WO2011040552A1 - 液体流量制御バルブ - Google Patents

液体流量制御バルブ Download PDF

Info

Publication number
WO2011040552A1
WO2011040552A1 PCT/JP2010/067124 JP2010067124W WO2011040552A1 WO 2011040552 A1 WO2011040552 A1 WO 2011040552A1 JP 2010067124 W JP2010067124 W JP 2010067124W WO 2011040552 A1 WO2011040552 A1 WO 2011040552A1
Authority
WO
WIPO (PCT)
Prior art keywords
distributor
rotor
control valve
sleeve
opening
Prior art date
Application number
PCT/JP2010/067124
Other languages
English (en)
French (fr)
Inventor
誠一郎 石川
祐樹 芝端
安成 木村
雅士 加藤
Original Assignee
本田技研工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 本田技研工業株式会社 filed Critical 本田技研工業株式会社
Priority to US13/498,399 priority Critical patent/US8820354B2/en
Priority to JP2011504669A priority patent/JP5497737B2/ja
Publication of WO2011040552A1 publication Critical patent/WO2011040552A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/08Prime-movers comprising combustion engines and mechanical or fluid energy storing means
    • B60K6/12Prime-movers comprising combustion engines and mechanical or fluid energy storing means by means of a chargeable fluidic accumulator
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/40Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the assembly or relative disposition of components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N7/00Starting apparatus having fluid-driven auxiliary engines or apparatus
    • F02N7/08Starting apparatus having fluid-driven auxiliary engines or apparatus the engines being of rotary type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K3/00Gate valves or sliding valves, i.e. cut-off apparatus with closing members having a sliding movement along the seat for opening and closing
    • F16K3/22Gate valves or sliding valves, i.e. cut-off apparatus with closing members having a sliding movement along the seat for opening and closing with sealing faces shaped as surfaces of solids of revolution
    • F16K3/24Gate valves or sliding valves, i.e. cut-off apparatus with closing members having a sliding movement along the seat for opening and closing with sealing faces shaped as surfaces of solids of revolution with cylindrical valve members
    • F16K3/26Gate valves or sliding valves, i.e. cut-off apparatus with closing members having a sliding movement along the seat for opening and closing with sealing faces shaped as surfaces of solids of revolution with cylindrical valve members with fluid passages in the valve member
    • F16K3/262Gate valves or sliding valves, i.e. cut-off apparatus with closing members having a sliding movement along the seat for opening and closing with sealing faces shaped as surfaces of solids of revolution with cylindrical valve members with fluid passages in the valve member with a transverse bore in the valve member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K3/00Gate valves or sliding valves, i.e. cut-off apparatus with closing members having a sliding movement along the seat for opening and closing
    • F16K3/30Details
    • F16K3/34Arrangements for modifying the way in which the rate of flow varies during the actuation of the valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K5/00Plug valves; Taps or cocks comprising only cut-off apparatus having at least one of the sealing faces shaped as a more or less complete surface of a solid of revolution, the opening and closing movement being predominantly rotary
    • F16K5/04Plug valves; Taps or cocks comprising only cut-off apparatus having at least one of the sealing faces shaped as a more or less complete surface of a solid of revolution, the opening and closing movement being predominantly rotary with plugs having cylindrical surfaces; Packings therefor
    • F16K5/0414Plug channel at 90 degrees to the inlet
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/08Prime-movers comprising combustion engines and mechanical or fluid energy storing means
    • B60K6/12Prime-movers comprising combustion engines and mechanical or fluid energy storing means by means of a chargeable fluidic accumulator
    • B60K2006/126Prime-movers comprising combustion engines and mechanical or fluid energy storing means by means of a chargeable fluidic accumulator the hydraulic accumulator starts the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B13/00Details of servomotor systems ; Valves for servomotor systems
    • F15B13/02Fluid distribution or supply devices characterised by their adaptation to the control of servomotors
    • F15B13/04Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with a single servomotor
    • F15B13/0401Valve members; Fluid interconnections therefor
    • F15B13/0406Valve members; Fluid interconnections therefor for rotary valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B13/00Details of servomotor systems ; Valves for servomotor systems
    • F15B13/02Fluid distribution or supply devices characterised by their adaptation to the control of servomotors
    • F15B13/04Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with a single servomotor
    • F15B13/044Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with a single servomotor operated by electrically-controlled means, e.g. solenoids, torque-motors
    • F15B13/0444Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with a single servomotor operated by electrically-controlled means, e.g. solenoids, torque-motors with rotary electric motor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/2931Diverse fluid containing pressure systems
    • Y10T137/3115Gas pressure storage over or displacement of liquid
    • Y10T137/3127With gas maintenance or application
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/8593Systems
    • Y10T137/86493Multi-way valve unit
    • Y10T137/86509Sequentially progressive opening or closing of plural ports
    • Y10T137/86517With subsequent closing of first port
    • Y10T137/86533Rotary
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/8593Systems
    • Y10T137/86493Multi-way valve unit
    • Y10T137/86574Supply and exhaust
    • Y10T137/8667Reciprocating valve
    • Y10T137/86694Piston valve
    • Y10T137/86702With internal flow passage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/8593Systems
    • Y10T137/86493Multi-way valve unit
    • Y10T137/86574Supply and exhaust
    • Y10T137/8667Reciprocating valve
    • Y10T137/86694Piston valve
    • Y10T137/8671With annular passage [e.g., spool]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/8593Systems
    • Y10T137/86493Multi-way valve unit
    • Y10T137/86718Dividing into parallel flow paths with recombining
    • Y10T137/86734With metering feature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/8593Systems
    • Y10T137/86493Multi-way valve unit
    • Y10T137/86718Dividing into parallel flow paths with recombining
    • Y10T137/86743Rotary
    • Y10T137/86751Plug
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/8593Systems
    • Y10T137/87917Flow path with serial valves and/or closures
    • Y10T137/88022One valve head provides seat for other head

Definitions

  • a cylindrical distributor and a cylindrical rotor are coaxially arranged on an axis inside a cylindrical sleeve fixed to a valve housing, and the distributor is predetermined with respect to the sleeve by a first driving source.
  • the area of the overlapping portion where the first opening formed in the sleeve and the second opening formed in the distributor overlap is changed, and the sleeve and the distributor with respect to the second drive source are changed.
  • the present invention relates to a liquid flow rate control valve that generates a pressure.
  • a liquid flow rate control valve for PWM control of the liquid flow rate is known from Patent Document 1 below.
  • This liquid flow rate control valve has a cylindrical shape having left and right edges formed in a wave shape inside an outer cylinder 10 having one input port 11 and two first and second output ports 12 and 13.
  • the valve plate 40 is rotatably arranged by a drive source, and the control plate 50 has a plurality of first and second opening groups 41 and 42 between the outer peripheral surface of the valve plate 40 and the inner peripheral surface of the outer cylinder 10.
  • the liquid supplied from the input port 11 of the outer cylinder 10 is used to move the first and second opening groups 41 and 42 of the control plate 50 and the wavy left and right of the valve plate 40.
  • the distributor and the rotor are coaxially arranged inside the cylindrical sleeve, and the distributor is rotated by the first drive source and the rotor is rotated by the second drive source, so that a large axial thrust force is obtained. It is conceivable to perform PWM control of the flow rate of the liquid without generating any. In such a case, if the first drive source is disposed at one axial end of the flow control valve and the second drive source is disposed at the other axial end of the flow control valve, the axial dimension of the flow control valve increases. There's a problem.
  • the present invention has been made in view of the above circumstances, and is intended to reduce the size in the axial direction of a liquid flow rate control valve capable of PWM control of a liquid flow rate at an arbitrary duty ratio and an arbitrary duty frequency. Objective.
  • a cylindrical distributor and a cylindrical rotor are coaxially arranged on the axis inside a cylindrical sleeve fixed to the valve housing, and the first drive source
  • the distributor By rotating the distributor relative to the sleeve by a predetermined angle, the area of the overlapping portion where the first opening formed in the sleeve and the second opening formed in the distributor overlap is changed and the second driving is performed.
  • the first opening and the second opening are opened when the third opening formed in the rotor passes through the overlapping portion.
  • a liquid flow rate control valve for generating fluid pressure with a predetermined duty ratio by communicating with the distributor and the front
  • One end in the axial direction of the rotor arranged radially inside is connected coaxially to one of the first and second drive sources and arranged radially outside of the distributor and the rotor.
  • a liquid flow rate control valve is proposed in which one end in the axial direction is connected to the other of the first and second drive sources via a gear train.
  • the first and second outlet openings 37a and 37b of the embodiment correspond to the first opening of the present invention
  • the first and second communication hole groups 38c and 38d of the embodiment correspond to the second opening of the present invention
  • the first and second first inlet openings 42c and 42d of the embodiment correspond to the third opening of the present invention
  • the first electric motor 46 of the embodiment corresponds to the first drive source of the present invention
  • the second electric motor 47 of the embodiment corresponds to the second drive source of the present invention.
  • the distributor when the distributor is rotated by a predetermined angle relative to the sleeve by the first driving source, the total area of the overlapping portion between the first opening of the sleeve and the second opening of the distributor changes. Therefore, when the rotor is rotated by the second drive source, the duty waveform is turned on when the third opening of the rotor passes through the overlapping portion, and the duty waveform is turned on when the third opening of the rotor does not pass through the overlapping portion. By turning OFF, the liquid flow rate can be PWM-controlled.
  • the duty ratio can be arbitrarily controlled by adjusting the rotational position of the distributor with the first drive source, and the duty frequency can be arbitrarily controlled by adjusting the rotational speed of the rotor with the second drive source. be able to.
  • the distributor and the rotor can be easily supported, and the cost and weight can be reduced.
  • One end of the distributor and the rotor arranged on the radially inner side is coaxially connected to one of the first and second drive sources, and one end of the one arranged on the radially outer side is connected to one end of the axial direction.
  • the first and second driving sources are concentrated on one end side in the axial direction of the liquid flow rate control valve to reduce the size of the liquid source.
  • the viewer and the rotor can be individually driven to rotate.
  • FIG. 1 is a diagram showing a driving force transmission system of a hydraulic hybrid vehicle to which a flow control valve of the present invention is applied.
  • FIG. 2 is a longitudinal sectional view of the flow control valve.
  • First embodiment 3 is a cross-sectional view taken along line 3-3 of FIG.
  • First embodiment 4 is a cross-sectional view taken along line 4-4 of FIG.
  • First embodiment 5 is a cross-sectional view taken along line 5-5 of FIG.
  • First embodiment 6 is a cross-sectional view taken along line 6-6 of FIG.
  • FIG. 7 is a view taken along line 7-7 in FIG.
  • FIG. 8 is an exploded perspective view of the sleeve, distributor, and rotor.
  • FIG. 9 is a diagram showing an equivalent circuit of a pump / motor drive circuit.
  • FIG. 10 is a diagram showing a pump / motor drive circuit.
  • Valve housing 37 Sleeve 37a First outlet opening (first opening) 37b Second outlet opening (first opening) 38 Distributor 38c 1st communication hole group (2nd opening) 38d Second communication hole group (second opening) 42 rotor 42c first inlet opening (third opening) 42d Second inlet opening (third opening) 46 1st electric motor (1st drive source) 47 Second electric motor (first drive source) 68 Driven Gear (Gear Train) 70 Drive gear (gear train) 73 Idle Gear (Gear Train) L axis
  • the hydraulic hybrid vehicle includes a pump / motor M, an engine E, and a transmission T connected in series.
  • a first shaft 12 and a first clutch 13 are provided on a connecting shaft 11 that connects a pump / motor M and an engine E configured by a gear motor
  • a first shaft 12 is provided on an output shaft 14 that connects a transmission T and driving wheels W.
  • a two-clutch 15 and a second gear 16 are provided.
  • the bypass shaft 17 that bypasses the engine E and the transmission T is provided with a third clutch 18, a third gear 19 that meshes with the first gear 12, and a fourth gear 20 that meshes with the second gear 16. .
  • a pump / motor M, a tank 21, an accumulator 22, and a flow control valve 23 are connected via a switching control valve 24, and the pump / motor M operates as a motor with the hydraulic pressure accumulated in the accumulator 22.
  • the state of operating as a pump that accumulates accumulator 22 by being driven from the outside is switched.
  • a radiator 25 for cooling the liquid is provided between the tank 21 and the switching control valve 24.
  • the radiator 25 may be provided between the accumulator 22 and the switching control valve 24.
  • the pump / motor M is operated as a motor with the hydraulic pressure accumulated in the accumulator 22, and the engine E is operated.
  • the engine E can be started, the pump motor M can be operated as a pump by driving the engine E, and the accumulator 22 can be accumulated.
  • the pump / motor M If the regenerative braking of the pump / motor M is performed in this state, the pump / motor M is operated as a pump by the driving force reversely transmitted from the driving wheel W side, and the accumulator 22 is accumulated to thereby convert the kinetic energy of the vehicle into the hydraulic energy. Can be recovered.
  • the driving force of the engine E is transmitted to the drive wheels W via the second clutch 15 and the output shaft 14, and the vehicle Can be started or run by the driving force of the engine E.
  • the pump / motor M can be operated as a motor to assist the driving force of the engine E with the driving force of the pump / motor M.
  • accumulator 22 can be accumulated.
  • the flow control valve 23 controls the flow rate of the liquid supplied from the accumulator 22 to the pump motor M when the pump motor M operates as a motor, and the pump motor when the pump motor M operates as a pump.
  • the flow rate of the liquid supplied from M to the accumulator 22 is controlled.
  • the flow control valve 23 includes a valve housing 36 including a main body housing 61 and an end housing 64 coupled to the main body housing 61 with bolts 63.
  • a large-diameter hole 61a having a circular cross section and a small-diameter hole 61b having a circular cross section are coaxially formed on the axis L of the main body housing 61, and an arc-shaped input liquid chamber 61c is formed so as to surround a part of the small diameter hole 61b.
  • an arc-shaped output liquid chamber 61d is formed so as to surround a part of the large-diameter hole 61a.
  • An input port 61e communicating with the input liquid chamber 61c is opened at one end surface of the main body housing 61, and an output port 61f communicating with the output liquid chamber 61d is opened at the outer peripheral surface of the main body housing 61.
  • the cylindrical sleeve 37 fitted into the large-diameter hole 61a of the main body housing 61 and prevented from rotating by the pin 65 has first and second outlet openings 37a each having a central angle of 90 ° about the axis L. 37b is formed to face the output liquid chamber 61d.
  • the first and second outlet openings 37a and 37b are rectangular in a state where the sleeve 37 is developed, and the phases thereof are shifted from each other by 180 ° and are disposed at positions overlapping in the direction of the axis L.
  • a first and second communication hole group 38c and 38d that can overlap the first and second outlet openings 37a and 37b of the sleeve 37 are provided on the distributor 38 that is fitted to the inner periphery of the sleeve 37 so as to be relatively rotatable. It is formed.
  • the first and second communication hole groups 38c and 38d are composed of a large number of circular communication holes 38e arranged in a staggered manner, each having a central angle of 90 ° centered on the axis L and a phase. Are arranged at positions that are 180 ° apart from each other and overlap in the direction of the axis L.
  • the outlines of the first and second communication hole groups 38c and 38d have the same shape as the first and second outlet openings 37a and 37b, and can exactly overlap the first and second outlet openings 37a and 37b.
  • the rotor 42 includes a cylindrical portion 42a and a shaft portion 42b.
  • the cylindrical portion 42a whose opening end is closed by the plug 43 is fitted to the inner periphery of the distributor 38 so as to be relatively rotatable, and the shaft portion 42b is a partition plate. 62 extends through the end housing 64.
  • the tip of the cylindrical portion 42 a of the rotor 42 is rotatably supported on the inner periphery of the small diameter hole 61 b of the main body housing 61 via a bearing metal 66.
  • the cylindrical portion 42a of the rotor 42 is formed with a pair of first inlet openings 42c, 42c capable of communicating with the first and second communication hole groups 38c, 38d of the distributor 38 with a phase difference of 180 °.
  • a pair of second inlet openings 42d and 42d whose phases are shifted by 90 ° with respect to the pair of first inlet openings 42c and 42c are formed with a phase difference of 180 °.
  • a total of four first and second inlet openings 42c, 42c; 42d, 42d aligned in the axis L direction are formed in a slit shape, and the width in the axis L direction is the first, second outlet openings 37a, 37b and the widths of the first and second communication hole groups 38c and 38d in the direction of the axis L.
  • the inner space 42e of the rotor 42 communicating with the first and second inlet openings 42c, 42c; 42d, 42d communicates with the input liquid chamber 61c of the main body housing 61 via the liquid holes 42f.
  • the number of teeth of the drive gear 70 is smaller than the number of teeth of the driven gear 68. Therefore, the rotation of the first electric motor 46 is decelerated and transmitted to the distributor 38, and the distributor 38 is rotated within an angle range of 90 °.
  • the rotating shaft 47a of the second electric motor 47 fixed to the end housing 64 with bolts 74 is coaxially coupled to the shaft portion 42a of the rotor 42 via the joint 75. Therefore, the rotor 42 can be rotated at an arbitrary speed by the second electric motor 47.
  • the right end of the distributor 38 in the drawing communicates with the atmosphere via a pressure balance passage 76 that penetrates the main body housing 61 and the sleeve 37, and the pressure at the left end of the distributor 38, which is atmospheric pressure, By balancing, it is possible to prevent the eccentric load in the axis L direction from being applied to the distributor 38.
  • the right end of the rotor 42 in the drawing communicates with the atmosphere via a pressure balancing passage 77 penetrating the main body housing 61, and balances with the pressure at the left end of the rotor 42 in the drawing, which is atmospheric pressure. 42 is prevented from being subjected to an offset load in the direction of the axis L.
  • FIG. 7 (A) to 7 (C) are developed views taken along line 7-7 in FIG. 4, and a sleeve 37 fixed to the valve housing 36 and a first electric motor 46 with respect to the sleeve 37 at 0 ° to
  • the distributor 38 that rotates relative to the range of 90 ° and the rotor 42 that rotates relative to the sleeve 37 and the distributor 38 at a variable speed by the second electric motor 47 are developed in the circumferential direction over 360 °. Indicates the state.
  • FIG. 7A corresponds to a state where the duty ratio is 100%, and the first and second outlet openings 37a and 37b of the sleeve 37 are 0 ° to 90 ° of the central angle 360 ° of the sleeve 37.
  • the first and second communication hole groups 38c and 38d of the distributor 38 have first and second outlet openings 37a and 37b in the entire region. Therefore, the substantial opening ranges of the first and second outlet openings 37a and 37b of the sleeve 37 are 0 ° to 90 ° and 180 ° to 270 °.
  • FIG. 7A shows a state where the two first inlet openings 42c and 42c overlap the substantial opening range, and the two second inlet openings 42d and 42d do not overlap the substantial opening range.
  • the input port 61e of the main body housing 61 is connected to the accumulator 22, and the output port 61f of the main body housing 61 is connected to the tank 21. Therefore, the high-pressure liquid in the accumulator 22 is supplied to the internal space 42 e of the rotor 42 through the path of the input port 61 e of the main body housing 61 ⁇ the input liquid chamber 61 c of the main body housing 61 ⁇ the liquid hole 42 f of the rotor 42.
  • the first and second inlet openings 42c and 42c; 42d and 42d facing the inner space 42e of the rotor 42 are the first and second communication hole groups 38c and 38d of the distributor 38 and the first and second outlets of the sleeve 37.
  • the liquid in the inner space 42e of the distributor 38 passes through the first and second inlet openings 42c and 42c of the rotor 42; 42d and 42d ⁇ the first and second communication of the distributor 38.
  • the hole group 38c, 38d, the first and second outlet openings 37a, 37b of the sleeve 37, the output liquid chamber 61d of the main body housing 61, and the output port 61f of the main body housing 61 are returned to the tank 21, and the pump motor M Operates as a motor.
  • the range of 0 ° to 90 ° and the range of 180 ° to 270 ° of the sleeve 37 becomes two substantial opening ranges, and the two first inlet openings 42c and 42c of the rotor 42
  • the generated duty waveform is turned on in the range of 0 ° to 90 ° and in the range of 180 ° to 270 ° of the 360 ° rotation angle of the rotor 42.
  • the phase of the two second inlet openings 42d, 42d of the rotor 42 is shifted by 90 ° with respect to the phase of the two first inlet openings 42c, 42c.
  • the duty waveforms generated by 42d and 42d are turned ON in the range of 90 ° to 180 ° and the range of 270 ° to 360 ° of the 360 ° rotation angle of the rotor 42.
  • FIG. 7B is a diagram corresponding to the state where the duty ratio is 50%, and the range of 0 ° to 45 ° and the range of 180 ° to 225 ° of the sleeve 42 are two substantial opening ranges, and thus the rotor
  • the duty waveform generated by the two first communication holes 42c, 42c of 42 is ON in the range of 0 ° to 45 ° and the range of 180 ° to 225 ° of the 360 ° rotation angle of the rotor 42.
  • the phase of the two second inlet openings 42d, 42d of the rotor 42 is shifted by 90 ° with respect to the phase of the two first inlet openings 42c, 42c.
  • the duty waveforms generated by 42d and 42d are turned ON in the range of 90 ° to 135 ° and the range of 270 ° to 315 ° of the 360 ° rotation angle of the rotor 42.
  • the rotor 42 is in a state where the first and second communication hole groups 38c and 38d and the first and second outlet openings 37a and 37b do not overlap at all, that is, there is no substantial opening range. Regardless of the phase of the first and second inlet openings 42c and 42c; 42d and 42d, the first and second communication hole groups 38c and 38d and the first and second outlet openings 37a and 37b communicate with each other.
  • the duty ratio becomes 0%.
  • the flow rate control valve 23 outputs a duty waveform four times for each rotation of the rotor 42. Therefore, if the rotation speed of the rotor 42 by the second electric motor 47 is N, the frequency of the duty waveform output by the flow control valve 23 is 4N, and a high duty frequency can be obtained while keeping the rotation speed of the second electric motor 47 low. Can do.
  • the first and second communication hole groups 38c and 38d of the distributor 38 are arranged at the same position in the direction of the axis L and are arranged symmetrically at intervals of 180 °. Even if a load is applied to the distributor 38 from the liquid passing through the hole groups 38c and 38d, the load does not bend and deform the distributor 38 and does not tilt the distributor 38. Therefore, the occurrence of galling between the distributor 38, the sleeve 37 and the rotor 42 is prevented, and the driving force of the first and second electric motors 46 and 47 can be minimized.
  • the flow rate of the liquid supplied from the accumulator 22 to the pump motor M is duty-controlled by the flow rate control valve 23, compared to the case where the flow rate of the liquid is controlled by the throttle valve, High efficiency can be obtained by reducing heat loss due to pressure loss. At that time, higher efficiency can be obtained by adjusting the rotation speed of the rotor 42 and selecting an optimum duty frequency.
  • the hydraulic pressures in the input liquid chamber 61c and the output liquid chamber 61d do not cause the distributor 38 and the rotor 42 to generate a thrust load in the direction of the axis L, so that it is not necessary to support the distributor 38 and the rotor 42 so as to withstand the thrust load.
  • the structure can be simplified and the weight and cost can be reduced. *
  • FIG. 9 shows an equivalent circuit of the hydraulic pressure control circuit
  • the switching control valve 24 includes four ports Pa, Pb, Pc, Pd, a shut-off valve 24a, and a switching valve 24b.
  • the port Pa is connected to the accumulator 22, the port Pb is connected to the tank 21, the port Pc is connected to the pump motor M, and the port Pd is connected to the downstream side of the check valve 48.
  • the shutoff valve 24a is disposed between the port Pa and the port Pd, and the port Pc is selectively connected to the port Pa, Pd or the port Pb via the switching valve 24b.
  • the upstream side of the check valve 48 is connected to the pump / motor M and is connected to the port Pb and the tank 21 via the flow rate control valve 23.
  • FIG. 10 is a hydraulic circuit that embodies the switching control valve 24 of the equivalent circuit of FIG. 9.
  • the switching control valve 24 is slidably fitted to a valve housing 49, and drives the spool 50. And two return springs 53 and 54 for urging the spool 50 to the neutral position.
  • the duty period during which the flow control valve 23 is open is in a load state in which the pump motor M generates driving force, and the flow rate During the duty OFF period in which the control valve 23 is closed, the pump motor M is in an unloaded state where no driving force is generated.
  • both the solenoid 51 and the solenoid 52 are demagnetized, so that the spool 50 is in a neutral position.
  • the shut-off valve 24a is closed and the switching valve 24b is switched to the drive / neutral side.
  • a closed unload circuit of pump / motor M ⁇ check valve 48 ⁇ port Pd ⁇ switching valve 24b ⁇ port Pc ⁇ pump motor M is configured, and the pump motor M rotates with no load.
  • the duty ratio of the flow control valve 23 is 100%, the liquid that has passed through the pump motor M can pass through the flow control valve 23 with no load, so the liquid in the tank 21 is port Pb ⁇ switching valve 24b ⁇ port Pc ⁇ pump. Circulate through the unload circuit closed by the route of motor M ⁇ flow rate control valve 23 ⁇ port Pb. At this time, since the liquid flowing through the unload circuit is the low-pressure liquid in the tank 21 (low-pressure unload), the leakage of the liquid can be prevented and the operating resistance of the pump / motor M and the flow control valve 23 can be reduced.
  • the pump motor M When the duty ratio of the flow control valve 23 is larger than 0% and smaller than 100%, the pump motor M is in a load state in which the hydraulic pressure is generated during the duty OFF period when the flow control valve 23 is closed. During the duty ON period when the control valve 23 is open, the pump motor M is in an unload state in which no hydraulic pressure is generated.
  • the pump / motor M since the pump / motor M is used as a drive source for the hydraulic hybrid vehicle, when the pump / motor M operates as a motor (during driving), it also operates as a pump (during regenerative braking). Although the rotation direction is the same, the switching control valve 24 reverses the connection relationship between the tank 21 and the accumulator 22, so that a mechanism for reversing the rotation direction of the pump motor M is not required. Driving and regenerative braking can be performed without any trouble.
  • the pump / motor M can be driven, regenerated, or neutrally switched by a single switching control valve 24. When the pump / motor M is driven, a high-pressure unload circuit is automatically configured to provide a pump / motor. During regenerative braking of M, the low pressure unload circuit can be automatically configured.
  • the flow rate control valve 23 of each embodiment can normally exhibit the function of PWM control of the liquid flow rate at an arbitrary duty ratio and an arbitrary duty frequency even when the direction of the liquid flow is reversed. it can. That is, in each embodiment, liquid flows in from the input port 61e side and liquid flows out from the output port 61f side. However, liquid flows in from the output port 61f side and liquid flows from the input port 61e side. The function of the port may be exchanged so that it flows out. Therefore, in the embodiment, the input port and the inlet opening include those having a function of flowing out the liquid, and the output port and the outlet opening include those having a function of flowing in the liquid.
  • the flow control valve 23 of the present invention is applied to a hydraulic hybrid vehicle, but the use of the flow control valve 23 of the present invention is arbitrary.
  • the following can be considered as uses for automobiles and the like. (1) Applying a flow control valve to the variable flow oil pump (2) Applying a flow control valve to the variable flow water pump (3) Applying a flow control valve to the engine injector (4) Applying a flow control valve to the refrigerant pump of an air conditioner (5) Applying a flow control valve to the engine throttle valve (6) Applying the flow rate control valve to the turbo boost pressure control
  • the first and second electric motors 46 and 47 can be replaced with any drive source other than the electric motor.
  • the sleeve 37, the distributor 38, and the rotor 42 are sequentially arranged from the radially outer side to the inner side of the flow control valve 23.
  • the positional relationship between the distributor 38 and the rotor 42 is changed, and the flow control valve is changed.
  • the sleeve 37, the rotor 42, and the distributor 38 may be sequentially arranged from the radially outer side to the inner side.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Multiple-Way Valves (AREA)
  • Fluid-Pressure Circuits (AREA)
  • Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)
  • Sliding Valves (AREA)
  • Electrically Driven Valve-Operating Means (AREA)

Abstract

 第1駆動源(46)でスリーブ(37)に対してデストリビュータ(38)を所定角度だけ相対回転させ、スリーブ(37)の第1開口(37a)とデストリビュータ(38)の第2開口(38c)との重なり部分の総面積を変化させるとともに、第3開口(42c,42d)を有するロータ(42)を第2駆動源(47)で回転させることで、入力ポート(61e)から入力される液体をPWM制御して吐出ポート(61f)から出力することができる。このとき、径方向内側に配置されたロータ(42)軸線(L)方向の一端を、第2駆動源(47)に同軸に接続するとともに、径方向外側に配置されたデストリビュータ(38)の軸線(L)方向の一端を、第1駆動源(46)にギヤトレイン(66,73,70)を介して接続したので、液体流量制御バルブ(23)の軸線(L)方向の一端側に第1、第2駆動源(46,47)を集中配置してコンパクト化を図りながら、デストリビュータ(38)およびロータ(42)を個別に回転駆動することが可能となる。

Description

液体流量制御バルブ
 本発明は、バルブハウジングに固定した円筒状のスリーブの内部に円筒状のデストリビュータおよび円筒状のロータを軸線上に同軸に配置し、第1駆動源で前記スリーブに対して前記デストリビュータを所定角度だけ相対回転させることで、前記スリーブに形成した第1開口および前記デストリビュータに形成した第2開口が重なる重なり部分の面積を変化させるとともに、第2駆動源で前記スリーブおよび前記デストリビュータに対して前記ロータを所定速度で相対回転させることで、前記ロータに形成した第3開口が前記重なり部分を通過するときに前記第1開口および前記第2開口を連通させて所定のデューティ比の液圧を発生させる液体流量制御バルブに関する。
 液体の流量をPWM制御するための液体流量制御バルブが、下記特許文献1により公知である。この液体流量制御バルブは、1個の入力ポート11および2個の第1、第2出力ポート12,13を有する外筒10の内部に、波状に形成された左右の縁部を有する円筒状の弁板40を駆動源により回転自在に配置し、この弁板40の外周面と外筒10の内周面との間に複数の第1、第2開口部群41,42を有する制御板50を駆動源により軸線方向に移動可能に配置したもので、外筒10の入力ポート11から供給した液体を制御板50の第1、第2開口部群41,42および弁板40の波状の左右の縁部を通過させ、外筒10の第1、第2出力ポート12,13から排出する。このとき、回転する弁板40の波状の左右の縁部が制御板50の第1、第2開口部群41,42を開放する期間と閉塞する期間とを制御板50の軸方向位置に応じて変化させることで、第1、第2出力ポート12,13から排出される液体のデューティ比を任意に制御するとともに、弁板40の回転数を変化させることで、第1、第2出力ポート12,13から排出される液体のデューティ周波数を任意に制御することができる。
日本特開2009-68553号公報
 しかしながら上記従来のものは、入力ポート11の軸方向両側に離間して配置された第1、第2出力ポート12,13の一方が高圧になると他方が低圧になり、一方が低圧になると他方が高圧になるため、その度に弁板40に軸線方向の大きなスラスト力が作用してしまい、その支持に大容量のスラストベアリングが必要になるという問題があった。
 そこで、円筒状のスリーブの内部にデストリビュータおよびロータを同軸に配置し、デストリビュータを第1駆動源で回転駆動するとともにロータを第2駆動源で回転駆動することで、軸線方向の大きなスラスト力を発生させることなく液体の流量をPWM制御することが考えられる。このような場合、第1駆動源を流量制御バルブの軸線方向一端に配置して第2駆動源を流量制御バルブの軸線方向他端に配置すると、流量制御バルブの軸線方向の寸法が大型化する問題がある。
 本発明は前述の事情に鑑みてなされたもので、液体の流量を任意のデューティ比および任意のデューティ周波数でPWM制御することが可能な液体流量制御バルブの軸線方向の寸法を小型化することを目的とする。
 上記目的を達成するために、本発明によれば、バルブハウジングに固定した円筒状のスリーブの内部に円筒状のデストリビュータおよび円筒状のロータを軸線上に同軸に配置し、第1駆動源で前記スリーブに対して前記デストリビュータを所定角度だけ相対回転させることで、前記スリーブに形成した第1開口および前記デストリビュータに形成した第2開口が重なる重なり部分の面積を変化させるとともに、第2駆動源で前記スリーブおよび前記デストリビュータに対して前記ロータを所定速度で相対回転させることで、前記ロータに形成した第3開口が前記重なり部分を通過するときに前記第1開口および前記第2開口を連通させて所定のデューティ比の液圧を発生させる液体流量制御バルブであって、前記デストリビュータおよび前記ロータのうちの径方向内側に配置されたものの軸線方向の一端を、前記第1、第2駆動源の一方に同軸に接続するとともに、前記デストリビュータおよび前記ロータのうちの径方向外側に配置されたものの軸線方向の一端を、前記第1、第2駆動源の他方にギヤトレインを介して接続したことを特徴とする液体流量制御バルブが提案される。
 尚、実施の形態の第1、第2出口開口37a,37bは本発明の第1開口に対応し、実施の形態の第1、第2連通孔群38c,38dは本発明の第2開口に対応し、実施の形態の第1、第2第1入口開口42c,42dは本発明の第3開口に対応し、実施の形態の第1電動モータ46は本発明の第1駆動源に対応し、実施の形態の第2電動モータ47は本発明の第2駆動源に対応する。
 本発明の上記特徴によれば、第1駆動源でスリーブに対してデストリビュータを所定角度だけ相対回転させると、スリーブの第1開口とデストリビュータの第2開口との重なり部分の総面積が変化するため、第2駆動源でロータを回転させると、ロータの第3開口が前記重なり部分を通過するときにはデューティ波形がONになり、ロータの第3開口が前記重なり部分を通過しないときにはデューティ波形がOFFになることで、液体の流量をPWM制御することができる。このとき、第1駆動源でデストリビュータの回転位置を調整することでデューティ比を任意に制御することができ、第2駆動源でロータの回転数を調整することでデューティ周波数を任意に制御することができる。しかもデストリビュータおよびロータには軸線方向のスラスト荷重が作用しないので、デストリビュータおよびロータの支持が容易になってコストおよび重量を削減することができる。デストリビュータおよびロータのうちの径方向内側に配置されたものの軸線方向の一端を、第1、第2駆動源の一方に同軸に接続するとともに、径方向外側に配置されたものの軸線方向の一端を、第1、第2駆動源の他方にギヤトレインを介して接続したので、液体流量制御バルブの軸線方向の一端側に第1、第2駆動源を集中配置してコンパクト化を図りながら、デストリビュータおよびロータを個別に回転駆動することが可能となる。
図1は本発明の流量制御バルブが適用された液圧ハイブリッド車両の駆動力伝達系を示す図である。(第1の実施の形態) 図2は流量制御バルブの縦断面図である。(第1の実施の形態) 図3は図2の3-3線断面図である。(第1の実施の形態) 図4は図2の4-4線断面図である。(第1の実施の形態) 図5は図2の5-5線断面図である。(第1の実施の形態) 図6は図4の6-6線断面図である。(第1の実施の形態) 図7は図4の7-7線矢視図である。(第1の実施の形態) 図8はスリーブ、デストリビュータおよびロータの分解斜視図である。(第1の実施の形態) 図9はポンプ・モータの駆動回路の等価回路を示す図である。(第1の実施の形態) 図10はポンプ・モータの駆動回路を示す図である。(第1の実施の形態)
36   バルブハウジング
37   スリーブ
37a  第1出口開口(第1開口)
37b  第2出口開口(第1開口)
38   デストリビュータ
38c  第1連通孔群(第2開口)
38d  第2連通孔群(第2開口)
42   ロータ
42c  第1入口開口(第3開口)
42d  第2入口開口(第3開口)
46   第1電動モータ(第1駆動源)
47   第2電動モータ(第1駆動源)
68   ドリブンギヤ(ギヤトレイン)
70   ドライブギヤ(ギヤトレイン)
73   アイドルギヤ(ギヤトレイン)
L     軸線
 以下、図1~図10に基づいて本発明の実施の形態を説明する。
 図1に示すように、液圧ハイブリッド車両は直列に接続されたポンプ・モータM、エンジンEおよびトランスミッションTを備える。例えばギヤモータで構成されるポンプ・モータMおよびエンジンEを接続する連結軸11には第1ギヤ12および第1クラッチ13が設けられるとともに、トランスミッションTおよび駆動輪Wを接続する出力軸14には第2クラッチ15および第2ギヤ16が設けられる。エンジンEおよびトランスミッションTを迂回するバイパス軸17には、第3クラッチ18と、前記第1ギヤ12に噛合する第3ギヤ19と、前記第2ギヤ16に噛合する第4ギヤ20とが設けられる。
 ポンプ・モータMと、タンク21と、アキュムレータ22と、流量制御バルブ23とが切換制御バルブ24を介して接続され、ポンプ・モータMはアキュムレータ22に蓄圧された液圧でモータとして作動する状態と、外部から駆動されてアキュムレータ22を蓄圧するポンプとして作動する状態とが切り換えられる。タンク21と切換制御バルブ24との間には液体を冷却するラジエータ25が設けられる。尚、ラジエータ25はアキュムレータ22と切換制御バルブ24との間に設けても良い。
 従って、第1クラッチ13を係合して第2クラッチ15および第3クラッチ18を係合解除した状態では、アキュムレータ22に蓄圧された液圧でポンプ・モータMをモータとして作動させてエンジンEを始動することができ、エンジンEを駆動してポンプ・モータMをポンプとして作動させてアキュムレータ22を蓄圧することができる。
 第3クラッチ18を係合して第1クラッチ13および第2クラッチ15を係合解除した状態では、アキュムレータ22に蓄圧された液圧でポンプ・モータMを駆動すると、その駆動力は連結軸11→第1ギヤ12→第3ギヤ19→第3クラッチ18→バイパス軸17→第4ギヤ20→第2ギヤ16→出力軸14の経路で駆動輪Wに伝達され、車両をポンプ・モータMの駆動力で発進あるいは走行させることができる。この状態でポンプ・モータMを回生制動すれば、駆動輪W側から逆伝達される駆動力でポンプ・モータMをポンプとして作動させ、アキュムレータ22を蓄圧することで車両の運動エネルギーを液圧エネルギーとして回収することができる。
 第2クラッチ15を係合して第1クラッチ13および第3クラッチ18を係合解除した状態では、エンジンEの駆動力は第2クラッチ15および出力軸14を経て駆動輪Wに伝達され、車両をエンジンEの駆動力で発進あるいは走行させることができる。この状態で更に第1クラッチ13を係合すれば、ポンプ・モータMをモータとして作動させてエンジンEの駆動力をポンプ・モータMの駆動力でアシストすることができ、ポンプ・モータMをポンプとして作動させてアキュムレータ22を蓄圧することができる。
 次に、前記流量制御バルブ23の構造を図2~図8に基づいて説明する。流量制御バルブ23は、ポンプ・モータMがモータとして作動するときにアキュムレータ22からポンプ・モータMに供給される液体の流量を制御し、またポンプ・モータMがポンプとして作動するときにポンプ・モータMからアキュムレータ22に供給される液体の流量を制御する。
 流量制御バルブ23は、本体ハウジング61と、本体ハウジング61に隔壁板62を挟んでボルト63…で結合されたエンドハウジング64とで構成されるバルブハウジング36を備える。本体ハウジング61の軸線L上には円形断面の大径孔61aおよび円形断面の小径孔61bが同軸に形成されており、小径孔61bの一部を囲むように弧状の入力液室61cが形成されるとともに、大径孔61aの一部を囲むように弧状の出力液室61dが形成される。本体ハウジング61の一端面には、前記入力液室61cに連通する入力ポート61eが開口し、本体ハウジング61の外周面には、前記出力液室61dに連通する出力ポート61fが開口する。
 本体ハウジング61の大径孔61aに嵌合してピン65で回り止めされた円筒状のスリーブ37には、軸線Lを中心として各々90°の中心角を有する第1、第2出口開口37a,37bが、前記出力液室61dに臨むように形成される。第1、第2出口開口37a,37bはスリーブ37を展開した状態で矩形状であり、その位相は相互に180°ずれ、かつ軸線L方向に重なる位置に配置される。
 スリーブ37の内周に相対回転自在に嵌合するデストリビュータ38には、スリーブ37の第1、第2出口開口37a,37bに重なることが可能な第1、第2連通孔群38c,38dが形成される。第1、第2連通孔群38c,38dは千鳥状に配置された多数の円形の連通孔38e…で構成されるもので、各々が軸線Lを中心とする90°の中心角を有するとともに位相が相互に180°ずれ、かつ軸線L方向に重なる位置に配置される。第1、第2連通孔群38c,38dの輪郭は第1、第2出口開口37a,37bと同一形状であり、第1、第2出口開口37a,37bにぴったりと重なることができる。
 ロータ42は円筒部42aと軸部42bとを備えており、開口端がプラグ43で閉塞された円筒部42aはデストリビュータ38の内周に相対回転自在に嵌合し、軸部42bは隔壁板62を貫通してエンドハウジング64の内部に延出する。ロータ42の円筒部42aの先端は、本体ハウジング61の小径孔61bの内周に軸受メタル66を介して回転自在に支持される。ロータ42の円筒部42aには、デストリビュータ38の第1、第2連通孔群38c,38dに連通可能な一対の第1入口開口42c,42cが180°の位相差をもって形成されるとともに、前記一対の第1入口開口42c,42cに対して位相が90°ずれた一対の第2入口開口42d,42dが180°の位相差をもって形成される。軸線L方向位置が揃った合計4個の第1、第2入口開口42c,42c;42d,42dはスリット状に形成されており、その軸線L方向の幅は第1、第2出口開口37a,37bおよび第1、第2連通孔群38c,38dの軸線L方向の幅に一致している。第1、第2入口開口42c,42c;42d,42dに連通するロータ42の内部空間42eは、液孔42f…を介して本体ハウジング61の入力液室61cに連通する。
 エンドハウジング64の内部に臨むデストリビュータ38の端部にボルト67…で固定されたドリブンギヤ68と、エンドハウジング64にボルト69…で固定された第1電動モータ46の回転軸46aに設けたドライブギヤ70とが、隔壁板62に固定されたアイドル軸71にニードルベアリング72を介して回転自在に支持されたアイドルギヤ73に噛合する。ドライブギヤ70の歯数はドリブンギヤ68の歯数よりも小さく、よって第1電動モータ46の回転は減速されてデストリビュータ38に伝達され、デストリビュータ38を90°の角度範囲で回転させる。
 エンドハウジング64にボルト74…で固定された第2電動モータ47の回転軸47aが、継手75を介してロータ42の軸部42aに同軸に結合される。よって、第2電動モータ47によりロータ42は任意の速度で回転可能である。
 図2において、デストリビュータ38の図中右端は、本体ハウジング61およびスリーブ37を貫通する圧力平衡通路76を介して大気に連通しており、大気圧であるデストリビュータ38の図中左端の圧力と釣り合わせることで、デストリビュータ38に軸線L方向の偏荷重が加わるのを防止している。同様に、ロータ42の図中右端は、本体ハウジング61を貫通する圧力平衡通路77を介して大気に連通しており、大気圧であるロータ42の図中左端の圧力と釣り合わせることで、ロータ42に軸線L方向の偏荷重が加わるのを防止している。
 次に、上記構成を備えた流量制御バルブ23の作用を説明する。
 図7(A)~図7(C)は図4の7-7線展開図であって、バルブハウジング36に固定されたスリーブ37と、第1電動モータ46によりスリーブ37に対して0°~90°の範囲で相対回転するデストリビュータ38と、第2電動モータ47によりスリーブ37およびデストリビュータ38に対して可変速度で相対回転するロータ42とを360°に亙って円周方向に展開した状態を示している。
 図7(A)はデューティ比が100%の状態に対応するもので、スリーブ37の第1、第2出口開口37a,37bは、スリーブ37の中心角360°のうちの0°~90°の範囲および180°~270°の範囲で開口しているが、デストリビュータ38の第1、第2連通孔群38c,38dは、その全領域でスリーブ37の第1、第2出口開口37a,37bに重なるため、スリーブ37の第1、第2出口開口37a,37bの実質開口範囲は0°~90°および180°~270°となる。第2電動モータ47でロータ42をスリーブ37およびデストリビュータ38に対して回転させると、ロータ42に90°間隔で形成した4個の第1、第2入口開口42c,42c;42d,42dが図中左側から右側に移動する。図7(A)は、2個の第1入口開口42c,42cが実質開口範囲に重なり、2個の第2入口開口42d,42dが実質開口範囲に重ならない状態を示している。
 ポンプ・モータMがモータとして作動するとき、本体ハウジング61の入力ポート61eはアキュムレータ22に接続され、本体ハウジング61の出力ポート61fはタンク21に接続される。よって、アキュムレータ22の高圧の液体は、本体ハウジング61の入力ポート61e→本体ハウジング61の入力液室61c→ロータ42の液孔42fの経路でロータ42の内部空間42eに供給される。そしてロータ42の内部空間42eに臨む第1、第2入口開口42c,42c;42d,42dが、デストリビュータ38の第1、第2連通孔群38c,38dおよびスリーブ37の第1、第2出口開口37a,37bの実質開口範囲に重なると、デストリビュータ38の内部空間42eの液体はロータ42の第1、第2入口開口42c,42c;42d,42d→デストリビュータ38の第1、第2連通孔群38c,38d、→スリーブ37の第1、第2出口開口37a,37b→本体ハウジング61の出力液室61d→本体ハウジング61の出力ポート61fの経路でタンク21に戻され、ポンプ・モータMはモータとして作動する。
 デューティ比が100%の状態では、スリーブ37の0°~90°の範囲および180°~270°の範囲が2個の実質開口範囲となり、ロータ42の2個の第1入口開口42c,42cにより発生するデューティ波形は、ロータ42の360°の回転角のうち、0°~90°の範囲および180°~270°の範囲でONになる。一方、ロータ42の2個の第2入口開口42d,42dの位相は2個の第1入口開口42c,42cの位相に対して90°ずれているため、ロータ42の2個の第2入口開口42d,42dにより発生するデューティ波形は、ロータ42の360°の回転角のうち、90°~180°の範囲および270°~360°の範囲でONになる。
 よって、2個の第1入口開口42c,42cにより発生するデューティ波形と、2個の第2入口開口42d,42dにより発生するデューティ波形とを重ね合わせるとデューティ比が100%の波形が得られる。
 図7(B)はデューティ比が50%に状態に対応する図であり、スリーブ42の0°~45°の範囲および180°~225°の範囲が2個の実質開口範囲となるため、ロータ42の2個の第1連通孔42c,42cにより発生するデューティ波形は、ロータ42の360°の回転角のうち、0°~45°の範囲および180°~225°の範囲でONになる。一方、ロータ42の2個の第2入口開口42d,42dの位相は2個の第1入口開口42c,42cの位相に対して90°ずれているため、ロータ42の2個の第2入口開口42d,42dにより発生するデューティ波形は、ロータ42の360°の回転角のうち、90°~135°の範囲および270°~315°の範囲でONになる。
 よって、2個の第1入口開口42c,42cにより発生するデューティ波形と、2個の第2入口開口42d,42dにより発生するデューティ波形とを重ね合わせるとデューティ比が50%の波形が得られる。
 図7(C)に示すように、第1、第2連通孔群38c,38dおよび第1、第2出口開口37a,37bが全く重ならない状態、つまり実質開口範囲が存在しない状態では、ロータ42の第1、第2入口開口42c,42c;42d,42dの位相の如何に関わらずに第1、第2連通孔群38c,38dおよび第1、第2出口開口37a,37bは相互に連通せず、デューティ比が0%になる。
 このように、流量制御バルブ23はロータ42の1回転につき4回のデューティ波形を出力する。よって第2電動モータ47によるロータ42の回転数をNとすると、流量制御バルブ23が出力するデューティ波形の周波数は4Nとなり、第2電動モータ47の回転数を低く抑えながら高いデューティ周波数を得ることができる。
 またデストリビュータ38の第1、第2連通孔群38c,38dは、軸線L方向の同じ位置に配置されており、かつ180°間隔で軸対称に配置されているため、第1、第2連通孔群38c,38dを通過する液体からデストリビュータ38に荷重が作用しても、その荷重はデストリビュータ38を曲げ変形させることはなく、デストリビュータ38を傾けることもない。よって、デストリビュータ38とスリーブ37およびロータ42との間にコジリが発生することが防止され、第1、第2電動モータ46,47の駆動力を最小限に抑えることができる。
 以上のように本実施の形態によれば、アキュムレータ22からポンプ・モータMに供給する液体の流量を流量制御バルブ23によってデューティ制御するので、液体の流量を絞り弁によって制御する場合に比べて、圧力損失に起因する熱損失を低減して高い効率を得ることができる。その際に、ロータ42の回転数を調整して最適のデューティ周波数を選択することで、更に高い効率を得ることができる。しかも入力液室61cおよび出力液室61dの液圧はデストリビュータ38およびロータ42に軸線L方向のスラスト荷重を発生させないため、デストリビュータ38およびロータ42をスラスト荷重に耐えるように支持する必要がなくなり、構造を簡素化して重量およびコストを削減することができる。   
 次に、ポンプ・モータMの作動をモータおよびポンプに切り換える液圧制御回路の構造を説明する。
 図9は液圧制御回路の等価回路を示すもので、切換制御バルブ24は四つのポートPa,Pb,Pc,Pdと、遮断弁24aと、切換弁24bとを備える。ポートPaはアキュムレータ22に接続され、ポートPbはタンク21に接続され、ポートPcはポンプ・モータMに接続され、ポートPdはチェックバルブ48の下流側に接続される。ポートPaとポートPdとの間には前記遮断弁24aが配置され、ポートPcは前記切換弁24bを介してポートPa,PdまたはポートPbに選択的に接続される。またチェックバルブ48の上流側は、ポンプ・モータMに接続されるとともに、前記流量制御バルブ23を介してポートPbおよびタンク21に接続される。
 図10は、前記図9の等価回路の切換制御バルブ24を具体化した液圧回路であり、切換制御バルブ24はバルブハウジング49に摺動自在に嵌合するスプール50と、このスプール50を駆動する2個のソレノイド51,52と、スプール50を中立位置に付勢するリターンスプリング53,54とで構成される。
 図9および図10(A)に示すように、ポンプ・モータMをモータとして作動させるとき、ソレノイド51が励磁してソレノイド52が消磁することでスプール50が図中上方に移動し、遮断弁24aが開弁して切換弁24bが駆動・中立側に切り換えられる。その結果、流量制御バルブ23のデューティ比が100%のとき、アキュムレータ22の液体はポートPa→遮断弁24a→切換弁24b→ポートPc→ポンプ・モータM→流量制御バルブ23→タンク21の経路で流れ、ポンプ・モータMを駆動することができる。
 流量制御バルブ23のデューティ比が0%のとき、ポンプ・モータMを通過した液体は流量制御バルブ23に阻止されてタンク21に流入することができないため、アキュムレータ22の液体はポートPa→遮断弁24a→切換弁24b→ポートPc→ポンプ・モータM→チェックバルブ48→ポートPd→切換弁24bの経路で閉じたアンロード回路を循環する。このときアンロード回路を流れる液体はアキュムレータ22の高圧液体であるため(高圧アンロード)、キャビテーションの発生を効果的に抑制することができる。
 流量制御バルブ23のデューティ比が0%よりも大きく100%よりも小さいとき、流量制御バルブ23が開弁しているデューティON期間はポンプ・モータMが駆動力を発生するロード状態になり、流量制御バルブ23が閉弁しているデューティOFF期間はポンプ・モータMが駆動力を発生しないアンロード状態になる。
 図9および図10(B)に示すように、ポンプ・モータMをモータとしてもポンプとしても作動させないとき(中立状態)、ソレノイド51およびソレノイド52が共に消磁することでスプール50が中立位置となり、遮断弁24aが閉弁して切換弁24bが駆動・中立側に切り換えられる。その結果、ポンプ・モータM→チェックバルブ48→ポートPd→切換弁24b→ポートPc→ポンプ・モータMの閉じたアンロード回路が構成され、ポンプ・モータMは無負荷で回転する。
 図9および図10(C)に示すように、ポンプ・モータMをポンプとして作動させるとき、ソレノイド51が消磁してソレノイド52が励磁することでスプール50が図中下方に移動し、遮断弁24aが開弁して切換弁24bが回生側に切り換えられる。その結果、流量制御バルブ23のデューティ比が0%のとき、ポンプ・モータMで加圧された液体は流量制御バルブ23を通過することができないため、タンク21の液体はポートPb→切換弁24b→ポートPc→ポンプ・モータM→チェックバルブ48→ポートPd→遮断弁24a→ポートPa→アキュムレータ22の経路で流れ、アキュムレータ22を蓄圧することができる。
 流量制御バルブ23のデューティ比が100%のとき、ポンプ・モータMを通過した液体は流量制御バルブ23を無負荷で通過できるため、タンク21の液体はポートPb→切換弁24b→ポートPc→ポンプ・モータM→流量制御バルブ23→ポートPbの経路で閉じたアンロード回路を循環する。このときアンロード回路を流れる液体はタンク21の低圧液体であるため(低圧アンロード)、液体のリークを防止するとともに、ポンプ・モータMおよび流量制御バルブ23の動作抵抗を低減することができる。
 流量制御バルブ23のデューティ比が0%よりも大きく100%よりも小さいとき、流量制御バルブ23が閉弁しているデューティOFF期間はポンプ・モータMが液圧を発生するロード状態になり、流量制御バルブ23が開弁しているデューティON期間はポンプ・モータMが液圧を発生しないアンロード状態になる。
 本実施の形態では、ポンプ・モータMを液圧ハイブリッド車両用の駆動源として用いているので、ポンプ・モータMがモータとして作動するとき(駆動時)もポンプとして作動するとき(回生制動時)も回転方向は同一であるが、切換制御バルブ24でタンク21およびアキュムレータ22の接続関係を反転することで、ポンプ・モータMの回転方向を反転する機構を必要とせずに、ポンプ・モータMの駆動および回生制動を支障なく行わせることができる。また1個の切換制御バルブ24でポンプ・モータMの駆動、回生、中立の切り換えを行うことができるだけでなく、ポンプ・モータMの駆動時には高圧アンロード回路を自動的に構成し、ポンプ・モータMの回生制動時には低圧アンロード回路を自動的に構成することができる。
 以上、本発明の実施の形態を説明したが、本発明はその要旨を逸脱しない範囲で種々の設計変更を行うことが可能である。
 例えば、各実施の形態の流量制御バルブ23は、液体の流れの方向を反対にしても、液体の流量を任意のデューティ比および任意のデューティ周波数でPWM制御するという機能を正常に発揮することができる。即ち、各実施の形態では入力ポート61e側から液体が流入して出力ポート61f側から液体が流出するようになっているが、出力ポート61f側から液体が流入して入力ポート61e側から液体が流出するようにポートの機能を入れ換えても良い。よって、実施の形態において、入力ポートおよび入口開口は液体が流出する機能を有するものを含み、出力ポートおよび出口開口は液体が流入する機能を有するものを含むものとする。
 また実施の形態では本発明の流量制御バルブ23を液圧ハイブリッド車両に適用しているが、本発明の流量制御バルブ23の用途は任意である。自動車等のための用途には以下のようなものが考えられる。
(1) 可変流量オイルポンプに流量制御バルブを適用すること
(2) 可変流量ウォータポンプに流量制御バルブを適用すること
(3) エンジンのインジェクタに流量制御バルブを適用すること
(4) エアコンの冷媒ポンプに流量制御バルブを適用すること
(5) エンジンのスロットルバルブに流量制御バルブを適用すること
(6) ターボ過給圧制御に流量制御バルブを適用すること
 また第1、第2電動モータ46,47は、電動モータ以外の任意の駆動源に置き換えることが可能である。
 また実施の形態では、流量制御バルブ23の径方向外側から内側にスリーブ37、デストリビュータ38およびロータ42を順番に配置しているが、デストリビュータ38およびロータ42の位置関係を入れ換え、流量制御バルブ23の径方向外側から内側にスリーブ37、ロータ42およびデストリビュータ38を順番に配置しても良い。

Claims (1)

  1.  バルブハウジング(36)に固定した円筒状のスリーブ(37)の内部に円筒状のデストリビュータ(38)および円筒状のロータ(42)を軸線(L)上に同軸に配置し、
     第1駆動源(46)で前記スリーブ(37)に対して前記デストリビュータ(38)を所定角度だけ相対回転させることで、前記スリーブ(37)に形成した第1開口(37a,37b)および前記デストリビュータ(38)に形成した第2開口(38c,38d)が重なる重なり部分の面積を変化させるとともに、
     第2駆動源(47)で前記スリーブ(37)および前記デストリビュータ(38)に対して前記ロータ(42)を所定速度で相対回転させることで、前記ロータ(42)に形成した第3開口(42c,42d)が前記重なり部分を通過するときに前記第1開口(37a,37b)および前記第2開口(38c,38d)を連通させて所定のデューティ比の液圧を発生させる液体流量制御バルブであって、
     前記デストリビュータ(38)および前記ロータ(42)のうちの径方向内側に配置されたものの軸線(L)方向の一端を、前記第1、第2駆動源(46,47)の一方に同軸に接続するとともに、前記デストリビュータ(38)および前記ロータ(42)のうちの径方向外側に配置されたものの軸線(L)方向の一端を、前記第1、第2駆動源(46,47)の他方にギヤトレイン(68,70,73)を介して接続したことを特徴とする液体流量制御バルブ。
PCT/JP2010/067124 2009-10-01 2010-09-30 液体流量制御バルブ WO2011040552A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/498,399 US8820354B2 (en) 2009-10-01 2010-09-30 Liquid flow rate control valve
JP2011504669A JP5497737B2 (ja) 2009-10-01 2010-09-30 液体流量制御バルブ

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-229630 2009-10-01
JP2009229630 2009-10-01

Publications (1)

Publication Number Publication Date
WO2011040552A1 true WO2011040552A1 (ja) 2011-04-07

Family

ID=43826362

Family Applications (4)

Application Number Title Priority Date Filing Date
PCT/JP2010/067123 WO2011040551A1 (ja) 2009-10-01 2010-09-30 液体流量制御バルブ
PCT/JP2010/067125 WO2011040553A1 (ja) 2009-10-01 2010-09-30 液圧回路
PCT/JP2010/067124 WO2011040552A1 (ja) 2009-10-01 2010-09-30 液体流量制御バルブ
PCT/JP2010/067122 WO2011040550A1 (ja) 2009-10-01 2010-09-30 液体流量制御バルブ

Family Applications Before (2)

Application Number Title Priority Date Filing Date
PCT/JP2010/067123 WO2011040551A1 (ja) 2009-10-01 2010-09-30 液体流量制御バルブ
PCT/JP2010/067125 WO2011040553A1 (ja) 2009-10-01 2010-09-30 液圧回路

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/067122 WO2011040550A1 (ja) 2009-10-01 2010-09-30 液体流量制御バルブ

Country Status (4)

Country Link
US (3) US8820354B2 (ja)
JP (5) JP5502688B2 (ja)
DE (1) DE112010003898T5 (ja)
WO (4) WO2011040551A1 (ja)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2873538A1 (en) * 2012-03-05 2013-09-12 Lightning Hybrids, Inc. Hydraulic regeneration apparatus
JP5940844B2 (ja) * 2012-03-14 2016-06-29 本田技研工業株式会社 油圧ハイブリッド車両
JP5825682B2 (ja) * 2012-07-03 2015-12-02 キャタピラー エス エー アール エル アキュムレータを備えた作業機械の油圧回路
DE102012106906A1 (de) * 2012-07-30 2014-01-30 Linde Hydraulics Gmbh & Co. Kg Hydrostatische Verdrängermaschine
JP6091345B2 (ja) * 2013-06-10 2017-03-08 ダイハツ工業株式会社 車両
JP2015129625A (ja) * 2013-12-02 2015-07-16 三星電子株式会社Samsung Electronics Co.,Ltd. 冷却装置
FR3021593B1 (fr) * 2014-06-03 2018-02-02 Peugeot Citroen Automobiles Sa Module motopropulseur hybride comprenant trois accouplements debrayables et procede de pilotage du module
US9435446B1 (en) * 2014-07-24 2016-09-06 Google Inc. Rotary valve with brake mode
EP3088782B1 (de) * 2015-04-29 2019-09-18 HAWE Hydraulik SE Hydraulisches steuerventil in schieberbauweise und mobilhydraulik mit entsprechendem steuerventil
US9902251B2 (en) * 2016-01-26 2018-02-27 Deere & Company Recess-mounted hydraulic pump cartridge and work vehicle drivetrain therewith
GB2550595B (en) * 2016-05-24 2021-08-25 Changan Uk R&D Centre Ltd A fluid control assembly
JP6447606B2 (ja) * 2016-10-05 2019-01-09 マツダ株式会社 車両用駆動装置
JP6372537B2 (ja) * 2016-10-05 2018-08-15 マツダ株式会社 車両用駆動装置
DE102016226039B3 (de) * 2016-12-22 2018-02-08 Danfoss Power Solutions Gmbh & Co. Ohg Verdrängungssteueranordnung für eine axialkolbenpumpe
KR101884769B1 (ko) * 2017-03-02 2018-08-02 서울대학교산학협력단 핀틀 인젝터
KR101902818B1 (ko) 2017-07-27 2018-10-01 한국항공대학교산학협력단 젤 연료용 회전 핀틀 인젝터
CN117328835A (zh) 2018-11-09 2024-01-02 芙罗服务管理公司 用于在至少两个流体流之间交换压力的设备及其操作方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5467800A (en) * 1993-04-20 1995-11-21 Atlas Fluid Controls Inc. Low inertia servo valve
JP2001027340A (ja) * 1999-05-13 2001-01-30 Amada Eng Center Co Ltd 制御バルブ
WO2003016761A1 (fr) * 2001-08-15 2003-02-27 Amada Company, Limited Distributeur
JP2009068553A (ja) * 2007-09-11 2009-04-02 Hitachi Constr Mach Co Ltd 液圧開閉弁

Family Cites Families (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2349641A (en) 1941-12-18 1944-05-23 Hydraulic Dev Corp Inc Rotating servo-valve
US2395979A (en) 1941-12-18 1946-03-05 Hydraulic Dev Corp Inc Torque amplifier
US2593316A (en) * 1946-12-23 1952-04-15 Dole Valve Co Reciprocating pump assembly
US3018622A (en) 1958-07-11 1962-01-30 Bendix Corp Control apparatus
US3069025A (en) 1959-07-01 1962-12-18 Berkley Machine Co Rotary valve for controlling application of suction
DE1426491B2 (de) 1962-08-01 1971-12-02 Fujitsu Ltd , Communications and Electronics, Tokio Druckmittelbetriebener drehmomentverstaerker
US3213881A (en) * 1963-07-17 1965-10-26 Int Harvester Co Directional control valve
DE2555752C2 (de) 1975-12-11 1977-12-01 Gestra-Ksb-Vertriebsgesellschaft Mbh & Co Kg, 2800 Bremen Drosselventil
US4037620A (en) 1976-04-23 1977-07-26 Eaton Corporation Controller for fluid pressure operated devices
US4387783A (en) * 1980-09-04 1983-06-14 Advanced Energy Systems Inc. Fuel-efficient energy storage automotive drive system
GB2104249B (en) * 1981-08-19 1985-05-15 Moog Inc Servovalves
JPS5875023U (ja) 1982-06-08 1983-05-20 ヤンマー農機株式会社 農作業車の駆動装置
US4793133A (en) 1983-10-28 1988-12-27 Colt Industries Inc Manual backup for electronic fuel control
FR2567984B1 (fr) 1984-07-20 1986-08-14 Centre Techn Ind Mecanique Distributeur hydraulique proportionnel
SE449718B (sv) 1985-09-27 1987-05-18 Volvo Flygmotor Ab Forfarande och anordning for reglering av ett regenerativt hydrostatiskt drivsystem, serskilt for fordon
US4697929A (en) * 1986-10-28 1987-10-06 Charles Ross & Son Company Planetary mixers
US4779512A (en) 1987-04-13 1988-10-25 Leonard Willie B Rotary drive spool valve
US4800924A (en) 1987-04-24 1989-01-31 Davidson Textron Inc. Direct drive servovalve with rotary valve
IT214557Z2 (it) 1988-05-10 1990-05-09 Fiat Auto Spa Servovalvola rotativa a comando elettromagnetico
DE3912743C2 (de) 1989-04-19 2000-12-14 Bw Hydraulik Gmbh Hydraulische Steuereinrichtung
JPH04238739A (ja) 1991-01-09 1992-08-26 Kenji Mimura 自動車の加速装置
JPH0629963U (ja) 1992-09-25 1994-04-19 日産ディーゼル工業株式会社 蓄圧式ハイブリッド自動車
US5242150A (en) 1992-09-30 1993-09-07 The United States Of America As Represented By The Secretary Of The Navy Rotary hydraulic servo or throttle valve
NO177874C (no) 1993-07-14 1996-10-30 Sinvent As Anordning for blanding av komponentene i en fluidströmning, og anvendelse av anordningen i et måleapparat for masseström
CA2107693A1 (en) * 1993-10-05 1995-04-06 Philip Sylvester Esmond Farrell Pneumatic pressure regulation system
JP3642808B2 (ja) 1994-10-03 2005-04-27 セイレイ工業株式会社 クローラトラクタの防振構造
JPH08296607A (ja) 1995-04-25 1996-11-12 Smc Corp 流体圧アクチュエータの駆動回路
US5950664A (en) 1997-02-18 1999-09-14 Amot Controls Corp Valve with improved combination bearing support and seal
US5954093A (en) 1998-09-08 1999-09-21 Leonard; Marcus B. Rotary servo valve
JP4361159B2 (ja) 1999-03-24 2009-11-11 石川島運搬機械株式会社 立体駐車装置の油圧制御装置
DE69923005T2 (de) 1999-04-14 2005-12-29 Amada Co., Ltd., Isehara Drehbares servoventil und eine, das drehbare servoventil verwendende, hydraulische-stanzpresse servovorrichtung
US6826988B2 (en) * 2000-09-29 2004-12-07 Sd3, Llc Miter saw with improved safety system
US20020079003A1 (en) 2000-10-04 2002-06-27 Scampini Daniel Charles Straight through flow cage-type valve
DE10110764A1 (de) 2001-03-07 2002-09-19 Dambach Lagersysteme Gmbh & Co Hydraulische Hubvorrichtung
JP4694717B2 (ja) 2001-05-23 2011-06-08 ヤンマー株式会社 クローラ式作業機
US6769451B2 (en) 2002-04-17 2004-08-03 Eaton Corporation Power beyond steering unit with bypass
US6739127B2 (en) * 2002-06-07 2004-05-25 Caterpillar Inc Hydraulic system pump charging and recirculation apparatus
US7322375B2 (en) 2004-04-30 2008-01-29 Vanderbilt University High bandwidth rotary servo valves
JP4337677B2 (ja) 2004-07-26 2009-09-30 株式会社豊田中央研究所 エンジン始動装置
US20060108860A1 (en) * 2004-11-23 2006-05-25 Delaware Capital Formation Brake energy recovery system
JP4285424B2 (ja) 2005-03-09 2009-06-24 株式会社豊田中央研究所 エンジン始動装置
JP4638362B2 (ja) * 2006-02-21 2011-02-23 株式会社豊田中央研究所 エンジン始動装置
US7574859B2 (en) * 2006-03-10 2009-08-18 Grigoriy Epshteyn Monocylindrical hybrid two-cycle engine, compressor and pump, and method of operation
JP4874059B2 (ja) * 2006-11-08 2012-02-08 中国電力株式会社 圧力操作システム
US7775040B2 (en) 2006-11-08 2010-08-17 Caterpillar Inc Bidirectional hydraulic transformer
JP2008247320A (ja) 2007-03-30 2008-10-16 Mazda Motor Corp 気体燃料タンクとバッテリの車両搭載構造
JP2009126398A (ja) 2007-11-26 2009-06-11 Toyota Motor Corp 燃料電池自動車の車体下部構造
JP2009255611A (ja) 2008-04-11 2009-11-05 Iem:Kk 車両の省エネ装置及び方法
US8646558B2 (en) * 2009-10-31 2014-02-11 Grigoriy Epshteyn Ultra-efficient hydraulic hybrid drivetrain and method of operation

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5467800A (en) * 1993-04-20 1995-11-21 Atlas Fluid Controls Inc. Low inertia servo valve
JP2001027340A (ja) * 1999-05-13 2001-01-30 Amada Eng Center Co Ltd 制御バルブ
WO2003016761A1 (fr) * 2001-08-15 2003-02-27 Amada Company, Limited Distributeur
JP2009068553A (ja) * 2007-09-11 2009-04-02 Hitachi Constr Mach Co Ltd 液圧開閉弁

Also Published As

Publication number Publication date
DE112010003898T5 (de) 2012-11-15
WO2011040550A1 (ja) 2011-04-07
JPWO2011040553A1 (ja) 2013-02-28
JPWO2011040552A1 (ja) 2013-02-28
JP2011093519A (ja) 2011-05-12
US8931514B2 (en) 2015-01-13
JP5554781B2 (ja) 2014-07-23
US20120234400A1 (en) 2012-09-20
JP5497737B2 (ja) 2014-05-21
WO2011040551A1 (ja) 2011-04-07
JP5502688B2 (ja) 2014-05-28
WO2011040553A1 (ja) 2011-04-07
US20120234417A1 (en) 2012-09-20
JP5497736B2 (ja) 2014-05-21
JPWO2011040550A1 (ja) 2013-02-28
JPWO2011040551A1 (ja) 2013-02-28
US8820354B2 (en) 2014-09-02
US9150091B2 (en) 2015-10-06
JP5513484B2 (ja) 2014-06-04
US20120237362A1 (en) 2012-09-20

Similar Documents

Publication Publication Date Title
JP5497737B2 (ja) 液体流量制御バルブ
JP5193069B2 (ja) カムシャフトタイミングアジャスタ及びその制御要素の油圧回路
EP2497950B1 (en) Georotor pump with capacity control valve provided rotatable within the shaft.
US9360010B2 (en) First and second pumps in a common housing with parallel flow
JP4817037B2 (ja) 回転流体圧装置
US10350995B2 (en) Drive motor arrangement for a hydrostatic transmission
US6438951B2 (en) Hydraulic drive with regeneration circuit
JP2010535997A (ja) トルク伝達デバイス
JP2003294120A (ja) ハイブリッド車両の油圧供給装置
JP5618715B2 (ja) チェックバルブおよび液圧回路
JP6258216B2 (ja) 2つのチャネルと単一方向に動作する単一のモータとを有する分配器
US7100732B2 (en) Positive traction hydraulic drive system
JP5464275B2 (ja) 油圧モータ用制御装置
CN112744290B (zh) 一种液压助力转向系统和车辆
WO2012021184A1 (en) Power steering system
JP7426570B2 (ja) ベーンポンプ
JPH0454352A (ja) 動力伝達装置
JP2014126070A (ja) 油圧供給装置
JP2005282597A (ja) 左右駆動力配分装置
JP2003287115A (ja) ハイブリッド車両の油圧供給装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2011504669

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10820667

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13498399

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 10820667

Country of ref document: EP

Kind code of ref document: A1