WO2011041959A1 - 自移动地面处理机器人及其贴边地面处理的控制方法 - Google Patents

自移动地面处理机器人及其贴边地面处理的控制方法 Download PDF

Info

Publication number
WO2011041959A1
WO2011041959A1 PCT/CN2010/075584 CN2010075584W WO2011041959A1 WO 2011041959 A1 WO2011041959 A1 WO 2011041959A1 CN 2010075584 W CN2010075584 W CN 2010075584W WO 2011041959 A1 WO2011041959 A1 WO 2011041959A1
Authority
WO
WIPO (PCT)
Prior art keywords
robot
sensor
angle
signal strength
self
Prior art date
Application number
PCT/CN2010/075584
Other languages
English (en)
French (fr)
Inventor
汤进举
Original Assignee
泰怡凯电器(苏州)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=43856365&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2011041959(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 泰怡凯电器(苏州)有限公司 filed Critical 泰怡凯电器(苏州)有限公司
Priority to US13/500,802 priority Critical patent/US8744628B2/en
Publication of WO2011041959A1 publication Critical patent/WO2011041959A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L9/00Details or accessories of suction cleaners, e.g. mechanical means for controlling the suction or for effecting pulsating action; Storing devices specially adapted to suction cleaners or parts thereof; Carrying-vehicles specially adapted for suction cleaners
    • A47L9/009Carrying-vehicles; Arrangements of trollies or wheels; Means for avoiding mechanical obstacles
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/40Parts or details of machines not provided for in groups A47L11/02 - A47L11/38, or not restricted to one of these groups, e.g. handles, arrangements of switches, skirts, buffers, levers
    • A47L11/4061Steering means; Means for avoiding obstacles; Details related to the place where the driver is accommodated
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0231Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
    • G05D1/0238Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using obstacle or wall sensors
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L2201/00Robotic cleaning machines, i.e. with automatic control of the travelling movement or the cleaning operation
    • A47L2201/04Automatic control of the travelling movement; Automatic obstacle detection

Definitions

  • the present invention relates to an intelligent robot, and more particularly to a self-moving ground processing robot and a method of controlling the same on the ground. Background technique
  • Intelligent robots include mopping robots, vacuum robots, etc., which combine mobile robot and vacuum cleaner technology, and are the most challenging hot research topics in the field of household appliances. Since 2000, the commercialization of robotic commercial products has been listed one after another, becoming a new high-tech product in the field of service robots, with considerable market prospects.
  • a collision sensor or a detection sensor is provided at the front of the robot, and a sensor is also provided at the side of the robot, and the side sensor can be disposed only on the right side along the advancement direction of the robot as needed, or on the left and right sides. Side.
  • the robot collides with an obstacle through the collision sensor, or the obstacle is sensed by the side view sensor, the robot can determine whether there is an obstacle in its corresponding direction.
  • the existing cleaning robots are in a random cleaning mode most of the time, that is, they are cleaned while walking on the working surface.
  • the main brush and the side brush can be used to work together. If obstacles are encountered, the obstacles are bypassed, and then continue. Cleaning, it will not deliberately clean along the obstacles. If the bottom edge of the obstacle is small or irregular, such as legs, legs, etc., it can be bypassed in the random cleaning mode without affecting the cleaning effect. However, if the bottom edge of the obstacle is larger or more regular, For example, the edge of the wall is not well cleaned because the wall cleaning is not cleaned along the obstacles in the random cleaning mode.
  • the existing cleaning robot usually also includes a welt cleaning mode.
  • the robot's walking path is changed, and the robot is cleaned while walking along the edge of the obstacle.
  • the principle is that the side sensor senses the obstacle, and a signal induction value with a certain intensity is obtained, and a value is preset in the robot, and the robot will directly sense the signal sensing value and the pre-stored value. If the value of the instantaneous sensing signal is equal to the pre-stored value, that is, the robot is closest to the wall at this time, the robot will clean along the wall to prevent it from being touched in the random cleaning mode. Thoroughly clean the area around the bottom edge of the obstacle. When the robot is in the squeegee cleaning mode, the area around the obstacle can be cleaned before the robot exits the squeegee cleaning mode.
  • the time can be set in advance, and when the setting time is reached, the random cleaning mode is automatically transferred to the cleaning mode, that is, the robot is no longer With If you want to walk and clean, and go straight, until the sensor on the side of the robot detects an obstacle, the robot performs the cleaning.
  • the number of collisions can be preset. When cleaning in the random cleaning mode, the robot collides. When an obstacle such as a wall reaches a preset number of times, the robot automatically switches from the random cleaning mode to the welt cleaning mode.
  • the method for judging the distance between the robot and the wall surface is compared by comparing the signal intensity value sensed by the side sensor with a pre-stored fixed value.
  • the signal strength values sensed at the same distance are different, and the other value of the comparison is fixed. Therefore, the robot will get the cleaning due to the different obstacle medium.
  • the distance is also different.
  • the reflectivity of the wall medium is high, that is, when the wall surface is the high reflection surface 102, the robot has a large distance from the wall when the welt mode is applied.
  • the distance from the wall surface when running the welt mode is small. Therefore, it can be seen that the distance between the robot and the wall in the welt cleaning mode is affected by the wall medium, not the true edge.
  • the technical problem to be solved by the present invention is to provide a method for controlling a ground surface treatment of a self-moving ground processing robot and a self-moving ground processing device, which can make the self-moving ground processing robot effective.
  • the edge area of the obstacle is treated.
  • the present invention provides a control method for a affixed ground treatment applied to a self-moving ground processing robot, and the solution 1 specifically includes the following steps:
  • Step 1 The robot collides with the obstacle, and after the collision, deflects a basic angle away from the obstacle, and after deflecting, obtains an initial signal strength value through a side view sensor located on the side of the robot, and then walks and performs ground treatment;
  • Step 2 Obtain an instantaneous signal strength value through the side view sensor after running for a predetermined time
  • Step 3 comparing the difference between the instantaneous signal strength value and the initial signal strength value, and determining whether the difference is within a predetermined range, if yes, continue walking and ground processing; if not, go to step 4;
  • Step 4 driving the robot to deflect an adjustment angle away from or close to the obstacle, and obtain a current instantaneous signal strength value;
  • Step 5 Comparing the difference between the currently obtained instantaneous signal strength value and the last instantaneous signal strength value, determining whether the difference is within a predetermined range, and if so, continuing to walk and performing ground processing; if not, turning Step 4.
  • the second solution further includes the following features:
  • step 1 the sensing signal of the sensor is identified according to an angle set at different positions on the end of the walking direction of the robot, and the angle recognition sensor corresponds to the basic angle. The relationship determines the value of the base angle.
  • the third solution further includes the following feature: when the side view sensor is one, and two angle recognition sensors are disposed at the end of the robot walking direction, the angle recognition sensor and the basic angle are The corresponding relationship is that when the detected sensor signal is from the angle recognition sensor on the same side as the side view sensor, the corresponding basic angle is 45 °; when the detected sensor signal is from the angle recognition sensor on the opposite side of the side view sensor , the corresponding basic angle is 135 °; when the detected sensor signal comes from the signals of the two angle recognition sensors, the corresponding basic angle is 90 °.
  • the fourth solution further includes the following feature: when the side view sensor is one, and six angle recognition sensors are disposed at the end of the robot walking direction, the angle recognition sensor and the basic angle are The corresponding relationship is that when the detected sensor signal is from a single angle recognition sensor, the first basic angle of the sensor is recognized from the same side of the side view sensor, and the corresponding basic angles are 0°, 36°, 72°, 108 °, 144 ° and 180 °.
  • the fifth aspect further includes the following features: when the side view sensors are two, when two angle recognition sensors are disposed at the end of the robot walking direction, when the detected sensor signals are from a single When the sensor is angularly recognized, the basic angle corresponding to each angle recognition sensor is 45 °.
  • the sixth aspect further includes the following features: when the side view sensors are two, and six angle recognition sensors are disposed at the end of the robot walking direction, the angle recognition sensor and the basic angle
  • the corresponding relationship is that when the detected sensor signal comes from a single angle recognition sensor, the first point of the sensor is identified from the same side of the side view sensor, and the corresponding basic angles are 0 °, 36 ° and 72 °. .
  • the seventh aspect further includes the following feature: when detecting the sensing signals from the plurality of angle recognition sensors, the basic angle is equal to two adjacent angle recognition sensors having the largest signal strength The average of the angles.
  • the solution 8 further includes the following feature: when detecting the sensing signals from the plurality of angle recognition sensors, the basic angle is equal to each angle recognition transmission corresponding to each of the sensing signals The sum of the angles of the sensors corresponding to the respective weights.
  • the solution 9 further includes the following feature: if the current instantaneous signal strength value minus the difference of the last instantaneous signal strength value is a negative number and is not within the predetermined range, driving the robot to approach the obstacle The direction is deflected by an angle.
  • the scheme 10 further includes the following feature: if the current instantaneous signal strength value minus the difference of the last instantaneous signal strength value is a positive number and is not within the predetermined range, driving the robot to move away from the obstacle The direction of deflection is adjusted by an angle.
  • the solution 11 further includes the following feature: the adjustment angle is a fixed angle, or is determined according to an angle and a relationship between a current instantaneous signal strength value and a difference of a previous instantaneous signal strength value.
  • the solution 12 further includes the following feature: the adjustment angle is 0 to 20°.
  • the scheme 12 further includes the following feature: the adjustment angle is 0 to 10°.
  • the present invention also provides a self-moving ground processing robot, the robot comprising: a functional component, a walking unit, a driving unit, a side view sensor located at a side of the robot, and a control unit; the side view sensor is configured to detect whether the side of the robot is Having an obstacle, and transmitting the detected information to the control unit; the control unit is respectively connected to the functional component and the driving unit, the driving unit is connected to the walking unit, and the driving unit is controlled And the instruction of the unit drives the walking unit to travel according to a predetermined route, and the functional component receives the instruction of the control unit to perform ground processing according to a predetermined working mode; and the control unit controls the function component and the driving unit to operate according to the foregoing method.
  • the present invention fundamentally solves the influence of the obstacle medium caused by the difference in the sensing values of the obstacles of the different media by the side view sensor, and occurs in the welt ground processing mode, Obstacles of different media have different distances and cannot achieve the defects of true welt surface treatment.
  • Figure 1 is a simplified schematic view of the same robot in the prior art when cleaning the edges of different obstacles
  • FIG. 2 is a block diagram showing the structure of a self-moving cleaning robot according to the present invention.
  • FIG. 3 is a flow chart of a method for controlling a welt cleaning according to the present invention.
  • FIG. 4 is a simplified schematic diagram of a collision when the self-moving cleaning robot of the present invention enters the welt cleaning mode
  • FIG. 5 is a simplified schematic view of the self-moving cleaning robot of the present invention when it is deflected after collision when entering the affixing cleaning mode
  • Figure 6 is a simplified schematic diagram of a period of operation after deflection based on Figure 5;
  • Figure 7 is a simplified schematic diagram of deflection on the basis of Figure 6;
  • Figure 8 is a simplified schematic diagram of a period of operation after deflection based on Figure 7;
  • FIG. 9 is an external structural diagram 1 of a self-moving cleaning robot according to a specific embodiment of the present invention.
  • FIG. 10 is an external structural diagram 2 of a self-moving cleaning robot according to the present invention.
  • Figure 11 is a perspective view of the appearance of a self-moving cleaning robot according to a specific embodiment of the present invention.
  • FIG. 12 is a simplified schematic view of one embodiment of a sensor distributed on a striker of a robot according to the present invention
  • FIG. 13 is a simplified schematic view of another embodiment of a sensor distributed on a striker of a robot according to the present invention
  • Another embodiment of a sensor distributed on a striker is simplified in a schematic view
  • Figure 15 is a simplified schematic view of another embodiment of a sensor distributed on a striker of a robot of the present invention.
  • the self-moving cleaning robot includes a cleaning component 1, a walking unit 2, a driving unit 3, a side view sensor 4 located at a side of the robot, and a control unit 5, the cleaning robot being provided with a random cleaning mode and a welt cleaning mode;
  • the sensor 4 is configured to detect whether there is an obstacle on the side of the robot, and to send the detected information to the control unit 5;
  • the control unit 5 is respectively connected to the cleaning component 1 and the driving unit 3, and the driving unit 3 and
  • the traveling unit 2 is connected, the driving unit 3 receives an instruction from the control unit 5, drives the traveling unit 2 to travel, and the cleaning unit 1 receives the command from the control unit 5 to perform cleaning in a predetermined cleaning mode.
  • the walking mode of the robot is related to the cleaning mode.
  • the walking manner is different, and the cleaning method of the cleaning component 1 is also different.
  • the cleaning member 1 is a functional component, and the components are different depending on the robot of different functions.
  • the control unit controls the operation of the functional component, that is, the cleaning component and the driving unit, in the following steps.
  • FIG. 3 it is a flowchart of the method for controlling the welt cleaning according to the present invention
  • FIG. 4-7 is a simplified schematic diagram of the operation of the self-moving cleaning robot into the welt cleaning mode. Referring to Figure 4-7, see Figure 3.
  • Step S10 when the robot changes from the random cleaning mode to the welt cleaning mode during the movement, the control robot collides with the obstacle, and after the collision, deflects a basic angle ⁇ 2 away from the obstacle, after the deflection
  • An initial signal strength value A1 is measured by a side view sensor located on the side of the robot, and then walked and cleaned.
  • a simplified schematic diagram of the collision is shown in Figure 4, where cd represents the angle of cut and ⁇ represents the direction of travel of the robot.
  • a simplified schematic diagram of the deflection after collision is shown in Fig. 5.
  • the traveling direction of the robot is ⁇
  • the angle between the front and rear directions ⁇ and ⁇ 2 is the basic angle ⁇ 2 of the deflection.
  • the object of the present invention is achieved by switching the robot into parallel operation with the obstacle after colliding with the obstacle.
  • the present invention is applied between two straight lines. If the internal error angles are equal, the principle of the two straight lines is parallel, so that the walking direction of the robot is parallel with the obstacle, and the control can be controlled.
  • the basic angle at which the robot is deflected (2 is equal to the plunging angle cd as much as possible. If the two are equal, the principle of the robot can ensure that the walking direction of the robot is parallel to the obstacle.
  • a striker is provided at an end of the traveling direction of the robot, and an angle recognition sensor is disposed at different positions of the striker, and the basic angle ⁇ 2 is determined according to the correspondence between the angle recognition sensor and the basic angle. Value.
  • the number of the angle recognition sensors may be multiple.
  • the correspondence relationship between each angle recognition sensor and the basic angle is also related to the number of the side view sensors, when the side view sensor is one, and the robot is walking.
  • C1-1 is an angle recognition sensor on the same side as the side view sensor 4
  • C1-2 is an angle recognition sensor on the opposite side of the side view sensor.
  • C2-1 is an angle recognition sensor on the same side as the side view sensor 4, and an angle recognition sensor on the side of the side view sensor 4'.
  • the side view sensor is one, and six angle recognition sensors are disposed at the end of the robot walking direction, as shown in FIG. 14, the correspondence relationship between the angle recognition sensor and the basic angle is, when detected.
  • the sensor signal comes from a single angle recognition sensor, the first point of the sensor is recognized from the same side of the side view sensor 4, and the corresponding basic angles are 0 °, 36 °, 72 °, 108 °, 144 ° and 180 ° , as shown in Table 3.
  • C3-1 is the first angle recognition sensor on the same side as the side view sensor 4.
  • C4-1 is the first angle recognition sensor on the same side as the side view sensor 4
  • C4-6 is the last angle recognition sensor on the same side as the side view sensor 4'.
  • the plurality of sensors are respectively located on the left and right sides of the striker, and the angle recognition sensors on both sides are axially symmetrically distributed with the robot walking direction as an axis, and may of course be asymmetrically distributed.
  • the angle recognition sensors can be evenly distributed. For example, when the robot is circular, it is evenly distributed in the first half of the robot's walking direction. The judgment method is the same as above, but the angle is more precise.
  • the robot may receive signals from multiple sensors at a time, as shown in Figure 15, receiving three signals. If multiple signals are received, first determine the two adjacent angle recognition sensors with the highest signal strength, such as C4-2 and C4-3, and then select the angles of the two sensors corresponding to 36° and 72°, and then take this The average of the two angles is 54°, with this value as the base angle.
  • the concept of weight can be used for calculation.
  • the weights of the respective angle recognition sensors are allocated according to the respective sensing signals, and then the angles corresponding to the respective angle recognition sensors corresponding to the respective sensing signals are multiplied by the respective weights, and then the respective products are added to obtain a sum.
  • the sum is the value of the basic angle.
  • the respective weights are obtained: 61 ( 6+8+9), 8/ ( 6+8+ 9) and 9/ (6+8+9). Multiply by the respective angles Plus to get the basic angle ⁇ 2:
  • the basic angle (2 and the plunging angle cd can be made as equal as possible.
  • the accuracy requirement is not very high, it is not necessary to set the relationship between the basic angle ⁇ 2 and the plunging angle cd.
  • Step S20 after the basic angle ⁇ 2 is deflected, the robot walks along the walking direction ⁇ 2, and obtains an instantaneous signal strength value ⁇ 2 through the side view sensor after running for a predetermined time, as shown in FIG. 6.
  • Step S30 comparing the difference between the instantaneous signal strength value ⁇ 2 and the initial signal strength value A1, and determining whether the difference is within a predetermined range, if yes, continuing to walk and cleaning; if not, going to step S40 .
  • the predetermined range is an error range.
  • the signal strength value sensed by the sensor may have an error.
  • an appropriate range is set, as long as the difference between the intensity values of the two signals is Within the range, the intensity values of the two signals are considered to be the same. The smaller the range, the higher the accuracy of the robot, but the more adjustments will be made.
  • Step S40 driving the robot to deflect an adjustment angle (x3) in a direction away from or close to the obstacle, and obtain a current instantaneous signal strength value A3.
  • the deflection adjustment angle (the front walking direction is ⁇ 2, deflection)
  • the rear walking direction is ⁇ 3, and the angle between ⁇ 2 and ⁇ 3 is ⁇ 3.
  • Step S50 comparing the difference between the currently obtained instantaneous signal strength value A3 and the last instant signal strength value ⁇ 2, determining whether the difference is within a predetermined range, and if so, continuing to walk and clean, as shown in FIG. If not, go to step S40 and repeat the steps of deflection, walking, comparison, and so on.
  • the current instantaneous signal strength value minus the difference of the last instantaneous signal strength value is a negative number and is not within the predetermined range, it indicates that the walking direction of the robot is gradually moving away from the obstacle, and the robot should be driven to approach the said The direction of the obstacle is deflected by an adjustment angle.
  • the robot In order to prevent the robot from being too close to the obstacle during the running, there is a phenomenon of constant posture or collision obstacles.
  • the adjustment angle of each adjustment can be the same, that is, a fixed set value, such as 0 ⁇ 20. Or 0 ⁇ 10 °, or it is determined by the angle as a function of the difference between the current instantaneous signal strength value and the last instantaneous signal strength value.
  • the difference can be made to have a linear relationship with the angle.
  • the difference is larger, it indicates that the worse the parallelism between the traveling direction and the obstacle, the larger the angle is required to be adjusted, so that the adjustment angle for actually adjusting the traveling direction is also larger.
  • a hardware timer may be included in the present invention.
  • the present invention also includes an operation panel, Various setting keys are used to make settings.
  • the above process is controlled by the control unit to control the cleaning member 1, the traveling unit 2, and the driving unit 3.
  • the appearance structure is as shown in Figs.
  • the cleaning robot includes a body 6, and a striker 61 is provided at a front portion of the body 6.
  • the angle recognition sensor is placed at two different positions on the left and right sides of the striker.
  • the angle recognition sensor can be an ultrasonic sensor, a proximity sensor or an infrared sensor.
  • the driving unit 3 is an electric motor disposed inside the body
  • the traveling unit 2 is a driving wheel 21 as described in the figure
  • the cleaning component 1 includes a main brush 11 and an edge brush 12, and an operation panel 7 is further provided on the top of the body, in the body Side view sensor
  • the side view sensor 4 may be an infrared sensor including a transmitting part and a receiving part, both of which are disposed at a front side of the robot, the emitting part emits infrared light, and the receiving part receives the reflected light of the measured object, and receives from the receiving part
  • the reflected light is used to determine whether there is an obstacle on the side of the robot, and the intensity of the reflected light is related to the received signal strength, and the signal strength is finally expressed in a voltage manner.
  • the walking state of the robot is transmitted by the control unit to the motor, and the motor drives the driving wheel 21 to rotate according to the control command, thereby causing the robot to walk.
  • the robot can walk straight, and if it wants to turn, it deviates from the original walking direction. Then, the two driving wheels are controlled to rotate at a constant speed, and the robot is turned to the direction in which the driving wheel with a slow rotation speed is located.
  • the cleaning member 1 comprises a main brush 11 and a side brush 12, and of course, other cleaning members may be included, such as a vacuum cleaner.
  • these cleaning components can work together, such as:
  • the dust brush on the edge of the obstacle is rubbed by the side brush 12. Sweep out and sweep the dust into the internal ash box through the ash inlet 62 at the bottom of the robot.
  • the vacuum cleaner and the main brush 11 are matched with the side brush for cleaning work.
  • the invention is not affected by the obstacle medium, so that the robot can truly achieve the edge cleaning.
  • the self-moving robot may also be a waxing robot, and the waxing device (ie, a functional component) protruding from the outside of the robot causes the self-moving robot to move while the welt is moving.
  • the affixed floor can also be waxed.
  • the side waxing device can be fixedly extended on the outside of the robot or can be stretched.
  • the self-moving ground processing robot described in the present invention can provide different functional components in the ground processing robot according to actual functional requirements, such as: a cleaning unit, a waxing unit, a polishing unit, etc., thereby realizing the ground. The need for different work processes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Electromagnetism (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Manipulator (AREA)

Description

自移动地面处理机器人及其贴边地面处理的控制方法 技术领域
本发明涉及一种智能机器人, 具体地说, 涉及一种自移动地面处理机器人及其贴 边地面处理的控制方法。 背景技术
智能机器人包括拖地机器人、吸尘机器人等, 其融合了移动机器人和吸尘器技术, 是目前家用电器领域最具挑战性的热门研发课题。从 2000年后清扫机器人商用化产品 接连上市, 成为服务机器人领域中的一种新型高技术产品, 具有可观的市场前景。
通常, 在机器人的前部设有碰撞传感器或探测传感器, 并且在机器人的侧部也设 有传感器, 侧部传感器可以按需要仅设置在沿着机器人前进方面的右侧部, 或设置在 左右两个侧部。 当机器人通过碰撞传感器碰撞到障碍物, 或通过侧视传感器感测到障 碍物时, 机器人就可以判断出其相应方向是否有障碍物。
目前, 现有的清洁机器人大部分时间处于随机清扫模式, 即在工作表面边随意行 走边清扫, 清扫时可以采用主刷和边刷配合工作, 如遇到障碍物, 绕过障碍物, 再继 续清扫, 其不会刻意地沿着障碍物清扫。 如果障碍物的底边较小或不规则, 如桌腿、 凳腿等, 在随机清扫模式中可以绕过去, 不会影响清洁效果, 但是, 如果障碍物的底 边较大或较有规则, 如墙边, 由于在随机清扫模式不会沿着障碍物清扫, 则墙边的区 域没有被很好地清扫。 为了也能将随机清扫模式中不会触及的障碍物底边周围区域彻 底清扫, 现有的清洁机器人通常还包括贴边清扫模式。 在贴边清扫模式时, 改变机器 人的行走路线, 使机器人沿着障碍物底边边缘边行走边清扫。 其原理是, 由侧部传感 器对障碍物进行感测, 此时会得到一个具有一定强度的信号感应值, 在机器人内部预 先设定一个数值, 机器人会将即时感测的信号感应值与预存的数值进行比较, 如果即 时感测的信号感应值与预存的数值相等, 即认为此时机器人离墙面的距离最近, 则机 器人便沿着墙贴边清扫, 以期将随机清扫模式中不会触及的障碍物底边周围区域彻底 清扫。 在机器人处于贴边清扫模式时, 障碍物周边的区域在机器人没有退出贴边清扫 模式之前都可以进行清扫。
目前, 在从随机清扫模式转入贴边清扫模式可以有多种方式: 例如, 1、 可以预先 设定时间, 到了设定时间, 随机清扫模式自动转入贴边清扫模式, 即, 机器人不再随 意行走并清扫, 而时直行, 直到机器人侧部的传感器探测到有障碍物时, 机器人则进 行贴边清扫; 2、 可以预先设定碰撞次数, 当在随机清扫模式下进行清扫时, 机器人碰 撞墙壁等障碍物到预先设定次数时, 机器人从随机清扫模式自动转入贴边清扫模式。
在贴边清扫模式, 用于判断机器人与墙面等障碍物距离的方法是通过比较侧部传 感器感测的信号强度值与预存的一个固定数值进行比较。 然而, 由于墙面介质的反射 率不同, 在同一距离下感测到的信号强度值也不一样, 而比较的另一数值是固定, 因 此, 会发生由于障碍物介质不同, 机器人得到贴边清扫的距离也不同。 如图 1所示, 对于同一台机器人 B, 在贴边清扫模式下, 当墙面的介质的反射率高即墙面为高反射 面 102时, 运行贴边模式时机器人离墙面的距离大, 当墙面介质的反射率低即墙面为 低反射面 101 时, 运行贴边模式时离墙面的距离小。 因此可以看出贴边清扫模式中机 器人与墙面的距离受墙面介质的影响, 不是真正意义上的贴边。
基于上述问题, 期望提供一种实现对障碍物周围进行清扫的应用于自移动地面处 理机器人的贴边地面处理的控制方法, 以及实现该功能的自移动地面处理机器人, 从 而在贴边清扫模式下更好地对墙附近及障碍物周围进行地面处理, 达到更好的清洁效 果。 发明内容
本发明要解决的技术问题是, 针对现有技术的不足, 提供一种应用于自移动地面 处理机器人的贴边地面处理控制方法及自移动地面处理装置, 可以使所述自移动地面 处理机器人有效地处理障碍物的边缘区域。
为解决上述的技术问题, 本发明提供了一种应用于自移动地面处理机器人的贴边 地面处理的控制方法, 方案一具体包括如下步骤:
步骤 1, 机器人与障碍物相撞, 相撞后向远离所述障碍物的方向偏转一基本角度, 偏转后通过位于机器人侧面的侧视传感器得到一初始信号强度值, 而后行走并进行地 面处理;
步骤 2, 在运行一预定时间后通过侧视传感器得到一即时信号强度值;
步骤 3, 比较所述即时信号强度值与所述初始信号强度值的差值, 并判断该差值 是否在一预定范围内, 如果在, 则继续行走并地面处理; 如果不在, 转向步骤 4; 步骤 4, 驱动机器人向远离或靠近所述障碍物的方向偏转一调整角度, 并得到当 前即时信号强度值; 步骤 5, 比较所述当前得到的即时信号强度值和上一次即时信号强度值的差值, 判断该差值是否在一预定范围内, 如果在, 则继续行走并进行地面处理; 如果不在, 转向步骤 4。
针对方案一, 进一步地, 方案二还包括如下特征: 在步骤 1 中, 根据设置在所述 机器人行走方向端部上不同位置的角度识别传感器的感测信号, 通过角度识别传感器 与基本角度的对应关系确定基本角度的取值。
针对方案二, 进一步地, 方案三还包括如下特征: 当所述侧视传感器为一个, 且 在所述机器人行走方向端部设置有两个角度识别传感器时, 所述角度识别传感器与基 本角度的对应关系是, 当检测到的传感器信号来自于与侧视传感器同侧的角度识别传 感器, 则对应的基本角度为 45 ° ; 当检测到的传感器信号来自于与侧视传感器相反侧 的角度识别传感器, 则对应的基本角度为 135 ° ; 当检测到的传感器信号来自于两个 角度识别传感器的信号时, 对应的基本角度为 90 ° 。
针对方案二, 进一步地, 方案四还包括如下特征: 当所述侧视传感器为一个, 且 在所述机器人行走方向端部设置有六个角度识别传感器时, 所述角度识别传感器与基 本角度的对应关系是, 当检测到的传感器信号来自于单个角度识别传感器时, 从与侧 视传感器同侧的角度识别传感器的第一个开始, 对应的基本角度依次为 0 ° 、 36 ° 、 72 ° 、 108 ° 、 144 ° 和 180 ° 。
针对方案二, 进一步地, 方案五还包括如下特征: 当所述侧视传感器为两个, 在 所述机器人行走方向端部设置有两个角度识别传感器时, 当检测到的传感器信号来自 于单个角度识别传感器时, 与每一角度识别传感器对应的基本角度为 45 ° 。
针对方案二, 进一步地, 方案六还包括如下特征: 当所述侧视传感器为两个, 且 在所述机器人行走方向端部设置有六个角度识别传感器时, 所述角度识别传感器与基 本角度的对应关系是, 当检测到的传感器信号来自于单个角度识别传感器时, 从与侧 视传感器同侧的角度识别传感器的第一个开始, 对应的基本角度依次为 0 ° 、 36 ° 和 72 ° 。
针对方案三至六, 进一步地, 方案七还包括如下特征: 当检测到来自于多个角度 识别传感器的感测信号时, 所述基本角度等于信号强度最大的两个相邻角度识别传感 器所对应的角度的平均值。
针对方案三至六, 进一步地, 方案八还包括如下特征: 当检测到来自于多个角度 识别传感器的感测信号时, 所述基本角度等于对应于各感测信号的每一个角度识别传 感器所对应的角度与各自权重的乘积之后的总和。
针对方案一, 进一步地, 方案九还包括如下特征: 如果当前即时信号强度值减去 上一次即时信号强度值的差值为负数, 且不在预定范围内, 则驱动机器人向靠近所述 障碍物的方向偏转一调整角度。
针对方案一, 进一步地, 方案十还包括如下特征: 如果当前即时信号强度值减去 上一次即时信号强度值的差值为正数, 且不在预定范围内, 则驱动机器人向远离所述 障碍物的方向偏转一调整角度。
针对方案一, 进一步地, 方案十一还包括如下特征: 所述调整角度为一固定角度, 或根据角度与当前即时信号强度值与上一次即时信号强度值的差值的函数关系而确 定。
针对方案十一, 进一步地, 方案十二还包括如下特征: 所述调整角度为 0〜20° 。 针对方案十二,进一步地, 方案十三还包括如下特征: 所述的调整角度为 0〜10° 。 本发明还提供了一种自移动地面处理机器人, 所述机器人包括: 功能部件、 行走 单元、 驱动单元、 位于机器人侧面的侧视传感器、 控制单元; 所述侧视传感器用于探 测机器人的侧面是否有障碍物, 并将探测到的信息输送给所述控制单元; 所述控制单 元分别与所述功能部件和驱动单元相连接, 驱动单元与所述的行走单元相连接, 所述 驱动单元接受控制单元的指令, 驱动所述行走单元按预定的路线行走, 所述功能部件 接受控制单元的指令按预定的工作模式进行地面处理; 所述控制单元按前述方法控制 所述功能部件、 驱动单元工作。
根据上述方案可知, 本发明从根本上解决了由于侧视传感器对不同介质的障碍物 的感测值不同而带来的受障碍物介质的影响, 而发生的在贴边地面处理模式中、 对不 同介质的障碍物有不同的距离、 不能实现真正贴边地面处理的缺陷。 附图说明
图 1 为现有技术中同一台机器人在不同的障碍物的边缘进行清扫时的简化示意 图;
图 2为本发明所述自移动清洁机器人的结构组成框图;
图 3为本发明所述贴边清扫控制方法的流程图;
图 4为本发明所述自移动清洁机器人进入贴边清扫模式时进行碰撞时的简化示意 图; 图 5为本发明所述自移动清洁机器人进入贴边清扫模式时碰撞后偏转时的简化示 意图;
图 6为基于图 5的偏转后运行一段时间的简化示意图;
图 7为在图 6的基础上进行偏转的简化示意图;
图 8为基于图 7的偏转后运行一段时间的简化示意图;
图 9为本发明所述自移动清洁机器人一具体实施例的外观结构图一;
图 10为本发明所述自移动清洁机器人一具体实施例的外观结构图二;
图 11为本发明所述自移动清洁机器人一具体实施例的外观结构图三;
图 12为本发明在机器人的撞板上分布的传感器的一个实施例简化示意图; 图 13为本发明在机器人的撞板上分布的传感器的另一个实施例简化示意图; 图 14为本发明在机器人的撞板上分布的传感器的另一个实施例简化示意图; 图 15为本发明在机器人的撞板上分布的传感器的另一个实施例简化示意图。 具体实施方式
如图 2所示, 为本发明所述自移动清洁机器人的结构组成框图。 所述自移动清洁 机器人包括清扫部件 1、 行走单元 2、 驱动单元 3、 位于机器人侧面的侧视传感器 4和 控制单元 5, 该清洁机器人设有随机清扫模式和贴边清扫模式; 所述侧视传感器 4用 于探测机器人的侧面是否有障碍物, 并将探测到的信息输送给所述控制单元 5 ; 所述 控制单元 5分别与所述清扫部件 1和驱动单元 3相连接, 驱动单元 3与所述的行走单 元 2相连接, 所述驱动单元 3接受控制单元 5的指令, 驱动所述行走单元 2行走, 所 述清扫部件 1接受控制单元 5的指令按预定的清扫模式进行清扫。 其中, 机器人的行 走方式与清扫模式相关, 如在随机清扫模式和贴边清扫模式中, 行走的方式是不一样, 清扫部件 1的清扫方式也不一样。 另外, 所述的清扫部件 1为功能部件, 根据不同功 能的机器人, 该部件各不相同。
具体地, 在贴边清扫模式中, 所述控制单元按以下步骤控制所述功能部件即清扫 部件、 驱动单元工作。 如图 3所示, 为本发明所述贴边清扫控制方法的流程图, 图 4-7 为所述自移动清洁机器人进入贴边清扫模式运行的简化示意图。结合图 4-7,参见图 3。
步骤 S 10 , 机器人在运动过程中, 由随机清扫模式改为贴边清扫模式时, 控制机 器人与障碍物相撞, 相撞后, 向远离所述障碍物的方向偏转一基本角度 α2, 偏转后通 过位于机器人侧面的侧视传感器测得一初始信号强度值 Al, 而后行走、 清扫。 当机器人与一障碍物, 如与墙相撞,其碰撞时的简化示意图如图 4所示, 其中, cd 表示切入角度, χΐ表示机器人的行走方向。 相撞后偏转时的简化示意图如图 5所示, 此时, 机器人的行走方向为 χΐ转变为 χ2, 前后两个行走方向 χΐ和 χ2之间的夹角为偏 转的基本角度 α2。
由于本发明为了使机器人能尽可能地贴着障碍物进行清扫, 通过在机器人与障碍 物相撞后即转为与障碍物平行运行的方式来达到本发明的这一目的。 但是, 如何能使 机器人与障碍物平行运行, 本发明应用在两条直线之间, 如果内错角相等, 则这两条 直线平行的原理, 为使机器人的行走方向与障碍物平行, 可控制机器人偏转过的基本 角度 ( 2与切入角度 cd尽可能地相等, 如果二者相等, 从原理可以保证机器人的行走 方向与障碍物平行。
由于机器人以随机的切入角度与障碍物相撞, 很难及时、 准确地测量该切入角度 具体是多少度。 在本发明的一个实施例中, 在机器人的行走方向端部设有撞板, 在撞 板的不同位置上设置有角度识别传感器, 根据角度识别传感器与基本角度的对应关系 来确定基本角度 α2的取值。 其中, 角度识别传感器的个数可以为多个, 此时, 每一角 度识别传感器与基本角度的对应关系还与侧视传感器的个数有关, 当侧视传感器为一 个, 且在所述机器人行走方向端部设置有两个角度识别传感器时, 如图 12所示, 所述 角度识别传感器与基本角度的对应关系如表 1所示:
表 1
Figure imgf000008_0001
其中, C1-1为与侧视传感器 4同侧的角度识别传感器, C1-2与侧视传感器相反侧 的角度识别传感器。
如果当侧视传感器为两个, 分别位于机器人行走方向的两侧, 则当在所述机器人 行走方向端部设置有两个角度识别传感器时, 如图 13所示, 所述角度识别传感器与基 本角度的对应关系如表 2所示:
表 2
Figure imgf000008_0002
其中, C2-1为与侧视传感器 4同侧的角度识别传感器, C2-2与侧视传感器 4 ' 侧的角度识别传感器。 另外, 当侧视传感器为一个, 且在所述机器人行走方向端部设置有六个角度识别 传感器时, 如图 14所示, 所述角度识别传感器与基本角度的对应关系是, 当检测到的 传感器信号来自于单个角度识别传感器时, 从与侧视传感器 4同侧的角度识别传感器 的第一个开始, 对应的基本角度依次为 0 ° , 36° , 72° , 108 ° , 144° 和 180° , 即 如表 3所示。
表 3
Figure imgf000009_0001
其中, C3- 1为与侧视传感器 4同侧的第一个角度识别传感器。
当侧视传感器有两个时, 且在所述机器人行走方向端部设置有六个角度识别传感 器时, 如图 15所示, 所述角度识别传感器与基本角度的对应关系如表 4所示。
表 4
Figure imgf000009_0002
其中, C4-1为与侧视传感器 4同侧的第一个角度识别传感器, C4-6为最后一个与 侧视传感器 4 ' 同侧的角度识别传感器。
上述的多个传感器分别位于撞板的左、 右两侧, 两侧的角度识别传感器以机器人 行走方向为轴线呈轴对称分布, 当然也可以不对称分布。
角度识别传感器除了呈轴对称分布, 也可以均匀分布。 如当机器人为圆形时, 在 机器人行走方向的前半圆周均布, 判断方法和上述一样, 只是角度更精确一些。
当设有多个传感器, 如 6个时, 机器人可能在一次会收到多个传感器的信号, 如 图 15所示, 收到三个信号。 如果收到多个信号时, 先确定两个信号强度最大的相邻的 角度识别传感器, 如 C4-2和 C4-3 , 然后选取这两个传感器对应的角度 36° 和 72° , 而后取这两个角度的平均值 54° , 以该值作为基本角度。
为了使基本角度的取值更精确, 可以采用权重的概念进行计算。 如根据各感测信 号分配各个角度识别传感器的权重, 而后使对应于各感测信号的每一个角度识别传感 器所对应的角度与各自权重的相乘, 再将各个乘积相加, 得到总和, 该总和即为基本 角度的取值。 例如: 当 C4-l、 C4-2和 C4-3感测到的数值分别为 0.6、 0.8和 0.9时, 可得到各自的权重: 61 ( 6+8+9)、 8/ ( 6+8+9 ) 和 9/ ( 6+8+9)。 再乘以各自的角度后相 加即得到基本角度 α2 :
α2=6*0 ° I ( 6+8+9 ) +8*36 ° I ( 6+8+9 ) +9*72 ° I ( 6+8+9 ) -40 °
通过上述计算, 得到的基本角度 (x2将更准确。
通过上述方法可以使基本角度(2与切入角度 cd尽可能地相等。 当然, 如果不是 精度要求不是很高, 也可以不必设定基本角度 α2与切入角度 cd的关系。
步骤 S20 , 偏转过基本角度 α2后, 机器人沿着行走方向 χ2行走, 在运行一预定 时间后通过侧视传感器得到一即时信号强度值 Α2, 如图 6所示。
步骤 S30 , 比较所述即时信号强度值 Α2与所述初始信号强度值 A1的差值, 并判 断该差值是否在一预定范围内,如果在,则继续行走并清扫;如果不在,转向步骤 S40。 其中, 所述预定范围为一误差范围, 从原理上讲, 应判断即时信号强度值 A2 与所述 初始信号强度值 A1是否相等, 也就是二者的差值是否为 0, 如果为 0, 这两个位置与 墙的距离相等, 从而可以判断出机器人的行走方向与墙平行, 即达到了本发明的目的。 但由于各种因素的存在, 使得传感器感测到的信号强度值会有误差, 为了避免由于误 差导致的误判断, 则设定一个合适的范围, 只要两个信号的强度值的差值在此范围内, 即可认为这两个信号的强度值相同。 此范围越小, 机器人的运行精度就越高, 但调整 的次数将会越多。
步骤 S40 , 驱动机器人向远离或靠近所述障碍物的方向偏转一调整角度 (x3, 并得 到当前即时信号强度值 A3。 如图 7所示, 偏转调整角度 ( 3前的行走方向为 χ2, 偏转 后的行走方向为 χ3, χ2与 χ3之间的夹角为 α3。
步骤 S50 , 比较所述当前得到的即时信号强度值 A3和上一次即时信号强度值 Α2 的差值, 判断该差值是否在一预定范围内, 如果在, 则继续行走并清扫, 如图 8所示; 如果不在, 转向步骤 S40 , 重新进行偏转、 行走、 比较等步骤。
其中, 如果当前即时信号强度值减去上一次即时信号强度值的差值为负数, 且不 在预定范围内, 则说明机器人的行走方向在逐渐向障碍物远离, 此时应驱动机器人向 靠近所述障碍物的方向偏转一调整角度。
为防止机器人在行进过程中, 离障碍物太近, 而出现不断调姿或是碰撞障碍物的 现象。 在优选方案中, 还可以对机器人在行进过程中出现的所探测到信号强度增强的 情况加以探测、 比较。 具体为: 如果侧视传感器离障碍物越近, 得到的信号强度越大 的话, 那么, 如果当前即时信号强度值减去上一次即时信号强度值的差值为正数, 且 不在预定范围内, 则说明机器人的行走方向在逐渐向障碍物靠近, 此时应调整驱动机 器人向远离所述障碍物的方向偏转一调整角度。
在上述过程的调整中,每次调整的调整角度可以相同,即为一固定设定值,如 0〜20 。 或 0〜10 ° , 也可是根据角度与当前即时信号强度值与上一次即时信号强度值的差值 的函数关系而确定。 例如, 可使该差值与角度为一线性关系。 当该差值越大, 说明行 走方向与障碍物的平行度越差, 则需要大角度来调整, 因而实际上用来调整行走方向 的调整整角度也越大。 则在得知前后两次即时信号强度值的差值后, 还需要通过计算 或查表来确定调整角度的步骤。
为了进行计时, 如两次测得信号强度值的时间间隔, 除了可以采用软件的计时方 式外, 也可以在本发明中包括一硬件计时器。 为了能对本发明中涉及到的参数进行设 定, 如基本角度 υ2、 调整角度 ct3 的具体数值、 两次测得信号强度值的时间间隔等参 数进行设定, 本发明中还包括操作面板, 通过各种设定键来进行设定。
在本发明中, 上述过程通过控制单元来控制清扫部件 1、 行走单元 2、 驱动单元 3 来共同完成。
在本发明的一个具体实施例中, 其外观结构如图 9- 11所示。 该清洁机器人包括本 体 6, 在该本体 6的前部设有撞板 61。 角度识别传感器设置在撞板的左、 右的二个不 同位置。 该角度识别传感器可以是超声传感器、 接近传感器或是红外传感器。 驱动单 元 3为设置在本体内部的电动机, 行走单元 2为图中所述的驱动轮 21, 清扫部件 1包 括主刷 11和边刷 12, 在本体的顶部还设有操作面板 7, 在本体的侧面设有侧视传感器
4。 侧视传感器 4可以是红外传感器, 其包括发射部件和接收部件, 均设置在机器人的 前侧部, 发射部件发射红外光, 接收部件接收被测物体的反射回来的光, 从接收部件 是否接收到反射光而判断机器人侧部是否有障碍物, 反射光的强弱与接收到的信号强 度相关, 该信号强度最终以电压方式来表现出来。
机器人的行走状态, 如行走方向、 速度均由控制单元向电动机发送控制指令, 电 动机根据控制指令驱动驱动轮 21转动, 从而使机器人行走。 在一具体实施例中, 驱动 轮 21为两个, 分别由一电动机来控制, 当两个驱动轮 21的转速等参数相同时, 机器 人可以直线行走, 如果要转弯, 即偏离原来的行走方向, 则控制两个驱动轮不等速转 动, 则机器人转向转速慢的驱动轮所在的方向。
在图 9- 11中示出了清扫部件 1包括主刷 11和边刷 12, 当然, 还可以包括其他的 清洁部件, 如内设有真空吸尘器。 在清洁过程中, 这些清洁部件可配合工作, 如: 在 本发明的贴边模式下, 机器人在进行地面处理时, 由边刷 12将障碍物边缘的灰尘垃圾 扫出来, 通过位于机器人底部的进灰口 62将灰尘垃圾扫到内部的集灰盒中。真空吸尘 器及主刷 11则配合边刷进行清洁的工作。
本发明不受障碍物介质的影响, 可使机器人能够真正实现贴边清扫。
除了本实施所描述的自移动机器人具有清扫功能之外, 该自移动机器人还可以是 打蜡机器人, 通过机器人外侧伸出的打蜡装置(即功能部件), 使得自移动机器人在贴 边移动时, 也可将贴边的地面进行打蜡, 该侧部的打蜡装置可以是固定伸出于机器人 外侧, 也可以呈伸縮状。 本发明中所述的自移动地面处理机器人, 可以根据实际的功 能需要, 在地面处理机器人内设有不同的功能部件, 诸如: 清扫单元、 打蜡单元、 磨 光单元等等, 从而实现对地面不同工作处理的需要。
最后所应说明的是: 以上实施例仅用以说明本发明而非限制, 尽管参照较佳实施 例对本发明进行了详细说明, 本领域的普通技术人员应当理解, 可以对本发明进行修 改或者等同替换, 而不脱离本发明的精神和范围, 其均应涵盖在本发明的权利要求范 围当中。

Claims

权利要求书
1. 一种应用于自移动地面处理机器人的贴边地面处理的控制方法, 其特征在于, 具体包括如下步骤:
步骤 1, 机器人与障碍物相撞, 相撞后向远离所述障碍物的方向偏转一基本角度, 偏转后通过位于机器人侧面的侧视传感器得到一初始信号强度值, 而后行走并进行地 面处理;
步骤 2, 在运行一预定时间后通过侧视传感器得到一即时信号强度值;
步骤 3, 比较所述即时信号强度值与所述初始信号强度值的差值, 并判断该差值 是否在一预定范围内, 如果在, 则继续行走并地面处理; 如果不在, 转向步骤 4; 步骤 4, 驱动机器人向远离或靠近所述障碍物的方向偏转一调整角度, 并得到当 前即时信号强度值;
步骤 5, 比较所述当前得到的即时信号强度值和上一次即时信号强度值的差值, 判断该差值是否在一预定范围内, 如果在, 则继续行走并进行地面处理; 如果不在, 转向步骤 4。
2. 如权利要求 1 所述的应用于自移动地面处理机器人的贴边地面处理的控制方 法, 其特征在于, 在步骤 1 中, 根据设置在所述机器人行走方向端部上不同位置的角 度识别传感器的感测信号, 通过角度识别传感器与基本角度的对应关系确定基本角度 的取值。
3. 如权利要求 2所述的应用于自移动地面处理机器人的贴边处理的控制方法, 其 特征在于, 当所述侧视传感器为一个, 且在所述机器人行走方向端部设置有两个角度 识别传感器时, 所述角度识别传感器与基本角度的对应关系是, 当检测到的传感器信 号来自于与侧视传感器同侧的角度识别传感器, 则对应的基本角度为 45 ° ; 当检测到 的传感器信号来自于与侧视传感器相反侧的角度识别传感器, 则对应的基本角度为 135 ° ; 当检测到的传感器信号来自于两个角度识别传感器的信号时, 对应的基本角度 为 90° 。
4. 如权利要求 2 所述的应用于自移动地面处理机器人的贴边地面处理的控制方 法, 其特征在于, 当所述侧视传感器为一个, 且在所述机器人行走方向端部设置有六 个角度识别传感器时, 所述角度识别传感器与基本角度的对应关系是, 当检测到的传 感器信号来自于单个角度识别传感器时, 从与侧视传感器同侧的角度识别传感器的第 一个开始, 对应的基本角度依次为 0° 、 36 ° 、 72° 、 108 ° 、 144° 和 180° 。
5. 如权利要求 2 所述的应用于自移动地面处理机器人的贴边地面处理的控制方 法, 其特征在于, 当所述侧视传感器为两个, 在所述机器人行走方向端部设置有两个 角度识别传感器时, 当检测到的传感器信号来自于单个角度识别传感器时, 与每一角 度识别传感器对应的基本角度为 45 ° 。
6. 如权利要求 2 所述的应用于自移动地面处理机器人的贴边地面处理的控制方 法, 其特征在于, 当所述侧视传感器为两个, 且在所述机器人行走方向端部设置有六 个角度识别传感器时, 所述角度识别传感器与基本角度的对应关系是, 当检测到的传 感器信号来自于单个角度识别传感器时, 从与侧视传感器同侧的角度识别传感器的第 一个开始, 对应的基本角度依次为 0° 、 36 ° 和 72 ° 。
7. 如权利要求 3-6任一所述的应用于自移动地面处理机器人的贴边地面处理的控 制方法, 其特征在于, 当检测到来自于多个角度识别传感器的感测信号时, 所述基本 角度等于信号强度最大的两个相邻角度识别传感器所对应的角度的平均值。
8. 如权利要求 3-6任一所述的应用于自移动地面处理机器人的贴边地面处理的控 制方法, 其特征在于, 当检测到来自于多个角度识别传感器的感测信号时, 所述基本 角度等于对应于各感测信号的每一个角度识别传感器所对应的角度与各自权重的乘积 之后的总和。
9. 如权利要求 1 所述的应用于自移动地面处理机器人的贴边地面处理的控制方 法, 其特征在于, 如果当前即时信号强度值减去上一次即时信号强度值的差值为负数, 且不在预定范围内, 则驱动机器人向靠近所述障碍物的方向偏转一调整角度。
10. 如权利要求 1 所述的应用于自移动地面处理机器人的贴边地面处理的控制方 法, 其特征在于, 如果当前即时信号强度值减去上一次即时信号强度值的差值为正数, 且不在预定范围内, 则驱动机器人向远离所述障碍物的方向偏转一调整角度。
11. 如权利要求 1 所述的应用于自移动地面处理机器人的贴边地面处理的控制方 法, 其特征在于, 所述调整角度为一固定角度, 或根据角度与当前即时信号强度值与 上一次即时信号强度值的差值的函数关系而确定。
12. 如权利要求 11所述的应用于自移动地面处理机器人的贴边地面处理的控制方 法, 其特征在于, 所述调整角度为 0〜20° 。
13. 如权利要求 12所述的应用于自移动地面处理机器人的贴边地面处理的控制方 法, 其特征在于, 所述的调整角度为 0〜10° 。
14. 一种自移动地面处理机器人, 所述机器人包括: 功能部件、 行走单元、 驱动 单元、 位于机器人侧面的侧视传感器、 控制单元;
所述侧视传感器用于探测机器人的侧面是否有障碍物, 并将探测到的信息输送给 所述控制单元;
所述控制单元分别与所述功能部件和驱动单元相连接, 驱动单元与所述的行走单 元相连接, 所述驱动单元接受控制单元的指令, 驱动所述行走单元按预定的路线行走, 所述功能部件接受控制单元的指令按预定的工作模式进行地面处理;
其特征在于, 所述控制单元按权利要求 1所述的方法控制所述功能部件、 驱动单 元工作。
15. 如权利要求 14所述的自移动地面处理机器人, 其特征在于, 还包括位于所述 机器人行走方向端部的撞板,在所述撞板上设有用于确定基本角度的角度识别传感器。
16. 如权利要求 15所述的自移动地面处理机器人, 其特征在于, 所述角度识别传 感器为多个, 分别位于撞板的左、 右两侧。
17. 如权利要求 16所述的自移动地面处理机器人, 其特征在于, 所述两侧的角度 识别传感器以机器人行走方向为轴线呈轴对称分布。
18. 如权利要求 15-17 任一所述的自移动地面处理机器人, 其特征在于, 所述角 度识别传感器为超声传感器、 接近传感器或红外传感器。
19. 如权利要求 14所述的自移动地面处理机器人, 其特征在于, 所述位于机器人 侧面的侧视传感器红外传感器。
20. 如权利要求 14所述的自移动地面处理机器人, 其特征在于, 还包括用于计时 机器人运行预定时间的计时器。
21. 如权利要求 14所述的自移动地面处理机器人,其特征在于,还包括操作面板, 所述操作面板包括参数设定按键。
22. 如权利要求 14所述的自移动地面处理机器人, 其特征在于, 所述的功能部件 为清扫部件、 打蜡部件或 /和磨光部件。
PCT/CN2010/075584 2009-10-09 2010-07-30 自移动地面处理机器人及其贴边地面处理的控制方法 WO2011041959A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/500,802 US8744628B2 (en) 2009-10-09 2010-07-30 Autonomous moving floor-treating robot and control method thereof for edge-following floor-treating

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2009101781290A CN102039595B (zh) 2009-10-09 2009-10-09 自移动地面处理机器人及其贴边地面处理的控制方法
CN200910178129.0 2009-10-09

Publications (1)

Publication Number Publication Date
WO2011041959A1 true WO2011041959A1 (zh) 2011-04-14

Family

ID=43856365

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/075584 WO2011041959A1 (zh) 2009-10-09 2010-07-30 自移动地面处理机器人及其贴边地面处理的控制方法

Country Status (3)

Country Link
US (1) US8744628B2 (zh)
CN (1) CN102039595B (zh)
WO (1) WO2011041959A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106272420A (zh) * 2016-08-30 2017-01-04 北京小米移动软件有限公司 机器人及机器人控制方法

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9983586B2 (en) 2011-04-28 2018-05-29 Positec Power Tools (Suzhou) Co., Ltd. Autonomous working system, an autonomous vehicle and a turning method thereof
JP5959899B2 (ja) * 2012-03-30 2016-08-02 本田技研工業株式会社 接触状態推定装置
CN104932491B (zh) * 2014-03-17 2018-07-06 科沃斯机器人股份有限公司 吸附机器人的吸附状态判断及行走控制方法
EP3987993B1 (en) 2014-07-01 2023-05-10 Samsung Electronics Co., Ltd. Cleaning robot and controlling method thereof
JP6453583B2 (ja) * 2014-08-20 2019-01-16 東芝ライフスタイル株式会社 電気掃除機
CN104765363B (zh) * 2014-12-10 2018-04-24 深圳市银星智能科技股份有限公司 智能扫地机器人及其控制方法
CN105816102B (zh) * 2015-01-06 2019-01-18 江苏美的清洁电器股份有限公司 家庭机器人和家庭机器人的控制方法
TWI617907B (zh) * 2015-07-30 2018-03-11 Yan cheng xiang Robot for automatically adjusting moving path and method thereof
JP6243944B2 (ja) * 2016-03-18 2017-12-06 本田技研工業株式会社 無人走行作業車
CN107291071A (zh) * 2016-03-30 2017-10-24 苏州宝时得电动工具有限公司 自动工作系统、自动行走设备及其转向方法
CN116027337A (zh) * 2016-08-31 2023-04-28 苏州宝时得电动工具有限公司 智能割草机、自移动设备及其识别障碍物的方法
KR102601463B1 (ko) * 2016-10-28 2023-11-14 삼성전자주식회사 로봇 청소기 및 그 구동 방법
CN114403741B (zh) 2017-03-10 2024-02-27 尚科宁家运营有限公司 具有清除器和去除毛发的搅拌器
US11202542B2 (en) 2017-05-25 2021-12-21 Sharkninja Operating Llc Robotic cleaner with dual cleaning rollers
CN108209773A (zh) * 2018-01-04 2018-06-29 深圳市银星智能科技股份有限公司 清洁机器人及清洁机器人的智能避障方法
CN108303989B (zh) * 2018-01-17 2018-09-14 上海思岚科技有限公司 一种用于移动机器人沿墙运动的方法及设备
US11525921B2 (en) 2018-04-03 2022-12-13 Sharkninja Operating Llc Time of flight sensor arrangement for robot navigation and methods of localization using same
CN108958254B (zh) * 2018-07-23 2020-10-30 深圳市银星智能科技股份有限公司 自移动机器人
CN110786784B (zh) 2018-08-01 2022-09-06 尚科宁家运营有限公司 机器人真空清洁器
CN109464075A (zh) 2018-12-07 2019-03-15 江苏美的清洁电器股份有限公司 扫地机器人的清扫控制方法及其装置和扫地机器人
CN110499727B (zh) * 2019-08-14 2021-09-10 北京智行者科技有限公司 一种基于多传感器的贴边清扫方法和清扫车
CN110605289A (zh) * 2019-10-22 2019-12-24 阳光电源股份有限公司 智能光伏清扫机器人及其运行姿态判断方法和调整方法
CN113552589A (zh) * 2020-04-01 2021-10-26 杭州萤石软件有限公司 障碍检测方法、机器人和存储介质
CN111487969B (zh) * 2020-04-22 2023-05-05 珠海一微半导体股份有限公司 机器人以非平行方式沿边行走的异常检测方法和处理方法
KR20210131748A (ko) * 2020-04-24 2021-11-03 엘지전자 주식회사 로봇 청소기 및 로봇 청소기의 제어방법
DE102020123542A1 (de) * 2020-09-09 2022-03-10 Vorwerk & Co. Interholding Gesellschaft mit beschränkter Haftung Sich selbsttätig fortbewegendes Bodenbearbeitungsgerät
CN112346419B (zh) * 2020-10-30 2021-12-31 深圳市烨嘉为技术有限公司 人机安全交互方法、机器人及计算机可读存储介质
CN112690722B (zh) * 2020-11-18 2022-08-12 尚科宁家(中国)科技有限公司 清洁机器人及其控制方法
CN113344263B (zh) * 2021-05-28 2022-12-27 深圳市无限动力发展有限公司 沿边行走过程的轨迹闭合判断方法、装置及计算机设备
CN114983293B (zh) * 2022-06-30 2024-07-26 深圳银星智能集团股份有限公司 一种自移动机器人

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0496720A (ja) * 1990-08-10 1992-03-30 Matsushita Electric Ind Co Ltd 移動体の壁沿い移動装置並びにこれを有する床面掃除機
GB2344900A (en) * 1998-12-18 2000-06-21 Notetry Ltd Robotic floor cleaning device with obstacle detection
US20050235451A1 (en) * 2004-04-21 2005-10-27 Jason Yan Robotic vacuum cleaner
US20080015738A1 (en) * 2000-01-24 2008-01-17 Irobot Corporation Obstacle Following Sensor Scheme for a mobile robot
CN101126808A (zh) * 2007-08-02 2008-02-20 中国科学院自动化研究所 一种机器人导航系统及导航方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6532404B2 (en) * 1997-11-27 2003-03-11 Colens Andre Mobile robots and their control system
US7663333B2 (en) * 2001-06-12 2010-02-16 Irobot Corporation Method and system for multi-mode coverage for an autonomous robot
US8396592B2 (en) * 2001-06-12 2013-03-12 Irobot Corporation Method and system for multi-mode coverage for an autonomous robot
JP2004237075A (ja) * 2003-02-06 2004-08-26 Samsung Kwangju Electronics Co Ltd 外部充電装置を有するロボット掃除機システム及びロボット掃除機の外部充電装置の接続方法。
WO2007109627A2 (en) * 2006-03-17 2007-09-27 Irobot Corporation Lawn care robot
KR101301834B1 (ko) * 2007-05-09 2013-08-29 아이로보트 코퍼레이션 소형 자율 커버리지 로봇

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0496720A (ja) * 1990-08-10 1992-03-30 Matsushita Electric Ind Co Ltd 移動体の壁沿い移動装置並びにこれを有する床面掃除機
GB2344900A (en) * 1998-12-18 2000-06-21 Notetry Ltd Robotic floor cleaning device with obstacle detection
US20080015738A1 (en) * 2000-01-24 2008-01-17 Irobot Corporation Obstacle Following Sensor Scheme for a mobile robot
US20050235451A1 (en) * 2004-04-21 2005-10-27 Jason Yan Robotic vacuum cleaner
CN101126808A (zh) * 2007-08-02 2008-02-20 中国科学院自动化研究所 一种机器人导航系统及导航方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106272420A (zh) * 2016-08-30 2017-01-04 北京小米移动软件有限公司 机器人及机器人控制方法

Also Published As

Publication number Publication date
CN102039595A (zh) 2011-05-04
US8744628B2 (en) 2014-06-03
CN102039595B (zh) 2013-02-27
US20120232696A1 (en) 2012-09-13

Similar Documents

Publication Publication Date Title
WO2011041959A1 (zh) 自移动地面处理机器人及其贴边地面处理的控制方法
US8655539B2 (en) Control method of performing rotational traveling of robot cleaner
US9931008B2 (en) Cleaning robot and control method thereof
US9914219B2 (en) Robot cleaner and controlling method thereof
KR101322970B1 (ko) 로봇형 청소기
WO2013152675A1 (zh) 自移动地面处理机器人及其清洁工作的控制方法
CN110477820B (zh) 清洁机器人的沿障碍物清洁方法、清洁机器人以及存储介质
CA2959145C (en) Autonomous traveling body and vacuum cleaner
US7602133B2 (en) Robot having an obstacle detection unit and method of controlling the same
KR20060059006A (ko) 이동형 가전기기가 장애물을 회피하며 벽을 따라 이동하는방법 및 장치
WO2005036292A1 (ja) 自走式作業ロボット
KR102601463B1 (ko) 로봇 청소기 및 그 구동 방법
KR20100123035A (ko) 로봇청소기 및 그 제어방법
JP2009037378A (ja) 自律走行装置およびプログラム
KR20170000071A (ko) 진공 청소기 및 그의 제어방법
KR20100136885A (ko) 로봇청소기 및 그 주행 제어 방법
TWI680736B (zh) 自主行走型清掃機
JP2020038665A5 (zh)
WO2018123321A1 (ja) 自律走行型掃除機
CN109965786A (zh) 一种清洁机器人及其避障方法
CN110507238B (zh) 自主行走式吸尘器
JP2016514582A (ja) ロボット真空掃除機
KR20060095657A (ko) 로봇청소기
KR100640752B1 (ko) 로봇청소기 및 그 청소방법
JP2013085959A (ja) ロボット清掃機及びその制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10821568

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13500802

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 10821568

Country of ref document: EP

Kind code of ref document: A1