺层完成后再一次注射树 脂、 固化成型)。 依据上述设计描述的几何与力学性能数据, 不难计算成型后从 Z=0至 Z=1 m的各截面刚度分布, 绘制于图 11中。 由图可见, 本发明设计的叶 根截面段刚度全面大于目前叶片的刚度, 其中, 在Z≤0.4m段内, 本发明的叶片 弯曲刚度富裕量超过 80%。
6、 根据所给数据, 容易计算出本发明的 1 m长叶根段重量 (包括连接螺栓帽) 为 608kg, 与目前的叶根段结构设计相比, 减少重量 280kg。 因此, 本发明不仅 使得叶片的重量显著降低, 而且刚度还得到大幅度提高。
将上述实施方案中的千纤维布用预先浸润过树脂但未固化的纤维预浸料代 替, 则操作步骤相同。
实施例 4 本实施方案所用材料与实施步骤与上述实施方案 3基本相同,仅仅材料栏中 的 T型螺栓头套换为特制六角螺母, 并将预埋 T型螺栓头套改为预埋特制六角 螺母, 也就是将实施方案 3中的第二步用以下代替:
2、 预埋有螺母的梯形柱的预制
第一步: 将竹刨切片 F和短切毡 D交错层叠在模具内, 其中底层铺层和顶层铺 层为短切毡, 总共铺有 34层竹刨切片 F、 35层短切毡 D, RIM或 RTM成型为 梯形柱 1, 截断长度 400mm, 共计 54根, 其横截面尺寸如图 12所示; 第二步:从梯形楔形柱 1 内端面平分线上的某点处钻连接螺栓通孔, 即该孔穿过 梯形柱一端到另一端,中心点距底边的偏心距 e根据安装后位于螺栓中心圆直径 D'= 1800mm上确定,与实施例 3中所取值相同,即 e交替分别取值为: e1 =31.8 mm和 e2=29.1 mm (见图 13 ), 然后, 从梯形楔形柱 1的外端面铣出六角孔, 铣孔深度根据另一端穿连接螺栓的深度确定, 放入特制六角螺母 6, 再将螺母 6 用胶泥与梯形楔形柱 1固定, 并将六角孔的端部封闭。
实施例 5
实施例 5与实施例 3或实施例 4基本相同, 只是将竹刨切片层叠制成的梯 形柱用玻璃纤维布增强树脂制成的梯形柱代替即可, 无论采用单向布、 三轴布、 双轴布还是短切毡, 只要梯形柱的几何尺寸达到图 13所给的尺寸并且纤维体积 含量不低于 50%就行, 假定采用单向布并应用 RIM 法制备梯形柱, 其密度 1950kg/m2 o 此时, 叶根 1 m长段重量为 789kg, 与目前结构相比, 减重 99kg。 当然, 叶片根部的刚度远远超过目前的刚度。 表 1 底层铺层描述 (铺层 1完成后的厚度为 11.7mm )
Figure imgf000020_0001
5C+2A 0 1000
5C+3A 0 1000
5C+4A 0 1000
5C+5A 0 1000
5C+6A 0 1000
5C+7A 0 1000
5C+8A 0 1000
5C+9A 0 1000
5C+10A 0 1000 注: 5C+1A为铺设完 5层双轴布后再铺设 1层三轴布, 以此 表 2、 铺层 2描述
Figure imgf000021_0001
1 C+10A为铺设完 1层双轴布后再铺设 10层三轴布, 以此

Claims

权 利 要 求 书
1、 一种风力机叶片结构, 叶片由叶根段、 主梁和包覆在叶根段及主梁外侧的蒙 皮构成, 叶片通过设在叶根段的连接件与风轮固定, 构成空间悬臂梁结构, 其特 征在于: 在主梁区域及叶根段, 一个或以上实心或空心的楔形柱排列布置在顶层 铺层和底层铺层之间,叶根端最内侧的楔形柱为实心,其内埋设有连接件,其中, 至少在叶根段最内侧的相邻楔形柱之间用纤维布以" 形连续穿插缠绕构成夹 层, 顶层铺层、 底层铺层以及纤维布夹层浸胶固化后形成蜂窝状截面的骨架。
2、 根据权利要求 1所述的风力机叶片结构, 其特征在于: 在蒙皮底层铺层和顶 层铺层之间夹有轻质材料板, 或者排列布置一个或以上实心或空心的楔形柱, 在 相邻楔形柱之间用纤维布以 "^"形连续穿插缠绕构成夹层, 顶层铺层、 底层铺层 及纤维布^ ¾层浸胶固化后形成蜂窝状截面的骨架。
3、 根据权利要求 1或 2所述的风力机叶片结构, 其特征在于: 在叶片中, 所述 的楔形柱可包裹在蜂窝状截面的骨架内, 或在蜂窝状截面的骨架成型后被除去。
4、 根据权利要求 1或 2所述的风力机叶片结构, 其特征在于: 所述楔形柱的截 面形状为三角形、 四边形、 六边形、 或以上形状拼装组合构成的形状。
5、 根据权利要求 1或 2所述的风力机叶片结构, 其特征在于: 所述的铺层为竹 质刨切片、 木质刨切片、 纤维布中的一种或多种, 纤维布为玻璃纤维布、 玄武岩 纤维布、 碳纤维布、 碳化硅纤维布、 芳纶纤维布、 超高分子量聚乙烯纤维布、 棉 麻纤维布、 芦苇纤维布中的一种或多种或它们之间的复合纤维布。
6、 根据权利要求 1所述的风力机叶片结构, 其特征在于: 在所述主梁区域及叶 根段, 楔形柱从根端向尖端方向, 厚度按由厚至薄的阶梯状递减, 其中相邻楔形 柱的连接处设有斜坡形过渡块。
7、 根据权利要求 1所述的风力机叶片结构, 其特征在于: 在叶根段, 所述连接 件包括金属螺栓、 金属螺母 /螺帽, 一条或以上的螺栓自最靠近叶根端的楔形柱 端面向外穿出, 或者沿该楔形柱端面的轴向开设有长孔, 该轴向长孔设有一条或 以上,对应数量的叶根连接螺栓插设在该轴向长孔中, 与埋设在楔形柱中部或另 一端的螺母 /螺帽同心并以螺纹与之固定连接。
8、 针对权利要求 1至 7之一所述的风力机叶片结构的加工成型方法, 其特征在 于包括下述步骤:
第一步: 在模具表面进行蒙皮底层铺层, 从叶根端向叶尖端方向, 底层蒙皮厚度 按由厚至薄的阶梯状递减;
第二步: 进行叶根段铺设, 依次包括: 在叶根段进行底层铺层, 在底层铺层上布 置楔形柱,在叶根段最内侧的楔形柱内埋设连接件, 并在相邻楔形柱之 间用纤维布以 形连续穿插缠绕构成夹层, 将叶根段的多数个楔形柱 拼接围绕成截面为环形的叶根壳体, 然后在楔形柱上方进行顶层铺层; 第三步: 进行主梁区域铺设, 依次包括: 在主梁区域进行底层铺层, 在底层铺层 上布置一个或以上楔形柱,底层铺层的宽度超出楔形柱排列后的底边宽 度 10〜400mm, 然后, 若主梁仅由一个楔形柱构成, 则直接进行外包 铺层, 若有两个以上楔形柱构成, 则先在相邻楔形柱之间用纤维布以 "^"形连续穿插缠绕构成内包层后, 再进行外包铺层;
第四步: 在非叶根段或主梁区域排列轻质材料板, 或一个或以上楔形柱, 再在其 上铺设蒙皮顶层铺层, 其中, 若排列有两个或以上楔形柱, 则先在相邻 楔形柱之间用纤维布以" 形连续穿插缠绕构成内包层后, 再在其上铺 设蒙皮顶层铺层;
第五步: 铺设完毕后或在铺设过程中对铺层进行浸胶, 待树脂固化后制成叶片。
9、 根据权利要求 8所述的风力机叶片结构的加工成型方法, 其特征在于: 所述 的楔形柱采用以下五种方法之一得到:
A、 由轻质材料通过切割、 拉挤或者模具加工而成, 制成实心楔形柱;
B、 制备轻质材料板条后, 通过粘结、 焊接、 铆接或热、 冷压复合将多数块板条 拼接, 制成蜂窝状结构的空心楔形柱; C、 以轻质原材料通过拉挤成型, 制成蜂窝状结构的空心楔形柱, 或进一步将上 述楔形柱进行拼接;
D、 将纤维布包裹在气囊或水袋外侧, 对纤维布进行浸胶, 待树脂固化, 去除气 囊或水袋, 制成蜂窝状结构的空心楔形柱, 或进一步将上述楔形柱进行拼接;
E、 由纤维布浸胶固化制成上下薄壳, 中间布置支撑板后粘接或热、 冷压复合, 制成蜂窝状结构的空心楔形柱。
10、 根据权利要求 9所述的风力机叶片结构的加工成型方法, 其特征在于: 所 述的轻质材料包括玻璃纤维、 玄武岩纤维、 碳纤维、 碳化硅纤维、 芳纶纤维、 超 高分子量聚乙烯纤维、棉麻纤维或芦苇纤维增强树脂基复合材料、 铝合金、镁合 金、 塑料、 竹材、 木材、 纸材、 固体泡沫、 蜂窝材料中的一种材料或多种的复合 体材料。
11、根据权利要求 8所述的风力机叶片结构的加工成型方法, 其特征在于: 所述 浸胶、 固化的方法采用以下三种之一:
A、 将所有未浸胶的干铺层和干纤维布全部铺设完之后, 并将空心的楔形柱两端 的孔穴封闭, 向铺层和纤维布内注射树脂, 待树脂固化, 制成叶片或者所需要的 构件;
B、将铺层或纤维布预先浸润树脂或涂刷树脂后, 进行铺层或包裹, 待树脂固化, 制成叶片或者所需要的构件;
C、 铺设一层铺层或纤维布后涂刷一层树脂, 再铺设一层铺层或纤维布后再涂刷 一层树脂, 直至铺设到规定层数, 待树脂固化, 制成叶片或者所需要的构件。
12、 根据权利要求 8所述的风力机叶片结构的加工成型方法, 其特征在于: 所 述埋设连接件的方法采用以下三种之一:
A、 在实心楔形柱的一个端面上钻出轴向长孔, 在距离该端面足够长的位置处自 楔形柱的顶面、 侧面或底面钻出与轴向长孔相垂直的横向孔, 将螺母 /螺帽嵌入 该横向孔中, 确保螺栓与螺母 /螺帽同心, 用封堵材料将横向表孔封堵; B、 在实心楔形柱的一个端面上钻出轴向长孔, 在该楔形柱的另一端面钻出多边 形孔, 嵌入多边形螺母 /螺帽, 确保螺栓与螺母 /螺帽同心, 螺帽 /螺母在孔内用封 堵材料定位后将该多边形孔封堵;
C、 在实心楔形柱的一个端面上钻出轴向长孔, 在该楔形柱的另一端面钻出多边 形孔,将一端固定有多边形螺帽、另一端带有螺紋的螺杆自多边形孔的一端穿过, 螺帽用封堵材料固定在多边形孔内, 定位后将该多边形孔封堵。
13、 针对权利要求 1 至 7之一所述风力机叶片结构的用途, 在相邻楔形柱之间 用纤维布以" 形连续穿插缠绕构成夹层, 顶层铺层、 底层铺层以及纤维布夹层 浸胶固化后形成蜂窝状截面的骨架, 用于船舶壳体、 飞机机身壳体、 导弹壳体、 运载火箭壳体、 卫星星体、 航天飞机机身、 宇宙飞船船身、 空间站用板壳、 车厢 壳体、 管道、 钻井平台、 水上浮板、 集装箱板板壳结构的建造。
PCT/CN2010/001527 2009-10-14 2010-09-29 风力机叶片结构及其加工成型方法 WO2011044750A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200910197175.5 2009-10-14
CN2009101971755A CN101666290B (zh) 2009-10-14 2009-10-14 风力机叶片结构及其加工成型方法和用途

Publications (1)

Publication Number Publication Date
WO2011044750A1 true WO2011044750A1 (zh) 2011-04-21

Family

ID=41803041

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/001527 WO2011044750A1 (zh) 2009-10-14 2010-09-29 风力机叶片结构及其加工成型方法

Country Status (2)

Country Link
CN (1) CN101666290B (zh)
WO (1) WO2011044750A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102562414A (zh) * 2012-01-30 2012-07-11 重庆同利实业有限公司 钢塑复合仿生桨叶
CN102626992A (zh) * 2012-04-11 2012-08-08 连云港中复连众复合材料集团有限公司 一种兆瓦级风力发电叶片根部人孔板及其人孔盖板的制备方法
EP2551512A1 (en) * 2011-07-27 2013-01-30 Alstom Wind, S.L.U. Wind turbine blade connector assembly
CN111765041A (zh) * 2020-07-14 2020-10-13 连云港中复连众复合材料集团有限公司 风电叶片的根部连接结构及其制造方法

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101666290B (zh) * 2009-10-14 2011-11-09 黄争鸣 风力机叶片结构及其加工成型方法和用途
DE102010052737B3 (de) * 2010-11-26 2012-04-19 Daimler Ag Modulare Fertigungsvorrichtung für integrale Faser-Halbzeuge und Verfahren zur Herstellung von Endlosfaser-Verbundbauteilen aus integralen Faserverbund-Halbzeugen mit einer Hohlkörperstruktur
CN102773948A (zh) * 2011-05-12 2012-11-14 南通东泰新能源设备有限公司 风力发电机叶片碳纤维大梁用油浴加热模具的制造方法
CN102220936B (zh) * 2011-05-25 2013-05-15 北京世纪威能科技有限公司 一种竹制复合材料叶片根部结构及其制造方法
US20120139165A1 (en) * 2011-09-15 2012-06-07 Uli Ramm Method and system for producing a wind turbine rotor blade
US9393745B2 (en) * 2012-05-15 2016-07-19 Hexcel Corporation Over-molding of load-bearing composite structures
CN202883239U (zh) * 2012-09-17 2013-04-17 江苏六和新能源设备科技有限公司 一种垂直轴风电叶片
CN104847594A (zh) * 2014-02-13 2015-08-19 上海金马高强紧固件有限公司 用于大功率风电叶片中的高强度预埋螺杆套及其制备方法
CN105109076B (zh) * 2015-07-31 2017-09-29 武汉理工大学 一种具有大弯曲变形的复合材料管的设计及制备方法
CN105128487B (zh) * 2015-10-12 2017-04-19 江苏越科新材料有限公司 一种用于厢式货车的一次成型车厢板及制造工艺
CN105269838B (zh) * 2015-11-06 2017-10-10 北京金风科创风电设备有限公司 风机叶片主梁制作方法、风机叶片
CN105881930B (zh) * 2016-04-01 2018-04-10 中航飞机股份有限公司西安飞机分公司 一种“工”字型零件的成型装置和成型方法
RU2680510C2 (ru) * 2016-11-18 2019-02-21 Эдуард Олегович Фенюк Композиционный материал для сэндвич-структур и облегченная лопасть ветрогенератора на их основе
CN109099003B (zh) * 2017-06-21 2020-04-10 中国航发商用航空发动机有限责任公司 用于涡扇发动机的风扇叶片
CN108016055B (zh) * 2017-12-11 2020-03-10 连云港中复连众复合材料集团有限公司 一种使用拉挤预制件制造叶片根部的方法
CN109203510B (zh) * 2018-09-21 2020-07-14 江苏新扬新材料股份有限公司 一种接头法兰的制备方法
CN109383049B (zh) * 2018-11-23 2023-09-22 明阳智慧能源集团股份公司 风电叶片预埋螺套测试件及利用其实现的测试认证方法
CN109572075B (zh) * 2018-12-11 2021-05-07 大连理工大学 一种纤维带增韧蜂窝芯体的夹芯结构
CN109732806B (zh) * 2019-02-14 2021-06-04 上海电气风电集团股份有限公司 用于风电叶片的拉挤件、风电叶片的灌注方法及风电叶片
DK180532B1 (en) 2019-04-23 2021-06-10 Envision Energy Denmark Aps A WIND WINDOW WING AND A METHOD FOR MANUFACTURING THE WIND WIND WING
CN110578556B (zh) * 2019-09-25 2024-03-26 西安陕鼓动力股份有限公司 一种带长短翼的动叶片及转子
CN114043165A (zh) * 2021-07-15 2022-02-15 南通中能机械制造有限公司 一种菱形导叶片加工工艺
CN113752590A (zh) * 2021-09-15 2021-12-07 上海电气风电集团股份有限公司 一种风电叶片的结构件及风电叶片壳体的制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1644917A (zh) * 2005-01-21 2005-07-27 同济大学 大型复合材料风力机叶片及其制备方法
CN101092971A (zh) * 2007-07-20 2007-12-26 南京航空航天大学 复合材料空腔风扇叶片
CN201152229Y (zh) * 2007-09-27 2008-11-19 贵阳多元佳华工贸有限公司 一种风力发电机蜂巢叶片
US20090246446A1 (en) * 2008-03-28 2009-10-01 Rolls-Royce Plc Article formed from a composite material
CN101666290A (zh) * 2009-10-14 2010-03-10 黄争鸣 风力机叶片结构及其加工成型方法和用途

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1644917A (zh) * 2005-01-21 2005-07-27 同济大学 大型复合材料风力机叶片及其制备方法
CN101092971A (zh) * 2007-07-20 2007-12-26 南京航空航天大学 复合材料空腔风扇叶片
CN201152229Y (zh) * 2007-09-27 2008-11-19 贵阳多元佳华工贸有限公司 一种风力发电机蜂巢叶片
US20090246446A1 (en) * 2008-03-28 2009-10-01 Rolls-Royce Plc Article formed from a composite material
CN101666290A (zh) * 2009-10-14 2010-03-10 黄争鸣 风力机叶片结构及其加工成型方法和用途

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2551512A1 (en) * 2011-07-27 2013-01-30 Alstom Wind, S.L.U. Wind turbine blade connector assembly
WO2013014228A1 (en) * 2011-07-27 2013-01-31 Alstom Wind, S.L.U. Wind turbine blade connector assembly
US9790918B2 (en) 2011-07-27 2017-10-17 Alstom Renewable Technologies Wind turbine blade connector assembly
CN102562414A (zh) * 2012-01-30 2012-07-11 重庆同利实业有限公司 钢塑复合仿生桨叶
CN102626992A (zh) * 2012-04-11 2012-08-08 连云港中复连众复合材料集团有限公司 一种兆瓦级风力发电叶片根部人孔板及其人孔盖板的制备方法
CN111765041A (zh) * 2020-07-14 2020-10-13 连云港中复连众复合材料集团有限公司 风电叶片的根部连接结构及其制造方法

Also Published As

Publication number Publication date
CN101666290A (zh) 2010-03-10
CN101666290B (zh) 2011-11-09

Similar Documents

Publication Publication Date Title
WO2011044750A1 (zh) 风力机叶片结构及其加工成型方法
US10655597B2 (en) Wind turbine rotor blade components and methods of making same
US4339230A (en) Bifoil blade
EP2295235B1 (en) Fiber reinforced plastic-structure and a method to produce the fiber reinforced plastic-structure
EP3394430B1 (en) Wind turbine blades and related methods of manufacturing
CN101102881A (zh) 制造具有紧固件的风轮机叶片壳体部件和具有紧固件的风轮机叶片的方法
TW202126423A (zh) 用於製造風力渦輪機葉片之結構元件的方法、用於製造風力渦輪機葉片的方法、風力渦輪機葉片之結構元件及風力渦輪機葉片
CN113954388B (zh) 预制限位件、翼梁帽、风机叶片及制造方法、预制板材固定方法
CN118434562A (zh) 用于制造风力涡轮机叶片的方法
CN105863960B (zh) 一种垂直轴复合材料风电叶片及其制备方法
US20230175476A1 (en) Wind turbine blade
CN115008847A (zh) 三维复合板壳结构、航行器和风电叶片壳体及制造方法
CN116113539A (zh) 用于风力涡轮机叶片的翼梁帽的混合拉挤板
EP4108439A1 (en) Spar cap with tapering and serrated end section
EP4335629A1 (en) Precured fibrous elements for a spar cap of a wind turbine blade

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10822982

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10822982

Country of ref document: EP

Kind code of ref document: A1