WO2011031981A1 - Anchors with open heads - Google Patents
Anchors with open heads Download PDFInfo
- Publication number
- WO2011031981A1 WO2011031981A1 PCT/US2010/048444 US2010048444W WO2011031981A1 WO 2011031981 A1 WO2011031981 A1 WO 2011031981A1 US 2010048444 W US2010048444 W US 2010048444W WO 2011031981 A1 WO2011031981 A1 WO 2011031981A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- protrusion
- implant
- anchor
- open loop
- lumen
- Prior art date
Links
- 0 C1C2(C(C3)C*C4)*34C12 Chemical compound C1C2(C(C3)C*C4)*34C12 0.000 description 1
- GDOPTJXRTPNYNR-UHFFFAOYSA-N CC1CCCC1 Chemical compound CC1CCCC1 GDOPTJXRTPNYNR-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/04—Hollow or tubular parts of organs, e.g. bladders, tracheae, bronchi or bile ducts
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F5/00—Orthopaedic methods or devices for non-surgical treatment of bones or joints; Nursing devices; Anti-rape devices
- A61F5/0003—Apparatus for the treatment of obesity; Anti-eating devices
- A61F5/0013—Implantable devices or invasive measures
- A61F5/0076—Implantable devices or invasive measures preventing normal digestion, e.g. Bariatric or gastric sleeves
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/24—Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
- A61F2/2409—Support rings therefor, e.g. for connecting valves to tissue
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/82—Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/848—Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents having means for fixation to the vessel wall, e.g. barbs
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/04—Hollow or tubular parts of organs, e.g. bladders, tracheae, bronchi or bile ducts
- A61F2002/045—Stomach, intestines
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/82—Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/848—Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents having means for fixation to the vessel wall, e.g. barbs
- A61F2002/8483—Barbs
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2220/00—Fixations or connections for prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2220/0008—Fixation appliances for connecting prostheses to the body
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2220/00—Fixations or connections for prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2220/0008—Fixation appliances for connecting prostheses to the body
- A61F2220/0016—Fixation appliances for connecting prostheses to the body with sharp anchoring protrusions, e.g. barbs, pins, spikes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2230/00—Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2230/0063—Three-dimensional shapes
- A61F2230/0091—Three-dimensional shapes helically-coiled or spirally-coiled, i.e. having a 2-D spiral cross-section
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2250/00—Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2250/0014—Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis
- A61F2250/003—Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis differing in adsorbability or resorbability, i.e. in adsorption or resorption time
- A61F2250/0031—Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis differing in adsorbability or resorbability, i.e. in adsorption or resorption time made from both resorbable and non-resorbable prosthetic parts, e.g. adjacent parts
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F5/00—Orthopaedic methods or devices for non-surgical treatment of bones or joints; Nursing devices; Anti-rape devices
- A61F5/0003—Apparatus for the treatment of obesity; Anti-eating devices
- A61F5/0089—Instruments for placement or removal
Definitions
- Obesity is associated with a wide variety of health problems, including Type 2 diabetes, hypertension, coronary artery disease, hypercholesteremia, sleep apnea, and pulmonary hypertension. It also exerts an enormous strain on the body that affects the organs, the nervous system, and the circulatory systems. Obesity rates have been rising for years in the United States, causing corresponding increases in healthcare expenditures.
- Curing obesity has so far vexed the best efforts of medical science. Dieting is not an adequate long-term solution for most obese people, especially those with a body-mass index of over 30.
- Stomach stapling, or gastroplasty reduces the size of the stomach, leading to reduced appetite and weight loss, but eventually the stomach stretches and the patient's appetite returns to pre-surgery levels.
- Roux-en-Y gastric bypass reduces the size of the stomach and the length of the intestine, and leads to both weight loss and alleviation of the Type 2 diabetes common to obese patients. Although gastric bypass appears to provide a more permanent solution than gastroplasty, complication rates associated with gastric bypass are between 2% and 6%, with mortality rates of about 0.5-1.5%.
- an implant may include a thin- walled, floppy sleeve that is secured in the stomach or intestine with a collapsible anchor.
- the sleeve extends into the intestine and channels partially digested food, or chyme, from the stomach through the intestine in a manner that may cause weight loss and improve diabetes symptoms.
- the sleeve and anchor can be removed endoscopically when treatment is over or if the patient desires.
- Embodiments of the present invention provide improved anchoring of an implant in the gastrointestinal tract and can increase the duration that an implant can be anchored in the intestine by encouraging stable tissue reactions to the implant.
- An implant according to principles of the present invention may include a long protrusion with an open loop connected to a collapsible anchor.
- the collapsible anchor which may, for example, be a wave anchor or a stent comprising a network of struts, is configured to be deployed within a lumen in a mammalian body. Upon deployment, the collapsible anchor expands within the lumen, and the protrusion expands away from the anchor, pushing the open loop against the wall of the lumen.
- the protrusion and the open loop penetrate the luminal wall, and the open loop may project through the far side of the luminal wall.
- a pocket of scar tissue forms about the open loop and through an opening in the open loop, securing the anchor within the lumen.
- the implant may have additional protrusions, each of which is connected to the anchor and includes an open loop. Each additional open loop also includes an opening and is adapted to penetrate the luminal wall upon deployment of the collapsible anchor.
- Each open loop may have an inner opening with a width of between about 1 mm and about 13 mm, or, more preferably, an inner diameter of about 3 mm.
- the protrusion extends along a total length of between about 6 mm and about 13 mm from the collapsible anchor upon full deployment from the collapsible anchor.
- the protrusion and the open loop may be formed of wire (e.g., nitinol wire) with a preferred diameter of about 0.010 inch to about 0.040 inch, and more preferably about 0.020 inch.
- the open loop can be formed of a loop of wire, and the protrusion can be formed of a straight length of wire extending from the loop of wire.
- the open loop may be oriented in a variety of directions with respect to the collapsible anchor.
- the open loop may define a plane that is perpendicular to the lumen wall when the protrusion is deployed.
- the open loop may define a plane that is parallel to the lumen wall when the protrusion is deployed.
- straight protrusions When relaxed, straight protrusions typically extend outwards from the collapsible anchor at an angle of between about 45 degrees and about 135 degrees, or, more preferably, to an angle of about 80 degrees or about 90 degrees. At these angles, the expanded straight protrusion pushes the loop outward, causing an edge of the loop to engage the luminal wall.
- the protrusion can include a length of wire formed in a helix.
- the wire used to form the helix may be coiled to form the loop, which can be oriented such that it is parallel to the luminal wall when deployed within the lumen. (Other orientations of the loop are also possible.)
- the helix may have a tapered profile (e.g., a conical profile) when viewed from the side, and can be flattened alongside the collapsible anchor.
- the collapsed implant can be inserted into the lumen endoscopically. Releasing the helix and the anchor from the collapsed state causes the helix to push the loop away from the anchor, which, in turn, causes a face of the loop to engage the luminal wall.
- the implant may also include an end effect at or near the tip of the loop to aid penetration of the loop through the luminal wall.
- the implant can be collapsed, for removal from the lumen, with an optional drawstring that runs through the opening in the loop or through additional retaining hooks or loops connected to the loop or the protrusion. Pulling on the drawstring collapses the loop and protrusion towards the collapsible anchor, and away from the luminal wall. Collapsing an implanted helix may cause coils in the helix to shear fibrotic tissue formed about the helix depending on the spacing and orientation of the coils that make up the helix.
- An implant with a protrusion and an open loop can also include an unsupported, thin- walled sleeve coupled to the collapsible anchor and configured to extend into the lumen (e.g., the intestine) upon deployment of the collapsible anchor.
- the implant may also include a restrictor plate instead of or in addition to the thin- walled sleeve.
- FIGS. 1 A-1D are perspective, plan, and elevation views of straight protrusions with open loop s coupled to a wave anchor.
- FIGS. 2A-2D are plan and elevation views of a straight protrusion with an open loop suitable for connection to an anchor.
- FIGS. 3A-3C illustrate how a straight protrusion with an open loop penetrates the wall of the gastrointestinal tract and how a fibrotic encapsulation forms about and through the open loop.
- FIGS. 4A-4P show various alternative protrusions with open loops.
- FIGS. 5 A-5C are perspective views of wave anchors with helical protrusions with open loops.
- FIG. 6 is a perspective view of a loop projection with a helical neck.
- FIGS. 7A-7C illustrate how a helical protrusion with an open loop penetrates the wall of the gastrointestinal tract and how a fibrotic encapsulation forms about and through the helical protrusion and the open loop.
- FIG. 8 shows an implant that includes a sleeve extending from an anchor with open-tip protrusions.
- An anchor may be used to secure a sleeve in the intestine of a patient for treating obesity and/or type-2 diabetes as described in commonly assigned U.S.
- Patent Application No. 10/858,852 filed on June 1, 2004, by Levine et al ; U.S.
- the inflammatory response to the injury produces a mix of granulation and more stable fibrous tissue (i.e., scar tissue). This causes thickening of the duodenal wall over time resulting in barbs disengaging from the tissue. As sharp barbs separate from the duodenal wall, the implant may become unstable and migrate or rotate within the duodenum.
- Long barbs tend be better than short barbs at holding implants securely for longer periods. Without subscribing to any particular theory, it appears that longer barbs are more stable because it takes more time for the inflammatory thickening to separate longer barbs from the muscle layer. However, there is a practical limit to how long sharp barbs can be because longer sharp barbs are more likely to infiltrate surrounding organs. Very long sharp barbs can pierce through the muscle wall of the intestine and into adjacent structures and could potentially cause leaks, bleeding, or adhesions to other organs.
- Protrusions with open loops can secure an implant for longer periods of time while minimizing the risk of damage to nearby organs.
- the protrusion which is relatively narrow (e.g., about 0.060 inch wide) and relatively long (e.g., about 13 mm long), connects a relatively broad open loop (e.g., about 3 mm in diameter) to a collapsible anchor. Upon deployment, the protrusion pushes the open loop against the intestinal wall.
- initial research suggests that the muscle layer in the intestine stretches across the loop, and it eventually thins out or erodes enough to allow the loop to penetrate the luminal wall.
- FIGS. 1A-1D show an implant 100 suitable for deployment within the gastrointestinal tract distal to the pylorus.
- FIGS. 1 A-IC show perspective, plan, and elevation views of the implant 100 in a relaxed state (from the top, the relaxed implant 100 looks circular);
- FIG. ID is an elevation view of the implant 100 in a compressed state.
- the implant 100 is compressed for endoscopic deployment within the gastrointestinal tract. Once positioned properly within the gastrointestinal tract, the implant 100 expands to the relaxed state shown in FIGS. 1A-1C.
- the implant 100 includes a collapsible wave anchor 102 that includes a plurality of protrusions 110, each of which extends outward from the wave anchor 102 when the implant 100 is in a relaxed state.
- the anchor 102 may have a relaxed diameter of about 40 mm or greater, e.g., about 45 mm, about 50 mm, or about 55 mm.
- Each protrusion 110 includes a rounded loop 1 12 at the end of a narrow, straight neck 114, and each loop 112 includes an opening whose inner width D is within the range (inclusive) of between about 1 mm and about 13 mm, and preferably a diameter D within a range of about 1 mm and about 6 mm, or, more preferably, about 3 mm.
- the outer diameter can be within a range of about 2 mm to about 8 mm, and the diameter of the wire used to form each protrusion 110 can be within a range of about 0.010 inch to about 0.030 inch.
- the minimum bend radius of the wire limits the minimum inner diameter (it can be difficult to bend the wire too tightly), and the minimum desired pressure exerted by the loop 1 12 against the tissue limits the maximum inner diameter (bigger loops 112 may not exert enough pressure on the tissue to penetrate the tissue).
- the straight neck 114 has a length / of between about 6 mm and about 10 mm, for a total projection length L of between about 7 mm and about 13 mm.
- a crimp 116 or other suitable connection fixes the neck 114 to the wave anchor.
- Each protrusion 110 folds down along the side of the wave anchor 102 when compressed for delivery, then springs up to extend nearly perpendicularly from the wave anchor 102 when released from the compressed state to the relaxed state.
- the angle ⁇ formed by the protrusion 110 and a leg of the wave anchor 102 may be between about 45° and about 135°, or, more preferably, between about 75° and 105°, e.g., about 80° or about 90°.
- FIGS. 2A-2D are elevation and plan views of a single protrusion 110 formed of a single piece of nitinol wire with a diameter of about 0.020 inch.
- the wire is bent to form a pair of struts 124 that can be crimped, bonded, or welded onto a single-wire leg of an anchor (e.g., wave anchor 102 in FIGS. 1 A-1D) such that the single wire of the anchor leg nestles between the struts 124.
- the wire is bent to form the narrow, straight neck 114 and coiled twice to create the loop 120.
- the two loops of coil form a broad, blunt edge 120 that can engage and erode the luminal wall such that the loop 112 eventually penetrates the luminal wall.
- the loops also form a face 122 that defines a plane perpendicular to the long axis of the struts 124.
- the face 122 When affixed to an anchor and implanted in a lumen, the face 122 is perpendicular to the long axis of the lumen and parallel to a cross section of the lumen.
- the loop 112 may be formed such that the face 122 is parallel to the long axis of the struts 124. In this alternative orientation, the face 122 is near parallel to the lumen's long axis and near perpendicular to the lumen's cross section when implanted.
- FIGS. 3A-3C illustrate how the implant 100 is secured within a lumen by a protrusion 110 with a relatively straight neck 114.
- the implant 100 is inserted into the lumen in a compressed state, with the projection 110 folded against the collapsed anchor 102.
- the anchor 102 and the protrusion 110 expand toward their respective relaxed states, causing the edge 124 of the loop 112 to form a tent 309 in the luminal wall 301, which may include a muscle layer, as shown in FIG. 3A.
- initial studies suggest that, over time, the tent 309 stretches and the face 124 erodes at the point of contact 303, as shown in FIG. 3B.
- the loop 112 erodes completely through the luminal wall 301, as shown in FIG. 3C.
- fibrotic tissue 305 forms about and through the loop 112, securing the loop 112 with respect to the luminal wall 301, and may secure the loop 112 in a permanent or quasi-permanent fashion (e.g., for months or years).
- a loop 112 that is secured in a pocket of fibrotic tissue 112 does not appear to provoke the tissue remodeling that eventually forces other projections, such as sharp protrusions, out of the intestine.
- FIGS. 4A- C show open-loop protrusions of different shapes.
- FIG. 4A shows a protrusion 820 formed by bending wire into the shape of the Greek letter omega, ⁇ .
- An open, straight neck 822 connects the protrusion's loop 824 to a collapsible member 102.
- FIG. 4B shows a protrusion 830 formed by twisting wire into a loop. The twist forms the protrusion's neck 832 and the loop forms the protrusion's loop 834.
- FIG. 4C shows a protrusion 840 with a neck 842 covered by a seal 843.
- the seal 843 which may be made of a fluoropolymer, isolates the loop 844 from the anchor 102, and may prevent irritants from exiting the luminal wall via the channel formed by the protrusion 840.
- the seal 843 does not cover the loop 844, so tissue may grow through the loop 844.
- the protrusions 820, 830, and 840 shown in FIGS. 4A-4C may be separate pieces of wire bonded to an anchor or they may be formed of the same piece of wire that forms the anchor.
- FIGS. 4D and 4E show an open-tip protrusion 850 with an erodible section
- the erodible section 855 that forms part of a loop 854 connected to an anchor with a straight neck. After the protrusion 850 penetrates the luminal wall, inflammatory or fibrotic tissue grows through the loop 864, securing the protrusion 850 in the intestinal wall. Meanwhile, the erodible section 855 dissolves, turning the loop 854 into an open prong that can removed from tissue without tearing the tissue (not shown) that forms in the opening of the loop 854. Typically, the erodible section 855 is designed to dissolve during treatment, e.g., over six months, one year, two years, or possibly longer.
- FIGS. 4F and 4G show an open-tip protrusion 860 with a loop 864 that can be detached from an anchor 102 with a narrow coupling neck 862.
- inflammatory or fibrotic tissue (not shown) envelops the loop 864, securing the protrusion 860 in the intestinal wall.
- the anchor 102 can be withdrawn endoscopically without tearing or ripping the tissue that envelops the loop.
- the detached anchor 102 may be reinserted into the intestine and re-attached to the protrusion 860.
- FIGS. 4H- 0 show alternative straight protrusions with open heads.
- FIGS. 4H- 0 show alternative straight protrusions with open heads.
- FIG. 4H and 41 shows protrusions 900 and 910, respectively, with open loops 902 and 912 that define planes parallel to the lumen wall when deployed.
- the open loop 902 of FIG. 4H is made of a wire loop that is concentric about an axis of a straight neck 904; whereas, the open head 912 of FIG. 41 is formed of a wire loop that is tangent to an axis of a straight neck 914.
- FIG. 4K shows a straight protrusion 930 with plural open loops distributed along the length of a straight protrusion 934 that extends from a collapsible anchor 102.
- FIG. 4J shows a protrusion 920 with a corkscrew-like open head 922 perched atop a straight neck 924 coupled to an anchor 102.
- the long axis of the open head 922 is roughly parallel to the long axis of the lumen, but can also be oriented perpendicular to the long axis of the lumen.
- FIG. 4N shows a protrusion 960 with a whisk-shaped open head 962 at the end of a straight neck 964. Tissue may grow about and through the openings between the windings in both the corkscrew-like head 922 and the whisk-shaped head 962, just as in the helix protrusions described in greater detail below .
- FIGS. 4L and 4M show bidirectional protrusions 940 and 950, respectively, each of which is coupled to a collapsible anchor 102.
- Each protrusion 940, 950 includes a coil-like open head 942, 952 that engages the luminal wall as the protrusion 940, 950 expands from its collapsed state.
- FIG. 40 shows an alternative protrusion 970 formed of a paddle with one or more openings 972, each of which is about 0.016 inch wide. Tissue can form through the openings 972 to secure the protrusion 970 within the lumen.
- FIG. 4P shows a protrusion 980 that includes a coiled open loop 982 connected to a straight neck 984 with a bio-erodible element 986.
- the loop 982 erodes through the luminal wall and soon becomes encased in fibrotic tissue, securing the protrusion 980 and attached anchor 102 in place.
- the bio-erodible element 986 dissolves, causing the loop 982 to become detached from the protrusion 980.
- the protrusion 980 can be withdrawn without necessarily tearing the scar tissue encapsulating the head 982, making for easier removal of the implant.
- the implant may include a helical protrusion instead of a straight protrusion.
- the helical protrusion acts as a coil spring that pushes the open loop into the lumen wall, but in a manner that distributes the load from the collapsible anchor to the contacting tissue over a longer length as compared to a straight protrusion of similar height.
- the helix Upon initial engagement with the duodenal wall, the helix, if so designed, compresses. As the tissue and helix protrusion come to equilibrium the helix approaches full expansion, causing the loop to penetrate the luminal wall. Eventually, fibrotic tissue encapsulates the loop and the expanded helix, creating a pocket that holds the loop and helix securely.
- helical protrusions with open heads may be designed for permanent, quasi-permanent, or temporary implantation.
- FIGS. 5A-5C are perspective views of implants that include projections with helical protrusion: FIG. 5A shows basic helical protrusions; FIG. 5B shows helical protrusions with retaining loops; and FIG. 5C shows helical protrusions that include retaining loops and short end effects that promote initial penetration of the open loop into the muscle wall.
- FIG. 5A shows an implant 400 that includes five basic helical protrusions 410, each of which is coupled to a wave anchor 102 with a respective crimp 416.
- each helical protrusion 410 includes a helix 414 formed of several wire coils and terminates in a loop 412 formed of two loops of wire. The opening of each head 412 is parallel to the lumen defined by the wave anchor 102.
- Each helical protrusion 410 has a tapered profile, with the top coils (i.e., those farthest away from the wave anchor 102) being substantially smaller than the base coils (i.e., those closest to the wave anchor 102).
- Each coil in the helix 414 limits the penetration of the coil above it.
- the top coils are sized to focus the force from the expanding implant 400 to penetrate the duodenal wall and to ultimately elicit the healing response. Top coils approximately 3 mm in diameter are small enough to start to burrow through the muscle layer.
- the base coils are larger than the top coils and are sized to
- the outer diameter of the largest coil in the helix 414 is within the range of about 1.5 mm to about 12 mm, and the coils have an inner diameter that ranges from about 1.0 mm to about 10 mm.
- the loop 412 can have an inner diameter within a range of about 1.0 mm and about 6.0 mm.
- the spacing of the coils or wire wraps in the helix 414 influences the tissue response. If the coils are too close together, then tissue may not be able to grow around the wire or between the coils. If the coils are too far apart, then each coil may exert more localized force on the tissue, causing the tissue to erode at the point of contact. In addition, increasing the coil spacing makes it more likely that the upper coils will infiltrate surrounding organs. Setting the spacing between wraps, or coil pitch, within a range of about 1.0 mm to about 4.0 mm (or, more preferably, within a range of about 2.4 mm to about 2.5 mm), limits the erosion caused by the upper coils while allowing for tissue encapsulation of helix 414.
- the loop 412 is formed of two coils of uniform diameter that are stacked upon each other, approximating a solid cylinder that does not compress. Because the loop 412 is relatively incompressible, it erodes through the duodenal wall, but only to an extent determined by the length and compliance of the helix 414. A helix 414 with appropriate compliance typically prevents the loop 412 from penetrating much beyond the muscle layer of the duodenal wall.
- FIG. 5B shows an implant 430 with several projections 440, each of which includes a retrieval element 442 that extends from the loop 412 towards the wave anchor 102.
- the retrieval element 442 is a loop of wire formed with an optional hypodermic tube 472, which provides an additional surface for fibrotic tissue to encapsulate; this further encapsulation may increase the anchoring strength.
- Each retrieval element 442 fits in the conical cavity defined by its associated helical neck 414 and can be used to exert a force normal to the axis of the conical cavity on the helical protrusion 410.
- a normal force can be used to prevent or slow expansion of the helical protrusion 410 or to collapse an expanded helical protrusion 440.
- Other retrieval elements may be hooks, balls, or other suitable features for applying a normal force to the helix.
- a constraint 444 threaded through the retrieval element 442 keeps the helical protrusion 440 in a fully or partially collapsed state.
- the constraint 444 is a suture or biodegradeable element that allows the user to influence how quickly the helical protrusion 440 expands after implantation, which, in turn, affects how quickly the loop 412 penetrates the luminal wall. Releasing tension on the suture or engineering the decay time of the biodegradable element allows the helix 414 to open to its full height more slowly, prolonging the equilibrium time and slowing the effect of the helical protrusion 440 on the contacting tissue.
- a drawstring (not shown) that runs through some or all of retrieval elements 442 can be used to withdraw the protrusions 440 from the luminal wall. Pulling on the drawstring applies a normal force directly to the loops 412, causing the loops 412 to collapse into the coils below to disengage the helix 414 from the surrounding tissue. As the coils collapse, one within the next, they act as a "cheese cutter": each coil helps to shear the surrounding tissue from the coil above it as the above coil passes through the lower coil, freeing the helical protrusion 440 from any scar tissue that may have grown through or around the wire in the loop 412 and the helix 414. Pulling on the drawstring also causes the anchor 102 to collapse for endoscopic withdrawal from the implantation site as described below.
- FIG. 5C shows an implant 460 with an end effect 462 at the end of each helical protrusion 470.
- each end effect 462 is a post that is oriented in the center of a respective helical protrusion 470 and protrudes slightly beyond the loop 412 of the respective helical protrusion 470.
- the end effects 462 which may be sharpened to engage the contacting tissue more quickly, initiate an injury to the duodenal wall and lead the heads 412 through the duodenal wall. Because each end effect 462 pierces the luminal wall, it initiates the injury that causes fibrotic tissue to encapsulate its associated helical protrusion 470 more quickly.
- FIG. 6 is a perspective view of an alternative helical protrusion 510 with a retrieval element 542 formed of a single wire without a hypodermic tube.
- the wire is coiled to form a helix 514 and a loop 512, then folded and formed into a retrieval element 542.
- Excess wire extending from the tail of the retrieval element 542 is trimmed and may be sharpened to create an end effect 562.
- the base coil of the helix 414 can be trimmed and/or bent as necessary before the projection is attached to the wave anchor 102, e.g., with a crimp 416, as shown in FIGS. 5A-5C, or using any other suitable attachment.
- the helical protrusion can be fabricated with a post that runs up its center, and the post can be crimped or otherwise affixed to the anchor 102.
- FIGS. 7A-7C show how the helical protrusion 410 shown in FIG. 5 A engages a luminal wall to secure an implant 400 within the lumen.
- the implant 400 is inserted into the lumen in a compressed state, with the helical protrusion 410 collapsed against the collapsed anchor 102, as shown in FIG. 7A.
- Releasing the helical neck 414 allows the helical neck 414 to expand, causing a tent 603 to form in the duodenal wall 601, as shown in FIG. 7B.
- the neck 414 continues to expand against the duodenal wall 601, it pushes the loop 412 through wall 601, as shown in FIG. 7C.
- Scar tissue 607 forms about and possibly through the loop 412 and neck 414.
- initial studies suggest that helical necks 414 tend to encourage more fibrotic encapsulation than straight necks of similar height because helical necks have more wire in contact with the tissue.
- the compliance of the helical neck 414 affects how quickly the loop 412 penetrates the luminal wall 601. Initial studies suggest that the top-most coils in the helical neck 414 continue to push through tissue after initial contact until the contacting tissue and helix 414 come to equilibrium. If the helical neck 414 is as compliant as the luminal wall, however, then the neck 414 will not be able to push the loop 412 through the luminal wall 601. Since the compliance of the helical neck 414 is largely a function of wire diameter and pitch, increasing either the wire diameter or the pitch the wire diameter generally increases the rigidity of helical neck 414. Increasing the wire diameter too much may make it difficult to form the wire into tight loops to shape the loop 412.
- Wire with a diameter in the range of about 0.016 inch to about 0.040 inch is generally suitable for helical protrusions 410.
- Nitinol wire with a diameter of about 0.019" offers a balance: it can be formed into tight bends for the end of the helical neck 414 and the loop 412, yet forms a helix that is stiffer than the luminal wall 601. It can also be packed into a capsule for endoscopic delivery. The diameter of the helix 414 can also be varied to further customize the transition in stiffness and tissue response.
- FIGS. 5-7 show a helix 414 with a linear transition between successive coil diameters
- alternative helixes can have other shapes, including parabolic profiles, cylindrical profiles, hourglass profiles, and conical profiles (e.g., with the vertex of the cone connected to the anchor).
- the helix 414 can be formed in a flattened coil that is narrow at the center and flares out from the center into a flat spiral shape.
- the helix 414 could also be formed of a post that terminates in a coil with its wrappings aligned or angled with respect to one another in a corkscrew-like fashion. Compared to other three-dimensional shapes, tapered shapes tend to be easier to disengage from a mating surface.
- Transitions between coils or wraps in the helix 414 can be customized as desired.
- the coils in the helix 414 can be sized such that each coil fits into the coil below. This sizing of successive coils facilitates a lower profile for packing into the delivery catheter and facilitates disengagement from the duodenal wall.
- the compliance/stiffness of the protrusions disclosed herein can be characterized, in part, by the force required to deflect the protrusions from their respective relaxed (extended) states towards their respective collapsed states.
- compliance may be defined, in part, by the normal force required to deflect the protrusion at room temperature by a given amount towards the strut of the collapsible anchor.
- Measurement shows that applying a force of at least about 0.1 lbf normal to the head (i.e., parallel to the long axis of the lumen) completely collapses a straight-necked protrusion made of 0.010-inch diameter nitinol wire, with a total length of 13 mm, ending in a loop formed of two wraps of wire with an inner diameter of about 3 mm.
- Similar measurement shows that applying about 0.8 lbf normal to the head deflects the head by about 0.250 inch for a straight-necked protrusion made of 0.020-inch diameter nitinol wire, with a total length of 11.5 mm, ending in a loop formed of two wraps of wire with an inner diameter of about 3 mm.
- Other straight-necked protrusions may be deflected by about 0.250 inch from their relaxed positions by forces within a range of about 0.80 lbf to about 0.95 lbf.
- the compliance of a helical protrusion can be characterized, in part, by measuring the force required to (partially) collapse the helical protrusion at room temperature. Measurement shows that applying a force normal to the long axis of a helical protrusion within a range of about 0.19 lbf to about 1.75 lbf, or, more preferably, about 0.32 lbf to about 0.95 lbf, collapses the protrusion by about 0.250 inch, depending on the wire diameter, coil pitch, and coil size:
- Table 1 Normal force applied to compress nitinol helical protrusions by 0.250 inch at room temperature
- Helix stiffness can also be characterized by the force required to deflect the helix sideways, i.e., in the plane normal to the long axis of the helix. A balance must be struck between compressability and rigidity. Deflecting a nitinol helical protrusion with a 6 mm height, 6 mm base coil diameter, 3 mm top coil diameter, 4.0 mm coil spacing, and 0.020-inch wire diameter sideways by 0.250 inch at room temperature takes a force of at least about 0.033 lbf. Increasing the wire diameter to about 0.028 inch increases the force to about 0.135 lbf for a 0.250-inch deflection at room
- Each of the aforementioned implants may be deployed in the intestine, preferably in the duodenum, and more preferably in the duodenal bulb just distal to the pylorus.
- a doctor or other qualified person inserts the implant into the intestine with an endoscopic delivery device. During insertion, the delivery device holds the implant in a compressed state. Once in position, the implant is released from the delivery device and allowed to self-expand, causing each neck coupled to the anchor to push its respective loop against the intestinal wall.
- Some implants may include a sleeve coupled to the anchor, which can be deployed within the intestine as described in U.S. Patent No. 7,122,058; U.S. Patent No. 7,329,285; U.S. Patent No. 7,678,068; and U.S. Patent Application No. 11/057,861, filed on
- An implant secured with protrusions tipped with open loops may be removed laparoscopically, surgically, or, more preferably, endoscopically with an endoscope.
- an implant may be collapsed using a drawstring, then withdrawn from the intestine using an endoscope. Further details on endoscopic removal can be found in U.S. Application No. 11/318,083, filed on December 22, 2005, by Lamport and Melanson; and in U.S. Application No. 12/005,049, filed on December 20, 2007, by Levine et al. , both of which are incorporated herein by reference in their entireties.
- FIG. 8 shows an implant 700 that includes an anchor 702 with a polymer covering 704. Protrusions 710 projecting from the anchor 702 support open loops 712 that can be used to create fibrotic encapsulations in the intestinal wall as described above.
- a sleeve 706 is coupled to the distal side of the anchor 702 for extension into the intestine.
- the sleeve 706 may be permanently or detachably affixed to the anchor 702.
- a detachable sleeve can be endoscopically attached to or removed from a permanently or semi-permanently secured anchor depending on treatment progress.
- the sleeve 706 is floppy and conformable to the wall of the intestine when deployed.
- the polymer covering 704 and the sleeve 706 may be made of a fluoropolymer, such as ePTFE coated or impregnated with fluorinated ethylene polyethylene (FEP), or any other suitable material.
- FEP fluorinated ethylene polyethylene
- the sleeve 706 and anchor covering 704 can be a single, integrally formed piece. They can also be separate pieces, depending on whether the anchor 702 is partially or wholly uncovered, as long as the anchor 702 forms a sufficiently good seal between the sleeve 706 and the stomach, pylorus, and/or intestine to funnel chyme through the sleeve 706.
- Each loop 712 remains uncovered or only partially covered to promote the in-growth of fibrotic tissue.
- Anchors secured with loops and necks may also be used to secure restrictor plates within the gastrointestinal tract to treat obesity, such as the restrictor plates disclosed in U.S. Patent Application No. 10/811,293, filed on March 26, 2004, by Levine et al. ; U. S . Patent Application No . 11 /330,705 , filed on January 11 , 2006, by Levine et al. ; and U.S. Patent Application No. 11/827,674, filed on July 12, 2007, by Levine et al. , all of which are incorporated herein by reference in their entireties.
- An implant with a restrictor plate typically includes a restricting aperture that retards the outflow of food from the stomach to the intestine.
- the diameter of the aperture is less than 10 mm, is preferably less than 7 mm, and is more preferably initially in the range of about 3-5 mm.
- the aperture may be elastic and expandable under pressure from material flowing through the anchor and the aperture at elevated physiological pressures; as pressure increases, the aperture opens to greater diameters.
- the implant may include a sleeve that extends into the intestine.
- protrusions described above can be covered to further control interaction with contacting tissue.
- a bio-absorbable suture or adhesive could be used to affix the covering to the protrusion.
- the covering is free to fan open, creating an added level of control of interaction between the protrusion and the surrounding tissue.
- the protrusion may be made from a polymer or a composite material, such as a non-degradable or biodegradable material.
- Implants can also include different types of protrusions, e.g., any combination of straight protrusions with open loops, helical protrusions with open loops, and even pointed barbs.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Vascular Medicine (AREA)
- Transplantation (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Cardiology (AREA)
- Pulmonology (AREA)
- Gastroenterology & Hepatology (AREA)
- Child & Adolescent Psychology (AREA)
- Obesity (AREA)
- Nursing (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Prostheses (AREA)
Abstract
Description
Claims
Priority Applications (10)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP10754838.0A EP2475328B1 (en) | 2009-09-11 | 2010-09-10 | Anchors with open heads |
US13/394,975 US9265596B2 (en) | 2009-09-11 | 2010-09-10 | Anchors with open heads |
AU2010292118A AU2010292118B9 (en) | 2009-09-11 | 2010-09-10 | Anchors with open heads |
CN201080051202.9A CN102647957B (en) | 2009-09-11 | 2010-09-10 | Anchors with open heads |
US13/045,363 US8834553B2 (en) | 2009-09-11 | 2011-03-10 | Anchors with biodegradable constraints |
PCT/US2011/042334 WO2012006146A1 (en) | 2010-07-06 | 2011-06-29 | Anchors with biodegradable constraints |
CN201180004062.4A CN102665607B (en) | 2010-07-06 | 2011-06-29 | There is the mooring anchor of bioerodible bridle |
DE112011102287T DE112011102287T5 (en) | 2010-07-06 | 2011-06-29 | Fasteners with biodegradable deformations |
HK12109016.7A HK1168022A1 (en) | 2009-09-11 | 2012-09-13 | Anchors with open heads |
US14/459,612 US9642734B2 (en) | 2009-09-11 | 2014-08-14 | Anchors with biodegradable constraints |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US27638109P | 2009-09-11 | 2009-09-11 | |
US61/276,381 | 2009-09-11 | ||
US36180610P | 2010-07-06 | 2010-07-06 | |
US61/361,806 | 2010-07-06 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/045,363 Continuation-In-Part US8834553B2 (en) | 2009-09-11 | 2011-03-10 | Anchors with biodegradable constraints |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011031981A1 true WO2011031981A1 (en) | 2011-03-17 |
Family
ID=43016562
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2010/048444 WO2011031981A1 (en) | 2009-09-11 | 2010-09-10 | Anchors with open heads |
Country Status (6)
Country | Link |
---|---|
US (1) | US9265596B2 (en) |
EP (1) | EP2475328B1 (en) |
CN (1) | CN102647957B (en) |
AU (1) | AU2010292118B9 (en) |
HK (1) | HK1168022A1 (en) |
WO (1) | WO2011031981A1 (en) |
Cited By (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013040373A1 (en) * | 2011-09-16 | 2013-03-21 | W. L. Gore & Associates, Inc. | Medical device fixation anchors |
US8834553B2 (en) | 2009-09-11 | 2014-09-16 | Gi Dynamics, Inc. | Anchors with biodegradable constraints |
US8840659B2 (en) | 2011-04-28 | 2014-09-23 | Cook Medical Technologies Llc | Stent and stent-graft designs |
WO2014161446A1 (en) * | 2013-03-31 | 2014-10-09 | Wan Ping | Duodenal internal covering membrane |
WO2015007121A1 (en) * | 2013-07-18 | 2015-01-22 | Wan Ping | Medical instrument and application thereof |
US8956318B2 (en) | 2012-05-31 | 2015-02-17 | Valentx, Inc. | Devices and methods for gastrointestinal bypass |
WO2015153507A1 (en) | 2014-03-31 | 2015-10-08 | Spiration, Inc. | Anchoring mechanisms and systems for endoluminal devices |
US9198791B2 (en) | 2010-07-22 | 2015-12-01 | Endobetix Ltd. | Pancreaticobiliary diversion device |
US9265596B2 (en) | 2009-09-11 | 2016-02-23 | Gi Dynamics, Inc. | Anchors with open heads |
CN105596128A (en) * | 2016-01-23 | 2016-05-25 | 万平 | Duodenum internal wrapping film |
US9451960B2 (en) | 2012-05-31 | 2016-09-27 | Valentx, Inc. | Devices and methods for gastrointestinal bypass |
US9456917B2 (en) | 2013-08-28 | 2016-10-04 | Ethicon Endo-Surgery, Inc. | Endoscopic transoral duodenal sleeve applier |
WO2016191400A1 (en) * | 2015-05-27 | 2016-12-01 | W. L. Gore & Associates, Inc. | Stent graft device with anchoring members having adjustable geometries |
US9554806B2 (en) | 2011-09-16 | 2017-01-31 | W. L. Gore & Associates, Inc. | Occlusive devices |
US9561127B2 (en) | 2002-11-01 | 2017-02-07 | Valentx, Inc. | Apparatus and methods for treatment of morbid obesity |
US9675439B2 (en) | 2012-12-21 | 2017-06-13 | Cook Medical Technologies Llc | Stent designs for reduced infolding of graft material |
US9675489B2 (en) | 2012-05-31 | 2017-06-13 | Valentx, Inc. | Devices and methods for gastrointestinal bypass |
EP3107491A4 (en) * | 2014-02-19 | 2017-08-02 | Howard Riina | A y-lock tracheal stent system and method of use |
US9757264B2 (en) | 2013-03-13 | 2017-09-12 | Valentx, Inc. | Devices and methods for gastrointestinal bypass |
US10117765B2 (en) | 2011-06-14 | 2018-11-06 | W.L. Gore Associates, Inc | Apposition fiber for use in endoluminal deployment of expandable implants |
US10350101B2 (en) | 2002-11-01 | 2019-07-16 | Valentx, Inc. | Devices and methods for endolumenal gastrointestinal bypass |
US10350099B2 (en) | 2006-09-01 | 2019-07-16 | Ethicon Endo-Surgery, Inc. | Devices and methods for anchoring an endoluminal sleeve in the GI tract |
US10646226B2 (en) * | 2013-11-20 | 2020-05-12 | James E. Coleman | Controlling a size of a pyloris |
US10799242B2 (en) | 2013-11-20 | 2020-10-13 | James E. Coleman | Adjustable heart valve implant |
US10993803B2 (en) | 2011-04-01 | 2021-05-04 | W. L. Gore & Associates, Inc. | Elastomeric leaflet for prosthetic heart valves |
US11123174B2 (en) | 2012-03-13 | 2021-09-21 | W. L. Gore & Associates, Inc. | External steerable fiber for use in endoluminal deployment of expandable devices |
US11129622B2 (en) | 2015-05-14 | 2021-09-28 | W. L. Gore & Associates, Inc. | Devices and methods for occlusion of an atrial appendage |
US11173023B2 (en) | 2017-10-16 | 2021-11-16 | W. L. Gore & Associates, Inc. | Medical devices and anchors therefor |
US11324615B2 (en) | 2011-11-14 | 2022-05-10 | W. L. Gore & Associates, Inc. | External steerable fiber for use in endoluminal deployment of expandable devices |
US11382781B2 (en) | 2011-11-14 | 2022-07-12 | W. L. Gore & Associates, Inc. | External steerable fiber for use in endoluminal deployment of expandable devices |
WO2023140214A1 (en) * | 2022-01-20 | 2023-07-27 | 朝日インテック株式会社 | Stent |
US11911258B2 (en) | 2013-06-26 | 2024-02-27 | W. L. Gore & Associates, Inc. | Space filling devices |
Families Citing this family (108)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7122058B2 (en) | 2002-12-02 | 2006-10-17 | Gi Dynamics, Inc. | Anti-obesity devices |
US7025791B2 (en) * | 2002-12-02 | 2006-04-11 | Gi Dynamics, Inc. | Bariatric sleeve |
US7608114B2 (en) | 2002-12-02 | 2009-10-27 | Gi Dynamics, Inc. | Bariatric sleeve |
US7476256B2 (en) | 2003-12-09 | 2009-01-13 | Gi Dynamics, Inc. | Intestinal sleeve |
WO2006097931A2 (en) | 2005-03-17 | 2006-09-21 | Valtech Cardio, Ltd. | Mitral valve treatment techniques |
US8951285B2 (en) | 2005-07-05 | 2015-02-10 | Mitralign, Inc. | Tissue anchor, anchoring system and methods of using the same |
US11259924B2 (en) | 2006-12-05 | 2022-03-01 | Valtech Cardio Ltd. | Implantation of repair devices in the heart |
US9883943B2 (en) | 2006-12-05 | 2018-02-06 | Valtech Cardio, Ltd. | Implantation of repair devices in the heart |
US11660190B2 (en) | 2007-03-13 | 2023-05-30 | Edwards Lifesciences Corporation | Tissue anchors, systems and methods, and devices |
US8382829B1 (en) | 2008-03-10 | 2013-02-26 | Mitralign, Inc. | Method to reduce mitral regurgitation by cinching the commissure of the mitral valve |
CA2728078A1 (en) | 2008-06-16 | 2010-01-14 | Valtech Cardio, Ltd. | Annuloplasty devices and methods of delivery therefor |
US8241351B2 (en) | 2008-12-22 | 2012-08-14 | Valtech Cardio, Ltd. | Adjustable partial annuloplasty ring and mechanism therefor |
US8926696B2 (en) | 2008-12-22 | 2015-01-06 | Valtech Cardio, Ltd. | Adjustable annuloplasty devices and adjustment mechanisms therefor |
US10517719B2 (en) | 2008-12-22 | 2019-12-31 | Valtech Cardio, Ltd. | Implantation of repair devices in the heart |
US8715342B2 (en) | 2009-05-07 | 2014-05-06 | Valtech Cardio, Ltd. | Annuloplasty ring with intra-ring anchoring |
US8545553B2 (en) | 2009-05-04 | 2013-10-01 | Valtech Cardio, Ltd. | Over-wire rotation tool |
US9011530B2 (en) | 2008-12-22 | 2015-04-21 | Valtech Cardio, Ltd. | Partially-adjustable annuloplasty structure |
US8353956B2 (en) | 2009-02-17 | 2013-01-15 | Valtech Cardio, Ltd. | Actively-engageable movement-restriction mechanism for use with an annuloplasty structure |
US9968452B2 (en) | 2009-05-04 | 2018-05-15 | Valtech Cardio, Ltd. | Annuloplasty ring delivery cathethers |
US20100305590A1 (en) * | 2009-05-29 | 2010-12-02 | Gi Dynamics, Inc. | Transpyloric Anchoring |
US9180007B2 (en) | 2009-10-29 | 2015-11-10 | Valtech Cardio, Ltd. | Apparatus and method for guide-wire based advancement of an adjustable implant |
US9011520B2 (en) | 2009-10-29 | 2015-04-21 | Valtech Cardio, Ltd. | Tissue anchor for annuloplasty device |
US10098737B2 (en) | 2009-10-29 | 2018-10-16 | Valtech Cardio, Ltd. | Tissue anchor for annuloplasty device |
EP2506777B1 (en) | 2009-12-02 | 2020-11-25 | Valtech Cardio, Ltd. | Combination of spool assembly coupled to a helical anchor and delivery tool for implantation thereof |
US8870950B2 (en) | 2009-12-08 | 2014-10-28 | Mitral Tech Ltd. | Rotation-based anchoring of an implant |
US8579964B2 (en) | 2010-05-05 | 2013-11-12 | Neovasc Inc. | Transcatheter mitral valve prosthesis |
US10010439B2 (en) | 2010-06-13 | 2018-07-03 | Synerz Medical, Inc. | Intragastric device for treating obesity |
US8628554B2 (en) | 2010-06-13 | 2014-01-14 | Virender K. Sharma | Intragastric device for treating obesity |
US10420665B2 (en) | 2010-06-13 | 2019-09-24 | W. L. Gore & Associates, Inc. | Intragastric device for treating obesity |
US9526648B2 (en) | 2010-06-13 | 2016-12-27 | Synerz Medical, Inc. | Intragastric device for treating obesity |
US11653910B2 (en) | 2010-07-21 | 2023-05-23 | Cardiovalve Ltd. | Helical anchor implantation |
US9554897B2 (en) | 2011-04-28 | 2017-01-31 | Neovasc Tiara Inc. | Methods and apparatus for engaging a valve prosthesis with tissue |
US9308087B2 (en) | 2011-04-28 | 2016-04-12 | Neovasc Tiara Inc. | Sequentially deployed transcatheter mitral valve prosthesis |
US10792152B2 (en) | 2011-06-23 | 2020-10-06 | Valtech Cardio, Ltd. | Closed band for percutaneous annuloplasty |
US9549817B2 (en) | 2011-09-22 | 2017-01-24 | Transmural Systems Llc | Devices, systems and methods for repairing lumenal systems |
BR112014010523A2 (en) * | 2011-11-01 | 2017-06-13 | Endosphere Inc | intragastric device and method of anchoring a treatment device within the stomach |
US8858623B2 (en) | 2011-11-04 | 2014-10-14 | Valtech Cardio, Ltd. | Implant having multiple rotational assemblies |
EP2775896B1 (en) | 2011-11-08 | 2020-01-01 | Valtech Cardio, Ltd. | Controlled steering functionality for implant-delivery tool |
EP2790609B1 (en) | 2011-12-12 | 2015-09-09 | David Alon | Heart valve repair device |
US9345573B2 (en) | 2012-05-30 | 2016-05-24 | Neovasc Tiara Inc. | Methods and apparatus for loading a prosthesis onto a delivery system |
US20140046347A1 (en) * | 2012-08-10 | 2014-02-13 | W. L. Gore & Associates, Inc. | Devices, systems and methods for engaging tissue |
US9585748B2 (en) * | 2012-09-25 | 2017-03-07 | Edwards Lifesciences Corporation | Methods for replacing a native heart valve and aorta with a prosthetic heart valve and conduit |
WO2014052818A1 (en) | 2012-09-29 | 2014-04-03 | Mitralign, Inc. | Plication lock delivery system and method of use thereof |
WO2014064694A2 (en) | 2012-10-23 | 2014-05-01 | Valtech Cardio, Ltd. | Controlled steering functionality for implant-delivery tool |
WO2014064695A2 (en) | 2012-10-23 | 2014-05-01 | Valtech Cardio, Ltd. | Percutaneous tissue anchor techniques |
US12053378B2 (en) | 2012-11-07 | 2024-08-06 | Transmural Systems Llc | Devices, systems and methods for repairing lumenal systems |
US9730793B2 (en) | 2012-12-06 | 2017-08-15 | Valtech Cardio, Ltd. | Techniques for guide-wire based advancement of a tool |
US9681952B2 (en) | 2013-01-24 | 2017-06-20 | Mitraltech Ltd. | Anchoring of prosthetic valve supports |
US9675451B2 (en) * | 2013-02-01 | 2017-06-13 | Medtronic CV Luxembourg S.a.r.l. | Anti-paravalvular leakage component for a transcatheter valve prosthesis |
EP2961351B1 (en) | 2013-02-26 | 2018-11-28 | Mitralign, Inc. | Devices for percutaneous tricuspid valve repair |
US10449333B2 (en) | 2013-03-14 | 2019-10-22 | Valtech Cardio, Ltd. | Guidewire feeder |
US9724195B2 (en) | 2013-03-15 | 2017-08-08 | Mitralign, Inc. | Translation catheters and systems |
WO2014162496A1 (en) * | 2013-04-01 | 2014-10-09 | テルモ株式会社 | Device for digestive tract |
US9572665B2 (en) | 2013-04-04 | 2017-02-21 | Neovasc Tiara Inc. | Methods and apparatus for delivering a prosthetic valve to a beating heart |
US10034784B2 (en) * | 2013-04-17 | 2018-07-31 | Gilbert H. L. Tang | Heart valve and endovascular graft components and method for delivery |
SG10201805117UA (en) * | 2013-08-12 | 2018-07-30 | Mitral Valve Tech Sarl | Apparatus and methods for implanting a replacement heart valve |
US10070857B2 (en) | 2013-08-31 | 2018-09-11 | Mitralign, Inc. | Devices and methods for locating and implanting tissue anchors at mitral valve commissure |
US10299793B2 (en) | 2013-10-23 | 2019-05-28 | Valtech Cardio, Ltd. | Anchor magazine |
WO2015060424A1 (en) * | 2013-10-25 | 2015-04-30 | オリンパスメディカルシステムズ株式会社 | Medical stent |
US9610162B2 (en) | 2013-12-26 | 2017-04-04 | Valtech Cardio, Ltd. | Implantation of flexible implant |
US9744062B2 (en) | 2014-04-30 | 2017-08-29 | Lean Medical Technologies, LLC | Gastrointestinal device |
WO2015193317A1 (en) * | 2014-06-20 | 2015-12-23 | Endo Tools Therapeutics S.A. | Assembly for securing gastrointestinal tissue folds |
US10524910B2 (en) | 2014-07-30 | 2020-01-07 | Mitraltech Ltd. 3 Ariel Sharon Avenue | Articulatable prosthetic valve |
EP4331503A3 (en) | 2014-10-14 | 2024-06-05 | Edwards Lifesciences Innovation (Israel) Ltd. | Leaflet-restraining techniques |
US9907547B2 (en) | 2014-12-02 | 2018-03-06 | 4Tech Inc. | Off-center tissue anchors |
CA3162308A1 (en) | 2015-02-05 | 2016-08-11 | Cardiovalve Ltd. | Prosthetic valve with axially-sliding frames |
US20160256269A1 (en) | 2015-03-05 | 2016-09-08 | Mitralign, Inc. | Devices for treating paravalvular leakage and methods use thereof |
FR3034307B1 (en) | 2015-04-03 | 2021-10-22 | Univ Grenoble 1 | IMPLANTABLE INTESTINAL REACTOR |
SG10202010021SA (en) | 2015-04-30 | 2020-11-27 | Valtech Cardio Ltd | Annuloplasty technologies |
EP3331473A1 (en) * | 2015-08-05 | 2018-06-13 | Sanford Health | Self-expanding bridging stent with anchoring projections and methods for use |
EP3167845A1 (en) * | 2015-11-12 | 2017-05-17 | The Provost, Fellows, Foundation Scholars, & the other members of Board, of the College of Holy and Undiv. Trinity of Queen Elizabeth near Dublin | An implantable biocompatible expander suitable for treatment of constrictions of body lumen |
JP7002451B2 (en) | 2015-12-15 | 2022-01-20 | ニオバスク ティアラ インコーポレイテッド | Transseptal delivery system |
WO2017117370A2 (en) | 2015-12-30 | 2017-07-06 | Mitralign, Inc. | System and method for reducing tricuspid regurgitation |
US10751182B2 (en) | 2015-12-30 | 2020-08-25 | Edwards Lifesciences Corporation | System and method for reshaping right heart |
WO2017127939A1 (en) | 2016-01-29 | 2017-08-03 | Neovasc Tiara Inc. | Prosthetic valve for avoiding obstruction of outflow |
US10531866B2 (en) | 2016-02-16 | 2020-01-14 | Cardiovalve Ltd. | Techniques for providing a replacement valve and transseptal communication |
WO2017172021A1 (en) * | 2016-03-30 | 2017-10-05 | Spiration, Inc. D/B/A Olympus Respiratory America | Airway valve with anchors |
US10779980B2 (en) | 2016-04-27 | 2020-09-22 | Synerz Medical, Inc. | Intragastric device for treating obesity |
US20200146854A1 (en) | 2016-05-16 | 2020-05-14 | Elixir Medical Corporation | Methods and devices for heart valve repair |
US10702274B2 (en) | 2016-05-26 | 2020-07-07 | Edwards Lifesciences Corporation | Method and system for closing left atrial appendage |
GB201611910D0 (en) | 2016-07-08 | 2016-08-24 | Valtech Cardio Ltd | Adjustable annuloplasty device with alternating peaks and troughs |
GB201613219D0 (en) | 2016-08-01 | 2016-09-14 | Mitraltech Ltd | Minimally-invasive delivery systems |
EP3848003A1 (en) | 2016-08-10 | 2021-07-14 | Cardiovalve Ltd. | Prosthetic valve with concentric frames |
CN113893064A (en) | 2016-11-21 | 2022-01-07 | 内奥瓦斯克迪亚拉公司 | Methods and systems for rapid retrieval of transcatheter heart valve delivery systems |
WO2018111916A1 (en) | 2016-12-12 | 2018-06-21 | Gi Dynamics, Inc. | Therapeutic methods involving gastrointestinal implants |
US12061205B2 (en) | 2016-12-12 | 2024-08-13 | Morphic Medical, Inc. | Methods for assessing treatment with a gastrointestinal implant |
US11045627B2 (en) | 2017-04-18 | 2021-06-29 | Edwards Lifesciences Corporation | Catheter system with linear actuation control mechanism |
US11793633B2 (en) | 2017-08-03 | 2023-10-24 | Cardiovalve Ltd. | Prosthetic heart valve |
US12064347B2 (en) | 2017-08-03 | 2024-08-20 | Cardiovalve Ltd. | Prosthetic heart valve |
US10856984B2 (en) | 2017-08-25 | 2020-12-08 | Neovasc Tiara Inc. | Sequentially deployed transcatheter mitral valve prosthesis |
EP3456377B1 (en) * | 2017-09-14 | 2023-04-26 | Sorin CRM SAS | Attachment means for implantable cardiac device |
US10835221B2 (en) | 2017-11-02 | 2020-11-17 | Valtech Cardio, Ltd. | Implant-cinching devices and systems |
US11135062B2 (en) | 2017-11-20 | 2021-10-05 | Valtech Cardio Ltd. | Cinching of dilated heart muscle |
CA3086884A1 (en) | 2018-01-24 | 2019-08-01 | Valtech Cardio, Ltd. | Contraction of an annuloplasty structure |
WO2019145941A1 (en) | 2018-01-26 | 2019-08-01 | Valtech Cardio, Ltd. | Techniques for facilitating heart valve tethering and chord replacement |
CN112088031A (en) * | 2018-05-02 | 2020-12-15 | 纳米视网膜有限公司 | Retinal implant fixation devices and techniques |
MX2020013973A (en) | 2018-07-12 | 2021-06-15 | Valtech Cardio Ltd | Annuloplasty systems and locking tools therefor. |
CN113271890B (en) | 2018-11-08 | 2024-08-30 | 内奥瓦斯克迪亚拉公司 | Ventricular deployment of transcatheter mitral valve prosthesis |
AU2020233892A1 (en) | 2019-03-08 | 2021-11-04 | Neovasc Tiara Inc. | Retrievable prosthesis delivery system |
WO2020206012A1 (en) | 2019-04-01 | 2020-10-08 | Neovasc Tiara Inc. | Controllably deployable prosthetic valve |
WO2020210652A1 (en) | 2019-04-10 | 2020-10-15 | Neovasc Tiara Inc. | Prosthetic valve with natural blood flow |
CN114025813B (en) | 2019-05-20 | 2024-05-14 | 内奥瓦斯克迪亚拉公司 | Introducer with hemostatic mechanism |
WO2020257643A1 (en) | 2019-06-20 | 2020-12-24 | Neovasc Tiara Inc. | Low profile prosthetic mitral valve |
AU2020375903A1 (en) | 2019-10-29 | 2021-12-23 | Edwards Lifesciences Innovation (Israel) Ltd. | Annuloplasty and tissue anchor technologies |
US11602621B2 (en) | 2019-11-22 | 2023-03-14 | ProVerum Limited | Device for controllably deploying expandable implants |
US11273025B2 (en) | 2019-11-22 | 2022-03-15 | Pro Verum Limited | Expandable implant delivery device |
US12023247B2 (en) | 2020-05-20 | 2024-07-02 | Edwards Lifesciences Corporation | Reducing the diameter of a cardiac valve annulus with independent control over each of the anchors that are launched into the annulus |
US11648101B2 (en) | 2021-04-30 | 2023-05-16 | Davol Inc. | Repositionable surgical anchors |
Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0701800A1 (en) | 1994-09-15 | 1996-03-20 | C.R. Bard, Inc. | Method and apparatus for recapture of hooked endoprosthesis |
US5630829A (en) | 1994-12-09 | 1997-05-20 | Intervascular, Inc. | High hoop strength intraluminal stent |
US5786105A (en) | 1995-07-28 | 1998-07-28 | Nippon Telegraph And Telephone Public Corporation | Solid oxide fuel cell |
WO2000018322A1 (en) * | 1998-09-29 | 2000-04-06 | Edwards Lifesciences Corporation | Expanding intraluminal device |
WO2004041133A1 (en) | 2002-11-01 | 2004-05-21 | Valentx, Inc. | Apparatus and methods for treatment of morbid obesity |
WO2004087014A2 (en) | 2003-03-28 | 2004-10-14 | Gi Dynamics, Inc. | Anti-obesity devices |
US20050085923A1 (en) * | 2002-12-02 | 2005-04-21 | Gi Dynamics, Inc. | Anti-obesity devices |
US20050102024A1 (en) | 2001-04-20 | 2005-05-12 | John Riccotta | Apparatus and method for fixation of vascular grafts |
WO2006002492A1 (en) | 2004-07-06 | 2006-01-12 | Baker Medical Research Institute | Treating valvular insufficiency |
US7025791B2 (en) | 2002-12-02 | 2006-04-11 | Gi Dynamics, Inc. | Bariatric sleeve |
US7476256B2 (en) | 2003-12-09 | 2009-01-13 | Gi Dynamics, Inc. | Intestinal sleeve |
US7608114B2 (en) | 2002-12-02 | 2009-10-27 | Gi Dynamics, Inc. | Bariatric sleeve |
US7678068B2 (en) | 2002-12-02 | 2010-03-16 | Gi Dynamics, Inc. | Atraumatic delivery devices |
Family Cites Families (54)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2423231A1 (en) | 1978-04-19 | 1979-11-16 | Synthelabo | ENDOCAVITY CARDIAC STIMULATION PROBE |
US4616439A (en) | 1984-07-02 | 1986-10-14 | Lee Jong J | Automatic fish hook |
US5531783A (en) | 1995-01-17 | 1996-07-02 | Vitatron Medical, B.V. | Pacing lead with x-ray visible soluble covering and method of inserting same into a patient's heart |
US6254642B1 (en) | 1997-12-09 | 2001-07-03 | Thomas V. Taylor | Perorally insertable gastroesophageal anti-reflux valve prosthesis and tool for implantation thereof |
US5942276A (en) | 1998-01-16 | 1999-08-24 | Medtronic, Inc. | Method of manufacturing x-ray visible soluble covering |
AU3812099A (en) | 1998-04-01 | 1999-10-18 | Bionx Implants Oy | Bioabsorbable surgical fastener for tissue treatment |
WO2000042949A2 (en) | 1999-01-22 | 2000-07-27 | Gore Enterprise Holdings, Inc. | A biliary stent-graft |
US7160312B2 (en) | 1999-06-25 | 2007-01-09 | Usgi Medical, Inc. | Implantable artificial partition and methods of use |
US6458153B1 (en) | 1999-12-31 | 2002-10-01 | Abps Venture One, Ltd. | Endoluminal cardiac and venous valve prostheses and methods of manufacture and delivery thereof |
ATE331487T1 (en) * | 2000-03-09 | 2006-07-15 | Design & Performance Cyprus Lt | STENT WITH SHEATH ATTACHMENTS |
CA2400072C (en) | 2000-03-14 | 2010-01-19 | Cook Incorporated | Endovascular stent graft |
US6730056B1 (en) | 2000-09-21 | 2004-05-04 | Motorola, Inc. | Eye implant for treating glaucoma and method for manufacturing same |
US6663633B1 (en) | 2000-10-25 | 2003-12-16 | Pierson, Iii Raymond H. | Helical orthopedic fixation and reduction device, insertion system, and associated methods |
DE10125999A1 (en) | 2001-05-18 | 2002-11-21 | Biotronik Mess & Therapieg | Implantable bio-resorbable vessel-wall-support consists of a framework of interconnected arms with different cross-sections, thicknesses and widths |
NZ514279A (en) | 2001-09-20 | 2004-02-27 | Ashmont Holdings Ltd | Intraruminal device for dispensing medication where device has arms that open to keep the device in the animal's rumen after a constraint device dissolves |
US6896665B2 (en) | 2001-12-10 | 2005-05-24 | Applied Medical Research | Gastrostomy device package and method of assembly |
FR2834443B1 (en) | 2002-01-09 | 2004-04-02 | Sofradim Production | GASTRIC RING OF TREATMENT OF OBESITY |
US20030144578A1 (en) | 2002-01-25 | 2003-07-31 | Koster J. Kenneth | Anastomosis anchoring device and method |
DE60334791D1 (en) | 2002-05-16 | 2010-12-16 | Cook Inc | FLEXIBLE RESISTANCE TO ANCHOR A PROSTHESIS |
US7101395B2 (en) * | 2002-06-12 | 2006-09-05 | Mitral Interventions, Inc. | Method and apparatus for tissue connection |
US20070083258A1 (en) | 2005-10-06 | 2007-04-12 | Robert Falotico | Intraluminal device and therapeutic agent combination for treating aneurysmal disease |
US20090149871A9 (en) | 2002-11-01 | 2009-06-11 | Jonathan Kagan | Devices and methods for treating morbid obesity |
US7192447B2 (en) | 2002-12-19 | 2007-03-20 | Synthes (Usa) | Intervertebral implant |
US20040143342A1 (en) | 2003-01-16 | 2004-07-22 | Stack Richard S. | Satiation pouches and methods of use |
JP2005021504A (en) | 2003-07-04 | 2005-01-27 | Terumo Corp | Stents for indwelling in living body |
US7780701B1 (en) | 2003-08-13 | 2010-08-24 | Biomet Sports Medicine, Llc | Suture anchor |
US8057420B2 (en) * | 2003-12-09 | 2011-11-15 | Gi Dynamics, Inc. | Gastrointestinal implant with drawstring |
US20060212042A1 (en) | 2005-03-17 | 2006-09-21 | Lamport Ronald B | Removal and repositioning device |
EP1713416B1 (en) | 2004-01-27 | 2010-01-20 | Med Institute, Inc. | Anchoring barb for attachment to a medical prosthesis |
US20060025857A1 (en) * | 2004-04-23 | 2006-02-02 | Bjarne Bergheim | Implantable prosthetic valve |
DE602005027570D1 (en) | 2004-07-09 | 2011-06-01 | Gi Dynamics Inc | DEVICES FOR PLACING A GASTROTINTESTINAL SLEEVE |
US7771382B2 (en) | 2005-01-19 | 2010-08-10 | Gi Dynamics, Inc. | Resistive anti-obesity devices |
US7785291B2 (en) | 2005-03-01 | 2010-08-31 | Tulip Medical Ltd. | Bioerodible self-deployable intragastric implants |
US7828830B2 (en) | 2005-05-12 | 2010-11-09 | Lanx, Inc. | Dynamic spinal stabilization |
US20080221673A1 (en) | 2005-08-12 | 2008-09-11 | Donald Bobo | Medical implant with reinforcement mechanism |
US7611534B2 (en) | 2005-08-25 | 2009-11-03 | The Cleveland Clinic Foundation | Percutaneous atrioventricular valve and method of use |
US20070073391A1 (en) | 2005-09-28 | 2007-03-29 | Henry Bourang | System and method for delivering a mitral valve repair device |
US7563277B2 (en) | 2005-10-24 | 2009-07-21 | Cook Incorporated | Removable covering for implantable frame projections |
US20070123994A1 (en) * | 2005-11-29 | 2007-05-31 | Ethicon Endo-Surgery, Inc. | Internally Placed Gastric Restriction Device |
CA2633861A1 (en) | 2005-12-30 | 2007-07-12 | C.R. Bard Inc. | Embolus blood clot filter with bio-resorbable coated filter members |
EP2032093B1 (en) | 2006-05-18 | 2013-09-04 | Tulip Medical Ltd. | Bioerodible intragastric implant |
US7819836B2 (en) | 2006-06-23 | 2010-10-26 | Gi Dynamics, Inc. | Resistive anti-obesity devices |
ES2527923T3 (en) | 2006-09-02 | 2015-02-02 | Barosense, Inc. | Intestinal sleeves and associated deployment systems and methods |
EP2157919A4 (en) | 2007-06-11 | 2011-06-22 | Valentx Inc | Endoscopic delivery devices and methods |
WO2009029744A1 (en) | 2007-08-31 | 2009-03-05 | Wilson-Cook Medical, Inc. | Medical implant having improved drug eluting features |
US20090082847A1 (en) | 2007-09-26 | 2009-03-26 | Boston Scientific Corporation | System and method of securing stent barbs |
US7981151B2 (en) | 2007-10-15 | 2011-07-19 | Edwards Lifesciences Corporation | Transcatheter heart valve with micro-anchors |
US8574284B2 (en) | 2007-12-26 | 2013-11-05 | Cook Medical Technologies Llc | Low profile non-symmetrical bare alignment stents with graft |
US20090264985A1 (en) | 2008-04-17 | 2009-10-22 | Medtronic Vascular, Inc. | Branch Vessel Suture Stent System and Method |
US7972370B2 (en) | 2008-04-24 | 2011-07-05 | Medtronic Vascular, Inc. | Stent graft system and method of use |
EP2424471B1 (en) | 2009-04-27 | 2020-05-06 | Cook Medical Technologies LLC | Stent with protected barbs |
US20100305590A1 (en) | 2009-05-29 | 2010-12-02 | Gi Dynamics, Inc. | Transpyloric Anchoring |
US9265596B2 (en) | 2009-09-11 | 2016-02-23 | Gi Dynamics, Inc. | Anchors with open heads |
US8834553B2 (en) | 2009-09-11 | 2014-09-16 | Gi Dynamics, Inc. | Anchors with biodegradable constraints |
-
2010
- 2010-09-10 US US13/394,975 patent/US9265596B2/en not_active Expired - Fee Related
- 2010-09-10 EP EP10754838.0A patent/EP2475328B1/en not_active Not-in-force
- 2010-09-10 WO PCT/US2010/048444 patent/WO2011031981A1/en active Application Filing
- 2010-09-10 CN CN201080051202.9A patent/CN102647957B/en not_active Expired - Fee Related
- 2010-09-10 AU AU2010292118A patent/AU2010292118B9/en not_active Ceased
-
2012
- 2012-09-13 HK HK12109016.7A patent/HK1168022A1/en not_active IP Right Cessation
Patent Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0701800A1 (en) | 1994-09-15 | 1996-03-20 | C.R. Bard, Inc. | Method and apparatus for recapture of hooked endoprosthesis |
US5630829A (en) | 1994-12-09 | 1997-05-20 | Intervascular, Inc. | High hoop strength intraluminal stent |
US5786105A (en) | 1995-07-28 | 1998-07-28 | Nippon Telegraph And Telephone Public Corporation | Solid oxide fuel cell |
WO2000018322A1 (en) * | 1998-09-29 | 2000-04-06 | Edwards Lifesciences Corporation | Expanding intraluminal device |
US20050102024A1 (en) | 2001-04-20 | 2005-05-12 | John Riccotta | Apparatus and method for fixation of vascular grafts |
WO2004041133A1 (en) | 2002-11-01 | 2004-05-21 | Valentx, Inc. | Apparatus and methods for treatment of morbid obesity |
US20050085923A1 (en) * | 2002-12-02 | 2005-04-21 | Gi Dynamics, Inc. | Anti-obesity devices |
US7025791B2 (en) | 2002-12-02 | 2006-04-11 | Gi Dynamics, Inc. | Bariatric sleeve |
US7122058B2 (en) | 2002-12-02 | 2006-10-17 | Gi Dynamics, Inc. | Anti-obesity devices |
US7329285B2 (en) | 2002-12-02 | 2008-02-12 | Gi Dynamics, Inc. | Bariatric sleeve delivery devices |
US7608114B2 (en) | 2002-12-02 | 2009-10-27 | Gi Dynamics, Inc. | Bariatric sleeve |
US7678068B2 (en) | 2002-12-02 | 2010-03-16 | Gi Dynamics, Inc. | Atraumatic delivery devices |
WO2004087014A2 (en) | 2003-03-28 | 2004-10-14 | Gi Dynamics, Inc. | Anti-obesity devices |
US7476256B2 (en) | 2003-12-09 | 2009-01-13 | Gi Dynamics, Inc. | Intestinal sleeve |
WO2006002492A1 (en) | 2004-07-06 | 2006-01-12 | Baker Medical Research Institute | Treating valvular insufficiency |
Cited By (59)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10350101B2 (en) | 2002-11-01 | 2019-07-16 | Valentx, Inc. | Devices and methods for endolumenal gastrointestinal bypass |
US9839546B2 (en) | 2002-11-01 | 2017-12-12 | Valentx, Inc. | Apparatus and methods for treatment of morbid obesity |
US9561127B2 (en) | 2002-11-01 | 2017-02-07 | Valentx, Inc. | Apparatus and methods for treatment of morbid obesity |
US10350099B2 (en) | 2006-09-01 | 2019-07-16 | Ethicon Endo-Surgery, Inc. | Devices and methods for anchoring an endoluminal sleeve in the GI tract |
US8834553B2 (en) | 2009-09-11 | 2014-09-16 | Gi Dynamics, Inc. | Anchors with biodegradable constraints |
US9642734B2 (en) | 2009-09-11 | 2017-05-09 | Gi Dynamics, Inc. | Anchors with biodegradable constraints |
US9265596B2 (en) | 2009-09-11 | 2016-02-23 | Gi Dynamics, Inc. | Anchors with open heads |
US9198791B2 (en) | 2010-07-22 | 2015-12-01 | Endobetix Ltd. | Pancreaticobiliary diversion device |
US10993803B2 (en) | 2011-04-01 | 2021-05-04 | W. L. Gore & Associates, Inc. | Elastomeric leaflet for prosthetic heart valves |
US8840659B2 (en) | 2011-04-28 | 2014-09-23 | Cook Medical Technologies Llc | Stent and stent-graft designs |
US9060853B2 (en) | 2011-04-28 | 2015-06-23 | Cook Medical Technologies Llc | Stent and stent-graft designs |
US10117765B2 (en) | 2011-06-14 | 2018-11-06 | W.L. Gore Associates, Inc | Apposition fiber for use in endoluminal deployment of expandable implants |
US9597086B2 (en) | 2011-09-16 | 2017-03-21 | W. L. Gore & Associates, Inc. | Occlusive devices |
WO2013040373A1 (en) * | 2011-09-16 | 2013-03-21 | W. L. Gore & Associates, Inc. | Medical device fixation anchors |
US11457925B2 (en) | 2011-09-16 | 2022-10-04 | W. L. Gore & Associates, Inc. | Occlusive devices |
US9333101B2 (en) | 2011-09-16 | 2016-05-10 | W. L. Gore & Associates Inc. | Medical device fixation anchors |
CN103930043B (en) * | 2011-09-16 | 2016-06-29 | W.L.戈尔及同仁股份有限公司 | Medical treatment device fixes anchor log |
CN103930043A (en) * | 2011-09-16 | 2014-07-16 | W.L.戈尔及同仁股份有限公司 | Medical device fixation anchors |
US8870947B2 (en) | 2011-09-16 | 2014-10-28 | W.L. Gore & Associates, Inc. | Medical device fixation anchors |
US9554806B2 (en) | 2011-09-16 | 2017-01-31 | W. L. Gore & Associates, Inc. | Occlusive devices |
EP3205271A1 (en) * | 2011-09-16 | 2017-08-16 | W. L. Gore & Associates, Inc. | Medical implant fixation anchors |
US11382781B2 (en) | 2011-11-14 | 2022-07-12 | W. L. Gore & Associates, Inc. | External steerable fiber for use in endoluminal deployment of expandable devices |
US11324615B2 (en) | 2011-11-14 | 2022-05-10 | W. L. Gore & Associates, Inc. | External steerable fiber for use in endoluminal deployment of expandable devices |
US12076227B2 (en) | 2012-03-13 | 2024-09-03 | W. L. Gore & Associates, Inc. | External steerable fiber for use in endoluminal deployment of expandable devices |
US11123174B2 (en) | 2012-03-13 | 2021-09-21 | W. L. Gore & Associates, Inc. | External steerable fiber for use in endoluminal deployment of expandable devices |
US8956318B2 (en) | 2012-05-31 | 2015-02-17 | Valentx, Inc. | Devices and methods for gastrointestinal bypass |
US9173759B2 (en) | 2012-05-31 | 2015-11-03 | Valentx, Inc. | Devices and methods for gastrointestinal bypass |
US9566181B2 (en) | 2012-05-31 | 2017-02-14 | Valentx, Inc. | Devices and methods for gastrointestinal bypass |
US9039649B2 (en) | 2012-05-31 | 2015-05-26 | Valentx, Inc. | Devices and methods for gastrointestinal bypass |
US9675489B2 (en) | 2012-05-31 | 2017-06-13 | Valentx, Inc. | Devices and methods for gastrointestinal bypass |
US9681975B2 (en) | 2012-05-31 | 2017-06-20 | Valentx, Inc. | Devices and methods for gastrointestinal bypass |
US9451960B2 (en) | 2012-05-31 | 2016-09-27 | Valentx, Inc. | Devices and methods for gastrointestinal bypass |
US9050168B2 (en) | 2012-05-31 | 2015-06-09 | Valentx, Inc. | Devices and methods for gastrointestinal bypass |
US9675439B2 (en) | 2012-12-21 | 2017-06-13 | Cook Medical Technologies Llc | Stent designs for reduced infolding of graft material |
US9757264B2 (en) | 2013-03-13 | 2017-09-12 | Valentx, Inc. | Devices and methods for gastrointestinal bypass |
GB2527999B (en) * | 2013-03-31 | 2020-04-15 | Wan Ping | Internal covering membrane of duodenum |
US9918862B2 (en) | 2013-03-31 | 2018-03-20 | Ping Wan | Internal covering membrane of duodenum |
GB2527999A (en) * | 2013-03-31 | 2016-01-06 | Ping Wan | Duodenal internal covering membrane |
WO2014161446A1 (en) * | 2013-03-31 | 2014-10-09 | Wan Ping | Duodenal internal covering membrane |
AU2014247462B2 (en) * | 2013-03-31 | 2017-03-02 | Ping Wan | Duodenal internal covering membrane |
US11911258B2 (en) | 2013-06-26 | 2024-02-27 | W. L. Gore & Associates, Inc. | Space filling devices |
WO2015007121A1 (en) * | 2013-07-18 | 2015-01-22 | Wan Ping | Medical instrument and application thereof |
GB2532163A (en) * | 2013-07-18 | 2016-05-11 | Wan Ping | Medical instrument and application thereof |
GB2532163B (en) * | 2013-07-18 | 2020-06-03 | Wan Ping | A duodenal liner with a biocompatible microarray adhesive |
US10307280B2 (en) | 2013-08-28 | 2019-06-04 | Ethicon Endo-Surgery, Inc. | Endoscopic transoral duodenal sleeve applier |
US9456917B2 (en) | 2013-08-28 | 2016-10-04 | Ethicon Endo-Surgery, Inc. | Endoscopic transoral duodenal sleeve applier |
US10799242B2 (en) | 2013-11-20 | 2020-10-13 | James E. Coleman | Adjustable heart valve implant |
US10646226B2 (en) * | 2013-11-20 | 2020-05-12 | James E. Coleman | Controlling a size of a pyloris |
EP3107491A4 (en) * | 2014-02-19 | 2017-08-02 | Howard Riina | A y-lock tracheal stent system and method of use |
WO2015153507A1 (en) | 2014-03-31 | 2015-10-08 | Spiration, Inc. | Anchoring mechanisms and systems for endoluminal devices |
US11129622B2 (en) | 2015-05-14 | 2021-09-28 | W. L. Gore & Associates, Inc. | Devices and methods for occlusion of an atrial appendage |
US11826052B2 (en) | 2015-05-14 | 2023-11-28 | W. L. Gore & Associates, Inc. | Devices and methods for occlusion of an atrial appendage |
US10765539B2 (en) | 2015-05-27 | 2020-09-08 | W. L. Gore & Associates, Inc. | Stent graft device with anchoring members having adjustable geometries |
WO2016191400A1 (en) * | 2015-05-27 | 2016-12-01 | W. L. Gore & Associates, Inc. | Stent graft device with anchoring members having adjustable geometries |
US11944556B2 (en) | 2015-05-27 | 2024-04-02 | W. L. Gore & Associates, Inc. | Stent graft device with anchoring members having adjustable geometries |
AU2016267062B2 (en) * | 2015-05-27 | 2019-03-28 | W. L. Gore & Associates, Inc. | Stent graft device with anchoring members having adjustable geometries |
CN105596128A (en) * | 2016-01-23 | 2016-05-25 | 万平 | Duodenum internal wrapping film |
US11173023B2 (en) | 2017-10-16 | 2021-11-16 | W. L. Gore & Associates, Inc. | Medical devices and anchors therefor |
WO2023140214A1 (en) * | 2022-01-20 | 2023-07-27 | 朝日インテック株式会社 | Stent |
Also Published As
Publication number | Publication date |
---|---|
US20120179086A1 (en) | 2012-07-12 |
EP2475328B1 (en) | 2014-08-27 |
EP2475328A1 (en) | 2012-07-18 |
HK1168022A1 (en) | 2012-12-21 |
AU2010292118A1 (en) | 2012-04-05 |
US9265596B2 (en) | 2016-02-23 |
CN102647957A (en) | 2012-08-22 |
AU2010292118B9 (en) | 2014-01-09 |
AU2010292118B2 (en) | 2013-11-21 |
CN102647957B (en) | 2015-04-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9265596B2 (en) | Anchors with open heads | |
US9642734B2 (en) | Anchors with biodegradable constraints | |
US9585783B2 (en) | Methods and apparatus for anchoring within the gastrointestinal tract | |
JP6175069B2 (en) | Lumen prostheses and gastrointestinal implant devices | |
US7976488B2 (en) | Gastrointestinal anchor compliance | |
US11969371B2 (en) | Duodenal gastrointestinal devices and related treatment methods | |
US20100305590A1 (en) | Transpyloric Anchoring | |
US20060155312A1 (en) | Atraumatic delivery devices | |
US20090182355A1 (en) | Porous barbs for long-term anchoring in the gastrointestinal tract |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201080051202.9 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10754838 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1886/CHENP/2012 Country of ref document: IN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13394975 Country of ref document: US Ref document number: 2010292118 Country of ref document: AU |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2010292118 Country of ref document: AU Date of ref document: 20100910 Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010754838 Country of ref document: EP |