WO2011028403A2 - Sustainable economic development through integrated production of renewable energy, materials resources, and nutrient regimes - Google Patents

Sustainable economic development through integrated production of renewable energy, materials resources, and nutrient regimes Download PDF

Info

Publication number
WO2011028403A2
WO2011028403A2 PCT/US2010/045674 US2010045674W WO2011028403A2 WO 2011028403 A2 WO2011028403 A2 WO 2011028403A2 US 2010045674 W US2010045674 W US 2010045674W WO 2011028403 A2 WO2011028403 A2 WO 2011028403A2
Authority
WO
WIPO (PCT)
Prior art keywords
energy
component
hydrogen
carbon
source
Prior art date
Application number
PCT/US2010/045674
Other languages
French (fr)
Other versions
WO2011028403A3 (en
Inventor
Roy E. Mcalister
Original Assignee
Mcalister Roy E
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/US2010/024498 external-priority patent/WO2010096504A1/en
Priority claimed from US12/707,656 external-priority patent/US8075749B2/en
Priority claimed from US12/707,651 external-priority patent/US8075748B2/en
Application filed by Mcalister Roy E filed Critical Mcalister Roy E
Priority to CN201080048870.6A priority Critical patent/CN102712019B/en
Priority to EP10814158.1A priority patent/EP2470312A4/en
Publication of WO2011028403A2 publication Critical patent/WO2011028403A2/en
Publication of WO2011028403A3 publication Critical patent/WO2011028403A3/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M43/00Combinations of bioreactors or fermenters with other apparatus
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K61/00Culture of aquatic animals
    • A01K61/80Feeding devices
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/22Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of gaseous or liquid organic compounds
    • C01B3/24Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of gaseous or liquid organic compounds of hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/342Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents with the aid of electrical means, electromagnetic or mechanical vibrations, or particle radiations
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/40Carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/50Carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/06Integration with other chemical processes
    • C01B2203/061Methanol production
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/06Integration with other chemical processes
    • C01B2203/068Ammonia synthesis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/80Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in fisheries management
    • Y02A40/81Aquaculture, e.g. of fish
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/133Renewable energy sources, e.g. sunlight
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/59Biological synthesis; Biological purification
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P60/00Technologies relating to agriculture, livestock or agroalimentary industries
    • Y02P60/60Fishing; Aquaculture; Aquafarming

Definitions

  • renewable energy sources such as solar, wind, wave, falling water, and biomass wastes have tremendous potential as being main energy sources, but currently suffer from a variety of problems that prohibit their widespread adoption.
  • utilizing renewable energy sources in the production of electricity is dependent on the availability of the sources, which can be intermittent.
  • Solar energy is limited by the sun's availability (i.e., daytime only)
  • wind energy is limited by the variability of wind
  • falling water energy is limited by droughts
  • biomass is limited by seasonal variances, among other things. Because of these and other factors, much of the energy from renewable sources, captured or not captured, tends to be wasted.
  • Figure 1 A is a block diagram illustrating a system of integrated energy, agribusiness and industrial sustainable economic development in accordance with aspects of the disclosure.
  • Figure 1 B is a block diagram illustrating a system of integrated production of sustainable economic development in accordance with aspects of the disclosure.
  • Figure 1 C is a schematic illustrating a land-based system of integrated production of sustainable economic development in accordance with aspects of the disclosure.
  • Figure 1 D is a schematic diagram illustrating an ocean-based system of integrated production of sustainable economic development in accordance with aspects of the disclosure.
  • Figure 1 E is a block diagram illustrating a system of sustainable economic development in accordance with aspects of the disclosure.
  • Figure 2A is a block diagram illustrating some components of the system used to harvest resources from feedstock in accordance with aspects of the disclosure.
  • Figure 2B is a block diagram illustrating some components of the system used to generate resources from products or byproducts during the harvesting of resources from supplied feedstock in accordance with aspects of the disclosure.
  • Figures 3A-3F are block diagrams illustrating the operation of resource generation components within the system in accordance with aspects of the disclosure.
  • FIG. 4 is a block diagram illustrating an energy harnessing system or harnessing energy from renewable resources in accordance with aspects of the disclosure.
  • Figure 5 is a flow diagram illustrating a routine for harnessing energy using a generated resource in accordance with aspects of the disclosure.
  • Figure 6 is a flow diagram illustrating a routine for extracting or generating a resource using energy from a renewable energy source in accordance with aspects of the disclosure.
  • Patent Applications filed concurrently herewith on August 16, 2010 and titled: METHODS AND APPARATUSES FOR DETECTION OF PROPERTIES OF FLUID CONVEYANCE SYSTEMS (Attorney Docket No. 69545-8003US); COMPREHENSIVE COST MODELING OF AUTOGENOUS SYSTEMS AND PROCESSES FOR THE PRODUCTION OF ENERGY, MATERIAL RESOURCES AND NUTRIENT REGIMES (Attorney Docket No. 69545-8025US); ELECTROLYTIC CELL AND METHOD OF USE THEREOF (Attorney Docket No.
  • renewable energy particularly power from large coal and nuclear-fueled central power plants presents another economic problem and opportunity that is largely wasted but the present invention provides for utilization of such surplus capacity for creation of renewable energy, materials, and nutrients.
  • This solution provides improvements in the returns on present investments and establishes incentives for transition to sustainable economic development practices.
  • Illustratively surplus electricity from fossil or nuclear fueled power plants may be utilized interchangeably with renewable electricity to produce carbon reinforcement materials for solar dish-gensets along with wind and water turbines in which such reinforcing carbon is extracted from hydrocarbons such as methane from sources including renewable and fossil sources.
  • the on-going production of renewable electricity from such solar dish- gensets and turbines for harnessing wind and moving water is typically many times larger than the one-time combustion of such hydrocarbons and capacity to efficiently meet customer demands is greatly improved.
  • the system During production of a resource (e.g. hydrogen, oxygen, carbon), the system utilizes a renewable process that captures and reinvests into the system some or all resources and/or byproducts from the extraction of the resource using renewable energy.
  • a resource e.g. hydrogen, oxygen, carbon
  • the system enables the sustainable production of hydrogen, carbon, and other resources.
  • the system harnesses energy during and as a result of the sustainable production of resources.
  • the system provides for sustainable economic development by refining renewable energy input into the system and, therefore, achieving economic multiplying effects on feedstock, resources, and other substances within the system.
  • Many of the details, dimensions, angles, shapes, and other features shown in the Figures are merely illustrative of particular embodiments of the disclosure. Accordingly, other embodiments can have other details, dimensions, angles, and features without departing from the spirit or scope of the present disclosure.
  • those of ordinary skill in the art will appreciate that further embodiments of the disclosure can be practiced without several of the details described below.
  • Figure 1A shows the Full Spectrum Integrated Production System 100, composed of three interrelated systems, that include The Full Spectrum Energy Park 200 for Renewable Energy Production and Materials Resource Extraction, The Full Spectrum Agribusiness Network 300 for Renewable Nutrient Regimes (human, animal and plant nutrition) and Energy Feedstock Production (biomass, biowaste and biofuel), and Full Spectrum Industrial Park 400 for Sustainable Materials Resource Production and Zero Emissions Manufacturing.
  • the Full Spectrum Energy Park 200 for Renewable Energy Production and Materials Resource Extraction
  • Full Spectrum Industrial Park 400 for Sustainable Materials Resource Production and Zero Emissions Manufacturing.
  • FIG. 1 A shows system 100 as the integration of systems 200, 300, and 400 to enable exchange of energy, materials and information among these systems.
  • System 100 integration, and particularly methods within system 200 utilizes the thermodynamic properties of multiple interrelated heat engines thermally coupled to form a thermodynamic whole-system in order to function effectively as a very large heat engine, which is able to achieve increased beneficial production capacity and efficiency.
  • system 200 is particularly dedicated to achieve synergistic linkage among solar thermal, geothermal, ocean thermal, and engine thermal sources so as to increase the total available renewable energy output of the particular site location, and to provide energy and extracted material resources to systems 300 and 400.
  • the Full Spectrum Energy Park 200 is thermally coupled to function effectively as a single large heat engine, whose systems and subsystems are interrelated to establish energy cascades, using working fluids that are heated in two or more stages.
  • the total available renewable energy output of system 200 is increased by systematically moving working fluids between solar, geologic, engine, and other thermal sources to achieve a cascade effect to optimize the thermodynamic properties (such as temperature, pressure, purity, phase shift, and efficiency of energy conversion) of a working fluid.
  • Energy output of one stage is reinvested in key processes of another stage so as to operate in a regenerative or autogenous manner with increased efficiency and economy of operation.
  • Full Spectrum Energy Park 200 functions include: harvesting, conversion and storage of kinetic, thermal, and radiant energy forms among renewable energy sources such as solar, wind, moving water, geothermal, biomass, and internal combustion engines so as to establish autogenous or regenerative energy cascades among the systems to create aggregating and synergistic benefits that cannot be achieved by harvesting, conversion and storage of any one renewal energy source alone.
  • Autogenous or regenerative energy methods are practiced in systems 200, 300, and 400.
  • system 200 is directed to materials resource extraction of numerous chemicals for use in systems 300 and 400. For example, thermochemical regeneration is used as a means of extracting carbon as a raw material (extraction can take place in systems 200, 300 and 400) for subsequent manufacturing production of durable goods at system 400.
  • thermochemical regeneration can also be used as a means of extracting nitrogen and trace minerals for subsequent manufacturing production of plant fertilizers for use in system 300.
  • system 200 is directed to biowaste, biomass and biofuel conversion, typically to achieve bio-methane gas and/or hydrogen gas storage, transport and use on-demand at systems 200, 300 and 400 as fuels for internal combustion engines and/or fuel cells for electrical power generation and/or transportation.
  • Food production at system 300 can be installed on both land and ocean sites. Crop farms, cattle farms, ranches, industrial production facilities for pork and chicken, fresh water fisheries, ocean fisheries, dairy farms, and so on can be linked to system 200 as consumers of the energy produced in system 200, but in turn produce waste by-products which are diverted to system 200 for conversion to renewable energy and renewable materials resources. Further, system 300 is directed to increased Energy Feedstock Production for such biofuel crops, such as algae, switch grass and other crops to increase the viability of photosynthesis-based energy harvesting. Method and apparatus for water production, purification, and conservation are used in each of the systems of production 200, 300 and 400. However, these are important components of system 300 in order to satisfy requirements for large quantities of water in food production and to overcome the documented problem of unsustainability due to waste and fouling of water by conventional food production practices.
  • System integration increases capacity for "sustainability”—defined as increased production of energy, material resources and nutrient regimes using renewable methods to avoid depletion of natural resources and reduce or eliminate destructive environmental impact such as pollution and toxic emissions as byproducts of production.
  • Sustainability requires methods of production for energy, materials, and food that are viable for the long-term wellbeing of future generations, not just the immediate short-term benefit of current consumers.
  • System integration enables the increase in production capacity for "economic scalability” — defined as significant increase of production of energy, materials, and food that is achieved by the ability to replicate numerous aggregative installation sites, and to increase the number of available site locations by greatly improved adaptability to the diverse climate regions (i.e., adaptively harvesting renewable energy by accommodating the varied resource characteristics of temperate, tropical and arctic climates).
  • economic scalability is required to increase the earth's carrying capacity to sustain continued rapid human population growth, and rapidly increasing energy requirements of developing nations.
  • production methods and locations must be immediately usable, and must present an economically viable alternative to current production means of energy, materials, and food production as compared to using conventional fossil fuel and/or nuclear energy sources.
  • System integration further enables a zero-emissions and zero-waste method of energy production 200, materials production 400, and food production 300, wherein: organic waste generated in the system 300 that would otherwise be burned, buried, or dumped in landfills, aquifers, streams, oceans, or emitted into the atmosphere as pollutants is instead systematically channeled into biomass, biowaste, and biofuel conversion systems as found in system 200; energy and material resource extraction in system 200 is passed to system 400 for production of durable goods; energy and material resource extraction in system 200 is also passed to system 300 for production of nutrient regimes for humans, animals and plant life on land and ocean.
  • System integration establishes a single unit of economic production that intentionally links energy production with food production and materials resource production in such a way that these function as an interdependent whole.
  • the Full Spectrum Integrated Production System is thus suitable for installation in locations or communities where no comparable renewable energy infrastructure currently exists, or where manufacturing capabilities are deficient and unemployment is the norm, or where food production is deficient and poverty and malnourishment is the norm.
  • the goal of introducing this unified method of economic production is to enable increases in gross domestic product (GDP) with the increased quality of life that accompanies GDP, and systematic job creation with the improved quality of life that accompanies meaningful employment.
  • GDP gross domestic product
  • system integration establishes a single unit of economic production that intentionally links waste management with energy conversion practices so that they function as an interdependent whole to interrupt conventional waste practices of burn, bury, and dump that lead to pollution and environmental degradation.
  • the Full Spectrum Integrated Production System introduces use of sustainable waste-to-energy conversion as an integrated practice across the whole system.
  • the goal of this integrated system is to protect the natural environment, conserve finite natural resources, reduce communicable disease, and reduce land, water and air pollution (including reduction in greenhouse gas drivers of climate change, such as methane and C02).
  • the Full Spectrum Integrated Production System 100 provides a means to achieve an "industrial ecology," in which the human-systems production environment mimics natural ecosystems: where energy and materials flow among systems and wastes become inputs for new processes in a closed-loop manner, yet the whole system is open to the renewable, sustainable energy provided by sun (solar thermal), earth (geothermal), ocean (ocean thermal), and biomass conversion (engine thermal) systems.
  • FIG. 1 B is a block diagram illustrating a Full Spectrum Integrated Production System 100 of sustainable economic development, which includes the production of energy (e.g., electricity and fuels) concurrent with the production of nutrient regimes (e.g., products for human, animal, or plant nutrition) and the production of materials resources (e.g., hydrogen and carbon).
  • the system 100 is comprised of integrated and interdependent sub-systems with adaptive control of autogenous cascading energy conversions that captures and reinvests some or all of the energy, substances and/or byproducts of each sub-system.
  • the continued operation of the system 100 is sustained with the introduction of minimal or no external energy or materials resources.
  • the system 100 is an example of industrial ecology which facilitates sustainable economic development, such as the harnessing of renewable energy, the production of foods, and the production of materials resources, which is greater production of energy, foods, and materials resources than is achievable using conventional techniques, among other benefits.
  • a Full Spectrum Energy Park 200 coordinates methods of capturing energy from renewable sources 210 (e.g., solar, wind, moving water, geothermal, rejected heat) with methods of producing energy from renewable feedstocks 220 (e.g., biowaste 320, biomass 310) and methods of producing materials resources (e.g., hydrogen 230, carbon 240, other materials resources such as trace minerals 250, pure water 260).
  • renewable sources 210 e.g., solar, wind, moving water, geothermal, rejected heat
  • renewable feedstocks 220 e.g., biowaste 320, biomass 310
  • materials resources e.g., hydrogen 230, carbon 240, other materials resources such as trace minerals 250, pure water 260.
  • Energy is stored, retrieved, and transported using methods of adaptive control of autogenous cascading energy conversions that generate a multiplier effect in the production of energy.
  • materials resources e.g., hydrogen and carbon
  • the Full Spectrum Energy Park 200 stores, retrieves, transports, monitors, and controls said energy and said resources to achieve improved efficiencies in the production of energy, materials resources, and nutrient regimes.
  • Some of the produced or harvested energy 210, 220 is provided to the Full Spectrum Agribusiness Network 300. Some of the produced energy 210, 220 is provided to the Full Spectrum Industrial Park 400. Some of the produced energy 210, 220 is reinvested in the Full Spectrum Energy Park 200. Some of the produced energy 201 , 220 is provided to external recipients and/or added to the national electricity grid and/or the national gas pipeline.
  • a Full Spectrum Agribusiness Network 300 receives renewable energy produced by the Full Spectrum Energy Park 200 to power the functions of farming, animal husbandry, and fishery sub-systems. This includes renewable fuels for farm equipment, vehicles, boats and ships, and electricity for light, heat, mechanical equipment, and so on.
  • the Full Spectrum Agribusiness Network 300 receives materials resources and byproducts such as other materials resources (e.g., trace minerals 250) and pure water 260 produced by the Full Spectrum Energy Park 200 to enrich nutrient regimes in farming, animal husbandry, and fishery sub-systems and to produce increased efficiencies in the production of plant crops 340 and animal crops 350.
  • materials resources and byproducts such as other materials resources (e.g., trace minerals 250) and pure water 260 produced by the Full Spectrum Energy Park 200 to enrich nutrient regimes in farming, animal husbandry, and fishery sub-systems and to produce increased efficiencies in the production of plant crops 340 and animal crops 350.
  • the Full Spectrum Agribusiness Network 300 harvests energy feedstock and supplies it to the Full Spectrum Energy Park 200 for use in the production of renewable energy.
  • Suitable feedstock includes biomass 310 (e.g., crop slash), biowaste 320 (e.g., sewage, agricultural waste water, meat packing wastes, effluent from fisheries), biofuel stock 330 (e.g., algae, switchgrass), and so on.
  • a Full Spectrum Industrial Park 400 ruses renewable energy produced by the Full Spectrum Energy Park 200 to power the functions of sustainable materials resources production and zero-emissions manufacturing. This includes renewable fuels for internal combustion engines (e.g., stationary engines, vehicles) and electricity for light, heat, mechanical equipment, and so on.
  • the Full Spectrum Industrial Park 400 invests materials resources 230, 240 and byproducts 250 received from the Full Spectrum Energy Park 200 to produce additional materials resources (e.g., designer carbon 420 and industrial diamonds 430).
  • additional materials resources e.g., designer carbon 420 and industrial diamonds 430.
  • the Full Spectrum Industrial Park 400 uses materials resources and byproducts received from the Full Spectrum Energy Park 200 to manufacture products such as carbon-based green energy machines 410, including solar thermal devices 410, wind turbines 410, water turbines 410, electrolyzers 410, internal combustion engines and generators 410, automobile, ship and truck parts 440, semiconductors 450, nanotechnologies 460, farm and fishery equipment 470, and so on.
  • carbon-based green energy machines 410 including solar thermal devices 410, wind turbines 410, water turbines 410, electrolyzers 410, internal combustion engines and generators 410, automobile, ship and truck parts 440, semiconductors 450, nanotechnologies 460, farm and fishery equipment 470, and so on.
  • the Full Spectrum Industrial Park 400 provides some or all of these products and byproducts to the Full Spectrum Energy Park 200 and the Full Spectrum Agribusiness Network 300.
  • the Full Spectrum Energy Park 200 uses solar thermal devices 410, wind turbines 410, water turbines 410, electrolyzers 410, internal combustion engines and generators 410, and so on that are produced and provided by the Full Spectrum Industrial Park 400 to produce renewable energy.
  • the Full Spectrum Agribusiness Network 300 uses internal combustion engines and generators 410, farm and fishery equipment 470 and other devices produced and provided by the Full Spectrum Industrial Park 400 to produce nutrient regimes.
  • the energy produced by the Full Spectrum Integrated Production System 100 provides power for all the sub-systems, including reinvesting energy to drive the further production of renewable energy. Concurrently, some or all of the products and byproducts produced in the system 100 are invested in the functions of all the sub-systems. At the same time, the wastes produced by the system 100 are captured and used as feedstock for the functions of all the sub-systems.
  • the integrated and interdependent sub-systems use adaptive controls to manage autogenous cascading energy conversions and autogenous regeneration of materials resources.
  • the system constantly reinvests renewable energy, sustainable materials resources, and other byproducts into the different sources and processes of the sub-systems (Energy Park, Agribusiness Network, Industrial Park).
  • the system 100 harnesses larger amounts of the supplied energy and resource from various resources within the system than is achievable with conventional means.
  • This industrial symbiosis generates a multiplying effect on the amounts of various resources and energy harvested from renewable feedstock and byproduct sources within the system, adding value, reducing costs, and improving the environment, among other benefits.
  • Figure 1 C is a schematic illustration of a Full Spectrum Integrated Production System 100 showing various exemplary functional zones for a land- based system
  • Figure 1 D is a schematic illustration of a Full Spectrum Integrated Production System 100 showing various exemplary functional zones for an ocean- based system.
  • the systems shown include an integrated production system on land or ocean with adaptive control of cascading energy conversions and autogenous regeneration of materials resources and production of nutrient regimes.
  • the system includes functional zones for purposes of harvesting and/or generating energy from renewable sources and harvesting material resources from renewable feedstocks that store, retrieve, transport, monitor and control the energy and material resources to achieve improved efficiencies in the production of energy, material resources, and nutrient regimes.
  • Table 1 below expands on exemplary outputs, systems and means associated with the illustrative functional zones.
  • Material • chemical and mineral • autogenous regeneration of Resources byproducts e.g., hydrogen, materials resources from Production Zone methane, oxides of carbon, carrier feedstock
  • Zone achieve task of zero emissions • computer monitoring and production of energy, material control using the resources and nutrient embedded sensing devices regimes • automation
  • FIG. 1 E is a block diagram illustrating another system 102 of sustainable economic development, such as the production of a resource (e.g., hydrogen and carbon) in accordance with aspects of the disclosure.
  • the system 102 captures and reinvests some or all of the substances and/or byproducts during extraction of the resource using renewable energy sources.
  • the system facilitates sustainable economic development, such as the harnessing of renewable energy, which is greater than the harnessing of the renewable energy using conventional techniques, among other benefits.
  • a feedstock source 104 supplies feedstock to the system 102.
  • the feedstock may be any matter or substances that include hydrogen or carbon.
  • Suitable carbon-containing or hydrogen-containing feedstock includes biomass, biowaste, coal, oil, natural gas, tires, plastics, diapers, forest slash, hospital waste, ocean debris, sea water, industrial waste water, agricultural waste water, sewage, landfill waster water, and so on.
  • the system may receive a nitrogen- containing feedstock 1 18, such as air.
  • An extraction component 110 receives the feedstock 1 18 from the feedstock source 104.
  • the extraction component is configured to extract resources or other substances from the feedstock, or to otherwise separate the feedstock into different substances.
  • the extraction component 1 10 dissociates supplied feedstock into carbon-containing substances, hydrogen-containing substances, various nutrients and/or ash.
  • the extraction component 1 10 may extract resources from supplied feedstock using various dissociation, extraction, or separation techniques, including:
  • Thermal dissociation which may include adding heat to a substance or substances to produce a reaction
  • Electrode which may include electrolysis with or without separation of substances, electrodialysis, electroseparation, and so on;
  • Optical dissociation which may include using selected wavelengths to dissociate a compound or depolymerize a polymer
  • Magnetic dissociation or separation which may include ferromagnetic dissociation, paramagnetic dissociation, magnetohydrodynamic acceleration, magnetic field deflection of substances, and so on.
  • the extraction component 1 10 dissociates the feedstock into various substances using electricity received from an external or internal electricity source 106.
  • suitable external electricity sources include renewable resources (solar/photovoltaic sources, solar/thermal sources, wind sources, geothermal sources, and so on) or non-renewable sources (diesel generators, natural gas generators, coal or nuclear generators).
  • suitable internal electricity sources include internal combustion engines, fuel cells, thermoelectric devices, piezoelectric devices, and so on. Some or all of the electricity sources may be configured to receive byproducts or other substances from various components of the system in order fuel or assist in the generation of electricity provided to the extraction component 110.
  • the extraction component 1 10 dissociates the feedstock into various substances using energy received from a renewable energy source 108.
  • suitable renewable energy sources include solar concentrators (such as those described herein) and other solar energy sources, moving water energy sources, and/or wind energy sources.
  • the extraction component 1 10 utilizes energy received from both the electricity source 106 and the renewable energy source 108 to assist in the dissociation of a feedstock into various desired substances.
  • the extraction component may also vary the heat and/or pressure applied to the feedstock during a dissociation process.
  • the extraction component 1 10 dissociates a supplied feedstock into various products or byproducts 1 12, including carbon dioxide (CO 2 ) 151 , carbon monoxide (CO) 152, Hydrogen (H 2 ) 153, Water (H 2 0) 154, Methane (CH 4 ) 155, Ash 156, and/or other substances (not shown).
  • desired resources 1 16 such as Carbon 171 , Ammonia 176, Fertilizer 177, Hydrogen 174, Methanol 173, Oxygen 172, and so on.
  • the system 102 supplies the various products or byproduct 112 to various resource generation components 160 to generate the desired resources 116. These include:
  • a resource generation component 161 configured to generate Oxygen
  • a resource generation component 162 configured to generate Methanol
  • a resource generation component 163 configured to generate Hydrogen
  • a resource generation component 164 configured to generate Ammonia 176 from Hydrogen 153 and Nitrogen 175;
  • a resource generation component 165 configured to generate a suitable Fertilizer 177 from Ammonia 176 and Ash 156; and/or other resource generation components (not shown).
  • the system 102 may store or otherwise utilize products 1 12 or generated or desired resources 116.
  • the system transfers the Methane 155 to a geothermal storage source 180 via a pipeline 181.
  • the storing, and subsequent retrieval, of the methane may enable the system to obtain energy, such as by thermal gain 182, chemical gain 183, and/or a carrier gain 184 to produce certain solvents 185, such as methanol, ammonia, and/or water.
  • Hydrogen is co-produced in virtually all instances that carbon is extracted for purposes of being incorporated in durable goods. Production of hydrogen by dissociation of a source compound such as methane is potentially very inexpensive. This is because the energy required for extracting hydrogen from most hydrocarbons is much less than the energy required to produce hydrogen by dissociation of water by thermal, electrical, radiation, or magnetic separation technologies.
  • the system transfers the hydrogen 174 to storage 191 or to one or more energy sources 190.
  • the hydrogen 174 may fuel an internal electricity source 106, such as an engine or fuel cell used to assist in dissociation of feedstock.
  • the system 02 uses renewable resources and renewable energy to create refined renewable resources and energy having a greater economic value than what would be created using conventional processes, among other benefits.
  • the system uses the refined renewable resources and energy to harvest new renewable resources and energy in a sustainable, non-polluting, and non-depleting manner. That is, the system achieves an economic multiplier effect for resources supplied to the system by constantly reinvesting the resources into the system, such as into the renewable energy sources and the various processes within the system.
  • the system 102 dissociates methane and hydrogen from a supplied biomass, harvests renewable energy and resources, such as carbon, from the methane and hydrogen, and uses the carbon to harvest more biomass and methane to harvest more carbon and hydrogen, and so on.
  • the system takes a small amount of a resource, such as hydrogen, from a supplied energy source, and constantly reinvests the resource, other resources, and other byproducts into different energy sources and processes to capture larger amounts of the supplied resource from various resources within the system. This leads to a multiplying effect on the amounts of various resources and energy harvested from renewable energy sources within the system, leading to the sustainable economic development of resources and energy from renewable energy sources, among other benefits.
  • Illustratively hydrogen can be reacted with carbon dioxide that is discarded from sources such as bakeries, breweries, cement plants, or fossil fired power plants to produce various substances including solvents such as methanol, ethanol, butanol or tetrahydrofuran.
  • solvents such as methanol, ethanol, butanol or tetrahydrofuran.
  • Such substances can be utilized to provide compact storage and transport of hydrogen including the multifunctional purpose of serving as a solvent for dissolving a wide range of polar and nonpolar materials.
  • Retrieval from storage of such solvents in depleted oil and natural gas wells enables extraction of renewable thermal energy along with hydrocarbons that otherwise would have remained un-produced from such wells.
  • vast storage capabilities are provided for renewable hydrogen through the utilization of existing pipelines and substantially depleted hydrocarbon formations.
  • an energy-conversion cycle can be combined with a mineral extraction benefit.
  • Liquid hydrogen-storage solvent is delivered to a geothermally warm formation.
  • the liquid is returned to the surface for extraction of dissolved values and conversion of energy delivered by geothermally heated vapor expansion.
  • the pressure provided by the column height and/or the pressure produced by vaporization of the liquid as a result of heat gain may be harnessed at or near the storage depth.
  • the fluid such as liquid condensate thus produced is utilized to continue the selected process of energy and mineral value extraction from the geothermal formation.
  • the process provides a multiplying effect for renewable energy production along with supplies of additional hydrogen, materials and feedstocks that can serve as carbon donors for purposes of manufacturing equipment to harness renewable energy resources.
  • FIG. 2A is a block diagram illustrating some components 201 of system 102 used to harvest resources from feedstock.
  • the system 102 utilizes energy sources 108, such as renewable energy sources, and electricity sources 106 to assist in harvesting desired resources from feedstock supplied by a feedstock source 1 10.
  • a harvest component such as the extraction component 1 10 of Figure 1 , harvests various substances or products 1 12 from feedstock supplied by the feedstock source 1 10.
  • the system 102 may harvest substances for a number of different purposes, including substances 202 harvested to supply fuel to the electricity source 106 or the renewable energy source 108 (e.g., to provide fuel for a fuel cell or a solar concentrator), substances 204 harvested to be transferred out the system (e.g., for use externally, to be stored, and so on), and/or substances 206 harvested to supply more feedstock to the feedstock source 110.
  • substances 202 harvested to supply fuel to the electricity source 106 or the renewable energy source 108 e.g., to provide fuel for a fuel cell or a solar concentrator
  • substances 204 harvested to be transferred out the system e.g., for use externally, to be stored, and so on
  • substances 206 harvested to supply more feedstock to the feedstock source 110 e.g., for use externally, to be stored, and so on.
  • FIG. 2B is a block diagram illustrating some components 210 of system 102 used to generate resources from products or byproducts during the harvesting of resources from supplied feedstock.
  • a product 1 12 is supplied to a resource generation component 114, which utilizes energy received from an electricity source 106 or a renewable energy source 108 to generate one or more resources 1 16.
  • the system 102 may generate resources for a number of different purposes, including resources 212 harvested to supply fuel to the electricity source 106 or the renewable energy source 108 (e.g., to provide fuel for a fuel cell or working fluid or fuel during night-time operation of a solar concentrator system), resources 214 harvested to be transferred out of the system (e.g., for use externally, to be stored, and so on), and/or substances 216 harvested to supply substances to a resource generation component 160 for resource generation.
  • resources 212 harvested to supply fuel to the electricity source 106 or the renewable energy source 108 e.g., to provide fuel for a fuel cell or working fluid or fuel during night-time operation of a solar concentrator system
  • resources 214 harvested to be transferred out of the system e.g., for use externally, to be stored, and so on
  • substances 216 harvested to supply substances to a resource generation component 160 for resource generation.
  • FIGS. 3A-3F are block diagrams illustrating the operation of resource generation components 160 within the system 110.
  • Figure 3A shows a resource generation component 161 configured to generate Oxygen 172 and Carbon 171 (e.g., designer carbon) from carbon dioxide 151.
  • the resource component 161 utilizing energy from an electricity source 106 and/or a renewable energy source 108, performs various processes 310, such as the dissociation of a carbon donor such as carbon dioxide or carbon monoxide to provide carbon and oxygen as shown.
  • such carbon donors are supplied as fluids such as gas or liquid to a heat input zone such as shown in a helical conveyer having a counter-current exchange to energy addition zone of a concentrated solar radiation to provide endothermic heat and/or radiation induced dissociation as generally summarized in Equation 310 or 310': [0085] C0 2 + ENERGY ⁇ C + 0.5O 2 Equation 310
  • Figure 3B shows a resource generation component 162 configured to generate Methanol 173 from carbon dioxide and/or carbon monoxide 152 and hydrogen 153.
  • the resource component 162 utilizing energy from an electricity source 106 and/or a renewable energy source 108, performs various processes 320, such as the pressurization of the reactants for illustrative processes such as those summarized in Equations 320 and 320':
  • such pressurization may be provided by dissociation of various hydrogen donors such as water or a hydrocarbon or another selected compound in which the volume of hydrogen produced is prevented from expansion for the purpose of producing the desired pressure to facilitate reactions such as shown in Equations 320 and 320'.
  • various hydrogen donors such as water or a hydrocarbon or another selected compound in which the volume of hydrogen produced is prevented from expansion for the purpose of producing the desired pressure to facilitate reactions such as shown in Equations 320 and 320'.
  • Figure 3C shows a resource generation component 163 configured to generate hydrogen 174 and Carbon 171 from Methane 155.
  • the resource component 163, utilizing energy from an electricity source 106 and/or a renewable energy source 108, performs various processes 330, such as the thermal, electrical, and/or magnetic energy conversion process of inducing dissociation such as summarized in Equations 330 and 330':
  • Figure 3D shows a resource generation component 164 configured to generate ammonia 176 from hydrogen 153 and nitrogen 175.
  • the resource component 164 utilizing energy from an electricity source 106 and/or a renewable energy source 108, performs various processes 340, such as the Haber-Bosch process.
  • One embodiment provides for selectively admitting and transporting hydrogen from a mixture of substances for the purpose of reacting such hydrogen at or near the delivery interface with nitrogen as disclosed in co-filed applications incorporated above by reference, which provides for nitrogen to be sequestered from a source such as ambient air by combustion of surplus hydrogen in an engine.
  • Equation 340 summarizes the process for combining atmospheric oxygen with surplus hydrogen to produce separable streams of water and nitrogen.
  • a load such as a pump or electricity generator.
  • Surplus hydrogen is utilized to deplete the oxygen in the combustion chamber by forming water vapor which is subsequently condensed or removed by pressure swing or temperature swing media from the exhaust stream.
  • the remaining exhaust stream of nitrogen with much lower concentrations of other components such as argon is pressurized and presented for reaction with hydrogen to produce ammonia as summarized by equation 340'.
  • Ammonia is separated by condensation or collection by media in temperature swing or pressure swing systems along with collection of values such as argon.
  • Figure 3E shows a resource generation component 165 configured to generate fertilizer 177 from ammonia 176 and ash 156.
  • the resource component 165 utilizing energy from an electricity source 106 and/or a renewable energy source 108, performs various processes 350 such as in an illustrative embodiment, ammonia is reacted with sulfur dioxide and water to produce ammonium sulfate as generally summarized in Equation 350, which is not balanced:
  • a suitable reactor provides for a sulfur source such as a suitable oxide of sulfur including sulfur dioxide to react in the presence of water and oxygen.
  • a sulfur source such as a suitable oxide of sulfur including sulfur dioxide to react in the presence of water and oxygen.
  • Soil or hydroponic fluid tests are made to determine the need for additions of minerals such as phosphorus, potassium, iron, manganese, magnesium, calcium, boron, selenium, molybdenum and so forth and a suitable formulation with such additions is provided.
  • the system may utilize other resource generation components or other processes to produce the resources used by the system.
  • the system 102 utilizes some or all of the components described herein in order to generate desired resources, such as hydrogen or carbon.
  • desired resources such as hydrogen or carbon.
  • the system uses these resources for variety of purposes, including using the generated resources to harness energy from renewable energy sources.
  • Figure 4 is a block diagram illustrating an energy harnessing system 400 for harnessing energy from renewable resources.
  • the energy harnessing system 400 includes a renewable energy source 410, such as a solar energy source, a wind energy source, a geothermal energy source, a moving water energy source, and so on.
  • the renewable energy source 410 provides energy to an energy component 420, which facilitates the harnessing of energy from the renewable energy source 410.
  • the energy component 420 receives one or more resources from a resource component 430.
  • the resource component 430 may be various components of the system 102, including the extraction component 1 10, one or more resource generation components 1 14, the pipeline 180, the storage/transport component 191 , and/or other components.
  • the energy component 420 provides a resource supplied by the resource component 430 to the renewable energy component 410, enabling the renewable energy component to harness a greater amount of energy than would be harnessed without the supplied resource.
  • Figure 5 is a flow diagram illustrating a routine 500 for harnessing energy using a generated resource.
  • the energy harnessing system 400 receives a resource into the resource component 430.
  • the energy harnessing system 400 may be part of the system 102, and receive a resource from the extraction component 1 10 (i.e., after dissociation of a feedstock) or from one or more resource generation components 1 14.
  • the energy harnessing system 400 supplies the received resource to the renewable energy source 410.
  • the system 400 supplies the renewable energy source with one or more resources that may be used as fuel or otherwise enhance a reaction that occurs at the renewable energy source 410.
  • the renewable energy source 410 harnesses energy using the supplied resource.
  • the renewable energy source may implement or otherwise utilize the resource during the capture of energy in order to harness a greater amount of energy than would otherwise be captured without the supplied resource.
  • the energy harnessing system 400 may facilitate the harnessing of solar energy at a solar collector by supplying oxygen to the solar collector, combusting the oxygen to raise the temperature of a heat zone in which the solar collector focuses received solar energy, and capturing energy from the heat zone. Further details regarding the harnessing of energy by supplying renewable resources to renewable energy sources may be found in copending applications referenced and incorporated above.
  • the renewable energy component 410 provides energy to the resource component 430 to facilitate the extraction or generation of a resource.
  • Figure 6 is a flow diagram illustrating a routine 600 for extracting or generating a resource using energy from a renewable energy source.
  • the energy harnessing system 400 receives energy from the renewable energy source.
  • the system may receive energy from a solar energy source, a wind energy source, a moving water energy source, and so on.
  • the received energy may be energy collected from the source, or may be energy collected from other resources that received the energy from the renewable energy source.
  • the energy harnessing system 400 supplies the energy to an extraction component or a resource generation component.
  • the system 400 may supply the energy to the extraction component, such as an extraction or dissociation component 140 that performs electrolysis to separate hydrogen and oxygen from feedstock.
  • the energy harnessing system 400 extracts or generates a resource using the supplied energy.
  • the extraction component 110 or resource generation component 114 may implement or otherwise utilize the supplied energy to control or otherwise affect an extraction or generation process, such as an electrolysis or combustion of substances.
  • the energy harnessing system 400 may facilitate the production of hydrogen and oxygen from water in an electrolytic cell by supplying electricity collected from a solar energy source to electrodes of the electrolytic cell, which applies a voltage across the electrodes and dissociates the water into hydrogen and oxygen. Further details regarding the extraction or generation of resources using renewable energy sources may be found in co-pending applications incorporated by reference above.
  • energy and/or resources harnessed within the energy harnessing system 400 may be utilized by the system 102 to perform some or all of the processes of the system 102 in order to produce desired resources.
  • the system 102 may receive hydrogen extracted using the energy harnessing system 400 and combust some of the hydrogen with air to generate water and nitrogen, and react some of the hydrogen with the generated nitrogen to produce ammonia or ammonia derivatives.
  • the system 102 may receive hydrogen extracted using the energy harnessing system 400 and react the hydrogen with generated carbon to produce methane.
  • the system 102 may receive hydrogen extracted using the energy harnessing system 400 and react the hydrogen with an oxide of carbon to produce a resource of carbon, hydrogen, and oxygen.
  • the system harnesses energy in a sustainable manner by providing energy to resource extraction/generation components, which in turn supply resources to renewable energy sources.
  • resource extraction/generation components which in turn supply resources to renewable energy sources.
  • Such cyclical behavior enables greater production of resources, greater amounts of harvested energy, and sustainable economic development focused on the renewable production of resources and the renewable harnessing or capturing of energy, among other benefits.
  • the various methods, components, and systems described herein simultaneously produce the renewables of the system (e.g., energy, material resources, and nutrient regimes) in an interrelated and sustainable fashion.
  • Such interrelated production contributes to greater yields of resources and energy than yields from conventional systems, because the system utilized resources more efficiently.
  • the efficient utilization leads to greater amounts of energy captured from renewable energy sources (e.g, solar, wind, water), and, therefore, greater economic development.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Environmental Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Electromagnetism (AREA)
  • Biotechnology (AREA)
  • Animal Husbandry (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Toxicology (AREA)
  • Mechanical Engineering (AREA)
  • Biomedical Technology (AREA)
  • Marine Sciences & Fisheries (AREA)
  • Microbiology (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Medicines Containing Plant Substances (AREA)

Abstract

The present disclosure is directed to a system and method of sustainable economic development, such as development through an integrated production of renewable energy, material resources, and nutrient regimes. In some embodiments, the system utilizes resources extracted from renewable energy sources to assist in the capture of energy from other renewable energy sources. In some embodiments, the system utilizes energy from renewable energy sources to extract resources from other renewable energy sources.

Description

SUSTAINABLE ECONOMIC DEVELOPMENT THROUGH INTEGRATED PRODUCTION OF RENEWABLE ENERGY, MATERIALS RESOURCES, AND
NUTRIENT REGIMES
CROSS-REFERENCE TO RELATED APPLICATION(S)
[0001] The present application claims priority to and the benefit of U.S. Provisional Patent Application No. 61/345,053 filed on May 14, 2010 and titled SYSTEM AND METHOD FOR RENEWABLE RESOURCE PRODUCTION and U.S. Provisional Application No. 61/304,403, filed February 13, 2010 and titled FULL SPECTRUM ENERGY AND RESOURCE INDEPENDENCE; U.S. Patent Application No. 12/707,651 , filed February 17, 2010 and titled ELECTROLYTIC CELL AND METHOD OF USE THEREOF; PCT Application No. PCT/ US10/24497, filed February 17, 2010 and titled ELECTROLYTIC CELL AND METHOD OF USE THEREOF; U.S. Patent Application No. 12/707,653, filed February 17, 2010 and titled APPARATUS AND METHOD FOR CONTROLLING NUCLEATION DURING ELECTROLYSIS; PCT Application No. PCT/ US 10/24498, filed February 17, 2010 and titled APPARATUS AND METHOD FOR CONTROLLING NUCLEATION DURING ELECTROLYSIS; U.S. Patent Application No. 12/707,656, filed February 17, 2010 and titled APPARATUS AND METHOD FOR GAS CAPTURE DURING ELECTROLYSIS; PCT Application No. PCT/ US10/24499, filed February 17, 2010 and titled APPARATUS AND METHOD FOR CONTROLLING NUCLEATION DURING ELECTROLYSIS; and U.S. Provisional Patent Application No. 61/237,476, filed August 27, 2009 and titled ELECTROLYZER AND ENERGY INDEPENDENCE TECHNOLOGIES. Each of these applications is incorporated by reference in its entirety.
BACKGROUND
[0002] Renewable energy sources such as solar, wind, wave, falling water, and biomass wastes have tremendous potential as being main energy sources, but currently suffer from a variety of problems that prohibit their widespread adoption. For example, utilizing renewable energy sources in the production of electricity is dependent on the availability of the sources, which can be intermittent. Solar energy is limited by the sun's availability (i.e., daytime only), wind energy is limited by the variability of wind, falling water energy is limited by droughts, and biomass is limited by seasonal variances, among other things. Because of these and other factors, much of the energy from renewable sources, captured or not captured, tends to be wasted.
[0003] These inefficiencies in capturing and saving energy limit the growth of renewable energy sources into viable energy providers for many regions of the world, because they often lead to high costs of producing energy using the renewable energy sources. Thus, the world continues to rely on oil and other fossil fuels as major energy sources because of more than a century of government subsidization for infrastructure and technology developments that make it deceptively convenient and seemingly inexpensive for the present generation to expend fossil reserves for production of usable energy. Exploitation of finite fossil and fissionable fuel reserves provides a false sense of value because the replacement cost for the resource expended and the cost of environmental degradation along with the health impacts that are incurred are not included in the purchase price for such energy.
[0004] Surplus electricity, particularly power from large coal- and nuclear-fueled central power plants presents hidden costs including related environmental pollution problems of prompt production of toxic emissions of heavy metal residues and greenhouse gases from fossil fuel combustion along with requirements for expensive long-term storage of radioactive wastes. Large expenses for capital equipment, maintenance, and fuel costs to provide sufficient capacity to meet customer demands are incurred in present utility power distribution systems.
[0005] These and other problems exist with respect to the sustainable production and utilization of renewable resources. BRIEF DESCRIPTION OF THE DRAWINGS
[0006] Figure 1 A is a block diagram illustrating a system of integrated energy, agribusiness and industrial sustainable economic development in accordance with aspects of the disclosure.
[0007] Figure 1 B is a block diagram illustrating a system of integrated production of sustainable economic development in accordance with aspects of the disclosure.
[0008] Figure 1 C is a schematic illustrating a land-based system of integrated production of sustainable economic development in accordance with aspects of the disclosure.
[0009] Figure 1 D is a schematic diagram illustrating an ocean-based system of integrated production of sustainable economic development in accordance with aspects of the disclosure.
[0010] Figure 1 E is a block diagram illustrating a system of sustainable economic development in accordance with aspects of the disclosure.
[0011] Figure 2A is a block diagram illustrating some components of the system used to harvest resources from feedstock in accordance with aspects of the disclosure.
[0012] Figure 2B is a block diagram illustrating some components of the system used to generate resources from products or byproducts during the harvesting of resources from supplied feedstock in accordance with aspects of the disclosure.
[0013] Figures 3A-3F are block diagrams illustrating the operation of resource generation components within the system in accordance with aspects of the disclosure.
[0014] Figure 4 is a block diagram illustrating an energy harnessing system or harnessing energy from renewable resources in accordance with aspects of the disclosure.
[0015] Figure 5 is a flow diagram illustrating a routine for harnessing energy using a generated resource in accordance with aspects of the disclosure. [0016] Figure 6 is a flow diagram illustrating a routine for extracting or generating a resource using energy from a renewable energy source in accordance with aspects of the disclosure.
DETAILED DESCRIPTION Cross-Reference to Related Applications
[0017] The present application incorporates by reference in its entirety the subject matter of U.S. Provisional Patent Application No. 60/626,021 , filed November 9, 2004 and titled MULTIFUEL STORAGE, METERING AND IGNITION SYSTEM (Attorney Docket No. 69545-8013US) and U.S. Provisional Patent Application No. 61/153,253, filed February 17, 2009 and titled FULL SPECTRUM ENERGY (Attorney Docket No. 69545-8001 US). The present application also incorporates by reference in their entirety the subject matter of each of the following U.S. Patent Applications, filed concurrently herewith on August 16, 2010 and titled: METHODS AND APPARATUSES FOR DETECTION OF PROPERTIES OF FLUID CONVEYANCE SYSTEMS (Attorney Docket No. 69545-8003US); COMPREHENSIVE COST MODELING OF AUTOGENOUS SYSTEMS AND PROCESSES FOR THE PRODUCTION OF ENERGY, MATERIAL RESOURCES AND NUTRIENT REGIMES (Attorney Docket No. 69545-8025US); ELECTROLYTIC CELL AND METHOD OF USE THEREOF (Attorney Docket No. 69545-8026US); SYSTEMS AND METHODS FOR SUSTAINABLE ECONOMIC DEVELOPMENT THROUGH INTEGRATED FULL SPECTRUM PRODUCTION OF RENEWABLE ENERGY (Attorney Docket No. 69545-8041 US); SUSTAINABLE ECONOMIC DEVELOPMENT THROUGH INTEGRATED FULL SPECTRUM PRODUCTION OF RENEWABLE MATERIAL RESOURCES (Attorney Docket No. 69545-8042US); METHOD AND SYSTEM FOR INCREASING THE EFFICIENCY OF SUPPLEMENTED OCEAN THERMAL ENERGY CONVERSION (SOTEC) (Attorney Docket No. 69545-8044US); GAS HYDRATE CONVERSION SYSTEM FOR HARVESTING HYDROCARBON HYDRATE DEPOSITS (Attorney Docket No. 69545-8045US); APPARATUSES AND METHODS FOR STORING AND/OR FILTERING A SUBSTANCE (Attorney Docket No. 69545-8046US); ENERGY SYSTEM FOR DWELLING SUPPORT (Attorney Docket No. 69545-8047US); ENERGY CONVERSION ASSEMBLIES AND ASSOCIATED METHODS OF USE AND MANUFACTURE (Attorney Docket No. 69545-8048US); and INTERNALLY REINFORCED STRUCTURAL COMPOSITES AND ASSOCIATED METHODS OF MANUFACTURING (69545-8049US).
Overview
[0018] A system for applying renewable energy to feedstock and other inputs to achieve refined renewable energy and, thus, economic sustainability with respect to the production of resources from the feedstock, is described. Surplus electricity, particularly power from large coal and nuclear-fueled central power plants presents another economic problem and opportunity that is largely wasted but the present invention provides for utilization of such surplus capacity for creation of renewable energy, materials, and nutrients. This solution provides improvements in the returns on present investments and establishes incentives for transition to sustainable economic development practices. Illustratively surplus electricity from fossil or nuclear fueled power plants may be utilized interchangeably with renewable electricity to produce carbon reinforcement materials for solar dish-gensets along with wind and water turbines in which such reinforcing carbon is extracted from hydrocarbons such as methane from sources including renewable and fossil sources. The on-going production of renewable electricity from such solar dish- gensets and turbines for harnessing wind and moving water is typically many times larger than the one-time combustion of such hydrocarbons and capacity to efficiently meet customer demands is greatly improved.
[0019] During production of a resource (e.g. hydrogen, oxygen, carbon), the system utilizes a renewable process that captures and reinvests into the system some or all resources and/or byproducts from the extraction of the resource using renewable energy. In some embodiments, the system enables the sustainable production of hydrogen, carbon, and other resources. In some embodiments, the system harnesses energy during and as a result of the sustainable production of resources. In some embodiments, the system provides for sustainable economic development by refining renewable energy input into the system and, therefore, achieving economic multiplying effects on feedstock, resources, and other substances within the system. [0020] Many of the details, dimensions, angles, shapes, and other features shown in the Figures are merely illustrative of particular embodiments of the disclosure. Accordingly, other embodiments can have other details, dimensions, angles, and features without departing from the spirit or scope of the present disclosure. In addition, those of ordinary skill in the art will appreciate that further embodiments of the disclosure can be practiced without several of the details described below.
[0021] Reference throughout this specification to "one embodiment" or "an embodiment" means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment of the present disclosure. Thus, the occurrences of the phrases "in one embodiment" or "in an embodiment" in various places throughout this Specification are not necessarily all referring to the same embodiment. Furthermore, the particular features, structures, or characteristics may be combined in any suitable manner in one or more embodiments. In addition, the headings provided herein are for convenience only and do not interpret the scope or meaning of the claimed disclosure.
The Overall System
[0022] Figure 1A shows the Full Spectrum Integrated Production System 100, composed of three interrelated systems, that include The Full Spectrum Energy Park 200 for Renewable Energy Production and Materials Resource Extraction, The Full Spectrum Agribusiness Network 300 for Renewable Nutrient Regimes (human, animal and plant nutrition) and Energy Feedstock Production (biomass, biowaste and biofuel), and Full Spectrum Industrial Park 400 for Sustainable Materials Resource Production and Zero Emissions Manufacturing.
[0023] Figure 1 A shows system 100 as the integration of systems 200, 300, and 400 to enable exchange of energy, materials and information among these systems. System 100 integration, and particularly methods within system 200, utilizes the thermodynamic properties of multiple interrelated heat engines thermally coupled to form a thermodynamic whole-system in order to function effectively as a very large heat engine, which is able to achieve increased beneficial production capacity and efficiency. Within system 100, system 200 is particularly dedicated to achieve synergistic linkage among solar thermal, geothermal, ocean thermal, and engine thermal sources so as to increase the total available renewable energy output of the particular site location, and to provide energy and extracted material resources to systems 300 and 400.
[0024] The Full Spectrum Energy Park 200 is thermally coupled to function effectively as a single large heat engine, whose systems and subsystems are interrelated to establish energy cascades, using working fluids that are heated in two or more stages. The total available renewable energy output of system 200 is increased by systematically moving working fluids between solar, geologic, engine, and other thermal sources to achieve a cascade effect to optimize the thermodynamic properties (such as temperature, pressure, purity, phase shift, and efficiency of energy conversion) of a working fluid. Energy output of one stage is reinvested in key processes of another stage so as to operate in a regenerative or autogenous manner with increased efficiency and economy of operation.
[0025] Full Spectrum Energy Park 200 functions include: harvesting, conversion and storage of kinetic, thermal, and radiant energy forms among renewable energy sources such as solar, wind, moving water, geothermal, biomass, and internal combustion engines so as to establish autogenous or regenerative energy cascades among the systems to create aggregating and synergistic benefits that cannot be achieved by harvesting, conversion and storage of any one renewal energy source alone. Autogenous or regenerative energy methods are practiced in systems 200, 300, and 400. Further, system 200 is directed to materials resource extraction of numerous chemicals for use in systems 300 and 400. For example, thermochemical regeneration is used as a means of extracting carbon as a raw material (extraction can take place in systems 200, 300 and 400) for subsequent manufacturing production of durable goods at system 400. In another example, thermochemical regeneration can also be used as a means of extracting nitrogen and trace minerals for subsequent manufacturing production of plant fertilizers for use in system 300. Further, system 200 is directed to biowaste, biomass and biofuel conversion, typically to achieve bio-methane gas and/or hydrogen gas storage, transport and use on-demand at systems 200, 300 and 400 as fuels for internal combustion engines and/or fuel cells for electrical power generation and/or transportation.
[0026] The manipulation of solar thermal, geothermal, ocean thermal, and engine thermal sources provides a highly adaptive integrated platform for installations of system 100 at various climate regions of location, and installations that are both land-based and ocean-based. Engineering for increased location adaptability thereby significantly increases the total availability of renewable energy harvesting, and thus provides an economically viable solution for local, regional, national and global economies.
[0027] Food production at system 300 can be installed on both land and ocean sites. Crop farms, cattle farms, ranches, industrial production facilities for pork and chicken, fresh water fisheries, ocean fisheries, dairy farms, and so on can be linked to system 200 as consumers of the energy produced in system 200, but in turn produce waste by-products which are diverted to system 200 for conversion to renewable energy and renewable materials resources. Further, system 300 is directed to increased Energy Feedstock Production for such biofuel crops, such as algae, switch grass and other crops to increase the viability of photosynthesis-based energy harvesting. Method and apparatus for water production, purification, and conservation are used in each of the systems of production 200, 300 and 400. However, these are important components of system 300 in order to satisfy requirements for large quantities of water in food production and to overcome the documented problem of unsustainability due to waste and fouling of water by conventional food production practices.
[0028] System integration increases capacity for "sustainability"— defined as increased production of energy, material resources and nutrient regimes using renewable methods to avoid depletion of natural resources and reduce or eliminate destructive environmental impact such as pollution and toxic emissions as byproducts of production. Sustainability requires methods of production for energy, materials, and food that are viable for the long-term wellbeing of future generations, not just the immediate short-term benefit of current consumers.
[0029] System integration enables the increase in production capacity for "economic scalability" — defined as significant increase of production of energy, materials, and food that is achieved by the ability to replicate numerous aggregative installation sites, and to increase the number of available site locations by greatly improved adaptability to the diverse climate regions (i.e., adaptively harvesting renewable energy by accommodating the varied resource characteristics of temperate, tropical and arctic climates). Such economic scalability is required to increase the earth's carrying capacity to sustain continued rapid human population growth, and rapidly increasing energy requirements of developing nations. For successful use, such production methods and locations must be immediately usable, and must present an economically viable alternative to current production means of energy, materials, and food production as compared to using conventional fossil fuel and/or nuclear energy sources.
[0030] System integration further enables a zero-emissions and zero-waste method of energy production 200, materials production 400, and food production 300, wherein: organic waste generated in the system 300 that would otherwise be burned, buried, or dumped in landfills, aquifers, streams, oceans, or emitted into the atmosphere as pollutants is instead systematically channeled into biomass, biowaste, and biofuel conversion systems as found in system 200; energy and material resource extraction in system 200 is passed to system 400 for production of durable goods; energy and material resource extraction in system 200 is also passed to system 300 for production of nutrient regimes for humans, animals and plant life on land and ocean.
[0031] System integration establishes a single unit of economic production that intentionally links energy production with food production and materials resource production in such a way that these function as an interdependent whole.
[0032] The Full Spectrum Integrated Production System is thus suitable for installation in locations or communities where no comparable renewable energy infrastructure currently exists, or where manufacturing capabilities are deficient and unemployment is the norm, or where food production is deficient and poverty and malnourishment is the norm. The goal of introducing this unified method of economic production is to enable increases in gross domestic product (GDP) with the increased quality of life that accompanies GDP, and systematic job creation with the improved quality of life that accompanies meaningful employment. [0033] Furthermore, system integration establishes a single unit of economic production that intentionally links waste management with energy conversion practices so that they function as an interdependent whole to interrupt conventional waste practices of burn, bury, and dump that lead to pollution and environmental degradation.
[0034] The Full Spectrum Integrated Production System introduces use of sustainable waste-to-energy conversion as an integrated practice across the whole system. The goal of this integrated system is to protect the natural environment, conserve finite natural resources, reduce communicable disease, and reduce land, water and air pollution (including reduction in greenhouse gas drivers of climate change, such as methane and C02).
[0035] The Full Spectrum Integrated Production System 100 provides a means to achieve an "industrial ecology," in which the human-systems production environment mimics natural ecosystems: where energy and materials flow among systems and wastes become inputs for new processes in a closed-loop manner, yet the whole system is open to the renewable, sustainable energy provided by sun (solar thermal), earth (geothermal), ocean (ocean thermal), and biomass conversion (engine thermal) systems.
[0036] Figure 1 B is a block diagram illustrating a Full Spectrum Integrated Production System 100 of sustainable economic development, which includes the production of energy (e.g., electricity and fuels) concurrent with the production of nutrient regimes (e.g., products for human, animal, or plant nutrition) and the production of materials resources (e.g., hydrogen and carbon). The system 100 is comprised of integrated and interdependent sub-systems with adaptive control of autogenous cascading energy conversions that captures and reinvests some or all of the energy, substances and/or byproducts of each sub-system. Thus, the continued operation of the system 100 is sustained with the introduction of minimal or no external energy or materials resources. The system 100 is an example of industrial ecology which facilitates sustainable economic development, such as the harnessing of renewable energy, the production of foods, and the production of materials resources, which is greater production of energy, foods, and materials resources than is achievable using conventional techniques, among other benefits. [0037] A Full Spectrum Energy Park 200 coordinates methods of capturing energy from renewable sources 210 (e.g., solar, wind, moving water, geothermal, rejected heat) with methods of producing energy from renewable feedstocks 220 (e.g., biowaste 320, biomass 310) and methods of producing materials resources (e.g., hydrogen 230, carbon 240, other materials resources such as trace minerals 250, pure water 260). Energy is stored, retrieved, and transported using methods of adaptive control of autogenous cascading energy conversions that generate a multiplier effect in the production of energy. During the energy harvesting and production processes, materials resources (e.g., hydrogen and carbon) are extracted from biowaste and biomass feedstocks used in the production of renewable energy. The Full Spectrum Energy Park 200 stores, retrieves, transports, monitors, and controls said energy and said resources to achieve improved efficiencies in the production of energy, materials resources, and nutrient regimes.
[0038] Some of the produced or harvested energy 210, 220 is provided to the Full Spectrum Agribusiness Network 300. Some of the produced energy 210, 220 is provided to the Full Spectrum Industrial Park 400. Some of the produced energy 210, 220 is reinvested in the Full Spectrum Energy Park 200. Some of the produced energy 201 , 220 is provided to external recipients and/or added to the national electricity grid and/or the national gas pipeline.
[0039] A Full Spectrum Agribusiness Network 300 receives renewable energy produced by the Full Spectrum Energy Park 200 to power the functions of farming, animal husbandry, and fishery sub-systems. This includes renewable fuels for farm equipment, vehicles, boats and ships, and electricity for light, heat, mechanical equipment, and so on.
[0040] The Full Spectrum Agribusiness Network 300 receives materials resources and byproducts such as other materials resources (e.g., trace minerals 250) and pure water 260 produced by the Full Spectrum Energy Park 200 to enrich nutrient regimes in farming, animal husbandry, and fishery sub-systems and to produce increased efficiencies in the production of plant crops 340 and animal crops 350.
[0041] The Full Spectrum Agribusiness Network 300 harvests energy feedstock and supplies it to the Full Spectrum Energy Park 200 for use in the production of renewable energy. Suitable feedstock includes biomass 310 (e.g., crop slash), biowaste 320 (e.g., sewage, agricultural waste water, meat packing wastes, effluent from fisheries), biofuel stock 330 (e.g., algae, switchgrass), and so on.
[0042] A Full Spectrum Industrial Park 400 ruses renewable energy produced by the Full Spectrum Energy Park 200 to power the functions of sustainable materials resources production and zero-emissions manufacturing. This includes renewable fuels for internal combustion engines (e.g., stationary engines, vehicles) and electricity for light, heat, mechanical equipment, and so on.
[0043] The Full Spectrum Industrial Park 400 invests materials resources 230, 240 and byproducts 250 received from the Full Spectrum Energy Park 200 to produce additional materials resources (e.g., designer carbon 420 and industrial diamonds 430).
[0044] The Full Spectrum Industrial Park 400 uses materials resources and byproducts received from the Full Spectrum Energy Park 200 to manufacture products such as carbon-based green energy machines 410, including solar thermal devices 410, wind turbines 410, water turbines 410, electrolyzers 410, internal combustion engines and generators 410, automobile, ship and truck parts 440, semiconductors 450, nanotechnologies 460, farm and fishery equipment 470, and so on.
[0045] The Full Spectrum Industrial Park 400 provides some or all of these products and byproducts to the Full Spectrum Energy Park 200 and the Full Spectrum Agribusiness Network 300.
[0046] The Full Spectrum Energy Park 200 uses solar thermal devices 410, wind turbines 410, water turbines 410, electrolyzers 410, internal combustion engines and generators 410, and so on that are produced and provided by the Full Spectrum Industrial Park 400 to produce renewable energy.
[0047] The Full Spectrum Agribusiness Network 300 uses internal combustion engines and generators 410, farm and fishery equipment 470 and other devices produced and provided by the Full Spectrum Industrial Park 400 to produce nutrient regimes. [0048] The energy produced by the Full Spectrum Integrated Production System 100 provides power for all the sub-systems, including reinvesting energy to drive the further production of renewable energy. Concurrently, some or all of the products and byproducts produced in the system 100 are invested in the functions of all the sub-systems. At the same time, the wastes produced by the system 100 are captured and used as feedstock for the functions of all the sub-systems. The integrated and interdependent sub-systems use adaptive controls to manage autogenous cascading energy conversions and autogenous regeneration of materials resources. Thus, the system constantly reinvests renewable energy, sustainable materials resources, and other byproducts into the different sources and processes of the sub-systems (Energy Park, Agribusiness Network, Industrial Park). In this manner, the system 100 harnesses larger amounts of the supplied energy and resource from various resources within the system than is achievable with conventional means. This industrial symbiosis generates a multiplying effect on the amounts of various resources and energy harvested from renewable feedstock and byproduct sources within the system, adding value, reducing costs, and improving the environment, among other benefits.
[0049] Figure 1 C is a schematic illustration of a Full Spectrum Integrated Production System 100 showing various exemplary functional zones for a land- based system; Figure 1 D is a schematic illustration of a Full Spectrum Integrated Production System 100 showing various exemplary functional zones for an ocean- based system. The systems shown include an integrated production system on land or ocean with adaptive control of cascading energy conversions and autogenous regeneration of materials resources and production of nutrient regimes. The system includes functional zones for purposes of harvesting and/or generating energy from renewable sources and harvesting material resources from renewable feedstocks that store, retrieve, transport, monitor and control the energy and material resources to achieve improved efficiencies in the production of energy, material resources, and nutrient regimes. Table 1 below expands on exemplary outputs, systems and means associated with the illustrative functional zones.
Table 1 : Full Spectrum Integrated Production System Functional Zones
Full Spectrum An integrated production system on land or ocean with adaptive Integrated control of cascading energy conversions and autogenous Production regeneration of materials resources and production of nutrient System regimes. The system includes functional zones for purposes of.
• harvesting and/or generating energy from renewable sources
Functional
• harvesting material resources from renewable feedstocks Zones
that stores, retrieves, transports, monitors, and controls said energy and material resources to achieve improved efficiencies in the production of energy, material resources, and nutrient regimes.
Figure imgf000015_0001
Biowaste / • energy • biodigesters
Biomass • fuels • electrolyzers
Conversion Zone • energy carrier feedstock
• materials resources
feedstock
Agricultural • human, animal, and plan Farms and fisheries with: Zone nutrition • controlled micro-climates
• plant crops • nutrient regimes such as
• animal crops trace minerals and other
• biofuel materials resources to
• biomass enrich soil and water
• biowaste • water reclamation
• integrated biomass and biowaste harvesting
Material • chemical and mineral • autogenous regeneration of Resources byproducts (e.g., hydrogen, materials resources from Production Zone methane, oxides of carbon, carrier feedstock
oxides of nitrogen,
petrochemicals, ash,
nitrogen)
• additional byproducts (e.g.,
hydrogen, carbon, designer
carbons, oxygen, ammonia,
fertilizer, methanol)
Industrial Park Green machines such as: • pre-manufacturing
Manufacturing • solar thermal devices preparation of feedstock
Zone • wind turbines • materials resources
• moving water turbines production
• heat conversion devices • zero-emissions
• electrolyzers manufacturing using
• polymer thin films renewable hydrogen-fueled
• engines and generators internal combustion
engines (stationary,
Other industrial goods: vehicle)
• designer carbon
• industrial diamonds
• auto, truck, train, & ship
parts
• semiconductors
• nanotechnologies
• farm & fishery equipment
Consumer durable goods Water • water • production of new water
Management • controlled aquatic micro• purification of water
Zone climate for system • reclamation of water
processes • conservation of water
• heat sink using water
• ad a pti ve co ntro 1 of wate r within the system
Control and Macro coordination of • embedded sensing devices
Coordination information across zones to in all zones
Zone achieve task of zero emissions • computer monitoring and production of energy, material control using the resources and nutrient embedded sensing devices regimes • automation
• robotics
• information/data
management at
microscopic levels
Education • specialized cross- • integrated training in cross-
Technology disciplinary skill disciplinary fields
Zone development of workforce • application, monitoring, and
• job creation at each performance support in the installation site Full Spectrum Integrated
• new kinds of energy sector Production System
jobs appropriate to environment
integrated renewable
energy production,
renewable material
resource production, and
renewable nutrient regime
production
[0050] Figure 1 E is a block diagram illustrating another system 102 of sustainable economic development, such as the production of a resource (e.g., hydrogen and carbon) in accordance with aspects of the disclosure. The system 102 captures and reinvests some or all of the substances and/or byproducts during extraction of the resource using renewable energy sources. Thus, the system facilitates sustainable economic development, such as the harnessing of renewable energy, which is greater than the harnessing of the renewable energy using conventional techniques, among other benefits.
[0051] A feedstock source 104 supplies feedstock to the system 102. The feedstock may be any matter or substances that include hydrogen or carbon. Suitable carbon-containing or hydrogen-containing feedstock includes biomass, biowaste, coal, oil, natural gas, tires, plastics, diapers, forest slash, hospital waste, ocean debris, sea water, industrial waste water, agricultural waste water, sewage, landfill waster water, and so on. In some cases, the system may receive a nitrogen- containing feedstock 1 18, such as air.
[0052] An extraction component 110 receives the feedstock 1 18 from the feedstock source 104. The extraction component is configured to extract resources or other substances from the feedstock, or to otherwise separate the feedstock into different substances. In some cases, the extraction component 1 10 dissociates supplied feedstock into carbon-containing substances, hydrogen-containing substances, various nutrients and/or ash. The extraction component 1 10 may extract resources from supplied feedstock using various dissociation, extraction, or separation techniques, including:
[0053] Thermal dissociation, which may include adding heat to a substance or substances to produce a reaction;
[0054] Electrical dissociation, which may include electrolysis with or without separation of substances, electrodialysis, electroseparation, and so on;
[0055] Optical dissociation, which may include using selected wavelengths to dissociate a compound or depolymerize a polymer; and
[0056] Magnetic dissociation or separation, which may include ferromagnetic dissociation, paramagnetic dissociation, magnetohydrodynamic acceleration, magnetic field deflection of substances, and so on.
[0057] Further details regarding suitable extraction, dissociation, and/or separation processes and techniques may be found in priority documents U.S. Patent Application No. 12/707,651 , filed February 17, 2010 and titled ELECTROLYTIC CELL AND METHOD OF USE THEREOF; U.S. Patent Application No. 12/707,653, filed February 17, 2010 and titled APPARATUS AND METHOD FOR CONTROLLING NUCLEATION DURING ELECTROLYSIS; U.S. Patent Application No. 12/707,656, filed February 17, 2010 and titled APPARATUS AND METHOD FOR GAS CAPTURE DURING ELECTROLYSIS; which are incorporated by reference in its entirety. [0058] In some cases, the extraction component 1 10 dissociates the feedstock into various substances using electricity received from an external or internal electricity source 106. Examples of suitable external electricity sources include renewable resources (solar/photovoltaic sources, solar/thermal sources, wind sources, geothermal sources, and so on) or non-renewable sources (diesel generators, natural gas generators, coal or nuclear generators). Examples of suitable internal electricity sources include internal combustion engines, fuel cells, thermoelectric devices, piezoelectric devices, and so on. Some or all of the electricity sources may be configured to receive byproducts or other substances from various components of the system in order fuel or assist in the generation of electricity provided to the extraction component 110.
[0059] In some cases, the extraction component 1 10 dissociates the feedstock into various substances using energy received from a renewable energy source 108. Examples of suitable renewable energy sources include solar concentrators (such as those described herein) and other solar energy sources, moving water energy sources, and/or wind energy sources.
[0060] In some cases, the extraction component 1 10 utilizes energy received from both the electricity source 106 and the renewable energy source 108 to assist in the dissociation of a feedstock into various desired substances. The extraction component may also vary the heat and/or pressure applied to the feedstock during a dissociation process.
[0061] The extraction component 1 10 dissociates a supplied feedstock into various products or byproducts 1 12, including carbon dioxide (CO2) 151 , carbon monoxide (CO) 152, Hydrogen (H2) 153, Water (H20) 154, Methane (CH4) 155, Ash 156, and/or other substances (not shown). Using the various products 112, the system generates desired resources 1 16, such as Carbon 171 , Ammonia 176, Fertilizer 177, Hydrogen 174, Methanol 173, Oxygen 172, and so on.
[0062] The system 102 supplies the various products or byproduct 112 to various resource generation components 160 to generate the desired resources 116. These include:
[0063] a resource generation component 161 configured to generate Oxygen
172 and Carbon 171 (e.g., designer Carbon) from Carbon dioxide 151 ; [0064] a resource generation component 162 configured to generate Methanol
173 from Carbon dioxide 151 or Carbon monoxide 152 and Hydrogen 153;
[0065] a resource generation component 163 configured to generate Hydrogen
174 and Carbon 171 from Methane 155;
[0066] a resource generation component 164 configured to generate Ammonia 176 from Hydrogen 153 and Nitrogen 175;
[0067] a resource generation component 165 configured to generate a suitable Fertilizer 177 from Ammonia 176 and Ash 156; and/or other resource generation components (not shown).
[0068] Further details regarding operation of the resource generation components will be discussed with respect to Figures 3A-3F.
[0069] In addition to generating resources using products or byproducts 1 12, the system 102 may store or otherwise utilize products 1 12 or generated or desired resources 116. In some cases, the system transfers the Methane 155 to a geothermal storage source 180 via a pipeline 181. The storing, and subsequent retrieval, of the methane may enable the system to obtain energy, such as by thermal gain 182, chemical gain 183, and/or a carrier gain 184 to produce certain solvents 185, such as methanol, ammonia, and/or water.
[0070] Illustratively, sustainable economic development is provided by conversion of substances 1 10 containing carbon into carbon-reinforced materials and components for various applications including equipment that harnesses renewable solar, wind, moving water, and/or geothermal resources. Such applications of carbon as an equipment component provides many times greater production of energy in comparison with the one-time combustion of such carbon. In other instances such carbon is converted into transportation equipment components that are lighter than aluminum and stronger than steel to reduce the curb weight and to improve fuel economy and reduce adverse emissions. In other applications carbon can be specialized into heat sinks and heat transfer components that conduct more heat than copper in equivalent cross-sectional area to reduce the weight and increase the range of suitable operating temperatures. Among the multitude of additional applications, specialized carbon deposits and/or coatings provide benefits ranging from diamond-like hardness and corrosion resistance to optically black or selective surfaces.
[0071] Hydrogen is co-produced in virtually all instances that carbon is extracted for purposes of being incorporated in durable goods. Production of hydrogen by dissociation of a source compound such as methane is potentially very inexpensive. This is because the energy required for extracting hydrogen from most hydrocarbons is much less than the energy required to produce hydrogen by dissociation of water by thermal, electrical, radiation, or magnetic separation technologies.
[0072] The potential for sustainable economic development is bolstered by the use of hydrogen in the world's existing population of about one billion engines because appropriate technologies for such conversion from gasoline or diesel fuel to operation on hydrogen provides a much greater return on investments previously made to purchase such engines. Engines converted to operation on hydrogen by the technologies disclosed in U.S. Patent Application No. 12/653,085; U.S. Patent Application No. 12/841 , 170; U.S. Patent Application No. 12/804,510; U.S. Patent Application No. 12/841 , 146; U.S. Patent Application No. 12/841 , 149; U.S. Patent Application No. 12/841 , 135; U.S. Patent Application No. 12/841 ,509; and U.S. Patent Application No. 12/804,508 can produce more power when needed, last longer with less maintenance, and actually clean the air that enters their combustion chambers.
[0073] Thus increasing the returns on existing engine investments by reducing the cost of fuel per horsepower-hour, increasing the power-production capacity, reducing the cost of maintenance, and actually cleaning the air makes capital available for acquisition of carbon-reinforced equipment to harness renewable resources. This provides anti-inflationary economic development a ever-increasing capacity for production of goods and services as renewable solar, wind, moving water, and geothermal resources are harnessed. Similarly renewable nutrients for biomass and food production are provided as a result of this shift from dependence upon fossil fuels and waste disposal practices such as landfills that intentionally provide many decades of confinement of essential trace minerals, sulfur donors and fixed nitrogen. [0074] In some cases, the system transfers the hydrogen 174 to storage 191 or to one or more energy sources 190. For example, the hydrogen 174 may fuel an internal electricity source 106, such as an engine or fuel cell used to assist in dissociation of feedstock.
[0075] Thus, the system 02 uses renewable resources and renewable energy to create refined renewable resources and energy having a greater economic value than what would be created using conventional processes, among other benefits. The system uses the refined renewable resources and energy to harvest new renewable resources and energy in a sustainable, non-polluting, and non-depleting manner. That is, the system achieves an economic multiplier effect for resources supplied to the system by constantly reinvesting the resources into the system, such as into the renewable energy sources and the various processes within the system.
[0076] For example, the system 102 dissociates methane and hydrogen from a supplied biomass, harvests renewable energy and resources, such as carbon, from the methane and hydrogen, and uses the carbon to harvest more biomass and methane to harvest more carbon and hydrogen, and so on. Thus, the system takes a small amount of a resource, such as hydrogen, from a supplied energy source, and constantly reinvests the resource, other resources, and other byproducts into different energy sources and processes to capture larger amounts of the supplied resource from various resources within the system. This leads to a multiplying effect on the amounts of various resources and energy harvested from renewable energy sources within the system, leading to the sustainable economic development of resources and energy from renewable energy sources, among other benefits.
[0077] Illustratively hydrogen can be reacted with carbon dioxide that is discarded from sources such as bakeries, breweries, cement plants, or fossil fired power plants to produce various substances including solvents such as methanol, ethanol, butanol or tetrahydrofuran. Such substances can be utilized to provide compact storage and transport of hydrogen including the multifunctional purpose of serving as a solvent for dissolving a wide range of polar and nonpolar materials. Retrieval from storage of such solvents in depleted oil and natural gas wells enables extraction of renewable thermal energy along with hydrocarbons that otherwise would have remained un-produced from such wells. Thus vast storage capabilities are provided for renewable hydrogen through the utilization of existing pipelines and substantially depleted hydrocarbon formations.
[0078] In operation, an energy-conversion cycle can be combined with a mineral extraction benefit. Liquid hydrogen-storage solvent is delivered to a geothermally warm formation. In one embodiment the liquid is returned to the surface for extraction of dissolved values and conversion of energy delivered by geothermally heated vapor expansion. In some instances it is desired to operate a portion of the resulting circuit near or above the critical temperature and pressure of the solvent. In another embodiment the pressure provided by the column height and/or the pressure produced by vaporization of the liquid as a result of heat gain may be harnessed at or near the storage depth. After extraction of desired mineral values and energy the vapors are cooled to provide liquid by heat rejection to the air or water or other substances within the system. The fluid such as liquid condensate thus produced is utilized to continue the selected process of energy and mineral value extraction from the geothermal formation. Thus the process provides a multiplying effect for renewable energy production along with supplies of additional hydrogen, materials and feedstocks that can serve as carbon donors for purposes of manufacturing equipment to harness renewable energy resources.
Using Renewable Energy to Produce Resources
[0079] The inventor has realized that utilizing renewable energy sources during extraction of resources enables a system to economically sustain and generate resources, feedstock, and other substances that enter or exit from the system. Figure 2A is a block diagram illustrating some components 201 of system 102 used to harvest resources from feedstock. The system 102 utilizes energy sources 108, such as renewable energy sources, and electricity sources 106 to assist in harvesting desired resources from feedstock supplied by a feedstock source 1 10. A harvest component, such as the extraction component 1 10 of Figure 1 , harvests various substances or products 1 12 from feedstock supplied by the feedstock source 1 10.
[0080] Using the various components and processes described herein, the system 102 may harvest substances for a number of different purposes, including substances 202 harvested to supply fuel to the electricity source 106 or the renewable energy source 108 (e.g., to provide fuel for a fuel cell or a solar concentrator), substances 204 harvested to be transferred out the system (e.g., for use externally, to be stored, and so on), and/or substances 206 harvested to supply more feedstock to the feedstock source 110.
[0081] Figure 2B is a block diagram illustrating some components 210 of system 102 used to generate resources from products or byproducts during the harvesting of resources from supplied feedstock. A product 1 12 is supplied to a resource generation component 114, which utilizes energy received from an electricity source 106 or a renewable energy source 108 to generate one or more resources 1 16.
[0082] Using the various components and processes described herein, the system 102 may generate resources for a number of different purposes, including resources 212 harvested to supply fuel to the electricity source 106 or the renewable energy source 108 (e.g., to provide fuel for a fuel cell or working fluid or fuel during night-time operation of a solar concentrator system), resources 214 harvested to be transferred out of the system (e.g., for use externally, to be stored, and so on), and/or substances 216 harvested to supply substances to a resource generation component 160 for resource generation.
[0083] As discussed above, the system utilizes a variety of resource generation components 160 in order to provide for the sustainable production of desired resources. Figures 3A-3F are block diagrams illustrating the operation of resource generation components 160 within the system 110.
[0084] Figure 3A shows a resource generation component 161 configured to generate Oxygen 172 and Carbon 171 (e.g., designer carbon) from carbon dioxide 151. The resource component 161 , utilizing energy from an electricity source 106 and/or a renewable energy source 108, performs various processes 310, such as the dissociation of a carbon donor such as carbon dioxide or carbon monoxide to provide carbon and oxygen as shown. In operation such carbon donors are supplied as fluids such as gas or liquid to a heat input zone such as shown in a helical conveyer having a counter-current exchange to energy addition zone of a concentrated solar radiation to provide endothermic heat and/or radiation induced dissociation as generally summarized in Equation 310 or 310': [0085] C02 + ENERGY→· C + 0.5O2 Equation 310
CO + ENERGY→· C + 0.5O2 Equation 310
[0086] Figure 3B shows a resource generation component 162 configured to generate Methanol 173 from carbon dioxide and/or carbon monoxide 152 and hydrogen 153. The resource component 162, utilizing energy from an electricity source 106 and/or a renewable energy source 108, performs various processes 320, such as the pressurization of the reactants for illustrative processes such as those summarized in Equations 320 and 320':
[0087] CO + 2H2 -> CH3OH Equation 320
[0088] C02 + 3H2 -» CH3OH + H20 Equation 320'
[0089] In operation such pressurization may be provided by dissociation of various hydrogen donors such as water or a hydrocarbon or another selected compound in which the volume of hydrogen produced is prevented from expansion for the purpose of producing the desired pressure to facilitate reactions such as shown in Equations 320 and 320'.
[0090] Figure 3C shows a resource generation component 163 configured to generate hydrogen 174 and Carbon 171 from Methane 155. The resource component 163, utilizing energy from an electricity source 106 and/or a renewable energy source 108, performs various processes 330, such as the thermal, electrical, and/or magnetic energy conversion process of inducing dissociation such as summarized in Equations 330 and 330':
[0091] CH4 + ENERGY C + 2H2 Equation 330
[0092] CxHy + ENERGY xC + 0.5y H2 Equation 330'
[0093] Figure 3D shows a resource generation component 164 configured to generate ammonia 176 from hydrogen 153 and nitrogen 175. The resource component 164, utilizing energy from an electricity source 106 and/or a renewable energy source 108, performs various processes 340, such as the Haber-Bosch process. One embodiment provides for selectively admitting and transporting hydrogen from a mixture of substances for the purpose of reacting such hydrogen at or near the delivery interface with nitrogen as disclosed in co-filed applications incorporated above by reference, which provides for nitrogen to be sequestered from a source such as ambient air by combustion of surplus hydrogen in an engine. Equation 340 summarizes the process for combining atmospheric oxygen with surplus hydrogen to produce separable streams of water and nitrogen.
[0094] Air + H2 -» H20 + N2 + H2 + Argon Equation 340
[0095] H2 + N2 + Argon -> NH3 + Argon Equation 340'
[0096] In operation air enters the combustion chamber of an engine that may drive a load such as a pump or electricity generator. Surplus hydrogen is utilized to deplete the oxygen in the combustion chamber by forming water vapor which is subsequently condensed or removed by pressure swing or temperature swing media from the exhaust stream. The remaining exhaust stream of nitrogen with much lower concentrations of other components such as argon is pressurized and presented for reaction with hydrogen to produce ammonia as summarized by equation 340'. Ammonia is separated by condensation or collection by media in temperature swing or pressure swing systems along with collection of values such as argon.
[0097] Figure 3E shows a resource generation component 165 configured to generate fertilizer 177 from ammonia 176 and ash 156. The resource component 165, utilizing energy from an electricity source 106 and/or a renewable energy source 108, performs various processes 350 such as in an illustrative embodiment, ammonia is reacted with sulfur dioxide and water to produce ammonium sulfate as generally summarized in Equation 350, which is not balanced:
[0098] NH3 + S02 + H20» NH4S04 Equation 350
[0099] In operation a suitable reactor provides for a sulfur source such as a suitable oxide of sulfur including sulfur dioxide to react in the presence of water and oxygen. By utilization of surplus ammonia attractive conversion rates are achieved. Soil or hydroponic fluid tests are made to determine the need for additions of minerals such as phosphorus, potassium, iron, manganese, magnesium, calcium, boron, selenium, molybdenum and so forth and a suitable formulation with such additions is provided. [00100] Of course, the system may utilize other resource generation components or other processes to produce the resources used by the system.
Harnessing Energy from Renewable Energy Sources Using Extracted Resources
[00101] As discussed herein, the system 102 utilizes some or all of the components described herein in order to generate desired resources, such as hydrogen or carbon. The system uses these resources for variety of purposes, including using the generated resources to harness energy from renewable energy sources. Figure 4 is a block diagram illustrating an energy harnessing system 400 for harnessing energy from renewable resources.
[00102] The energy harnessing system 400 includes a renewable energy source 410, such as a solar energy source, a wind energy source, a geothermal energy source, a moving water energy source, and so on. The renewable energy source 410 provides energy to an energy component 420, which facilitates the harnessing of energy from the renewable energy source 410. The energy component 420 receives one or more resources from a resource component 430. The resource component 430 may be various components of the system 102, including the extraction component 1 10, one or more resource generation components 1 14, the pipeline 180, the storage/transport component 191 , and/or other components.
[00103] In some cases, the energy component 420 provides a resource supplied by the resource component 430 to the renewable energy component 410, enabling the renewable energy component to harness a greater amount of energy than would be harnessed without the supplied resource. Figure 5 is a flow diagram illustrating a routine 500 for harnessing energy using a generated resource.
[00104] In step 510, the energy harnessing system 400 receives a resource into the resource component 430. For example, the energy harnessing system 400 may be part of the system 102, and receive a resource from the extraction component 1 10 (i.e., after dissociation of a feedstock) or from one or more resource generation components 1 14.
[00105] In step 520, the energy harnessing system 400, possibly via the energy component 420, supplies the received resource to the renewable energy source 410. For example, the system 400 supplies the renewable energy source with one or more resources that may be used as fuel or otherwise enhance a reaction that occurs at the renewable energy source 410.
[00106] In step 530, the renewable energy source 410 harnesses energy using the supplied resource. The renewable energy source may implement or otherwise utilize the resource during the capture of energy in order to harness a greater amount of energy than would otherwise be captured without the supplied resource.
[00107] For example, the energy harnessing system 400 may facilitate the harnessing of solar energy at a solar collector by supplying oxygen to the solar collector, combusting the oxygen to raise the temperature of a heat zone in which the solar collector focuses received solar energy, and capturing energy from the heat zone. Further details regarding the harnessing of energy by supplying renewable resources to renewable energy sources may be found in copending applications referenced and incorporated above.
[00108] In some cases, the renewable energy component 410 provides energy to the resource component 430 to facilitate the extraction or generation of a resource. Figure 6 is a flow diagram illustrating a routine 600 for extracting or generating a resource using energy from a renewable energy source.
[00109] In step 610, the energy harnessing system 400 receives energy from the renewable energy source. For example, the system may receive energy from a solar energy source, a wind energy source, a moving water energy source, and so on. The received energy may be energy collected from the source, or may be energy collected from other resources that received the energy from the renewable energy source.
[00110] In step 620, the energy harnessing system 400 supplies the energy to an extraction component or a resource generation component. For example, the system 400 may supply the energy to the extraction component, such as an extraction or dissociation component 140 that performs electrolysis to separate hydrogen and oxygen from feedstock.
[00111] In step 630, the energy harnessing system 400 extracts or generates a resource using the supplied energy. The extraction component 110 or resource generation component 114 may implement or otherwise utilize the supplied energy to control or otherwise affect an extraction or generation process, such as an electrolysis or combustion of substances.
[00112] For example, the energy harnessing system 400 may facilitate the production of hydrogen and oxygen from water in an electrolytic cell by supplying electricity collected from a solar energy source to electrodes of the electrolytic cell, which applies a voltage across the electrodes and dissociates the water into hydrogen and oxygen. Further details regarding the extraction or generation of resources using renewable energy sources may be found in co-pending applications incorporated by reference above.
[00113] As discussed herein, energy and/or resources harnessed within the energy harnessing system 400 may be utilized by the system 102 to perform some or all of the processes of the system 102 in order to produce desired resources. For example, the system 102 may receive hydrogen extracted using the energy harnessing system 400 and combust some of the hydrogen with air to generate water and nitrogen, and react some of the hydrogen with the generated nitrogen to produce ammonia or ammonia derivatives. In another example, the system 102 may receive hydrogen extracted using the energy harnessing system 400 and react the hydrogen with generated carbon to produce methane. In another example, the system 102 may receive hydrogen extracted using the energy harnessing system 400 and react the hydrogen with an oxide of carbon to produce a resource of carbon, hydrogen, and oxygen.
[00114] Thus, the system harnesses energy in a sustainable manner by providing energy to resource extraction/generation components, which in turn supply resources to renewable energy sources. Such cyclical behavior enables greater production of resources, greater amounts of harvested energy, and sustainable economic development focused on the renewable production of resources and the renewable harnessing or capturing of energy, among other benefits.
[00115] The various methods, components, and systems described herein simultaneously produce the renewables of the system (e.g., energy, material resources, and nutrient regimes) in an interrelated and sustainable fashion. Such interrelated production contributes to greater yields of resources and energy than yields from conventional systems, because the system utilized resources more efficiently. The efficient utilization leads to greater amounts of energy captured from renewable energy sources (e.g, solar, wind, water), and, therefore, greater economic development.
Conclusion
[00116] Unless the context clearly requires otherwise, throughout the description and the claims, the words "comprise," "comprising," and the like are to be construed in an inclusive sense as opposed to an exclusive or exhaustive sense; that is to say, in a sense of "including, but not limited to." Words using the singular or plural number also include the plural or singular number, respectively. When the claims use the word "or" in reference to a list of two or more items, that word covers all of the following interpretations of the word: any of the items in the list, all of the items in the list, and any combination of the items in the list.
[00117] The various embodiments described above can be combined to provide further embodiments. All of the U.S. patents, U.S. patent application publications, U.S. patent applications, foreign patents, foreign patent applications and non-patent publications referred to in this specification and/or listed in the Application Data Sheet are incorporated herein by reference, in their entirety. Aspects of the disclosure can be modified, if necessary, to employ fuel injectors and ignition devices with various configurations, and concepts of the various patents, applications, and publications to provide yet further embodiments of the disclosure.
[00118] These and other changes can be made to the disclosure in light of the above-detailed description. In general, in the following claims, the terms used should not be construed to limit the disclosure to the specific embodiments disclosed in the specification and the claims, but should be construed to include all systems and methods that operate in accordance with the claims. Accordingly, the invention is not limited by the disclosure, but instead its scope is to be determined broadly by the following claims.

Claims

CLAIMS We claim:
1. A system for sustainable economic development, the system comprising:
an extraction component, wherein the extraction component is configured to extract carbon from a biomass; and
an energy component, wherein the energy component is configured to harness energy from a renewable energy source using the extracted carbon.
2. The system of claim 1 , wherein the energy component is configured to harness from the renewable energy source an amount of energy greater than an amount of energy harnessed from oxidizing the extracted carbon using a combustion engine, a fuel cell, or a thermoelectric cell.
3. The system of claim 1 , further comprising:
a byproduct component, wherein the byproduct component is configured to: generate a byproduct using the renewable energy source and one or more non-carbon based substances extracted from the biomass by the extraction component; and
provide the generated byproduct to the renewable energy source.
4. The system of claim 1 , further comprising:
a byproduct component, wherein the byproduct component is configured to generate a byproduct using the renewable energy source and one or more non-carbon based substances extracted from the biomass by the extraction component.
5. The system of claim 1 , wherein the extraction component includes a dissociation component configured to thermally dehydrogenate the biomass.
6. The system of claim 1 , wherein the extraction component includes a dissociation component configured to electrically dehydrogenate the biomass.
7. The system of claim 1 , wherein the extraction component includes a dissociation component configured to optically dehydrogenate the biomass.
8. The system of claim 1 , wherein the extraction component is configured to receive energy from the energy component during extraction of the carbon from the biomass.
9. The system of claim 1 , wherein the renewable energy source is a solar concentrator.
10. The system of claim 1 , wherein the renewable energy source is a moving water energy source.
11. The system of claim 1 , wherein the renewable energy source is a wind energy source.
12. A system for sustainable economic development, the system comprising:
an extraction component, wherein the extraction component is configured to extract hydrogen from a source of water; and
an energy component, wherein the energy component is configured to harness energy from a renewable energy source using the extracted hydrogen.
13. The system of claim 12, wherein the extraction component receives energy from the renewable energy source in order to extract the hydrogen from the source of water.
14. The system of claim 12, wherein the source of water includes a source water.
15. The system of claim 12, wherein the source of water includes a source of industrial waste water.
16. The system of claim 12, wherein the source of water includes a source of agricultural waste water.
17. The system of claim 12, wherein the source of water includes a source of sewage.
18. The system of claim 12, wherein the source of water includes a source of landfill waste water.
19. The system of claim 12, wherein the extraction component includes a dissociation component configured to thermally dissociate the hydrogen from other substances within the source of water.
20. The system of claim 12, wherein the extraction component includes a dissociation component configured to electrically dissociate the hydrogen from other substances within the source of water.
21. The system of claim 12, wherein the extraction component includes a dissociation component configured to optically dissociate the hydrogen from other substances within the source of water.
22. The system of claim 12, wherein the extraction component includes a dissociation component configured to magnetically dissociate the hydrogen from other substances within the source of water.
23. The system of claim 12, wherein the extraction component includes a dissociation component configured to thermally dissociate the hydrogen from other substances within the source of water.
24. The system of claim 12, wherein the renewable energy source is a solar concentrator.
25. The system of claim 12, wherein the renewable energy source is a wind energy source.
26. The system of claim 12, wherein the renewable energy source is a moving water energy source.
27. The system of claim 12, wherein the renewable energy source is a geothermal energy source.
28. A method for sustainable economic development, the method comprising:
dissociating two or more substances from the feedstock, wherein dissociating the two or more substances from the feedstock includes providing energy from a renewable energy source to assist in performing the dissociation; and
extracting hydrogen from the two or more dissociated substances using the renewable energy source.
29. The method of claim 28, further comprising:
proving a first portion of the extracted hydrogen to the renewable energy source to assist in a further dissociation of feedstock; and providing a second portion of the extracted hydrogen to an electricity producing component to assist in generation of electricity.
30. The method of claim 28, further comprising:
combusting a first portion of the extracted hydrogen with air to produce water and nitrogen; and
reacting a second portion of the extracted hydrogen with the produced nitrogen to produce ammonia or a resource derived from ammonia.
31. The method of claim 28, further comprising:
reacting the extracted hydrogen with a carbon donor to produce a resource that includes carbon and hydrogen.
32. The method of claim 28, further comprising:
reacting the extracted hydrogen with an oxide of carbon to produce a resource that includes carbon, hydrogen, and oxygen.
33. A system for sustainable economic development, the system comprising:
a feedstock component, wherein the feedstock component is configured to provide feedstock into the system;
a resource extraction sub-system for extracting a desired resource from the provided feedstock, wherein the resource extraction sub-system includes:
a separation component, wherein the separation component is configured to separate a desired resource from the provided feedstock; and
an energy component, wherein the energy component is configured to provide energy to the separation component to assist in separation of the desired resource from the feedstock;
an additional resource generation sub-system for generating additional resources from byproducts within the separation component after separation of the desired resource from the feedstock, wherein the additional resource generation sub-system includes:
a byproduct reception component, wherein the byproduct reception component is configured to receive one or more byproducts of the separation of the desired resource from the feedstock; and an energy component, wherein the energy component is configured to provide energy to convert the one or more byproducts in the byproduct reception component into additional resources.
34. The system of claim 33, wherein the feedstock component provides a substance containing carbon into the system; and
wherein the separation component dissociates carbon from the provided substance containing carbon.
35. The system of claim 33, wherein the separation component is a dissociation component that performs thermal dissociation to separate the desired resource from the provided feedstock.
36. The system of claim 33, wherein the separation component is a dissociation component that performs electrical dissociation to separate the desired resource from the provided feedstock.
37. The system of claim 33, wherein the separation component is a dissociation component that performs optical dissociation to separate the desired resource from the provided feedstock.
38. The system of claim 33, wherein the separation component is a dissociation component that performs magnetic dissociation to separate the desired resource from the provided feedstock.
39. The system of claim 33, wherein the energy component of the resource extraction sub-system is a renewable energy component.
40. The system of claim 33, wherein the energy component of the resource extraction sub-system is a solar concentrator.
41. The system of claim 33, wherein the energy component of the resource extraction sub-system is a moving water energy source.
42. The system of claim 33, wherein the energy component of the resource extraction sub-system is a wind energy source.
43. The system of claim 33, wherein the byproducts include carbon dioxide and the additional resources include oxygen and carbon.
44. The system of claim 33, wherein the byproducts include carbon monoxide and hydrogen and the additional resources include methanol.
45. The system of claim 33, wherein the byproducts include methane and the additional resources include hydrogen and carbon.
46. The system of claim 33, wherein the byproducts include hydrogen and the additional resources include ammonia.
47. The system of claim 33, wherein the byproducts include ash and the additional resources include fertilizer.
48. A method for sustainable economic development, the method comprising:
dissociating two or more substances from the feedstock, wherein dissociating the two or more substances from the feedstock includes providing energy from a renewable energy source to assist in performing the dissociation; and
extracting carbon from at least one of the two or more dissociated substances using the renewable energy source.
49. The method of claim 48, wherein the at least one dissociated substance includes carbon dioxide.
50. The method of claim 48, wherein the at least one dissociated substance includes carbon monoxide.
51. The method of claim 48, wherein the at least one dissociated substance includes methane.
52. The method of claim 48, further comprising:
providing one of the two or more dissociated substances that does not contain carbon to the renewable energy source.
53. The method of claim 48, further comprising:
when one of the two or more dissociated substances is hydrogen, providing the hydrogen to the renewable energy source.
54. The method of claim 48, wherein one of the dissociated substances does not include carbon, the method further comprising:
providing the one dissociated substance that does not include carbon to the renewable energy source to generate methanol.
55. The method of claim 48, wherein one of the dissociated substances does not include carbon, the method further comprising:
providing the one dissociated substance that does not include carbon to the renewable energy source to generate ammonia.
56. The method of claim 48, wherein one of the dissociated substances does not include carbon, the method further comprising:
providing the one dissociated substance that does not include carbon to the renewable energy source to generate fertilizer.
57. A process for energy conversion comprising the steps of subjecting one or more fluid substances to a geological formation for purposes selected from the group comprised of heat gain, intermittent storage of chemical and or pressure energy, and extraction of valuable substances from said formation wherein work production is accomplished by at least one of said one or more fluid substances in one or more energy conversion devices, wherein at least one of said one or more fluid substances is conditioned to provide a state selected from the group consisting of liquid, mixed liquid and vapor, vapor, or gas that is delivered to drive said one or more energy conversion devices.
58. A process as in claim 57 wherein said geological formation contains hydrocarbons.
59. A process as in claim 57 wherein after subjecting one or more fluid substances to a geological formation said one or more fluid substances receives supplemental heat from sources selected from the group comprised of solar, industrial, commercial and heat engine sources.
60. A process as in claim 57 wherein said fluid is delivered to a geological formation for purposes selected from the group comprised of storage of chemical potential energy, storage of pressure potential energy, storage of chemical and pressure potential energy, heat transfer from said formation to said fluid, transfer of substances from said formation to said fluid and production of substances from said formation as a result of the presence of said fluid.
61. A process for producing and utilizing geothermal heat to develop, and deliver fluids selected from the group comprised of carbon dioxide, methane, and hydrogen for a purpose selected from a group comprised of an aqueous plant production, a greenhouse plant production, a hydroponics plant production and use as the working fluid for operation of one or more energy conversion devices.
62. A process as in claim 61 in which said aqueous plant is selected from the group comprised of algae.
63. An extraction system comprising:
extracting carbon or hydrogen from a carbon or hydrogen donor compound wherein said hydrogen is utilized in one or more subsystem applications locally or at a distance after one or more occasions of intermittent storage in one or more geologic formations.
64. The system of claim 63 further comprising:
said apparatus supports varied micro-climate zones;
and said zones further comprise sub-zones; and said sub-zones that contain unique thermal, humidity, natural resources, or energy transfer characteristics that can be manipulated for work.
65. A sustainable economic development engine system comprising:
a method for economic incentives that increase productivity;
a method for removing disincentives that decrease productivity;
a method for creating jobs in plant husbandry, manufacturing, energy production, information and energy management; and
a method for implementing a macro-economic algorithm of sustainability; farming within microclimates (man-made) communities (cities that are sustainable);
farm equipment from carbon extracted; and
health benefits.
66. A farming process comprising:
a method to improve crop yields by decreasing the cost of energy used to produce crops;
a method to decrease the need for fertilizers by returning trace minerals to the soil;
a method of fertilizing crops with algae;
a system for water management;
a system for energy production and management;
C02 to increase crop potential;
a system for raising crops in a micro climate that can be enclosed as necessary or monitored access to the environment to add air (up/down draft) or precipitation; and
a macro food production system to harvest the crop waste (stem, stalk, stover) into carbon or hydrogen.
67. A fish spawning system comprising:
a method to provide nutrients, oxygen, and clean water for supporting fish spawning; a system for monitoring and controlling temperature to support environment; and
a system to extract protein, carbohydrates, fat, vitamins, minerals from biomass/liquor as nutrition for fish.
68. A poultry, swine, bovine (animal husbandry) system comprising:
a system to raise animals in a controlled environment;
a system for raising feed crops without pesticides or fertilizers;
water management system to purify water by extraction of hydrogen from acid rain and other sources of acidified water including water conditioned to an acidified state by reducing agents
a system for utilizing drip irrigation of crops.
PCT/US2010/045674 2009-08-27 2010-08-16 Sustainable economic development through integrated production of renewable energy, materials resources, and nutrient regimes WO2011028403A2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201080048870.6A CN102712019B (en) 2009-08-27 2010-08-16 Sustainable economic development through integrated production of renewable energy, materials resources, and nutrient regimes
EP10814158.1A EP2470312A4 (en) 2009-08-27 2010-08-16 Sustainable economic development through integrated production of renewable energy, materials resources, and nutrient regimes

Applications Claiming Priority (18)

Application Number Priority Date Filing Date Title
US23747609P 2009-08-27 2009-08-27
US61/237,476 2009-08-27
US30440310P 2010-02-13 2010-02-13
US61/304,403 2010-02-13
US12/707,651 2010-02-17
USPCT/US10/24498 2010-02-17
USPCT/US10/24499 2010-02-17
PCT/US2010/024498 WO2010096504A1 (en) 2009-02-17 2010-02-17 Apparatus and method for controlling nucleation during electrolysis
US12/707,656 US8075749B2 (en) 2009-02-17 2010-02-17 Apparatus and method for gas capture during electrolysis
US12/707,653 2010-02-17
US12/707,656 2010-02-17
US12/707,651 US8075748B2 (en) 2009-02-17 2010-02-17 Electrolytic cell and method of use thereof
PCT/US2010/024497 WO2010096503A1 (en) 2009-02-17 2010-02-17 Electrolytic cell and method of use thereof
PCT/US2010/024499 WO2010096505A1 (en) 2009-02-17 2010-02-17 Apparatus and method for gas capture during electrolysis
USPCT/US10/24497 2010-02-17
US12/707,653 US8172990B2 (en) 2009-02-17 2010-02-17 Apparatus and method for controlling nucleation during electrolysis
US34505310P 2010-05-14 2010-05-14
US61/345,053 2010-05-14

Publications (2)

Publication Number Publication Date
WO2011028403A2 true WO2011028403A2 (en) 2011-03-10
WO2011028403A3 WO2011028403A3 (en) 2011-06-30

Family

ID=56291187

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2010/045674 WO2011028403A2 (en) 2009-08-27 2010-08-16 Sustainable economic development through integrated production of renewable energy, materials resources, and nutrient regimes

Country Status (3)

Country Link
EP (1) EP2470312A4 (en)
CN (1) CN102712019B (en)
WO (1) WO2011028403A2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10197338B2 (en) * 2013-08-22 2019-02-05 Kevin Hans Melsheimer Building system for cascading flows of matter and energy

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030062270A1 (en) 2001-10-01 2003-04-03 Mcalister Roy E. Method and apparatus for sustainable energy and materials
WO2006119118A2 (en) 2005-04-29 2006-11-09 Hycet, Llc System and method for conversion of hydrocarbon materials

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2399400C (en) * 2000-02-01 2011-01-04 Sukomal Roychowdhury Process for production of hydrogen from anaerobically decomposed organic material
JP2006128006A (en) * 2004-10-29 2006-05-18 Central Res Inst Of Electric Power Ind High temperature type fuel cell power generation system by carbonizing and gasifying biomass
GB0512813D0 (en) * 2005-06-23 2005-08-03 Ice Energy Scotland Ltd Improved energy storage system
US20080245660A1 (en) * 2007-04-03 2008-10-09 New Sky Energy, Inc. Renewable energy system for hydrogen production and carbon dioxide capture

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030062270A1 (en) 2001-10-01 2003-04-03 Mcalister Roy E. Method and apparatus for sustainable energy and materials
WO2006119118A2 (en) 2005-04-29 2006-11-09 Hycet, Llc System and method for conversion of hydrocarbon materials

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2470312A4

Also Published As

Publication number Publication date
EP2470312A4 (en) 2014-02-05
EP2470312A2 (en) 2012-07-04
CN102712019A (en) 2012-10-03
CN102712019B (en) 2015-07-22
WO2011028403A3 (en) 2011-06-30

Similar Documents

Publication Publication Date Title
US8940265B2 (en) Sustainable economic development through integrated production of renewable energy, materials resources, and nutrient regimes
Amin et al. Hydrogen production through renewable and non-renewable energy processes and their impact on climate change
Milani et al. Renewable-powered hydrogen economy from Australia's perspective
US9231267B2 (en) Systems and methods for sustainable economic development through integrated full spectrum production of renewable energy
US20150184532A1 (en) Increasing the efficiency of supplemented ocean thermal energy conversion (sotec) systems
Razi et al. A critical evaluation of potential routes of solar hydrogen production for sustainable development
Muradov et al. “Green” path from fossil-based to hydrogen economy: an overview of carbon-neutral technologies
CN102713282B (en) Improve the efficiency of ocean thermal energy conversion (SOTEC) system of supplementing
Banerjee et al. Economic assessment and prospect of hydrogen generated by OTEC as future fuel
Alirahmi et al. Soft computing based optimization of a novel solar heliostat integrated energy system using artificial neural networks
Budzianowski Negative carbon intensity of renewable energy technologies involving biomass or carbon dioxide as inputs
Dincer et al. Sustainable hydrogen production options and the role of IAHE
Sørensen Hydrogen and fuel cells: emerging technologies and applications
Shi et al. A prompt decarbonization pathway for shipping: Green hydrogen, ammonia, and methanol production and utilization in marine engines
US9193925B2 (en) Recycling and reinvestment of carbon from agricultural processes for renewable fuel and materials using thermochemical regeneration
Acar et al. Comparative environmental impact evaluation of hydrogen production methods from renewable and nonrenewable sources
Dincer et al. Potential energy solutions for better sustainability
Alidrisi et al. Enhanced electricity generation using biomass materials
Razon Is nitrogen fixation (once again)“vital to the progress of civilized humanity”?
US20150121869A1 (en) Sustainable economic development through integrated production of renewable energy, materials resources, and nutrient regimes
Samberger The role of water circularity in the food-water-energy nexus and climate change mitigation
Agrawal Chemical engineering for a solar economy (2017 PV Danckwerts Lecture)
Di Maria et al. A short review of comparative energy, economic and environmental assessment of different biogas-based power generation technologies
US20170166503A1 (en) Ecological and economic method and apparatus for providing hydrogen-based methanol
WO2011028403A2 (en) Sustainable economic development through integrated production of renewable energy, materials resources, and nutrient regimes

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080048870.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10814158

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2010814158

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010814158

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE