WO2011028783A2 - Pyrolytic conversion of cellulose and/or hemicellulose dissolved in an ionic liquid - Google Patents

Pyrolytic conversion of cellulose and/or hemicellulose dissolved in an ionic liquid Download PDF

Info

Publication number
WO2011028783A2
WO2011028783A2 PCT/US2010/047500 US2010047500W WO2011028783A2 WO 2011028783 A2 WO2011028783 A2 WO 2011028783A2 US 2010047500 W US2010047500 W US 2010047500W WO 2011028783 A2 WO2011028783 A2 WO 2011028783A2
Authority
WO
WIPO (PCT)
Prior art keywords
ionic liquid
cellulose
cellulosic material
carried out
molten salt
Prior art date
Application number
PCT/US2010/047500
Other languages
French (fr)
Other versions
WO2011028783A3 (en
Inventor
Jacobus Johannes Heinerman
Jacob Adriaan Moulijn
Paul O'connor
Jacobus Cornelis Rasser
Armand Eduard Rosheuvel
Original Assignee
Jacobus Johannes Heinerman
Jacob Adriaan Moulijn
Paul O'connor
Jacobus Cornelis Rasser
Armand Eduard Rosheuvel
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jacobus Johannes Heinerman, Jacob Adriaan Moulijn, Paul O'connor, Jacobus Cornelis Rasser, Armand Eduard Rosheuvel filed Critical Jacobus Johannes Heinerman
Priority to US13/391,766 priority Critical patent/US20120323057A1/en
Priority to EP10763255A priority patent/EP2473582A2/en
Publication of WO2011028783A2 publication Critical patent/WO2011028783A2/en
Publication of WO2011028783A3 publication Critical patent/WO2011028783A3/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B1/00Preparatory treatment of cellulose for making derivatives thereof, e.g. pre-treatment, pre-soaking, activation
    • C08B1/003Preparation of cellulose solutions, i.e. dopes, with different possible solvents, e.g. ionic liquids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08HDERIVATIVES OF NATURAL MACROMOLECULAR COMPOUNDS
    • C08H8/00Macromolecular compounds derived from lignocellulosic materials
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G1/00Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal
    • C10G1/02Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal by distillation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G1/00Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal
    • C10G1/04Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal by extraction
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G1/00Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal
    • C10G1/04Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal by extraction
    • C10G1/045Separation of insoluble materials
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G1/00Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal
    • C10G1/06Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal by destructive hydrogenation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G1/00Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal
    • C10G1/06Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal by destructive hydrogenation
    • C10G1/065Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal by destructive hydrogenation in the presence of a solvent
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G3/00Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G3/00Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids
    • C10G3/42Catalytic treatment
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/02Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
    • C10G45/04Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1011Biomass
    • C10G2300/1014Biomass of vegetal origin
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/40Characteristics of the process deviating from typical ways of processing
    • C10G2300/44Solvents
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/02Gasoline
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/26Fuel gas
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/20Technologies relating to oil refining and petrochemical industry using bio-feedstock

Definitions

  • the invention relates generally to the conversion of cellulose to a liquid fuel, and more particularly to such a conversion process in an Ionic Liquid medium.
  • Another process is the pyrolysis, in particular fast or flash pyrolysis.
  • High liquid yields have been reported, but the pyrolysis liquids have high oxygen content.
  • the liquids are highly acidic and corrosive. They are unstable, due to their propensity to polymerization.
  • the liquids contain large amounts of water, which is difficult to separate from the organic components due to the hydrophilic nature of the organic compounds.
  • the liquids need to be subjected to a separate upgrading to provide usable hydrocarbon products. Upgrading processes reported in the prior art generally comprise two hydrotreatment steps.
  • a first step which is carried out in the presence of the water component of the pyrolysis liquid, the organic compounds are deoxygenated to the point that they become sufficiently hydrophobic to cause phase separation into an aqueous phase and an oil phase.
  • the oil phase is further deoxygenated to form hydrocarbons.
  • the three-step process has a rather poor overall yield.
  • the present invention addresses these problems by providing a process for converting a cellulosic material to a liquid fuel, said process comprising the steps of:
  • the present invention relates to a process for converting a cellulosic material to a liquid fuel, said process comprising the steps of: (i) dissolving at least the cellulose component of the cellulosic material in an
  • liquid fuel is insoluble in the Ionic Liquid.
  • the process can comprise the additional step (iii) of removing the liquid fuel from the Ionic Liquid.
  • the process comprises the additional step (iv) of
  • This additional regeneration step can comprise removing water from the Ionic Liquid medium.
  • the regeneration step can comprise removing sludge from the Ionic Liquid medium.
  • sludge refers to solid reaction products that are insoluble in the Ionic Liquid medium. The term encompasses such reaction products as coke and certain types of char.
  • the process can be operated such that little or no coke and char are formed.
  • it may be desirable to produce liquid hydrocarbons under conditions that promote cracking.
  • Such reaction conditions can promote the formation of coke and/or char.
  • the operator of the process may well accept a certain amount of coke yield as a price to pay for a high liquid yield, as coke is easily removed from the Ionic Liquid medium.
  • coke removal can be
  • step (ii). accomplished by passing the Ionic Liquid through a suitable filter medium, such as a bed of silica or alumina.
  • the filter medium can be regenerated by burning off the coke and any other components of the sludge. Heat generated during this regeneration process can be used in the conversion process, in particular in step (ii).
  • the removal of water can generally be accomplished by distillation. As will be
  • step (ii) is generally carried out under increased pressure, at temperatures exceeding 100 °C.
  • step (ii) is generally carried out under increased pressure, at temperatures exceeding 100 °C.
  • water is flashed off in a process sometimes referred to as flash-distillation.
  • the Ionic Liquid medium may be recycled to step (i) of the process. This feature is particularly useful if the process is conducted in continuous mode. It will be understood, however, that the process can be conducted in batch mode as well.
  • any cellulosic material can be used in the process of the invention. It is possible to use pure cellulose as the cellulose-containing feedstock. Preferably, the cellulosic material is substantially fully soluble in the Ionic Liquid.
  • the process is suitable for feedstocks comprising the cellulosic material and at least one contaminant.
  • Suitable examples include aquatic biomass, cotton linters, paper, cardboard, and mixtures thereof.
  • the feedstock may be paper or paper board.
  • Low grade paper contains lignin as a contaminant.
  • Higher grades of paper can contain fillers and sizing agents, such as clay, titanium dioxide, and the like.
  • Post-consumer waste paper or paperboard may further contain inks and pigments. Contaminants such as sizing agents, fillers, and pigments are insoluble in the Ionic Liquid medium. Accordingly, these contaminants are preferably removed from the process prior to step (ii).
  • Lignin is insoluble in certain Ionic Liquid media, and partially soluble in others.
  • Undissolved lignin is removed from the process prior to step (ii). Dissolved lignin is converted to hydrocarbon compounds during step (ii).
  • the process of the invention offers flexibility to the operator of the process.
  • the operator may select an Ionic Liquid medium in which lignin is at least partially soluble.
  • the advantage is that a greater portion of the feedstock is converted to hydrocarbons.
  • the mixture of hydrocarbon compounds is more complex if lignin is present in the Ionic Liquid medium during step (ii). This is not necessarily a disadvantage. For example, if the hydrocarbon products produced by the process are to be used as a gasoline mixing stock, the presence of lignin conversion products tends to increase the octane rating of the mixture.
  • the operator of the process can select an Ionic Liquid medium in which lignin is substantially insoluble.
  • lignin is insoluble in inorganic molten salt hydrates. It has surprisingly been found that nevertheless these materials are capable of dissolving the cellulose component of a lignocellulosic composite material. This makes it possible to isolate the cellulose portion of a lignocellulosic material, without requiring a separate process, such as the Kraft process, which involves the use of aggressive and environmentally undesirable chemicals.
  • Undissolved lignin can be removed from the Ionic Liquid medium prior to step (ii).
  • Ionic Liquid in which lignin is insoluble, essentially no lignin is present during step (ii).
  • the hydrocarbon mixture produced in the reaction is relatively simple.
  • cellulosic material further contain inorganic materials. To the extent these materials are insoluble in the Ionic Liquid medium they are easily removed from the process prior to step (ii). Inorganic materials that are dissolved in the Ionic Liquid medium can be removed in a regeneration step, for example using solvent extraction.
  • an acid catalyst for example hydrochloric acid (HQ)
  • HQ hydrochloric acid
  • Step (ii) can be carried out in the absence or of a catalyst.
  • Dissolved cellulose in particular when hydrolyzed to sugars, is far more reactive than cellulose in solid form so that suitable conversion yields can be obtained even in the absence of a catalyst.
  • step (ii) it can be advantageous to carry out step (ii) in the presence of a catalyst.
  • a catalyst accelerates the conversion reaction of dissolved cellulose, which reduces the reaction time; or permits the reaction to be carried out at a lower temperature than the uncatalyzed reaction; or a combination of these two advantages.
  • use of a catalyst generally results in a more selective hydrogenation reaction.
  • Suitable catalysts include catalysts selected from the group consisting of hydrotreatment catalysts; hydrogenation catalysts; hydrocracking catalysts; and combinations thereof.
  • the catalyst comprises a hydrotreatment catalyst.
  • Suitable examples include catalysts comprising one or more of the elements from the group consisting of Ni, Co, Mo, and W. Preferred are catalysts comprising Mo. More preferred are catalysts comprising Mo and Ni or Co.
  • the hydrotreatment catalyst is in a sulfided form.
  • catalyst may be converted to the sulfided form by contacting it with a feedstock that has been spiked with a sulfur-containing compound.
  • a feedstock that has been spiked with a sulfur-containing compound.
  • the practice of sulfiding hydrotreatment catalysts is well known in the world of oil refining, and will not be further disclosed here.
  • hydrotreatment catalysts are more active when in a sulfided form, as compared to an oxide form.
  • the use of sulfur results in consumption of hydrogen for the formation of H 2 S. This is undesirable from a perspective of a loss of valuable hydrogen, as well as from the resulting need to remove H 2 S from the reaction mixture.
  • lignocellulosic feedstocks typically contain little or no sulfur, it is necessary to spike the feedstock with sulfur in order to keep the catalyst in its sulfided form.
  • hydrotreatment catalyst as the lower catalyst activity is more than outweighed by the advantage of being able to operate sulfur-free.
  • the catalyst comprises a hydrogenation catalyst.
  • examples include catalysts containing Ni, Fe, or a metal from the Pt group in its metallic form. Particularly preferred are the noble transition metals.
  • the catalyst comprises a hydrocracking catalyst.
  • hydrocracking catalyst refers to catalysts containing both a hydrogenation functionality and a cracking functionality.
  • the hydrogenation functionality is generally provided by one or more of the typical hydrogenation metals (Ni, Fe, noble transition metals).
  • the cracking functionality is generally provided by acidic sites in the catalyst material.
  • a hydrogenation metal on a solid acid support such as an acidic zeolite, is typically a very effective hydrocracking catalyst.
  • Ionic Liquids are strong Lewis acids, and can act as acidic catalysts.
  • the combination of a hydrogenation catalyst in an Ionic Liquid medium that is a strong Lewis acid can show strong hydrocracking properties.
  • the Ionic Liquid medium can comprise an organic anion.
  • dicationic organic Ionic Liquids are excellent solvents for cellulose and hemicellulose.
  • organic Ionic Liquids have been reported in the literature as being capable of
  • Organic Ionic Liquids also have major disadvantages, the most important ones being high cost, and limited temperature resistance. Many have the additional disadvantage that they are poor solvents for cellulose when contaminated with water.
  • Preferred Ionic Liquids are inorganic Ionic Liquids, in particular inorganic molten salt hydrates. As compared to organic Ionic Liquids, inorganic Ionic Liquids are more temperature stable, and have a lower cost. In addition, in particular the inorganic molten salt hydrates are effective solvents for cellulose even in the presence of water. In fact, as their name indicates, a certain amount of water needs to be present for these materials to function as Ionic Liquid media.
  • Inorganic Ionic Liquids have an inorganic anion.
  • the anion can contain a halogen atom. Examples include halides, oxyhalides and hydroxyhalides, in particular chloride, oxychlorides, and hydroxychlorides.
  • the anion can also be hydroxide; for example, the hydroxide of the Cu/ammonia complex is a suitable Ionic Liquid medium for use in the process of the present invention.
  • the molten salt hydrate further comprises a cation, in particular Zn, Ba, Ca, Li, Al, Cr, Fe, or Cu.
  • Mixtures of inorganic salts can also be used, in particular eutectic mixtures.
  • any salt or salt hydrate that is liquid at a temperature of 200 °C or below, and is capable of dissolving cellulose is suitable as the Ionic Liquid medium in the process of the present invention.
  • Particularly preferred are the hydrates of ⁇ (3 ⁇ 4 in particular ⁇ (3 ⁇ 4.4 ⁇ 2 ⁇ .
  • step (ii) comprises reaction with hydrogen (hydrogenation, hydrotreatment or
  • this step is preferably carried out at a hydrogen partial pressure in the range of from 1 to 200 bar, more preferably from 5 to 60 bar.
  • the temperature used in step (iii) to obtain the desired conversion of cellulose and/or sugars to hydrocarbons will depend on the amount and type of catalyst used, and on the contact time between the reactants and the catalyst. In general reaction temperatures in the range of from 150 to 400 °C are suitable, temperatures in the range of from 180 to 350 °C being preferred.
  • step (ii) is carried out in the substantial absence of hydrogen (thermal cracking, catalytic cracking), this step is generally carried out at a temperature in the range of from 200 °C to 600 °C, preferably from 200 °C to 450 °C.
  • step (ii) Even when step (ii) is carried out in the presence of hydrogen, the reaction products obtained in step (ii) can still contain residual oxygen.
  • the main objective of step (ii) is to convert cellulose, hemicellulose and their hydrolysis products (C6 and C5 sugars, respectively) to reaction products that do not dissolve in the Ionic Liquid medium.
  • reaction products are a Ce and C5 hydrocarbon mixture that is oxygen-free, or has an oxygen content low enough for the mixture to be used as a blending stock for gasoline.
  • step (ii) is operated such that the reaction products have oxygen content just low enough for them to be insoluble in the Ionic Liquid medium, and miscible with a refinery feedstock.
  • the reaction products can be easily recovered from the Ionic Liquid medium, due to their insolubility therein.
  • the reaction products can also easily be co-processed with a refinery stream, due to their miscibility therewith.
  • step (ii) is operated to produce primarily dry gas, in

Abstract

A process is disclosed for converting cellulose to liquid fuels. In the process the cellulose is dissolved in an Ionic Liquid medium. The conversion process may comprise pyrolysis, thermal cracking, hydrocracking, catalytic cracking, hydrotreatment, or a combination thereof. The dissolved cellulose is preferably hydrolyzed, prior to the conversion reaction. The Ionic Liquid medium preferably is an inorganic molten salt hydrate.

Description

PYROLYTIC CONVERSION OF CELLULOSE AND/OR HEMICELLULOSE
DISSOLVED IN AN IONIC LIQUID
RELATED APPLICATIONS
[0001] This application claims benefit under 35 U.S.C. § 119(e) of the United States provisional patent application serial number 61/238,720, filed September 1, 2009, the content of which is incorporated herein by reference in its entirety.
BACKGROUND OF THE INVENTION
1. Field of the Invention
[0002] The invention relates generally to the conversion of cellulose to a liquid fuel, and more particularly to such a conversion process in an Ionic Liquid medium.
2. Description of the Related Art
[0003] Several processes have been proposed for converting cellulose to hydrocarbons. One such process comprises gasification of cellulose to synthesis gas ("syngas", a mixture of carbon monoxide and hydrogen), and conversion of the syngas in a Fischer-Tropsch reaction to hydrocarbons. This process is inherently inefficient, because long-chain polymeric materials are first broken down to small molecules, which are subsequently built back up to larger molecules. It is inefficient also because the oxygen content is first increased (syngas has higher oxygen content than cellulose), and subsequently reduced or eliminated.
[0004] Another process is the pyrolysis, in particular fast or flash pyrolysis. High liquid yields have been reported, but the pyrolysis liquids have high oxygen content. The liquids are highly acidic and corrosive. They are unstable, due to their propensity to polymerization. Moreover, the liquids contain large amounts of water, which is difficult to separate from the organic components due to the hydrophilic nature of the organic compounds. The liquids need to be subjected to a separate upgrading to provide usable hydrocarbon products. Upgrading processes reported in the prior art generally comprise two hydrotreatment steps. In a first step, which is carried out in the presence of the water component of the pyrolysis liquid, the organic compounds are deoxygenated to the point that they become sufficiently hydrophobic to cause phase separation into an aqueous phase and an oil phase. The oil phase is further deoxygenated to form hydrocarbons. The three-step process has a rather poor overall yield.
[0005] It has been known to dissolve cellulose in Ionic Liquids. S. Fischer et al., "Inorganic molten salts as solvents for cellulose ", Cellulose 10: 227-236, 2003, discloses the use of various molten salt systems as solvent media for cellulose. Upon dissolution, cellulose can be derivatized by carboxymethylation or acetylation. The derivation reactions leave the cellulose polymer backbone in tact.
[0006] Sheldrake and Schleck, "Dicationic molten salts (ionic liquids) as re-usable media for the controlled pyrolysis of cellulose to anhydrosugars ", Green Chem 2007, pp 1044-1046, reports on low temperature pyrolysis of cellulose in ionic liquid media. The pyrolysis temperature is low enough that the ionic liquid can be recovered and re-used after the pyrolysis reaction. The pyrolysis products are anhydrosugars. The reported conversion yields are 3.5 wt% or less.
[0007] Thus, there is a need for a process in which cellulose is converted to liquid fuels at a high yield. There is a particular need for such a process in which the chemical reaction is carried out in one step. There is a further need for such a process that can be carried out in continuous mode.
BRIEF SUMMARY OF THE INVENTION
[0008] The present invention addresses these problems by providing a process for converting a cellulosic material to a liquid fuel, said process comprising the steps of:
(i) dissolving at least the cellulose component of the cellulosic material in an
Ionic Liquid;
(ii) converting the dissolved cellulose component to a liquid fuel.
DETAILED DESCRIPTION OF THE INVENTION
[0009] The present invention relates to a process for converting a cellulosic material to a liquid fuel, said process comprising the steps of: (i) dissolving at least the cellulose component of the cellulosic material in an
Ionic Liquid;
(ii) converting the dissolved cellulose component to a liquid fuel.
[0010] Preferably the liquid fuel is insoluble in the Ionic Liquid.
[0011] The process can comprise the additional step (iii) of removing the liquid fuel from the Ionic Liquid.
[0012] In a preferred embodiment the process comprises the additional step (iv) of
regenerating the Ionic Liquid medium obtained in step (iii). This additional regeneration step can comprise removing water from the Ionic Liquid medium. The regeneration step can comprise removing sludge from the Ionic Liquid medium. The term "sludge" as used herein refers to solid reaction products that are insoluble in the Ionic Liquid medium. The term encompasses such reaction products as coke and certain types of char. In general the process can be operated such that little or no coke and char are formed. However, it may be desirable to produce liquid hydrocarbons under conditions that promote cracking. Such reaction conditions can promote the formation of coke and/or char. The operator of the process may well accept a certain amount of coke yield as a price to pay for a high liquid yield, as coke is easily removed from the Ionic Liquid medium. In general, coke removal can be
accomplished by passing the Ionic Liquid through a suitable filter medium, such as a bed of silica or alumina. The filter medium can be regenerated by burning off the coke and any other components of the sludge. Heat generated during this regeneration process can be used in the conversion process, in particular in step (ii).
[0013] The removal of water can generally be accomplished by distillation. As will be
explained in more detail below, step (ii) is generally carried out under increased pressure, at temperatures exceeding 100 °C. By releasing the pressure while the temperature of the Ionic Liquid medium is maintained above 100 °C, water is flashed off in a process sometimes referred to as flash-distillation. [0014] After regeneration the Ionic Liquid medium may be recycled to step (i) of the process. This feature is particularly useful if the process is conducted in continuous mode. It will be understood, however, that the process can be conducted in batch mode as well.
[0015] Any cellulosic material can be used in the process of the invention. It is possible to use pure cellulose as the cellulose-containing feedstock. Preferably, the cellulosic material is substantially fully soluble in the Ionic Liquid.
[0016] Importantly, the process is suitable for feedstocks comprising the cellulosic material and at least one contaminant. Suitable examples include aquatic biomass, cotton linters, paper, cardboard, and mixtures thereof.
[0017] For example, the feedstock may be paper or paper board. Low grade paper contains lignin as a contaminant. Higher grades of paper can contain fillers and sizing agents, such as clay, titanium dioxide, and the like. Post-consumer waste paper or paperboard may further contain inks and pigments. Contaminants such as sizing agents, fillers, and pigments are insoluble in the Ionic Liquid medium. Accordingly, these contaminants are preferably removed from the process prior to step (ii).
[0018] Lignin is insoluble in certain Ionic Liquid media, and partially soluble in others.
Undissolved lignin is removed from the process prior to step (ii). Dissolved lignin is converted to hydrocarbon compounds during step (ii). Thus, the process of the invention offers flexibility to the operator of the process. The operator may select an Ionic Liquid medium in which lignin is at least partially soluble. The advantage is that a greater portion of the feedstock is converted to hydrocarbons. The mixture of hydrocarbon compounds is more complex if lignin is present in the Ionic Liquid medium during step (ii). This is not necessarily a disadvantage. For example, if the hydrocarbon products produced by the process are to be used as a gasoline mixing stock, the presence of lignin conversion products tends to increase the octane rating of the mixture.
[0019] In an alternate embodiment the operator of the process can select an Ionic Liquid medium in which lignin is substantially insoluble. As a general rule, lignin is insoluble in inorganic molten salt hydrates. It has surprisingly been found that nevertheless these materials are capable of dissolving the cellulose component of a lignocellulosic composite material. This makes it possible to isolate the cellulose portion of a lignocellulosic material, without requiring a separate process, such as the Kraft process, which involves the use of aggressive and environmentally undesirable chemicals.
[0020] Undissolved lignin can be removed from the Ionic Liquid medium prior to step (ii). In this embodiment, if in Ionic Liquid is used in which lignin is insoluble, essentially no lignin is present during step (ii). As a result, the hydrocarbon mixture produced in the reaction is relatively simple.
[0021] Many sources of cellulosic material further contain inorganic materials. To the extent these materials are insoluble in the Ionic Liquid medium they are easily removed from the process prior to step (ii). Inorganic materials that are dissolved in the Ionic Liquid medium can be removed in a regeneration step, for example using solvent extraction.
[0022] It is desirable to at least partially hydrolyze dissolved cellulose and hemicellulose to the corresponding sugars. This can be accomplished by adding an acid catalyst, for example hydrochloric acid (HQ); by increasing the temperature of the Ionic Liquid medium to above about 70 °C; or by a combination of these two measures.
[0023] Step (ii) can be carried out in the absence or of a catalyst. Dissolved cellulose, in particular when hydrolyzed to sugars, is far more reactive than cellulose in solid form so that suitable conversion yields can be obtained even in the absence of a catalyst.
[0024] It can be advantageous to carry out step (ii) in the presence of a catalyst. The presence of a catalyst accelerates the conversion reaction of dissolved cellulose, which reduces the reaction time; or permits the reaction to be carried out at a lower temperature than the uncatalyzed reaction; or a combination of these two advantages. In addition, use of a catalyst generally results in a more selective hydrogenation reaction.
[0025] Examples of suitable catalysts include catalysts selected from the group consisting of hydrotreatment catalysts; hydrogenation catalysts; hydrocracking catalysts; and combinations thereof. [0026] In one embodiment the catalyst comprises a hydrotreatment catalyst. Suitable examples include catalysts comprising one or more of the elements from the group consisting of Ni, Co, Mo, and W. Preferred are catalysts comprising Mo. More preferred are catalysts comprising Mo and Ni or Co.
[0027] In a specific embodiment the hydrotreatment catalyst is in a sulfided form. The
catalyst may be converted to the sulfided form by contacting it with a feedstock that has been spiked with a sulfur-containing compound. The practice of sulfiding hydrotreatment catalysts is well known in the world of oil refining, and will not be further disclosed here.
[0028] As a general rule, hydrotreatment catalysts are more active when in a sulfided form, as compared to an oxide form. However, the use of sulfur results in consumption of hydrogen for the formation of H2S. This is undesirable from a perspective of a loss of valuable hydrogen, as well as from the resulting need to remove H2S from the reaction mixture. Moreover, as lignocellulosic feedstocks typically contain little or no sulfur, it is necessary to spike the feedstock with sulfur in order to keep the catalyst in its sulfided form.
[0029] In many cases it is economically more attractive to forego sulfidization of the
hydrotreatment catalyst, as the lower catalyst activity is more than outweighed by the advantage of being able to operate sulfur-free.
[0030] In an alternate embodiment the catalyst comprises a hydrogenation catalyst. Examples include catalysts containing Ni, Fe, or a metal from the Pt group in its metallic form. Particularly preferred are the noble transition metals.
[0031] In yet another embodiment the catalyst comprises a hydrocracking catalyst. For the purpose of the present invention the term "hydrocracking catalyst" refers to catalysts containing both a hydrogenation functionality and a cracking functionality. The hydrogenation functionality is generally provided by one or more of the typical hydrogenation metals (Ni, Fe, noble transition metals). The cracking functionality is generally provided by acidic sites in the catalyst material. Thus, a hydrogenation metal on a solid acid support, such as an acidic zeolite, is typically a very effective hydrocracking catalyst.
[0032] It should be recognized that many Ionic Liquids are strong Lewis acids, and can act as acidic catalysts. Thus, the combination of a hydrogenation catalyst in an Ionic Liquid medium that is a strong Lewis acid can show strong hydrocracking properties.
[0033] The Ionic Liquid medium can comprise an organic anion. In particular dicationic organic Ionic Liquids are excellent solvents for cellulose and hemicellulose. Several organic Ionic Liquids have been reported in the literature as being capable of
(partially) dissolving the lignin component of lignocellulosic materials. Organic Ionic Liquids also have major disadvantages, the most important ones being high cost, and limited temperature resistance. Many have the additional disadvantage that they are poor solvents for cellulose when contaminated with water.
[0034] Preferred Ionic Liquids are inorganic Ionic Liquids, in particular inorganic molten salt hydrates. As compared to organic Ionic Liquids, inorganic Ionic Liquids are more temperature stable, and have a lower cost. In addition, in particular the inorganic molten salt hydrates are effective solvents for cellulose even in the presence of water. In fact, as their name indicates, a certain amount of water needs to be present for these materials to function as Ionic Liquid media.
[0035] Inorganic Ionic Liquids have an inorganic anion. The anion can contain a halogen atom. Examples include halides, oxyhalides and hydroxyhalides, in particular chloride, oxychlorides, and hydroxychlorides. The anion can also be hydroxide; for example, the hydroxide of the Cu/ammonia complex is a suitable Ionic Liquid medium for use in the process of the present invention.
[0036] The molten salt hydrate further comprises a cation, in particular Zn, Ba, Ca, Li, Al, Cr, Fe, or Cu.
[0037] Mixtures of inorganic salts can also be used, in particular eutectic mixtures. In
general, any salt or salt hydrate that is liquid at a temperature of 200 °C or below, and is capable of dissolving cellulose, is suitable as the Ionic Liquid medium in the process of the present invention. [0038] Particularly preferred are the hydrates of Ζη(¾ in particular Ζη(¾.4Η2θ.
[0039] If step (ii) comprises reaction with hydrogen (hydrogenation, hydrotreatment or
hydrocracking, this step is preferably carried out at a hydrogen partial pressure in the range of from 1 to 200 bar, more preferably from 5 to 60 bar. The temperature used in step (iii) to obtain the desired conversion of cellulose and/or sugars to hydrocarbons will depend on the amount and type of catalyst used, and on the contact time between the reactants and the catalyst. In general reaction temperatures in the range of from 150 to 400 °C are suitable, temperatures in the range of from 180 to 350 °C being preferred.
[0040] If step (ii) is carried out in the substantial absence of hydrogen (thermal cracking, catalytic cracking), this step is generally carried out at a temperature in the range of from 200 °C to 600 °C, preferably from 200 °C to 450 °C.
[0041] Even when step (ii) is carried out in the presence of hydrogen, the reaction products obtained in step (ii) can still contain residual oxygen. The main objective of step (ii) is to convert cellulose, hemicellulose and their hydrolysis products (C6 and C5 sugars, respectively) to reaction products that do not dissolve in the Ionic Liquid medium.
[0042] In one embodiment the reaction products are a Ce and C5 hydrocarbon mixture that is oxygen-free, or has an oxygen content low enough for the mixture to be used as a blending stock for gasoline.
[0043] In an alternate embodiment step (ii) is operated such that the reaction products have oxygen content just low enough for them to be insoluble in the Ionic Liquid medium, and miscible with a refinery feedstock. The reaction products can be easily recovered from the Ionic Liquid medium, due to their insolubility therein. The reaction products can also easily be co-processed with a refinery stream, due to their miscibility therewith.
[0044] In yet another embodiment step (ii) is operated to produce primarily dry gas, in
particular C2 and C3 hydrocarbons.

Claims

1. A process for converting a cellulosic material to a liquid fuel, said process comprising the steps of:
(i) dissolving at least the cellulose component of the cellulosic material in an Ionic Liquid;
(ii) converting the dissolved cellulose component to a liquid fuel.
2. The process of claim 1 wherein the Ionic Liquid is an inorganic molten salt hydrate.
3. The process of claim 1 wherein the Ionic Liquid comprises an organic cation.
4. The process of any one of claims 1 - 3 wherein the cellulosic material is substantially fully soluble in the Ionic Liquid.
5. The process of claim 4 wherein the cellulosic material is selected from aquatic biomass, cotton linters, paper; cardboard and mixtures thereof.
6. The process of any one of claims 1 - 3 wherein the cellulosic material comprises at least one component that is insoluble in the Ionic Liquid.
7. The process of claim 6 wherein the cellulosic material comprises lignocellulose.
8. The process of claim 6 or claim 7 comprising the further step of separating the at least one component that is insoluble in the Ionic Liquid prior to converting the dissolved cellulose component.
9. The process of any one of claims 6 - 8 wherein the at least one component that is insoluble in the Ionic Liquid comprises lignin.
10. The process of any one of claims 1 - 9 wherein step (ii) is carried out in the absence of a catalyst.
11. The process of any one of claims 1 - 9 wherein step (ii) is carried out in the presence of a catalyst.
12. The process of any one of claims 1 - 11 wherein step (ii) is selected from pyrolysis; thermal cracking, hydrocracking, catalytic cracking, hydrotreatment or a combination thereof.
13. The process of any one of claims 1 - 12 wherein step (ii) is carried out at a temperature in the range of from 200 °C to 600 °C.
14. The process of claim 13 wherein step (ii) is carried out at a temperature in the range of from 200 °C to 450 °C.
15. The process of any one of claims 1 - 14 wherein the Ionic Liquid medium comprises a molten salt hydrate.
16. The process of claim 15 wherein the molten salt hydrate comprises a halogen anion.
17. The process of claim 16 wherein the halogen anion is chloride.
18. The process of any one of claims 14 - 17 wherein the molten salt hydrate comprises a cation selected from the group consisting of Zn, Ba, Ca, Li, Al, Cu, Fe, Cu(NH3)x and Cr.
19. The process of any one of claims 1 - 18 wherein the Ionic Liquid is a molten salt hydrate comprising ZnC^, CaCl2, LiCl, or a mixture thereof.
The process of any one of claims 1 - 19 wherein step (ii) is carried out under genous pressure.
21. The process of any one of claims 1 - 20 wherein water is removed from the Ionic Liquid during step (ii).
22. The process of any one of claims 1 - 21 wherein the liquid fuel is insoluble in the Ionic Liquid.
23. The process of any one of claims 1 - 22 comprising the further step (iii) of removing the fuel from the Ionic Liquid.
PCT/US2010/047500 2009-09-01 2010-09-01 Pyrolytic conversion of cellulose and/or hemicellulose dissolved in an ionic liquid WO2011028783A2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/391,766 US20120323057A1 (en) 2009-09-01 2010-09-01 Process for Converting Cellulose and/or Hemicellulose in a Liquid Fuel Comprising Dissolution in Ionic Liquid
EP10763255A EP2473582A2 (en) 2009-09-01 2010-09-01 Pyrolytic conversion of cellulose and/or hemicellulose dissolved in an ionic liquid

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US23872009P 2009-09-01 2009-09-01
US61/238,720 2009-09-01

Publications (2)

Publication Number Publication Date
WO2011028783A2 true WO2011028783A2 (en) 2011-03-10
WO2011028783A3 WO2011028783A3 (en) 2011-05-05

Family

ID=43038054

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2010/047500 WO2011028783A2 (en) 2009-09-01 2010-09-01 Pyrolytic conversion of cellulose and/or hemicellulose dissolved in an ionic liquid

Country Status (3)

Country Link
US (1) US20120323057A1 (en)
EP (1) EP2473582A2 (en)
WO (1) WO2011028783A2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102407161A (en) * 2011-11-15 2012-04-11 中国石油大学(华东) Transition metal ionic liquid catalyst for biomass hydrogenation liquefaction
CN102690673A (en) * 2012-01-14 2012-09-26 河南科技大学 Method for preparing biodiesel by vegetable oil through catalytic hydrocracking
US8652261B2 (en) 2009-09-01 2014-02-18 Kior, Inc. Process for dissolving cellulose-containing biomass material in an ionic liquid medium
US8882924B2 (en) 2009-09-01 2014-11-11 Kior, Inc. Pretreatment of solid biomass material comprising cellulose with ionic liquid medium
US9127402B2 (en) 2011-12-06 2015-09-08 Industrial Technology Research Institute Method for liquefying biomass
CN114621358A (en) * 2022-04-14 2022-06-14 中国科学院青岛生物能源与过程研究所 Method for preparing cellulose ether with low crystallinity and high substitution degree by adopting one-pot method

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102634389B (en) * 2011-04-18 2014-07-30 田强 Automotive fuel additive combination as well as preparation method and application thereof
US9309471B2 (en) * 2012-06-29 2016-04-12 Uop Llc Decontamination of deoxygenated biomass-derived pyrolysis oil using ionic liquids
US9611197B1 (en) 2013-03-15 2017-04-04 Inaeris Technologies, Llc Method of removing undesirable solid components from a renewable or non-renewable feed and apparatus used in same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008098036A1 (en) * 2007-02-06 2008-08-14 North Carolina State University Product preparation and recovery from thermolysis of lignocellulosics in ionic liquids
US8182557B2 (en) * 2007-02-06 2012-05-22 North Carolina State University Use of lignocellulosics solvated in ionic liquids for production of biofuels
WO2008112291A2 (en) * 2007-03-14 2008-09-18 The University Of Toledo Biomass pretreatment
JP2008228583A (en) * 2007-03-16 2008-10-02 Seiko Instruments Inc Method for decomposing cellulose and method for producing glucose
US8435355B2 (en) * 2008-12-29 2013-05-07 Weyerhaeuser Nr Company Fractionation of lignocellulosic material using ionic liquids

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
S. FISCHER ET AL.: "Inorganic molten salts as solvents for cellulose", CELLULOSE, vol. 10, 2003, pages 227 - 236, XP002310360
SHELDRAKE; SCHLECK: "Dicationic molten salts (ionic liquids) as re-usable media for the controlled pyrolysis of cellulose to anhydrosugars", GREEN CHEM, 2007, pages 1044 - 1046, XP009101270, DOI: doi:10.1039/b705241c

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8652261B2 (en) 2009-09-01 2014-02-18 Kior, Inc. Process for dissolving cellulose-containing biomass material in an ionic liquid medium
US8882924B2 (en) 2009-09-01 2014-11-11 Kior, Inc. Pretreatment of solid biomass material comprising cellulose with ionic liquid medium
CN102407161A (en) * 2011-11-15 2012-04-11 中国石油大学(华东) Transition metal ionic liquid catalyst for biomass hydrogenation liquefaction
US9127402B2 (en) 2011-12-06 2015-09-08 Industrial Technology Research Institute Method for liquefying biomass
CN102690673A (en) * 2012-01-14 2012-09-26 河南科技大学 Method for preparing biodiesel by vegetable oil through catalytic hydrocracking
CN114621358A (en) * 2022-04-14 2022-06-14 中国科学院青岛生物能源与过程研究所 Method for preparing cellulose ether with low crystallinity and high substitution degree by adopting one-pot method
CN114621358B (en) * 2022-04-14 2022-12-30 中国科学院青岛生物能源与过程研究所 Method for preparing cellulose ether with low crystallinity and high substitution degree by adopting one-pot method

Also Published As

Publication number Publication date
WO2011028783A3 (en) 2011-05-05
US20120323057A1 (en) 2012-12-20
EP2473582A2 (en) 2012-07-11

Similar Documents

Publication Publication Date Title
US20120323057A1 (en) Process for Converting Cellulose and/or Hemicellulose in a Liquid Fuel Comprising Dissolution in Ionic Liquid
US20120304529A1 (en) Temperature-Optimized Conversion of Lignocellulosic Biomass
CA1209075A (en) Molten salt hydrotreatment process
US8772557B2 (en) Aromatic hydrocarbons from depolymerization and deoxygenation of lignin
RU2486303C2 (en) Method of producing hydrocarbon raw material from lignin
CN111566190A (en) A method for obtaining a stabilized lignin: polar organic solvent compositions by mild solvent modification
EP2914695A1 (en) Methods and systems for processing lignin during hydrothermal digestion of cellulosic biomass solids
CN104903425A (en) Recyclable buffer for the hydrothermal hydrocatalytic treatment of biomass
US20120330074A1 (en) Simultaneous Catalytic Conversion of Cellulose and Lignin to a Liquid Fuel in an Ionic Liquid
US8882924B2 (en) Pretreatment of solid biomass material comprising cellulose with ionic liquid medium
US20160186067A1 (en) Methods and systems for processing cellulosic biomass
JP2013542920A (en) Simultaneous hydrolysis and hydrogenation of cellulose
US20160184734A1 (en) Methods and systems for processing cellulosic biomass
Fraga et al. Advances in liquefaction for the production of hydrocarbon biofuels
JP2020523470A (en) Catalytic conversion of lignin
US20160186066A1 (en) Methods and systems for processing cellulosic biomass
WO2016109468A1 (en) Methods and systems for processing cellulosic biomass
US20160186068A1 (en) Methods and systems for processing cellulosic biomass
Kumar et al. Thermochemical Production of Bio-Oil: Downstream Processing Technologies for Bio-Oil Upgrading, Production of Hydrogen, and High Value-Added Products
Moreira Second Generation Biorefineries. A Contribution To The Syngas And Lignins Platforms

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10763255

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010763255

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13391766

Country of ref document: US