WO2011025515A1 - Plant glutamine phenylpyruvate transaminase gene and transgenic plants carrying same - Google Patents

Plant glutamine phenylpyruvate transaminase gene and transgenic plants carrying same Download PDF

Info

Publication number
WO2011025515A1
WO2011025515A1 PCT/US2010/000575 US2010000575W WO2011025515A1 WO 2011025515 A1 WO2011025515 A1 WO 2011025515A1 US 2010000575 W US2010000575 W US 2010000575W WO 2011025515 A1 WO2011025515 A1 WO 2011025515A1
Authority
WO
WIPO (PCT)
Prior art keywords
plant
seq
gpt
plants
transgenic
Prior art date
Application number
PCT/US2010/000575
Other languages
French (fr)
Inventor
Pat J. Unkefer
Thomas J. Knight
Penelope S. Anderson
Original Assignee
Los Alamos National Security, Llc
University Of Maine System Board Of Trustees
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Los Alamos National Security, Llc, University Of Maine System Board Of Trustees filed Critical Los Alamos National Security, Llc
Publication of WO2011025515A1 publication Critical patent/WO2011025515A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1096Transferases (2.) transferring nitrogenous groups (2.6)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/146Genetically Modified [GMO] plants, e.g. transgenic plants

Definitions

  • transgenic plant technologies may be gradually increasing, particularly in the United States, Canada and Australia, many regions of the World remain slow to adopt genetically modified plants in agriculture, notably Europe. Therefore, consonant with pursuing the objectives of responsible and sustainable agriculture, there is a strong interest in the development of genetically engineered plants that do not introduce toxins or other potentially problematic substances into plants and/or the environment. There is also a strong interest in minimizing the cost of achieving objectives such as improving herbicide tolerance, pest and disease resistance, and overall crop yields. Accordingly, there remains a need for transgenic plants that can meet these objectives.
  • the metabolism of carbon and nitrogen in photosynthetic organisms must be regulated in a coordinated manner to assure efficient use of plant resources and energy.
  • Current understanding of carbon and nitrogen metabolism includes details of certain steps and metabolic pathways which are subsystems of larger systems.
  • carbon metabolism begins with CO 2 fixation, which proceeds via two major processes, termed C-3 and C-4 metabolism.
  • C-3 and C-4 metabolism the enzyme ribulose bisphosphate carboxylase (RuBisCo) catalyzes the combination of CO 2 with ribulose bisphosphate to produce 3-phosphoglycerate, a three carbon compound (C-3) that the plant uses to synthesize carbon-containing compounds.
  • RuBisCo ribulose bisphosphate carboxylase
  • CO 2 is combined with phosphoenol pyruvate to form acids containing four carbons (C-4), in a reaction catalyzed by the enzyme phosphoenol pyruvate carboxylase.
  • the acids are transferred to bundle sheath cells, where they are decarboxylated to release CO 2 , which is then combined with ribulose bisphosphate in the same reaction employed by C-3 plants.
  • GS glutamine synthetase
  • GS also reassimilates ammonia released as a result of photorespiration and the breakdown of proteins and nitrogen transport compounds.
  • GS enzymes may be divided into two general classes, one representing the cytoplasmic form (GS1) and the other representing the plastidic (i.e., chloroplastic) form (GS2).
  • GS1 cytoplasmic form
  • GS2 plastidic form
  • Previous work has demonstrated that increased expression levels of GS1 result in increased levels of GS activity and plant growth, although reports are inconsistent. For example, Fuentes et al.
  • transgenic tobacco overexpressing a pea cytosolic GS1 transgene under the control of the CaMV S35 promoter show increased GS activity, increased cytosolic GS protein, and improved growth characteristics
  • Unkefer et al. have more recently reported that transgenic tobacco plants overexpressing the Alfalfa GS 1 in foliar tissues, which had been screened for increased leaf-to-root GS activity following genetic segregation by selfing to achieve increased GS1 transgene copy number, were found to produce increased 2-hydroxy-5-oxoproline levels in their foliar portions, which was found to lead to markedly increased growth rates over wildtype tobacco plants (see, U.S. Patent Nos. 6,555,500; 6,593,275; and 6,831 ,040).
  • Unkefer et al. have further described the use of 2-hydroxy-5-oxoproline (also known as 2-oxoglutaramate) to improve plant growth (U.S. Patent Nos. 6,555,500; 6,593,275; 6,831 ,040).
  • 2-hydroxy-5-oxoproline also known as 2-oxoglutaramate
  • Unkefer et al. disclose that increased concentrations of 2-hydroxy-5-oxoproline in foliar tissues (relative to root tissues) triggers a cascade of events that result in increased plant growth characteristics.
  • transaminase(s) or hydrolase(s) may exist and/or be active in catalyzing the synthesis of 2-hydroxy-5-oxoproline in plants, and no such plant transaminases have been reported, isolated or characterized.
  • transgenic plants exhibiting enhanced growth rates, seed and fruit yields, and overall biomass yields, as well as methods for generating growth-enhanced transgenic plants.
  • transgenic plants engineered to over-express glutamine phenyl pyruvate transaminase (GPT) are provided. In general, these plants out-grow their wild-type counterparts by about 50%.
  • GPT glutamine phenyl pyruvate transaminase
  • GPT glutamine phenylpyruvate transaminase
  • the transgenic plants of the invention are capable of producing higher overall yields over shorter periods of time, and therefore may provide agricultural industries with enhanced productivity across a wide range of crops.
  • the invention utilizes natural plant genes encoding a natural plant enzyme.
  • the enhanced growth characteristics of the transgenic plants of the invention are achieved essentially by introducing additional GPT capacity into the plant.
  • the transgenic plants of the invention do not express any toxic substances, growth hormones, viral or bacterial gene products, and are therefore free of many of the concerns that have heretofore impeded the adoption of transgenic plants in certain parts of the World.
  • the invention provides a transgenic plant comprising a GPT transgene, wherein said GPT transgene is operably linked to a plant promoter.
  • the GPT transgene encodes a polypeptide having an amino acid sequence selected from the group consisting of (a) SEQ ID NO: 2; SEQ ID NO: 4, SEQ ID NO: 10, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 19, SEQ ID NO: 25, SEQ ID NO: 26, SEQ ID NO: 27, SEQ ID NO: 28, SEQ ID NO: 29, SEQ ID NO: 30, SEQ ID NO: 41 , or SEQ ID NO: 44, and (b) an amino acid sequence that is at least 75% identical to any one of SEQ ID NO: 2; SEQ ID NO: 4, SEQ ID NO: 10, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 19, SEQ ID NO: 25, SEQ ID NO: 26, SEQ ID NO: 27, SEQ ID NO: 28, SEQ ID NO: 29, SEQ ID NO: 30, SEQ ID NO: 41
  • the GPT transgene is incorporated into the genome of a plant selected from the group consisting of: maize, rice, sugar cane, wheat, oats, sorghum, switch grass, soya bean, tubers (such as potatoes), canola, lupins or cotton.
  • the invention also provides progeny of any generation of the transgenic plants of the invention, wherein said progeny comprises a GPT transgene, as well as a seed of any generation of the transgenic plants of the invention, wherein said seed comprises said GPT transgene.
  • the transgenic plants of the invention may display one or more enhanced growth characteristics when compared to an analogous wild-type or untransformed plant, including without limitation increased growth rate, increased biomass yield, increased seed yield, increased flower or flower bud yield, increased fruit or pod yield, larger leaves, and increased levels of GPT activity and/or increased levels of 2-oxoglutaramate.
  • the transgenic plants of the invention display increased nitrogen use efficiency.
  • a transplastomic plant or cell line carrying a GPT transgene expression cassette said expression cassette being flanked by sequences from the plant or plant cell's plastome.
  • the invention provides a method for preparing a transplastomic plant or cell line carrying a GPT transgene construct, said method comprising the steps of: (a) inserting into at least one expression cassette at least a GPT transgene wherein said expression cassette is flanked by sequences from the plant or plant cell's plastome.
  • Methods for producing the transgenic plants of the invention and seeds thereof are also provided, including methods for producing a plant having enhanced growth characteristics, increased nitrogen use efficiency and increased tolerance to germination or growth in salt or saline conditions, relative to an analogous wild type or untransformed plant.
  • FIG. 1 Nitrogen assimilation and 2-oxoglutaramate biosynthesis: schematic of metabolic pathway.
  • FIG. 2. Photograph showing comparison of transgenic tobacco plants over- expressing GPT, compared to wild type tobacco plant. From left to right: wild type plant, Alfalfa GS1 transgene, Arabidopsis GPT transgene. See Example 3, infra.
  • FIG. 3. Photograph showing comparison of transgenic Micro-Tom tomato plants over-expressing GPT, compared to wild type tomato plant. (A) wild type plant; (B) Arabidopsis GPT transgene. See Example 4, infra.
  • FIG. 4 Photograph showing comparisons of leaf sizes between wild type (top leaf) and GPT transgenic (bottom leaf) tobacco plants. DETAILED DESCRIPTION OF THE INVENTION
  • nucleic acid refers to deoxyribonucleotides or ribonucleotides and polymers thereof ("polynucleotides”) in either single- or double-stranded form.
  • polynucleotide encompasses nucleic acids containing known analogues of natural nucleotides which have similar binding properties as the reference nucleic acid and are metabolized in a manner similar to naturally occurring nucleotides. Unless otherwise indicated, a particular nucleic acid sequence also implicitly encompasses conservatively modified variants thereof (e.g. degenerate codon substitutions) and complementary sequences and as well as the sequence explicitly indicated.
  • degenerate codon substitutions may be achieved by generating sequences in which the third position of one or more selected (or all) codons is substituted with mixed-base and/or deoxyinosine residues (Batzer et al., 1991 , Nucleic Acid Res. 19: 5081; Ohtsuka et al., 1985 J. Biol. Chem. 260: 2605-2608; and Cassol et al., 1992; Rossolini et al., 1994, MoI. Cell. Probes 8: 91- 98).
  • nucleic acid is used interchangeably with gene, cDNA, and mRNA encoded by a gene.
  • promoter refers to a nucleic acid control sequence or sequences that direct transcription of an operably linked nucleic acid.
  • a "plant promoter” is a promoter that functions in plants. Promoters include necessary nucleic acid sequences near the start site of transcription, such as, in the case of a polymerase Il type promoter, a TATA element. A promoter also optionally includes distal enhancer or repressor elements, which can be located as much as several thousand base pairs from the start site of transcription.
  • a “constitutive” promoter is a promoter that is active under most environmental and developmental conditions.
  • inducible promoter is a promoter that is active under environmental or developmental regulation.
  • operably linked refers to a functional linkage between a nucleic acid expression control sequence (such as a promoter, or array of transcription factor binding sites) and a second nucleic acid sequence, wherein the expression control sequence directs transcription of the nucleic acid corresponding to the second sequence.
  • polypeptide peptide
  • protein protein
  • amino acid polymers in which one or more amino acid residue is an artificial chemical mimetic of a corresponding naturally occurring amino acid, as well as to naturally occurring amino acid polymers and non-naturally occurring amino acid polymers.
  • amino acid refers to naturally occurring and synthetic amino acids, as well as amino acid analogs and amino acid mimetics that function in a manner similar to the naturally occurring amino acids.
  • Naturally occurring amino acids are those encoded by the genetic code, as well as those amino acids that are later modified, e.g., hydroxyproline, ⁇ -carboxyglutamate, and O-phosphoserine.
  • Amino acid analogs refers to compounds that have the same basic chemical structure as a naturally occurring amino acid, i.e., an ⁇ carbon that is bound to a hydrogen, a carboxyl group, an amino group, and an R group, e.g., homoserine, norleucine, methionine sulfoxide, methionine methyl sulfonium. Such analogs have modified R groups (e.g., norleucine) or modified peptide backbones, but retain the same basic chemical structure as a naturally occurring amino acid.
  • Amino acid mimetics refers to chemical compounds that have a structure that is different from the general chemical structure of an amino acid, but that functions in a manner similar to a naturally occurring amino acid.
  • Amino acids may be referred to herein by either their commonly known three letter symbols or by the one-letter symbols recommended by the IUPAC-IUB Biochemical Nomenclature Commission. Nucleotides, likewise, may be referred to by their commonly accepted single-letter codes.
  • plant includes whole plants, plant organs (e.g., leaves, stems, flowers, roots, reprroductive organs, embryos and parts thereof, etc.), seedlings, seeds and plant cells and progeny thereof.
  • the class of plants which can be used in the method of the invention is generally as broad as the class of higher plants amenable to transformation techniques, including angiosperms (monocotyledonous and dicotyledonous plants), as well as gymnosperms. It includes plants of a variety of ploidy levels, including polyploid, diploid, haploid and hemizygous.
  • GPT polynucleotide and “GPT nucleic acid” are used interchangeably herein, and refer to a full length or partial length polynucleotide sequence of a gene which encodes a polypeptide involved in catalyzing the synthesis of 2- oxoglutaramate, and includes polynucleotides containing both translated (coding) and un-translated sequences, as well as the complements thereof.
  • GPT coding sequence refers to the part of the gene which is transcribed and encodes a GPT protein.
  • targeting sequence refers to the amino terminal part of a protein which directs the protein into a subcellular compartment of a cell, such as a chloroplast in a plant cell.
  • GPT polynucleotides are further defined by their ability to hybridize under defined conditions to the GPT polynucleotides specifically disclosed herein, or to PCR products derived therefrom.
  • a “GPT transgene” is a nucleic acid molecule comprising a GPT polynucleotide which is exogenous to transgenic plant, or plant embryo, organ or seed, harboring the nucleic acid molecule, or which is exogenous to an ancestor plant, or plant embryo, organ or seed thereof, of a transgenic plant harboring the GPT polynucleotide. More particularly, the exogenous GPT transgene will be heterogeneous with any GPT polynucleotide sequence present in wild-type plant, or plant embryo, organ or seed into which the GPT transgene is inserted. To this extent the scope of the heterogeneity required need only be a single nucleotide difference.
  • heterogeneity will be in the order of an identity between sequences selected from the following identities: 0.01%, 0.05%, 0.1%, 0.5%, 1%, 5%, 10%, 15%, and 20%.
  • Exemplary GPT polynucleotides of the invention are presented herein, and include GPT coding sequences for Arabidopsis, Rice, Barley, bamboo, Soybean, Grape, Clementine orange and Zebra Fish GPTs.
  • Partial length GPT polynucleotides include polynucleotide sequences encoding N- or C-terminal truncations of GPT, mature GPT (without targeting sequence) as well as sequences encoding domains of GPT.
  • Exemplary GPT polynucleotides encoding N- terminal truncations of GPT include Arabidopsis -30, -45 and -56 constructs, in which coding sequences for the first 30, 45, and 56, respectively, amino acids of the full length GPT structure of SEQ ID NO: 2 are eliminated.
  • the inserted polynucleotide sequence need not be identical, but may be only "substantially identical" to a sequence of the gene from which it was derived, as further defined below.
  • the term "GPT polynucleotide” specifically encompasses such substantially identical variants.
  • a number of polynucleotide sequences will encode the same polypeptide, and all such polynucleotide sequences are meant to be included in the term GPT polynucleotide.
  • the term specifically includes those sequences substantially identical (determined as described below) with an GPT polynucleotide sequence disclosed herein and that encode polypeptides that are either mutants of wild type GPT polypeptides or retain the function of the GPT polypeptide (e.g., resulting from conservative substitutions of amino acids in a GPT polypeptide).
  • the term "GPT polynucleotide” therefore also includes such substantially identical variants.
  • conservatively modified variants refers to those nucleic acids which encode identical or essentially identical amino acid sequences, or where the nucleic acid does not encode an amino acid sequence, to essentially identical sequences. Because of the degeneracy of the genetic code, a large number of functionally identical nucleic acids encode any given protein. For instance, the codons GCA, GCC, GCG and GCU all encode the amino acid alanine. Thus, at every position where an alanine is specified by a codon, the codon can be altered to any of the corresponding codons described without altering the encoded polypeptide.
  • nucleic acid variations are "silent variations," which are one species of conservatively modified variations. Every nucleic acid sequence herein which encodes a polypeptide also describes every possible silent variation of the nucleic acid.
  • each codon in a nucleic acid except AUG, which is ordinarily the only codon for methionine, and TGG, which is ordinarily the only codon for tryptophan
  • TGG which is ordinarily the only codon for tryptophan
  • amino acid sequences one of skill will recognize that individual substitutions, deletions or additions to a nucleic acid, peptide, polypeptide, or protein sequence which alters, adds or deletes a single amino acid or a small percentage of amino acids in the encoded sequence is a "conservatively modified variant" where the alteration results in the substitution of an amino acid with a chemically similar amino acid. Conservative substitution tables providing functionally similar amino acids are well known in the art. Such conservatively modified variants are in addition to and do not exclude polymorphic variants, interspecies homologs, and alleles of the invention.
  • the following eight groups each contain amino acids that are conservative substitutions for one another: 1 ) Alanine (A), Glycine (G); 2) Aspartic acid (D), Glutamic acid (E); 3) Asparagine (N), Glutamine (Q); 4) Arginine (R), Lysine (K); 5) lsoleucine (I), Leucine (L), Methionine (M) 1 Valine (V); 6) Phenylalanine (F), Tyrosine (Y), Tryptophan (W); 7) Serine (S), Threonine (T); and 8) Cysteine (C), Methionine (M) (see, e.g., Creighton, Proteins (1984)).
  • Macromolecular structures such as polypeptide structures can be described in terms of various levels of organization. For a general discussion of this organization, see, e.g., Alberts et al., Molecular Biology of the Cell (3 rd ed., 1994) and Cantor and
  • Primary structure refers to the amino acid sequence of a particular peptide.
  • Secondary structure refers to locally ordered, three dimensional structures within a polypeptide. These structures are commonly known as domains.
  • Domains are portions of a polypeptide that form a compact unit of the polypeptide and are typically 25 to approximately 500 amino acids long. Typical domains are made up of sections of lesser organization such as stretches of ⁇ -sheet and ⁇ - helices. "Tertiary structure” refers to the complete three dimensional structure of a polypeptide monomer. “Quaternary structure” refers to the three dimensional structure formed by the noncovalent association of independent tertiary units. Anisotropic terms are also known as energy terms.
  • isolated refers to material which is substantially or essentially free from components which normally accompany the material as it is found in its native or natural state. However, the term “isolated” is not intended refer to the components present in an electrophoretic gel or other separation medium. An isolated component is free from such separation media and in a form ready for use in another application or already in use in the new application/milieu.
  • An "isolated” antibody is one that has been identified and separated and/or recovered from a component of its natural environment. Contaminant components of its natural environment are materials that would interfere with diagnostic or therapeutic uses for the antibody, and may include enzymes, hormones, and other proteinaceous or non-proteinaceous solutes.
  • the antibody will be purified (1 ) to greater than 95% by weight of antibody as determined by the Lowry method, and most preferably more than 99% by weight, (2) to a degree sufficient to obtain at least 15 residues of N- terminal or internal amino acid sequence by use of a spinning cup sequenator, or (3) to homogeneity by SDS-PAGE under reducing or nonreducing conditions using Coomassie blue or, preferably, silver stain.
  • Isolated antibody includes the antibody in situ within recombinant cells since at least one component of the antibody's natural environment will not be present. Ordinarily, however, isolated antibody will be prepared by at least one purification step.
  • heterologous when used with reference to portions of a nucleic acid indicates that the nucleic acid comprises two or more subsequences that are not found in the same relationship to each other in nature.
  • a nucleic acid is typically recombinantly produced, having two or more sequences from unrelated genes arranged to make a new functional nucleic acid, e.g., a nucleic acid encoding a protein from one source and a nucleic acid encoding a peptide sequence from another source.
  • a heterologous protein indicates that the protein comprises two or more subsequences that are not found in the same relationship to each other in nature (e.g., a fusion protein).
  • nucleic acids or polypeptide sequences refer to two or more sequences or subsequences that are the same or have a specified percentage of amino acid residues or nucleotides that are the same (i.e., about 70% identity, preferably 75%, 80%, 85%, 90%, or 95% identity over a specified region, when compared and aligned for maximum correspondence over a comparison window, or designated region as measured using a sequence comparison algorithms, or by manual alignment and visual inspection.
  • This definition also refers to the complement of a test sequence, which has substantial sequence or subsequence complementarity when the test sequence has substantial identity to a reference sequence.
  • This definition also refers to the complement of a test sequence, which has substantial sequence or subsequence complementarity when the test sequence has substantial identity to a reference sequence.
  • sequence comparison typically one sequence acts as a reference sequence, to which test sequences are compared.
  • test and reference sequences are entered into a computer, subsequence coordinates are designated, if necessary, and sequence algorithm program parameters are designated. Default program parameters can be used, or alternative parameters can be designated.
  • sequence comparison algorithm then calculates the percent sequence identities for the test sequences relative to the reference sequence, based on the program parameters.
  • a “comparison window”, as used herein, includes reference to a segment of any one of the number of contiguous positions selected from the group consisting of from 20 to 600, usually about 50 to about 200, more usually about 100 to about 150 in which a sequence may be compared to a reference sequence of the same number of contiguous positions after the two sequences are optimally aligned.
  • Methods of alignment of sequences for comparison are well-known in the art. Optimal alignment of sequences for comparison can be conducted, e.g., by the local homology algorithm of Smith & Waterman, 1981 , Adv. Appl. Math. 2:482, by the homology alignment algorithm of Needleman & Wunsch, 1970, J. MoI. Biol.
  • BLAST and BLAST 2.0 are used, typically with the default parameters described herein, to determine percent sequence identity for the nucleic acids and proteins of the invention.
  • Software for performing BLAST analyses is publicly available through the National Center for Biotechnology Information.
  • This algorithm involves first identifying high scoring sequence pairs (HSPs) by identifying short words of length W in the query sequence, which either match or satisfy some positive-valued threshold score T when aligned with a word of the same length in a database sequence.
  • T is referred to as the neighborhood word score threshold (Altschul et al., supra).
  • a scoring matrix is used to calculate the cumulative score. Extension of the word hits in each direction are halted when: the cumulative alignment score falls off by the quantity X from its maximum achieved value; the cumulative score goes to zero or below, due to the accumulation of one or more negative-scoring residue alignments; or the end of either sequence is reached.
  • the BLAST algorithm parameters W, T, and X determine the sensitivity and speed of the alignment.
  • the BLAST algorithm also performs a statistical analysis of the similarity between two sequences (see, e.g., Karlin & Altschul, 1993, Proc. Nat'l. Acad. Sci. USA 90:5873-5787).
  • One measure of similarity provided by the BLAST algorithm is the smallest sum probability (P(N)), which provides an indication of the probability by which a match between two nucleotide or amino acid sequences would occur by chance.
  • P(N) the smallest sum probability
  • a nucleic acid is considered similar to a reference sequence if the smallest sum probability in a comparison of the test nucleic acid to the reference nucleic acid is less than about 0.2, more preferably less than about 0.01 , and most preferably less than about 0.001.
  • stringent hybridization conditions refers to conditions under which a probe will hybridize to its target subsequence, typically in a complex mixture of nucleic acid, but to no other sequences. Stringent conditions are sequence- dependent and will be different in different circumstances. Longer sequences hybridize specifically at higher temperatures. An extensive guide to the hybridization of nucleic acids is found in Tijssen, Techniques in Biochemistry and Molecular Biology-Hybridization with Nucleic Probes, "Overview of principles of hybridization and the strategy of nucleic acid assays” (1993). Generally, highly stringent conditions are selected to be about 5-10°C. lower than the thermal melting point (Tm) for the specific sequence at a defined ionic strength pH.
  • Tm thermal melting point
  • Tm is the temperature (under defined ionic strength, pH, and nucleic concentration) at which 50% of the probes complementary to the target hybridize to the target sequence at equilibrium (as the target sequences are present in excess, at Tm, 50% of the probes are occupied at equilibrium).
  • Stringent conditions will be those in which the salt concentration is less than about 1.0M sodium ion, typically about 0.01 to 1.0M sodium ion concentration (or other salts) at pH 7.0 to 8.3 and the temperature is at least about 3O 0 C for short probes (e.g., 10 to 50 nucleotides) and at least about 60 0 C for long probes (e.g., greater than 50 nucleotides).
  • Stringent conditions may also be achieved with the addition of destabilizing agents such as formamide.
  • a positive signal is at least two times background, preferably 10 times background hybridization.
  • Nucleic acids that do not hybridize to each other under stringent conditions are still substantially identical if the polypeptides which they encode are substantially identical. This occurs, for example, when a copy of a nucleic acid is created using the maximum codon degeneracy permitted by the genetic code. In such cased, the nucleic acids typically hybridize under moderately stringent hybridization conditions.
  • Genomic DNA or cDNA comprising GPT polynucleotides may be identified in standard Southern blots under stringent conditions using the GPT polynucleotide sequences disclosed here.
  • suitable stringent conditions for such hybridizations are those which include a hybridization in a buffer of 40% formamide, 1M NaCI, 1% SDS at 37°C, and at least one wash in 0.2 X SSC at a temperature of at least about 50 0 C, usually about 55°C to about 60°C, for 20 minutes, or equivalent conditions.
  • a positive hybridization is at least twice background.
  • alternative hybridization and wash conditions may be utilized to provide conditions of similar stringency.
  • a further indication that two polynucleotides are substantially identical is if the reference sequence, amplified by a pair of oligonucleotide primers, can then be used as a probe under stringent hybridization conditions to isolate the test sequence from a cDNA or genomic library, or to identify the test sequence in, e.g., a northern or Southern blot.
  • the invention provides novel transgenic plants exhibiting substantially enhanced growth and other agronomic characteristics, including without limitation faster growth, greater mature plant fresh weight and total biomass, earlier and more abundant flowering, and greater fruit and seed yields.
  • the transgenic plants of the invention are generated by introducing into a plant one or more expressible genetic constructs capable of driving the expression of one or more polynucleotides encoding glutamine phenylpyruvate transaminase (GPT).
  • GPT glutamine phenylpyruvate transaminase
  • the invention is exemplified, for example, by the generation of transgenic tobacco plants carrying and expressing the heterologous Arabidopsis GPT gene (Example 2, infra).
  • any plant gene encoding a GPT homolog or functional variants thereof may be useful in the generation of transgenic plants of this invention.
  • one or more copies of the expressible genetic construct become integrated into the host plant genome, thereby providing increased GPT enzyme capacity into the plant, which serves to mediate increased synthesis of 2-oxoglutaramate, which in turn signals metabolic gene expression, resulting in increased plant growth and the enhancement of plant growth and other agronomic characteristics.
  • 2-oxoglutaramate is a metabolite which is an extremely potent effector of gene expression, metabolism and plant growth (U.S. Patent No. 6,555,500), and which may play a pivotal role in the coordination of the carbon and nitrogen metabolism systems (L ancient et al., 2000, Enzyme Redundancy and the Importance of 2-Oxoglutarate in Higher Plants Ammonium Assimilation, Plant Physiol. 123: 817-824). See, also, the schematic of the 2-oxoglutaramate pathway shown in FIG. 1.
  • GPT Arabidopsis glutamine phenyl pyruvate transaminase
  • Example 2 infra
  • Example 3 infra
  • transgenic tobacco plants As disclosed herein (see Example 3, infra), over-expression of a transgene comprising the full-length Arabidopsis GPT coding sequence in transgenic tobacco plants also results in faster CO 2 fixation, and increased levels of total protein, glutamine and 2-oxoglutaramate. These transgenic plants also grow faster than wild- type plants (FIG. 2).
  • tomato plants transformed with the Arabidopsis GPT transgene showed significant enhancement of growth rate, flowering, and seed yield in relation to wild type control plants (FIG. 3 and Example 4, infra).
  • transgenic tobacco plants In addition to the transgenic tobacco plants referenced above, various other species of transgenic plants comprising GPT and showing enhanced growth characteristics have been generated in two species of Tomato, Pepper, Beans, Cowpea, Alfalfa, Cantaloupe, Pumpkin, Arabidopsis and Camilena (see co-pending US Application Number 12/551 ,271 , filed August 31 , 2009, the contents of which are incorporated herein by reference in its entirety).
  • the foregoing transgenic plants were generated using a variety of transformation methodologies, including Agrobacterium-mediated callus, floral dip, seed inoculation, pod inoculation, and direct flower inoculation, as well as combinations thereof, and via sexual crosses of single transgene plants, using various GPT transgenes.
  • the transgenic plants of the invention may be any vascular plant of the phylum Tracheophyta, including angiosperms and gymnosperms.
  • Angiosperms may be a monocotyledonous (monocot) or a dicotyledonous (dicot) plant.
  • Important monocots include those of the grass families, such as the family Poaceae and Gramineae, including plants of the genus Avena (Avena sativa, oats), genus Hordeum (i.e., Hordeum vulgare, Barley), genus Oryza (i.e., Oryza sativa, rice, cultivated rice varieties), genus Panicum (Panicum spp., Panicum virgatum, Switchgrass), genus Phleum (Phleum pratense, Timothy-grass), genus Saccharum (i.e., Saccharum officinarum, Saccharum spontaneum, hybrids thereof, Sugarcane), genus Secale (i.e., Secale cereale, Rye), genus Sorghum ⁇ Sorghum vulgare, Sorghum), genus Triticum (wheat, various classes, including T.
  • Avena Avena
  • Hordeum i.e., Hor
  • genus Fagopyrum buckwheat, including F. esculentum
  • genus Triticosecale Triticale, various hybrids of wheat and rye
  • genus Chenopodium quinoa, including C. quinoa
  • genus Zea i.e., Zea mays, numerous varieties
  • millets i.e., Pennisetum glaucum
  • Digitaria Digitaria
  • Important dicots include those of the family Solanaceae, such as plants of the genus Lycopersicon (Lycopersicon esculentum, tomato), genus Capiscum (Capsicum annuum, peppers), genus Solanum (Solanum tuberosum, potato, S. lycopersicum, tomato); genus Manihot (cassava, M. esculenta), genus lpomoea (sweet potato, /. batatas), genus Olea (olives, including O. europaea); plants of the Gossypium family (i.e., Gossypium spp., G. hirsutum, G.
  • Solanaceae such as plants of the genus Lycopersicon (Lycopersicon esculentum, tomato), genus Capiscum (Capsicum annuum, peppers), genus Solanum (Solanum tuberosum, potato, S
  • Legumes family Fabaceae
  • peas Pisum spp, P. sativum
  • beans ⁇ Glycine spp. Glycine max(soybean); Phaseolus vulgaris, common beans, Vigna radiata, mung bean), chickpeas (Cicer arietinum)), lentils (Lens culinaris), peanuts (Arachis hypogaea); coconuts (Cocos nucifera) as well as various other important crops such as camelina (Camelina sativa, family Brassicaceae), citrus (Citrus spp, family Rutaceae), coffee (Coffea spp, family Rubiaceae), melon (Cucumis spp, family Cucurbitaceae), squash (Cucurbita spp, family Cucurbitaceae), roses (Rosa spp, family Rosaceae), sunflower (Helianthus annuus, family Aster
  • genus VWs (grape, including Vitis vinifera)
  • plants of the genus Brassica family Brassicaceae, i.e., broccoli, brussel sprouts, cabbage, swede, turnip, rapeseed B. napus, and cauliflower).
  • Other specific plants which may be transformed to generate the transgenic plants of the invention include various other fruits and vegetables, such as apples, asparagus, avocado, banana, blackberry, blueberry, brussel sprout, cabbage, cotton, canola, carrots, radish, cucumbers, cherries, cranberries, cantaloupes, eggplant, grapefruit, lemons, limes, nectarines, oranges, peaches, pineapples, pears, plums, tangelos, tangerines, papaya, mango, strawberry, raspberry, lettuce, onion, grape, kiwi fruit, okra, parsnips, pumpkins, and spinach.
  • fruits and vegetables such as apples, asparagus, avocado, banana, blackberry, blueberry, brussel sprout, cabbage, cotton, canola, carrots, radish, cucumbers, cherries, cranberries, cantaloupes, eggplant, grapefruit, lemons, limes, nectarines, oranges, peaches, pineapples, pears, plums, tangelos, tangerines, papaya,
  • various flowering plants, trees and ornamental plants may be used to generate transgenic varietals, including without limitation lily, carnation, chrysanthemum, petunia, geranium, violet, gladioli, lupine, orchid and lilac.
  • a method of generating a transgenic plant having enhanced growth and other agronomic characteristics comprises introducing into a plant cell an expression cassette comprising a nucleic acid molecule encoding a GPT transgene, under the control of a suitable promoter capable of driving the expression of the transgene, so as to yield a transformed plant cell, and obtaining a transgenic plant which expresses the encoded GPT.
  • a method of generating a transgenic plant having enhanced growth and other agronomic characteristics comprises introducing into a plant cell one or more nucleic acid constructs or expression cassettes comprising nucleic acid molecules encoding a GPT transgene, under the control of one or more suitable promoters (and, optionally, other regulatory elements) capable of driving the expression of the transgenes, so as to yield a plant cell transformed thereby, and obtaining a transgenic plant which expresses the GPT transgene to produce a biologically acitve GPT protein. Any number of GPT polynucleotides may be used to generate the transgenic plants of the invention.
  • GPT proteins are highly conserved among various plant species, and it is evident from the experimental data disclosed herein that closely-related non- plant GPTs may be used as well (e.g., Danio rerio GPT). With respect to GPT, numerous GPT polynucleotides derived from different species have been shown to be active and useful as GPT transgenes.
  • the GPT transgene is a GPT polynucleotide encoding an
  • Arabidopsis derived GPT such as the GPT of SEQ ID NO: 2, SEQ ID NO: 21 and
  • the GPT transgene may be encoded by the nucleotide sequence of SEQ ID NO: 1 ; a nucleotide sequence having at least 75% and more preferably at least 80% identity to SEQ ID NO: 1 , and encoding a polypeptide having GPT activity; a nucleotide sequence encoding the polypeptide of SEQ ID NO: 2, or a polypeptide having at least 75% and more preferably at least 80% sequence identity thereto which has GPT activity; or a nucleotide sequence encoding the polypeptide of SEQ ID NO: 2 truncated at its amino terminus by between 30 to 56 amino acid residues, or a polypeptide having at least 75% and more preferably at least 80% sequence identity thereto which has GPT activity.
  • the GPT transgene is a GPT polynucleotide encoding a Grape derived GPT, such as the Grape GPTs of SEQ ID NO: 4 and SEQ
  • the GPT transgene may be encoded by the nucleotide sequence of SEQ ID NO: 26.
  • nucleotide sequence having at least 75% and more preferably at least
  • the GPT transgene is a GPT polynucleotide encoding a Rice derived GPT, such as the Rice GPTs of SEQ ID NO: 6 and SEQ ID NO: 27.
  • the GPT transgene may be encoded by the nucleotide sequence of SEQ ID NO: 5; a nucleotide sequence having at least 75% and more preferably at least 80% identity to SEQ ID NO: 5, and encoding a polypeptide having GPT activity; or a nucleotide sequence encoding the polypeptide of SEQ ID NO: 6 or SEQ ID NO: 27, or a polypeptide having at least 75% and more preferably at least 80% sequence identity thereto which has GPT activity.
  • the GPT transgene is a GPT polynucleotide encoding a Soybean derived GPT, such as the Soybean GPTs of SEQ ID NO: 8 or SEQ ID NO: 28 with a further lsoleucine at the N-terminus of the sequence.
  • the GPT transgene may be encoded by the nucleotide sequence of SEQ ID NO: 7; a nucleotide sequence having at least 75% and more preferably at least 80% identity to SEQ ID NO: 7, and encoding a polypeptide having GPT activity; or a nucleotide sequence encoding the polypeptide of SEQ ID NO: 8 or SEQ ID NO: 28 with a further lsoleucine at the N-terminus of the sequence, or a polypeptide having at least 75% and more preferably at least 80% sequence identity thereto which has GPT activity.
  • the GPT transgene is a GPT polynucleotide encoding a Barley derived GPT, such as the Barley GPTs of SEQ ID NO: 15 and SEQ ID NO: 34.
  • the GPT transgene may be encoded by the nucleotide sequence of SEQ ID NO: 9; a nucleotide sequence having at least 75% and more preferably at least 80% identity to SEQ ID NO: 9, and encoding a polypeptide having GPT activity; or a nucleotide sequence encoding the polypeptide of SEQ ID NO: 10, SEQ ID NO: 29 or SEQ ID NO: 40, or a polypeptide having at least 75% and more preferably at least 80% sequence identity thereto which has GPT activity.
  • the GPT transgene is a GPT polynucleotide encoding a Zebra fish derived GPT, such as the Zebra fish GPTs of SEQ ID NO: 12 and SEQ ID NO: 30.
  • the GPT transgene may be encoded by the nucleotide sequence of SEQ ID NO: 11 ; a nucleotide sequence having at least 75% and more preferably at least 80% identity to SEQ ID NO: 11 , and encoding a polypeptide having GPT activity; or a nucleotide sequence encoding the polypeptide of SEQ ID NO: 12 or SEQ ID NO: 30, or a polypeptide having at least 75% and more preferably at least 80% sequence identity thereto which has GPT activity.
  • the GPT transgene is a GPT polynucleotide encoding a bamboo derived GPT, such as the Bamboo GPT of SEQ ID NO: 19 or
  • the GPT transgene may be encoded by the nucleotide sequence of
  • SEQ ID NO: 18 a nucleotide sequence having at least 75% and more preferably at least 80% identity to SEQ ID NO: 18; or a nucleotide sequence encoding a polypeptide having GPT activity encoded by a nucleotide sequence encoding the polypeptide of SEQ ID NO: 36, or a polypeptide having at least 75% and more preferably at least 80% sequence identity thereto which has GPT activity.
  • GPT polynucleotides suitable for use as GPT transgenes in the practice of the invention may be obtained by various means, and tested for the ability to direct the expression of a GPT with GPT activity in a recombinant expression system (i.e., E. coli (see Examples 20-23), in a transient in planta expression system (see Example 19), or in a transgenic plant (see Examples 1-18).
  • a recombinant expression system i.e., E. coli (see Examples 20-23)
  • a transient in planta expression system see Example 19
  • transgenic plant see Examples 1-18.
  • the gene coding sequence for the desired transgene(s) must be incorporated into a nucleic acid construct (also interchangeably referred to herein as a/an (transgene) expression vector, expression cassette, expression construct or expressible genetic construct), which can direct the expression of the transgene sequence in transformed plant cells.
  • a nucleic acid construct also interchangeably referred to herein as a/an (transgene) expression vector, expression cassette, expression construct or expressible genetic construct
  • Such nucleic acid constructs carrying the transgene(s) of interest may be introduced into a plant cell or cells using a number of methods known in the art, including but not limited to electroporation, DNA bombardment or biolistic approaches, microinjection, and via the use of various DNA-based vectors such as Agrobacterium tumefaciens and Agrobacterium rhizogenes vectors.
  • the nucleic acid construct may direct the expression of the incorporated transgene(s) (i.e., GPT), either in a transient or stable fashion.
  • Stable expression is preferred, and is achieved by utilizing plant transformation vectors which are able to direct the chromosomal integration of the transgene construct.
  • a typical plant expression vector for generating transgenic plants will comprise the transgene of interest under the expression regulatory control of a promoter, a selectable marker for assisting in the selection of transformants, and a transcriptional terminator sequence.
  • the basic elements of a nucleic acid construct for use in generating the transgenic plants of the invention are: a suitable promoter capable of directing the functional expression of the transgene(s) in a transformed plant cell, the transgene(s) (i.e., GPT coding sequence) operably linked to the promoter, preferably a suitable transcription termination sequence (i.e., nopaline synthetic enzyme gene terminator) operably linked to the transgene, and sometimes other elements useful for controlling the expression of the transgene, as well as one or more selectable marker genes suitable for selecting the desired transgenic product (i.e., antibiotic resistance genes).
  • a suitable promoter capable of directing the functional expression of the transgene(s) in a transformed plant cell
  • the transgene(s) i.e., GPT coding sequence
  • a suitable transcription termination sequence i.e., nopaline synthetic enzyme gene terminator
  • Agrobacteri ⁇ m tumefaciens is the primary transformation system used to generate transgenic plants, there are numerous vectors designed for Agrobacterium transformation.
  • Agrobacterium systems utilize "binary" vectors that permit plasmid manipulation in both E. coli and Agrobacterium, and typically contain one or more selectable markers to recover transformed plants (Hellens et al., 2000, Technical focus: A guide to Agrobacterium binary Ti vectors. Trends Plant Sci 5:446-451).
  • Binary vectors for use in Agrobacterium transformation systems typically comprise the borders of T-DNA, multiple cloning sites, replication functions for Escherichia coli and A. tumefaciens, and selectable marker and reporter genes.
  • So-called "super-binary" vectors provide higher transformation efficiencies, and generally comprise additional virulence genes from a Ti (Komari et al., 2006, Methods MoI. Biol. 343: 15-41). Super binary vectors are typically used in plants which exhibit lower transformation efficiencies, such as cereals. Such additional virulence genes include without limitation virB, virE, and virG (Vain et al., 2004, The effect of additional virulence genes on transformation efficiency, transgene integration and expression in rice plants using the pGreen/pSoup dual binary vector system. Transgenic Res.
  • expression vectors which place the inserted transgene(s) under the control of the constitutive CaMV 35S promoter are employed.
  • a number of expression vectors which utilize the CaMV 35S promoter are known and/or commercially available.
  • numerous promoters suitable for directing the expression of the transgene are known and may be used in the practice of the invention, as further described, infra.
  • the selected promoter(s) may be constitutive, non-specific promoters such as the Cauliflower Mosaic Virus 35S ribosomal promoter (CaMV 35S promoter), which is widely employed for the expression of transgenes in plants.
  • CaMV 35S promoter Cauliflower Mosaic Virus 35S ribosomal promoter
  • other strong constitutive promoters include without limitation the rice actin 1 promoter, the CaMV 19S promoter, the Ti plasmid nopaline synthase promoter, the alcohol dehydrogenase promoter and the sucrose synthase promoter.
  • a promoter based upon the desired plant cells to be transformed by the transgene construct, the desired expression level of the transgene, the desired tissue or subcellular compartment for transgene expression, the developmental stage targeted, and the like.
  • a promoter of the ribulose bisphosphate carboxylase (RuBisCo) gene may be employed.
  • promoters of various seed storage protein genes may be employed.
  • a fruit-specific promoter such as tomato 2A11 may be used.
  • tissue specific promoters include the promoters encoding lectin (Vodkin et al., 1983, Cell 34:1023- 31 ; Lindstrom et al., 1990, Developmental Genetics 11 :160-167), corn alcohol dehydrogenase 1 (Vogel et al, 1989, J. Cell. Biochem. (Suppl.
  • inducible promoter sequences may be employed in cases where it is desirable to regulate transgene expression as the transgenic plant regenerates, matures, flowers, etc.
  • inducible promoters include promoters of heat shock genes, protection responding genes (i.e., phenylalanine ammonia lyase; see, for example Bevan et al., 1989, EMBO J. 8(7): 899-906), wound responding genes (i.e., cell wall protein genes), chemically inducible genes (i.e., nitrate reductase, chitinase) and dark inducible genes (i.e., asparagine synthetase; see, for example U.S.
  • Patent No. 5,256,558 a number of plant nuclear genes are activated by light, including gene families encoding the major chlorophyll a/b binding proteins (cab) as well as the small subunit of ribulose-1 ,5-bisphosphate carboxylase (rbcS) (see, for example, Tobin and Silverthome, 1985, Annu. Rev. Plant Physiol. 36: 569-593; Dean et al., 1989, Annu. Rev. Plant Physiol. 40: 415-439.).
  • cab chlorophyll a/b binding proteins
  • rbcS ribulose-1 ,5-bisphosphate carboxylase
  • inducible promoters include ABA- and turgor-inducible promoters, the auxin- binding protein gene promoter (Schwob et al., 1993, Plant J. 4(3): 423-432), the UDP glucose flavonoid glycosyl-transferase gene promoter (Ralston et al., 1988, Genetics 119(1): 185-197); the MPI proteinase inhibitor promoter (Cordero et al., 1994, Plant J. 6(2): 141-150), the glyceraldehyde-3-phosphate dehydrogenase gene promoter (Kohler et al., 1995, Plant MoI. Biol.
  • the present invention discloses for the first time that plants contain a glutamine phenylpyruvate transaminase (GPT) enzyme which is directly functional in the synthesis of the signal metabolite 2-hydroxy-5-oxoproline.
  • GPT glutamine phenylpyruvate transaminase
  • any plant gene encoding a GPT homolog or functional variants thereof may be useful in the generation of transgenic plants of this invention.
  • other non-plant GPT homologs may be used in preparing GPT transgenes for use in generating the transgenic plants of the invention.
  • Poplar 85 93 Underscoring the conserved nature of the structure of the GPT protein across most plant species, the conservation seen within the above plant species extends to the non-human putative GPTs from Zebra fish and Chlamydomonas. In the case of Zebra fish, the extent of identity is very high (83% amino acid sequence identity with the mature Arabidopsis GPT of SEQ ID NO: 30, and 92% homologous taking similar amino acid residues into account). The Zebra fish mature GPT was confirmed by expressing it in E. coli and demonstrating biological activity (synthesis of 2- oxoglutaramate).
  • the coding sequence thereof in E. coli or another suitable host and determine whether the 2-oxoglutaramate signal metabolite is synthesized at increased levels (see Examples 19-23). Where such an increase is demonstrated, the coding sequence may then be introduced into both homologous plant hosts and heterologous plant hosts, and growth characteristics evaluated. Any assay that is capable of detecting 2-oxoglutaramate with specificity may be used for this purpose, including without limitation the NMR and HPLC assays described in Example 2, infra. In addition, assays which measure GPT activity directly may be employed.
  • Any plant GPT with 2-oxoglutaramate synthesis activity may be used to transform plant cells in order to generate transgenic plants of the invention.
  • GPT transgenes expressed in a homologous plant would be expected to result in the desired enhanced-growth characteristics as well (i.e., rice glutamine transaminase over-expressed in transgenic rice plants), although it is possible that regulation within a homologous cell may attenuate the expression of the transgene in some fashion that may not be operable in a heterologous cell.
  • a 3' transcription termination sequence is incorporated downstream of the transgene in order to direct the termination of transcription and permit correct polyadenylation of the mRNA transcript.
  • Suitable transcription terminators are those which are known to function in plants, including without limitation, the nopaline synthase (NOS) and octopine synthase (OCS) genes of Agrobacterium tumefaciens, the T7 transcript from the octopine synthase gene, the 3' end of the protease inhibitor I or Il genes from potato or tomato, the CaMV 35S terminator, the tml terminator and the pea rbcS E9 terminator.
  • a gene's native transcription terminator may be used. In specific embodiments, described by way of the Examples, infra, the nopaline synthase transcription terminator is employed.
  • Selectable markers are typically included in transgene expression vectors in order to provide a means for selecting transformants. While various types of markers are available, various negative selection markers are typically utilized, including those which confer resistance to a selection agent that inhibits or kills untransformed cells, such as genes which impart resistance to an antibiotic (such as kanamycin, gentamycin, anamycin, hygromycin and hygromycinB) or resistance to a herbicide (such as sulfonylurea, gulfosinate, phosphinothricin and glyphosate). Screenable markers include, for example, genes encoding ⁇ -glucuronidase (Jefferson, 1987, Plant MoI. Biol.
  • transgene expression vector constructs of the invention into a plant or plant cell are well known to those skilled in the art, and any capable of transforming the target plant or plant cell may be utilized.
  • Agrobacterium-med ⁇ ated transformation is perhaps the most common method utilized in plant transgenics, and protocols for Agrobacterium-med ⁇ ated transformation of a large number of plants are extensively described in the literature (see, for example, Agrobacterium Protocols, Wan, ed., Humana Press, 2 nd edition, 2006).
  • Agrobacterium tumefaciens is a Gram negative soil bacteria that causes tumors (Crown Gall disease) in a great many dicot species, via the insertion of a small segment of tumor-inducing DNA ( "T-DNA", 'transfer DNA') into the plant cell, which is incorporated at a semi-random location into the plant genome, and which eventually may become stably incorporated there.
  • T-DNA tumor-inducing DNA
  • Directly repeated DNA sequences, called T- DNA borders define the left and the right ends of the T-DNA.
  • the T-DNA can be physically separated from the remainder of the Ti-plasmid, creating a 'binary vector' system.
  • Agrobacterium transformation may be used for stably transforming dicots, monocots, and cells thereof (Rogers et al., 1986, Methods Enzymol., 118: 627-641 ; Hernalsteen et al., 1984, EMBO J., 3: 3039-3041 ; Hoykass-Van Slogteren et al., 1984, Nature, 311: 763-764; Grimsley et al., 1987, Nature 325: 167-1679; Boulton et al., 1989, Plant MoI. Biol. 12: 31-40; Gould et al., 1991 , Plant Physiol. 95: 426-434).
  • Agrobacterium-med ⁇ ate ⁇ i transformation may be used to obtain transient expression of a transgene via the transcriptional competency of unincorporated transgene construct molecules (Helens et al., 2005, Plant Methods 1 :13).
  • Agrobacterium transformation vectors and methods have been described (Karimi et al., 2002, Trends Plant Sci. 7(5): 193-5), and many such vectors may be obtained commercially (for example, Invitrogen, Carlsbad, CA).
  • a growing number of "open-source" Agrobacterium transformation vectors are available
  • pCambia vectors for example, pCambia vectors; Cambia, Canberra, Australia. See, also, subsection herein on TRANSGENE CONSTRUCTS, supra.
  • a pMON316-based vector was used in the leaf disc transformation system of Horsch et. al. (Horsch et al.,1995, Science 227:1229-1231 ) to generate growth enhanced transgenic tobacco and tomato plants.
  • Biolistic transformation involves injecting millions of DNA-coated metal particles into target cells or tissues using a biolistic device (or "gene gun"), several kinds of which are available commercially. Once inside the cell, the DNA elutes off the particles and a portion may be stably incorporated into one or more of the cell's chromosomes (for review, see Kikkert et al., 2005, Stable Transformation of Plant Cells by Particle Bombardment/Biolistics, in: Methods in Molecular Biology, vol. 286: Transgenic Plants: Methods and Protocols, Ed. L. Pena, Humana Press Inc., Totowa, NJ).
  • Electroporation is a technique that utilizes short, high-intensity electric fields to permeabilize reversibly the lipid bilayers of cell membranes (see, for example, Fisk and Dandekar, 2005, Introduction and Expression of Transgenes in Plant Protoplasts, in: Methods in Molecular Biology, vol. 286: Transgenic Plants: Methods and Protocols, Ed. L. Pena, Humana Press Inc., Totowa, NJ, pp. 79-90; Fromm et al.,1987, Electroporation of DNA and RNA into plant protoplasts, in Methods in Enzymology, Vol. 153, Wu and Grossman, eds., Academic Press, London, UK, pp.
  • the technique operates by creating aqueous pores in the cell membrane, which are of sufficiently large size to allow DNA molecules (and other macromolecules) to enter the cell, where the transgene expression construct (as T- DNA) may be stably incorporated into plant genomic DNA 1 leading to the generation of transformed cells that can subsequently be regenerated into transgenic plants.
  • Newer transformation methods include so-called "floral dip” methods, which offer the promise of simplicity, without requiring plant tissue culture, as is the case with all other commonly used transformation methodologies (Bent et al., 2006, Arabidopsis thaliana Floral Dip Transformation Method, Methods MoI Biol, vol. 343: Agrobacteri ⁇ m Protocols, 2Ie, volume 1 ; Ed., Wang, Humana Press Inc., Totowa, NJ, pp. 87-103; Clough and Bent, 1998, Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana, Plant J. 16: 735- 743).
  • floral dip transformation is accomplished by dipping or spraying flowering plants in with an appropriate strain of Agrobacterium tumefaciens. Seeds collected from these T 0 plants are then germinated under selection to identify transgenic Ti individuals.
  • Example 16 demonstrated floral dip inoculation of Arabidopsis to generate transgenic Arabidopsis plants.
  • transformation methods include those in which the developing seeds or seedlings of plants are transformed using vectors such as Agrobacterium vectors.
  • vectors such as Agrobacterium vectors.
  • such vectors may be used to transform developing seeds by injecting a suspension or mixture of the vector (i.e., Agrobacteria) directly into the seed cavity of developing pods (Wang and Waterhouse, 1997, Plant MoI. Biol. Reporter 15: 209- 215). Seedlings may be transformed as described in Yasseem, 2009, Plant MoI. Biol. Reporter 27: 20-28. Germinating seeds may be transformed as described in Chee et al., 1989, Plant Pysiol. 91 : 1212-1218.
  • Intra-fruit methods in which the vector is injected into fruit or developing fruit, may be also be used.
  • Still other transformation methods include those in which the flower structure is targeted for vector inoculation, such as the flower inoculation methods.
  • transgenes are most commonly inserted into the nuclear DNA of plant cells
  • trangenes may also be inserted into plastidic DNA (i.e., into the plastome of the chloroplast).
  • plastids do not occur in the pollen cells, and therefore transgenic DNA incorporated within a plastome will not be passed on through propagation, thereby restricting the trait from migrating to wild type plants.
  • Plastid transformation is more complex than cell nucleus transformation, due to the presence of many thousands of plastomes per cell (as high as 10,000).
  • Transplastomic lines are genetically stable only if all plastid copies are modified in the same way, i.e. uniformly. This is typically achieved through repeated regeneration under certain selection conditions to eliminate untransformed plastids, by segregating transplastomic and untransformed plastids, resulting in the selection of homoplasmic cells carrying the transgene construct and the selectable marker stably integrated therein. Plastid transformation has been successfully performed in various plant species, including tobacco, potatoes, oilseed rape, rice and Arabidopsis.
  • the transgene expression cassette is inserted into flanking sequences from the plastome. Using homologous recombination, the transgene expression cassette becomes integrated into the plastome via a natural recombination process.
  • the basic DNA delivery techniques for plastid transformation include particle bombardment of leaves or polyethylene glycol- mediated DNA transformation of protoplasts.
  • Transplastomic plants carrying transgenes in the plastome may be expressed at very high levels, due to the fact that many plastids (i.e., chloroplasts) per cell, each carrying many copies of the plastome.
  • transplastomic events carry the transgene on every copy of the plastid genetic material. This can result in the transgene expression levels representing as much as half of the total protein produced in the cell.
  • Plastid transformation methods and vector systems are described, for example, in recent US Patent Nos. 7,528,292; 7,371 ,923; 7,235,711 ; and, 7,193,131. See also US Patent Nos. 6,680,426 and 6,642,053.
  • the foregoing plant transformation methodologies may be used to introduce transgenes into a number of different plant cells and tissues, including without limitation, whole plants, tissue and organ explants including chloroplasts, flowering tissues and cells, protoplasts, meristem cells, callus, immature embryos and gametic cells such as microspores, pollen, sperm and egg cells, tissue cultured cells of any of the foregoing, any other cells from which a fertile regenerated transgenic plant may be generated.
  • Callus is initiated from tissue sources including, but not limited to, immature embryos, seedling apical meristems, microspores and the like. Cells capable of proliferating as callus are also recipient cells for genetic transformation.
  • transformed plantlets derived from transformed cells or tissues are cultured in a root-permissive growth medium supplemented with the selective agent used in the transformation strategy (i.e., an antibiotic such as kanamycin).
  • a selective agent used in the transformation strategy i.e., an antibiotic such as kanamycin.
  • transformed plantlets are then transferred to soil and allowed to grow to maturity.
  • the mature plants are preferably selfed (self-fertilized), and the resultant seeds harvested and used to grow subsequent generations. Examples 3 - 6 describe the regeneration of transgenic tobacco and tomato plants.
  • transgenic plants may be used to generate subsequent generations (e.g., T-i, T 2 , etc.) by selfing of primary or secondary transformants, or by sexual crossing of primary or secondary transformants with other plants (transformed or untransformed).
  • generations e.g., T-i, T 2 , etc.
  • Transgenic plants may be selected, screened and characterized using standard methodologies.
  • the preferred transgenic plants of the invention will exhibit one or more phenotypic characteristics indicative of enhanced growth and/or other desirable agronomic properties.
  • Transgenic plants are typically regenerated under selective pressure in order to select transformants prior to creating subsequent transgenic plant generations.
  • the selective pressure used may be employed beyond T 0 generations in order to ensure the presence of the desired transgene expression construct or cassette.
  • T 0 transformed plant cells, calli, tissues or plants may be identified and isolated by selecting or screening for the genetic composition of and/or the phenotypic characteristics encoded by marker genes contained in the transgene expression construct used for the transformation.
  • selection may be conducted by growing potentially-transformed plants, tissues or cells in a growth medium containing a growth-repressive amount of antibiotic or herbicide to which the transforming genetic construct can impart resistance. Further, the transformed plant cells, tissues and plants can be identified by screening for the activity of marker genes (i.e., ⁇ -glucuronidase) which may be present in the transgene expression construct.
  • marker genes i.e., ⁇ -glucuronidase
  • RNA transcription methods may be employed for identifying plants containing the desired transgene expression construct, as is well known.
  • PCR nucleic acid amplification methods
  • RT-PCR reverse transcriptase PCR
  • Western blotting Western blotting
  • immunoprecipitation enzyme immunoassay, and the like may be used for identifying the protein encoded and expressed by the transgene.
  • expression levels of genes, proteins and/or metabolic compounds that are know to be modulated by transgene expression in the target plant may be used to identify transformants.
  • increased levels of the signal metabolite 2-oxoglutaramate may be used to screen for desirable transformants.
  • the transformed plants of the invention may be screened for enhanced growth and/or other desirable agronomic characteristics. Indeed, some degree of phenotypic screening is generally desirable in order to identify transformed lines with the fastest growth rates, the highest seed yields, etc., particularly when identifying plants for subsequent selfing, cross-breeding and back-crossing.
  • Various parameters may be used for this purpose, including without limitation, growth rates, total fresh weights, dry weights, seed and fruit yields (number, weight), seed and/or seed pod sizes, seed pod yields (e.g., number, weight), leaf sizes, plant sizes, increased flowering, time to flowering, overall protein content (in seeds, fruits, plant tissues), specific protein content (i.e., GS), nitrogen content, free amino acid, and specific metabolic compound levels (i.e., 2-oxoglutaramate).
  • growth rates total fresh weights, dry weights, seed and fruit yields (number, weight), seed and/or seed pod sizes, seed pod yields (e.g., number, weight), leaf sizes, plant sizes, increased flowering, time to flowering, overall protein content (in seeds, fruits, plant tissues), specific protein content (i.e., GS), nitrogen content, free amino acid, and specific metabolic compound levels (i.e., 2-oxoglutaramate).
  • these phenotypic measurements are compared with those obtained from
  • the measurement of the chosen phenotypic characteristic(s) in the target transgenic plant is done in parallel with measurement of the same characteristic(s) in a normal or parental plant.
  • multiple plants are used to establish the phenotypic desirability and/or superiority of the transgenic plant in respect of any particular phenotypic characteristic.
  • initial transformants are selected and then used to generate Ti and subsequent generations by selfing (self-fertilization), until the transgene genotype breeds true (i.e., the plant is homozygous for the transgene).
  • self-fertilization until the transgene genotype breeds true (i.e., the plant is homozygous for the transgene).
  • this is accomplished by screening at each generation for the desired traits and selfing those individuals, often repeatedly (i.e., 3 or 4 generations).
  • Stable transgenic lines may be crossed and back-crossed to create varieties with any number of desired traits, including those with stacked transgenes, multiple copies of a transgene, etc.
  • Various common breeding methods are well know to those skilled in the art (see, e.g., Breeding Methods for Cultivar Development, Wilcox J. ed., American Society of Agronomy, Madison Wis. (1987)).
  • stable transgenic plants may be further modified genetically, by transforming such plants with further transgenes or additional copies of the parental transgene.
  • EXAMPLE 1 ISOLATION OF ARABIDOPSIS GLUAMINE PHENYLPYRUVATE TRANSAMINASE (GPT) GENE: In an attempt to locate a plant enzyme that is directly involved in the synthesis of the signal metabolite 2-oxoglutaramate, applicants hypothesized that the putative plant enzyme might bear some degree of structural relationship to a human protein that had been characterized as being involved in the synthesis of 2-oxoglutaramate. The human protein, glutamine transaminase K (E.C.
  • cysteine conjugate ⁇ -lyase (also referred in the literature as cysteine conjugate ⁇ -lyase, kyneurenine aminotransferase, glutamine phenylpyruvate transaminase, and other names), had been shown to be involved in processing of cysteine conjugates of halogenated xenobiotics (Perry et al., 1995, FEBS Letters 360:277-280). Rather than having an activity involved in nitrogen assimilation, however, human cysteine conjugate ⁇ -lyase has a detoxifying activity in humans, and in animals(Cooper and Meister, 1977, supra). Nevertheless, the potential involvement of this protein in the synthesis of 2-oxoglutaramate was of interest.
  • a 1.3 kb cDNA was isolated and sequenced, and found to encode a full length protein of 440 amino acids in length, including a putative chloroplast signal sequence.
  • the cDNA was expressed in E. coli, purified, and assayed for its ability to synthesize 2- oxoglutaramate using a standard method.
  • the resulting purified protein was added to a reaction mixture containing 150 mM Tris-HCI, pH 8.5, 1 mM beta mercaptoethanol, 200 mM glutamine, 100 mM glyoxylate and 200 ⁇ M pyridoxal 5'-phosphate.
  • the reaction mixture without added test protein was used as a control.
  • Test and control reaction mixtures were incubated at 37°C for 20 hours, and then clarified by centrifugation to remove precipitated material. Supernatants were tested for the presence and amount of 2- oxoglutaramate using 13 C NMR with authentic chemically synthesized 2- oxoglutaramate as a reference.
  • the products of the reaction are 2-oxoglutaramate and glycine, while the substrates (glutamine and glyoxylate) diminish in abundance.
  • the cyclic 2-oxoglutaramate gives rise to a distinctive signal allowing it to be readily distinguished from the open chain glutamine precursor.
  • An alternative assay for GPT activity uses HPLC to determine 2-oxoglutaramate production, following a modification of Calderon et al., 1985, J Bacteriol 161(2): 807- 809. Briefly, a modified extraction buffer consisting of 25 mM Tris-HCI pH 8.5, 1 mM EDTA, 20 ⁇ M FAD, 10 mM Cysteine, and -1.5% (v/v) Mercaptoethanol. Tissue samples from the test material (i.e., plant tissue) are added to the extraction buffer at approximately a 1/3 ratio (w/v), incubated for 30 minutes at 37°C, and stopped with 200 ⁇ l of 20% TCA.
  • the assay mixture is centrifuged and the supernatant used to quantify 2-oxoglutaramate by HPLC, using an ION-300 7.8mm ID X 30 cm L column, with a mobile phase in 0.01 N H 2 SO 4 , a flow rate of approximately 0.2 ml/min, at 40 0 C. Injection volume is approximately 20 ⁇ l, and retention time between about 38 and 39 minutes. Detection is achieved with 210nm UV light.
  • the plant expression vector pMon316-PJU was constructed as follows.
  • the isolated cDNA encoding Arabidopsis GPT (Example 1 ) was cloned into the Clal-Kpnl polylinker site of the pMON316 vector, which places the GPT gene under the control of the constitutive cauliflower mosaic virus (CaMV) 35S promoter and the nopaline synthase (NOS) transcriptional terminator.
  • CaMV constitutive cauliflower mosaic virus
  • NOS nopaline synthase
  • a kanamycin resistance gene was included to provide a selectable marker.
  • pMON-PJU and a control vector pMon316 were transferred to Agrobacterium tumefaciens strain pTiTT37ASE using a standard electroporation method (McCormac et al., 1998, Molecular Biotechnology 9:155-159), followed by plating on LB plates containing the antibiotics spectinomycin (100 micro gm / ml) and kanamycin (50 micro gm / ml). Antibiotic resistant colonies of Agrobacterium were examined by PCR to assure that they contained plasmid.
  • Nicotiana tabacum cv. Xanthi plants were transformed with pMON-PJU transformed Agrobacteria using the leaf disc transformation system of Horsch et. al. (Horsch et al.,1995, Science 227:1229-1231 ). Briefly, sterile leaf disks were inoculated and cultured for 2 days, then transferred to selective MS media containing 100 ⁇ g/ml kanamycin and 500 ⁇ g/ml clafaran. Transformants were confirmed by their ability to form roots in the selective media.
  • GPT Transgenic Tobacco Plants Sterile leaf segments were allowed to develop callus on Murashige & Skoog (M&S) media from which the transformant plantlets emerged. These plantlets were then transferred to the rooting-permissive selection medium (M&S medium with kanamycin as the selection agent). The healthy, and now rooted, transformed tobacco plantlets were then transferred to soil and allowed to grow to maturity and upon flowering the plants were selfed and the resultant seeds were harvested. During the growth stage the plants had been examined for growth phenotype and the CO 2 fixation rate was measured for many of the young transgenic plants. Production of T1 and T2 Generation GPT Transgenic Plants:
  • Seeds harvested form the T 0 generation of the transgenic tobacco plants were germinated on M&S media containing kanamycin (100 mg / L) to enrich for the transgene. At least one fourth of the seeds did not germinate on this media (kanamycin is expected to inhibit germination of the seeds without resistance that would have been produced as a result of normal genetic segregation of the gene) and more than half of the remaining seeds were removed because of demonstrated sensitivity (even mild) to the kanamycin.
  • Ti generation The surviving plants (Ti generation) were thriving and these plants were then selfed to produce seeds for the T2 generation. Seeds from the Ti generation were germinated on MS media supplemented for the transformant lines with kanamycin
  • FIG. 2 a photograph of the GPT transgenic plant compared to a wild type control plant is shown in FIG. 2 (together with GS 1 transgenic tobacco plant). Across all parameters evaluated, the GPT transgenic tobacco plants showed enhanced growth characteristics. In particular, the GPT transgenic plants exhibited a greater thanJ50% increase in the rate of CO 2 fixation, and a greater than two-fold increase in glutamine synthetase activity in leaf tissue, relative to wild type control plants. In addition, the leaf-to-root GS ratio increased by almost three-fold in the transaminase transgenic plants relative to wild type control.
  • Data average of three plants Wild type - Control plants; not regenerated or transformed.
  • PN1 lines were produced by regeneration after transformation using a construct without inserted gene. A control against the processes of regeneration and transformation.
  • PN 9 lines were produced by regeneration after transformation using a construct with the Arabidopsis GPT gene.
  • Transgenic Lycopersicon esc ⁇ lentum plants carrying the Arabidopsis GPT transgene were generated using the vectors and methods described in Example 3. To transgenic tomato plants were generated and grown to maturity. Initial growth characteristic data of the GPT transgenic tomato plants is presented in Table II. The transgenic plants showed significant enhancement of growth rate, flowering, and seed yield in relation to wild type control plants. In addition, the transgenic plants developed multiple main stems, whereas wild type plants developed with a single main stem. A photograph of a GPT transgenic tomato plant compared to a wild type plant is presented in FIG. 3.
  • the putative coding sequence for Barley GPT was isolated and expressed from a transgene construct using an in planta transient expression assay. Biologically active recombinant Barley GPT was produced, and catalyzed the increased synthesis of 2- oxoglutaramate, as confirmed by HPLC.
  • the Barley (Hordeum vulgare) GPT coding sequence was determined and synthesized.
  • the DNA sequence of the Barley GPT coding sequence used in this example is provided in SEQ ID NO: 14, and the encoded GPT protein amino acid sequence is presented in SEQ ID NO: 15.
  • the coding sequence for Barley GPT was inserted into the 1305.1 cambia vector, and transferred to Agrobacterium tumefaciens strain LBA404 using a standard electroporation method (McCormac et al., 1998, Molecular Biotechnology 9:155-159), followed by plating on LB plates containing hygromycin (50 micro gm / ml). Antibiotic resistant colonies of Agrobacterium were selected for analysis.
  • the transient tobacco leaf expression assay consisted of injecting a suspension of transformed Agrobacterium (1.5-2.0 OD 650) into rapidly growing tobacco leaves. Intradermal injections were made in a grid across the leaf surface to assure that a significant amount of the leaf surface would be exposed to the Agrobacterium. The plant was then allowed to grow for 3-5 days when the tissue was extracted as described for all other tissue extractions and the GPT activity measured.
  • GPT activity in the inoculated leaf tissue (1217 nanomoles/gFWt/h) was three-fold the level measured in the control plant leaf tissue (407 nanomoles/gFWt/h), indicating that the Hordeum GPT construct directed the expression of biologically active GPT in a transgenic plant.
  • EXAMPLE 6 ISOLATION AND EXPRESSION OF RECOMBINANT RICE GPT GENE CODING SEQUENCE AND ANALYSIS OF BIOLOGICAL ACTIVITY
  • the putative coding sequence for rice GPT was isolated and expressed in E. coli.
  • Biologically active recombinant rice GPT was produced, and catalyzed the increased synthesis of 2- oxoglutaramate, as confirmed by HPLC.
  • the rice ⁇ Oryza sativa) GPT coding sequence was determined and synthesized, inserted into a PET28 vector, and expressed in E. coli. Briefly, E. coli cells were transformed with the expression vector and transformants grown overnight in LB broth diluted and grown to OD 0.4, expression induced with isopropyl-B-D- thiogalactoside (0.4 micromolar), grown for 3 hr and harvested. A total of 25 X 106 cells were then assayed for biological activity using the NMR assay, below.
  • Untransformed, wild type E. coli cells were assayed as a control.
  • An additional control used E. coli cells transformed with an empty vector.
  • the DNA sequence of the rice GPT coding sequence used in this example is provided in SEQ ID NO: 10, and the encoded GPT protein amino acid sequence is presented in SEQ ID NO: 11.
  • HPLC was used to determine 2-oxoglutaramate production in GPT-overexpressing E. coli cells, following a modification of Calderon et al., 1985, J Bacteriol 161(2): 807- 809. Briefly, a modified extraction buffer consisting of 25 mM Tris-HCI pH 8.5, 1 mM EDTA, 20 ⁇ M Pyridoxal phosphate, 10 mM Cysteine, and -1.5% (v/v) Mercaptoethanol was used. Samples (lysate from E. coli cells, 25 X 106 cells) were added to the extraction buffer at approximately a 1/3 ratio (w/v), incubated for 30 minutes at 37°C, and stopped with 200 ⁇ l of 20% TCA.
  • the assay mixture is centrifuged and the supernatant used to quantify 2-oxoglutaramate by HPLC, using an ION-300 7.8mm ID X 30 cm L column, with a mobile phase in 0.01 N H 2 SO 4 , a flow rate of approximately 0.2 ml/min, at 40°C. Injection volume is approximately 20 ⁇ l, and retention time between about 38 and 39 minutes. Detection is achieved with 210nm UV light. NMR analysis comparison with authentic 2-oxoglutaramate was used to establish that the Arabidopisis full length sequence expresses a GPT with 2-oxoglutaramate synthesis activity.
  • authentic 2-oxoglutarmate made by chemical synthesis to validate the HPLC assay, above, by confirming that the product of the assay (molecule synthesized in response to the expressed GPT) and the authentic 2-oxoglutaramate elute at the same retention time. In addition, when mixed together the assay product and the authentic compound elute as a single peak. Furthermore, the validation of the HPLC assay also included monitoring the disappearance of the substrate glutamine and showing that there was a 1 :1 molar stoechiometry between glutamine consumed to 2-oxoglutaramte produced. The assay procedure always included two controls, one without the enzyme added and one without the glutamine added. The first shows that the production of the 2- oxoglutaramate was dependent upon having the enzyme present, and the second shows that the production of the 2-oxoglutaramate was dependent upon the substrate glutamine.
  • EXAMPLE 7 ISOLATION AND EXPRESSION OF RECOMBINANT SOYBEAN GPT GENE CODING SEQUENCE AND ANALYSIS OF BIOLOGICAL ACTIVITY
  • soybean GPT putative coding sequence for soybean GPT was isolated and expressed in E. coli.
  • Biologically active recombinant soybean GPT was produced, and catalyzed the increased synthesis of 2- oxoglutaramate, as confirmed by HPLC.
  • Soybean GPT coding sequence and expression in E. coli Soybean GPT coding sequence and expression in E. coli:
  • the soybean (Glycine max) GPT coding sequence was determined and synthesized, inserted into a PET28 vector, and expressed in E. coli. Briefly, E. coli cells were transformed with the expression vector and transformants grown overnight in LB broth diluted and grown to OD 0.4, expression induced with isopropyl-B-D- thiogalactoside (0.4 micromolar), grown for 3 hr and harvested. A total of 25 X 10 6 cells were then assayed for biological activity using the HPLC assay, below. Untransformed, wild type E. coli cells were assayed as a control. An additional control used E coli cells transformed with an empty vector.
  • the DNA sequence of the soybean GPT coding sequence used in this example is provided in SEQ ID NO: 12, and the encoded GPT protein amino acid sequence is presented in SEQ ID NO: 13.
  • HPLC was used to determine 2-oxoglutaramate production in GPT-overexpressing E. coli cells, as described in Example 6, supra.
  • soybean GPT coding sequence of SEQ ID NO: 12 resulted in the over-expression of recombinant GPT protein having 2-oxoglutaramate synthesis- catalyzing bioactivity. Specifically, 31.9 nanomoles of 2-oxoglutaramate activity was observed in the E. coli cells overexpressing the recombinant soybean GPT, compared to only 0.02 nanomoles of 2-oxoglutaramate activity in control E. coli cells, a nearly 1 ,600-fold activity level increase over control.
  • EXAMPLE 8 ISOLATION AND EXPRESSION OF RECOMBINANT ZEBRA FISH GPT GENE CODING SEQUENCE AND ANALYSIS OF BIOLOGICAL ACTIVITY
  • the putative coding sequence for Zebra fish GPT was isolated and expressed in E. coli.
  • Biologically active recombinant Zebra fish GPT was produced, and catalyzed the increased synthesis of 2- oxoglutaramate, as confirmed by HPLC.
  • the Zebra fish (Danio rerio) GPT coding sequence was determined and synthesized, inserted into a PET28 vector, and expressed in E. coli. Briefly, E. coli cells were transformed with the expression vector and transformants grown overnight in LB broth diluted and grown to OD 0.4, expression induced with isopropyl-B-D- thiogalactoside (0.4 micromolar), grown for 3 hr and harvested. A total of 25 X 10 6 cells were then assayed for biological activity using the HPLC assay, below. Untransformed, wild type E. coli cells were assayed as a control. An additional control used E coli cells transformed with an empty vector.
  • the DNA sequence of the Zebra fish GPT coding sequence used in this example is provided in SEQ ID NO: 16, and the encoded GPT protein amino acid sequence is presented in SEQ ID NO: 17.
  • HPLC was used to determine 2-oxoglutaramate production in GPT-overexpressing E. coli cells, as described in Example 6, supra.
  • the DNA coding sequence of a truncation of the Arabidopsis thaliana GPT coding sequence of SEQ ID NO: 1 was designed, synthesized, inserted into a PET28 vector, and expressed in E. coli.
  • the DNA sequence of the truncated Arabidopsis GPT coding sequence used in this example is provided in SEQ ID NO: 20 (-45 AA construct), and the corresponding truncated GPT protein amino acid sequence is provided in SEQ ID NO: 21. Briefly, E. coli cells were transformed with the expression vector and transformants grown overnight in LB broth diluted and grown to OD 0.4, expression induced with isopropyl-B-D-thiogalactoside (0.4 micromolar), grown for 3 hr and harvested.
  • a total of 25 X 10 6 cells were then assayed for biological activity using HPLC as described in Example 6. Untransformed, wild type E. coli cells were assayed as a control. An additional control used E coli cells transformed with an empty vector. Expression of the truncated -45 Arabidopsis GPT coding sequence of SEQ ID NO: 20 resulted in the over-expression of biologically active recombinant GPT protein (2- oxoglutaramate synthesis-catalyzing bioactivity). Specifically, 16.1 nanomoles of 2- oxoglutaramate activity was observed in the E.
  • the full length Arabidopsis gene coding sequence expressed in the same E. coli assay generated 2.8 nanomoles of 2-oxoglutaramate activity, or roughly less than one-fifth the activity observed from the truncated recombinant GPT protein.
  • EXAMPLE 10 METHOD FOR GENERATING TRANSGENIC MAIZE PLANTS CARRYING HORDEUM GPT AND GS1 TRANSGENES:
  • This example provides a method for generating transgenic maize plants expressing GPT and GS 1 transgenes.
  • Maize (Zea mays, hybrid line Hi-Il) type Il callus is biolistically transformed with an expression cassette comprising the hordeum glutamine synthetase (GS1) coding sequence of SEQ ID NO: 40 under the control of the rice RuBisCo small subunit promoter of SEQ ID NO: 39 (expression casette of
  • An expression cassette comprising the hordeum GS 1 and GPT genes, under the control of the rice RuBisCo small subunit and corn ubiquitin promoters, respectively, is cloned into the plasmid pAHC25 (Christensen and Quail, 1996, Transgenic Research 5:213-218) modified to include a bar gene conferring resistance to bialophos, or a similar vector, in order to generate the transgene expression vector.
  • the transgene expression vector is introduced into immature zygotic embryo source callus of parent maize hybrid line Hi-Il (A188xB73 origin) (Armstrong et al., 1991 , Maize Genetics Coop Newsletter 65:92-93) using particle bombardment, essentially as described (Frame et al., 2000, In Vitro Cell. Dev. Biol-Plant 36:21-29; this method was developed by and is routinely used at the Iowa State University Center for Plant Transformation).
  • immature zygotic embryo source callus is prepared for transformation by serial culturing on a callus-initiating medium (N6E, Songstad et al., 1996, In vitro Cell Dev. Biol.- Plant 32:179-183). Washed gold particles are coated with the plasmid construct and used to bombard the callus with a PDS 1000/He biolistic gun as described (Sanford et al., 1993, Methods in Enzymology 217: 483- 509). After 7-10 days on initiation medium, the callus is then transferred to selection medium containing bialophos (N6S, Songstad et al., 1996, supra) and allowed to grow.
  • callus pieces are transferred to a regeneration medium (Armstrong and Green, 1985, Planta 164:207- 214) containing bialophos and allowed to grow for several weeks. Thereafter, the resulting plantlets are transferred to regeneration medium without the selection agent, and cultivated.
  • a regeneration medium Armstrong and Green, 1985, Planta 164:207- 2144 containing bialophos and allowed to grow for several weeks. Thereafter, the resulting plantlets are transferred to regeneration medium without the selection agent, and cultivated.
  • Transgenic corn plants may be grown and evaluated through maturity, and seeds harvested for use in generating subsequent generations of an event. Various phenotypic characteristics may be observed in T 0 events, as well as in Ti and subsequent generations, and used to select seed sources for the development of subsequent generations. High performing lines may be selfed to achieve trait homozygosity and/or crossed.
  • EXAMPLE 11 METHOD FOR GENERATING TRANSGENIC RICE PLANTS CARRYING HORDEUM GPT AND GS1 TRANSGENES:
  • This example provides a method for generating transgenic rice plants expressing GPT and GS1 transgenes.
  • Rice Oryza sativa, Japonica cultivar Nipponbare
  • type Il calus is transformed with the hordeum glutamine synthetase (GS1 ) coding sequence of SEQ ID NO: 40 under the control of the rice RuBisCo small subunit promoter of SEQ ID NO: 39 (expression cassette of SEQ ID NO: 42), and the hordeum GPT coding sequence of SEQ ID NO: 45 under the control of the corn ubiquitin (Ubil) promoter of SEQ ID NO: 44. Transformation is achieved by Agrobacterium-mediated transformation.
  • Base vector pTF101.1 is a derivative of the pPZP binary vector (Hajdukiewicz et al 1994, Plant MoI. Biol.
  • the plant selectable marker gene cassette includes the phosphinothricin acetyl transferase
  • bar gene from Streptomyces hygroscopicus that confers resistance to the herbicides glufosinate and bialophos.
  • the soybean vegetative storage protein terminator (Mason et al., 1993) follows the 3" end of the bar gene.
  • YEP Medium 5 g/L yeast extract, 10 g/L peptone, 5 g/L NaCI 2 , 15 g/L Bacto-agar. pH to 6.8 with NaOH. After autoclaving, the appropriate antibiotics are added to the medium when it has cooled to 50 0 C.
  • Infection Medium N6 salts and vitamins (Chu et al., 1975, Sci. Sinica 18: 659-668), 1.5 mg/L 2,4-dichlorophenoxyacetic acid (2,4-D), 0.7 g/L L-proline, 68.4 g/L sucrose, and 36 g/L glucose (pH 5.2). This medium is filter-sterilized and stored at 4°C. Acetosyringone (AS, 100 ⁇ M) is added just prior to use (prepared from 100 ⁇ M stocks of filter-sterilized AS, dissolved in DMSO to 20OmM then diluted 1:1 with water).
  • AS Acetosyringone
  • N6 salts and vitamins 300 mg/L casamino acids, 2.8 g/L L- proline, 30 g/L sucrose, and 4 g/L gelrite (pH 5.8). Filter sterilized N6 Vitamins and 2 mg/L 2,4-D, are added to this medium after autoclaving.
  • Co-cultivation Medium make fresh: N6 salts and vitamins, 300 mg/L casamino acids, 30 g/L sucrose, 10 g/L glucose , and 4 g/L gelrite (pH 5.8). Filter sterilized N6 vitamins, acetosyringone (AS) 100 ⁇ M and 2 mg/L 2,4-D are added to this medium after autoclaving.
  • AS acetosyringone
  • Selection Medium N6 salts and vitamins, 300 mg/L casamino acids, 2.8 g/L L-proline, 30 g/L sucrose, and 4 g/L gelrite (pH 5.8). Filter sterilized N6 vitamins, 2 mg/L 2,4-D, 2 mg/L Bialaphos (Shinyo Sangyo, Japan) and 500 mg/L carbenicillin are added to this medium after autoclaving.
  • Regeneration Medium I MS salts and vitamins (Murashige and Skoog, 1962), 2 g/L casamino acids, 30 g/L sucrose, 30 g/L sorbitol, and 4 g/L gelrite (pH 5.8).
  • MS vitamins 100 mg/L cefotaxime, 100 mg/L vancomycin, 0.02 mg/L NAA (naphthaleneacetic acid), 2 mg/L kinetin (Toki, 1997, supra) and 2 mg/L Bialaphos are added to this medium after autoclaving.
  • Regeneration Medium II MS Salts and vitamins, 100 mg/L myo-inositol, 30 g/L sucrose, 3 g/L gelrite, (pH 5.8).
  • Japonica rice cultivar Nipponbare is transformed with Agrobacterium tumefaciens strain EHA101 (Hood et al., 1986, J. Bacteriol. 168:1291-1301), transformed with the pTF101.1 transgene expression vector carrying the hordeum GS1 + GPT expression cassette.
  • the vector system pTF101.1 in EHA101 is maintained on YEP medium (An et al., 1988) containing 100 mg/L spectinomycin (for pTF101.1 ) and 50 mg/L kanamycin (for EHA101).
  • callus tissue derived from the mature rice embryo is used as the starting material for transformation.
  • Callus induction, co-cultivation, selection and regeneration I media are based on those of Hiei et al., 1994, The Plant Journal 6 (2):271-282.
  • calli are induced as follows. First, 15-20 rice seeds are dehusked and rinsed in 10 ml of 70% Ethanol (50 ml conical tube) by vigorously shaking the tube for one minute, followed by rinsing once with sterile water. Then, 10 ml of 50% commercial bleach (5.25 % hypochlorite) is added and placed on a shaker for 30 minutes (low setting). The bleach solution is then poured-off and the seeds rinsed five times with ⁇ 10ml of sterilized water each time. With a small portion of the final rinse, the seeds are poured onto sterilized filter paper (in a sterile petri plate) and then allowed to dry.
  • 70% Ethanol 50 ml conical tube
  • sterile forceps several (i.e., 5) seeds are transferred to the surface of individual sterile petri plates containing callus induction medium. The plates are wrapped with vent tape and incubated in the light (16:8 photoperiod) at 29°C. Seeds are observed every few days and those showing signs of contamination are discarded.
  • the selection medium uses modifications from Toki (Toki, 1997, Plant Molecular Biology Reporter 15:16-21) whereby bialophos (2 mg/L) is employed for plant selection and carbenicillin (500 mg/L) for counter selection against Agrobacterium.
  • Regeneration Il medium is as described (Armstrong and Green, 1985, Planta 164:207-214).
  • Agrobacterium culture is grown (i.e., for 3 days at 19°C, or 2 days at 28°C) on YEP medium amended with spectinomycin (100 mg/L) and kanamycin (50 mg/L).
  • An aliquot of the culture is then suspended in ⁇ 15 ml of liquid infection medium supplemented with 100 ⁇ M AS in a 50 ml conical tube (no pre-induction).
  • rice calli are first placed into bacteria-free infection medium + AS (50 ml conical). This pre-wash is removed and replaced with 10 ml of the prepared Agrobacterium suspension (OD550 ⁇ 0.1). Then, the conical is fastened onto a vortex shaker (low setting) for two minutes. After infection, calli are poured out of the conical onto a stack of sterile filter paper in a 100 x 15 petri dish to blot dry. Then, they are transferred off the filter paper and onto the surface of co-cultivation medium with sterile forceps. Co-cultivation plates are wrapped with vent tape and incubated in the dark at 25 0 C for three days.
  • the calli are washed five times with 5 ml of the liquid infection medium (no AS) supplemented with carbenicillin (500mg/L) and vancomycin (100mg/L). Calli are blotted dry on sterile filter paper as before. Individual callus pieces are transferred off the paper and onto selection medium containing 2 mg/L bialaphos. Selection plates are wrapped with parafilm and placed in the light at 29°C. For selection of stable transformation events, plant tissue is cultured onto fresh selection medium every two weeks. This should be done with the aid of a microscope to look for any evidence of Agrobacterium overgrowth. If overgrowth is noted, the affected calli should be avoided (contaminated calli should not be transferred).
  • the liquid infection medium no AS
  • carbenicillin 500mg/L
  • vancomycin 100mg/L
  • Calli are blotted dry on sterile filter paper as before. Individual callus pieces are transferred off the paper and onto selection medium containing 2 mg/L bialaphos. Selection plates are wrapped with parafilm and
  • the remaining tissue is then carefully transferred, preferably using newly sterilized forceps for each calli.
  • Putative clones begin to appear after six to eight weeks on selection.
  • a clone is recognized as white, actively growing callus and is distinguishable from the brown, unhealthy non-transformed tissue.
  • Individual transgenic events are identified and the white, actively growing tissue is transferred to individual plates in order to produce enough tissue to take to regeneration.
  • Regeneration of transgenic plants is accomplished by selecting new lobes of growth from the callus tissue and transferring them onto Regeneration Medium I (light, 25°C). After two to three weeks, the maturing tissue is transferred to Regeneration Medium Il for germination (light, 25 C C).
  • the plantlets may be transferred (on an individual basis, typically 7-14 days after germination begins) to soilless mix using sterile conditions.
  • Transgenic rice plants may be grown and evaluated through maturity, and seeds harvested for use in generating subsequent generations of an event.
  • Various phenotypic characteristics may be observed in T 0 events, as well as in Ti and subsequent generations, and used to select seed sources for the development of subsequent generations.
  • High performing lines may be selfed to achieve trait homozygosity and/or crossed.
  • EXAMPLE 12 METHOD FOR GENERATING TRANSGENIC SUGARCANE PLANTS CARRYING HORDEUM GPT AND GS1 TRANSGENES:
  • This example provides a method for generating transgenic sugarcane plants expressing GPT and GS1 transgenes.
  • Sugarcane (Saccharum spp L) is biolistically transformed with an expression cassette comprising the hordeum glutamine synthetase (GS1) coding sequence of SEQ ID NO: 40 under the control of the rice RuBisCo small subunit promoter of SEQ ID NO: 39 (expression cassette of SEQ ID NO: 42), and the hordeum GPT coding sequence of SEQ ID NO: 45 under the control of the corn ubiquitin (Ubil) promoter of SEQ ID NO: 44. Transformation of sugarcane callus is achieved by particle bombardment.
  • An expression cassette comprising the hordeum GS1 and GPT genes, under the control of the rice RuBisCo small subunit and corn ubiquitin promoters, respectively, are cloned into a small plasmid well established for sugarcane expression, such as pAHC20 (Thomson et al., 1987, EMBO J. 6:2519-2523), using standard molecular cloning methodologies, to generate the transgene expression vector.
  • the plasmid used contains a selectable marker against either the phospinothricin family of herbicides or the antibiotics geneticin or kanamycin, each of which have been shown effective (Ingelbrecht et al., 1999, Plant Physiology 119:1187-1197; Gallo-Maegher & Irvine, 1996, Crop Science 36:1367-1374).
  • the plasmid containing the expression cassette encoding the hordeum GS1 and GPT coding sequences is introduced into embryogenic callus prepared for transformation by the basic method of Gallo-Maegher and Irvine (Gallo-Maegher and Irvine, 1996, supra) and Ingelbrecht et al. (Ingelbrecht et al., 1999, supra) with the improved stimulation of shoot regeneration with thidiazuron (Gallo-Maegher et al., 2000, In vitro Cell Dev. Biol. - Plant 36:37-40).
  • This particle bombardment method is effective in transforming sugarcane (see, for example, Gilbert et al., 2005, Crop Science 45:2060-2067; and see the foregoing references).
  • Regenerable sugarcane varieties such as the commercial varieties CP65-357 and CP72-1210, may be used to generate transgene events.
  • the resistant calli are transferred to shoot-induction medium containing the selection agent and sub-cultured every two weeks for approximately 12 weeks, at which time the shoots are transferred to Magenta boxes containing rooting medium with selection agent. The shoots are maintained on this medium for approximately 8 weeks, at which time those with good root development are transferred to potting mix and the adapted to atmospheric growth.
  • Transgenic sugarcane plants may be grown and evaluated through maturity, and seeds harvested for use in generating subsequent generations of an event.
  • Various phenotypic characteristics may be observed in T 0 events, as well as in Ti and subsequent generations, and used to select seed sources for the development of subsequent generations.
  • High performing lines may be selfed to achieve trait homozygosity and/or crossed.
  • EXAMPLE 13 METHOD FOR GENERATING TRANSGENIC WHEAT PLANTS CARRYING HORDEUM GPT AND GS1 TRANSGENES:
  • This example provides a method for generating transgenic wheat plants expressing GPT and GS1 transgenes.
  • Wheat (Tritic ⁇ m spp.) is biolistically transformed with an expression cassette comprising the hordeum glutamine synthetase (GS1 ) coding sequence of SEQ ID NO: 40 under the control of the rice RuBisCo small subunit promoter of SEQ ID NO: 39 (expression cassette of SEQ ID NNO: 42), and the hordeum GPT coding sequence of SEQ ID NO: 45 under the control of the corn ubiquitin (Ubil) promoter of SEQ ID NO: 44. Transformation of wheat callus is achieved by particle bombardment.
  • An expression cassette comprising the hordeum GS 1 and GPT genes, under the control of the rice RuBisCo small subunit and corn (maize) ubiquitin promoters, respectively, are cloned into a plasmid such as pAHC17, which contains the bar gene to provide the desired resistance to the phosphinothricin- class of herbicides for selection of transformants, using standard molecular cloning methodologies, to generate the transgene expression vector.
  • Bombarded embryos are cultured without selection for 1-3 weeks in the dark on MS media before transferring them to shoot induction medium (MS media plus hormones and selection agent bialophos (1 ,1.5, 2, 3 mg/L) for 2-8 weeks with subculturing weekly (Blechl et al., 2007, J Cereal Science 45:172-183).
  • Shoots that formed are transferred to rooting medium also containing the selection agent (bialophos 3 mg/L) (Weeks et al., 1993, supra).
  • Well-rooted plantlets are transferred to potting media and adapted to atmospheric growth conditions.
  • Transgenic wheat plants may be grown and evaluated through maturity, and seeds harvested for use in generating subsequent generations of an event. Various phenotypic characteristics may be observed in T 0 events, as well as in Ti and subsequent generations, and used to select seed sources for the development of subsequent generations. High performing lines may be selfed to achieve trait homozygosity and/or crossed.
  • EXAMPLE 14 METHOD FOR GENERATING TRANSGENIC SORGHUM PLANTS CARRYING HORDEUM GPT AND GS1 TRANSGENES:
  • This example provides a method for generating transgenic sorghum plants expressing GPT and GS1 transgenes.
  • Sorghum (Sorghum spp L) is transformed with Agrobacterium carrying an expression cassette encoding the hordeum glutamine synthetase (GS1) coding sequence of SEQ ID NO: 40 under the control of the rice RuBisCo subunit promoter of SEQ ID NO: 39 (expression cassette of SEQ ID NO: 42), and the hordeum GPT coding sequence of SEQ ID NO: 45 under the control of the corn ubiquitin (Ubil) promoter of SE ID NO: 44.
  • GS1 hordeum glutamine synthetase
  • An expression cassette comprising the hordeum GS1 and GPT genes, under the control of the rice RuBisCo small subunit and corn ubiquitin promoters, respectively, is cloned into a stable binary vector such as pZY101 (Vega et al 2008, Plant Cell Rep. 27:297-305), using standard molecular cloning methodologies, to generate the transgene expression vector.
  • Transformation and Regeneration Agrobacterium-mediated transformation and recovery of transgenic sorghum plants is as described (Lu et al., 2009, Plant Cell Tissue Organ Culture 99:97-108). These methods are routinely used by the University of Missouri Plant Transformation Core Facility.
  • the public sorghum line, P898012 is grown as described (Lu et al., 2009, supra) and transformed with Agrobacterium tumefaciens strain EHA101 (Hood et al., 1986, supra) transformed with the transgene expression vector.
  • Agrobacterium (0.3-0.4 OD) harboring the transgene expression vector is used to inoculate immature sorghum embryos for 5 minutes. The embryos are then transferred onto filter paper on top of their co-cultivation medium, containing acetosyringone to enhance the effectiveness of the infection. Embryos are incubated for 3-5 days and then transferred for another 4 days on resting medium (containing carbenicillin) and then transferred onto callus induction medium (with selection agent PPT) with weekly transfers. Once somatic embyrogenic cells develop they are transferred onto shooting medium (with carbenicillin and PPT) until shoots (2-5 cm long) develop. Shoots are transferred to Magenta boxes with rooting medium (with PPT) and maintained in 16 h light and 8 h darkness until 8-20 cm tall well-rooted plantlets are produced. They are then transferred to potting mix and adapted to atmospheric conditions.
  • Transgenic sorghum plants may be grown and evaluated through maturity, and seeds harvested for use in generating subsequent generations of an event.
  • Various phenotypic characteristics may be observed in T 0 events, as well as in Ti and subsequent generations, and used to select seed sources for the development of subsequent generations.
  • High performing lines may be selfed to achieve trait homozygosity and/or crossed.
  • EXAMPLE 15 METHOD FOR GENERATING TRANSGENIC SWITCHGRASS PLANTS CARRYING HORDEUM GPT AND GS1 TRANSGENES:
  • Switchgrass (Panicum virgatum) is transformed with Agrobacterium carrying a transgene expression vector including an expression cassette encoding the hordeum glutamine synthetase (GS1 ) coding sequence of SEQ ID NO: 40 under the control of the rice RuBisCo small subunit promoter of SEQ ID NO: 39 (expression cassette of SEQ ID NO: 42), and the hordeum GPT coding sequence of SEQ ID NO: 45 under the control of the corn ubiquitin (Ubil) promoter of SE ID NO: 44.
  • GS1 hordeum glutamine synthetase
  • An expression cassette comprising the hordeum GS 1 and GPT genes, under the control of the rice RuBisCo small subunit and corn (maize) ubiquitin promoters, respectively, is cloned into a Cambia vector thirteen hundred series (i.e., 1305.1 ) containing the HPT gene which provides hygromycin resistance for selection of the Switchgrass events, using standard molecular cloning methodologies, to generate the transgene expression vector.
  • explants of embryonic callus from the mature caryopses of the public Switchgrass cv. Alamo are transformed with Agrobacterium tumefaciens strain EHA105 (Hood et al., 1986, supra) carrying the transgene expression vector.
  • Agrobacterium (0.8-1.0 OD) harboring the transgene expression vector and pretreated with acetosynringone is used to inoculate the switchgrass callus for 10 minutes and then co-cultivated for 4-6 days in the dark.
  • the explants are then washed free of the agrobacterium and placed on selection medium containing the antibiotic timentin and hygromycin; selection requires 2-6 months. Subculturing is carried out at 4-week intervals.
  • Regeneration is accomplished in 4-8 weeks on media containing GA3, timentin and hygromycin under a photoperiod of 16 h light and 8 dark.
  • the plantlets are then transferred to Magenta boxes with regeneration medium containing GA3, timentin and hygromycin for another 4 weeks as before.
  • the plants are then transferred to soil and adapted to atmospheric growth.
  • Transgenic switchgrass plants may be grown and evaluated through maturity, and seeds harvested for use in generating subsequent generations of an event.
  • Various phenotypic characteristics may be observed in To events, as well as in Ti and subsequent generations, and used to select seed sources for the development of subsequent generations.
  • High performing lines may be selfed to achieve trait homozygosity and/or crossed.
  • EXAMPLE 16 METHOD FOR GENERATING TRANSGENIC SOYBEAN PLANTS CARRYING ARABIDOPSIS GPTAND GS1 TRANSGENES: This example provides a method for generating transgenic soybean plants expressing GPT and GS1 transgenes.
  • Soybean (Glycine max) is transformed with Agrobacterium carrying a transgene expression vector including an expression cassette encoding the Arabidopsis glutamine synthetase (GS1) coding sequence of SEQ ID NO: 7 under the control of the tomato RuBisCo small subunit promoter of SEQ ID NO: 22 (expression cassette of SEQ ID NO: 47), and the Arabidopsis GPT coding sequence of SEQ ID NO: 1 under the control of the 35S cauliflower mosaic virus (CMV) promoter (expression cassette of SEQ ID NO: 27).
  • GS1 Arabidopsis glutamine synthetase
  • CMV cauliflower mosaic virus
  • pTF101.1 is a derivative of the pPZP binary vector (Hajdukiewicz et al 1994, Plant MoI. Biol. 25:989-994), which includes the right and left T-DNA border fragments from a nopaline strain of A. tumefaciens, a broad host origin of replication (pVS1 ) and a spectinomycin-resistant marker gene (aadA) for bacterial selection.
  • the plant selectable marker gene cassette includes the phosphinothricin acetyl transferase (bar) gene from Streptomyces hygroscopicus that confers resistance to the herbicides glufosinate and bialophos.
  • the soybean vegetative storage protein terminator (Mason et al., 1993) follows the 3' end of the bar gene.
  • YEP Solid Medium 5 g/L Yeast extract, 10 g/L Peptone, 5 g/L NaCI 2 , 12 g/L Bacto- agar. pH to 7.0 with NaOH. Appropriate antibiotics should be added to the medium after autoclaving. Pour into sterile 100x15 plates ( ⁇ 25ml per plate).
  • YEP Liquid Medium 5 g/L Yeast extract, 10 g/L Peptone, 5 g/L NaCI 2 . pH to 7.0 with NaOH. Appropriate antibiotics should be added to the medium prior to inoculation.
  • Co-cultivation Medium 1/10X B5 major salts, 1/10X B5 minor salts, 2.8 mg/L Ferrous, 3.8 mg/L NaEDTA, 30 g/L Sucrose, 3.9 g/L MES, and 4.25 g/L Noble agar (pH 5.4).
  • Filter sterilized 1X B5 vitamins, GA3 (0.25 mg/L), BAP (1.67 mg/L), Cysteine (400 mg/L), Dithiothrietol (154.2 mg/L), and 40 mg/L acetosyringone are added to this medium after autoclaving. Pour into sterile 100x15 mm plates (-88 plates/L). When solidified, overlay the co-cultivation
  • Infection Medium 1/10X B5 major salts, 1/10X B5 minor salts, 2.8 mg/L Ferrous, 3.8 mg/L NaEDTA, 30 g/L Sucrose, 3.9 g/L MES (pH 5.4). Filter sterilized 1X B5 vitamins, GA3 (0.25 mg/L), BAP (1.67 mg/L), and 40 mg/L acetosyringone are added to this medium after autoclaving.
  • Rooting Medium 1X MS major salts, 1X MS minor salts, 28 mg/L Ferrous, 38 mg/L NaEDTA, 20 g/L Sucrose, 0.59 g/L MES, and 7 g/L Noble agar (pH 5.6). Filter sterilized 1X B5 vitamins, Asparagine (50 mg/L), and L-Pyroglutamic Acid (100 mg/L) are added to this medium after autoclaving. Pour into sterile 150x25 mm vial (10ml/vial).
  • Agrobacterium cultures are prepared for infecting seed explants as follows.
  • the vector system, pTF102 in EHA101 is cultured on YEP medium (An et al., 1988) containing 100 mg/L spectinomycin (for pTF102), 50 mg/L kanamycin (for EHA101), and 25 mg/L chloramphenicol (for EHA101).
  • 24 hours prior to infection a 2 ml culture of Agrobacterium is started by inoculating a loop of bacteria from the fresh YEP plate in YEP liquid medium amended with antibiotics. This culture is allowed to grow to saturation (8-10 hours) at 28 ° C in a shaker incubator (-250 rpm).
  • starter culture is transferred to a 1 L flask containing 250 ml of YEP medium amended with antibiotics.
  • Agrobacteria-containing infection medium is shaken at 60 rpm for at least 30 minutes before use.
  • Explants are prepared for inoculation as follows. Seeds are sterilized, ideally with a combination of bleach solution and exposure to chlorine gas. Prior to infection, (-20 hours), sees are imbibed with deionized sterile water in the dark. Imbibed soybean seeds are transferred to a sterile 100x15 petri plate for dissection. Using a scalpel (i.e., #15 blade), longitudinal cuts are made along the hilum to separate the cotyledons and remove the seed coat. The embryonic axis found at the nodal end of the cotyledons is excised, and any remaining axial shoots/buds attached to the cotyledonary node are also removed.
  • a scalpel i.e., #15 blade
  • Agrobacterium-mediated transformation is conducted as follows. Half-seed explants are dissected into a 100 x 25 mm petri plate and 30 ml Agrobacterium-containing infection media added thereto, such that the explants are completely covered by the infection media. Explants are allowed to incubate at room temperature for a short period of time (i.e., 30 minutes), preferably with occasional gentle agitation. After infection, the explants are transferred to co-cultivation medium, preferably so that the flat, axial side is touching the filter paper. These plates are typically wrapped in parafilm, and cultivated for 5 days at 24°C under an 18:6 photoperiod.
  • shoot growth is induced by first washing the explants in shoot induction washing medium at room temperature, followed by placing the explants in shoot induction medium I, such that the explants are oriented with the nodal end of the cotyledon imbedded in the medium and the regeneration region flush to the surface with flat side up (preferably at a 30-45° angle). Explants are incubated at 24°C, 18:6 photoperiod, for 14 days. Explants are thereafter transferred to shoot induction medium Il and maintained under the same conditions for another 14 days.
  • explants are transferred to shoot elongation medium, as follows. First, cotyledons are removed from the explants. A fresh cut at the base of the shoot pad flush to the medium is made, and the explants transferred to shoot elongation medium (containing glufosinate) and incubated at 24°C, 18:6 photoperiod, for 2-8 weeks. Preferably, explant tissue is transferred to fresh shoot elongation medium every 2 weeks, and at transfer, a fresh horizontal slice at the base of the shoot pad is made.
  • shoot elongation medium containing glufosinate
  • shoots surviving the glufosinate selection When shoots surviving the glufosinate selection have reached ⁇ 3 cm length, they are excised from the shoot pad, briefly dipped in indole-3-butyric acid (1 mg/ml, 1-2 minutes), then transferred to rooting medium for acclimatization (i.e., in 15O x 25 mm glass vials with the stems of the shoots embedded approximately 1/2 cm into the media). When well rooted, the shoots are transferred to soil and plantlets grown at 24°C, 18:6 photoperiod, for at least one week, watering as needed. When the plantlets have at least two healthy trifoliates, an herbicide paint assay may be applied to confirm resistance to glufosinate.
  • Liberty herbicide 150mg 1-1
  • Painted plants are transferred to the greenhouse and covered with a humidome. Plantlets are scored 3-5 days after painting. Resistant plantlets may be transplanted immediately to larger pots (i.e., 2 gal).
  • EXAMPLE 17 METHOD FOR GENERATING TRANSGENIC POTATO PLANTS CARRYING ARABIDOPSIS GPT AND GS1 TRANSGENES:
  • This example provides a method for generating transgenic potato plants expressing GPT and GS 1 transgenes.
  • Potato Solanum tuberosum, cultivar Desiree
  • Agrobacterium carrying a transgene expression vector including an expression cassette encoding the Arabidopsis glutamine synthetase (GS1) coding sequence of SEQ ID NO: 7 under the control of the tomato RuBisCo small subunit promoter of SEQ ID NO: 22 (expression cassette of SEQ ID NO: 47), and the Arabidopsis GPT coding sequence of SEQ ID NO: 1 under the control of the 35S cauliflower mosaic virus (CMV) promoter (expression cassette of SEQ ID NO: 27).
  • GS1 Arabidopsis glutamine synthetase
  • CMV 35S cauliflower mosaic virus
  • An expression cassette comprising the hordeum GS 1 and GPT genes, under the control of the tomato RuBisCo small subunit and 35S CMV promoters, respectively, is cloned into the Cambia 2201 vector which provides kanamycin resistance.
  • a suitable Agrobacterium tumefaciens strain such as UC-Riverside Agro-1 strain is employed and used for infecting potato explant tissue (see, Narvaez-Vasquez et al.,
  • Potato leaf discs or tuber discs may be used as the explants to be inoculated.
  • Discs are pre-conditioned by incubation on feeder plates for two to three days at 25 0 C under dark conditions.
  • Pre-conditioned explants are infected with Agrobacterium by soaking in 20 ml of sterile liquid MS medium (supra), containing 10 8 Agrobacterium cells/ml for about 20 minutes.
  • the explants are carefully punched with a syringe needle, or scalpel blade. Then, the explants are blotted dry with sterile filter paper, and incubated again in feeder plates for another two days. Explants are then transferred to liquid medium with transgene-transformed Agrobacterium, and incubated for three days at 28 0 C under dark conditions for calli and shoot development (development (2-4 cm) in the presence of kanamycin (100 mg/L).
  • the explants are washed three times with sterile liquid medium and finally rinsed with the same medium containing 500 mg/l of cefotaxime.
  • the explants are blotted dry with sterile filter paper and placed on shoot induction medium (4.3 g/L MS salts, 10 mg/L thiamine, 1 mg/L nicotinic acid, 1 mg/L pyridxine, 100 mg/L inositol, 30 g/L sucrose, 1 mg/L zeatin, 0.5 mg/L IAA, 7 g/L phytoagar, 250 mg/L Cefotaxime, 500 mg/L Carbenicillin, 100 mg/L Kanamycin) for 4-6 weeks.
  • plantlets are transferred to rooting medium (4.3 g/L MS salts, 10 mg/L thiamine, 1 mg/L nicotinic acid, 1 mg/L pyridxine, 100 mg/L inositol, 20 g/L sucrose, 50 ⁇ g/L IAA, 7 g/L phytoagar, 50 mg/L Kanamycin and 500 mg/L Vancomycin) for 3-4 weeks.
  • rooting medium 4.3 g/L MS salts, 10 mg/L thiamine, 1 mg/L nicotinic acid, 1 mg/L pyridxine, 100 mg/L inositol, 20 g/L sucrose, 50 ⁇ g/L IAA, 7 g/L phytoagar, 50 mg/L Kanamycin and 500 mg/L Vancomycin
  • SEQ ID NO: 1 Arabidopsis glutamine phenyl pyruvate transaminase DNA coding sequence:
  • SEQ ID NO: 15 Arabidopsis truncated GPT -45 construct DNA sequence
  • SEQ ID NO: 16 Arabidopsis truncated GPT -45 construct amino acid sequence MATQNESTQKPVQVAKRLEKFKTTIFTQMSILAVKHGAINLGQGFPNFDGPDFVKEA AIQAIKDGKNQYARGYGIPQLNSAIAARFREDTGLWDPEKEVTVTSGCTEAIAAAML GLINPGDEVILFAPFYDSYEATLSMAGAKVKGITLRPPDFSIPLEELKAAVTNKTRAIL MNTPHNPTGKMFTREELETIASLCIENDVLVFSDEVYDKLAFEMDHISIASLPGMYER TVTMNSLGKTFSLTGWKIGWAIAPPHLTWGVRQAHSYLTFATSTPAQWAAVAALKA PESYFKELKRDYNVKKETLVKGLKEVGFTVFPSSGTYFWADHTPFGMENDVAFCE YLIEEVGWAIPTSVFYLNPEEGKNLVRFAFCKDEETLRGAIERMKQKLKRKV
  • SEQ ID NO: 17 Tomato Rubisco promoter
  • SEQ ID NO: 18 bamboo GPT DNA sequence
  • SEQ ID NO: 20 1305.1+rbcS3C promoter + catl intron with rice GPT gene.
  • SEQ ID NO: 25 Arabidpsis GPT amino acid sequence (mature protein, no targeting sequence)
  • SEQ ID NO: 26 Grape GPT amino acid sequence (mature protein, no targeting sequence)
  • SEQ ID NO: 28 Soybean GPT amino acid sequence (-1 mature protein, no targeting sequence)
  • SEQ ID NO: 34 Rice rubisco promoter deposited in NCBI GenBank: AF143510.1 Pstl cloning sites in bold; Ncol cloning site in italics, catl intron and part of Gus plus protein from Cambia 1305.1 vector in bold underline (sequence removed and not translated), 3' terminal Spel cloning site in double underline.
  • the construct also includes a PmII 1305.1 cloning site CACGTG (also cuts in rice rbsc promoter), and a Zral cloning site GACGTC, which can be added by PCR to clone into PmII site of vector).
  • SEQ ID NO: 37 Expression cassette combining SEQ ID NO: 34 (5') and SEQ ID NO: 35 (3 1 ), encoding the Rice rubisco promoter, catl intron and part of Gus plus protein, and hordeum GS1. Features shown as in SEQ ID NO: 34. Hordeum GS1 coding sequence begins after Spel cloning site (double underline).
  • SEQ ID NO: 38 Amino acid sequence of translation product of SEQ ID NO: 37. Amino-terminal bold residues from Gusplus and Spel cloning site (intron removed) MVDLRNRRTSAQAVVQAMQCQVGVRGRTAVPARQPAGRVWGVRRAARATSGFK VLALGPETTGVIQRMQQLLDMDTTPFTDKIIAEYIWVGGSGIDLRSKSRTISKPVEDP SELPKWNYDGSSTGQAPGEDSEVILYPQAIFKDPFRGGNNILVICDTYTPQGEPIPT NKRHMAAQIFSDPKVTSQVPWFGIEQEYTLMQRDVNWPLGWPVGGYPGPQGPYY CAVGSDKSFGRDISDAHYKACLYAGIEISGTNGEVMPGQWEYQVGPSVGIDAGDHI WASRYILERITEQAGWLTLDPKPIQGDWNGAGCHTNYSTLSMREDGGFDVIKKAIL NLSLRHDLHIAAYGEGNERRLTGLHETA
  • SEQ ID NO: 40 Hordeum GPT DNA coding sequence, including targeting sequence coding domain
  • SEQ ID NO: 42 Tomato rubisco small subunit (rbcS3C) promoter + Arabidopsis GS1 DNA coding sequence; Ncol/Afllll splice site shown in bold, ATG start of GS1 underlined.
  • SEQ ID NO: 43 Putative Clementine orange GPT coding sequence
  • SEQ ID NO: 44 Putative Clementine orange GPT amino acid sequence; putative mature protein sequence begins at VAK shown in bold underline.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Cell Biology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)

Abstract

The invention relates to transgenic plants exhibiting enhanced growth rates, seed and fruit yields, and overall biomass yields, as well as methods for generating growth-enhanced transgenic plants. In one embodiment, transgenic plants engineered to over-express glutamine phenyl pyruvate transaminase (GPT) are provided.

Description

PLANT GLUTAMINE PHENYLPYRUVATE TRANSAMINASE GENE
AND TRANSGENIC PLANTS CARRYING SAME STATEMENT AS TO RIGHTS TO INVENTIONS MADE UNDER
FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT
This invention was made with government support under Contract No. W-7405-ENG- 36 awarded by the United States Department of Energy to The Regents of The University of California, and Contract No. DE-AC52-06NA25396, awarded by the United States Department of Energy to Los Alamos National Security, LLC. The government has certain rights in this invention.
RELATED APPLICATIONS
This application is a continuation-in-part of United States Application No. 12/551 ,320, filed August 31 , 2009, which application claims priority to United States Provisional Application No. 61/190,581 filed August 29, 2008.
BACKGROUND OF THE INVENTION
As the human population increases worldwide, and available farmland continues to be destroyed or otherwise compromised, the need for more effective and sustainable agriculture systems is of paramount interest to the human race. Improving crop yields, protein content, and plant growth rates represent major objectives in the development of agriculture systems that can more effectively respond to the challenges presented.
In recent years, the importance of improved crop production technologies has only increased as yields for many well-developed crops have tended to plateau. Many agricultural activities are time sensitive, with costs and returns being dependent upon rapid turnover of crops or upon time to market. Therefore, rapid plant growth is an economically important goal for many agricultural businesses that involve high-value crops such as grains, vegetables, berries and other fruits. Genetic engineering has and continues to play an increasingly important yet controversial role in the development of sustainable agriculture technologies. A large number of genetically modified plants and related technologies have been developed in recent years, many of which are in widespread use today (Factsheet: Genetically Modified Crops in the United States, Pew Initiative on Food and Biotechnology, August 2004, http://pewagbiotech.org/resources/factsheets). The adoption of transgenic plant varieties is now very substantial and is on the rise, with approximately 250 million acres planted with transgenic plants in 2006.
While acceptance of transgenic plant technologies may be gradually increasing, particularly in the United States, Canada and Australia, many regions of the World remain slow to adopt genetically modified plants in agriculture, notably Europe. Therefore, consonant with pursuing the objectives of responsible and sustainable agriculture, there is a strong interest in the development of genetically engineered plants that do not introduce toxins or other potentially problematic substances into plants and/or the environment. There is also a strong interest in minimizing the cost of achieving objectives such as improving herbicide tolerance, pest and disease resistance, and overall crop yields. Accordingly, there remains a need for transgenic plants that can meet these objectives.
The goal of rapid plant growth has been pursued through numerous studies of various plant regulatory systems, many of which remain incompletely understood. In particular, the plant regulatory mechanisms that coordinate carbon and nitrogen metabolism are not fully elucidated. These regulatory mechanisms are presumed to have a fundamental impact on plant growth and development.
The metabolism of carbon and nitrogen in photosynthetic organisms must be regulated in a coordinated manner to assure efficient use of plant resources and energy. Current understanding of carbon and nitrogen metabolism includes details of certain steps and metabolic pathways which are subsystems of larger systems. In photosynthetic organisms, carbon metabolism begins with CO2 fixation, which proceeds via two major processes, termed C-3 and C-4 metabolism. In plants with C- 3 metabolism, the enzyme ribulose bisphosphate carboxylase (RuBisCo) catalyzes the combination of CO2 with ribulose bisphosphate to produce 3-phosphoglycerate, a three carbon compound (C-3) that the plant uses to synthesize carbon-containing compounds. In plants with C-4 metabolism, CO2 is combined with phosphoenol pyruvate to form acids containing four carbons (C-4), in a reaction catalyzed by the enzyme phosphoenol pyruvate carboxylase. The acids are transferred to bundle sheath cells, where they are decarboxylated to release CO2, which is then combined with ribulose bisphosphate in the same reaction employed by C-3 plants.
Numerous studies have found that various metabolites are important in plant regulation of nitrogen metabolism. These compounds include the organic acid malate and the amino acids glutamate and glutamine. Nitrogen is assimilated by photosynthetic organisms via the action of the enzyme glutamine synthetase (GS) which catalyzes the combination of ammonia with glutamate to form glutamine. GS plays a key role in the assimilation of nitrogen in plants by catalyzing the addition of ammonium to glutamate to form glutamine in an ATP-dependent reaction (Miflin and Habash, 2002, Journal of Experimental Botany, Vol. 53, No. 370, pp. 979-987). GS also reassimilates ammonia released as a result of photorespiration and the breakdown of proteins and nitrogen transport compounds. GS enzymes may be divided into two general classes, one representing the cytoplasmic form (GS1) and the other representing the plastidic (i.e., chloroplastic) form (GS2). Previous work has demonstrated that increased expression levels of GS1 result in increased levels of GS activity and plant growth, although reports are inconsistent. For example, Fuentes et al. reported that CaMV S35 promoter-driven overexpression of Alfalfa GS1 (cytoplasmic form) in tobacco resulted in increased levels of GS expression and GS activity in leaf tissue, increased growth under nitrogen starvation, but no effect on growth under optimal nitrogen fertilization conditions (Fuentes et al., 2001 , J. Exp. Botany 52: 1071-81 ). Temple et al. reported that transgenic tobacco plants overexpressing the full length Alfalfa GS1 coding sequence contained greatly elevated levels of GS transcript, and GS polypeptide which assembled into active enzyme, but did not report phenotypic effects on growth (Temple et al., 1993, Molecular and General Genetics 236: 315-325). Corruzi et al. have reported that transgenic tobacco overexpressing a pea cytosolic GS1 transgene under the control of the CaMV S35 promoter show increased GS activity, increased cytosolic GS protein, and improved growth characteristics (U.S. Patent No. 6,107,547). Unkefer et al. have more recently reported that transgenic tobacco plants overexpressing the Alfalfa GS 1 in foliar tissues, which had been screened for increased leaf-to-root GS activity following genetic segregation by selfing to achieve increased GS1 transgene copy number, were found to produce increased 2-hydroxy-5-oxoproline levels in their foliar portions, which was found to lead to markedly increased growth rates over wildtype tobacco plants (see, U.S. Patent Nos. 6,555,500; 6,593,275; and 6,831 ,040).
Unkefer et al. have further described the use of 2-hydroxy-5-oxoproline (also known as 2-oxoglutaramate) to improve plant growth (U.S. Patent Nos. 6,555,500; 6,593,275; 6,831 ,040). In particular, Unkefer et al. disclose that increased concentrations of 2-hydroxy-5-oxoproline in foliar tissues (relative to root tissues) triggers a cascade of events that result in increased plant growth characteristics. Unkefer et al. describe methods by which the foliar concentration of 2-hydroxy-5- oxoproline may be increased in order to trigger increased plant growth characteristics, specifically, by applying a solution of 2-hydroxy-5-oxoproline directly to the foliar portions of the plant and over-expressing glutamine synthetase preferentially in leaf tissues.
A number of transaminase and hydrolyase enzymes known to be involved in the synthesis of 2-hydroxy-5-oxoproline in animals have been identified in animal liver and kidney tissues (Cooper and Meister, 1977, CRC Critical Reviews in Biochemistry, pages 281-303; Meister, 1952, J. Biochem. 197: 304). In plants, the biochemical synthesis of 2-hydroxy-5-oxoproline has been known but has been poorly characterized. Moreover, the function of 2-hydroxy-5-oxoproline in plants and the significance of its pool size (tissue concentration) are unknown. Finally, the art provides no specific guidance as to precisely what transaminase(s) or hydrolase(s) may exist and/or be active in catalyzing the synthesis of 2-hydroxy-5-oxoproline in plants, and no such plant transaminases have been reported, isolated or characterized.
SUMMARY OF THE INVENTION The invention relates to transgenic plants exhibiting enhanced growth rates, seed and fruit yields, and overall biomass yields, as well as methods for generating growth-enhanced transgenic plants. In one embodiment, transgenic plants engineered to over-express glutamine phenyl pyruvate transaminase (GPT) are provided. In general, these plants out-grow their wild-type counterparts by about 50%.
Applicants have identified the enzyme glutamine phenylpyruvate transaminase (GPT) as a catalyst of 2-hydroxy-5-oxoproline (2-oxoglutaramate) synthesis in plants. 2- oxoglutaramate is a powerful signal metabolite which regulates the function of a large number of genes involved in the photosynthesis apparatus, carbon fixation and nitrogen metabolism.
By preferentially increasing the concentration of the signal metabolite 2- oxoglutaramate (i.e., in foliar tissues), the transgenic plants of the invention are capable of producing higher overall yields over shorter periods of time, and therefore may provide agricultural industries with enhanced productivity across a wide range of crops. Importantly, unlike many transgenic plants described to date, the invention utilizes natural plant genes encoding a natural plant enzyme. The enhanced growth characteristics of the transgenic plants of the invention are achieved essentially by introducing additional GPT capacity into the plant. Thus, the transgenic plants of the invention do not express any toxic substances, growth hormones, viral or bacterial gene products, and are therefore free of many of the concerns that have heretofore impeded the adoption of transgenic plants in certain parts of the World.
In one embodiment, the invention provides a transgenic plant comprising a GPT transgene, wherein said GPT transgene is operably linked to a plant promoter. In a specific embodiment, the GPT transgene encodes a polypeptide having an amino acid sequence selected from the group consisting of (a) SEQ ID NO: 2; SEQ ID NO: 4, SEQ ID NO: 10, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 19, SEQ ID NO: 25, SEQ ID NO: 26, SEQ ID NO: 27, SEQ ID NO: 28, SEQ ID NO: 29, SEQ ID NO: 30, SEQ ID NO: 41 , or SEQ ID NO: 44, and (b) an amino acid sequence that is at least 75% identical to any one of SEQ ID NO: 2; SEQ ID NO: 4, SEQ ID NO: 10, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 19, SEQ ID NO: 25, SEQ ID NO: 26, SEQ ID NO: 27, SEQ ID NO: 28, SEQ ID NO: 29, SEQ ID NO: 30, SEQ ID NO: 41 , or SEQ ID NO: 44 and has GPT activity.
In a particular aspect of the invention, the GPT transgene is incorporated into the genome of a plant selected from the group consisting of: maize, rice, sugar cane, wheat, oats, sorghum, switch grass, soya bean, tubers (such as potatoes), canola, lupins or cotton.
The invention also provides progeny of any generation of the transgenic plants of the invention, wherein said progeny comprises a GPT transgene, as well as a seed of any generation of the transgenic plants of the invention, wherein said seed comprises said GPT transgene. The transgenic plants of the invention may display one or more enhanced growth characteristics when compared to an analogous wild-type or untransformed plant, including without limitation increased growth rate, increased biomass yield, increased seed yield, increased flower or flower bud yield, increased fruit or pod yield, larger leaves, and increased levels of GPT activity and/or increased levels of 2-oxoglutaramate. In some embodiments, the transgenic plants of the invention display increased nitrogen use efficiency. In a further aspect of the invention there is provided a transplastomic plant or cell line carrying a GPT transgene expression cassette, said expression cassette being flanked by sequences from the plant or plant cell's plastome. Further still, the invention provides a method for preparing a transplastomic plant or cell line carrying a GPT transgene construct, said method comprising the steps of: (a) inserting into at least one expression cassette at least a GPT transgene wherein said expression cassette is flanked by sequences from the plant or plant cell's plastome. Methods for producing the transgenic plants of the invention and seeds thereof are also provided, including methods for producing a plant having enhanced growth characteristics, increased nitrogen use efficiency and increased tolerance to germination or growth in salt or saline conditions, relative to an analogous wild type or untransformed plant.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1. Nitrogen assimilation and 2-oxoglutaramate biosynthesis: schematic of metabolic pathway.
FIG. 2. Photograph showing comparison of transgenic tobacco plants over- expressing GPT, compared to wild type tobacco plant. From left to right: wild type plant, Alfalfa GS1 transgene, Arabidopsis GPT transgene. See Example 3, infra. FIG. 3. Photograph showing comparison of transgenic Micro-Tom tomato plants over-expressing GPT, compared to wild type tomato plant. (A) wild type plant; (B) Arabidopsis GPT transgene. See Example 4, infra.
FIG. 4. Photograph showing comparisons of leaf sizes between wild type (top leaf) and GPT transgenic (bottom leaf) tobacco plants. DETAILED DESCRIPTION OF THE INVENTION
DEFINITIONS
Unless otherwise defined, all terms of art, notations and other scientific terminology used herein are intended to have the meanings commonly understood by those of skill in the art to which this invention pertains. In some cases, terms with commonly understood meanings are defined herein for clarity and/or for ready reference, and the inclusion of such definitions herein should not necessarily be construed to represent a substantial difference over what is generally understood in the art. The techniques and procedures described or referenced herein are generally well understood and commonly employed using conventional methodology by those skilled in the art, such as, for example, the widely utilized molecular cloning methodologies described in Sambrook et al., Molecular Cloning: A Laboratory Manual 3rd. edition (2001 ) Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N. Y.; Current Protocols in Molecular Biology (Ausbel et al., eds., John Wiley & Sons, Inc. 2001 ; Transgenic Plants: Methods and Protocols (Leandro Pena, ed., Humana Press, 1st edition, 2004); and, Agrobacterium Protocols (Wan, ed., Humana Press, 2nd edition, 2006). As appropriate, procedures involving the use of commercially available kits and reagents are generally carried out in accordance with manufacturer defined protocols and/or parameters unless otherwise noted.
Each document, reference, patent application or patent cited in this text is expressly incorporated herein in its entirety by reference, and each should be read and considered as part of this specification. That the document, reference, patent application or patent cited in this specification is not repeated herein is merely for conciseness.
The term "nucleic acid" refers to deoxyribonucleotides or ribonucleotides and polymers thereof ("polynucleotides") in either single- or double-stranded form.
Unless specifically limited, the term "polynucleotide" encompasses nucleic acids containing known analogues of natural nucleotides which have similar binding properties as the reference nucleic acid and are metabolized in a manner similar to naturally occurring nucleotides. Unless otherwise indicated, a particular nucleic acid sequence also implicitly encompasses conservatively modified variants thereof (e.g. degenerate codon substitutions) and complementary sequences and as well as the sequence explicitly indicated. Specifically, degenerate codon substitutions may be achieved by generating sequences in which the third position of one or more selected (or all) codons is substituted with mixed-base and/or deoxyinosine residues (Batzer et al., 1991 , Nucleic Acid Res. 19: 5081; Ohtsuka et al., 1985 J. Biol. Chem. 260: 2605-2608; and Cassol et al., 1992; Rossolini et al., 1994, MoI. Cell. Probes 8: 91- 98). The term nucleic acid is used interchangeably with gene, cDNA, and mRNA encoded by a gene.
The term "promoter" refers to a nucleic acid control sequence or sequences that direct transcription of an operably linked nucleic acid. As used herein, a "plant promoter" is a promoter that functions in plants. Promoters include necessary nucleic acid sequences near the start site of transcription, such as, in the case of a polymerase Il type promoter, a TATA element. A promoter also optionally includes distal enhancer or repressor elements, which can be located as much as several thousand base pairs from the start site of transcription. A "constitutive" promoter is a promoter that is active under most environmental and developmental conditions. An
"inducible" promoter is a promoter that is active under environmental or developmental regulation. The term "operably linked" refers to a functional linkage between a nucleic acid expression control sequence (such as a promoter, or array of transcription factor binding sites) and a second nucleic acid sequence, wherein the expression control sequence directs transcription of the nucleic acid corresponding to the second sequence.
The terms "polypeptide," "peptide" and "protein" are used interchangeably herein to refer to a polymer of amino acid residues. The terms apply to amino acid polymers in which one or more amino acid residue is an artificial chemical mimetic of a corresponding naturally occurring amino acid, as well as to naturally occurring amino acid polymers and non-naturally occurring amino acid polymers.
The term "amino acid" refers to naturally occurring and synthetic amino acids, as well as amino acid analogs and amino acid mimetics that function in a manner similar to the naturally occurring amino acids. Naturally occurring amino acids are those encoded by the genetic code, as well as those amino acids that are later modified, e.g., hydroxyproline, γ-carboxyglutamate, and O-phosphoserine. Amino acid analogs refers to compounds that have the same basic chemical structure as a naturally occurring amino acid, i.e., an α carbon that is bound to a hydrogen, a carboxyl group, an amino group, and an R group, e.g., homoserine, norleucine, methionine sulfoxide, methionine methyl sulfonium. Such analogs have modified R groups (e.g., norleucine) or modified peptide backbones, but retain the same basic chemical structure as a naturally occurring amino acid. Amino acid mimetics refers to chemical compounds that have a structure that is different from the general chemical structure of an amino acid, but that functions in a manner similar to a naturally occurring amino acid.
Amino acids may be referred to herein by either their commonly known three letter symbols or by the one-letter symbols recommended by the IUPAC-IUB Biochemical Nomenclature Commission. Nucleotides, likewise, may be referred to by their commonly accepted single-letter codes.
The term "plant" includes whole plants, plant organs (e.g., leaves, stems, flowers, roots, reprroductive organs, embryos and parts thereof, etc.), seedlings, seeds and plant cells and progeny thereof. The class of plants which can be used in the method of the invention is generally as broad as the class of higher plants amenable to transformation techniques, including angiosperms (monocotyledonous and dicotyledonous plants), as well as gymnosperms. It includes plants of a variety of ploidy levels, including polyploid, diploid, haploid and hemizygous. The terms "GPT polynucleotide" and "GPT nucleic acid" are used interchangeably herein, and refer to a full length or partial length polynucleotide sequence of a gene which encodes a polypeptide involved in catalyzing the synthesis of 2- oxoglutaramate, and includes polynucleotides containing both translated (coding) and un-translated sequences, as well as the complements thereof. The term "GPT coding sequence" refers to the part of the gene which is transcribed and encodes a GPT protein. The term "targeting sequence" refers to the amino terminal part of a protein which directs the protein into a subcellular compartment of a cell, such as a chloroplast in a plant cell. GPT polynucleotides are further defined by their ability to hybridize under defined conditions to the GPT polynucleotides specifically disclosed herein, or to PCR products derived therefrom.
A "GPT transgene" is a nucleic acid molecule comprising a GPT polynucleotide which is exogenous to transgenic plant, or plant embryo, organ or seed, harboring the nucleic acid molecule, or which is exogenous to an ancestor plant, or plant embryo, organ or seed thereof, of a transgenic plant harboring the GPT polynucleotide. More particularly, the exogenous GPT transgene will be heterogeneous with any GPT polynucleotide sequence present in wild-type plant, or plant embryo, organ or seed into which the GPT transgene is inserted. To this extent the scope of the heterogeneity required need only be a single nucleotide difference. However, preferably the heterogeneity will be in the order of an identity between sequences selected from the following identities: 0.01%, 0.05%, 0.1%, 0.5%, 1%, 5%, 10%, 15%, and 20%. Exemplary GPT polynucleotides of the invention are presented herein, and include GPT coding sequences for Arabidopsis, Rice, Barley, Bamboo, Soybean, Grape, Clementine orange and Zebra Fish GPTs.
Partial length GPT polynucleotides include polynucleotide sequences encoding N- or C-terminal truncations of GPT, mature GPT (without targeting sequence) as well as sequences encoding domains of GPT. Exemplary GPT polynucleotides encoding N- terminal truncations of GPT include Arabidopsis -30, -45 and -56 constructs, in which coding sequences for the first 30, 45, and 56, respectively, amino acids of the full length GPT structure of SEQ ID NO: 2 are eliminated. In employing the GPT polynucleotides of the invention in the generation of transformed cells and transgenic plants, one of skill will recognize that the inserted polynucleotide sequence need not be identical, but may be only "substantially identical" to a sequence of the gene from which it was derived, as further defined below. The term "GPT polynucleotide" specifically encompasses such substantially identical variants. Similarly, one of skill will recognize that because of codon degeneracy, a number of polynucleotide sequences will encode the same polypeptide, and all such polynucleotide sequences are meant to be included in the term GPT polynucleotide. In addition, the term specifically includes those sequences substantially identical (determined as described below) with an GPT polynucleotide sequence disclosed herein and that encode polypeptides that are either mutants of wild type GPT polypeptides or retain the function of the GPT polypeptide (e.g., resulting from conservative substitutions of amino acids in a GPT polypeptide). The term "GPT polynucleotide" therefore also includes such substantially identical variants.
The term "conservatively modified variants" applies to both amino acid and nucleic acid sequences. With respect to particular nucleic acid sequences, conservatively modified variants refers to those nucleic acids which encode identical or essentially identical amino acid sequences, or where the nucleic acid does not encode an amino acid sequence, to essentially identical sequences. Because of the degeneracy of the genetic code, a large number of functionally identical nucleic acids encode any given protein. For instance, the codons GCA, GCC, GCG and GCU all encode the amino acid alanine. Thus, at every position where an alanine is specified by a codon, the codon can be altered to any of the corresponding codons described without altering the encoded polypeptide. Such nucleic acid variations are "silent variations," which are one species of conservatively modified variations. Every nucleic acid sequence herein which encodes a polypeptide also describes every possible silent variation of the nucleic acid. One of skill will recognize that each codon in a nucleic acid (except AUG, which is ordinarily the only codon for methionine, and TGG, which is ordinarily the only codon for tryptophan) can be modified to yield a functionally identical molecule. Accordingly, each silent variation of a nucleic acid which encodes a polypeptide is implicit in each described sequence.
As to amino acid sequences, one of skill will recognize that individual substitutions, deletions or additions to a nucleic acid, peptide, polypeptide, or protein sequence which alters, adds or deletes a single amino acid or a small percentage of amino acids in the encoded sequence is a "conservatively modified variant" where the alteration results in the substitution of an amino acid with a chemically similar amino acid. Conservative substitution tables providing functionally similar amino acids are well known in the art. Such conservatively modified variants are in addition to and do not exclude polymorphic variants, interspecies homologs, and alleles of the invention.
The following eight groups each contain amino acids that are conservative substitutions for one another: 1 ) Alanine (A), Glycine (G); 2) Aspartic acid (D), Glutamic acid (E); 3) Asparagine (N), Glutamine (Q); 4) Arginine (R), Lysine (K); 5) lsoleucine (I), Leucine (L), Methionine (M)1 Valine (V); 6) Phenylalanine (F), Tyrosine (Y), Tryptophan (W); 7) Serine (S), Threonine (T); and 8) Cysteine (C), Methionine (M) (see, e.g., Creighton, Proteins (1984)).
Macromolecular structures such as polypeptide structures can be described in terms of various levels of organization. For a general discussion of this organization, see, e.g., Alberts et al., Molecular Biology of the Cell (3rd ed., 1994) and Cantor and
Schimmel, Biophysical Chemistry Part I: The Conformation of Biological
Macromolecules (1980). "Primary structure" refers to the amino acid sequence of a particular peptide. "Secondary structure" refers to locally ordered, three dimensional structures within a polypeptide. These structures are commonly known as domains.
Domains are portions of a polypeptide that form a compact unit of the polypeptide and are typically 25 to approximately 500 amino acids long. Typical domains are made up of sections of lesser organization such as stretches of β-sheet and α- helices. "Tertiary structure" refers to the complete three dimensional structure of a polypeptide monomer. "Quaternary structure" refers to the three dimensional structure formed by the noncovalent association of independent tertiary units. Anisotropic terms are also known as energy terms.
The term "isolated" refers to material which is substantially or essentially free from components which normally accompany the material as it is found in its native or natural state. However, the term "isolated" is not intended refer to the components present in an electrophoretic gel or other separation medium. An isolated component is free from such separation media and in a form ready for use in another application or already in use in the new application/milieu. An "isolated" antibody is one that has been identified and separated and/or recovered from a component of its natural environment. Contaminant components of its natural environment are materials that would interfere with diagnostic or therapeutic uses for the antibody, and may include enzymes, hormones, and other proteinaceous or non-proteinaceous solutes. In preferred embodiments, the antibody will be purified (1 ) to greater than 95% by weight of antibody as determined by the Lowry method, and most preferably more than 99% by weight, (2) to a degree sufficient to obtain at least 15 residues of N- terminal or internal amino acid sequence by use of a spinning cup sequenator, or (3) to homogeneity by SDS-PAGE under reducing or nonreducing conditions using Coomassie blue or, preferably, silver stain. Isolated antibody includes the antibody in situ within recombinant cells since at least one component of the antibody's natural environment will not be present. Ordinarily, however, isolated antibody will be prepared by at least one purification step.
The term "heterologous" when used with reference to portions of a nucleic acid indicates that the nucleic acid comprises two or more subsequences that are not found in the same relationship to each other in nature. For instance, a nucleic acid is typically recombinantly produced, having two or more sequences from unrelated genes arranged to make a new functional nucleic acid, e.g., a nucleic acid encoding a protein from one source and a nucleic acid encoding a peptide sequence from another source. Similarly, a heterologous protein indicates that the protein comprises two or more subsequences that are not found in the same relationship to each other in nature (e.g., a fusion protein).
The terms "identical" or percent "identity," in the context of two or more nucleic acids or polypeptide sequences, refer to two or more sequences or subsequences that are the same or have a specified percentage of amino acid residues or nucleotides that are the same (i.e., about 70% identity, preferably 75%, 80%, 85%, 90%, or 95% identity over a specified region, when compared and aligned for maximum correspondence over a comparison window, or designated region as measured using a sequence comparison algorithms, or by manual alignment and visual inspection. This definition also refers to the complement of a test sequence, which has substantial sequence or subsequence complementarity when the test sequence has substantial identity to a reference sequence. This definition also refers to the complement of a test sequence, which has substantial sequence or subsequence complementarity when the test sequence has substantial identity to a reference sequence.
When percentage of sequence identity is used in reference to polypeptides, it is recognized that residue positions that are not identical often differ by conservative amino acid substitutions, where amino acids residues are substituted for other amino acid residues with similar chemical properties (e.g., charge or hydrophobicity) and therefore do not change the functional properties of the polypeptide. Where sequences differ in conservative substitutions, the percent sequence identity may be adjusted upwards to correct for the conservative nature of the substitution.
For sequence comparison, typically one sequence acts as a reference sequence, to which test sequences are compared. When using a sequence comparison algorithm, test and reference sequences are entered into a computer, subsequence coordinates are designated, if necessary, and sequence algorithm program parameters are designated. Default program parameters can be used, or alternative parameters can be designated. The sequence comparison algorithm then calculates the percent sequence identities for the test sequences relative to the reference sequence, based on the program parameters.
A "comparison window", as used herein, includes reference to a segment of any one of the number of contiguous positions selected from the group consisting of from 20 to 600, usually about 50 to about 200, more usually about 100 to about 150 in which a sequence may be compared to a reference sequence of the same number of contiguous positions after the two sequences are optimally aligned. Methods of alignment of sequences for comparison are well-known in the art. Optimal alignment of sequences for comparison can be conducted, e.g., by the local homology algorithm of Smith & Waterman, 1981 , Adv. Appl. Math. 2:482, by the homology alignment algorithm of Needleman & Wunsch, 1970, J. MoI. Biol. 48:443, by the search for similarity method of Pearson & Lipman, 1988, Proc. Nat'l. Acad. Sci. USA 85:2444, by computerized implementations of these algorithms (GAP, BESTFIT, FASTA, and TFASTA in the Wisconsin Genetics Software Package, Genetics Computer Group, 575 Science Dr., Madison, Wl), or by manual alignment and visual inspection (see, e.g., Current Protocols in Molecular Biology (Ausubel et al., eds. 1995 supplement)).
A preferred example of algorithm that is suitable for determining percent sequence identity and sequence similarity are the BLAST and BLAST 2.0 algorithms, which are described in Altschul et al., 1977, Nuc. Acids Res. 25:3389-3402 and Altschul et al., 1990, J. MoI. Biol. 215:403-410, respectively. BLAST and BLAST 2.0 are used, typically with the default parameters described herein, to determine percent sequence identity for the nucleic acids and proteins of the invention. Software for performing BLAST analyses is publicly available through the National Center for Biotechnology Information. This algorithm involves first identifying high scoring sequence pairs (HSPs) by identifying short words of length W in the query sequence, which either match or satisfy some positive-valued threshold score T when aligned with a word of the same length in a database sequence. T is referred to as the neighborhood word score threshold (Altschul et al., supra). These initial neighborhood word hits act as seeds for initiating searches to find longer HSPs containing them. The word hits are extended in both directions along each sequence for as far as the cumulative alignment score can be increased. Cumulative scores are calculated using, for nucleotide sequences, the parameters M (reward score for a pair of matching residues; always > 0) and N (penalty score for mismatching residues; always < 0). For amino acid sequences, a scoring matrix is used to calculate the cumulative score. Extension of the word hits in each direction are halted when: the cumulative alignment score falls off by the quantity X from its maximum achieved value; the cumulative score goes to zero or below, due to the accumulation of one or more negative-scoring residue alignments; or the end of either sequence is reached. The BLAST algorithm parameters W, T, and X determine the sensitivity and speed of the alignment. The BLASTN program (for nucleotide sequences) uses as defaults a word length (W) of 11 , an expectation (E) of 10, M=5, N=-4 and a comparison of both strands. For amino acid sequences, the BLASTP program uses as defaults a word length of 3, and expectation (E) of 10, and the BLOSUM62 scoring matrix (see Henikoff & Henikoff, Proc. Natl. Acad. Sci. USA 89:10915 (1989)) alignments (B) of 50, expectation (E) of 10, M=5, N=-4, and a comparison of both strands.
The BLAST algorithm also performs a statistical analysis of the similarity between two sequences (see, e.g., Karlin & Altschul, 1993, Proc. Nat'l. Acad. Sci. USA 90:5873-5787). One measure of similarity provided by the BLAST algorithm is the smallest sum probability (P(N)), which provides an indication of the probability by which a match between two nucleotide or amino acid sequences would occur by chance. For example, a nucleic acid is considered similar to a reference sequence if the smallest sum probability in a comparison of the test nucleic acid to the reference nucleic acid is less than about 0.2, more preferably less than about 0.01 , and most preferably less than about 0.001. The phrase "stringent hybridization conditions" refers to conditions under which a probe will hybridize to its target subsequence, typically in a complex mixture of nucleic acid, but to no other sequences. Stringent conditions are sequence- dependent and will be different in different circumstances. Longer sequences hybridize specifically at higher temperatures. An extensive guide to the hybridization of nucleic acids is found in Tijssen, Techniques in Biochemistry and Molecular Biology-Hybridization with Nucleic Probes, "Overview of principles of hybridization and the strategy of nucleic acid assays" (1993). Generally, highly stringent conditions are selected to be about 5-10°C. lower than the thermal melting point (Tm) for the specific sequence at a defined ionic strength pH. Low stringency conditions are generally selected to be about 15-300C. below the Tm. Tm is the temperature (under defined ionic strength, pH, and nucleic concentration) at which 50% of the probes complementary to the target hybridize to the target sequence at equilibrium (as the target sequences are present in excess, at Tm, 50% of the probes are occupied at equilibrium). Stringent conditions will be those in which the salt concentration is less than about 1.0M sodium ion, typically about 0.01 to 1.0M sodium ion concentration (or other salts) at pH 7.0 to 8.3 and the temperature is at least about 3O0C for short probes (e.g., 10 to 50 nucleotides) and at least about 600C for long probes (e.g., greater than 50 nucleotides). Stringent conditions may also be achieved with the addition of destabilizing agents such as formamide. For selective or specific hybridization, a positive signal is at least two times background, preferably 10 times background hybridization. Nucleic acids that do not hybridize to each other under stringent conditions are still substantially identical if the polypeptides which they encode are substantially identical. This occurs, for example, when a copy of a nucleic acid is created using the maximum codon degeneracy permitted by the genetic code. In such cased, the nucleic acids typically hybridize under moderately stringent hybridization conditions.
Genomic DNA or cDNA comprising GPT polynucleotides may be identified in standard Southern blots under stringent conditions using the GPT polynucleotide sequences disclosed here. For this purpose, suitable stringent conditions for such hybridizations are those which include a hybridization in a buffer of 40% formamide, 1M NaCI, 1% SDS at 37°C, and at least one wash in 0.2 X SSC at a temperature of at least about 500C, usually about 55°C to about 60°C, for 20 minutes, or equivalent conditions. A positive hybridization is at least twice background. Those of ordinary skill will readily recognize that alternative hybridization and wash conditions may be utilized to provide conditions of similar stringency. A further indication that two polynucleotides are substantially identical is if the reference sequence, amplified by a pair of oligonucleotide primers, can then be used as a probe under stringent hybridization conditions to isolate the test sequence from a cDNA or genomic library, or to identify the test sequence in, e.g., a northern or Southern blot.
TRANSGENIC PLANTS:
The invention provides novel transgenic plants exhibiting substantially enhanced growth and other agronomic characteristics, including without limitation faster growth, greater mature plant fresh weight and total biomass, earlier and more abundant flowering, and greater fruit and seed yields. The transgenic plants of the invention are generated by introducing into a plant one or more expressible genetic constructs capable of driving the expression of one or more polynucleotides encoding glutamine phenylpyruvate transaminase (GPT). The invention is exemplified, for example, by the generation of transgenic tobacco plants carrying and expressing the heterologous Arabidopsis GPT gene (Example 2, infra). It is expected that all plant species also contain a GPT homolog which functions in the same metabolic pathway, namely the biosynthesis of the signal metabolite 2-hydroxy-5-oxoproline. Thus, in the practice of the invention, any plant gene encoding a GPT homolog or functional variants thereof may be useful in the generation of transgenic plants of this invention. In stable transformation embodiments of the invention, one or more copies of the expressible genetic construct become integrated into the host plant genome, thereby providing increased GPT enzyme capacity into the plant, which serves to mediate increased synthesis of 2-oxoglutaramate, which in turn signals metabolic gene expression, resulting in increased plant growth and the enhancement of plant growth and other agronomic characteristics. 2-oxoglutaramate is a metabolite which is an extremely potent effector of gene expression, metabolism and plant growth (U.S. Patent No. 6,555,500), and which may play a pivotal role in the coordination of the carbon and nitrogen metabolism systems (Lancien et al., 2000, Enzyme Redundancy and the Importance of 2-Oxoglutarate in Higher Plants Ammonium Assimilation, Plant Physiol. 123: 817-824). See, also, the schematic of the 2-oxoglutaramate pathway shown in FIG. 1.
In one aspect of the invention, applicants have isolated a nucleic acid molecule encoding the Arabidopsis glutamine phenyl pyruvate transaminase (GPT) enzyme
(see Example 1 , infra), and have demonstrated for the first time that the expressed recombinant enzyme is active and capable of catalyzing the synthesis of the signal metabolite, 2-oxoglutaramate (Example 2, infra). Further, applicants have demonstrated for the first time that over-expression of the Arabidopsis glutamine transaminase gene in a transformed heterologous plant results in enhanced CO2 fixation rates and increased growth characteristics (Example 3, infra).
As disclosed herein (see Example 3, infra), over-expression of a transgene comprising the full-length Arabidopsis GPT coding sequence in transgenic tobacco plants also results in faster CO2 fixation, and increased levels of total protein, glutamine and 2-oxoglutaramate. These transgenic plants also grow faster than wild- type plants (FIG. 2). Similarly, in studies conducted with tomato plants (see Example 4, infra), tomato plants transformed with the Arabidopsis GPT transgene showed significant enhancement of growth rate, flowering, and seed yield in relation to wild type control plants (FIG. 3 and Example 4, infra). In addition to the transgenic tobacco plants referenced above, various other species of transgenic plants comprising GPT and showing enhanced growth characteristics have been generated in two species of Tomato, Pepper, Beans, Cowpea, Alfalfa, Cantaloupe, Pumpkin, Arabidopsis and Camilena (see co-pending US Application Number 12/551 ,271 , filed August 31 , 2009, the contents of which are incorporated herein by reference in its entirety). The foregoing transgenic plants were generated using a variety of transformation methodologies, including Agrobacterium-mediated callus, floral dip, seed inoculation, pod inoculation, and direct flower inoculation, as well as combinations thereof, and via sexual crosses of single transgene plants, using various GPT transgenes.
The transgenic plants of the invention may be any vascular plant of the phylum Tracheophyta, including angiosperms and gymnosperms. Angiosperms may be a monocotyledonous (monocot) or a dicotyledonous (dicot) plant. Important monocots include those of the grass families, such as the family Poaceae and Gramineae, including plants of the genus Avena (Avena sativa, oats), genus Hordeum (i.e., Hordeum vulgare, Barley), genus Oryza (i.e., Oryza sativa, rice, cultivated rice varieties), genus Panicum (Panicum spp., Panicum virgatum, Switchgrass), genus Phleum (Phleum pratense, Timothy-grass), genus Saccharum (i.e., Saccharum officinarum, Saccharum spontaneum, hybrids thereof, Sugarcane), genus Secale (i.e., Secale cereale, Rye), genus Sorghum {Sorghum vulgare, Sorghum), genus Triticum (wheat, various classes, including T. aestivum and T. durum), genus Fagopyrum (buckwheat, including F. esculentum), genus Triticosecale (Triticale, various hybrids of wheat and rye), genus Chenopodium (quinoa, including C. quinoa), genus Zea (i.e., Zea mays, numerous varieties) as well as millets (i.e., Pennisetum glaucum) including the genus Digitaria (D. exilis).
Important dicots include those of the family Solanaceae, such as plants of the genus Lycopersicon (Lycopersicon esculentum, tomato), genus Capiscum (Capsicum annuum, peppers), genus Solanum (Solanum tuberosum, potato, S. lycopersicum, tomato); genus Manihot (cassava, M. esculenta), genus lpomoea (sweet potato, /. batatas), genus Olea (olives, including O. europaea); plants of the Gossypium family (i.e., Gossypium spp., G. hirsutum, G. herbaceum, cotton); the Legumes (family Fabaceae), such as peas (Pisum spp, P. sativum), beans {Glycine spp., Glycine max(soybean); Phaseolus vulgaris, common beans, Vigna radiata, mung bean), chickpeas (Cicer arietinum)), lentils (Lens culinaris), peanuts (Arachis hypogaea); coconuts (Cocos nucifera) as well as various other important crops such as camelina (Camelina sativa, family Brassicaceae), citrus (Citrus spp, family Rutaceae), coffee (Coffea spp, family Rubiaceae), melon (Cucumis spp, family Cucurbitaceae), squash (Cucurbita spp, family Cucurbitaceae), roses (Rosa spp, family Rosaceae), sunflower (Helianthus annuus, family Asteraceae), sugar beets (Beta spp, family Amaranthaceae), including sugarbeet, B. vulgaris), genus Daucus (carrots, including D. carota), genus Pastinaca (parsnip, including P. sativa), genus Raphanus (radish, including R sativus), genus Dioscorea (yams, including D. rotundata and D. cayenensis), genus Armoracia (horseradish, including A. rusticana), genus Elaeis (Oil palm, including E. guineensis), genus Linum (flax, including L usitatissimum), genus Carthamus (safflower, including C. tinctorius L), genus Sesamum (sesame, including S. indicum), genus VWs (grape, including Vitis vinifera), and plants of the genus Brassica (family Brassicaceae, i.e., broccoli, brussel sprouts, cabbage, swede, turnip, rapeseed B. napus, and cauliflower).
Other specific plants which may be transformed to generate the transgenic plants of the invention include various other fruits and vegetables, such as apples, asparagus, avocado, banana, blackberry, blueberry, brussel sprout, cabbage, cotton, canola, carrots, radish, cucumbers, cherries, cranberries, cantaloupes, eggplant, grapefruit, lemons, limes, nectarines, oranges, peaches, pineapples, pears, plums, tangelos, tangerines, papaya, mango, strawberry, raspberry, lettuce, onion, grape, kiwi fruit, okra, parsnips, pumpkins, and spinach. In addition various flowering plants, trees and ornamental plants may be used to generate transgenic varietals, including without limitation lily, carnation, chrysanthemum, petunia, geranium, violet, gladioli, lupine, orchid and lilac.
The invention also provides methods of generating a transgenic plant having enhanced growth and other agronomic characteristics. In one embodiment, a method of generating a transgenic plant having enhanced growth and other agronomic characteristics comprises introducing into a plant cell an expression cassette comprising a nucleic acid molecule encoding a GPT transgene, under the control of a suitable promoter capable of driving the expression of the transgene, so as to yield a transformed plant cell, and obtaining a transgenic plant which expresses the encoded GPT. In another embodiment, a method of generating a transgenic plant having enhanced growth and other agronomic characteristics comprises introducing into a plant cell one or more nucleic acid constructs or expression cassettes comprising nucleic acid molecules encoding a GPT transgene, under the control of one or more suitable promoters (and, optionally, other regulatory elements) capable of driving the expression of the transgenes, so as to yield a plant cell transformed thereby, and obtaining a transgenic plant which expresses the GPT transgene to produce a biologically acitve GPT protein. Any number of GPT polynucleotides may be used to generate the transgenic plants of the invention. GPT proteins are highly conserved among various plant species, and it is evident from the experimental data disclosed herein that closely-related non- plant GPTs may be used as well (e.g., Danio rerio GPT). With respect to GPT, numerous GPT polynucleotides derived from different species have been shown to be active and useful as GPT transgenes.
In a specific embodiment, the GPT transgene is a GPT polynucleotide encoding an
Arabidopsis derived GPT, such as the GPT of SEQ ID NO: 2, SEQ ID NO: 21 and
SEQ ID NO: 30. The GPT transgene may be encoded by the nucleotide sequence of SEQ ID NO: 1 ; a nucleotide sequence having at least 75% and more preferably at least 80% identity to SEQ ID NO: 1 , and encoding a polypeptide having GPT activity; a nucleotide sequence encoding the polypeptide of SEQ ID NO: 2, or a polypeptide having at least 75% and more preferably at least 80% sequence identity thereto which has GPT activity; or a nucleotide sequence encoding the polypeptide of SEQ ID NO: 2 truncated at its amino terminus by between 30 to 56 amino acid residues, or a polypeptide having at least 75% and more preferably at least 80% sequence identity thereto which has GPT activity.
In another specific embodiment, the GPT transgene is a GPT polynucleotide encoding a Grape derived GPT, such as the Grape GPTs of SEQ ID NO: 4 and SEQ
ID NO: 26. The GPT transgene may be encoded by the nucleotide sequence of SEQ
ID NO: 3; a nucleotide sequence having at least 75% and more preferably at least
80% identity to SEQ ID NO: 3, and encoding a polypeptide having GPT activity; or a nucleotide sequence encoding the polypeptide of SEQ ID NO: 4 or SEQ ID NO: 26, or a polypeptide having at least 75% and more preferably at least 80% sequence identity thereto which has GPT activity.
In yet another specific embodiment, the GPT transgene is a GPT polynucleotide encoding a Rice derived GPT, such as the Rice GPTs of SEQ ID NO: 6 and SEQ ID NO: 27. The GPT transgene may be encoded by the nucleotide sequence of SEQ ID NO: 5; a nucleotide sequence having at least 75% and more preferably at least 80% identity to SEQ ID NO: 5, and encoding a polypeptide having GPT activity; or a nucleotide sequence encoding the polypeptide of SEQ ID NO: 6 or SEQ ID NO: 27, or a polypeptide having at least 75% and more preferably at least 80% sequence identity thereto which has GPT activity.
In yet another specific embodiment, the GPT transgene is a GPT polynucleotide encoding a Soybean derived GPT, such as the Soybean GPTs of SEQ ID NO: 8 or SEQ ID NO: 28 with a further lsoleucine at the N-terminus of the sequence. The GPT transgene may be encoded by the nucleotide sequence of SEQ ID NO: 7; a nucleotide sequence having at least 75% and more preferably at least 80% identity to SEQ ID NO: 7, and encoding a polypeptide having GPT activity; or a nucleotide sequence encoding the polypeptide of SEQ ID NO: 8 or SEQ ID NO: 28 with a further lsoleucine at the N-terminus of the sequence, or a polypeptide having at least 75% and more preferably at least 80% sequence identity thereto which has GPT activity.
In yet another specific embodiment, the GPT transgene is a GPT polynucleotide encoding a Barley derived GPT, such as the Barley GPTs of SEQ ID NO: 15 and SEQ ID NO: 34. The GPT transgene may be encoded by the nucleotide sequence of SEQ ID NO: 9; a nucleotide sequence having at least 75% and more preferably at least 80% identity to SEQ ID NO: 9, and encoding a polypeptide having GPT activity; or a nucleotide sequence encoding the polypeptide of SEQ ID NO: 10, SEQ ID NO: 29 or SEQ ID NO: 40, or a polypeptide having at least 75% and more preferably at least 80% sequence identity thereto which has GPT activity. In yet another specific embodiment, the GPT transgene is a GPT polynucleotide encoding a Zebra fish derived GPT, such as the Zebra fish GPTs of SEQ ID NO: 12 and SEQ ID NO: 30. The GPT transgene may be encoded by the nucleotide sequence of SEQ ID NO: 11 ; a nucleotide sequence having at least 75% and more preferably at least 80% identity to SEQ ID NO: 11 , and encoding a polypeptide having GPT activity; or a nucleotide sequence encoding the polypeptide of SEQ ID NO: 12 or SEQ ID NO: 30, or a polypeptide having at least 75% and more preferably at least 80% sequence identity thereto which has GPT activity.
In yet another specific embodiment, the GPT transgene is a GPT polynucleotide encoding a Bamboo derived GPT, such as the Bamboo GPT of SEQ ID NO: 19 or
SEQ ID NO: 31. The GPT transgene may be encoded by the nucleotide sequence of
SEQ ID NO: 18; a nucleotide sequence having at least 75% and more preferably at least 80% identity to SEQ ID NO: 18; or a nucleotide sequence encoding a polypeptide having GPT activity encoded by a nucleotide sequence encoding the polypeptide of SEQ ID NO: 36, or a polypeptide having at least 75% and more preferably at least 80% sequence identity thereto which has GPT activity. As will be appreciated by one skilled in the art, other GPT polynucleotides suitable for use as GPT transgenes in the practice of the invention may be obtained by various means, and tested for the ability to direct the expression of a GPT with GPT activity in a recombinant expression system (i.e., E. coli (see Examples 20-23), in a transient in planta expression system (see Example 19), or in a transgenic plant (see Examples 1-18).
TRANSGENE CONSTRUCTS/EXPRESSION VECTORS
In order to generate the transgenic plants of the invention, the gene coding sequence for the desired transgene(s) must be incorporated into a nucleic acid construct (also interchangeably referred to herein as a/an (transgene) expression vector, expression cassette, expression construct or expressible genetic construct), which can direct the expression of the transgene sequence in transformed plant cells. Such nucleic acid constructs carrying the transgene(s) of interest may be introduced into a plant cell or cells using a number of methods known in the art, including but not limited to electroporation, DNA bombardment or biolistic approaches, microinjection, and via the use of various DNA-based vectors such as Agrobacterium tumefaciens and Agrobacterium rhizogenes vectors. Once introduced into the transformed plant cell, the nucleic acid construct may direct the expression of the incorporated transgene(s) (i.e., GPT), either in a transient or stable fashion. Stable expression is preferred, and is achieved by utilizing plant transformation vectors which are able to direct the chromosomal integration of the transgene construct. Once a plant cell has been successfully transformed, it may be cultivated to regenerate a transgenic plant.
A large number of expression vectors suitable for driving the constitutive or induced expression of inserted genes in transformed plants are known. In addition, various transient expression vectors and systems are known. To a large extent, appropriate expression vectors are selected for use in a particular method of gene transformation (see, infra). Broadly speaking, a typical plant expression vector for generating transgenic plants will comprise the transgene of interest under the expression regulatory control of a promoter, a selectable marker for assisting in the selection of transformants, and a transcriptional terminator sequence.
More specifically, the basic elements of a nucleic acid construct for use in generating the transgenic plants of the invention are: a suitable promoter capable of directing the functional expression of the transgene(s) in a transformed plant cell, the transgene(s) (i.e., GPT coding sequence) operably linked to the promoter, preferably a suitable transcription termination sequence (i.e., nopaline synthetic enzyme gene terminator) operably linked to the transgene, and sometimes other elements useful for controlling the expression of the transgene, as well as one or more selectable marker genes suitable for selecting the desired transgenic product (i.e., antibiotic resistance genes). As Agrobacteriυm tumefaciens is the primary transformation system used to generate transgenic plants, there are numerous vectors designed for Agrobacterium transformation. For stable transformation, Agrobacterium systems utilize "binary" vectors that permit plasmid manipulation in both E. coli and Agrobacterium, and typically contain one or more selectable markers to recover transformed plants (Hellens et al., 2000, Technical focus: A guide to Agrobacterium binary Ti vectors. Trends Plant Sci 5:446-451). Binary vectors for use in Agrobacterium transformation systems typically comprise the borders of T-DNA, multiple cloning sites, replication functions for Escherichia coli and A. tumefaciens, and selectable marker and reporter genes.
So-called "super-binary" vectors provide higher transformation efficiencies, and generally comprise additional virulence genes from a Ti (Komari et al., 2006, Methods MoI. Biol. 343: 15-41). Super binary vectors are typically used in plants which exhibit lower transformation efficiencies, such as cereals. Such additional virulence genes include without limitation virB, virE, and virG (Vain et al., 2004, The effect of additional virulence genes on transformation efficiency, transgene integration and expression in rice plants using the pGreen/pSoup dual binary vector system. Transgenic Res. 13: 593-603; Srivatanakul et al., 2000, Additional virulence genes influence transgene expression: transgene copy number, integration pattern and expression. J. Plant Physiol. 157, 685-690; Park et al., 2000, Shorter T-DNA or additional virulence genes improve Agrobacterium-mediated transformation. Theor. Appl. Genet. 101 , 1015-1020; Jin et al., 1987, Genes responsible for the supervirulence phenotype of Agrobacterium tumefaciens A281. J. Bacterid. 169: 4417-4425). In the embodiments exemplified herein (see Examples, infra), expression vectors which place the inserted transgene(s) under the control of the constitutive CaMV 35S promoter are employed. A number of expression vectors which utilize the CaMV 35S promoter are known and/or commercially available. However, numerous promoters suitable for directing the expression of the transgene are known and may be used in the practice of the invention, as further described, infra.
PLANT PROMOTERS A large number of promoters which are functional in plants are known in the art. In constructing GPT transgene constructs, the selected promoter(s) may be constitutive, non-specific promoters such as the Cauliflower Mosaic Virus 35S ribosomal promoter (CaMV 35S promoter), which is widely employed for the expression of transgenes in plants. Examples of other strong constitutive promoters include without limitation the rice actin 1 promoter, the CaMV 19S promoter, the Ti plasmid nopaline synthase promoter, the alcohol dehydrogenase promoter and the sucrose synthase promoter.
Alternatively, in some embodiments, it may be desirable to select a promoter based upon the desired plant cells to be transformed by the transgene construct, the desired expression level of the transgene, the desired tissue or subcellular compartment for transgene expression, the developmental stage targeted, and the like.
For example, when expression in photosynthetic tissues and compartments is desired, a promoter of the ribulose bisphosphate carboxylase (RuBisCo) gene may be employed. When the expression in seeds is desired, promoters of various seed storage protein genes may be employed. For expression in fruits, a fruit-specific promoter such as tomato 2A11 may be used. Examples of other tissue specific promoters include the promoters encoding lectin (Vodkin et al., 1983, Cell 34:1023- 31 ; Lindstrom et al., 1990, Developmental Genetics 11 :160-167), corn alcohol dehydrogenase 1 (Vogel et al, 1989, J. Cell. Biochem. (Suppl. 0) 13:Part D; Dennis et al., 1984, Nucl. Acids Res., 12(9): 3983-4000), corn light harvesting complex (Simpson, 1986, Science, 233: 34-38; Bansal et al., 1992, Proc. Natl. Acad. Sci. USA, 89: 3654-3658), corn heat shock protein (Odell et al., 1985, Nature, 313: 810- 812; Rochester et al., 1986, EMBO J., 5: 451-458), pea small subunit RuBP carboxylase (Poulsen et al., 1986, MoI. Gen. Genet., 205(2): 193-200; Cashmore et al., 1983, Gen. Eng. Plants, Plenum Press, New York, pp 29-38), Ti plasmid mannopine synthase and Ti plasmid nopaline synthase (Langridge et al., 1989, Proc. Natl. Acad. Sci. USA, 86: 3219-3223), petunia chalcone isomerase (Van Tunen et al.,
1988, EMBO J. 7(5): 1257-1263), bean glycine rich protein 1 (Keller et al., 1989, EMBO J. 8(5): 1309-1314), truncated CaMV 35s (Odell et al., 1985, supra), potato patatin (Wenzler et al., 1989, Plant MoI. Biol. 12: 41-50), root cell (Conkling et al.,
1990, Plant Physiol. 93: 1203-1211 ), maize zein (Reina et al., 1990, Nucl. Acids Res. 18(21): 6426; Kriz et al., 1987, MoI. Gen. Genet. 207(1): 90-98; Wandelt and Feix,
1989, Nuc. Acids Res. 17(6): 2354; Langridge and Feix, 1983, Cell 34: 1015-1022; Reina et al., 1990, Nucl. Acids Res. 18(21 ): 6426), globulin-1 (Belanger and Kriz,
1991 , Genetics 129: 863-872), α-tubulin (Carpenter et al., 1992, Plant Cell 4(5): 557- 571 ; Uribe et al., 1998, Plant MoI. Biol. 37(6): 1069-1078), cab (Sullivan, et al., 1989, MoI. Gen. Genet. 215(3): 431-440), PEPCase (Hudspeth and Grula, 1989, Plant MoI. Biol. 12: 579-589), R gene complex (Chandler et al., 1989, The Plant Cell 1 : 1175- 1183), chalcone synthase (Franken et al., 1991 , EMBO J. 10(9): 2605-2612) and glutamine synthetase promoters (U.S. Pat. No. 5,391 ,725; Edwards et al., 1990, Proc. Natl. Acad. Sci. USA 87: 3459-3463; Brears et al., 1991 , Plant J. 1(2): 235- 244).
In addition to constitutive promoters, various inducible promoter sequences may be employed in cases where it is desirable to regulate transgene expression as the transgenic plant regenerates, matures, flowers, etc. Examples of such inducible promoters include promoters of heat shock genes, protection responding genes (i.e., phenylalanine ammonia lyase; see, for example Bevan et al., 1989, EMBO J. 8(7): 899-906), wound responding genes (i.e., cell wall protein genes), chemically inducible genes (i.e., nitrate reductase, chitinase) and dark inducible genes (i.e., asparagine synthetase; see, for example U.S. Patent No. 5,256,558). Also, a number of plant nuclear genes are activated by light, including gene families encoding the major chlorophyll a/b binding proteins (cab) as well as the small subunit of ribulose-1 ,5-bisphosphate carboxylase (rbcS) (see, for example, Tobin and Silverthome, 1985, Annu. Rev. Plant Physiol. 36: 569-593; Dean et al., 1989, Annu. Rev. Plant Physiol. 40: 415-439.).
Other inducible promoters include ABA- and turgor-inducible promoters, the auxin- binding protein gene promoter (Schwob et al., 1993, Plant J. 4(3): 423-432), the UDP glucose flavonoid glycosyl-transferase gene promoter (Ralston et al., 1988, Genetics 119(1): 185-197); the MPI proteinase inhibitor promoter (Cordero et al., 1994, Plant J. 6(2): 141-150), the glyceraldehyde-3-phosphate dehydrogenase gene promoter (Kohler et al., 1995, Plant MoI. Biol. 29(6): 1293-1298; Quigley et al., 1989, J. MoI. Evol. 29(5): 412-421 ; Martinez et al.,1989, J. MoI. Biol. 208(4): 551-565) and light inducible plastid glutamine synthetase gene from pea (U.S. Pat. No. 5,391 ,725; Edwards et al., 1990, supra).
For a review of plant promoters used in plant transgenic plant technology, see Potenza et al., 2004, In Vitro Cell. Devel. Biol - Plant, 40(1): 1-22. For a review of synthetic plant promoter engineering, see, for example, Venter, M., 2007, Trends Plant Sci., 12(3): 118-124. GLUTAMINE PHENYLPYRUVATE TRANSAMINASE (GPT) TRANSGENE
The present invention discloses for the first time that plants contain a glutamine phenylpyruvate transaminase (GPT) enzyme which is directly functional in the synthesis of the signal metabolite 2-hydroxy-5-oxoproline. Until now, no plant transaminase with a defined function has been described. Applicants have isolated and tested GPT polynucleotide coding sequences derived from several plant and animal species, and have successfully incorporated the gene into heterologous transgenic host plants which exhibit markedly improved growth characteristics, including faster growth, higher foliar protein content, and faster CO2 fixation rates.
It is expected that all plant species contain a GPT which functions in the same metabolic pathway, involving the biosynthesis of the signal metabolite 2-hydroxy-5- oxoproline. Thus, in the practice of the invention, any plant gene encoding a GPT homolog or functional variants thereof may be useful in the generation of transgenic plants of this invention. Moreover, given the structural similarity between various plant GPT protein structures and the putative (and biologically active) GPT homolog from Danio rerio (Zebra fish) (see Example 22), other non-plant GPT homologs may be used in preparing GPT transgenes for use in generating the transgenic plants of the invention. When individually compared (by BLAST alignment) to the Arabidopsis mature protein sequence provided in SEQ ID NO: 30, the following sequence identities and homologies (BLAST "positives", including similar amino acids) were obtained for the following mature GPT protein sequences:
[SEQ ID] ORIGIN % IDENTITY %POSITIVE
[31] Grape 84 93
[32] Rice 83 91
[33] Soybean 83 93
[34] Barley 82 91
[35] Zebra fish 83 92
[36] Bamboo 81 90 Corn 79 90
Castor 84 93
Poplar 85 93 Underscoring the conserved nature of the structure of the GPT protein across most plant species, the conservation seen within the above plant species extends to the non-human putative GPTs from Zebra fish and Chlamydomonas. In the case of Zebra fish, the extent of identity is very high (83% amino acid sequence identity with the mature Arabidopsis GPT of SEQ ID NO: 30, and 92% homologous taking similar amino acid residues into account). The Zebra fish mature GPT was confirmed by expressing it in E. coli and demonstrating biological activity (synthesis of 2- oxoglutaramate).
In order to determine whether putative GPT homologs would be suitable for generating the growth-enhanced transgenic plants of the invention, one may express the coding sequence thereof in E. coli or another suitable host and determine whether the 2-oxoglutaramate signal metabolite is synthesized at increased levels (see Examples 19-23). Where such an increase is demonstrated, the coding sequence may then be introduced into both homologous plant hosts and heterologous plant hosts, and growth characteristics evaluated. Any assay that is capable of detecting 2-oxoglutaramate with specificity may be used for this purpose, including without limitation the NMR and HPLC assays described in Example 2, infra. In addition, assays which measure GPT activity directly may be employed. Any plant GPT with 2-oxoglutaramate synthesis activity may be used to transform plant cells in order to generate transgenic plants of the invention. There appears to be a high level of structural homology among plant species, which appears to extend beyond plants, as evidenced by the close homology between various plant GPT proteins and the putative Zebra fish GPT homolog. Therefore, various plant GPT genes may be used to generate growth-enhanced transgenic plants in a variety of heterologous plant species. In addition, GPT transgenes expressed in a homologous plant would be expected to result in the desired enhanced-growth characteristics as well (i.e., rice glutamine transaminase over-expressed in transgenic rice plants), although it is possible that regulation within a homologous cell may attenuate the expression of the transgene in some fashion that may not be operable in a heterologous cell.
TRANSCRIPTION TERMINATORS: In preferred embodiments, a 3' transcription termination sequence is incorporated downstream of the transgene in order to direct the termination of transcription and permit correct polyadenylation of the mRNA transcript. Suitable transcription terminators are those which are known to function in plants, including without limitation, the nopaline synthase (NOS) and octopine synthase (OCS) genes of Agrobacterium tumefaciens, the T7 transcript from the octopine synthase gene, the 3' end of the protease inhibitor I or Il genes from potato or tomato, the CaMV 35S terminator, the tml terminator and the pea rbcS E9 terminator. In addition, a gene's native transcription terminator may be used. In specific embodiments, described by way of the Examples, infra, the nopaline synthase transcription terminator is employed.
SELECTABLE MARKERS:
Selectable markers are typically included in transgene expression vectors in order to provide a means for selecting transformants. While various types of markers are available, various negative selection markers are typically utilized, including those which confer resistance to a selection agent that inhibits or kills untransformed cells, such as genes which impart resistance to an antibiotic (such as kanamycin, gentamycin, anamycin, hygromycin and hygromycinB) or resistance to a herbicide (such as sulfonylurea, gulfosinate, phosphinothricin and glyphosate). Screenable markers include, for example, genes encoding β-glucuronidase (Jefferson, 1987, Plant MoI. Biol. Rep 5: 387-405), genes encoding luciferase (Ow et al., 1986, Science 234: 856-859) and various genes encoding proteins involved in the production or control of anthocyanin pigments (See, for example, U.S. Patent 6,573,432). The E. coli glucuronidase gene (gus, gusA or uidA) has become a widely used selection marker in plant transgenics, largely because of the glucuronidase enzyme's stability, high sensitivity and ease of detection (e.g., fluorometric, spectrophotometric, various histochemical methods). Moreover, there is essentially no detectable glucuronidase in most higher plant species. TRANSFORMATION METHODOLOGIES AND SYSTEMS:
Various methods for introducing the transgene expression vector constructs of the invention into a plant or plant cell are well known to those skilled in the art, and any capable of transforming the target plant or plant cell may be utilized.
Agrobacterium-med\ated transformation is perhaps the most common method utilized in plant transgenics, and protocols for Agrobacterium-med\ated transformation of a large number of plants are extensively described in the literature (see, for example, Agrobacterium Protocols, Wan, ed., Humana Press, 2nd edition, 2006). Agrobacterium tumefaciens is a Gram negative soil bacteria that causes tumors (Crown Gall disease) in a great many dicot species, via the insertion of a small segment of tumor-inducing DNA ( "T-DNA", 'transfer DNA') into the plant cell, which is incorporated at a semi-random location into the plant genome, and which eventually may become stably incorporated there. Directly repeated DNA sequences, called T- DNA borders, define the left and the right ends of the T-DNA. The T-DNA can be physically separated from the remainder of the Ti-plasmid, creating a 'binary vector' system.
Agrobacterium transformation may be used for stably transforming dicots, monocots, and cells thereof (Rogers et al., 1986, Methods Enzymol., 118: 627-641 ; Hernalsteen et al., 1984, EMBO J., 3: 3039-3041 ; Hoykass-Van Slogteren et al., 1984, Nature, 311: 763-764; Grimsley et al., 1987, Nature 325: 167-1679; Boulton et al., 1989, Plant MoI. Biol. 12: 31-40; Gould et al., 1991 , Plant Physiol. 95: 426-434). Various methods for introducing DNA into Agrobacteria are known, including electroporation, freeze/thaw methods, and triparental mating. The most efficient method of placing foreign DNA into Agrobacterium is via electroporation (Wise et al., 2006, Three Methods for the Introduction of Foreign DNA into Agrobacterium, Methods in Molecular Biology, vol. 343: Agrobacterium Protocols, 2/e, volume 1 ; Ed., Wang, Humana Press Inc., Totowa, NJ1 pp. 43-53). In addition, given that a large percentage of T-DNAs do not integrate, Agrobacterium-med\ate<i transformation may be used to obtain transient expression of a transgene via the transcriptional competency of unincorporated transgene construct molecules (Helens et al., 2005, Plant Methods 1 :13).
A large number of Agrobacterium transformation vectors and methods have been described (Karimi et al., 2002, Trends Plant Sci. 7(5): 193-5), and many such vectors may be obtained commercially (for example, Invitrogen, Carlsbad, CA). In addition, a growing number of "open-source" Agrobacterium transformation vectors are available
(for example, pCambia vectors; Cambia, Canberra, Australia). See, also, subsection herein on TRANSGENE CONSTRUCTS, supra. In a specific embodiment described further in the Examples, a pMON316-based vector was used in the leaf disc transformation system of Horsch et. al. (Horsch et al.,1995, Science 227:1229-1231 ) to generate growth enhanced transgenic tobacco and tomato plants.
Other commonly used transformation methods that may be employed in generating the transgenic plants of the invention include, without limitation, microprojectile bombardment, or biolistic transformation methods, protoplast transformation of naked
DNA by calcium, polyethylene glycol (PEG) or electroporation (Paszkowski et al.,
1984, EMBO J. 3: 2727-2722; Potrykus et al., 1985, MoI. Gen. Genet. 199: 169-177;
Fromm et al., 1985, Proc. Nat. Acad. Sci. USA 82: 5824-5828; Shimamoto et al., 1989, Nature, 338: 274-276. Biolistic transformation involves injecting millions of DNA-coated metal particles into target cells or tissues using a biolistic device (or "gene gun"), several kinds of which are available commercially. Once inside the cell, the DNA elutes off the particles and a portion may be stably incorporated into one or more of the cell's chromosomes (for review, see Kikkert et al., 2005, Stable Transformation of Plant Cells by Particle Bombardment/Biolistics, in: Methods in Molecular Biology, vol. 286: Transgenic Plants: Methods and Protocols, Ed. L. Pena, Humana Press Inc., Totowa, NJ).
Electroporation is a technique that utilizes short, high-intensity electric fields to permeabilize reversibly the lipid bilayers of cell membranes (see, for example, Fisk and Dandekar, 2005, Introduction and Expression of Transgenes in Plant Protoplasts, in: Methods in Molecular Biology, vol. 286: Transgenic Plants: Methods and Protocols, Ed. L. Pena, Humana Press Inc., Totowa, NJ, pp. 79-90; Fromm et al.,1987, Electroporation of DNA and RNA into plant protoplasts, in Methods in Enzymology, Vol. 153, Wu and Grossman, eds., Academic Press, London, UK, pp. 351-366; Joersbo and Brunstedt, 1991, Electroporation: mechanism and transient expression, stable transformation and biological effects in plant protoplasts. Physiol. Plant. 81, 256-264; Bates, 1994, Genetic transformation of plants by protoplast electroporation. MoI. Biotech. 2: 135-145; Dillen et al., 1998, Electroporation- mediated DNA transfer to plant protoplasts and intact plant tissues for transient gene expression assays, in Cell Biology, Vol. 4, ed., Celis, Academic Press, London, UK, pp. 92-99). The technique operates by creating aqueous pores in the cell membrane, which are of sufficiently large size to allow DNA molecules (and other macromolecules) to enter the cell, where the transgene expression construct (as T- DNA) may be stably incorporated into plant genomic DNA1 leading to the generation of transformed cells that can subsequently be regenerated into transgenic plants.
Newer transformation methods include so-called "floral dip" methods, which offer the promise of simplicity, without requiring plant tissue culture, as is the case with all other commonly used transformation methodologies (Bent et al., 2006, Arabidopsis thaliana Floral Dip Transformation Method, Methods MoI Biol, vol. 343: Agrobacteriυm Protocols, 2Ie, volume 1 ; Ed., Wang, Humana Press Inc., Totowa, NJ, pp. 87-103; Clough and Bent, 1998, Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana, Plant J. 16: 735- 743). However, with the exception of Arabidopsis, these methods have not been widely used across a broad spectrum of different plant species. Briefly, floral dip transformation is accomplished by dipping or spraying flowering plants in with an appropriate strain of Agrobacterium tumefaciens. Seeds collected from these T0 plants are then germinated under selection to identify transgenic Ti individuals. Example 16 demonstrated floral dip inoculation of Arabidopsis to generate transgenic Arabidopsis plants.
Other transformation methods include those in which the developing seeds or seedlings of plants are transformed using vectors such as Agrobacterium vectors. For example, such vectors may be used to transform developing seeds by injecting a suspension or mixture of the vector (i.e., Agrobacteria) directly into the seed cavity of developing pods (Wang and Waterhouse, 1997, Plant MoI. Biol. Reporter 15: 209- 215). Seedlings may be transformed as described in Yasseem, 2009, Plant MoI. Biol. Reporter 27: 20-28. Germinating seeds may be transformed as described in Chee et al., 1989, Plant Pysiol. 91 : 1212-1218. Intra-fruit methods, in which the vector is injected into fruit or developing fruit, may be also be used. Still other transformation methods include those in which the flower structure is targeted for vector inoculation, such as the flower inoculation methods.
In addition, although transgenes are most commonly inserted into the nuclear DNA of plant cells, trangenes may also be inserted into plastidic DNA (i.e., into the plastome of the chloroplast). In most flowering plants, plastids do not occur in the pollen cells, and therefore transgenic DNA incorporated within a plastome will not be passed on through propagation, thereby restricting the trait from migrating to wild type plants.
Plastid transformation, however, is more complex than cell nucleus transformation, due to the presence of many thousands of plastomes per cell (as high as 10,000). Transplastomic lines are genetically stable only if all plastid copies are modified in the same way, i.e. uniformly. This is typically achieved through repeated regeneration under certain selection conditions to eliminate untransformed plastids, by segregating transplastomic and untransformed plastids, resulting in the selection of homoplasmic cells carrying the transgene construct and the selectable marker stably integrated therein. Plastid transformation has been successfully performed in various plant species, including tobacco, potatoes, oilseed rape, rice and Arabidopsis.
To generate transplastomic lines carrying GPT transgenes, the transgene expression cassette is inserted into flanking sequences from the plastome. Using homologous recombination, the transgene expression cassette becomes integrated into the plastome via a natural recombination process. The basic DNA delivery techniques for plastid transformation include particle bombardment of leaves or polyethylene glycol- mediated DNA transformation of protoplasts. Transplastomic plants carrying transgenes in the plastome may be expressed at very high levels, due to the fact that many plastids (i.e., chloroplasts) per cell, each carrying many copies of the plastome.
This is particularly the case in foliar tissue, where a single mature leaf cell may contain over 10,000 copies of the plastome. Following a successful transformation of the plastome, the transplastomic events carry the transgene on every copy of the plastid genetic material. This can result in the transgene expression levels representing as much as half of the total protein produced in the cell.
Plastid transformation methods and vector systems are described, for example, in recent US Patent Nos. 7,528,292; 7,371 ,923; 7,235,711 ; and, 7,193,131. See also US Patent Nos. 6,680,426 and 6,642,053.
The foregoing plant transformation methodologies may be used to introduce transgenes into a number of different plant cells and tissues, including without limitation, whole plants, tissue and organ explants including chloroplasts, flowering tissues and cells, protoplasts, meristem cells, callus, immature embryos and gametic cells such as microspores, pollen, sperm and egg cells, tissue cultured cells of any of the foregoing, any other cells from which a fertile regenerated transgenic plant may be generated. Callus is initiated from tissue sources including, but not limited to, immature embryos, seedling apical meristems, microspores and the like. Cells capable of proliferating as callus are also recipient cells for genetic transformation.
Methods of regenerating individual plants from transformed plant cells, tissues or organs are known and are described for numerous plant species.
As an illustration, transformed plantlets (derived from transformed cells or tissues) are cultured in a root-permissive growth medium supplemented with the selective agent used in the transformation strategy (i.e., an antibiotic such as kanamycin).
Once rooted, transformed plantlets are then transferred to soil and allowed to grow to maturity. Upon flowering, the mature plants are preferably selfed (self-fertilized), and the resultant seeds harvested and used to grow subsequent generations. Examples 3 - 6 describe the regeneration of transgenic tobacco and tomato plants.
To transgenic plants may be used to generate subsequent generations (e.g., T-i, T2, etc.) by selfing of primary or secondary transformants, or by sexual crossing of primary or secondary transformants with other plants (transformed or untransformed).
SELECTION OF GROWTH-ENHANCED TRANSGENIC PLANTS:
Transgenic plants may be selected, screened and characterized using standard methodologies. The preferred transgenic plants of the invention will exhibit one or more phenotypic characteristics indicative of enhanced growth and/or other desirable agronomic properties. Transgenic plants are typically regenerated under selective pressure in order to select transformants prior to creating subsequent transgenic plant generations. In addition, the selective pressure used may be employed beyond T0 generations in order to ensure the presence of the desired transgene expression construct or cassette. T0 transformed plant cells, calli, tissues or plants may be identified and isolated by selecting or screening for the genetic composition of and/or the phenotypic characteristics encoded by marker genes contained in the transgene expression construct used for the transformation. For example, selection may be conducted by growing potentially-transformed plants, tissues or cells in a growth medium containing a growth-repressive amount of antibiotic or herbicide to which the transforming genetic construct can impart resistance. Further, the transformed plant cells, tissues and plants can be identified by screening for the activity of marker genes (i.e., β-glucuronidase) which may be present in the transgene expression construct.
Various physical and biochemical methods may be employed for identifying plants containing the desired transgene expression construct, as is well known. Examples of such methods include Southern blot analysis or various nucleic acid amplification methods (i.e., PCR) for identifying the transgene, transgene expression construct or elements thereof, Northern blotting, S1 RNase protection, reverse transcriptase PCR (RT-PCR) amplification for detecting and determining the RNA transcription products, and protein gel electrophoresis, Western blotting, immunoprecipitation, enzyme immunoassay, and the like may be used for identifying the protein encoded and expressed by the transgene.
In another approach, expression levels of genes, proteins and/or metabolic compounds that are know to be modulated by transgene expression in the target plant may be used to identify transformants. In one embodiment of the present invention, increased levels of the signal metabolite 2-oxoglutaramate may be used to screen for desirable transformants.
Ultimately, the transformed plants of the invention may be screened for enhanced growth and/or other desirable agronomic characteristics. Indeed, some degree of phenotypic screening is generally desirable in order to identify transformed lines with the fastest growth rates, the highest seed yields, etc., particularly when identifying plants for subsequent selfing, cross-breeding and back-crossing. Various parameters may be used for this purpose, including without limitation, growth rates, total fresh weights, dry weights, seed and fruit yields (number, weight), seed and/or seed pod sizes, seed pod yields (e.g., number, weight), leaf sizes, plant sizes, increased flowering, time to flowering, overall protein content (in seeds, fruits, plant tissues), specific protein content (i.e., GS), nitrogen content, free amino acid, and specific metabolic compound levels (i.e., 2-oxoglutaramate). Generally, these phenotypic measurements are compared with those obtained from a parental identical or analogous plant line, an untransformed identical or analogous plant, or an identical or analogous wild-type plant (i.e., a normal or parental plant). Preferably, and at least initially, the measurement of the chosen phenotypic characteristic(s) in the target transgenic plant is done in parallel with measurement of the same characteristic(s) in a normal or parental plant. Typically, multiple plants are used to establish the phenotypic desirability and/or superiority of the transgenic plant in respect of any particular phenotypic characteristic.
Preferably, initial transformants are selected and then used to generate Ti and subsequent generations by selfing (self-fertilization), until the transgene genotype breeds true (i.e., the plant is homozygous for the transgene). In practice, this is accomplished by screening at each generation for the desired traits and selfing those individuals, often repeatedly (i.e., 3 or 4 generations).
Stable transgenic lines may be crossed and back-crossed to create varieties with any number of desired traits, including those with stacked transgenes, multiple copies of a transgene, etc. Various common breeding methods are well know to those skilled in the art (see, e.g., Breeding Methods for Cultivar Development, Wilcox J. ed., American Society of Agronomy, Madison Wis. (1987)). Additionally, stable transgenic plants may be further modified genetically, by transforming such plants with further transgenes or additional copies of the parental transgene. Also contemplated are transgenic plants created by single transformation events which introduce multiple copies of a given transgene or multiple transgenes. EXAMPLES
Various aspects of the invention are further described and illustrated by way of the several examples which follow, none of which are intended to limit the scope of the invention.
EXAMPLE 1: ISOLATION OF ARABIDOPSIS GLUAMINE PHENYLPYRUVATE TRANSAMINASE (GPT) GENE: In an attempt to locate a plant enzyme that is directly involved in the synthesis of the signal metabolite 2-oxoglutaramate, applicants hypothesized that the putative plant enzyme might bear some degree of structural relationship to a human protein that had been characterized as being involved in the synthesis of 2-oxoglutaramate. The human protein, glutamine transaminase K (E.C. 2.6.1.64) (also referred in the literature as cysteine conjugate β -lyase, kyneurenine aminotransferase, glutamine phenylpyruvate transaminase, and other names), had been shown to be involved in processing of cysteine conjugates of halogenated xenobiotics (Perry et al., 1995, FEBS Letters 360:277-280). Rather than having an activity involved in nitrogen assimilation, however, human cysteine conjugate β-lyase has a detoxifying activity in humans, and in animals(Cooper and Meister, 1977, supra). Nevertheless, the potential involvement of this protein in the synthesis of 2-oxoglutaramate was of interest.
Using the protein sequence of human cysteine conjugate β-lyase, a search against the TIGR Arabidopsis plant database of protein sequences identified one potentially related sequence, a polypeptide encoded by a partial sequence at the Arabidopsis gene locus at At1q77670, sharing approximately 36% sequence homology/identity across aligned regions. The full coding region of the gene was then amplified from an Arabidopsis cDNA library (Stratagene) with the following primer pair: 5'-CCCATCGATGTACC TGGACATAAATGGTGTGATG-3' [SEQ ID NO: 32]
5'- GATGGTACCTCAGACTTTTCTCTTAAGCTTCTGCTTC-3' [SEQ ID NO: 33]
These primers were designed to incorporate CIa I (ATCGAT) and Kpn I (GGTACC) restriction sites to facilitate subsequent subcloning into expression vectors for generating transgenic plants. Takara ExTaq DNA polymerase enzyme was used for high fidelity PCR using the following conditions: initial denaturing 94C for 4 minutes, 30 cycles of 940C 30 second, annealing at 55°C for 30 seconds, extension at 72°C for 90 seconds, with a final extension of 72°C for 7 minutes. The amplification product was digested with CIa I and Kpn I restriction enzymes, isolated from an agarose gel electrophoresis and ligated into vector pMon316 (Rogers, et. al. 1987 Methods in Enzymology 153:253-277) which contains the cauliflower mosaic virus (CaMV) 35S constitutive promoter and the nopaline synthase (NOS) 3' terminator. The ligation product was transformed into DH5α cells and transformants sequenced to verify the insert.
A 1.3 kb cDNA was isolated and sequenced, and found to encode a full length protein of 440 amino acids in length, including a putative chloroplast signal sequence.
EXAMPLE 2: PRODUCTION OF BIOLOGICALLY ACTIVE ARABIDOPSIS
GLUTAMINE PHENYLPYRUVATE TRANSAMINASE:
To test whether the protein encoded by the cDNA isolated as described in Example 1 , supra, is capable of catalyzing the synthesis of 2-oxoglutaramate, the cDNA was expressed in E. coli, purified, and assayed for its ability to synthesize 2- oxoglutaramate using a standard method.
NMR Assay for 2-oxoglutaramate
Briefly, the resulting purified protein was added to a reaction mixture containing 150 mM Tris-HCI, pH 8.5, 1 mM beta mercaptoethanol, 200 mM glutamine, 100 mM glyoxylate and 200 μM pyridoxal 5'-phosphate. The reaction mixture without added test protein was used as a control. Test and control reaction mixtures were incubated at 37°C for 20 hours, and then clarified by centrifugation to remove precipitated material. Supernatants were tested for the presence and amount of 2- oxoglutaramate using 13C NMR with authentic chemically synthesized 2- oxoglutaramate as a reference. The products of the reaction are 2-oxoglutaramate and glycine, while the substrates (glutamine and glyoxylate) diminish in abundance. The cyclic 2-oxoglutaramate gives rise to a distinctive signal allowing it to be readily distinguished from the open chain glutamine precursor. HPLC Assay for 2-oxoglutaramate
An alternative assay for GPT activity uses HPLC to determine 2-oxoglutaramate production, following a modification of Calderon et al., 1985, J Bacteriol 161(2): 807- 809. Briefly, a modified extraction buffer consisting of 25 mM Tris-HCI pH 8.5, 1 mM EDTA, 20 μM FAD, 10 mM Cysteine, and -1.5% (v/v) Mercaptoethanol. Tissue samples from the test material (i.e., plant tissue) are added to the extraction buffer at approximately a 1/3 ratio (w/v), incubated for 30 minutes at 37°C, and stopped with 200μl of 20% TCA. After about 5 minutes, the assay mixture is centrifuged and the supernatant used to quantify 2-oxoglutaramate by HPLC, using an ION-300 7.8mm ID X 30 cm L column, with a mobile phase in 0.01 N H2SO4, a flow rate of approximately 0.2 ml/min, at 400C. Injection volume is approximately 20 μl, and retention time between about 38 and 39 minutes. Detection is achieved with 210nm UV light.
Results Using NMR Assay:
This experiment revealed that the test protein was able to catalyze the synthesis of 2- oxoglutaramate. Therefore, these data indicate that the isolated cDNA encodes a glutamine phenylpyruvate transaminase that is directly involved in the synthesis of 2- oxoglutaramate in plants. Accordingly, the test protein was designated Arabidopsis glutamine phenylpyruvate transaminase, or "GPT". The nucleotide sequence of the Arabidopsis GPT coding sequence is shown in the Table of Sequences, SEQ ID NO. 1. The translated amino acid sequence of the GPT protein is shown in SEQ ID NO. 2. EXAMPLE 3: CREATION OF TRANSGENIC TOBACCO PLANTS OVER- EXPRESSING ARABIDOPSIS GPT:
Generation of Plant Expression Vector pMON-PJU:
Briefly, the plant expression vector pMon316-PJU was constructed as follows. The isolated cDNA encoding Arabidopsis GPT (Example 1 ) was cloned into the Clal-Kpnl polylinker site of the pMON316 vector, which places the GPT gene under the control of the constitutive cauliflower mosaic virus (CaMV) 35S promoter and the nopaline synthase (NOS) transcriptional terminator. A kanamycin resistance gene was included to provide a selectable marker.
Aqrobacterium-Med\aied Plant Transformations:
pMON-PJU and a control vector pMon316 (without inserted DNA) were transferred to Agrobacterium tumefaciens strain pTiTT37ASE using a standard electroporation method (McCormac et al., 1998, Molecular Biotechnology 9:155-159), followed by plating on LB plates containing the antibiotics spectinomycin (100 micro gm / ml) and kanamycin (50 micro gm / ml). Antibiotic resistant colonies of Agrobacterium were examined by PCR to assure that they contained plasmid.
Nicotiana tabacum cv. Xanthi plants were transformed with pMON-PJU transformed Agrobacteria using the leaf disc transformation system of Horsch et. al. (Horsch et al.,1995, Science 227:1229-1231 ). Briefly, sterile leaf disks were inoculated and cultured for 2 days, then transferred to selective MS media containing 100 μg/ml kanamycin and 500 μg/ml clafaran. Transformants were confirmed by their ability to form roots in the selective media.
Generation of GPT Transgenic Tobacco Plants: Sterile leaf segments were allowed to develop callus on Murashige & Skoog (M&S) media from which the transformant plantlets emerged. These plantlets were then transferred to the rooting-permissive selection medium (M&S medium with kanamycin as the selection agent). The healthy, and now rooted, transformed tobacco plantlets were then transferred to soil and allowed to grow to maturity and upon flowering the plants were selfed and the resultant seeds were harvested. During the growth stage the plants had been examined for growth phenotype and the CO2 fixation rate was measured for many of the young transgenic plants. Production of T1 and T2 Generation GPT Transgenic Plants:
Seeds harvested form the T0 generation of the transgenic tobacco plants were germinated on M&S media containing kanamycin (100 mg / L) to enrich for the transgene. At least one fourth of the seeds did not germinate on this media (kanamycin is expected to inhibit germination of the seeds without resistance that would have been produced as a result of normal genetic segregation of the gene) and more than half of the remaining seeds were removed because of demonstrated sensitivity (even mild) to the kanamycin.
The surviving plants (Ti generation) were thriving and these plants were then selfed to produce seeds for the T2 generation. Seeds from the Ti generation were germinated on MS media supplemented for the transformant lines with kanamycin
(10mg/liter). After 14 days they were transferred to sand and provided quarter strength Hoagland's nutrient solution supplemented with 25 mM potassium nitrate.
They were allowed to grow at 24°C with a photoperiod of 16 h light and 8 hr dark with a light intensity of 900 micomoles per meter squared per second. They were harvested 14 days after being transferred to the sand culture.
Characterization of GPT Transgenic Plants:
Harvested transgenic plants (both GPT transgenes and vector control transgenes) were analyzed for glutamine sythetase activity in root and leaf, whole plant fresh weight, total protein in root and leaf, and CO2 fixation rate (Knight et al., 1988, Plant Physiol. 88: 333). Non-transformed, wild-type A. tumefaciens plants were also analyzed across the same parameters in order to establish a baseline control.
Growth characteristic results are tabulated below in Table I. Additionally, a photograph of the GPT transgenic plant compared to a wild type control plant is shown in FIG. 2 (together with GS 1 transgenic tobacco plant). Across all parameters evaluated, the GPT transgenic tobacco plants showed enhanced growth characteristics. In particular, the GPT transgenic plants exhibited a greater thanJ50% increase in the rate of CO2 fixation, and a greater than two-fold increase in glutamine synthetase activity in leaf tissue, relative to wild type control plants. In addition, the leaf-to-root GS ratio increased by almost three-fold in the transaminase transgenic plants relative to wild type control. Fresh weight and total protein quantity also increased in the transgenic plants, by about 50% and 80% (leaf), respectively, relative to the wild type control. These data demonstrate that tobacco plants overexpressing the Arabidopsis GPT transgene achieve significantly enhanced growth and CO2 fixation rates.
Table I
Figure imgf000048_0001
Data = average of three plants Wild type - Control plants; not regenerated or transformed.
PN1 lines were produced by regeneration after transformation using a construct without inserted gene. A control against the processes of regeneration and transformation.
PN 9 lines were produced by regeneration after transformation using a construct with the Arabidopsis GPT gene.
EXAMPLE 4: GENERATION OF TRANSGENIC TOMATO PLANTS CARRYING ARABIDOPSIS GPT TRANSGENE:
Transgenic Lycopersicon escυlentum (Micro-Tom Tomato) plants carrying the Arabidopsis GPT transgene were generated using the vectors and methods described in Example 3. To transgenic tomato plants were generated and grown to maturity. Initial growth characteristic data of the GPT transgenic tomato plants is presented in Table II. The transgenic plants showed significant enhancement of growth rate, flowering, and seed yield in relation to wild type control plants. In addition, the transgenic plants developed multiple main stems, whereas wild type plants developed with a single main stem. A photograph of a GPT transgenic tomato plant compared to a wild type plant is presented in FIG. 3.
TABLE Il
Figure imgf000049_0001
EXAMPLE 5: ACTIVITY OF BARLEY GPT TRANSGENE IN PLANTA
In this example, the putative coding sequence for Barley GPT was isolated and expressed from a transgene construct using an in planta transient expression assay. Biologically active recombinant Barley GPT was produced, and catalyzed the increased synthesis of 2- oxoglutaramate, as confirmed by HPLC. The Barley (Hordeum vulgare) GPT coding sequence was determined and synthesized. The DNA sequence of the Barley GPT coding sequence used in this example is provided in SEQ ID NO: 14, and the encoded GPT protein amino acid sequence is presented in SEQ ID NO: 15.
The coding sequence for Barley GPT was inserted into the 1305.1 cambia vector, and transferred to Agrobacterium tumefaciens strain LBA404 using a standard electroporation method (McCormac et al., 1998, Molecular Biotechnology 9:155-159), followed by plating on LB plates containing hygromycin (50 micro gm / ml). Antibiotic resistant colonies of Agrobacterium were selected for analysis.
The transient tobacco leaf expression assay consisted of injecting a suspension of transformed Agrobacterium (1.5-2.0 OD 650) into rapidly growing tobacco leaves. Intradermal injections were made in a grid across the leaf surface to assure that a significant amount of the leaf surface would be exposed to the Agrobacterium. The plant was then allowed to grow for 3-5 days when the tissue was extracted as described for all other tissue extractions and the GPT activity measured.
GPT activity in the inoculated leaf tissue (1217 nanomoles/gFWt/h) was three-fold the level measured in the control plant leaf tissue (407 nanomoles/gFWt/h), indicating that the Hordeum GPT construct directed the expression of biologically active GPT in a transgenic plant.
EXAMPLE 6: ISOLATION AND EXPRESSION OF RECOMBINANT RICE GPT GENE CODING SEQUENCE AND ANALYSIS OF BIOLOGICAL ACTIVITY
In this example, the putative coding sequence for rice GPT was isolated and expressed in E. coli. Biologically active recombinant rice GPT was produced, and catalyzed the increased synthesis of 2- oxoglutaramate, as confirmed by HPLC. Materials and Methods:
Rice GPT coding sequence and expression in E. coli:
The rice {Oryza sativa) GPT coding sequence was determined and synthesized, inserted into a PET28 vector, and expressed in E. coli. Briefly, E. coli cells were transformed with the expression vector and transformants grown overnight in LB broth diluted and grown to OD 0.4, expression induced with isopropyl-B-D- thiogalactoside (0.4 micromolar), grown for 3 hr and harvested. A total of 25 X 106 cells were then assayed for biological activity using the NMR assay, below.
Untransformed, wild type E. coli cells were assayed as a control. An additional control used E. coli cells transformed with an empty vector.
The DNA sequence of the rice GPT coding sequence used in this example is provided in SEQ ID NO: 10, and the encoded GPT protein amino acid sequence is presented in SEQ ID NO: 11.
HPLC Assay for 2-oxoqlutaramate:
HPLC was used to determine 2-oxoglutaramate production in GPT-overexpressing E. coli cells, following a modification of Calderon et al., 1985, J Bacteriol 161(2): 807- 809. Briefly, a modified extraction buffer consisting of 25 mM Tris-HCI pH 8.5, 1 mM EDTA, 20 μM Pyridoxal phosphate, 10 mM Cysteine, and -1.5% (v/v) Mercaptoethanol was used. Samples (lysate from E. coli cells, 25 X 106 cells) were added to the extraction buffer at approximately a 1/3 ratio (w/v), incubated for 30 minutes at 37°C, and stopped with 200μl of 20% TCA. After about 5 minutes, the assay mixture is centrifuged and the supernatant used to quantify 2-oxoglutaramate by HPLC, using an ION-300 7.8mm ID X 30 cm L column, with a mobile phase in 0.01 N H2SO4, a flow rate of approximately 0.2 ml/min, at 40°C. Injection volume is approximately 20 μl, and retention time between about 38 and 39 minutes. Detection is achieved with 210nm UV light. NMR analysis comparison with authentic 2-oxoglutaramate was used to establish that the Arabidopisis full length sequence expresses a GPT with 2-oxoglutaramate synthesis activity. Briefly, authentic 2-oxoglutarmate (structure confirmed with NMR) made by chemical synthesis to validate the HPLC assay, above, by confirming that the product of the assay (molecule synthesized in response to the expressed GPT) and the authentic 2-oxoglutaramate elute at the same retention time. In addition, when mixed together the assay product and the authentic compound elute as a single peak. Furthermore, the validation of the HPLC assay also included monitoring the disappearance of the substrate glutamine and showing that there was a 1 :1 molar stoechiometry between glutamine consumed to 2-oxoglutaramte produced. The assay procedure always included two controls, one without the enzyme added and one without the glutamine added. The first shows that the production of the 2- oxoglutaramate was dependent upon having the enzyme present, and the second shows that the production of the 2-oxoglutaramate was dependent upon the substrate glutamine.
Results:
Expression of the rice GPT coding sequence of SEQ ID NO: 10 resulted in the over- expression of recombinant GPT protein having 2-oxoglutaramate synthesis- catalyzing bioactivity. Specifically, 1.72 nanomoles of 2-oxoglutaramate activity was observed in the E. coli cells overexpressing the recombinant rice GPT, compared to only 0.02 nanomoles of 2-oxoglutaramate activity in control E. coli cells, an 86-fold activity level increase over control.
EXAMPLE 7: ISOLATION AND EXPRESSION OF RECOMBINANT SOYBEAN GPT GENE CODING SEQUENCE AND ANALYSIS OF BIOLOGICAL ACTIVITY
In this example, the putative coding sequence for soybean GPT was isolated and expressed in E. coli. Biologically active recombinant soybean GPT was produced, and catalyzed the increased synthesis of 2- oxoglutaramate, as confirmed by HPLC. Materials and Methods:
Soybean GPT coding sequence and expression in E. coli:
The soybean (Glycine max) GPT coding sequence was determined and synthesized, inserted into a PET28 vector, and expressed in E. coli. Briefly, E. coli cells were transformed with the expression vector and transformants grown overnight in LB broth diluted and grown to OD 0.4, expression induced with isopropyl-B-D- thiogalactoside (0.4 micromolar), grown for 3 hr and harvested. A total of 25 X 106 cells were then assayed for biological activity using the HPLC assay, below. Untransformed, wild type E. coli cells were assayed as a control. An additional control used E coli cells transformed with an empty vector.
The DNA sequence of the soybean GPT coding sequence used in this example is provided in SEQ ID NO: 12, and the encoded GPT protein amino acid sequence is presented in SEQ ID NO: 13.
HPLC Assay for 2-oxoqlutaramate:
HPLC was used to determine 2-oxoglutaramate production in GPT-overexpressing E. coli cells, as described in Example 6, supra.
Results:
Expression of the soybean GPT coding sequence of SEQ ID NO: 12 resulted in the over-expression of recombinant GPT protein having 2-oxoglutaramate synthesis- catalyzing bioactivity. Specifically, 31.9 nanomoles of 2-oxoglutaramate activity was observed in the E. coli cells overexpressing the recombinant soybean GPT, compared to only 0.02 nanomoles of 2-oxoglutaramate activity in control E. coli cells, a nearly 1 ,600-fold activity level increase over control. EXAMPLE 8: ISOLATION AND EXPRESSION OF RECOMBINANT ZEBRA FISH GPT GENE CODING SEQUENCE AND ANALYSIS OF BIOLOGICAL ACTIVITY
In this example, the putative coding sequence for Zebra fish GPT was isolated and expressed in E. coli. Biologically active recombinant Zebra fish GPT was produced, and catalyzed the increased synthesis of 2- oxoglutaramate, as confirmed by HPLC.
Materials and Methods:
Zebra fish GPT coding sequence and expression in E. coli:
The Zebra fish (Danio rerio) GPT coding sequence was determined and synthesized, inserted into a PET28 vector, and expressed in E. coli. Briefly, E. coli cells were transformed with the expression vector and transformants grown overnight in LB broth diluted and grown to OD 0.4, expression induced with isopropyl-B-D- thiogalactoside (0.4 micromolar), grown for 3 hr and harvested. A total of 25 X 106 cells were then assayed for biological activity using the HPLC assay, below. Untransformed, wild type E. coli cells were assayed as a control. An additional control used E coli cells transformed with an empty vector.
The DNA sequence of the Zebra fish GPT coding sequence used in this example is provided in SEQ ID NO: 16, and the encoded GPT protein amino acid sequence is presented in SEQ ID NO: 17.
HPLC Assay for 2-oxoqlutaramate:
HPLC was used to determine 2-oxoglutaramate production in GPT-overexpressing E. coli cells, as described in Example 6, supra.
Results: Expression of the Zebra fish GPT coding sequence of SEQ ID NO: 16 resulted in the over-expression of recombinant GPT protein having 2-oxoglutaramate synthesis- catalyzing bioactivity. Specifically, 28.6 nanomoles of 2-oxoglutaramate activity was observed in the E. coli cells overexpressing the recombinant Zebra fish GPT, compared to only 0.02 nanomoles of 2-oxoglutaramate activity in control E. coli cells, a more than 1, 400-fold activity level increase over control.
EXAMPLE 9: GENERATION AND EXPRESSION OF RECOMBINANT
TRUNCATED ARABIDOPSIS GPT GENE CODING SEQUENCES AND ANALYSIS OF BIOLOGICAL ACTIVITY
In this example, two different truncations of the Arabidopsis GPT coding sequence were designed and expressed in E. coli, in order to evaluate the activity of GPT proteins in which the putative chloroplast signal peptide is absent or truncated. Recombinant truncated GPT proteins corresponding to the full length Arabidopsis GPT amino acid sequence of SEQ ID NO: 1 , truncated to delete either the first 30 amino-terminal amino acid residues, or the first 45 amino-terminal amino acid residues, were successfully expressed and showed biological activity in catalyzing the increased synthesis of 2- oxoglutaramate, as confirmed by HPLC.
Materials and Methods:
Truncated Arabidopsis GPT coding sequences and expression in E. coli:
The DNA coding sequence of a truncation of the Arabidopsis thaliana GPT coding sequence of SEQ ID NO: 1 was designed, synthesized, inserted into a PET28 vector, and expressed in E. coli. The DNA sequence of the truncated Arabidopsis GPT coding sequence used in this example is provided in SEQ ID NO: 20 (-45 AA construct), and the corresponding truncated GPT protein amino acid sequence is provided in SEQ ID NO: 21. Briefly, E. coli cells were transformed with the expression vector and transformants grown overnight in LB broth diluted and grown to OD 0.4, expression induced with isopropyl-B-D-thiogalactoside (0.4 micromolar), grown for 3 hr and harvested. A total of 25 X 106 cells were then assayed for biological activity using HPLC as described in Example 6. Untransformed, wild type E. coli cells were assayed as a control. An additional control used E coli cells transformed with an empty vector. Expression of the truncated -45 Arabidopsis GPT coding sequence of SEQ ID NO: 20 resulted in the over-expression of biologically active recombinant GPT protein (2- oxoglutaramate synthesis-catalyzing bioactivity). Specifically, 16.1 nanomoles of 2- oxoglutaramate activity was observed in the E. coli cells overexpressing the truncated -45 GPT, compared to only 0.02 nanomoles of 2-oxoglutaramate activity in control E. coli cells, a more than 800-fold activity level increase over control. For comparison, the full length Arabidopsis gene coding sequence expressed in the same E. coli assay generated 2.8 nanomoles of 2-oxoglutaramate activity, or roughly less than one-fifth the activity observed from the truncated recombinant GPT protein.
EXAMPLE 10: METHOD FOR GENERATING TRANSGENIC MAIZE PLANTS CARRYING HORDEUM GPT AND GS1 TRANSGENES:
This example provides a method for generating transgenic maize plants expressing GPT and GS 1 transgenes. Maize (Zea mays, hybrid line Hi-Il) type Il callus is biolistically transformed with an expression cassette comprising the hordeum glutamine synthetase (GS1) coding sequence of SEQ ID NO: 40 under the control of the rice RuBisCo small subunit promoter of SEQ ID NO: 39 (expression casette of
SEQ ID NO: 42), and the hordeum GPT coding sequence of SEQ ID NO: 45 under the control of the corn ubiquitin (Ubil) promoter of SEQ ID NO: 44. Transformation of maize callus is achieved by particle bombardment.
Vector Constructs: An expression cassette comprising the hordeum GS 1 and GPT genes, under the control of the rice RuBisCo small subunit and corn ubiquitin promoters, respectively, is cloned into the plasmid pAHC25 (Christensen and Quail, 1996, Transgenic Research 5:213-218) modified to include a bar gene conferring resistance to bialophos, or a similar vector, in order to generate the transgene expression vector.
Transformation and Regeneration:
The transgene expression vector is introduced into immature zygotic embryo source callus of parent maize hybrid line Hi-Il (A188xB73 origin) (Armstrong et al., 1991 , Maize Genetics Coop Newsletter 65:92-93) using particle bombardment, essentially as described (Frame et al., 2000, In Vitro Cell. Dev. Biol-Plant 36:21-29; this method was developed by and is routinely used at the Iowa State University Center for Plant Transformation).
More specifically, immature zygotic embryo source callus is prepared for transformation by serial culturing on a callus-initiating medium (N6E, Songstad et al., 1996, In vitro Cell Dev. Biol.- Plant 32:179-183). Washed gold particles are coated with the plasmid construct and used to bombard the callus with a PDS 1000/He biolistic gun as described (Sanford et al., 1993, Methods in Enzymology 217: 483- 509). After 7-10 days on initiation medium, the callus is then transferred to selection medium containing bialophos (N6S, Songstad et al., 1996, supra) and allowed to grow. Following the development of bialophos resistant clones, callus pieces are transferred to a regeneration medium (Armstrong and Green, 1985, Planta 164:207- 214) containing bialophos and allowed to grow for several weeks. Thereafter, the resulting plantlets are transferred to regeneration medium without the selection agent, and cultivated.
Transgenic corn plants may be grown and evaluated through maturity, and seeds harvested for use in generating subsequent generations of an event. Various phenotypic characteristics may be observed in T0 events, as well as in Ti and subsequent generations, and used to select seed sources for the development of subsequent generations. High performing lines may be selfed to achieve trait homozygosity and/or crossed. EXAMPLE 11 : METHOD FOR GENERATING TRANSGENIC RICE PLANTS CARRYING HORDEUM GPT AND GS1 TRANSGENES:
This example provides a method for generating transgenic rice plants expressing GPT and GS1 transgenes. Rice (Oryza sativa, Japonica cultivar Nipponbare) type Il calus is transformed with the hordeum glutamine synthetase (GS1 ) coding sequence of SEQ ID NO: 40 under the control of the rice RuBisCo small subunit promoter of SEQ ID NO: 39 (expression cassette of SEQ ID NO: 42), and the hordeum GPT coding sequence of SEQ ID NO: 45 under the control of the corn ubiquitin (Ubil) promoter of SEQ ID NO: 44. Transformation is achieved by Agrobacterium-mediated transformation.
Vector Constructs:
An expression cassette comprising the hordeum GS 1 and GPT genes, under the control of the rice RuBisCo small subunit and corn ubiquitin promoters, respectively, is cloned into base vector pTF101.1 , using standard molecular cloning methodologies, to generate the transgene expression vector. Base vector pTF101.1 is a derivative of the pPZP binary vector (Hajdukiewicz et al 1994, Plant MoI. Biol.
25:989-994), which includes the right and left T-DNA border fragments from a nopaline strain of A. tumefaciens, a broad host origin of replication (pVS1) and a spectinomycin-resistant marker gene (aadA) for bacterial selection. The plant selectable marker gene cassette includes the phosphinothricin acetyl transferase
(bar) gene from Streptomyces hygroscopicus that confers resistance to the herbicides glufosinate and bialophos. The soybean vegetative storage protein terminator (Mason et al., 1993) follows the 3" end of the bar gene.
Media: YEP Medium: 5 g/L yeast extract, 10 g/L peptone, 5 g/L NaCI2, 15 g/L Bacto-agar. pH to 6.8 with NaOH. After autoclaving, the appropriate antibiotics are added to the medium when it has cooled to 500C. Infection Medium: N6 salts and vitamins (Chu et al., 1975, Sci. Sinica 18: 659-668), 1.5 mg/L 2,4-dichlorophenoxyacetic acid (2,4-D), 0.7 g/L L-proline, 68.4 g/L sucrose, and 36 g/L glucose (pH 5.2). This medium is filter-sterilized and stored at 4°C. Acetosyringone (AS, 100 μM) is added just prior to use (prepared from 100μM stocks of filter-sterilized AS, dissolved in DMSO to 20OmM then diluted 1:1 with water).
Callus Induction Medium: N6 salts and vitamins, 300 mg/L casamino acids, 2.8 g/L L- proline, 30 g/L sucrose, and 4 g/L gelrite (pH 5.8). Filter sterilized N6 Vitamins and 2 mg/L 2,4-D, are added to this medium after autoclaving. Co-cultivation Medium (make fresh): N6 salts and vitamins, 300 mg/L casamino acids, 30 g/L sucrose, 10 g/L glucose , and 4 g/L gelrite (pH 5.8). Filter sterilized N6 vitamins, acetosyringone (AS) 100 μM and 2 mg/L 2,4-D are added to this medium after autoclaving. Selection Medium: N6 salts and vitamins, 300 mg/L casamino acids, 2.8 g/L L-proline, 30 g/L sucrose, and 4 g/L gelrite (pH 5.8). Filter sterilized N6 vitamins, 2 mg/L 2,4-D, 2 mg/L Bialaphos (Shinyo Sangyo, Japan) and 500 mg/L carbenicillin are added to this medium after autoclaving. Regeneration Medium I: MS salts and vitamins (Murashige and Skoog, 1962), 2 g/L casamino acids, 30 g/L sucrose, 30 g/L sorbitol, and 4 g/L gelrite (pH 5.8). Filter sterilized MS vitamins, 100 mg/L cefotaxime, 100 mg/L vancomycin, 0.02 mg/L NAA (naphthaleneacetic acid), 2 mg/L kinetin (Toki, 1997, supra) and 2 mg/L Bialaphos are added to this medium after autoclaving.
Regeneration Medium II: MS Salts and vitamins, 100 mg/L myo-inositol, 30 g/L sucrose, 3 g/L gelrite, (pH 5.8).
Transformation and Regeneration:
Japonica rice cultivar Nipponbare is transformed with Agrobacterium tumefaciens strain EHA101 (Hood et al., 1986, J. Bacteriol. 168:1291-1301), transformed with the pTF101.1 transgene expression vector carrying the hordeum GS1 + GPT expression cassette. The vector system pTF101.1 in EHA101 is maintained on YEP medium (An et al., 1988) containing 100 mg/L spectinomycin (for pTF101.1 ) and 50 mg/L kanamycin (for EHA101).
Briefly, callus tissue derived from the mature rice embryo is used as the starting material for transformation. Callus induction, co-cultivation, selection and regeneration I media are based on those of Hiei et al., 1994, The Plant Journal 6 (2):271-282.
More specifically, calli are induced as follows. First, 15-20 rice seeds are dehusked and rinsed in 10 ml of 70% Ethanol (50 ml conical tube) by vigorously shaking the tube for one minute, followed by rinsing once with sterile water. Then, 10 ml of 50% commercial bleach (5.25 % hypochlorite) is added and placed on a shaker for 30 minutes (low setting). The bleach solution is then poured-off and the seeds rinsed five times with ~10ml of sterilized water each time. With a small portion of the final rinse, the seeds are poured onto sterilized filter paper (in a sterile petri plate) and then allowed to dry. Using sterile forceps, several (i.e., 5) seeds are transferred to the surface of individual sterile petri plates containing callus induction medium. The plates are wrapped with vent tape and incubated in the light (16:8 photoperiod) at 29°C. Seeds are observed every few days and those showing signs of contamination are discarded.
After two to three weeks, developing callus is visible on the scutellum of the mature seed. Calli are then subcultured to fresh induction medium and allowed to proliferate. Four days prior to infection, the callus tissue is cut into 2-4 mm pieces and transferred to fresh induction medium.
The selection medium uses modifications from Toki (Toki, 1997, Plant Molecular Biology Reporter 15:16-21) whereby bialophos (2 mg/L) is employed for plant selection and carbenicillin (500 mg/L) for counter selection against Agrobacterium. Regeneration Il medium is as described (Armstrong and Green, 1985, Planta 164:207-214). Agrobacterium culture is grown (i.e., for 3 days at 19°C, or 2 days at 28°C) on YEP medium amended with spectinomycin (100 mg/L) and kanamycin (50 mg/L). An aliquot of the culture is then suspended in ~15 ml of liquid infection medium supplemented with 100 μM AS in a 50 ml conical tube (no pre-induction). The optical density is adjusted to <0.1 (OD,,n =0.06-0.08) before use.
For infection, rice calli are first placed into bacteria-free infection medium + AS (50 ml conical). This pre-wash is removed and replaced with 10 ml of the prepared Agrobacterium suspension (OD550 <0.1). Then, the conical is fastened onto a vortex shaker (low setting) for two minutes. After infection, calli are poured out of the conical onto a stack of sterile filter paper in a 100 x 15 petri dish to blot dry. Then, they are transferred off the filter paper and onto the surface of co-cultivation medium with sterile forceps. Co-cultivation plates are wrapped with vent tape and incubated in the dark at 250C for three days. After three days of co-cultivation, the calli are washed five times with 5 ml of the liquid infection medium (no AS) supplemented with carbenicillin (500mg/L) and vancomycin (100mg/L). Calli are blotted dry on sterile filter paper as before. Individual callus pieces are transferred off the paper and onto selection medium containing 2 mg/L bialaphos. Selection plates are wrapped with parafilm and placed in the light at 29°C. For selection of stable transformation events, plant tissue is cultured onto fresh selection medium every two weeks. This should be done with the aid of a microscope to look for any evidence of Agrobacterium overgrowth. If overgrowth is noted, the affected calli should be avoided (contaminated calli should not be transferred). The remaining tissue is then carefully transferred, preferably using newly sterilized forceps for each calli. Putative clones begin to appear after six to eight weeks on selection. A clone is recognized as white, actively growing callus and is distinguishable from the brown, unhealthy non-transformed tissue. Individual transgenic events are identified and the white, actively growing tissue is transferred to individual plates in order to produce enough tissue to take to regeneration. Regeneration of transgenic plants is accomplished by selecting new lobes of growth from the callus tissue and transferring them onto Regeneration Medium I (light, 25°C). After two to three weeks, the maturing tissue is transferred to Regeneration Medium Il for germination (light, 25CC). When the leaves are approximately 4-6 cm long and have developed good-sized roots, the plantlets may be transferred (on an individual basis, typically 7-14 days after germination begins) to soilless mix using sterile conditions.
Transgenic rice plants may be grown and evaluated through maturity, and seeds harvested for use in generating subsequent generations of an event. Various phenotypic characteristics may be observed in T0 events, as well as in Ti and subsequent generations, and used to select seed sources for the development of subsequent generations. High performing lines may be selfed to achieve trait homozygosity and/or crossed.
EXAMPLE 12: METHOD FOR GENERATING TRANSGENIC SUGARCANE PLANTS CARRYING HORDEUM GPT AND GS1 TRANSGENES:
This example provides a method for generating transgenic sugarcane plants expressing GPT and GS1 transgenes. Sugarcane (Saccharum spp L) is biolistically transformed with an expression cassette comprising the hordeum glutamine synthetase (GS1) coding sequence of SEQ ID NO: 40 under the control of the rice RuBisCo small subunit promoter of SEQ ID NO: 39 (expression cassette of SEQ ID NO: 42), and the hordeum GPT coding sequence of SEQ ID NO: 45 under the control of the corn ubiquitin (Ubil) promoter of SEQ ID NO: 44. Transformation of sugarcane callus is achieved by particle bombardment.
Vector Constructs:
An expression cassette comprising the hordeum GS1 and GPT genes, under the control of the rice RuBisCo small subunit and corn ubiquitin promoters, respectively, are cloned into a small plasmid well established for sugarcane expression, such as pAHC20 (Thomson et al., 1987, EMBO J. 6:2519-2523), using standard molecular cloning methodologies, to generate the transgene expression vector. The plasmid used contains a selectable marker against either the phospinothricin family of herbicides or the antibiotics geneticin or kanamycin, each of which have been shown effective (Ingelbrecht et al., 1999, Plant Physiology 119:1187-1197; Gallo-Maegher & Irvine, 1996, Crop Science 36:1367-1374).
Transformation and Regeneration:
The plasmid containing the expression cassette encoding the hordeum GS1 and GPT coding sequences is introduced into embryogenic callus prepared for transformation by the basic method of Gallo-Maegher and Irvine (Gallo-Maegher and Irvine, 1996, supra) and Ingelbrecht et al. (Ingelbrecht et al., 1999, supra) with the improved stimulation of shoot regeneration with thidiazuron (Gallo-Maegher et al., 2000, In vitro Cell Dev. Biol. - Plant 36:37-40). This particle bombardment method is effective in transforming sugarcane (see, for example, Gilbert et al., 2005, Crop Science 45:2060-2067; and see the foregoing references). Regenerable sugarcane varieties, such as the commercial varieties CP65-357 and CP72-1210, may be used to generate transgene events.
Briefly, 7- to 40-week old calli are bombarded with plasmid-coated tungsten or gold particles. Two days after bombardment the calli are transferred to selection medium.
Four weeks later the resistant calli are transferred to shoot-induction medium containing the selection agent and sub-cultured every two weeks for approximately 12 weeks, at which time the shoots are transferred to Magenta boxes containing rooting medium with selection agent. The shoots are maintained on this medium for approximately 8 weeks, at which time those with good root development are transferred to potting mix and the adapted to atmospheric growth.
Transgenic sugarcane plants may be grown and evaluated through maturity, and seeds harvested for use in generating subsequent generations of an event. Various phenotypic characteristics may be observed in T0 events, as well as in Ti and subsequent generations, and used to select seed sources for the development of subsequent generations. High performing lines may be selfed to achieve trait homozygosity and/or crossed.
EXAMPLE 13: METHOD FOR GENERATING TRANSGENIC WHEAT PLANTS CARRYING HORDEUM GPT AND GS1 TRANSGENES:
This example provides a method for generating transgenic wheat plants expressing GPT and GS1 transgenes. Wheat (Triticυm spp.) is biolistically transformed with an expression cassette comprising the hordeum glutamine synthetase (GS1 ) coding sequence of SEQ ID NO: 40 under the control of the rice RuBisCo small subunit promoter of SEQ ID NO: 39 (expression cassette of SEQ ID NNO: 42), and the hordeum GPT coding sequence of SEQ ID NO: 45 under the control of the corn ubiquitin (Ubil) promoter of SEQ ID NO: 44. Transformation of wheat callus is achieved by particle bombardment.
Vector Constructs:
An expression cassette comprising the hordeum GS 1 and GPT genes, under the control of the rice RuBisCo small subunit and corn (maize) ubiquitin promoters, respectively, are cloned into a plasmid such as pAHC17, which contains the bar gene to provide the desired resistance to the phosphinothricin- class of herbicides for selection of transformants, using standard molecular cloning methodologies, to generate the transgene expression vector.
Transformation and Regeneration:
Wheat is transformed biolistically, and transgenic events regenerated, essentially as described (Weeks et al., 1993, Plant Physiology. 102:1077-1084; Blechl and Anderson, 1996, Nat. Biotech. 14:875-879; Okubara et. al., 2002, Theoretical and Applied Genetics. 106:74-83). These methods were developed and are routinely practiced at the US Department of Agriculture, Agricultural Research Service, Western Regional Research Center (Albany CA). The highly regenerable hexaploid spring wheat cultivar 'Bobwhite' is used as the source of immature embryos for bombardment with plasmid-coated particles. Bombarded embryos are cultured without selection for 1-3 weeks in the dark on MS media before transferring them to shoot induction medium (MS media plus hormones and selection agent bialophos (1 ,1.5, 2, 3 mg/L) for 2-8 weeks with subculturing weekly (Blechl et al., 2007, J Cereal Science 45:172-183). Shoots that formed are transferred to rooting medium also containing the selection agent (bialophos 3 mg/L) (Weeks et al., 1993, supra). Well-rooted plantlets are transferred to potting media and adapted to atmospheric growth conditions.
Transgenic wheat plants may be grown and evaluated through maturity, and seeds harvested for use in generating subsequent generations of an event. Various phenotypic characteristics may be observed in T0 events, as well as in Ti and subsequent generations, and used to select seed sources for the development of subsequent generations. High performing lines may be selfed to achieve trait homozygosity and/or crossed. EXAMPLE 14: METHOD FOR GENERATING TRANSGENIC SORGHUM PLANTS CARRYING HORDEUM GPT AND GS1 TRANSGENES:
This example provides a method for generating transgenic sorghum plants expressing GPT and GS1 transgenes. Sorghum (Sorghum spp L) is transformed with Agrobacterium carrying an expression cassette encoding the hordeum glutamine synthetase (GS1) coding sequence of SEQ ID NO: 40 under the control of the rice RuBisCo subunit promoter of SEQ ID NO: 39 (expression cassette of SEQ ID NO: 42), and the hordeum GPT coding sequence of SEQ ID NO: 45 under the control of the corn ubiquitin (Ubil) promoter of SE ID NO: 44. Vector Constructs:
An expression cassette comprising the hordeum GS1 and GPT genes, under the control of the rice RuBisCo small subunit and corn ubiquitin promoters, respectively, is cloned into a stable binary vector such as pZY101 (Vega et al 2008, Plant Cell Rep. 27:297-305), using standard molecular cloning methodologies, to generate the transgene expression vector.
Transformation and Regeneration: Agrobacterium-mediated transformation and recovery of transgenic sorghum plants is as described (Lu et al., 2009, Plant Cell Tissue Organ Culture 99:97-108). These methods are routinely used by the University of Missouri Plant Transformation Core Facility. The public sorghum line, P898012, is grown as described (Lu et al., 2009, supra) and transformed with Agrobacterium tumefaciens strain EHA101 (Hood et al., 1986, supra) transformed with the transgene expression vector.
More specifically, Agrobacterium (0.3-0.4 OD) harboring the transgene expression vector is used to inoculate immature sorghum embryos for 5 minutes. The embryos are then transferred onto filter paper on top of their co-cultivation medium, containing acetosyringone to enhance the effectiveness of the infection. Embryos are incubated for 3-5 days and then transferred for another 4 days on resting medium (containing carbenicillin) and then transferred onto callus induction medium (with selection agent PPT) with weekly transfers. Once somatic embyrogenic cells develop they are transferred onto shooting medium (with carbenicillin and PPT) until shoots (2-5 cm long) develop. Shoots are transferred to Magenta boxes with rooting medium (with PPT) and maintained in 16 h light and 8 h darkness until 8-20 cm tall well-rooted plantlets are produced. They are then transferred to potting mix and adapted to atmospheric conditions.
Transgenic sorghum plants may be grown and evaluated through maturity, and seeds harvested for use in generating subsequent generations of an event. Various phenotypic characteristics may be observed in T0 events, as well as in Ti and subsequent generations, and used to select seed sources for the development of subsequent generations. High performing lines may be selfed to achieve trait homozygosity and/or crossed.
EXAMPLE 15: METHOD FOR GENERATING TRANSGENIC SWITCHGRASS PLANTS CARRYING HORDEUM GPT AND GS1 TRANSGENES:
This example provides a method for generating transgenic switchgrass plants expressing GPT and GS 1 transgenes. Switchgrass (Panicum virgatum) is transformed with Agrobacterium carrying a transgene expression vector including an expression cassette encoding the hordeum glutamine synthetase (GS1 ) coding sequence of SEQ ID NO: 40 under the control of the rice RuBisCo small subunit promoter of SEQ ID NO: 39 (expression cassette of SEQ ID NO: 42), and the hordeum GPT coding sequence of SEQ ID NO: 45 under the control of the corn ubiquitin (Ubil) promoter of SE ID NO: 44. Vector Constructs: An expression cassette comprising the hordeum GS 1 and GPT genes, under the control of the rice RuBisCo small subunit and corn (maize) ubiquitin promoters, respectively, is cloned into a Cambia vector thirteen hundred series (i.e., 1305.1 ) containing the HPT gene which provides hygromycin resistance for selection of the Switchgrass events, using standard molecular cloning methodologies, to generate the transgene expression vector.
Transformation and Regeneration:
Ag ro bacterium-mediated transformation and recovery of transgenic switchgrass plants is essentially as described (Somleva et al., 2002, Crop Science 42:2080-2087;
Somleva 2006, Switchgrass (Panicum virgatum L) In Methods in Molecular Biology
VoI 344. Agrobacterium Protocols 2/e, Volume 2. Ed K. Wang Humana Press Inc.,
Totowa, NJ.; Xi et al 2009, Bioengineering Research 2:275-283). These methods are routinely used by the Plant Biotechnology Resource and Outreach Center at Michigan State University.
Briefly, explants of embryonic callus from the mature caryopses of the public Switchgrass cv. Alamo are transformed with Agrobacterium tumefaciens strain EHA105 (Hood et al., 1986, supra) carrying the transgene expression vector. Agrobacterium (0.8-1.0 OD) harboring the transgene expression vector and pretreated with acetosynringone is used to inoculate the switchgrass callus for 10 minutes and then co-cultivated for 4-6 days in the dark. The explants are then washed free of the agrobacterium and placed on selection medium containing the antibiotic timentin and hygromycin; selection requires 2-6 months. Subculturing is carried out at 4-week intervals. Regeneration is accomplished in 4-8 weeks on media containing GA3, timentin and hygromycin under a photoperiod of 16 h light and 8 dark. The plantlets are then transferred to Magenta boxes with regeneration medium containing GA3, timentin and hygromycin for another 4 weeks as before. The plants are then transferred to soil and adapted to atmospheric growth. Transgenic switchgrass plants may be grown and evaluated through maturity, and seeds harvested for use in generating subsequent generations of an event. Various phenotypic characteristics may be observed in To events, as well as in Ti and subsequent generations, and used to select seed sources for the development of subsequent generations. High performing lines may be selfed to achieve trait homozygosity and/or crossed.
EXAMPLE 16: METHOD FOR GENERATING TRANSGENIC SOYBEAN PLANTS CARRYING ARABIDOPSIS GPTAND GS1 TRANSGENES: This example provides a method for generating transgenic soybean plants expressing GPT and GS1 transgenes. Soybean (Glycine max) is transformed with Agrobacterium carrying a transgene expression vector including an expression cassette encoding the Arabidopsis glutamine synthetase (GS1) coding sequence of SEQ ID NO: 7 under the control of the tomato RuBisCo small subunit promoter of SEQ ID NO: 22 (expression cassette of SEQ ID NO: 47), and the Arabidopsis GPT coding sequence of SEQ ID NO: 1 under the control of the 35S cauliflower mosaic virus (CMV) promoter (expression cassette of SEQ ID NO: 27).
Vector Constructs:
An expression cassette comprising the hordeum GS 1 and GPT genes, under the control of the tomato RuBisCo small subunit and 35S CMV promoters, respectively, is cloned into pTF101.1 , using standard molecular cloning methodologies, to generate the transgene expression vector. pTF101.1 is a derivative of the pPZP binary vector (Hajdukiewicz et al 1994, Plant MoI. Biol. 25:989-994), which includes the right and left T-DNA border fragments from a nopaline strain of A. tumefaciens, a broad host origin of replication (pVS1 ) and a spectinomycin-resistant marker gene (aadA) for bacterial selection. The plant selectable marker gene cassette includes the phosphinothricin acetyl transferase (bar) gene from Streptomyces hygroscopicus that confers resistance to the herbicides glufosinate and bialophos. The soybean vegetative storage protein terminator (Mason et al., 1993) follows the 3' end of the bar gene.
Media: YEP Solid Medium: 5 g/L Yeast extract, 10 g/L Peptone, 5 g/L NaCI2, 12 g/L Bacto- agar. pH to 7.0 with NaOH. Appropriate antibiotics should be added to the medium after autoclaving. Pour into sterile 100x15 plates (~25ml per plate).
YEP Liquid Medium: 5 g/L Yeast extract, 10 g/L Peptone, 5 g/L NaCI2. pH to 7.0 with NaOH. Appropriate antibiotics should be added to the medium prior to inoculation.
Co-cultivation Medium: 1/10X B5 major salts, 1/10X B5 minor salts, 2.8 mg/L Ferrous, 3.8 mg/L NaEDTA, 30 g/L Sucrose, 3.9 g/L MES, and 4.25 g/L Noble agar (pH 5.4). Filter sterilized 1X B5 vitamins, GA3 (0.25 mg/L), BAP (1.67 mg/L), Cysteine (400 mg/L), Dithiothrietol (154.2 mg/L), and 40 mg/L acetosyringone are added to this medium after autoclaving. Pour into sterile 100x15 mm plates (-88 plates/L). When solidified, overlay the co-cultivation
medium with sterile filter paper to reduce bacterial overgrowth during co-cultivation (Whatman #1 , 70 mm).
Infection Medium: 1/10X B5 major salts, 1/10X B5 minor salts, 2.8 mg/L Ferrous, 3.8 mg/L NaEDTA, 30 g/L Sucrose, 3.9 g/L MES (pH 5.4). Filter sterilized 1X B5 vitamins, GA3 (0.25 mg/L), BAP (1.67 mg/L), and 40 mg/L acetosyringone are added to this medium after autoclaving.
Shoot Induction Washing Medium: 1X B5 major salts, 1X B5 minor salts, 28 mg/L Ferrous, 38 mg/L NaEDTA, 30 g/L Sucrose, and 0.59 g/L MES (pH 5.7). Filter sterilized 1X B5 vitamins, BAP (1.11 mg/L), Timentin (100 mg/L), Cefotaxime (200 mg/L), and Vancomycin (50 mg/L) are added to this medium after autoclaving. Shoot Induction Medium I: 1X B5 major salts, 1X B5 minor salts, 28 mg/L Ferrous, 38 mg/L NaEDTA, 30 g/L Sucrose, 0.59 g/L MES, and 7 g/L Noble agar (pH 5.7). Filter sterilized 1X B5 vitamins, BAP (1.11 mg/L), Timentin (50 mg/L), Cefotaxime (200 mg/L), and Vancomycin (50 mg/L) are added to this medium after autoclaving. Pour into sterile 100x20 mm plates (26 plates/L).
Shoot Induction Medium II: 1X B5 major salts, 1X B5 minor salts, 28 mg/L Ferrous, 38 mg/L NaEDTA, 30 g/L Sucrose, 0.59 g/L MES, and 7 g/L Noble agar (pH 5.7). Filter sterilized 1X B5 vitamins, BAP (1.11 mg/L), Timentin (50 mg/L), Cefotaxime (200 mg/L), Vancomycin (50 mg/L) and Glufosinate (6 mg/L) are added to this medium after autoclaving. Pour into sterile 100x20 mm plates (26 plates/L).
Shoot Elongation Medium: 1X MS major salts, 1X MS minor salts, 28 mg/L Ferrous, 38 mg/L NaEDTA, 30 g/L Sucrose, 0.59 g/L MES, and 7 g/L Noble agar (pH 5.7). Filter sterilized 1X B5 vitamins, Asparagine (50 mg/L), L-Pyroglutamic Acid (100 mg/L), IAA (0.1 mg/L), GA3 (0.5 mg/L), Zeatin-R (1 mg/L), Timentin (50 mg/L), Cefotaxime (200 mg/L), Vancomycin (50 mg/L), and Glufosinate (6 mg/L) are added to this medium after autoclaving. Pour into sterile 100x25 mm plates (22 plates/L).
Rooting Medium: 1X MS major salts, 1X MS minor salts, 28 mg/L Ferrous, 38 mg/L NaEDTA, 20 g/L Sucrose, 0.59 g/L MES, and 7 g/L Noble agar (pH 5.6). Filter sterilized 1X B5 vitamins, Asparagine (50 mg/L), and L-Pyroglutamic Acid (100 mg/L) are added to this medium after autoclaving. Pour into sterile 150x25 mm vial (10ml/vial).
Transformation and Regeneration: Agrobacterium cultures are prepared for infecting seed explants as follows. The vector system, pTF102 in EHA101 , is cultured on YEP medium (An et al., 1988) containing 100 mg/L spectinomycin (for pTF102), 50 mg/L kanamycin (for EHA101), and 25 mg/L chloramphenicol (for EHA101). 24 hours prior to infection a 2 ml culture of Agrobacterium is started by inoculating a loop of bacteria from the fresh YEP plate in YEP liquid medium amended with antibiotics. This culture is allowed to grow to saturation (8-10 hours) at 28°C in a shaker incubator (-250 rpm). Then 0.2 ml of starter culture is transferred to a 1 L flask containing 250 ml of YEP medium amended with antibiotics. The culture is allowed to grow overnight at 28°C, 250 rpm to log phase (OD650 = 0.3 - 0.6 for EHA105) or late log phase (OD650 = 1.0 - 1.2 for EHA101 ). The Agrobacterium culture is then pelleted at 3,500 rpm for 10 minutes at 200C, and the pellet resuspended in infection medium by pipetting through the pellet. Bacterial cell densities are adjusted to a final OD650=0.6 (for EHA105) or OD650=0.6 to 1.0 (for EHA101). Agrobacteria-containing infection medium is shaken at 60 rpm for at least 30 minutes before use.
Explants are prepared for inoculation as follows. Seeds are sterilized, ideally with a combination of bleach solution and exposure to chlorine gas. Prior to infection, (-20 hours), sees are imbibed with deionized sterile water in the dark. Imbibed soybean seeds are transferred to a sterile 100x15 petri plate for dissection. Using a scalpel (i.e., #15 blade), longitudinal cuts are made along the hilum to separate the cotyledons and remove the seed coat. The embryonic axis found at the nodal end of the cotyledons is excised, and any remaining axial shoots/buds attached to the cotyledonary node are also removed.
Agrobacterium-mediated transformation is conducted as follows. Half-seed explants are dissected into a 100 x 25 mm petri plate and 30 ml Agrobacterium-containing infection media added thereto, such that the explants are completely covered by the infection media. Explants are allowed to incubate at room temperature for a short period of time (i.e., 30 minutes), preferably with occasional gentle agitation. After infection, the explants are transferred to co-cultivation medium, preferably so that the flat, axial side is touching the filter paper. These plates are typically wrapped in parafilm, and cultivated for 5 days at 24°C under an 18:6 photoperiod. Following this co-cultivation, shoot growth is induced by first washing the explants in shoot induction washing medium at room temperature, followed by placing the explants in shoot induction medium I, such that the explants are oriented with the nodal end of the cotyledon imbedded in the medium and the regeneration region flush to the surface with flat side up (preferably at a 30-45° angle). Explants are incubated at 24°C, 18:6 photoperiod, for 14 days. Explants are thereafter transferred to shoot induction medium Il and maintained under the same conditions for another 14 days.
Following shoot induction, explants are transferred to shoot elongation medium, as follows. First, cotyledons are removed from the explants. A fresh cut at the base of the shoot pad flush to the medium is made, and the explants transferred to shoot elongation medium (containing glufosinate) and incubated at 24°C, 18:6 photoperiod, for 2-8 weeks. Preferably, explant tissue is transferred to fresh shoot elongation medium every 2 weeks, and at transfer, a fresh horizontal slice at the base of the shoot pad is made.
When shoots surviving the glufosinate selection have reached ~3 cm length, they are excised from the shoot pad, briefly dipped in indole-3-butyric acid (1 mg/ml, 1-2 minutes), then transferred to rooting medium for acclimatization (i.e., in 15O x 25 mm glass vials with the stems of the shoots embedded approximately 1/2 cm into the media). When well rooted, the shoots are transferred to soil and plantlets grown at 24°C, 18:6 photoperiod, for at least one week, watering as needed. When the plantlets have at least two healthy trifoliates, an herbicide paint assay may be applied to confirm resistance to glufosinate. Briefly, using a cotton swab, Liberty herbicide (150mg 1-1 ) is applied to the upper leaf surface along the midrib of two leaves on two different trifoliates. Painted plants are transferred to the greenhouse and covered with a humidome. Plantlets are scored 3-5 days after painting. Resistant plantlets may be transplanted immediately to larger pots (i.e., 2 gal).
EXAMPLE 17: METHOD FOR GENERATING TRANSGENIC POTATO PLANTS CARRYING ARABIDOPSIS GPT AND GS1 TRANSGENES:
This example provides a method for generating transgenic potato plants expressing GPT and GS 1 transgenes. Potato (Solanum tuberosum, cultivar Desiree) is transformed with Agrobacterium carrying a transgene expression vector including an expression cassette encoding the Arabidopsis glutamine synthetase (GS1) coding sequence of SEQ ID NO: 7 under the control of the tomato RuBisCo small subunit promoter of SEQ ID NO: 22 (expression cassette of SEQ ID NO: 47), and the Arabidopsis GPT coding sequence of SEQ ID NO: 1 under the control of the 35S cauliflower mosaic virus (CMV) promoter (expression cassette of SEQ ID NO: 27).
Vector Constructs:
An expression cassette comprising the hordeum GS 1 and GPT genes, under the control of the tomato RuBisCo small subunit and 35S CMV promoters, respectively, is cloned into the Cambia 2201 vector which provides kanamycin resistance.
Transformation and Regeneration:
A suitable Agrobacterium tumefaciens strain such as UC-Riverside Agro-1 strain is employed and used for infecting potato explant tissue (see, Narvaez-Vasquez et al.,
1992, Plant Mo. Biol. 20:1149-1157). Cultures are maintained at 28°C in liquid medium containing 10 g/L Yeast extract, 10 g/L Peptone, 5 g/L NaCI2, 10 mg/L kanamycin, 30 mg/L tetracycline, and 9.81 g/L Acetosyringone (50 mM). Overnight cultures are diluted with liquid MS medium (4.3 g/L MS salts, 20 g/L sucrose, 1 mg/L thiamine, 100 mg/L inositol and 7 g/L phytoagar, pH to 5.8.) to 108 Agrobacterium cells/ml for the infection of plant tissues (co-cultivation). Potato leaf discs or tuber discs may be used as the explants to be inoculated. Discs are pre-conditioned by incubation on feeder plates for two to three days at 250C under dark conditions. Pre-conditioned explants are infected with Agrobacterium by soaking in 20 ml of sterile liquid MS medium (supra), containing 108 Agrobacterium cells/ml for about 20 minutes. Before or during the co-cultivation, the explants are carefully punched with a syringe needle, or scalpel blade. Then, the explants are blotted dry with sterile filter paper, and incubated again in feeder plates for another two days. Explants are then transferred to liquid medium with transgene-transformed Agrobacterium, and incubated for three days at 280C under dark conditions for calli and shoot development (development (2-4 cm) in the presence of kanamycin (100 mg/L).
Following co-cultivation, supra, the explants are washed three times with sterile liquid medium and finally rinsed with the same medium containing 500 mg/l of cefotaxime. The explants are blotted dry with sterile filter paper and placed on shoot induction medium (4.3 g/L MS salts, 10 mg/L thiamine, 1 mg/L nicotinic acid, 1 mg/L pyridxine, 100 mg/L inositol, 30 g/L sucrose, 1 mg/L zeatin, 0.5 mg/L IAA, 7 g/L phytoagar, 250 mg/L Cefotaxime, 500 mg/L Carbenicillin, 100 mg/L Kanamycin) for 4-6 weeks. Thereafter, plantlets are transferred to rooting medium (4.3 g/L MS salts, 10 mg/L thiamine, 1 mg/L nicotinic acid, 1 mg/L pyridxine, 100 mg/L inositol, 20 g/L sucrose, 50 μg/L IAA, 7 g/L phytoagar, 50 mg/L Kanamycin and 500 mg/L Vancomycin) for 3-4 weeks.
All publications, patents, and patent applications cited in this specification are herein incorporated by reference as if each individual publication or patent application were specifically and individually indicated to be incorporated by reference. The present invention is not to be limited in scope by the embodiments disclosed herein, which are intended as single illustrations of individual aspects of the invention, and any which are functionally equivalent are within the scope of the invention. Various modifications to the models and methods of the invention, in addition to those described herein, will become apparent to those skilled in the art from the foregoing description and teachings, and are similarly intended to fall within the scope of the invention. Such modifications or other embodiments can be practiced without departing from the true scope and spirit of the invention.
TABLE OF SEQUENCES:
SEQ ID NO: 1 Arabidopsis glutamine phenyl pyruvate transaminase DNA coding sequence:
ATGTACCTGGACATAAATGGTGTGATGATCAAACAGTTTAGCTTCAAAGCCTCTC TTCTCCCATTCTCTTCTAATTTCCGACAAAGCTCCGCCAAAATCCATCGTCCTAT CGGAGCCACCATGACCACAGTTTCGACTCAGAACGAGTCTACTCAAAAACCCGT CCAGGTGGCGAAGAGATTAGAGAAGTTCAAGACTACTATTTTCACTCAAATGAG CATATTGGCAGTTAAACATGGAGCGATCAATTTAGGCCAAGGCTTTCCCAATTTC GACGGTCCTGATTTTGTTAAAGAAGCTGCGATCCAAGCTATTAAAGATGGTAAAA ACCAGTATGCTCGTGGATACGGCATTCCTCAGCTCAACTCTGCTATAGCTGCGC GGTTTCGTGAAGATACGGGTCTTGTTGTTGATCCTGAGAAAGAAGTTACTGTTAC ATCTGGTTGCACAGAAGCCATAGCTGCAGCTATGTTGGGTTTAATAAACCCTGG TGATGAAGTCATTCTCTTTGCACCGTTTTATGATTCCTATGAAGCAACACTCTCTA TGGCTGGTGCTAAAGTAAAAGGAATCACTTTACGTCCACCGGACTTCTCCATCC CTTTGGAAGAGCTTAAAGCTGCGGTAACTAACAAGACTCGAGCCATCCTTATGA ACACTCCGCACAACCCGACCGGGAAGATGTTCACTAGGGAGGAGCTTGAAACC ATTGCATCTCTCTGCATTGAAAACGATGTGCTTGTGTTCTCGGATGAAGTATACG ATAAGCTTGCGTTTGAAATGGATCACATTTCTATAGCTTCTCTTCCCGGTATGTA TGAAAGAACTGTGACCATGAATTCCCTGGGAAAGACTTTCTCTTTAACCGGATG GAAGATCGGCTGGGCGATTGCGCCGCCTCATCTGACTTGGGGAGTTCGACAAG CACACTCTTACCTCACATTCGCCACATCAACACCAGCACAATGGGCAGCCGTTG CAGCTCTCAAGGCACCAGAGTCTTACTTCAAAGAGCTGAAAAGAGATTACAATG TGAAAAAGGAGACTCTGGTTAAGGGTTTGAAGGAAGTCGGATTTACAGTGTTCC CATCGAGCGGGACTTACTTTGTGGTTGCTGATCACACTCCATTTGGAATGGAGA ACGATGTTGCTTTCTGTGAGTATCTTATTGAAGAAGTTGGGGTCGTTGCGATCC CAACGAGCGTCTTTTATCTGAATCCAGAAGAAGGGAAGAATTTGGTTAGGTTTG CGTTCTGTAAAGACGAAGAGACGTTGCGTGGTGCAATTGAGAGGATGAAGCAG AAGCTTAAGAGAAAAGTCTGA
SEQ ID NO: 2 Arabidopsis GPT amino acid sequence
MYLDINGVMIKQFSFKASLLPFSSNFRQSSAKIHRPIGATMTTVSTQNESTQKPVQV AKRLEKFKTTIFTQMSILAVKHGAINLGQGFPNFDGPDFVKEAAIQAIKDGKNQYARG YGIPQLNSAIAARFREDTGLWDPEKEVTVTSGCTEAIAAAMLGLINPGDEVILFAPFY DSYEATLSMAGAKVKGITLRPPDFSIPLEELKAAVTNKTRAILMNTPHNPTGKMFTRE ELETIASLCIENDVLVFSDEVYDKLAFEMDHISIASLPGMYERTVTMNSLGKTFSLTG WKIGWAIAPPHLTWGVRQAHSYLTFATSTPAQWAAVAALKAPESYFKELKRDYNVK KETLVKGLKEVGFTVFPSSGTYFVVADHTPFGMENDVAFCEYLIEEVGWAIPTSVF YLNPEEGKNLVRFAFCKDEETLRGAIERMKQKLKRK SEQ ID NO: 3 Grape GPT DNA sequence
Showing Cambia 1305.1 with (3' end of) rbcS3C+Vitis (Grape). Bold ATG is the start site, parentheses are the catl intron and the underlined actagt is the spel cloning site used to splice in the hordeum gene.
AAAAAAGAAAAAAAAAACATATCTTGTTTGTCAGTATGGGAAGTTTGAGATAAGG ACGAGTGAGGGGTTAAAATTCAGTGGCCATTGATTTTGTAATGCCAAGAACCAC AAAATCCAATGGTTACCATTCCTGTAAGATGAGGTTTGCTAACTCTTTTTGTCCG TTAGATAGGAAGCCTTATCACTATATATACAAGGCGTCCTAATAACCTCTTAGTA ACCAATTATTTCAGCACCΛ r6GTAGATCTGAGG(GTAAATTTCTAG I I I I I CTCCT TCATTTTCTTGGTTAGGACCCTTTTCTCTTTTTATTTTTTTGAGCTTTGATCTTTCT TTAAACTGATCTATTTTTTAATTGATTGGTTATGGTGTAAATATTACATAGCTTTAA CTGATAATCTGATTACTTTATTTCGTGTGTCTATGATGATGATGATAGTTACAG)A ACCGACGAΛC7ΛGTATGCAGCTCTCTCAATGTACCTGGACATTCCCAGAGTTGC TTAAAAGACCAGCCTTTTTAAGGAGGAGTATTGATAGTATTTCGAGTAGAAGTAG GTCCAGCTCCAAGTATCCATCTTTCATGGCGTCCGCATCAACGGTCTCCGCTCC AAATACGGAGGCTGAGCAGACCCATAACCCCCCTCAACCTCTACAGGTTGCAAA GCGCTTGGAGAAATTCAAAACAACAATCTTTACTCAAATGAGCATGCTTGCCATC AAACATGGAGCAATAAACCTTGGCCAAGGGTTTCCCAACTTTGATGGTCCTGAG TTTGTCAAAGAAGCAGCAATTCAAGCCATTAAGGATGGGAAAAACCAATATGCTC GTGGATATGGAGTTCCTGATCTCAACTCTGCTGTTGCTGATAGATTCAAGAAGG ATACAGGACTCGTGGTGGACCCCGAGAAGGAAGTTACTGTTACTTCTGGATGTA CAGAAGCAATTGCTGCTACTATGCTAGGCTTGATAAATCCTGGTGATGAGGTGA TCCTCTTTGCTCCATTTTATGATTCCTATGAAGCCACTCTATCCATGGCTGGTGC CCAAATAAAATCCATCACTTTACGTCCTCCGGATTTTGCTGTGCCCATGGATGAG CTCAAGTCTGCAATCTCAAAGAATACCCGTGCAATCCTTATAAACACTCCCCATA ACCCCACAGGAAAGATGTTCACAAGGGAGGAACTGAATGTGATTGCATCCCTCT GCATTGAGAATGATGTGTTGGTGTTTACTGATGAAGTTTACGACAAGTTGGCTTT CGAAATGGATCACATTTCCATGGCTTCTCTTCCTGGGATGTACGAGAGGACCGT GACTATGAATTCCTTAGGGAAAACTTTCTCCCTGACTGGATGGAAGATTGGTTG GACAGTAGCTCCCCCACACCTGACATGGGGAGTGAGGCAAGCCCACTCATTCC TCACGTTTGCTACCTGCACCCCAATGCAATGGGCAGCTGCAACAGCCCTCCGG GCCCCAGACTCTTACTATGAAGAGCTAAAGAGAGATTACAGTGCAAAGAAGGCA ATCCTGGTGGAGGGATTGAAGGCTGTCGGTTTCAGGGTATACCCATCAAGTGG GACCTATTTTGTGGTGGTGGATCACACCCCATTTGGGTTGAAAGACGATATTGC GTTTTGTGAGTATCTGATCAAGGAAGTTGGGGTGGTAGCAATTCCGACAAGCGT TTTCTACTTACACCCAGAAGATGGAAAGAACCTTGTGAGGTTTACCTTCTGTAAA GACGAGGGAACTCTGAGAGCTGCAGTTGAAAGGATGAAGGAGAAACTGAAGCC TAAACAATAGGGGCACGTGA
SEQ ID NO: 4 Grape GPT amino acid sequence
MVDLRNRRTSMQLSQCTWTFPELLKRPAFLRRSIDSISSRSRSSSKYPSFMASAST VSAPNTEAEQTHNPPQPLQVAKRLEKFKTTIFTQMSMLAIKHGAINLGQGFPNFDGP EFVKEAAIQAIKDGKNQYARGYGVPDLNSAVADRFKKDTGLWDPEKEVTVTSGCT EAIAATMLGLINPGDEVILFAPFYDSYEATLSMAGAQIKSITLRPPDFAVPMDELKSAI SKNTRAILINTPHNPTGKMFTREELNVIASLCIENDVLVFTDEWDKLAFEMDHISMAS LPGMYERTVTMNSLGKTFSLTGWKIGWTVAPPHLTWGVRQAHSFLTFATCTPMQW AAATALRAPDSYYEELKRDYSAKKAILVEGLKAVGFRVYPSSGTYFVWDHTPFGLK DDIAFCEYLIKEVGWAIPTSVFYLHPEDGKNLVRFTFCKDEGTLRAAVERMKEKLKP KQ SEQ ID NO: 5 Rice GPT DNA sequence
Rice GPT codon optimized for E. coli expression; untranslated sequences shown in lower case
atgtggATGAACCTGGCAGGCTTTCTGGCAACCCCGGCAACCGCAACCGCAACCC GTCATGAAATGCCGCTGAACCCGAGCAGCAGCGCGAGCTTTCTGCTGAGCAGC CTGCGTCGTAGCCTGGTGGCGAGCCTGCGTAAAGCGAGCCCGGCAGCAGCAG CAGCACTGAGCCCGATGGCAAGCGCAAGCACCGTGGCAGCAGAAAACGGTGC AGCAAAAGCAGCAGCAGAAAAACAGCAGCAGCAGCCGGTGCAGGTGGCGAAA CGTCTGGAAAAATTTAAAACCACCATTTTTACCCAGATGAGCATGCTGGCGATTA AACATGGCGCGATTAACCTGGGCCAGGGCTTTCC
GAACTTTGATGGCCCGGATTTTGTGAAAGAAGCGGCGATTCAGGCGATTAACGC GGGCAAAAACCAGTATGCGCGTGGCTATGGCGTGCCGGAACTGAACAGCGCGA TTGCGGAACGTTTTCTGAAAGATAGCGGCCTGCAGGTGGATCCGGAAAAAGAA GTGACCGTGACCAGCGGCTGCACCGAAGCGATTGCGGCGACCATTCTGGGCCT GATTAACCCGGGCGATGAAGTGATTCTGTTTGCGCCGTTTTATGATAGCTATGA AGCGACCCTGAGCATGGCGGGCGCGAACGTGAAAGCGATTACCCTGCGTCCG CCGGATTTTAGCGTGCCGCTGGAAGAACTGAAAGCGGCCGTGAGCAAAAACAC CCGTGCGATTATGATTAACACCCCGCATAACCCGACCGGCAAAATGTTTACCCG TGAAGAACTGGAATTTATTGCGACCCTGTGCAAAGAAAACGATGTGCTGCTGTT TGCGGATGAAGTGTATGATAAACTGGCGTTTGAAGCGGATCATATTAGCATGGC GAGCATTCCGGGCATGTATGAACGTACCGTGACCATGAACAGCCTGGGCAAAA CCTTTAGCCTGACCGGCTGGAAAATTGGCTGGGCGATTGCGCCGCCGCATCTG ACCTGGGGCGTGCGTCAGGCACATAGCTTTCTGACCTTTGCAACCTGCACCCC GATGCAGGCAGCCGCCGCAGCAGCACTGCGTGCACCGGATAGCTATTATGAAG AACTGCGTCGTGATTATGGCGCGAAAAAAGCGCTGCTGGTGAACGGCCTGAAA GATGCGGGCTTTATTGTGTATCCGAGCAGCGGCACCTATTTTGTGATGGTGGAT CATACCCCGTTTGGCTTTGATAACGATATTGAATTTTGCGAATATCTGATTCGTG AAGTGGGCGTGGTGGCGATTCCGCCGAGCGTGTTTTATCTGAACCCGGAAGAT GGCAAAAACCTGGTGCGTTTTACCTTTTGCAAAGATGATGAAACCCTGCGTGCG GCGGTGGAACGTATGAAAACCAAACTGCGTAAAAAAAAGCTTgcggccgcactcgagc accaccaccaccaccactga
SEQ ID NO: 6 Rice GPT amino acid sequence
Includes amino terminal amino acids MW for cloning and His tag sequences from pet28 vector in italics. MWMNLAGFLATPATATATRHEMPLNPSSSASFLLSSLRRSLVASLRKASPAAAAAL SPMASASTVAAENGAAKAAAEKQQQQPVQVAKRLEKFKTTIFTQMSMLAIKHGAINL GQGFPNFDGPDFVKEAAIQAINAGKNQYARGYGVPELNSAIAERFLKDSGLQVDPE KEVTVTSGCTEAIAATILGLINPGDEVILFAPFYDSYEATLSMAGANVKAITLRPPDFS VPLEELKAAVSKNTRAIMINTPHNPTGKMFTREELEFIATLCKENDVLLFADEVYDKL AFEADHISMASIPGMYERTVTMNSLGKTFSLTGWKIGWAIAPPHLTWGVRQAHSFL TFATCTPMQAAAAAALRAPDSYYEELRRDYGAKKALLVNGLKDAGFIVYPSSGTYF VMVDHTPFGFDNDIEFCEYLIREVGWAIPPSVFYLNPEDGKNLVRFTFCKDDETLR AAVERMKTKLRKKKLAAALEHHHHHH
SEQ ID NO: 7 Soybean GPT DNA sequence
TOPO 151 D WITH SOYBEAN for E coli expression
From starting codon. Vector sequences are italicized
ATGCATCATCACCATCACCATGGTAAGCCTATCCCTAACCCTCTCCTCGGTCTC GA TTCTACGGAAAA CCTGTA TTTTCAGGGAA TTGA TCCCTTCA CCGCGAAACGT CTGGAAAAATTTCAGACCACCATTTTTACCCAGATGAGCCTGCTGGCGATTAAAC ATGGCGCGATTAACCTGGGCCAGGGCTTTCCGAACTTTGATGGCCCGGAATTT GTGAAAGAAGCGGCGATTCAGGCGATTCGTGATGGCAAAAACCAGTATGCGCG TGGCTATGGCGTGCCGGATCTGAACATTGCGATTGCGGAACGTTTTAAAAAAGA TACCGGCCTGGTGGTGGATCCGGAAAAAGAAATTACCGTGACCAGCGGCTGCA CCGAAGCGATTGCGGCGACCATGATTGGCCTGATTAACCCGGGCGATGAAGTG ATTATGTTTGCGCCGTTTTATGATAGCTATGAAGCGACCCTGAGCATGGCGGGC GCGAAAGTGAAAGGCATTACCCTGCGTCCGCCGGATTTTGCGGTGCCGCTGGA AGAACTGAAAAGCACCATTAGCAAAAACACCCGTGCGATTCTGATTAACACCCC GCATAACCCGACCGGCAAAATGTTTACCCGTGAAGAACTGAACTGCATTGCGAG CCTGTGCATTGAAAACGATGTGCTGGTGTTTACCGATGAAGTGTATGATAAACT GGCGTTTGATATGGAACATATTAGCATGGCGAGCCTGCCGGGCATGTTTGAACG TACCGTGACCCTGAACAGCCTGGGCAAAACCTTTAGCCTGACCGGCTGGAAAAT TGGCTGGGCGATTGCGCCGCCGCATCTGAGCTGGGGCGTGCGTCAGGCGCAT GCGTTTCTGACCTTTGCAACCGCACATCCGTTTCAGTGCGCAGCAGCAGCAGCA CTGCGTGCACCGGATAGCTATTATGTGGAACTGAAACGTGATTATATGGCGAAA CGTGCGATTCTGATTGAAGGCCTGAAAGCGGTGGGCTTTAAAGTGTTTCCGAGC AGCGGCACCTATTTTGTGGTGGTGGATCATACCCCGTTTGGCCTGGAAAACGAT GTGGCGTTTTGCGAATATCTGGTGAAAGAAGTGGGCGTGGTGGCGATTCCGAC CAGCGTGTTTTATCTGAACCCGGAAGAAGGCAAAAACCTGGTGCGTTTTACCTT TTGCAAAGATGAAGAAACCATTCGTAGCGCGGTGGAACGTATGAAAGCGAAACT GCGTAAAGTCGACTAA
SEQ ID NO: 8 Soybean GPT amino acid sequence
Translated protein product, vector sequences italicized
MHHHHHHGKPIPNPLLGLDSTENLYFQGIDPFTAKRLEKFQJ1\FTQMSLLA\KHGA\ NLGQGFPNFDGPEFVKEAAIQAIRDGKNQYARGYGVPDLNIAIAERFKKDTGLWDP
EKEITVTSGCTEAIAATMIGLINPGDEVIMFAPFYDSYEATLSMAGAKVKGITLRPPDF
AVPLEELKSTISKNTRAILINTPHNPTGKMFTREELNCIASLCIENDVLVFTDEVYDKL
AFDMEHISMASLPGMFERTVTLNSLGKTFSLTGWKIGWAIAPPHLSWGVRQAHAFL
TFATAHPFQCAAAAALRAPDSYYVELKRDYMAKRAILIEGLKAVGFKVFPSSGTYFV
WDHTPFGLENDVAFCEYLVKEVGWAIPTSVFYLNPEEGKNLVRFTFCKDEETIRS
AVERMKAKLRKVD SEQ ID NO: 9 Barley GPT DNA sequence
Coding sequence from start with intron removed
ΛTGGTAGATCTGAGGAACCGACGAΛCΓΛGΓATGGCATCCGCCCCCGCCTCCGC CTCCGCGGCCCTCTCCACCGCCGCCCCCGCCGACAACGGGGCCGCCAAGCCC ACGGAGCAGCGGCCGGTACAGGTGGCTAAGCGATTGGAGAAGTTCAAAACAAC AATTTTCACACAGATGAGCATGCTCGCAGTGAAGCATGGAGCAATAAACCTTGG ACAGGGGTTTCCCAATTTTGATGGCCCTGACTTTGTCAAAGATGCTGCTATTGA GGCTATCAAAGCTGGAAAGAATCAGTATGCAAGAGGATATGGTGTGCCTGAATT GAACTCAGCTGTTGCTGAGAGATTTCTCAAGGACAGTGGATTGCACATCGATCC TGATAAGGAAGTTACTGTTACATCTGGGTGCACAGAAGCAATAGCTGCAACGAT ATTGGGTCTGATCAACCCTGGGGATGAAGTCATACTGTTTGCTCCATTCTATGAT TCTTATGAGGCTACACTGTCCATGGCTGGTGCGAATGTCAAAGCCATTACACTC CGCCCTCCGGACTTTGCAGTCCCTCTTGAAGAGCTAAAGGCTGCAGTCTCGAA GAATACCAGAGCAATAATGATTAATACACCTCACAACCCTACCGGGAAAATGTTC ACAAGGGAGGAACTTGAGTTCATTGCTGATCTCTGCAAGGAAAATGACGTGTTG CTCTTTGCCGATGAGGTCTACGACAAGCTGGCGTTTGAGGCGGATCACATATCA ATGGCTTCTATTCCTGGCATGTATGAGAGGACCGTCACTATGAACTCCCTGGGG AAGACGTTCTCCTTGACCGGATGGAAGATCGGCTGGGCGATAGCACCACCGCA CCTGACATGGGGCGTAAGGCAGGCACACTCCTTCCTCACATTCGCCACCTCCA CGCCGATGCAATCAGCAGCGGCGGCGGCCCTGAGAGCACCGGACAGCTACTT TGAGGAGCTGAAGAGGGACTACGGCGCAAAGAAAGCGCTGCTGGTGGACGGG CTCAAGGCGGCGGGCTTCATCGTCTACCCTTCGAGCGGAACCTACTTCATCATG GTCGACCACACCCCGTTCGGGTTCGACAACGACGTCGAGTTCTGCGAGTACTT GATCCGCGAGGTCGGCGTCGTGGCCATCCCGCCAAGCGTGTTCTACCTGAACC CGGAGGACGGGAAGAACCTGGTGAGGTTCACCTTCTGCAAGGACGACGACACG CTAAGGGCGGCGGTGGACAGGATGAAGGCCAAGCTCAGGAAGAAATGA
SEQ ID NO: 10 Barley GPT amino acid sequence
Translated sequence from start site (intron removed)
MVDLRNRRTSMASAPASASAALSTAAPADNGAAKPTEQRPVQVAKRLEKFKTTIFT QMSMLAVKHGAINLGQGFPNFDGPDFVKDAAIEAIKAGKNQYARGYGVPELNSAVA ERFLKDSGLHIDPDKEVTVTSGCTEAIAATILGLINPGDEVILFAPFYDSYEATLSMAG ANVKAITLRPPDFAVPLEELKAAVSKNTRAIMINTPHNPTGKMFTREELEFIADLCKE NDVLLFADEVYDKLAFEADHISMASIPGMYERTVTMNSLGKTFSLTGWKIGWAIAPP HLTWGVRQAHSFLTFATSTPMQSAAAAALRAPDSYFEELKRDYGAKKALLVDGLKA AGFIVYPSSGTYFIMVDHTPFGFDNDVEFCEYLIREVGWAIPPSVFYLNPEDGKNLV RFTFCKDDDTLRAAVDRMKAKLRKK
SEQ ID NO: 11 Zebra fish GPT DNA sequence
Danio rerio sequence designed for expression in E coli. Bold, italicized nucleotides added for cloning or from pET28b vector.
ΛΓGΓCCGTGGCGAAACGTCTGGAAAAATTTAAAACCACCATTTTTACCCAGATGA
GCATGCTGGCGATTAAACATGGCGCGATTAACCTGGGCCAGGGCTTTCCGAAC TTTGATGGCCCGGATTTTGTGAAAGAAGCGGCGATTCAGGCGATTCGTGATGGC AACAACCAGTATGCGCGTGGCTATGGCGTGCCGGATCTGAACATTGCGATTAG CGAACGTTATAAAAAAGATACCGGCCTGGCGGTGGATCCGGAAAAAGAAATTAC CGTGACCAGCGGCTGCACCGAAGCGATTGCGGCGACCGTGCTGGGCCTGATT AACCCGGGCGATGAAGTGATTGTGTTTGCGCCGTTTTATGATAGCTATGAAGCG ACCCTGAGCATGGCGGGCGCGAAAGTGAAAGGCATTACCCTGCGTCCGCCGG ATTTTGCGCTGCCGATTGAAGAACTGAAAAGCACCATTAGCAAAAACACCCGTG CGATTCTGCTGAACACCCCGCATAACCCGACCGGCAAAATGTTTACCCCGGAAG AACTGAACACCATTGCGAGCCTGTGCATTGAAAACGATGTGCTGGTGTTTAGCG ATGAAGTGTATGATAAACTGGCGTTTGATATGGAACATATTAGCATTGCGAGCCT GCCGGGCATGTTTGAACGTACCGTGACCATGAACAGCCTGGGCAAAACCTTTA GCCTGACCGGCTGGAAAATTGGCTGGGCGATTGCGCCGCCGCATCTGACCTGG GGCGTGCGTCAGGCGCATGCGTTTCTGACCTTTGCAACCAGCAACCCGATGCA GTGGGCAGCAGCAGTGGCACTGCGTGCACCGGATAGCTATTATACCGAACTGA AACGTGATTATATGGCGAAACGTAGCATTCTGGTGGAAGGCCTGAAAGCGGTG GGCTTTAAAGTGTTTCCGAGCAGCGGCACCTATTTTGTGGTGGTGGATCATACC CCGTTTGGCCATGAAAACGATATTGCGTTTTGCGAATATCTGGTGAAAGAAGTG GGCGTGGTGGCGATTCCGACCAGCGTGTTTTATCTGAACCCGGAAGAAGGCAA AAACCTGGTGCGTTTTACCTTTTGCAAAGATGAAGGCACCCTGCGTGCGGCGGT GGATCGTATGAAAGAAAAACTGCGTAAAG7CGΛCΛΛGC7TGCGGCCGCΛC7CG AGCA CCA CCA CCA CCA CCACTGA SEQ ID NO: 12 Zebra fish GPR amino acid sequence
Amino acid sequence of Danio rerio cloned and expressed in E. coli (bold, italicized amino acids are added from vector/ cloning and His tag on C-terminus)
MSVAKRLEKFKTTIFTQMSMLAIKHGAINLGQGFPNFDGPDFVKEAAIQAIRDGNNQ YARGYGVPDLNIAISERYKKDTGLAVDPEKEITVTSGCTEAIAATVLGLINPGDEVIVF APFYDSYEATLSMAGAKVKGITLRPPDFALPIEELKSTISKNTRAILLNTPHNPTGKMF TPEELNTIASLCIENDVLVFSDEVYDKLAFDMEHISIASLPGMFERTVTMNSLGKTFSL TGWKIGWAIAPPHLTWGVRQAHAFLTFATSNPMQWAAAVALRAPDSYYTELKRDY MAKRSILVEGLKAVGFKVFPSSGTYFVWDHTPFGHENDIAFCEYLVKEVGWAIPT SVFYLNPEEGKNLVRFTFCKDEGTLRAAVDRMKEKLRKVDKLΛΛΛLEHHWHHW- SEQ ID NO: 13 Arabidopsis truncated GPT -30 construct DNA sequence
Arabidopsis GPT with 30 amino acids removed from the targeting sequence.
ATGGCCAAAATCCATCGTCCTATCGGAGCCACCATGACCACAGTTTCGACTCAG AACGAGTCTACTCAAAAACCCGTCCAGGTGGCGAAGAGATTAGAGAAGTTCAAG ACTACTATTTTCACTCAAATGAGCATATTGGCAGTTAAACATGGAGCGATCAATT TAGGCCAAGGCTTTCCCAATTTCGACGGTCCTGATTTTGTTAAAGAAGCTGCGA TCCAAGCTATTAAAGATGGTAAAAACCAGTATGCTCGTGGATACGGCATTCCTCA GCTCAACTCTGCTATAGCTGCGCGGTTTCGTGAAGATACGGGTCTTGTTGTTGA TCCTGAGAAAGAAGTTACTGTTACATCTGGTTGCACAGAAGCCATAGCTGCAGC TATGTTGGGTTTAATAAACCCTGGTGATGAAGTCATTCTCTTTGCACCGTTTTAT GATTCCTATGAAGCAACACTCTCTATGGCTGGTGCTAAAGTAAAAGGAATCACTT TACGTCCACCGGACTTCTCCATCCCTTTGGAAGAGCTTAAAGCTGCGGTAACTA ACAAGACTCGAGCCATCCTTATGAACACTCCGCACAACCCGACCGGGAAGATGT TCACTAGGGAGGAGCTTGAAACCATTGCATCTCTCTGCATTGAAAACGATGTGC TTGTGTTCTCGGATGAAGTATACGATAAGCTTGCGTTTGAAATGGATCACATTTC TATAGCTTCTCTTCCCGGTATGTATGAAAGAACTGTGACCATGAATTCCCTGGGA AAGACTTTCTCTTTAACCGGATGGAAGATCGGCTGGGCGATTGCGCCGCCTCAT CTGACTTGGGGAGTTCGACAAGCACACTCTTACCTCACATTCGCCACATCAACA CCAGCACAATGGGCAGCCGTTGCAGCTCTCAAGGCACCAGAGTCTTACTTCAAA GAGCTGAAAAGAGATTACAATGTGAAAAAGGAGACTCTGGTTAAGGGTTTGAAG GAAGTCGGATTTACAGTGTTCCCATCGAGCGGGACTTACTTTGTGGTTGCTGAT CACACTCCATTTGGAATGGAGAACGATGTTGCTTTCTGTGAGTATCTTATTGAAG AAGTTGGGGTCGTTGCGATCCCAACGAGCGTCTTTTATCTGAATCCAGAAGAAG GGAAGAATTTGGTTAGGTTTGCGTTCTGTAAAGACGAAGAGACGTTGC GTGGTGCAATTGAGAGGATGAAGCAGAAGCTTAAGAGAAAAGTCTGA SEQ ID NO: 14 Arabidopsis truncated GPT -30 construct amino acid sequence
MAKIHRPIGATMTTVSTQNESTQKPVQVAKRLEKFKTTIFTQMSILAVKHGAINLGQG FPNFDGPDFVKEAAIQAIKDGKNQYARGYGIPQLNSAIAARFREDTGLWDPEKEVT VTSGCTEAIAAAMLGLINPGDEVILFAPFYDSYEATLSMAGAKVKGITLRPPDFSIPLE ELKAAVTNKTRAILMNTPHNPTGKMFTREELETIASLCIENDVLVFSDEVYDKLAFEM DHISIASLPGMYERTVTMNSLGKTFSLTGWKIGWAIAPPHLTWGVRQAHSYLTFATS TPAQWAAVAALKAPESYFKELKRDYNVKKETLVKGLKEVGFTVFPSSGTYFWADH TPFGMENDVAFCEYLIEEVGWAIPTSVFYLNPEEGKNLVRFAFCKDEETLRGAIER MKQKLKRKV
SEQ ID NO: 15: Arabidopsis truncated GPT -45 construct DNA sequence
Arabidopsis GPT with 45 residues in the targeting sequence removed
ATGGCGACTCAGAACGAGTCTACTCAAAAACCCGTCCAGGTGGCGAAGAGATTA GAGAAGTTCAAGACTACTATΠTCACTCAAATGAGCATATTGGCAGTTAAACATG GAGCGATCAATTTAGGCCAAGGCTTTCCCAATTTCGACGGTCCTGATTTTGTTAA AGAAGCTGCGATCCAAGCTATTAAAGATGGTAAAAACCAGTATGCTCGTGGATA CGGCATTCCTCAGCTCAACTCTGCTATAGCTGCGCGGTTTCGTGAAGATACGGG TCTTGTTGTTGATCCTGAGAAAGAAGTTACTGTTACATCTGGTTGCACAGAAGCC ATAGCTGCAGCTATGTTGGGTTTAATAAACCCTGGTGATGAAGTCATTCTCTTTG CACCGTTTTATGATTCCTATGAAGCAACACTCTCTATGGCTGGTGCTAAAGTAAA AGGAATCACTTTACGTCCACCGGACTTCTCCATCCCTTTGGAAGAGCTTAAAGC TGCGGTAACTAACAAGACTCGAGCCATCCTTATGAACACTCCGCACAACCCGAC CGGGAAGATGTTCACTAGGGAGGAGCTTGAAACCATTGCATCTCTCTGCATTGA AAACGATGTGCTTGTGTTCTCGGATGAAGTATACGATAAGCTTGCGTTTGAAATG GATCACATTTCTATAGCTTCTCTTCCCGGTATGTATGAAAGAACTGTGACCATGA ATTCCCTGGGAAAGACTTTCTCTTTAACCGGATGGAAGATCGGCTGGGCGATTG CGCCGCCTCATCTGACTTGGGGAGTTCGACAAGCACACTCTTACCTCACATTCG CCACATCAACACCAGCACAATGGGCAGCCGTTGCAGCTCTCAAGGCACCAGAG TCTTACTTCAAAGAGCTGAAAAGAGATTACAATGTGAAAAAGGAGACTCTGGTTA AGGGTTTGAAGGAAGTCGGATTTACAGTGTTCCCATCGAGCGGGACTTACTTTG TGGTTGCTGATCACACTCCATTTGGAATGGAGAACGATGTTGCTTTCTGTGAGTA TCTTATTGAAGAAGTTGGGGTCGTTGCGATCCCAACGAGCGTCTTTTATCTGAAT CCAGAAGAAGGGAAGAATTTGGTTAGGTTTGCGTTCTGTAAAGACGAAGAGACG TTGCGTGGTGCAATTGAGAGGATGAAGCAGAAGCTTAAGAGAAAAGTCTGA
SEQ ID NO: 16: Arabidopsis truncated GPT -45 construct amino acid sequence MATQNESTQKPVQVAKRLEKFKTTIFTQMSILAVKHGAINLGQGFPNFDGPDFVKEA AIQAIKDGKNQYARGYGIPQLNSAIAARFREDTGLWDPEKEVTVTSGCTEAIAAAML GLINPGDEVILFAPFYDSYEATLSMAGAKVKGITLRPPDFSIPLEELKAAVTNKTRAIL MNTPHNPTGKMFTREELETIASLCIENDVLVFSDEVYDKLAFEMDHISIASLPGMYER TVTMNSLGKTFSLTGWKIGWAIAPPHLTWGVRQAHSYLTFATSTPAQWAAVAALKA PESYFKELKRDYNVKKETLVKGLKEVGFTVFPSSGTYFWADHTPFGMENDVAFCE YLIEEVGWAIPTSVFYLNPEEGKNLVRFAFCKDEETLRGAIERMKQKLKRKV
SEQ ID NO: 17: Tomato Rubisco promoter
TOMATO RuBisCo rbcS3C promoter sequence from Kpnl to Ncol
GGTyACCGTTTGAATCCTCCTTAAAGTTTTTCTCTGGAGAAACTGTAGTAATnTAC TTTGTTGTGTTCCCTTCATCTTTTGAATTAATGGCATTTGTTTTAATACTAATCTGC TTCTGAAACTTGTAATGTATGTATATCAGTTTCTTATAATTTATCCAAGTAATATCT TCCATTCTCTATGCAATTGCCTGCATAAGCTCGACAAAAGAGTACATCAACCCCT CCTCCTCTGGACTACTCTAGCTAAACTTGAATTTCCCCTTAAGATTATGAAATTG ATATATCCTTAACAAACGACTCCTTCTGTTGGAAAATGTAGTACTTGTCTTTCTTC TTTTGGGTATATATAGTTTATATACACCATACTATGTACAACATCCAAGTAGAGTG AAATGGATACATGTACAAGACTTATTTGATTGATTGATGACTTGAGTTGCCTTAG GAGTAACAAATTCTTAGGTCAATAAATCGTTGATTTGAAATTAATCTCTCTGTCTT AGACAGATAGGAATTATGACTTCCAATGGTCCAGAAAGCAAAGTTCGCACTGAG GGTATACTTGGAATTGAGACTTGCACAGGTCCAGAAACCAAAGTTCCCATCGAG CTCTAAAATCACATCTTTGGAATGAAATTCAATTAGAGATAAGTTGCTTCATAGCA TAGGTAAAATGGAAGATGTGAAGTAACCTGCAATAATCAGTGAAATGACATTAAT ACACTAAATACTTCATATGTAATTATCCTTTCCAGGTTAACAATACTCTATAAAGT AAGAATTATCAGAAATGGGCTCATCAAACTTTTGTACTATGTATTTCATATAAGGA AGTATAACTATACATAAGTGTATACACAACTTTATTCCTATTTTGTAAAGGTGGAG AGACTGTTTTCGATGGATCTAAAGCAATATGTCTATAAAATGCATTGATATAATAA TTATCTGAGAAAATCCAGAATTGGCGTTGGATTATTTCAGCCAAATAGAAGTTTG TACCATACTTGTTGATTCCTTCTAAGTTAAGGTGAAGTATCATTCATAAACAGTTT TCCCCAAAGTACTACTCACCAAGTTTCCCTTTGTAGAATTAACAGTTCAAATATAT GGCGCAGAAATTACTCTATGCCCAAAACCAAACGAGAAAGAAACAAAATACAGG GGTTGCAGACTTTATTTTCGTGTTAGGGTGTGT I I I I I CATGTAATTAATCAAAAA ATATTATGACAAAAACATTTATACATATTTTTACTCAACACTCTGGGTATCAGGGT GGGTTGTGTTCGACAATCAATATGGAAAGGAAGTATTTTCCTTA I I I I I I TAGTTA ATATTTTCAGTTATACCAAACATACCTTGTGATATTATTTTTAAAAATGAAAAACTC GTCAGAAAGAAAAAGCAAAAGCAACAAAAAAATTGCAAGTATTTTTTAAAAAAGA AAAAAAAAACATATCTTGTTTGTCAGTATGGGAAGTTTGAGATAAGGACGAGTGA GGGGTTAAAATTCAGTGGCCATTGATTTTGTAATGCCAAGAACCACAAAATCCAA TGGTTACCATTCCTGTAAGATGAGGTTTGCTAACTCTTTTTGTCCGTTAGATAGG AAGCCTTATCACTATATATACAAGGCGTCCTAATAACCTCTTAGTAACCAATTATT TCAGCACCATGG
SEQ ID NO: 18: Bamboo GPT DNA sequence
ATGGCCTCCGCGGCCGTCTCCACCGTCGCCACCGCCGCCGACGGCGTCGCGA AGCCGACGGAGAAGCAGCCGGTACAGGTCGCAAAGCGTTTGGAAAAGTTTAAG ACAACAATTTTCACACAGATGAGCATGCTTGCCATCAAGCATGGAGCAATAAAC CTCGGCCAGGGCTTTCCGAATTTTGATGGCCCTGACTTTGTGAAAGAAGCTGCT ATTCAAGCTATCAATGCTGGGAAGAATCAGTATGCAAGAGGATATGGTGTGCCT GAACTGAACTCGGCTGTTGCTGAAAGGTTCCTGAAGGACAGTGGCTTGCAAGTC GATCCCGAGAAGGAAGTTACTGTCACATCTGGGTGCACGGAAGCGATAGCTGC AACGATATTGGGTCTTATCAACCCTGGCGATGAAGTGATCTTGTTTGCTCCATTC TATGATTCATACGAGGCTACGCTGTCGATGGCTGGTGCCAATGTAAAAGCCATT ACTCTCCGTCCTCCAGATTTTGCAGTCCCTCTTGAGGAGCTAAAGGCCACAGTC TCTAAGAACACCAGAGCGATAATGATAAACACACCACACAATCCTACTGGGAAA ATGTTTTCTAGGGAAGAACTTGAATTCATTGCTACTCTCTGCAAGAAAAATGATG TGTTGCTTTTTGCTGATGAGGTCTATGACAAGTTGGCATTTGAGGCAGATCATAT ATCAATGGCTTCTATTCCTGGCATGTATGAGAGGACTGTGACTATGAACTCTCTG GGGAAGACATTCTCTCTAACAGGATGGAAGATCGGTTGGGCAATAGCACCACCA CACCTGACATGGGGTGTAAGGCAGGCACACTCATTCCTCACATTTGCCACCTGC ACACCAATGCAATCGGCGGCGGCGGCGGCTCTTAGAGCACCAGATAGCTACTA TGGGGAGCTGAAGAGGGATTACGGTGCAAAGAAAGCGATACTAGTCGACGGAC TCAAGGCTGCAGGTTTTATTGTTTACCCTTCAAGTGGAACATACTTTGTCATGGT CGATCACACCCCGTTTGGTTTCGACAATGATATTGAGTTCTGCGAGTATTTGATC CGCGAAGTCGGTGTTGTCGCCATACCACCAAGCGTATTTTATCTCAACCCTGAG GATGGGAAGAACTTGGTGAGGTTCACCTTCTGCAAGGATGATGATACGCTGAGA GCCGCAGTTGAGAGGATGAAGACAAAGCTCAGGAAAAAATGA SEQ ID NO: 19: Bamboo GPT amino acid sequence
MASAAVSTVATAADGVAKPTEKQPVQVAKRLEKFKTTIFTQMSMLAIKHGAINLGQG FPNFDGPDFVKEAAIQAINAGKNQYARGYGVPELNSAVAERFLKDSGLQVDPEKEV TVTSGCTEAIAATILGLINPGDEVILFAPFYDSYEATLSMAGANVKAITLRPPDFAVPL EELKATVSKNTRAIMINTPHNPTGKMFSREELEFIATLCKKNDVLLFADEVYDKLAFE ADHISMASIPGMYERTVTMNSLGKTFSLTGWKIGWAIAPPHLTWGVRQAHSFLTFA TCTPMQSAAAAALRAPDSYYGELKRDYGAKKAILVDGLKAAGFIVYPSSGTYFVMV DHTPFGFDNDIEFCEYLIREVGWAIPPSVFYLNPEDGKNLVRFTFCKDDDTLRAAVE RMKTKLRKK
SEQ ID NO: 20: 1305.1+rbcS3C promoter + catl intron with rice GPT gene.
Cambial 305.1 with (3' end of) rbcS3C+rice GPT. Underlined ATG is start site, parentheses are the catl intron and the underlined actagt is the spel cloning site used to splice in the rice gene.
AAAAAAGAAAAAAAAAACATATCTTGTTTGTCAGTATGGGAAGTTTGAGATAAGG ACGAGTGAGGGGTTAAAATTCAGTGGCCATTGATTTTGTAATGCCAAGAACCAC AAAATCCAATGGTTACCATTCCTGTAAGATGAGGTTTGCTAACTCTTTTTGTCCG TTAGATAGGAAGCCTTATCACTATATATACAAGGCGTCCTAATAACCTCTTAGTA ACCAATTATTTCAGCACCATGGTAGATCTGAGG(GTAAATTTCTAGTTTTTCTCCT TCATTTTCTTGGTTAGGACCCTTTTCTCTTTTTATTTTTTTGAGCTTTGATCTTTCT TTAAACTGATCTATTTTTTAATTGATTGGTTATGGTGTAAATATTACATAGCTTTAA CTGATAATCTGATTACTTTATTTCGTGTGTCTATGATGATGATGATAGTTACAG)A
ACCGACGAΛCΓAGΓATGAATCTGGCCGGCTTTCTCGCCACGCCCGCGACCGCG ACCGCGACGCGGCATGAGATGCCGTTAAATCCCTCCTCCTCCGCCTCCTTCCTC CTCTCCTCGCTCCGCCGCTCGCTCGTCGCGTCGCTCCGGAAGGCCTCGCCGG CGGCGGCCGCGGCGCTCTCCCCCATGGCCTCCGCGTCCACCGTCGCCGCCGA GAACGGCGCCGCCAAGGCGGCGGCGGAGAAGCAGCAGCAGCAGCCTGTGCA GGTTGCAAAGCGGTTGGAAAAGTTTAAGACGACCATTTTCACACAGATGAGTAT GCTTGCCATCAAGCATGGAGCAATAAACCTTGGCCAGGGTTTTCCGAATTTCGA TGGCCCTGACTTTGTAAAAGAGGCTGCTATTCAAGCTATCAATGCTGGGAAGAA TCAGTACGCAAGAGGATATGGTGTGCCTGAACTGAACTCAGCTATTGCTGAAAG ATTCCTGAAGGACAGCGGACTGCAAGTCGATCCGGAGAAGGAAGTTACTGTCA CATCTGGATGCACAGAAGCTATAGCTGCAACAATTTTAGGTCTAATTAATCCAGG CGATGAAGTGATATTGTTTGCTCCATTCTATGATTCATATGAGGCTACCCTGTCA ATGGCTGGTGCCAACGTAAAAGCCATTACTCTCCGTCCTCCAGATTTTTCAGTC CCTCTTGAAGAGCTAAAGGCTGCAGTCTCGAAGAACACCAGAGCTATTATGATA AACACCCCGCACAATCCTACTGGGAAAATGTTTACAAGGGAAGAACTTGAGTTT ATTGCCACTCTCTGCAAGGAAAATGATGTGCTGCTTTTTGCTGATGAGGTCTAC GACAAGTTAGCTTTTGAGGCAGATCATATATCAATGGCTTCTATTCCTGGCATGT ATGAGAGGACCGTGACCATGAACTCTCTTGGGAAGACATTCTCTCTTACAGGAT GGAAGATCGGTTGGGCAATCGCACCGCCACACCTGACATGGGGTGTAAGGCAG GCACACTCATTCCTCACGTTTGCGACCTGCACACCAATGCAAGCAGCTGCAGCT GCAGCTCTGAGAGCACCAGATAGCTACTATGAGGAACTGAGGAGGGATTATGG AGCTAAGAAGGCATTGCTAGTCAACGGACTCAAGGATGCAGGTTTCATTGTCTA TCCTTCAAGTGGAACATACTTCGTCATGGTCGACCACACCCCATTTGGTTTCGA CAATGATATTGAGTTCTGCGAGTATTTGATTCGCGAAGTCGGTGTTGTCGCCATA CCACCTAGTGTATTTTATCTCAACCCTGAGGATGGGAAGAACTTGGTGAGGTTC ACCTTTTGCAAGGATGATGAGACGCTGAGAGCCGCGGTTGAGAGGATGAAGAC AAAGCTCAGGAAAAAATGA
SEQ ID NO: 21 : HORDEUM GPT SEQUENCE IN VECTOR
Cambial 305.1 with (3' end of) rbcS3C+hordeum IDI4. Underlined ATG is start site, parentheses are the catl intron and the underlined actagt is the spel cloning site used to splice in the hordeum gene.
AAAAAAGAAAAAAAAAACATATCTTGTTTGTCAGTATGGGAAGTTTGAGATAAGG ACGAGTGAGGGGTTAAAATTCAGTGGCCATTGATTTTGTAATGCCAAGAACCAC AAAATCCAATGGTTACCATTCCTGTAAGATGAGGTTTGCTAACTCTTTTTGTCCG TTAGATAGGAAGCCTTATCACTATATATACAAGGCGTCCTAATAACCTCTTAGTA ACCAATTATTTCAGCACCATGGTAGATCTGAGG(GTAAATTTCTAGTTTTTCTCCT TCATTTTCTTGGTTAGGACCCTTTTCTCTTTTTATTTTTTTGAGCTTTGATCTTTCT TTAAACTGATCTATTTTTTAATTGATTGGTTATGGTGTAAATATTACATAGCTTTAA CTGATAATCTGATTACTTTATTTCGTGTGTCTATGATGATGATGATAGTTACAG)A ACCGACGAΛCTAGJATGGCATCCGCCCCCGCCTCCGCCTCCGCGGCCCTCTCC ACCGCCGCCCCCGCCGACAACGGGGCCGCCAAGCCCACGGAGCAGCGGCCG GTACAGGTGGCTAAGCGATTGGAGAAGTTCAAAACAACAATTTTCACACAGATG AGCATGCTCGCAGTGAAGCATGGAGCAATAAACCTTGGACAGGGGTTTCCCAAT TTTGATGGCCCTGACTTTGTCAAAGATGCTGCTATTGAGGCTATCAAAGCTGGA AAGAATCAGTATGCAAGAGGATATGGTGTGCCTGAATTGAACTCAGCTGTTGCT GAGAGATTTCTCAAGGACAGTGGATTGCACATCGATCCTGATAAGGAAGTTACT GTTACATCTGGGTGCACAGAAGCAATAGCTGCAACGATATTGGGTCTGATCAAC CCTGGGGATGAAGTCATACTGTTTGCTCCATTCTATGATTCTTATGAGGCTACAC TGTCCATGGCTGGTGCGAATGTCAAAGCCATTACACTCCGCCCTCCGGACTTTG CAGTCCCTCTTGAAGAGCTAAAGGCTGCAGTCTCGAAGAATACCAGAGCAATAA TGATTAATACACCTCACAACCCTACCGGGAAAATGTTCACAAGGGAGGAACTTG AGTTCATTGCTGATCTCTGCAAGGAAAATGACGTGTTGCTCTTTGCCGATGAGG TCTACGACAAGCTGGCGTTTGAGGCGGATCACATATCAATGGCTTCTATTCCTG GCATGTATGAGAGGACCGTCACTATGAACTCCCTGGGGAAGACGTTCTCCTTGA CCGGATGGAAGATCGGCTGGGCGATAGCACCACCGCACCTGACATGGGGCGT AAGGCAGGCACACTCCTTCCTCACATTCGCCACCTCCACGCCGATGCAATCAGC AGCGGCGGCGGCCCTGAGAGCACCGGACAGCTACTTTGAGGAGCTGAAGAGG GACTACGGCGCAAAGAAAGCGCTGCTGGTGGACGGGCTCAAGGCGGCGGGCT TCATCGTCTACCCTTCGAGCGGAACCTACTTCATCATGGTCGACCACACCCCGT TCGGGTTCGACAACGACGTCGAGTTCTGCGAGTACTTGATCCGCGAGGTCGGC GTCGTGGCCATCCCGCCAAGCGTGTTCTACCTGAACCCGGAGGACGGGAAGAA CCTGGTGAGGTTCACCTTCTGCAAGGACGACGACACGCTAAGGGCGGCGGTG GACAGGATGAAGGCCAAGCTCAGGAAGAAATGATTGAGGGGCGCΛCGΓGΓGΛ
SEQ ID NO: 22 Expression cassette, Arabidopsis GPT coding sequence (ATG underlined) under control of CMV 35S promoter (italics; promoter from Cambia 1201) CATGGAGTCAAAGATTCAAATAGAGGACCTAACAGAACTCGCCGTAAAGACTGG CGAACAGTTCATACAGAGTCTCTTACGACTCAATGACAAGAAGAAAATCTTCGTC AACATGGTGGAGCACGACACACTTGTCTACTCCAAAAATATCAAAGATACAGTCT CAGAAGACCAAAGGGCAATTGAGACTTTTCAACAAAGGGTAATATCCGGAAACC TCCTCGGA TTCCA TTGCCCA GCTA TCTGTCACTTTA TTGTGAAGA TAGTGGAAAA GGAA GGTGGCTCCTA CAAA TGCCA TCA TTGCGA TAAA GGAAAGGCCA TCGTTGA AGATGCCTCTGCCGACAGTGGTCCCAAAGATGGACCCCCACCCACGAGGAGCA TCGTGGAAAAAGAAGACGTTCCAACCACGTCTTCAAAGCAAGTGGATTGATGTG ATATCTCCACTGACGTAAGGGATGACGCACAATCCCACTATCCTTCGCAAGACC CTTCCTCTA TA TAAGGAAGTTCA TTTCA TTTGGA GA GAA CA CGGGGGACTCTTGA CCATGTACCTGGACATAAATGGTGTGATGATCAAACAGTTTAGCTTCAAAGCCTC TCTTCTCCCATTCTCTTCTAATTTCCGACAAAGCTCCGCCAAAATCCATCGTCCT ATCGGAGCCACCATGACCACAGTTTCGACTCAGAACGAGTCTACTCAAAAACCC GTCCAGGTGGCGAAGAGATTAGAGAAGTTCAAGACTACTATTTTCACTCAAATG AGCATATTGGCAGTTAAACATGGAGCGATCAATTTAGGCCAAGGCTTTCCCAATT TCGACGGTCCTGATTTTGTTAAAGAAGCTGCGATCCAAGCTATTAAAGATGGTAA AAACCAGTATGCTCGTGGATACGGCATTCCTCAGCTCAACTCTGCTATAGCTGC GCGGTTTCGTGAAGATACGGGTCTTGTTGTTGATCCTGAGAAAGAAGTTACTGT TACATCTGGTTGCACAGAAGCCATAGCTGCAGCTATGTTGGGTTTAATAAACCCT GGTGATGAAGTCATTCTCTTTGCACCGTTTTATGATTCCTATGAAGCAACACTCT CTATGGCTGGTGCTAAAGTAAAAGGAATCACTTTACGTCCACCGGACTTCTCCA TCCCTTTGGAAGAGCTTAAAGCTGCGGTAACTAACAAGACTCGAGCCATCCTTA TGAACACTCCGCACAACCCGACCGGGAAGATGTTCACTAGGGAGGAGCTTGAA ACCATTGCATCTCTCTGCATTGAAAACGATGTGCTTGTGTTCTCGGATGAAGTAT ACGATAAGCTTGCGTTTGAAATGGATCACATTTCTATAGCTTCTCTTCCCGGTAT GTATGAAAGAACTGTGACCATGAATTCCCTGGGAAAGACTTTCTCTTTAACCGGA TGGAAGATCGGCTGGGCGATTGCGCCGCCTCATCTGACTTGGGGAGTTCGACA AGCACACTCTTACCTCACATTCGCCACATCAACACCAGCACAATGGGCAGCCGT TGCAGCTCTCAAGGCACCAGAGTCTTACTTCAAAGAGCTGAAAAGAGATTACAA TGTGAAAAAGGAGACTCTGGTTAAGGGTTTGAAGGAAGTCGGATTTACAGTGTT CCCATCGAGCGGGACTTACTTTGTGGTTGCTGATCACACTCCATTTGGAATGGA GAACGATGTTGCTTTCTGTGAGTATCTTATTGAAGAAGTTGGGGTCGTTGCGAT CCCAACGAGCGTCTTTTATCTGAATCCAGAAGAAGGGAAGAATTTGGTTAGGTT TGCGTTCTGTAAAGACGAAGAGACGTTGCGTGGTGCAATTGAGAGGATGAAGC AGAAGCTTAAGAGAAAAGTCTGA SEQ ID NO: 23 Cambia p1305.1 with (3' end of) rbcS3C+Arabidopsis GPT. Underlined ATG is start site, parentheses are the catl intron and the underlined actagt is the spel cloning site used to splice in the Arabidopsis gene.
AAAAAAGAAAAAAAAAACATATCTTGTTTGTCAGTATGGGAAGTTTGAGATAAGG ACGAGTGAGGGGTTAAAATTCAGTGGCCATTGATTTTGTAATGCCAAGAACCAC AAAATCCAATGGTTACCATTCCTGTAAGATGAGGTTTGCTAACTCTTTTTGTCCG TTAGATAGGAAGCCTTATCACTATATATACAAGGCGTCCTAATAACCTCTTAGTA ACCAATTATTTCAGCACCdTOGTAGATCTGAGG(GTAAATTTCTAGTTTTTCTCCT TCATTTTCTTGGTTAGGACCCTTTTCTCTTTTTATTTTTTTGAGCTTTGATCTTTCT TTAAACTGATCTA I I I I I I AATTGATTGGTTATGGTGTAAATATTACATAGCTTTAA CTGATAATCTGATTACTTTATTTCGTGTGTCTATGATGATGATGATAGTTACAG)A ACCGACGAACJΛGJATGTACCTGGACATAAATGGTGTGATGATCAAACAGTTTA GCTTCAAAGCCTCTCTTCTCCCATTCTCTTCTAATTTCCGACAAAGCTCCGCCAA AATCCATCGTCCTATCGGAGCCACCATGACCACAGTTTCGACTCAGAACGAGTC TACTCAAAAACCCGTCCAGGTGGCGAAGAGATTAGAGAAGTTCAAGACTACTAT TTTCACTCAAATGAGCATATTGGCAGTTAAACATGGAGCGATCAATTTAGGCCAA GGCTTTCCCAATTTCGACGGTCCTGATTTTGTTAAAGAAGCTGCGATCCAAGCTA TTAAAGATGGTAAAAACCAGTATGCTCGTGGATACGGCATTCCTCAGCTCAACT CTGCTATAGCTGCGCGGTTTCGTGAAGATACGGGTCTTGTTGTTGATCCTGAGA AAGAAGTTACTGTTACATCTGGTTGCACAGAAGCCATAGCTGCAGCTATGTTGG GTTTAATAAACCCTGGTGATGAAGTCATTCTCTTTGCACCGTTTTATGATTCCTAT GAAGCAACACTCTCTATGGCTGGTGCTAAAGTAAAAGGAATCACTTTACGTCCA CCGGACTTCTCCATCCCTTTGGAAGAGCTTAAAGCTGCGGTAACTAACAAGACT CGAGCCATCCTTATGAACACTCCGCACAACCCGACCGGGAAGATGTTCACTAG GGAGGAGCTTGAAACCATTGCATCTCTCTGCATTGAAAACGATGTGCTTGTGTT CTCGGATGAAGTATACGATAAGCTTGCGTTTGAAATGGATCACATTTCTATAGCT TCTCTTCCCGGTATGTATGAAAGAACTGTGACCATGAATTCCCTGGGAAAGACTT TCTCTTTAACCGGATGGAAGATCGGCTGGGCGATTGCGCCGCCTCATCTGACTT GGGGAGTTCGACAAGCACACTCTTACCTCACATTCGCCACATCAACACCAGCAC AATGGGCAGCCGTTGCAGCTCTCAAGGCACCAGAGTCTTACTTCAAAGAGCTGA AAAGAGATTACAATGTGAAAAAGGAGACTCTGGTTAAGGGTTTGAAGGAAGTCG GATTTACAGTGTTCCCATCGAGCGGGACTTACTTTGTGGTTGCTGATCACACTC CATTTGGAATGGAGAACGATGTTGCTTTCTGTGAGTATCTTATTGAAGAAGTTGG GGTCGTTGCGATCCCAACGAGCGTCTTTTATCTGAATCCAGAAGAAGGGAAGAA TTTGGTTAGGTTTGCGTTCTGTAAAGACGAAGAGACGTTGCGTGGTGCAATTGA GAGGATGAAGCAGAAGCTTAAGAGAAAAGTCTGA SEQ ID NO: 24 Arabidpsis GPT coding sequence (mature protein, no targeting sequence)
GTGGCGAAGAGATTAGAGAAGTTCAAGACTACTATTTTCACTCAAATGAGCATAT TGGCAGTTAAACATGGAGCGATCAATTTAGGCCAAGGCTTTCCCAATTTCGACG GTCCTGATTTTGTTAAAGAAGCTGCGATCCAAGCTATTAAAGATGGTAAAAACCA GTATGCTCGTGGATACGGCATTCCTCAGCTCAACTCTGCTATAGCTGCGCGGTT TCGTGAAGATACGGGTCTTGTTGTTGATCCTGAGAAAGAAGTTACTGTTACATCT GGTTGCACAGAAGCCATAGCTGCAGCTATGTTGGGTTTAATAAACCCTGGTGAT GAAGTCATTCTCTTTGCACCGTTTTATGATTCCTATGAAGCAACACTCTCTATGG CTGGTGCTAAAGTAAAAGGAATCACTTTACGTCCACCGGACTTCTCCATCCCTTT GGAAGAGCTTAAAGCTGCGGTAACTAACAAGACTCGAGCCATCCTTATGAACAC TCCGCACAACCCGACCGGGAAGATGTTCACTAGGGAGGAGCTTGAAACCATTG CATCTCTCTGCATTGAAAACGATGTGCTTGTGTTCTCGGATGAAGTATACGATAA GCTTGCGTTTGAAATGGATCACATTTCTATAGCTTCTCTTCCCGGTATGTATGAA AGAACTGTGACCATGAATTCCCTGGGAAAGACTTTCTCTTTAACCGGATGGAAG ATCGGCTGGGCGATTGCGCCGCCTCATCTGACTTGGGGAGTTCGACAAGCACA CTCTTACCTCACATTCGCCACATCAACACCAGCACAATGGGCAGCCGTTGCAGC TCTCAAGGCACCAGAGTCTTACTTCAAAGAGCTGAAAAGAGATTACAATGTGAAA AAGGAGACTCTGGTTAAGGGTTTGAAGGAAGTCGGATTTACAGTGTTCCCATCG AGCGGGACTTACTTTGTGGTTGCTGATCACACTCCATTTGGAATGGAGAACGAT GTTGCTTTCTGTGAGTATCTTATTGAAGAAGTTGGGGTCGTTGCGATCCCAACG AGCGTCTTTTATCTGAATCCAGAAGAAGGGAAGAATTTGGTTAGGTTTGCGTTCT GTAAAGACGAAGAGACGTTGCGTGGTGCAATTGAGAGGATGAAGCAGAAGCTT AAGAGAAAAGTCTGA
SEQ ID NO: 25 Arabidpsis GPT amino acid sequence (mature protein, no targeting sequence)
VAKRLEKFKTTIFTQMSILAVKHGAINLGQGFPNFDGPDFVKEAAIQAIKDGKNQYAR GYGIPQLNSAIAARFREDTGLWDPEKEVTVTSGCTEAIAAAMLGLINPGDEVILFAP FYDSYEATLSMAGAKVKGITLRPPDFSIPLEELKAAVTNKTRAILMNTPHNPTGKMFT REELETIASLCIENDVLVFSDEVYDKLAFEMDHISIASLPGMYERTVTMNSLGKTFSL TGWKIGWAIAPPHLTWGVRQAHSYLTFATSTPAQWAAVAALKAPESYFKELKRDYN VKKETLVKGLKEVGFTVFPSSGTYFWADHTPFGMENDVAFCEYLIEEVGWAIPTS VFYLNPEEGKNLVRFAFCKDEETLRGAIERMKQKLKRKV
SEQ ID NO: 26 Grape GPT amino acid sequence (mature protein, no targeting sequence)
VAKRLEKFKTTIFTQMSMLAIKHGAINLGQGFPNFDGPEFVKEAAIQAIKDGKNQYAR GYGVPDLNSAVADRFKKDTGLWDPEKEVTVTSGCTEAIAATMLGLINPGDEVILFA PFYDSYEATLSMAGAQIKSITLRPPDFAVPMDELKSAISKNTRAILINTPHNPTGKMFT REELNVIASLCIENDVLVFTDEVYDKLAFEMDHISMASLPGMYERTVTMNSLGKTFS LTGWKIGWTVAPPHLTWGVRQAHSFLTFATCTPMQWAAATALRAPDSYYEELKRD YSAKKAILVEGLKAVGFRVYPSSGTYFVWDHTPFGLKDDIAFCEYLIKEVGWAIPT SVFYLHPEDGKNLVRFTFCKDEGTLRAAVERMKEKLKPKQ SEQ ID NO: 27 Rice GPT amino acid sequence (mature protein, no targeting sequence) VAKRLEKFKTTIFTQMSMLAIKHGAINLGQGFPNFDGPDFVKEAAIQAINAGKNQYAR GYGVPELNSAIAERFLKDSGLQVDPEKEVTVTSGCTEAIAATILGLINPGDEVILFAPF YDSYEATLSMAGANVKAITLRPPDFSVPLEELKAAVSKNTRAIMINTPHNPTGKMFT REELEFIATLCKENDVLLFADEVYDKLAFEADHISMASIPGMYERTVTMNSLGKTFSL TGWKIGWAIAPPHLTWGVRQAHSFLTFATCTPMQAAAAAALRAPDSYYEELRRDY GAKKALLVNGLKDAGFIVYPSSGTYFVMVDHTPFGFDNDIEFCEYLIREVGWAIPPS VFYLNPEDGKNLVRFTFCKDDETLRAAVERMKTKLRKK
SEQ ID NO: 28 Soybean GPT amino acid sequence (-1 mature protein, no targeting sequence)
AKRLEKFQTTIFTQMSLLAIKHGAINLGQGFPNFDGPEFVKEAAIQAIRDGKNQYARG YGVPDLNIAIAERFKKDTGLWDPEKEITVTSGCTEAIAATMIGLINPGDEVIMFAPFY DSYEATLSMAGAKVKGITLRPPDFAVPLEELKSTISKNTRAILINTPHNPTGKMFTRE ELNCIASLCIENDVLVFTDEVYDKLAFDMEHISMASLPGMFERTVTLNSLGKTFSLTG WKIGWAIAPPHLSWGVRQAHAFLTFATAHPFQCAAAAALRAPDSYYVELKRDYMAK RAILIEGLKAVGFKVFPSSGTYFVWDHTPFGLENDVAFCEYLVKEVGWAIPTSVFY LNPEEGKNLVRFTFCKDEETIRSAVERMKAKLRKVD
SEQ ID NO: 29 Barley GPT amino acid sequence (mature protein, no targeting sequence)
VAKRLEKFKTTIFTQMSMLAVKHGAINLGQGFPNFDGPDFVKDAAIEAIKAGKNQYA RGYGVPELNSAVAERFLKDSGLHIDPDKEVTVTSGCTEAIAATILGLINPGDEVILFAP FYDSYEATLSMAGANVKAITLRPPDFAVPLEELKAAVSKNTRAIMINTPHNPTGKMFT REELEFIADLCKENDVLLFADEVYDKLAFEADHISMASIPGMYERTVTMNSLGKTFSL TGWKIGWAIAPPHLTWGVRQAHSFLTFATSTPMQSAAAAALRAPDSYFEELKRDYG AKKALLVDGLKAAGFIVYPSSGTYFIMVDHTPFGFDNDVEFCEYLIREVGWAIPPSV FYLNPEDGKNLVRFTFCKDDDTLRAAVDRMKAKLRKK SEQ ID NO: 30 Zebra fish GPT amino acid sequence (mature protein, no targeting sequence)
VAKRLEKFKTTIFTQMSMLAIKHGAINLGQGFPNFDGPDFVKEAAIQAIRDGNNQYA RGYGVPDLNIAISERYKKDTGLAVDPEKEITVTSGCTEAIAATVLGLINPGDEVIVFAP FYDSYEATLSMAGAKVKGITLRPPDFALPIEELKSTISKNTRAILLNTPHNPTGKMFTP EELNTIASLCIENDVLVFSDEVYDKLAFDMEHISIASLPGMFERTVTMNSLGKTFSLT GWKIGWAIAPPHLTWGVRQAHAFLTFATSNPMQWAAAVALRAPDSYYTELKRDYM AKRSILVEGLKAVGFKVFPSSGTYFVWDHTPFGHENDIAFCEYLVKEVGWAIPTSV FYLNPEEGKNLVRFTFCKDEGTLRAAVDRMKEKLRK SEQ ID NO: 31 Bamboo GPT amino acid sequence (mature protein, no targeting sequence)
VAKRLEKFKTTIFTQMSMLAIKHGAINLGQGFPNFDGPDFVKEAAIQAINAGKNQYAR GYGVPELNSAVAERFLKDSGLQVDPEKEVTVTSGCTEAIAATILGLINPGDEVILFAP FYDSYEATLSMAGANVKAITLRPPDFAVPLEELKATVSKNTRAIMINTPHNPTGKMFS REELEFIATLCKKNDVLLFADEVYDKLAFEADHISMASIPGMYERTVTMNSLGKTFSL TGWKIGWAIAPPHLTWGVRQAHSFLTFATCTPMQSAAAAALRAPDSYYGELKRDY GAKKAILVDGLKAAGFIVYPSSGTYFVMVDHTPFGFDNDIEFCEYLIREVGWAIPPS VFYLNPEDGKNLVRFTFCKDDDTLRAAVERMKTKLRKK
SEQ ID NO: 34 Rice rubisco promoter deposited in NCBI GenBank: AF143510.1 Pstl cloning sites in bold; Ncol cloning site in italics, catl intron and part of Gus plus protein from Cambia 1305.1 vector in bold underline (sequence removed and not translated), 3' terminal Spel cloning site in double underline. The construct also includes a PmII 1305.1 cloning site CACGTG (also cuts in rice rbsc promoter), and a Zral cloning site GACGTC, which can be added by PCR to clone into PmII site of vector).
CTGCAGCAAAGAAACGTTATTAGTTGGTGCTTTTGGTGGTAGGAATGTAGTTTTC
TGACAAAGTCAATTACTGAATATAAAAAAAATCTGCACAGCTCTGCGTCAACAGT
TGTCCAAGGGATGCCTCAAAAATCTGTGCAGATTATCAGTCGTCACGCAGAAGC AGAACATCATGGTGTGCTAGGTCAGCTTCTTGCATTGGGCCATGAATCCGGTTG GTTGTTAATCTCTCCTCTCTTATTCTCTTATATTAAGATGCATAACTCTTTTATGTA GTCTAAAAAAAAATCCAGTGGATCGGATAGTAGTACGTCATGGTGCCATTAGGT ACCGTTGAACCTAACAGATATTTATGCATGTGTATATATATAGCTATATAGACAAA ATTGATGCCGATTATAGACCCAAAAGCAATAGGTATATATAATATAATACAGACC ACACCACCAAACTAAGAATCGATCAAATAGACAAGGCATGTCTCCAAATTGTCTT AAACTATTTCCGTAGGTTCAGCCGTTCAGGAGTCGAATCAGCCTCTGCCGGCGT TTTCTTTGCACGTACGACGGACACACATGGGCATACCATATAGCTGGTCCATGA CATTAGGAGAGAGAACGTACGTGTTGACCTGTAGCTGAGATATAACAAGGTTGA TTATAATATCACCAAACATGAAATCATCCAAGGATGACCCATAACTATCACTACTA TAGTACTGCATCTGGTAAAAGAAATTGTATAGACTCTATTTCGAGCACTACCACA TAACGCCTGCAATGTGACACCCTACCTATTCACTAATGTGCCTCTTCCCACACG CTTTCCACCCGTACTGCTCACAGCTTTAAGAACCAGAACAAATGAGTAATATTAG TGTCGGTTCATGGCTAAAACCAGCACTGATGTACATGACCACATATGTCAAATG CTGCTTCTAGGCATGACCCGCTCTTACTAATACCTACTCATCGCTAGAAGAATTT TCGGCTGATAAATTTTCAATTTAAGCAAGAGTTATCTGCGTTGGTTCATAACTCA AACTGATGGCCCCAACCATATTAGTGCAAATTTCACATATGATCATAACCTΠTC ATATGAAATCGGATCGAGATGAACTTTATATAAACATTGTAGCTGTCGATGATAC CTACAATTTTATAGTTCACAACCTTTTTATTTCAAGTCATTTAAATGCCCAAATAG GTGTTTCAAATCTCAGATAGAAATGTTCAAAAGTAAAAAAGGTCCCTATCATAAC ATAATTGATATGTAAGTGAGTTGGAAAAAGATAAGTACGTGTGAGAGAGATCGG GGATCAAATTCTGGTGTAATAATGTATGTATTTCAGTCATAAAAATTGGTAGCAG TAGTTGGGGCTCTGTATATATACCGGTAAGGATGGGATGGTAGTAGAATAATTC TTTTTTTGTTTTTAGTTTTTTCTGGTCCAAAATTTCAAATTTGGATCCCTTACTTGT ACCAACTAATATTAATGAGTGTTGAGGGTAGTAGAGGTGCAACTTTACCATAATC CCTCTGTTTCAGGTTATAAGACGTTTTGACTTTAAATTTGACCAAGTTTATGCGCA AATATAGTAATATTTATAATACTATATTAGTTTCATTAAATAAATAATTGAATATATT TTCATAATAAATTTGTGTTGAGTTCAAAATATTATTAATTTTTTCTACAAACTTGGT CAAACTTGAAGCAGTTTGACTTTGACCAAAGTCAAAACGTCTTATAACTTGAAAC GGATGGATTAC I I I I I I I GTGGGGACAAGTTTACAATGTTTAATAAAGCACAATC
CATCTTAATGTTTTCAAGCTGAATATTGTAAAATTCATGGATAAACCAGCTTCTAA ATGTTTAACCGGGAAAATGTCGAACGACAAATTAATATTTTTAAGTGATGGGGAG TATTAATTAAGGAGTGACAACTCAACTTTCAATATCGTACTAAACTGTGGGATTTA TTTTCTAAAATTTTATACCCTGCCAATTCACGTGTTGTAGATCTTTTTTTTTCACTA ACCGACACCAGGTATATCAATTTTATTGAATATAGCAGCAAAAAGAATGTGTTGT ACTTGTAAACAAAAAGCAAACTGTACATAAAAAAAAATGCACTCCTATATAATTAA GCTCATAAAGATGCTTTGCTTCGTGAGGGCCCAAGTTTTGATGACCTTTTGCTTG ATCTCGAAATTAAAATTTAAGTACTGTTAAGGGAGTTCACACCACCATCAATTTTC AGCCTGAAGAAACAGTTAAACAACGACCCCGATGACCAGTCTACTGCTCTCCAC ATACTAGCTGCATTATTGATCACAAAACAAAACAAAACGAAATAAAAATCAGCAG CGAGAGTGTGCAGAGAGAGACAAAGGTGATCTGGCGTGGATATCTCCCCATCC ATCCTCACCCGCGCTGCCCATCACTCGCCGCCGCATACTCCATCATGTGGAGA GAGGAAGACGAGGACCACAGCCAGAGCCCGGGTCGAGATGCCACCACGGCCA CAACCCACGAGCCCGGCGCGACACCACCGCGCGCGCGTGAGCCAGCCACAAA CGCCCGCGGATAGGCGCGCGCACGCCGGCCAATCCTACCACATCCCCGGCCT CCGCGGCTCGCGAGCGCCGCTGCCATCCGATCCGCTGAGTTTTGGCTATTTAT ACGTACCGCGGGAGCCTGTGTGCAGAGCAGTGCATCTCAAGAAGTACTCGAGC AAAGAAGGAGAGAGCTTGGTGAGCTGCAGCC^ ΓGGTAGATCTGAGGGTAAATT TCTAG I I I I I CTCCTTCATTTTCTTGGTTAGGACCCTTTTCTCTTTTTAI I I I I I I G AGCTTTGATCTTTCTTTAAACTGATCTATTTTTTAATTGATTGGTTATGGTGTAA ATATTACATAGCTTTAACTGATAATCTGATTACTTTATTTCGTGTGTCTATGATG ATGATGATAGTTACAGAACCGACGAACTAGT
SEQ ID NO: 35 Horeum GS1 coding sequence
GCGCAGGCGGTTGTGCAGGCGATGCAGTGCCAGGTGGGGGTGAGGGGCAGG ACGGCCGTCCCGGCGAGGCAGCCCGCGGGCAGGGTGTGGGGCGTCAGGAGG GCCGCCCGCGCCACCTCCGGGTTCAAGGTGCTGGCGCTCGGCCCGGAGACCA CCGGGGTCATCCAGAGGATGCAGCAGCTGCTCGACATGGACACCACGCCCTTC ACCGACAAGATCATCGCCGAGTACATCTGGGTTGGAGGATCTGGAATTGACCTC AGAAGCAAATCAAGGACGATTTCGAAGCCAGTGGAGGACCCGTCAGAGCTGCC GAAATGGAACTACGACGGATCGAGCACGGGGCAGGCTCCTGGGGAAGACAGT GAAGTCATCCTATACCCACAGGCCATATTCAAGGACCCATTCCGAGGAGGCAAC AACATACTGGTTATCTGTGACACCTACACACCACAGGGGGAACCCATCCCTACT AACAAACGCCACATGGCTGCACAAATCTTCAGTGACCCCAAGGTCACTTCACAA GTGCCATGGTTCGGAATCGAACAGGAGTACACTCTGATGCAGAGGGATGTGAA CTGGCCTCTTGGCTGGCCTGTTGGAGGGTACCCTGGCCCCCAGGGTCCATACT ACTGCGCCGTAGGATCAGACAAGTCATTTGGCCGTGACATATCAGATGCTCACT ACAAGGCGTGCCTTTACGCTGGAATTGAAATCAGTGGAACAAACGGGGAGGTC ATGCCTGGTCAGTGGGAGTACCAGGTTGGACCCAGCGTTGGTATTGATGCAGG AGACCACATATGGGCTTCCAGATACATTCTCGAGAGAATCACGGAGCAAGCTGG TGTGGTGCTCACCCTTGACCCAAAACCAATCCAGGGTGACTGGAACGGAGCTG GCTGCCACACAAACTACAGCACATTGAGCATGCGCGAGGATGGAGGTTTCGAC GTGATCAAGAAGGCAATCCTGAACCTTTCACTTCGCCATGACTTGCACATAGCC GCATATGGTGAAGGAAACGAGCGGAGGTTGACAGGGCTACACGAGACAGCTAG CATATCAGACTTCTCATGGGGTGTGGCGAACCGTGGCTGCTCTATTCGTGTGGG GCGAGACACCGAGGCGAAGGGCAAAGGATACCTGGAGGACCGTCGCCCGGCC TCCAACATGGACCCGTACACCGTGACGGCGCTGCTGGCCGAGACCACGATCCT GTGGGAGCCGACCCTCGAGGCGGAGGCCCTCGCTGCCAAGAAGCTGGCGCTG AAGGTATGA
SEQ ID NO: 36 Horeum GS1 amino acid sequence
AQAWQAMQCQVGVRGRTAVPARQPAGRVWGVRRAARATSGFKVLALGPETTGV IQRMQQLLDMDTTPFTDKIIAEYIWVGGSGIDLRSKSRTISKPVEDPSELPKWNYDG SSTGQAPGEDSEVILYPQAIFKDPFRGGNNILVICDTYTPQGEPIPTNKRHMAAQIFS DPKVTSQVPWFGIEQEYTLMQRDVNWPLGWPVGGYPGPQGPYYCAVGSDKSFG RDISDAHYKACLYAGIEISGTNGEVMPGQWEYQVGPSVGIDAGDHIWASRYILERIT EQAGWLTLDPKPIQGDWNGAGCHTNYSTLSMREDGGFDVIKKAILNLSLRHDLHIA AYGEGNERRLTGLHETASISDFSWGVANRGCSIRVGRDTEAKGKGYLEDRRPASN MDPYTVTALLAETTILWEPTLEAEALAAKKLALKV
SEQ ID NO: 37: Expression cassette combining SEQ ID NO: 34 (5') and SEQ ID NO: 35 (31), encoding the Rice rubisco promoter, catl intron and part of Gus plus protein, and hordeum GS1. Features shown as in SEQ ID NO: 34. Hordeum GS1 coding sequence begins after Spel cloning site (double underline).
CTGCAGCAAAGAAACGTTATTAGTTGGTGCTTTTGGTGGTAGGAATGTAGTTTTC TGACAAAGTCAATTACTGAATATAAAAAAAATCTGCACAGCTCTGCGTCAACAGT TGTCCAAGGGATGCCTCAAAAATCTGTGCAGATTATCAGTCGTCACGCAGAAGC AGAACATCATGGTGTGCTAGGTCAGCTTCTTGCATTGGGCCATGAATCCGGTTG GTTGTTAATCTCTCCTCTCTTATTCTCTTATATTAAGATGCATAACTCTTTTATGTA GTCTAAAAAAAAATCCAGTGGATCGGATAGTAGTACGTCATGGTGCCATTAGGT ACCGTTGAACCTAACAGATATTTATGCATGTGTATATATATAGCTATATAGACAAA ATTGATGCCGATTATAGACCCAAAAGCAATAGGTATATATAATATAATACAGACC ACACCACCAAACTAAGAATCGATCAAATAGACAAGGCATGTCTCCAAATTGTCTT AAACTATTTCCGTAGGTTCAGCCGTTCAGGAGTCGAATCAGCCTCTGCCGGCGT TTTCTTTGCACGTACGACGGACACACATGGGCATACCATATAGCTGGTCCATGA CATTAGGAGAGAGAACGTACGTGTTGACCTGTAGCTGAGATATAACAAGGTTGA TTATAATATCACCAAACATGAAATCATCCAAGGATGACCCATAACTATCACTACTA TAGTACTGCATCTGGTAAAAGAAATTGTATAGACTCTATTTCGAGCACTACCACA TAACGCCTGCAATGTGACACCCTACCTATTCACTAATGTGCCTCTTCCCACACG CTTTCCACCCGTACTGCTCACAGCTTTAAGAACCAGAACAAATGAGTAATATTAG TGTCGGTTCATGGCTAAAACCAGCACTGATGTACATGACCACATATGTCAAATG CTGCTTCTAGGCATGACCCGCTCTTACTAATACCTACTCATCGCTAGAAGAATTT TCGGCTGATAAATTTTCAATTTAAGCAAGAGTTATCTGCGTTGGTTCATAACTCA AACTGATGGCCCCAACCATATTAGTGCAAATTTCACATATGATCATAACCTTTTC ATATGAAATCGGATCGAGATGAACTTTATATAAACATTGTAGCTGTCGATGATAC CTACAATTTTATAGTTCACAACCTTTTTATTTCAAGTCATTTAAATGCCCAAATAG GTGTTTCAAATCTCAGATAGAAATGTTCAAAAGTAAAAAAGGTCCCTATCATAAC ATAATTGATATGTAAGTGAGTTGGAAAAAGATAAGTACGTGTGAGAGAGATCGG GGATCAAATTCTGGTGTAATAATGTATGTATTTCAGTCATAAAAATTGGTAGCAG TAGTTGGGGCTCTGTATATATACCGGTAAGGATGGGATGGTAGTAGAATAATTC TTTTTTTGTTTTTAGTTTTTTCTGGTCCAAAATTTCAAATTTGGATCCCTTACTTGT ACCAACTAATATTAATGAGTGTTGAGGGTAGTAGAGGTGCAACTTTACCATAATC CCTCTGTTTCAGGTTATAAGACGTTTTGACTTTAAATTTGACCAAGTTTATGCGCA AATATAGTAATATTTATAATACTATATTAGTTTCATTAAATAAATAATTGAATATATT TTCATAATAAATTTGTGTTGAGTTCAAAATATTATTAATTTTTTCTACAAACTTGGT CAAACTTGAAGCAGTTTGACTTTGACCAAAGTCAAAACGTCTTATAACTTGAAAC GGATGGATTACTTTTTTTGTGGGGACAAGTTTACAATGTTTAATAAAGCACAATC CATCTTAATGTTTTCAAGCTGAATATTGTAAAATTCATGGATAAACCAGCTTCTAA ATGTTTAACCGGGAAAATGTCGAACGACAAATTAATATTTTTAAGTGATGGGGAG TATTAATTAAGGAGTGACAACTCAACTTTCAATATCGTACTAAACTGTGGGATTTA TTTTCTAAAATTTTATACCCTGCCAATTCACGTGTTGTAGATCTTTTTTTTTCACTA ACCGACACCAGGTATATCAATTTTATTGAATATAGCAGCAAAAAGAATGTGTTGT ACTTGTAAACAAAAAGCAAACTGTACATAAAAAAAAATGCACTCCTATATAATTAA GCTCATAAAGATGCTTTGCTTCGTGAGGGCCCAAGTTTTGATGACCTTTTGCTTG ATCTCGAAATTAAAATTTAAGTACTGTTAAGGGAGTTCACACCACCATCAATTTTC AGCCTGAAGAAACAGTTAAACAACGACCCCGATGACCAGTCTACTGCTCTCCAC ATACTAGCTGCATTATTGATCACAAAACAAAACAAAACGAAATAAAAATCAGCAG CGAGAGTGTGCAGAGAGAGACAAAGGTGATCTGGCGTGGATATCTCCCCATCC ATCCTCACCCGCGCTGCCCATCACTCGCCGCCGCATACTCCATCATGTGGAGA GAGGAAGACGAGGACCACAGCCAGAGCCCGGGTCGAGATGCCACCACGGCCA CAACCCACGAGCCCGGCGCGACACCACCGCGCGCGCGTGAGCCAGCCACAAA CGCCCGCGGATAGGCGCGCGCACGCCGGCCAATCCTACCACATCCCCGGCCT CCGCGGCTCGCGAGCGCCGCTGCCATCCGATCCGCTGAGTTTTGGCTATTTAT ACGTACCGCGGGAGCCTGTGTGCAGAGCAGTGCATCTCAAGAAGTACTCGAGC AAAGAAGGAGAGAGCTTGGTGAGCTGCAG CCΛ 7GGTAGATCTGAGGGTAAATTT CTAGTTTTTCTCCTTCATTTTCTTGGTTAGGACCCTTTTCTCTTTTTATTTTTTTGA GCTTTGATCTTTCTTTAAACTGATCTATTTTTTAATTGATTGGTTATGGTGTAAATA TTACATAGCTTTAACTGATAATCTGATTACTTTATTTCGTGTGTCTATGATGATGA TGATAGTTACAGAACCGACGAACTAGTGCGCAGGCGGTTGTGCAGGCGATGCA GTGCCAGGTGGGGGTGAGGGGCAGGACGGCCGTCCCGGCGAGGCAGCCCGC GGGCAGGGTGTGGGGCGTCAGGAGGGCCGCCCGCGCCACCTCCGGGTTCAA GGTGCTGGCGCTCGGCCCGGAGACCACCGGGGTCATCCAGAGGATGCAGCAG CTGCTCGACATGGACACCACGCCCTTCACCGACAAGATCATCGCCGAGTACATC TGGGTTGGAGGATCTGGAATTGACCTCAGAAGCAAATCAAGGACGATTTCGAAG CCAGTGGAGGACCCGTCAGAGCTGCCGAAATGGAACTACGACGGATCGAGCAC GGGGCAGGCTCCTGGGGAAGACAGTGAAGTCATCCTATACCCACAGGCCATAT TCAAGGACCCATTCCGAGGAGGCAACAACATACTGGTTATCTGTGACACCTACA CACCACAGGGGGAACCCATCCCTACTAACAAACGCCACATGGCTGCACAAATCT TCAGTGACCCCAAGGTCACTTCACAAGTGCCATGGTTCGGAATCGAACAGGAGT ACACTCTGATGCAGAGGGATGTGAACTGGCCTCTTGGCTGGCCTGTTGGAGGG TACCCTGGCCCCCAGGGTCCATACTACTGCGCCGTAGGATCAGACAAGTCATTT GGCCGTGACATATCAGATGCTCACTACAAGGCGTGCCTTTACGCTGGAATTGAA ATCAGTGGAACAAACGGGGAGGTCATGCCTGGTCAGTGGGAGTACCAGGTTGG ACCCAGCGTTGGTATTGATGCAGGAGACCACATATGGGCTTCCAGATACATTCT CGAGAGAATCACGGAGCAAGCTGGTGTGGTGCTCACCCTTGACCCAAAACCAA TCCAGGGTGACTGGAACGGAGCTGGCTGCCACACAAACTACAGCACATTGAGC ATGCGCGAGGATGGAGGTTTCGACGTGATCAAGAAGGCAATCCTGAACCTTTCA CTTCGCCATGACTTGCACATAGCCGCATATGGTGAAGGAAACGAGCGGAGGTT GACAGGGCTACACGAGACAGCTAGCATATCAGACTTCTCATGGGGTGTGGCGA ACCGTGGCTGCTCTATTCGTGTGGGGCGAGACACCGAGGCGAAGGGCAAAGG ATACCTGGAGGACCGTCGCCCGGCCTCCAACATGGACCCGTACACCGTGACGG CGCTGCTGGCCGAGACCACGATCCTGTGGGAGCCGACCCTCGAGGCGGAGGC CCTCGCTGCCAAGAAGCTGGCGCTGAAGGTATGA
SEQ ID NO: 38 Amino acid sequence of translation product of SEQ ID NO: 37. Amino-terminal bold residues from Gusplus and Spel cloning site (intron removed) MVDLRNRRTSAQAVVQAMQCQVGVRGRTAVPARQPAGRVWGVRRAARATSGFK VLALGPETTGVIQRMQQLLDMDTTPFTDKIIAEYIWVGGSGIDLRSKSRTISKPVEDP SELPKWNYDGSSTGQAPGEDSEVILYPQAIFKDPFRGGNNILVICDTYTPQGEPIPT NKRHMAAQIFSDPKVTSQVPWFGIEQEYTLMQRDVNWPLGWPVGGYPGPQGPYY CAVGSDKSFGRDISDAHYKACLYAGIEISGTNGEVMPGQWEYQVGPSVGIDAGDHI WASRYILERITEQAGWLTLDPKPIQGDWNGAGCHTNYSTLSMREDGGFDVIKKAIL NLSLRHDLHIAAYGEGNERRLTGLHETASISDFSWGVANRGCSIRVGRDTEAKGKG YLEDRRPASNMDPYTVTALLAETTILWEPTLEAEALAAKKLALKV SEQ ID NO: 39 Maize ubil promoter: 51UTR intron shown in italics, TATA box at -30 is underlined, 5' and 31 Pstl cloning sites in bold
CTGCAGTGCAGCGTGACCCGGTCGTGCCCCTCTCTAGAGATAATGAGCATTGC ATGTCTAAGTTATAAAAAATTACCACATA I I I I I I I TGTCACACTTGTTTGAAGTG CAGTTTATCTATCTTTATACATATATTTAAACTTTACTCTACGAATAATATAATCTA TAGTACTACAATAATATCAGTGTTTTAGAGAATCATATAAATGAACAGTTAGACAT GGTCTAAAGGACAATTGAGTATTTTGACAACAGGACTCTACAGTTTTATCTTTTTA GTGTGCATGTGTTCTCCTTTTTTTTTGCAAATAGCTTCACCTATATAATACTTCAT CCATTTTATTAGTACATCCATTTAGGGTTTAGGGTTAATGGTTTTTATAGACTAAT TTTTTTAGTACATCTATTTTATTCTATTTTAGCCTCTAAATTAAGAAAACTAAAACT CTATTTTAGTTTTTTTATTTAATAATTTAGATATAAAATAGAATAAAATAAAGTGAC TAAAAATTAAACAAATACCCTTTAAGAAATTAAAAAAACTAAGGAAACATTTTTCTT GTTTCGAGTAGATAATGCCAGCCTGTTAAACGCCGTCGACGAGTCTAACGGACA CCAACCAGCGAACCAGCAGCGTCGCGTCGGGCCAAGCGAAGCAGACGGCACG GCATCTCTGTCGCTGCCTCTGGACCCCTCTCGAGAGTTCCGCTCCACCGTTGG ACTTGCTCCGCTGTCGGCATCCAGAAATTGCGTGGCGGAGCGGCAGACGTGAG CCGGCACGGCAGGCGGCCTCCTCCTCCTCTCACGGCACGGCAGCTACGGGGG ATTCCTTTCCCACCGCTCCTTCGCTTTCCCTTCCTCGCCCGCCGTAATAAATAGA CACCCCCTCCACACCCTCTTTCCCCAACCTCGTGTTGTTCGGAGCGCACACACA CACAACCAGATCTCCCCCAAATCCACCCGTCGGCACCTCCGCTTCAAG GTA CG CCGCTCGTCCTCCCCCCCCCCCCCTCTCTACCTTCTCTAGATCGGCGTTCCGGT CCATGGTTAGGGCCCGGTAGTTCTACTTCTGTTCATGTTTGTGTTAGATCCGTGT TTGTGTTAGATCCGTGCTGCTAGCGTTCGTACACGGATGCGACCTGTACGTCAG ACACGTTCTGA TTGCTAACTTGCCAGTGTTTCTCTTTGGGGAA TCCTGGGA TGG CTCTAGCCGTTCCGCAGACGGGA TCGA TTTCA TGA TTTTTTTTGTTTCGTTGCA T AGGGTTTGGTTTGCCCTTTTCCTTTA TTTCAA TA TA TGCCGTGCACTTGTTTGTC GGGTCA TCTTTTCA TGCTTTTTTTTGTCTTGGTTGTGA TGA TGTGGTCTGGTTGG GCGGTCGTTCTAGA TCGGAGTA GAA TTCTGTTTCAAACTACCTGGTGGA TTTA TT AATTTTGGATCTGTATGTGTGTGCCATACATATTCATAGTTACGAATTGAAGATG ATGGATGGAAATATCGATCTAGGATAGGTATACATGTTGATGCGGGTTTTACTGA TGCA TA TACAGA GA TGCTTTTTGTTCGCTTGGTTGTGA TGA TGTGGTGTGGTTGG GCGGTCGTTCATTCGTTCTAGATCGGAGTAGAATACTGTTTCAAACTACCTGGT GTATTTATTAATTTTGGAACTGTATGTGTGTGTCATACATCTTCATAGTTACGAGT TTAAGATGGATGGAAATATCGATCTAGGATAGGTATACATGTTGATGTGGGTTTT ACTGA TGCA TA TACA TGA TGGCA TA TGCA GCA TCTA TTCA TA TGCTCTAACCTTG AGTACCTATCTATTATAATAAACAAGTATGTTTTATAATTATTTTGATCTTGATATA CTTGGA TGA TGGCA TA TGCA GCA GCTA TA TG TGGA TTTTTTTA GCCCTGCCTTCA TACGCTATTTATTTGCTTGGTACTGTTTCTTTTGTCGATGCTCACCCTGTTGTTTG GTGTTACTTCTGCAG
SEQ ID NO: 40 Hordeum GPT DNA coding sequence, including targeting sequence coding domain
ATGGCATCCGCCCCCGCCTCCGCCTCCGCGGCCCTCTCCACCGCCGCCCCCG CCGACAACGGGGCCGCCAAGCCCACGGAGCAGCGGCCGGTACAGGTGGCTAA GCGATTGGAGAAGTTCAAAACAACAATTTTCACACAGATGAGCATGCTCGCAGT GAAGCATGGAGCAATAAACCTTGGACAGGGGTTTCCCAATTTTGATGGCCCTGA CTTTGTCAAAGATGCTGCTATTGAGGCTATCAAAGCTGGAAAGAATCAGTATGCA AGAGGATATGGTGTGCCTGAATTGAACTCAGCTGTTGCTGAGAGATTTCTCAAG GACAGTGGATTGCACATCGATCCTGATAAGGAAGTTACTGTTACATCTGGGTGC ACAGAAGCAATAGCTGCAACGATATTGGGTCTGATCAACCCTGGGGATGAAGTC ATACTGTTTGCTCCATTCTATGATTCTTATGAGGCTACACTGTCCATGGCTGGTG CGAATGTCAAAGCCATTACACTCCGCCCTCCGGACTTTGCAGTCCCTCTTGAAG AGCTAAAGGCTGCAGTCTCGAAGAATACCAGAGCAATAATGATTAATACACCTC ACAACCCTACCGGGAAAATGTTCACAAGGGAGGAACTTGAGTTCATTGCTGATC TCTGCAAGGAAAATGACGTGTTGCTCTTTGCCGATGAGGTCTACGACAAGCTGG CGTTTGAGGCGGATCACATATCAATGGCTTCTATTCCTGGCATGTATGAGAGGA CCGTCACTATGAACTCCCTGGGGAAGACGTTCTCCTTGACCGGATGGAAGATC GGCTGGGCGATAGCACCACCGCACCTGACATGGGGCGTAAGGCAGGCACACT CCTTCCTCACATTCGCCACCTCCACGCCGATGCAATCAGCAGCGGCGGCGGCC CTGAGAGCACCGGACAGCTACTTTGAGGAGCTGAAGAGGGACTACGGCGCAAA GAAAGCGCTGCTGGTGGACGGGCTCAAGGCGGCGGGCTTCATCGTCTACCCTT CGAGCGGAACCTACTTCATCATGGTCGACCACACCCCGTTCGGGTTCGACAAC GACGTCGAGTTCTGCGAGTACTTGATCCGCGAGGTCGGCGTCGTGGCCATCCC GCCAAGCGTGTTCTACCTGAACCCGGAGGACGGGAAGAACCTGGTGAGGTTCA CCTTCTGCAAGGACGACGACACGCTAAGGGCGGCGGTGGACAGGATGAAGGC CAAGCTCAGGAAGAAATGA SEQ ID NO: 41 : Hordeum GPT amino acid sequence, including putative targeting sequence (in italics).
MASAPASASAALSTAAPADNGAAKPTEQRPVQVAKRLEKFKTTIFTQMSMLAVKHG AINLGQGFPNFDGPDFVKDAAIEAIKAGKNQYARGYGVPELNSAVAERFLKDSGLHI DPDKEVTVTSGCTEAIAATILGLINPGDEVILFAPFYDSYEATLSMAGANVKAITLRPP DFAVPLEELKAAVSKNTRAIMINTPHNPTGKMFTREELEFIADLCKENDVLLFADEVY DKLAFEADHISMASIPGMYERTVTMNSLGKTFSLTGWKIGWAIAPPHLTWGVRQAH SFLTFATSTPMQSAAAAALRAPDSYFEELKRDYGAKKALLVDGLKAAGFIVYPSSGT YFIMVDHTPFGFDNDVEFCEYLIREVGWAIPPSVFYLNPEDGKNLVRFTFCKDDDT LRAAVDRMKAKLRKK
SEQ ID NO: 42 Tomato rubisco small subunit (rbcS3C) promoter + Arabidopsis GS1 DNA coding sequence; Ncol/Afllll splice site shown in bold, ATG start of GS1 underlined.
GTTTGAATCCTCCTTAAAGTTTTTCTCTGGAGAAACTGTAGTAATTTTACTTTGTT GTGTTCCCTTCATCTTTTGAATTAATGGCATTTGTTTTAATACTAATCTGCTTCTG AAACTTGTAATGTATGTATATCAGTTTCTTATAATTTATCCAAGTAATATCTTCCAT TCTCTATGCAATTGCCTGCATAAGCTCGACAAAAGAGTACATCAACCCCTCCTCC TCTGGACTACTCTAGCTAAACTTGAATTTCCCCTTAAGATTATGAAATTGATATAT CCTTAACAAACGACTCCTTCTGTTGGAAAATGTAGTACTTGTCTTTCTTCTTTTGG GTATATATAGTTTATATACACCATACTATGTACAACATCCAAGTAGAGTGAAATG GATACATGTACAAGACTTATTTGATTGATTGATGACTTGAGTTGCCTTAGGAGTA ACAAATTCTTAGGTCAATAAATCGTTGATTTGAAATTAATCTCTCTGTCTTAGACA GATAGGAATTATGACTTCCAATGGTCCAGAAAGCAAAGTTCGCACTGAGGGTAT ACTTGGAATTGAGACTTGCACAGGTCCAGAAACCAAAGTTCCCATCGAGCTCTA AAATCACATCTTTGGAATGAAATTCAATTAGAGATAAGTTGCTTCATAGCATAGG TAAAATGGAAGATGTGAAGTAACCTGCAATAATCAGTGAAATGACATTAATACAC TAAATACTTCATATGTAATTATCCTTTCCAGGTTAACAATACTCTATAAAGTAAGA ATTATCAGAAATGGGCTCATCAAACTTTTGTACTATGTATTTCATATAAGGAAGTA TAACTATACATAAGTGTATACACAACTTTATTCCTATTTTGTAAAGGTGGAGAGAC TGTTTTCGATGGATCTAAAGCAATATGTCTATAAAATGCATTGATATAATAATTAT CTGAGAAAATCCAGAATTGGCGTTGGATTATTTCAGCCAAATAGAAGTTTGTACC ATACTTGTTGATTCCTTCTAAGTTAAGGTGAAGTATCATTCATAAACAGTTTTCCC CAAAGTACTACTCACCAAGTTTCCCTTTGTAGAATTAACAGTTCAAATATATGGC GCAGAAATTACTCTATGCCCAAAACCAAACGAGAAAGAAACAAAATACAGGGGT TGCAGACTTTATTTTCGTGTTAGGGTGTGTTTTTTCATGTAATTAATCAAAAAATA TTATGACAAAAACATTTATACATA I I I I I ACTCAACACTCTGGGTATCAGGGTGG GTTGTGTTCGACAATCAATATGGAAAGGAAGTATTTTCCTTATT I I I I I AGTTAAT ATTTTCAGTTATACCAAACATACCTTGTGATATTA I I I I IAAAAATGAAAAACTCGT CAGAAAGAAAAAGCAAAAGCAACAAAAAAATTGCAAGTATTTTTTAAAAAAGAAA AAAAAAACATATCTTGTTTGTCAGTATGGGAAGTTTGAGATAAGGACGAGTGAG GGGTTAAAATTCAGTGGCCATTGATTTTGTAATGCCAAGAACCACAAAATCCAAT GGTTACCATTCCTGTAAGATGAGGTTTGCTAACTCTTTTTGTCCGTTAGATAGGA AGCCTTATCACTATATATACAAGGCGTCCTAATAACCTCTTAGTAACCAATTATTT CAGCACCATGTCTCTGCTCTCAGATCTCGTTAACCTCAACCTCACCGATGCCAC CGGGAAAATCATCGCCGAATACATATGGATCGGTGGATCTGGAATGGATATCAG AAGCAAAGCCAGGACACTACCAGGACCAGTGACTGATCCATCAAAGCTTCCCAA GTGGAACTACGACGGATCCAGCACCGGTCAGGCTGCTGGAGAAGACAGTGAAG TCATTCTATACCCTCAGGCAATATTCAAGGATCCCTTCAGGAAAGGCAACAACAT CCTGGTGATGTGTGATGCTTACACACCAGCTGGTGATCCTATTCCAACCAACAA GAGGCACAACGCTGCTAAGATCTTCAGCCACCCCGACGTTGCCAAGGAGGAGC CTTGGTATGGGATTGAGCAAGAATACACTTTGATGCAAAAGGATGTGAACTGGC CAATTGGTTGGCCTGTTGGTGGCTACCCTGGCCCTCAGGGACCTTACTACTGTG GTGTGGGAGCTGACAAAGCCATTGGTCGTGACATTGTGGATGCTCACTACAAG GCCTGTCTTTACGCCGGTATTGGTATTTCTGGTATCAATGGAGAAGTCATGCCA GGCCAGTGGGAGTTCCAAGTCGGCCCTGTTGAGGGTATTAGTTCTGGTGATCA AGTCTGGGTTGCTCGATACCTTCTCGAGAGGATCACTGAGATCTCTGGTGTAAT TGTCAGCTTCGACCCGAAACCAGTCCCGGGTGACTGGAATGGAGCTGGAGCTC ACTGCAACTACAGCACTAAGACAATGAGAAACGATGGAGGATTAGAAGTGATCA AGAAAGCGATAGGGAAGCTTCAGCTGAAACACAAAGAACACATTGCTGCTTACG GTGAAGGAAACGAGCGTCGTCTCACTGGAAAGCACGAAACCGCAGACATCAAC ACATTCTCTTGGGGAGTCGCGAACCGTGGAGCGTCAGTGAGAGTGGGACGTGA CACAGAGAAGGAAGGTAAAGGGTACTTCGAAGACAGAAGGCCAGCTTCTAACAT GGATCCTTACGTTGTCACCTCCATGATCGCTGAGACGACCATACTCGGTTGA
SEQ ID NO: 43: Putative Clementine orange GPT coding sequence
Derived from BioChain (Hayward, CA orange cDNA library, cat# C1634340;
Derived from Clementine PCR primers:
5'-ggccacatgtccgttgctaagtgcttggagaagttta-3' (AfIIII oligo) [SEQ ID NO: ]
5'-cgggcacgtgtcattttctcctcagcttctccttcatcct-3" (PmII oligo) [SEQ ID NO: ]
ATG start site in bold, AfIIII oligo binding site (start of putative mature coding sequence) is underlined; terminator sequence italicized.
ATGCTTAAGCCGTCCGCCTTCGGGTCTTCTTTTTCTTCCTCAGCTCTGCTTTCGT TTTCGAAGCATTTGCATACAATAAGCATTACTGATTCTGTCAACACCAGAAGAAG AGGAATCAGTACCGCTTGCCCTAGGTACCCTTCTCTCATGGCGAGCTTGTCCAC CGTTTCCACCAATCAAAGCGACACCATCCAGAAGACCAATCTTCAGCCTCAACA GGTTGCTAAGTGCTTGGAGAAGTTTAAAACTACAATCTTTACACAAATGAGTATG CTTGCCATCAAACATGGAGCTATAAATCTTGGTCAAGGCTTTCCCAACTTTGATG GCCCAGATTTTGTTAAAGATGCAGCGATTCAAGCCATAAGGGATGGGAAGAATC AATATGCTCGTGGACATGGGGTTCCAGAGTTCAACTCTGCCATTGCTTCCCGGT TTAAGAAAGATTCTGGGCTCGAGGTTGACCCTGAAAAGGAAGTTACTGTTACCT CTGGGTGCACCGAAGCCATTGCTGCAACCATCTTAGGTTTGATTAATCCTGGAG ATGAGGTGATCCTTTTTGCACCTTTCTATGATTCCTATGAAGCTACTCTCTCCAT GGCTGGTGCTAAAATTAAATGCATCACATTGCGCCCTCCAGAATTTGCCATCCC CATTGAAGAGCTCAAGTCTACAATCTCAAAAAATACTCGTGCAATTCTTATGAAC ACTCCACATAACCCCACTGGAAAGATGTTCACTAGGGAGGAACTTAATGTTATTG CATCTCTTTGCATTGAGAATGATGTGTTGGTTTTTAGTGATGAGGTCTATGATAA GTTGGCTTTTGAAATGGATCACATTTCCATAGCCTCTCTTCCTGGAATGTATGAG CGTACTGTAACCATGAATTCCTTAGGGAAGACATTCTCTTTAACAGGGTGGAAG ATCGGGTGGGCAATAGCTCCACCGCACCTTACATGGGGGGTGCGGCAGGCAC ACTCTTTTCTCACGTTTGCCACATCCACTCCAATGCAGTGGGCAGCTACAGCAG CCCTTAGAGCTCCGGAGACGTACTATGAGGAGCTAAAGAGAGATTACTCGGCAA AGAAGGCAATTTTGGTGGAGGGATTGAATGCTGTTGGTTTCAAGGTATTCCCAT CTAGTGGGACATACTTTGTGGTTGTAGATCACACCCCATTTGGGCACGAAACTG ATATTGCATTTTGTGAATATCTGATCAAGGAAGTTGGGGTTGTGGCAATTCCGAC CAGCGTATTTTACTTGAATCCAGAGGATGGAAAGAATTTGGTGAGATTTACCTTC TGCAAAGATGAAGGAACTTTGAGGTCTGCAGTTGACAGGATGAAGGAGAAGCT GAGGAGAAAA TGA
SEQ ID NO: 44: Putative Clementine orange GPT amino acid sequence; putative mature protein sequence begins at VAK shown in bold underline.
MLKPSAFGSSFSSSALLSFSKHLHTISITDSVNTRRRGISTACPRYPSLMASLSTVST NQSDTIQKTNLQPQQVAKCLEKFKTTIFTQMSMLAIKHGAINLGQGFPNFDGPDFVK DAAIQAIRDGKNQYARGHGVPEFNSAIASRFKKDSGLEVDPEKEVTVTSGCTEAIAA TILGLINPGDEVILFAPFYDSYEATLSMAGAKIKCITLRPPEFAIPIEELKSTISKNTRAIL MNTPHNPTGKMFTREELNVIASLCIENDVLVFSDEVYDKLAFEMDHISIASLPGMYE RTVTMNSLGKTFSLTGWKIGWAIAPPHLTWGVRQAHSFLTFATSTPMQWAATAALR APETYYEELKRDYSAKKAILVEGLNAVGFKVFPSSGTYFVWDHTPFGHETDIAFCE YLIKEVGWAIPTSVFYLNPEDGKNLVRFTFCKDEGTLRSAVDRMKEKLRRK

Claims

WHAT IS CLAIMED IS:
1. A transgenic plant comprising a GPT transgene operably linked to a plant promoter.
2. The transgenic plant of claim 1 , wherein the GPT transgene encodes a polypeptide having an amino acid sequence selected from the group consisting of (a) SEQ ID NO: 2; SEQ ID NO: 4, SEQ ID NO: 10, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 19, SEQ ID NO: 25, SEQ ID NO: 26, SEQ ID NO: 27, SEQ ID NO: 28, SEQ ID NO: 29, SEQ ID NO: 30, SEQ ID NO: 41 , or SEQ ID NO: 44, and (b) an amino acid sequence that is at least 75% identical to any one of SEQ ID NO: 2; SEQ ID NO: 4, SEQ ID NO: 10, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 19, SEQ ID NO: 25, SEQ ID NO: 26, SEQ ID NO: 27, SEQ ID NO: 28, SEQ ID NO: 29, SEQ ID NO: 30, SEQ ID NO: 41 , or SEQ ID NO: 44 and has GPT activity.
3. The transgenic plant according to claim 1 or 2, wherein the GPT transgene is incorporated into the genome of the plant.
4. The transgenic plant of claim 3, further defined as a monocotyledonous plant.
5. The transgenic plant of claim 3, further defined as a dicotyledonous plant.
6. A progeny of any generation of the transgenic plant of claim 3, wherein said progeny comprises said GPT transgene.
7. A seed of any generation of the transgenic plant of claim 3, wherein said seed comprises said GPT transgene.
8. The transgenic plant of claim 3 which displays one or more of the following characteristics when compared to an analogous wild-type or untransformed plant: an enhanced growth rate, increased biomass yield, increased seed yield, increased flower or flower bud yield, increased fruit or pod yield, larger leaves, increased GPT activity, increased GS activity, increased 2-oxoglutaramate levels, and/or increased nitrogen use efficiency.
9. A method for producing a plant having enhanced growth properties relative to an analogous wild type or untransformed plant, comprising:
(a) introducing and expressing a GPT transgene into the plant; and,
(b) selecting a plant having an increased growth characteristic relative to a plant of the same species that does not comprise a GPT transgene.
10. The method according to claim 9, wherein the enhanced growth characteristic is selected from the group consisting of increased biomass, earlier flowering, earlier budding, increased plant height, increased flowering, increased budding, larger leaves, increased fruit or pod yield and increased seed yield.
11. A method of producing a plant having increased nitrogen use efficiency relative to an analogous wild type or untransformed plant, comprising:
(a) introducing and expressing a GPT transgene into the plant;
(b) selecting a plant having an increased nitrogen use efficiency relative to a plant of the same species that does not comprise a GPT transgene.
12. The method according to claim 9, 10 or 11 , further comprising propagating a plant from the seed so selected and harvesting a seed therefrom.
13. The transgenic plant according to any one of claims 1 , 2, 3, 4, 5 or 8, wherein the transgenic plant is of the phylum Tracheophyta.
14. The transgenic plant of claim 13, wherein the transgenic plant is selected from the group consisting of fruits including apples, avocardo, banana, blackberry, blueberry, cherries, cranberries, cantaloupes, grapefruit, lemons, limes, nectarines, oranges, peaches, pineapples, pears, plums, tangelos, tangerines, papaya, mango, strawberry, raspberry, grape, kiwi fruit, olives, coconuts; vegetables including brussel sprouts, radish, mung beans, carrots, sugarbeet, yams, horseradish, flax, sesame, turnip, sweet potato, cabbage, canola, cucumbers, eggplant, lettuce, onion, okra, parsnips, pumpkins and spinach; flowering plants including lily, carnation, chrysanthemum, petunia, geranium, violet, gladioli, orchid and lilac; trees including oil palm; and ornamental plants; and, canola, lupins or cotton.
15. The transgenic plant of claim 13, wherein the transgenic plant is selected from the group consisting of plants of the families Poaceae, Gossypium, Fabaceae,
Brassicaceae, Rutaceae, Rubiaceae, Cucurbitaceae, Rosaceae, Asteraceae, Amaranthaceae or Brassicaceae.
16. The transgenic plant of claim 13, wherein the transgenic plant is selected from the group consisting of plants of the genera Avena, Hordeum, Oryza, Panicum,
Phleum, Saccharum, Secale, Sorghum, Triticum, Zea, Pennisetum, Lycopersicon, Capiscum, Fagopyrum, Triticosecale, Chenopodium, Digitaria, Manihot, Ipomoea, Olea, Daucus, Pastinaca, Raphanus, Dioscorea, Armoracia, Elaeis, Linum, Carthamus, Sesamum, Vitis, or Solanum.
17. A transplastomic plant or cell line carrying a GPT transgene expression cassette, wherein said expression cassette is flanked by sequences from the plant or plant cell's plastome.
18. The transgenic plant or cell line according to claim 17, wherein the transgenic plant is selected from the group consisting of tobacco, potato, oilseed rape, rice and Arabidopsis.
19. The transgenic plant according to claim 1 or 2, wherein the transgene is inserted into the plastidic DNA of the plant.
20. The transgenic plant of claim 17 having uniform modification of all plastid copies.
21. The transgenic plant according to either of claims 19 or 20, wherein the transgenic plant is selected from the group consisting of tobacco, potato, oilseed rape, rice and Arabidopsis.
22. A method for generating a transgenic plant as hereinbefore described with reference to the examples.
23. A transgenic plant generated according to the methods as hereinbefore described with reference to any one of examples 3, 4, 10, 11 , 12, 13, 14, 15, 16 or 17.
PCT/US2010/000575 2009-08-31 2010-02-26 Plant glutamine phenylpyruvate transaminase gene and transgenic plants carrying same WO2011025515A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US12/551,320 2009-08-31
US12/551,320 US20100263090A1 (en) 2008-08-29 2009-08-31 Plant Glutamine Phenylpyruvate Transaminase Gene and Transgenic Plants Carrying Same

Publications (1)

Publication Number Publication Date
WO2011025515A1 true WO2011025515A1 (en) 2011-03-03

Family

ID=43628726

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2010/000575 WO2011025515A1 (en) 2009-08-31 2010-02-26 Plant glutamine phenylpyruvate transaminase gene and transgenic plants carrying same

Country Status (3)

Country Link
US (1) US20100263090A1 (en)
AR (1) AR076988A1 (en)
WO (1) WO2011025515A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9410162B1 (en) 2012-07-24 2016-08-09 Arrowhead Center, Inc. Transgenic legumes
US9862964B2 (en) 2008-08-29 2018-01-09 Los Alamos National Security, Llc Transgenic plants with enhanced growth characteristics
US10119127B2 (en) 2008-08-29 2018-11-06 Los Alamos National Security, Llc Nucleic acids encoding plant glutamine phenylpyruvate transaminase (GPT) and uses thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040014087A1 (en) * 1999-06-01 2004-01-22 Incyte Corporation Molecules for diagnostics and therapeutics
US6831040B1 (en) * 2000-01-27 2004-12-14 The Regents Of The University Of California Use of prolines for improving growth and other properties of plants and algae
US20050155119A1 (en) * 2004-01-08 2005-07-14 Dow Agrosciences Llc Chlorophyllous totipotent cell cultures

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040014087A1 (en) * 1999-06-01 2004-01-22 Incyte Corporation Molecules for diagnostics and therapeutics
US6831040B1 (en) * 2000-01-27 2004-12-14 The Regents Of The University Of California Use of prolines for improving growth and other properties of plants and algae
US20050155119A1 (en) * 2004-01-08 2005-07-14 Dow Agrosciences Llc Chlorophyllous totipotent cell cultures

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
TEMPLE ET AL.: "Modulation of glutamine synthetase gene expression in tobacco by the introduction of an alfalfa glutamine synthetase gene in sense and antisense orientation: molecular and biochemical analysis.", MOL GEN GENET, vol. 236, no. 2-3, 1993, pages 315 - 325 *
UNIPROT SUBMISSION Q9CAP1., June 2001 (2001-06-01), Retrieved from the Internet <URL:http://www.uniprot.org/uniprot/Q9CAP1> *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9862964B2 (en) 2008-08-29 2018-01-09 Los Alamos National Security, Llc Transgenic plants with enhanced growth characteristics
US10119127B2 (en) 2008-08-29 2018-11-06 Los Alamos National Security, Llc Nucleic acids encoding plant glutamine phenylpyruvate transaminase (GPT) and uses thereof
US9410162B1 (en) 2012-07-24 2016-08-09 Arrowhead Center, Inc. Transgenic legumes
US9902966B2 (en) 2012-07-24 2018-02-27 Arrowhead Center, Inc. Method of enhancing translation of foreign genes in plants
US10513707B2 (en) 2012-07-24 2019-12-24 Arrowhead Center, Inc. Transgenic legumes

Also Published As

Publication number Publication date
AR076988A1 (en) 2011-07-27
US20100263090A1 (en) 2010-10-14

Similar Documents

Publication Publication Date Title
WO2011025514A1 (en) Transgenic plants with enhanced growth characteristics
AU2016202733B2 (en) Transgenic plants with enhanced growth characteristics
JP6117837B2 (en) Plant glutamine phenylpyruvate transaminase gene and transgenic plant carrying it
AU2011220378B2 (en) Increasing plant growth by modulating omega-amidase expression in plants
US9862964B2 (en) Transgenic plants with enhanced growth characteristics
WO2011106734A1 (en) Transgenic soybean and rice plants with enhanced growth characteristics
WO2011025516A1 (en) Nucleic acids encoding plant glutamine phenylpyruvate transaminase (gpt) and uses thereof
US20130232641A1 (en) Plant glutamine phenylpyruvate transaminase gene and transgenic plants carrying same
US10119127B2 (en) Nucleic acids encoding plant glutamine phenylpyruvate transaminase (GPT) and uses thereof
US20170121728A1 (en) Plant glutamine phenylpyruvate transaminase gene and transgenic plants carrying same
WO2011025515A1 (en) Plant glutamine phenylpyruvate transaminase gene and transgenic plants carrying same
WO2010025463A2 (en) Nucleic acids encoding plant glutamine phenylpyruvate transaminase (gpt) and uses thereof
AU2015271872A1 (en) Increasing plant growth by modulating omega-amidase expression in plants

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10812421

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10812421

Country of ref document: EP

Kind code of ref document: A1