WO2011026387A1 - 一种正弦波电流自起动三相稀土永磁同步电动机 - Google Patents

一种正弦波电流自起动三相稀土永磁同步电动机 Download PDF

Info

Publication number
WO2011026387A1
WO2011026387A1 PCT/CN2010/075629 CN2010075629W WO2011026387A1 WO 2011026387 A1 WO2011026387 A1 WO 2011026387A1 CN 2010075629 W CN2010075629 W CN 2010075629W WO 2011026387 A1 WO2011026387 A1 WO 2011026387A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
pole
rotor
ray
air gap
Prior art date
Application number
PCT/CN2010/075629
Other languages
English (en)
French (fr)
Inventor
林琪
米炫
Original Assignee
湖北西浦电机科技有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 湖北西浦电机科技有限责任公司 filed Critical 湖北西浦电机科技有限责任公司
Priority to US13/391,362 priority Critical patent/US20120146446A1/en
Publication of WO2011026387A1 publication Critical patent/WO2011026387A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/46Motors having additional short-circuited winding for starting as an asynchronous motor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
    • H02K1/2766Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM] having a flux concentration effect
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K29/00Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices
    • H02K29/03Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with a magnetic circuit specially adapted for avoiding torque ripples or self-starting problems
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2201/00Specific aspects not provided for in the other groups of this subclass relating to the magnetic circuits
    • H02K2201/03Machines characterised by aspects of the air-gap between rotor and stator
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/03Machines characterised by numerical values, ranges, mathematical expressions or similar information

Definitions

  • the present invention relates to a permanent magnet motor, and more particularly to a self-starting three-phase rare earth permanent magnet synchronous motor having a sinusoidal current.
  • the stator structure of the self-starting three-phase rare earth permanent magnet synchronous motor is the same as that of the ordinary three-phase asynchronous motor.
  • the rotor is provided with a starting winding and a high-performance rare earth permanent magnet.
  • a torque-driven motor is rotated and started by the starting winding, which is close to synchronous.
  • the motor is pulled into the synchronous speed due to the action of the permanent magnet, and enters the normal running state. There is no rotor copper loss during the operation of the self-starting three-phase rare earth permanent magnet synchronous motor.
  • the technical problem to be solved by the invention is to provide a sinusoidal current self-starting three-phase rare earth permanent magnet synchronous motor, which has a good sine wave current during operation, reduces harmonic loss and improves the efficiency of the motor. .
  • a sinusoidal current self-starting three-phase rare earth permanent magnet synchronous motor comprising a motor shaft, a rotor and a stator, wherein the rotor is arranged in the stator, the rotor rotates around the motor shaft;
  • the rotor pole surface comprises a P pole, and each pole comprises a pole a curved surface, a plane between adjacent pole faces;
  • the P is a natural number greater than or equal to 2.
  • the angle ratio of ⁇ to ⁇ of each pole is between 1.5 and 10.0;
  • the first ray is a ray of an axial projection of the motor, which is drawn by the axis of the motor shaft (1) and projects a vertex through a pole arc surface (302);
  • the second ray is an axial projection of the motor, and is drawn by the axis of the motor shaft (1) and projects through the pole arc surface (302) to intersect the plane (301).
  • the ratio between the minimum air gap, the intermediate air gap and the maximum air gap is 1: (1.2 ⁇ 3): (2.5 ⁇ 10.0);
  • the minimum air gap is the distance between the intersection of the first ray and the polar arc surface projection to the intersection of the ray and the inner circle projection of the stator;
  • the intermediate air gap is the distance between the intersection of the polar arc surface projection and the plane projection to the intersection of the second ray and the inner circle projection of the stator;
  • the maximum air gap is the distance between the midpoint of the plane projection line segment on the side of the pole arc surface and the intersection point of the ray passing through the midpoint of the motor and the projection of the inner circle of the stator.
  • the arc projection of the motor is a circular arc line whose center is disposed on the first ray and is eccentric with respect to the axis of the motor shaft.
  • the rotor pole face of the present invention comprises a P-pole (2P poles), each pole comprising a pole arc surface, and a plane between adjacent pole faces is formed to form a non-uniform relationship between the rotor pole face and the inner circle of the stator.
  • the air gap utilizes the salient pole structure characteristics of the non-uniform air gap to offset the asymmetry of the magnetic circuit caused by the permanent magnet, and improves the symmetry of the magnetic circuit, so that the rotor structure is not only simple in manufacturing process, but also greatly reduces the motor.
  • the negative sequence component of the rotor current during the self-starting process improves the starting performance of the motor, and also enables the motor to have a good sinusoidal current during operation, reducing harmonic losses and improving the efficiency of the motor.
  • a good sinusoidal magnetic density can be obtained, which can further reduce the negative sequence component of the rotor current during the self-starting process of the motor. Improve the starting performance of the motor, and at the same time further make the motor have a good sine wave current during operation, reduce harmonic loss and improve the efficiency of the motor.
  • FIG. 1 is a partial cross-sectional structural view of a first embodiment (four-pole motor) according to the present invention
  • FIG. 2 is a partial cross-sectional structural view of a second embodiment of a six-pole motor according to the present invention.
  • Embodiment 3 is a partial cross-sectional structural view of Embodiment 3 (eight-pole motor) according to the present invention
  • Embodiment 4 is a partial cross-sectional structural view of Embodiment 4 (ten pole motor) according to the present invention.
  • Figure 5 is a partial cross-sectional structural view showing a fifth embodiment of a twelve-pole motor according to the present invention.
  • FIG. 6 is a waveform diagram of measured current during load operation according to Embodiment 1 of the present invention.
  • Figure 1 1-motor shaft, 2-rare permanent magnet, 3-rotor, 301-plane, 302-pole arc surface, 4-rotor starting winding, 5-non-uniform air gap, 6-stator, 601-circular L1-first ray, L2-second ray, L3-third ray.
  • the sinusoidal current self-starting three-phase rare earth permanent magnet synchronous motor comprises a motor shaft 1, a rotor (rotor core) 3, a stator (stator core) 6, a rotor 3 is disposed in the stator 6, and the rotor 3 is rotated around the motor shaft 1.
  • the rotor 3 includes P poles, each pole including a pole arc surface 302, and a plane 301 between adjacent pole arc surfaces.
  • a non-uniform air gap 5 is formed between the rotor 3 pole face and the stator inner circle 601.
  • the P is a natural number greater than or equal to 2.
  • the pole arc surface 302 is a plane 301 between the adjacent pole arc surfaces, that is, the rotor 3 includes four poles, and the rotor pole surface is composed of four pole arc surfaces 302 and four planes 301.
  • the first ray L1 is a ray of an axial projection of the motor, which is drawn from the axis of the motor shaft 1 and projects a vertex through a pole arc surface 302;
  • the second ray L2 is a ray of an axial projection of the motor, which is drawn from the axis of the motor shaft 1 and projected through the pole arc surface 302 to project a point of intersection with the plane 301.
  • the minimum air gap gmin is 0.8 mm
  • the intermediate air gap g1 is 1.5 mm
  • the maximum air gap gmax is 2.5 mm
  • the minimum air gap gmin the intermediate air gap g1
  • the ratio between the maximum air gap gmax is between 1: (1.2 ⁇ 3): (2.5 ⁇ 10.0).
  • the minimum air gap gmin is the distance between the intersection of the first ray L1 and the pole arc surface 302 to the intersection of the ray and the inner circle projection of the stator;
  • the intermediate air gap g1 is the distance between the intersection of the projection of the polar arc surface 302 and the projection of the plane 301 to the intersection of the projection of the second ray L2 and the inner circle of the stator;
  • the maximum air gap gmax is the distance between the midpoint of the projection line segment 301 of the pole arc surface and the intersection of the ray L3 drawn from the axis of the motor shaft 1 and passing through the midpoint and the projection of the inner circle of the stator. .
  • the pole arc surface 302 is projected as a circular arc whose center is disposed on the first ray L1 and is eccentric with respect to the axis of the motor shaft 1.
  • a plurality of motors of the first embodiment of the present invention are tested for a long time, and the operation is reliable, and the energy saving effect is good. It is one of the important measures to improve the efficiency of the motor to ensure the sinusoidality of the current waveform during load operation.
  • the measured current waveform of the motor load is shown in Figure 6.
  • Embodiment 1 of the present invention has the following advantages:
  • the permanent magnet is subjected to the influence of high alternating magnetomotive force impact.
  • the rotor temperature rises, and the permanent magnet is easily demagnetized.
  • the reasonable magnetic circuit structure of the invention can effectively weaken the impact of the alternating magnetomotive force on the permanent magnet on the one hand, and can also greatly reduce the negative sequence component of the rotor current during the starting process and reduce the temperature rise of the rotor.
  • effective process protection measures ensure that the permanent magnets will not demagnetize under various conditions.
  • the magnetic circuit structure of the motor of the invention can substantially eliminate the negative sequence component in the rotor current and the unidirectional torque caused thereby, so that the motor can have a suitable starting torque, a small starting current and sufficient during the starting process.
  • the pull-in synchronization capability at the same time, it can also effectively reduce the pulsating torque during the starting process, ensuring that the motor has superior starting performance.
  • the motor of the invention has substantially no harmonic components in the current during operation, the loss of the motor is reduced, and at the same time, the reasonable parameter design ensures that the power factor of the motor is close to 1 over the entire load range, so that the motor is in the same material condition.
  • the minimum consumption is used to optimize the energy saving effect of the motor.
  • the loss of the embodiment 1 of the invention is small, and the required cooling and ventilation volume is also small.
  • the specially designed cooling fan greatly reduces the ventilation noise of the motor; at the same time, the motor has a large air gap, a good current waveform, and a pulsating torque and electromagnetic noise. Significantly reduced; noise can be reduced by 10 to 30 decibels compared to asynchronous motors of the same specification.
  • the angle ratio of ⁇ to ⁇ of each pole of the motor is also between 1.5 and 10.0.
  • the ratio between the minimum air gap gmin, the intermediate air gap g1, and the maximum air gap gmax is also between 1: (1.2 ⁇ 3): (2.5 ⁇ 10.0).
  • Figs. 4 and 5 of the present invention as shown in Figs. 4 and 5, which are respectively a ten-pole motor and a twelve-pole motor.

Description

一种正弦波电流自起动三相稀土永磁同步电动机 技术领域
本发明涉及永磁电动机,特别是具有正弦波电流的自起动三相稀土永磁同步电动机。
背景技术
目前,我国各类电动机用电量已占到全国总发电量的70%左右 ,其中绝大多数为直接运行于电网的三相异步电动机,实际运行效率普遍很低,电能浪费十分严重。因此抓住电动机的节能,就是抓住了节能的关键。
自起动三相稀土永磁同步电动机的定子结构与普通三相异步电动机相同,转子上设有起动绕组和高性能稀土永磁体,起动过程中由起动绕组产生转矩拖动电机旋转起动,接近同步转速时由于永磁体的作用把电机牵入同步转速,进入正常运行状态。自起动三相稀土永磁同步电动机运行过程中没有转子铜耗,同时由于电动机的励磁磁场由永磁体提供,可以做到在整个负载范围内具有较高的功率因数,定子铜耗也会明显的减少。与普通异步电动机相比,自起动三相稀土永磁同步电动机起动及过载能力强、运行稳定性能好、转速不变、体积小、重量轻、噪声低、效率高,可节能10%~40%。实际使用时不需要任何其他附属设备,安装使用方便,可直接替代现有的三相异步电动机,适用于油田、煤炭、轧钢、纺织、化工、汽车、船舶等各行业。
自上个世纪90年代以来,国内外对稀土永磁电机的研究开发进入一个新阶段。自起动三相稀土永磁同步电动机作为其中较为复杂的一类,一直没有取得令人满意的进展。主要原因是由于电机磁路设计不合理而造成电流中含有大量谐波,这一方面会影响电机的起动性能,另一方面会大大增加电机运行时的损耗,降低电机的效率,电机的节能潜力没有很好地得到挖掘,而且电流中的大量谐波也会严重污染电网。
当前,尽管人们在提高和改善自起动三相稀土永磁同步电动机的结构性能方面做了大量工作,但是仍然不能获得良好的正弦电流波形,谐波问题依然得不到根本解决。例如,发明专利200710158557.8“自起动高效永磁同步电动机”和实用新型专利ZL200520100814.9“新型自起动永磁同步电动机”对自起动同步电动机的结构性能都有一定提高和改进,但都不能保证获得良好的正弦波电流,谐波问题仍然存在。
又如新型实用专利ZL00252876.2“正弦永磁磁密波形永磁同步电动机”通过电机定子内圆和转子外圆不同心实现非均匀气隙,可以改善磁密波形,但不能有效改善磁路对称性,也不能获得较好的正弦波电流。
技术问题
本发明所要解决的技术问题是:提供一种正弦波电流自起动三相稀土永磁同步电动机,该电动机在运行过程中具有很好的正弦波电流,减少了谐波损耗,提高了电机的效率。
技术解决方案
本发明解决上述技术问题所采用的技术方案是:
一种正弦波电流自起动三相稀土永磁同步电动机,它包括电机轴、转子、定子,转子设置在定子内,转子绕电机轴转动;转子极面包括P对极,每个极包括一个极弧面,相邻极弧面之间为平面;
所述P为大于等于2的自然数。
上述方案中,各极的β与α的角度比值在1.5~10.0之间;
β为第一射线和第二射线之间的夹角;α=(360°/4P)-β;
所述第一射线为电机轴向投影上,由电机轴(1)轴心引出并经一极弧面(302)投影顶点的射线;
所述第二射线为电机轴向投影上,由电机轴(1)轴心引出并经该极弧面(302)投影与平面(301)投影交点的射线。
上述方案中,转子极面的任一极中,最小气隙、中间气隙、最大气隙之间的比值为1:(1.2~3):(2.5~10.0);
所述最小气隙为电机轴向投影上,第一射线与极弧面投影交点至该射线与定子内圆投影交点之间的距离;
所述中间气隙为电机轴向投影上,极弧面投影与平面投影的交点至第二射线与定子内圆投影交点之间的距离;
所述最大气隙为电机轴向投影上,极弧面一侧平面投影线段中点至由电机轴轴心引出并经该中点的射线与定子内圆投影交点之间的距离。
上述方案中,电机轴向投影上,极弧面投影为圆心设置在第一射线上且相对电机轴轴心偏心的圆弧线。
有益效果
与现有技术相比,本发明的优点在于:
1、本发明的转子极面包括P对极(2P个极),每个极包括一个极弧面,相邻极弧面之间为平面,使转子极面和定子内圆之间构成非均匀气隙,利用了非均匀气隙的凸极结构特点来抵消由于永磁体所造成的磁路上的不对称性,改善了磁路的对称性,使得转子结构不仅制造工艺简单,而且可以大大减少电机在自起动过程中转子电流的负序分量,提高电动机的起动性能,同时也可以使电机在运行过程中具有很好的正弦波电流,减少了谐波损耗,提高了电机的效率。
2、通过合理调整转子极面的弧面部分与平面部分的比例以及气隙的大小,一方面可以获得很好的正弦波磁密,可以进一步减少电机在自起动过程中转子电流的负序分量,提高电动机的起动性能,同时也进一步使电机在运行过程中具有很好的正弦波电流,减少了谐波损耗,提高了电机的效率。
附图说明
图1为本发明实施例1(四极电动机)局部剖视结构示意图
图2为本发明实施例2(六极电动机)局部剖视结构示意图
图3为本发明实施例3(八极电动机)局部剖视结构示意图
图4为本发明实施例4(十极电动机)局部剖视结构示意图
图5为本发明实施例5(十二极电动机)局部剖视结构示意图
图6为本发明实施例1负载运行时实测电流波形图
图1中:1-电机轴、2-稀土永磁体、3-转子、301-平面、302-极弧面、4-转子起动绕组、5-非均匀气隙、6-定子、601-圆形,L1-第一射线、L2-第二射线、L3-第三射线。
本发明的最佳实施方式
以下结合附图和具体实施例对本发明作进一步的详细描述:
本发明正弦波电流自起动三相稀土永磁同步电动机,它包括电机轴1、转子(转子铁心)3、定子(定子铁心)6,转子3设置在定子6内,转子3绕电机轴1转动;转子3包括P对极,每个极包括一个极弧面302,相邻极弧面之间为平面301。转子3极面和定子内圆601之间构成非均匀气隙5。
所述P为大于等于2的自然数。
如图1所示的本发明实施例1,它为四极7.5KW正弦波电流自起动三相稀土永磁同步电动机,它的转子3包括2(P=2)对极,每个极包括一个极弧面302,相邻极弧面之间为平面301,即:转子3包括4个极,转子3极面由4个极弧面302和4个平面301构成。
电机各极的α=10°,β=35°;β与α的角度比值在1.5~10.0之间;
β为第一射线L1和第二射线L2之间的夹角;α=(360°/4P)-β=45°-35°;
所述第一射线L1为电机轴向投影上,由电机轴1轴心引出并经一极弧面302投影顶点的射线;
所述第二射线L2为电机轴向投影上,由电机轴1轴心引出并经该极弧面302投影与平面301投影交点的射线。
转子3极面的任一极的非均匀气隙5中,最小气隙gmin为0.8mm,中间气隙g1为1.5mm,最大气隙gmax为2.5mm;最小气隙gmin、中间气隙g1、最大气隙gmax之间的比值在1:(1.2~3):(2.5~10.0)之间。
所述最小气隙gmin为电机轴向投影上,第一射线L1与极弧面302投影交点至该射线与定子内圆投影交点之间的距离;
所述中间气隙g1为电机轴向投影上,极弧面302投影与平面301投影的交点至第二射线L2与定子内圆投影交点之间的距离;
所述最大气隙gmax为电机轴向投影上,极弧面一侧平面301投影线段中点至由电机轴1轴心引出并经该中点的射线L3与定子内圆投影交点之间的距离。
电机轴向投影上,极弧面302投影为圆心设置在第一射线L1上且相对电机轴1轴心偏心的圆弧线。
多台本发明实施例1电动机经长时间试用,运行可靠,节能效果好。保证负载运行时电流波形的正弦性是提高电机效率的重要措施之一,电动机负载运行时的实测电流波形如图6所示。
与现有电动机对比,本发明实施例1具有以下优点:
1、高可靠性
电机在起动过程中永磁体承受很高交变磁动势冲击的影响,同时,转子温度升高,容易使永磁体失磁。本发明合理的磁路结构一方面可以有效地削弱交变磁动势对永磁体的冲击影响,另一方面也可以大大减少起动过程中转子电流的负序分量,降低了转子的温升,再加上有效的工艺保护措施,保证了永磁体在各种情况都不会出现失磁现象。
2、优越的起动性能
本发明电机磁路结构可以基本消除转子电流中的负序分量以及由此所引起的单向转矩,可以做到使电机在起动过程中具有合适的起动转矩、较小的起动电流以及足够的牵入同步能力;同时,也可以有效降低起动过程中的脉动转矩,保证了电机具有优越的起动性能。
3、高效节能
由于本发明电机在运行时电流中基本没有谐波成分,降低了电动机的损耗,同时,合理的参数设计保证了电动机在整个负载范围内功率因数都接近1,使电动机在相同用材的条件下铜耗最小,使电机的节能效果达到最佳。
4、低振动噪声
本发明实施例1的损耗小,所需要的冷却通风量也小,特殊设计的冷却风扇使电机的通风噪声大为降低;同时,电动机气隙大、电流波形好,脉动转矩及电磁噪声也明显降低;与同规格的异步电机相比,噪声可降低10~30分贝。
本发明的实施方式
如图2所示的本发明实施例2,它为正弦波电流自起动三相稀土永磁同步六极电动机,它与实施例1基本相同,只是它的转子3极面包括3(P=3)对极,α=(360°/4*3)-β=30°-β。电机各极的β与α的角度比值也在1.5~10.0之间。非均匀气隙5中,最小气隙gmin、中间气隙g1、最大气隙gmax之间的比值也在1:(1.2~3):(2.5~10.0)之间。
如图3所示的本发明实施例3,它为正弦波电流自起动三相稀土永磁同步八极电动机,它与实施例2基本相同,只是它的转子3极面包括4(P=4)对极,α=(360°/4*4)-β=22.5°-β
如图4、5所示的本发明实施例4、5,它们分别为十极电动机和十二极电动机。

Claims (4)

1、一种正弦波电流自起动三相稀土永磁同步电动机,它包括电机轴(1)、转子(3)、定子(6),转子(3)设置在定子(6)内,转子(3)绕电机轴(1)转动;其特征在于:转子(3)极面包括P对极,每个极包括一个极弧面(302),相邻极弧面之间为平面(301);
所述P为大于等于2的自然数。
2、如权利要求1所述的正弦波电流自起动三相稀土永磁同步电动机,其特征在于:各极的β与α的角度比值在1.5~10.0之间;
β为第一射线和第二射线之间的夹角;α=(360°/4P)-β;
所述第一射线为电机轴向投影上,由电机轴(1)轴心引出并经一极弧面(302)投影顶点的射线;
所述第二射线为电机轴向投影上,由电机轴(1)轴心引出并经该极弧面(302)投影与平面(301)投影交点的射线。
3、如权利要求2所述的正弦波电流自起动三相稀土永磁同步电动机,其特征在于:转子(3)极面的任一极中,最小气隙、中间气隙、最大气隙之间的比值为1:(1.2~3):(2.5~10.0);
所述最小气隙为电机轴向投影上,第一射线与极弧面(302)投影交点至该射线与定子内圆投影交点之间的距离;
所述中间气隙为电机轴向投影上,极弧面(302)投影与平面(301)投影的交点至第二射线与定子内圆投影交点之间的距离;
所述最大气隙为电机轴向投影上,极弧面一侧平面(301)投影线段中点至由电机轴(1)轴心引出并经该中点的射线与定子内圆投影交点之间的距离。
4、如权利要求1或2所述的正弦波电流自起动三相稀土永磁同步电动机,其特征在于:电机轴向投影上,极弧面(302)投影为圆心设置在第一射线上且相对电机轴(1)轴心偏心的圆弧线。
PCT/CN2010/075629 2009-09-04 2010-08-02 一种正弦波电流自起动三相稀土永磁同步电动机 WO2011026387A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/391,362 US20120146446A1 (en) 2009-09-04 2010-08-02 Sine-wave current line-start three-phase rare-earth permanent magnet synchronous motor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200910063832.7 2009-09-04
CN200910063832.7A CN101651395B (zh) 2009-09-04 2009-09-04 一种正弦波电流自起动三相稀土永磁同步电动机

Publications (1)

Publication Number Publication Date
WO2011026387A1 true WO2011026387A1 (zh) 2011-03-10

Family

ID=41673546

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/075629 WO2011026387A1 (zh) 2009-09-04 2010-08-02 一种正弦波电流自起动三相稀土永磁同步电动机

Country Status (3)

Country Link
US (1) US20120146446A1 (zh)
CN (1) CN101651395B (zh)
WO (1) WO2011026387A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101651395B (zh) * 2009-09-04 2012-05-30 湖北西浦电机科技有限责任公司 一种正弦波电流自起动三相稀土永磁同步电动机
CN105179289B (zh) * 2012-05-31 2017-03-22 中山大洋电机股份有限公司 一种变速风机系统的控制方法
EP2709238B1 (de) * 2012-09-13 2018-01-17 Siemens Aktiengesellschaft Permanenterregte Synchronmaschine mit Ferritmagneten
CN103501062A (zh) * 2013-09-25 2014-01-08 于波 高效电动发电机
FR3015799B1 (fr) * 2013-12-20 2016-12-30 Valeo Equip Electr Moteur Demarreur pour moteur thermique de vehicule automobile muni d'une machine electrique tournante a inducteur a poles saillants perfectionne et masse polaire correspondante
US20160352204A1 (en) * 2014-08-08 2016-12-01 Johnson Electric S.A. Refrigeration apparatus
DE102016109083A1 (de) * 2015-05-21 2016-11-24 Johnson Electric S.A. Einphasiger bürstenloser Motor und Elektrogerät
CN105591477A (zh) * 2016-03-07 2016-05-18 常州杰信电机有限公司 无刷电机
US20230027862A1 (en) * 2021-07-21 2023-01-26 Abb Schweiz Ag Permanent magnet rotor with conductive flux barrier

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101106294A (zh) * 2006-07-16 2008-01-16 万德鸿 高速自启动变频发电机
CN201097440Y (zh) * 2006-10-10 2008-08-06 杭州英迈克电子有限公司 一种无刷永磁电机的转子
CN101651395A (zh) * 2009-09-04 2010-02-17 湖北西浦电机科技有限责任公司 一种正弦波电流自起动三相稀土永磁同步电动机
CN201478968U (zh) * 2009-09-04 2010-05-19 湖北西浦电机科技有限责任公司 一种正弦波电流自起动三相稀土永磁同步电动机

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6784582B1 (en) * 2001-11-19 2004-08-31 Valeo Electrical Systems, Inc. Magnet shaping and pole concentration for reduction of cogging torque in permanent magnet motors
JP3722822B1 (ja) * 2004-05-18 2005-11-30 山洋電気株式会社 永久磁石回転モータ
JP4793027B2 (ja) * 2006-02-28 2011-10-12 株式会社豊田自動織機 永久磁石埋設型回転電機及びカーエアコン用モータ並びに密閉型電動圧縮機

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101106294A (zh) * 2006-07-16 2008-01-16 万德鸿 高速自启动变频发电机
CN201097440Y (zh) * 2006-10-10 2008-08-06 杭州英迈克电子有限公司 一种无刷永磁电机的转子
CN101651395A (zh) * 2009-09-04 2010-02-17 湖北西浦电机科技有限责任公司 一种正弦波电流自起动三相稀土永磁同步电动机
CN201478968U (zh) * 2009-09-04 2010-05-19 湖北西浦电机科技有限责任公司 一种正弦波电流自起动三相稀土永磁同步电动机

Also Published As

Publication number Publication date
CN101651395A (zh) 2010-02-17
CN101651395B (zh) 2012-05-30
US20120146446A1 (en) 2012-06-14

Similar Documents

Publication Publication Date Title
WO2011026387A1 (zh) 一种正弦波电流自起动三相稀土永磁同步电动机
CN105449968B (zh) 组合磁极式表贴永磁同步电机
CN207853591U (zh) 矿用隔爆型永磁直驱三相同步电动机
CN108011487A (zh) 一种卡丁车用内置式永磁同步电机
CN110022043A (zh) 一种整数槽分布绕组虚拟极轮辐式永磁同步电机及其低脉动设计方法
CN112467951A (zh) 一种双定子交替极无刷混合励磁电机
CN101557150A (zh) 无铁芯永磁同步直驱风力发电机
CN102255460A (zh) 具有聚磁作用的永磁同步电机
WO2022110865A1 (zh) 电机转子、永磁电机和电动汽车
CN109672288A (zh) 一种表面-内置式永磁电机转子
CN201478968U (zh) 一种正弦波电流自起动三相稀土永磁同步电动机
CN105391264B (zh) 组合磁极式内置切向永磁同步电机
CN108233652B (zh) 一种双定子异步起动永磁同步电机
CN208128106U (zh) 一种卡丁车用内置式永磁同步电机
CN105429409A (zh) 组合磁极式轴向磁通永磁同步电机
CN115940559A (zh) 一种定子偏置式双凸极永磁电机
CN206620033U (zh) 一种用于压缩机的永磁式同步电动机
CN201805336U (zh) 一种高效节能电机
CN203674831U (zh) 永磁直流无刷电机
CN209881626U (zh) 一种新型表贴式永磁同步电机结构
CN113014004A (zh) 一种新型模块化永磁同步电机结构
CN202856572U (zh) 聚磁结构四相横向磁场永磁电机
CN105743314A (zh) 一种超高效新能源稀土永磁直流无刷节能汽车电机
CN210744867U (zh) 一种永磁电机扇形永磁体排布的转子结构
CN205670737U (zh) 高速双转子交流异步电动机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10813309

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13391362

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10813309

Country of ref document: EP

Kind code of ref document: A1