WO2011022917A1 - 无虚拟通道的子环控制信道阻塞协议报文的方法和系统 - Google Patents

无虚拟通道的子环控制信道阻塞协议报文的方法和系统 Download PDF

Info

Publication number
WO2011022917A1
WO2011022917A1 PCT/CN2009/076012 CN2009076012W WO2011022917A1 WO 2011022917 A1 WO2011022917 A1 WO 2011022917A1 CN 2009076012 W CN2009076012 W CN 2009076012W WO 2011022917 A1 WO2011022917 A1 WO 2011022917A1
Authority
WO
WIPO (PCT)
Prior art keywords
node
sub
fault
port
ring
Prior art date
Application number
PCT/CN2009/076012
Other languages
English (en)
French (fr)
Inventor
王斌
吴少勇
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to KR1020127004654A priority Critical patent/KR101302815B1/ko
Priority to JP2012525849A priority patent/JP5465784B2/ja
Priority to US13/392,948 priority patent/US8649261B2/en
Priority to EP09848649.1A priority patent/EP2472796A4/en
Publication of WO2011022917A1 publication Critical patent/WO2011022917A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/42Loop networks
    • H04L12/437Ring fault isolation or reconfiguration
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/06Management of faults, events, alarms or notifications
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/02Topology update or discovery
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/302Route determination based on requested QoS
    • H04L45/304Route determination for signalling traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/40Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass for recovering from a failure of a protocol instance or entity, e.g. service redundancy protocols, protocol state redundancy or protocol service redirection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/34Signalling channels for network management communication
    • H04L41/342Signalling channels for network management communication between virtual entities, e.g. orchestrators, SDN or NFV entities

Definitions

  • the present invention relates to the field of data communications, and in particular, to a method and system for a sub-ring control channel blocking protocol without a virtual channel. Background technique
  • Ethernet networks are widely used to improve network reliability. And in the ring protection method, fast protection switching is usually required to reach 50ms or less.
  • technologies for fast protection switching include RFC3619 of the Internet Engineering Task Force (IETF) and G.8032 of the International Telecommunication Union (ITU-T).
  • subrings For the definition of subrings, standards that are being developed internationally, such as ITU G.8032, consider subrings to be Ethernet rings that are connected to other rings or networks through interconnected nodes.
  • the interconnected nodes belong to two or more simultaneously.
  • the public node of the Ethernet ring The public node of the Ethernet ring.
  • nodes A to G on the subring Sub-ringl are nodes with Ethernet switching function, and Sub-ringl accesses network X through the interconnection point.
  • User M and node B are connected, and user N and node D are connected.
  • Communication between network M and network N There are two physical paths between network M and network N, namely: user N— ⁇ node D— ⁇ node C— ⁇ node B— ⁇ network M, user N— ⁇ node D— ⁇ node E— ⁇ node F— ⁇ Network X— ⁇ Node A— ⁇ Node G— ⁇ Node B— ⁇ User M.
  • the ring protection link and the control node are generally defined. That is, when the Ethernet ring network is fault-free, the link on the sub-ring blocks the data packet to prevent the data loop from forming.
  • the protection link can be operated by the operation of the ring protection link. Switch between path and protection path.
  • a node that has a ring protection link referred to herein as a control node or as a master node.
  • the ring network contains nodes G, A, B, C, D, E, and F, and the links included are ⁇ G, A>, ⁇ A, B>, ⁇ B, C>, ⁇ C, D>, ⁇ D, E> and ⁇ E, F> links.
  • Node A is the control node, and its w port direct link ⁇ A,:8> is the ring protection link.
  • control node blocks the data packet forwarding function of the port connected to the ring protection link. No loop occurs in the network to prevent the broadcast storm caused by the network loop. As shown in Figure 2a, control node A blocks the protection data forwarding function of the e port.
  • the communication paths of users M and N are Pathl: user M - ⁇ node B - ⁇ node C - ⁇ node D - ⁇ user N.
  • control node When the link is faulty, the control node releases the data packet forwarding function of the port connected to the ring protection link to ensure service connectivity. As shown in Figure 2b, the ⁇ B, 0 link on the ring is faulty. Control node A releases the data packet forwarding function of port w.
  • the new communication path of user M and N is Path2: User M— ⁇ Node B— ⁇ Node A— ⁇ Node G— ⁇ Network X— ⁇ Node F— ⁇ Node E— ⁇ Node D— ⁇ User N.
  • the node When a link switchover occurs on a sub-ring, the node needs to refresh the address forwarding table to prevent data packets from continuing to be forwarded along the wrong path, that is, the path before the link switchover.
  • the communication paths of users M and N are Pathl: User M - ⁇ Node B - ⁇ Node C - ⁇ Node D - ⁇ User N.
  • the ⁇ B, 0 link on the ring is faulty, if the node on the ring does not perform address refresh, the data packets of the user M and N are still transmitted along the original path, and the packet sent by the user M is at the node B. The packet sent by user N is discarded at node C. Therefore, in order to ensure that the ring network changes after the topology, the nodes on the ring network should refresh the address forwarding table.
  • the address refreshing scheme of the ITU-T G.8032 is:
  • the node extracts the ⁇ Node_ID, BPR> information.
  • the port compares the ⁇ Node_ID, BPR> information in the packet with the ⁇ Node_ID, BPR> information originally saved on the port. If they are inconsistent, the port will save the original save ⁇ Node_ID, BPR > and put the new ⁇ 1 ⁇ 0(16_10, BPR> is saved, and the node refreshes the address forwarding table.
  • NODE_ID is the identification number of the node, and BPR is used to indicate which port of the protocol packet is blocked.
  • the address refresh message of the sub-ring is to be propagated on the sub-ring control channel.
  • the control channel of the sub-ring of the ITU-T G.8032 has two configurations, one is a configuration without a virtual channel, that is, the control channel of the sub-ring is only configured in the sub-ring, as shown in Figure 3a. Show.
  • the control channel configuration of another seed ring includes portions within the sub-ring and virtual channels.
  • the virtual channel is configured on other networks or other rings between the interconnected nodes.
  • the virtual channel provides the control channel of the sub-ring of the transmission channel for the sub-ring protocol message, as shown in Figure 3b.
  • G.8032 stipulates that the sub-ring protocol packet is blocked. "In the case of no virtual channel, the sub-ring control channel terminates at the interconnect node, and the node on the ring blocks the protocol packet of the sub-ring control channel. transmission".
  • the e-port of node C initiates a forced handover (FS), node C refreshes the address forwarding table, and then periodically sends the FS protocol along the two ports on the sub-ring. After receiving the protocol packet for the first time, the other nodes on the sub-ring refresh their respective address forwarding tables.
  • the control node A also needs to enable the forwarding function of the data packets of the w port.
  • a single-pass fault occurs in the link ⁇ E, D>, that is, the direction of the E-D is unblocked, and the direction of the D-E is unreachable.
  • the node E blocks the e-port and periodically sends SF packets. .
  • nodes A, B, and G Since the non-faulty blocking point on the subring only blocks the data and does not block the protocol 4, the nodes A, B, and G will alternately receive the FS and SF protocols sent by the node C and the node E. Yan Wen.
  • the ⁇ Node_ID, BPR> saved by nodes A, B, and G will be updated as the nodes FS and SF protocol messages alternate. In other words, nodes A, B, and G will be in a continuous refresh state.
  • the performance of the subring is greatly impaired Bad, always in the midst of a broadcast storm. Summary of the invention
  • the present invention proposes a method for the sub-ring control channel blocking protocol without the virtual channel.
  • the method includes: blocking the forwarding of related packets when a forced handover is initiated or a fault is detected.
  • the forwarding of the related packet is blocked, and the method includes: determining whether the port of the node located on the subring starts forced switching; when the forced switching is started, the node is blocked. Packet forwarding: When the forced switchover is not started, it is determined whether the port detects that the adjacent link is faulty. When the fault occurs, the node blocks the forwarding of the related packets.
  • the related packets are protocol packets and data packets.
  • the fault is a single-pass fault.
  • the method further includes: refreshing the address forwarding table; and periodically sending the signal failure packet outward.
  • the present invention also provides a system for a sub-ring control channel blocking protocol packet without a virtual channel, and the system includes: a blocking module, configured to block forwarding of related packets when a forced handover is initiated or a fault is detected.
  • the system further includes: a forced switching determining module and a fault determining module; wherein, the forced switching determining module is configured to determine whether a port of the node located on the subring starts forced switching;
  • the fault judging module is configured to determine whether the port detects that the adjacent link is faulty.
  • the related packets are protocol packets and data packets.
  • the fault is a single-pass fault.
  • Figure la is a schematic structural view of a sub-ring in the prior art
  • Figure 2a is a schematic diagram of data forwarding in the case of a subring without failure
  • Figure 2b is a schematic diagram of data flow protection switching in the case of a sub-ring failure
  • Figures 3a and 3b are schematic diagrams of two control channels of a subring
  • FIGS. 4a and 4b are schematic views of problems occurring in the prior art
  • Figure 5a is a schematic diagram of a specific process of the method of the present invention.
  • 6a and 6b are schematic views of Example 1 of the present invention.
  • Figure 7a is a schematic illustration of Example 2 of the present invention. detailed description
  • the core content of the present invention is: When the sub-ring is configured with no control channel of the virtual channel, if the node initiates FS on the port on the sub-ring or detects that the adjacent link fails, the port blocking protocol is blocked. Forward, otherwise the port does not block the forwarding of any protocol.
  • Step 501 The system configures a sub-ring control channel without a virtual channel for the sub-ring.
  • Step 502 The sub-ring node checks the operation status of the port.
  • Step 503 Determine whether the port of the sub-ring node starts FS. If the FS is started, go to step 504, otherwise go to step 505.
  • Step 504 The node blocks the protocol packet of the port and the forwarding function of the data packet.
  • Step 505 Determine whether the port detects that a fault has occurred in the adjacent link. If a fault occurs, proceed to step 506.
  • Step 506 The node blocks the protocol packet of the port and the forwarding function of the data packet. Specifically, we describe a specific implementation method according to the present invention by two, but not limited to, two examples.
  • Example 1 is: An example of forced switching and single-pass failure on the subring.
  • the ring network includes nodes A, B, C, D, E, F, and G, and the links included are ⁇ G, A>, ⁇ A, B>, ⁇ B, C>, ⁇ C, D>, ⁇ D, E> and ⁇ E, F> links.
  • Node A is the control node, and its direct link to the w port ⁇ A, B> is the ring protection link.
  • the w port of node A blocks the forwarding of data packets under normal conditions.
  • the e port of the node C starts the FS, and the node C blocks the protocol packet and the data packet forwarding function of the e port, refreshes the address forwarding table, and then periodically sends the FS along the two ports on the subring. Protocol message.
  • other nodes on the sub-ring refresh their respective address forwarding tables, and control node A also needs to open the forwarding function of the data packets of the w port.
  • a single-pass fault occurs in the link ⁇ E, D>, ie: the direction of E-D is unblocked, the direction of D ⁇ E is unreachable; the protocol of node E blocking e-ports ⁇ and data 4
  • the forwarding function of the text is to refresh the address forwarding table and periodically send SF packets. After receiving the SF packets sent by the node E for the first time, the nodes C, D, and F refresh their respective address forwarding tables. As the e port of the node C blocks the protocol packets and data packets, the nodes A, B, and G cannot receive the SF packets sent by the E. Therefore, nodes A, B, and G do not appear to be continuously refreshed. Among them, the e port at this time starts FS.
  • Example 2 is: An instance of multiple single-pass faults on a subring.
  • the link ⁇ : B, C> first occurs a single-pass fault, that is, the direction of C-B is unblocked, and the direction of B ⁇ C is unreachable.
  • the protocol for blocking the e-port is blocked.
  • Message And the forwarding function of the data packet refreshing the address forwarding table, and periodically sending the SF2 packet outward.
  • the other nodes on the sub-ring refresh the respective address forwarding table.
  • Control node A also needs to open the forwarding function of the data packet of the w port.
  • the single-pass fault occurs on the link ⁇ E, D>, that is, the direction of the E-D is unblocked, and the direction of the D ⁇ E is unreachable; the node E blocks the forwarding of the protocol packets and data packets of the e-port.
  • the address forwarding table is refreshed, and the SF ⁇ message is periodically sent out.
  • the nodes C, D, and F refresh their respective address forwarding tables.
  • the nodes A, B, and G cannot receive the SF packets sent by the E. Therefore, nodes A, B, and G do not appear to be continuously refreshed.
  • the adjacent link of the e port is faulty.
  • sub-rings mentioned above are represented by Sub-Ring; the interconnection nodes are represented by Interconnection Node; and the virtual channels are represented by Virtual Channel.

Abstract

为了避免现有的无虚拟通道的子环控制信道的方案所造成的子环始终处于持续刷新的状态的问题,本发明提出了一种无虚拟通道的子环控制信道阻塞协议报文的方法和系统,其中,该方法包括:当启动强制切换或检测到故障时,阻塞相关报文的转发。

Description

无虚拟通道的子环控制信道阻塞协议■ ^文的方法和系统 技术领域
本发明涉及数据通信领域, 尤其涉及一种无虚拟通道的子环控制信道 阻塞协议 ·^艮文的方法和系统。 背景技术
随着以太网络向着多业务承载方向的发展, 特别是一些业务对网络的 可靠性、 实时性要求越来越高, 以太网广泛采用了环形的组网以提高网络 可靠性。 并且在环形的保护方法中, 通常要求快速保护倒换, 达到 50ms以 下。 目前这种快速保护倒换的技术有互联网工程任务组 ( IETF, Internet Engineering Task Force ) 的 RFC3619、 国际电信联盟 ( ITU-T, International Telecommunication Union ) 的 G.8032等。
对于子环的定义, 国际上正在制定的标准, 如 ITU的 G.8032认为子环 是一种通过互连节点与其它环或者网络相连的以太环, 互连节点是同时属 于两个或者多个以太环的公共节点。
例如图 la所示, 子环 Sub-ringl上的节点 A至 G都为具有以太网交换 功能的节点, Sub-ringl通过互连接点接入网络 X。用户 M和节点 B相连接, 用户 N和节点 D相连接。 网络 M和网络 N之间进行通信。 网络 M和网络 N之间有 2条物理路径, 即: 用户 N—→节点 D—→节点 C—→节点 B—→ 网络 M,用户 N—→节点 D—→节点 E—→节点 F—→网络 X—→节点 A— →节点 G—→节点 B—→用户 M。
在应用子环保护技术时, 一般定义了环保护链路和控制节点, 即: 在 以太环网无故障的情况下, 子环上对数据报文进行阻塞防止数据环路形成 的链路为环保护链路, 通过对这段环保护链路的操作, 可以进行子环的主 用路径和保护路径的切换。 拥有环保护链路的节点, 这里称为控制节点或 者称为主节点。 如图 2a所示, 环网包含的节点有 G、 A、 B、 C、 D、 E和 F, 包含的链路有 〈G, A〉、 〈A, B〉、 〈B, C〉、 〈C, D〉、 〈D, E〉和〈E, F〉 链路。 节点 A为控制节点, 与它的 w端口直连链路〈A,:8〉为环保护链路。
当环上链路完好时, 控制节点阻塞与环保护链路相连端口的数据报文 转发功能, 网络中无环路产生, 防止了由于网络环路引起的 "广播风暴"。 如图 2a所示,控制节点 A阻塞了 e端口的保护数据转发功能,用户 M和 N 的通信路径为 Pathl :用户 M—→节点 B—→节点 C—→节点 D—→用户 N。
当链路发生故障时, 控制节点放开与环保护链路相连端口的数据报文 转发功能, 从而保障了业务的连通。 如图 2b所示, 环上的〈B , 0链路发 生了故障, 控制节点 A放开了端口 w的数据报文转发功能, 用户 M和 N 新的通信路径为为 Path2: 用户 M—→节点 B—→节点 A—→节点 G—→网 络 X—→节点 F—→节点 E—→节点 D—→用户 N。
在子环发生链路倒换时, 节点需要刷新地址转发表, 防止数据报文沿 着错误的路径, 即链路切换前的路径继续转发。 如图 2a所示, 当环网无故 障时, 用户 M和 N的通信路径为 Pathl: 用户 M—→节点 B—→节点 C— →节点 D—→用户 N。 当环上的 〈B , 0链路发生了故障时, 如果环上的 节点不进行地址刷新, 用户 M和 N的数据报文仍然沿着原来的路径传输, 用户 M发送的报文在节点 B被丟弃, 用户 N发送的报文在节点 C被丟弃。 因此, 为保证环网在拓朴发生变化之后, 环网上的节点应该刷新地址转发 表。
目前, ITU-T G.8032 的地址刷新方案是: 当节点在子环上的端口收到 地址刷新协议报文时, 抽取 < Node_ID , BPR >信息。 该端口将报文中的 < Node_ID, BPR >信息与原先在该端口保存的 < Node_ID, BPR >信息进行 比较。 如果不一致, 该端口将原先的保存 < Node_ID, BPR >删除, 并把新 的< 1^0(16_10, BPR >保存, 同时, 节点刷新地址转发表。 NODE_ID是节 点的标识号, BPR是用来指明发送协议报文的哪一个端口发生了阻塞。
子环的地址刷新报文是要在子环控制信道上传播的。 目前, ITU-T G.8032 的子环的控制信道有两种配置方式, 一种是不带有虚拟通道的配置 方式, 即, 子环的控制信道仅仅配置在子环内, 如图 3a所示。 另一种子环 的控制信道配置包含子环内的部分和虚拟通道。 虚拟通道配置在互连节点 之间的其它网络、 或者其它环上, 虚拟通道为子环协议报文提供传输通道 的子环的控制信道, 如图 3b所示。 在本发明中, 我们主要阐述在无虚拟通 道的子环控制信道上传输协议报文的方法。 其中, 所述其它环包含其它子 环。
当前, G.8032对子环协议报文的阻塞的规定是 "在无虚拟通道的情况 下, 子环控制信道在互连节点处终结, 环上的节点阻塞子环控制信道的协 议报文的传输"。
上面的子环控制信道传输协议报文的方案在下面场景中会遇到问题, 具体阐述如下:
如图 4a所示, 节点 C的 e端口启动了强制切换(FS ), 节点 C刷新地 址转发表, 然后沿着子环上的两个端口周期性地向外发送 FS协议 ·^艮文。 子 环上的其它节点首次收到该协议报文后, 刷新各自的地址转发表, 控制节 点 A还要打开 w端口的数据报文的转发功能。 在图 4b中, 链路〈E, D〉 发生了单通故障, 即: E— D的方向是畅通的, D— E方向不通; 节点 E阻 塞 e端口, 向外周期性地发送 SF报文。 由于子环上非故障阻塞点仅仅对数 据进行阻塞, 而对协议 4艮文不进行阻塞, 所以节点 A、 B和 G将交替地接 收到节点 C和节点 E发送来的 FS和 SF协议 ·^艮文。 节点 A、 B和 G保存的 < Node_ID, BPR >将随着节点 FS和 SF协议报文的交替到来不断更新,换 句话说, 节点 A、 B和 G将处于持续的刷新状态。 子环的性能受到极大损 坏, 始终处于广播风暴之中。 发明内容
为了避免现有的无虚拟通道的子环控制信道的方案所造成的子环始终 处于持续刷新的状态的问题, 本发明提出了一种无虚拟通道的子环控制信 道阻塞协议 ^艮文的方法, 该方法包括: 当启动强制切换或检测到故障时, 阻塞相关报文的转发。
其中, 所述当启动强制切换或检测到故障时, 阻塞相关报文的转发, 具体包括: 判断位于子环上的节点的端口是否启动强制切换; 当启动了强 制切换时, 节点阻塞端口的相关报文的转发; 当未起动强制切换时, 判断 端口是否检测到相邻链路发生故障, 发生故障时, 节点阻塞端口的相关报 文的转发。
其中, 相关报文为协议报文和数据报文。
其中, 故障为单通故障。
其中, 在所述发生故障时, 节点阻塞端口的相关报文的转发之后, 该 方法还包括: 刷新地址转发表; 向外周期性地发送信号故障报文。
此外, 本发明还提出了一种无虚拟通道的子环控制信道阻塞协议报文 的系统, 该系统包括: 阻塞模块, 用于当启动强制切换或检测到故障时, 阻塞相关报文的转发。
其中, 该系统还包括: 强制切换判断模块和故障判断模块; 其中, 强制切换判断模块, 用于判断位于子环上的节点的端口是否启动强制 切换;
故障判断模块, 用于判断端口是否检测到相邻链路发生故障。
其中, 相关报文为协议报文和数据报文。
其中, 故障为单通故障。
通过分析可以看出, 现有的无虚拟通道的子环控制信道的方案会造成 子环始终处于持续刷新的状态。 因此, 设计一种新的子环控制信道阻塞协 议报文的方法, 对提升子环的性能和防止广播风暴是非常有意义的。 附图说明
图 la为现有技术中的子环的结构示意图;
图 2a为子环无故障情况下的数据转发示意图;
图 2b为子环发生故障的情况下数据流保护倒换的示意图;
图 3a和 3b为子环的两种控制信道的示意图;
图 4a和 4b为现有技术出现问题的示意图;
图 5a为本发明的方法的具体流程示意图;
图 6a和 6b为本发明实例 1的示意图;
图 7a为本发明实例 2的示意图。 具体实施方式
为了使本发明的目的、 技术方案及优点更加清楚明白, 以下结合附图 及实施例, 对本发明进行进一步详细说明。 应当理解, 此处所描述的具体 实施例仅仅用以解释本发明, 并不用于限定本发明。
本发明的核心内容为: 当子环配置没有虚拟通道的控制信道时, 如果 节点在子环上的端口启动了 FS或者检测到相邻链路发生故障,所述端口阻 塞协议 ·^艮文的转发, 否则所述端口不阻塞任何协议 ·^艮文的转发。
本发明的实现步骤:
为了进一步说明本发明的方案, 本发明的步骤阐述如图 5a所示: 步骤 501、 系统为子环配置无虚拟通道的子环控制信道。
步骤 502、 子环节点检查端口的操作情况。
步骤 503、 判断子环节点的端口是否启动 FS , 如果启动了 FS, 转入步 骤 504, 否则转入步骤 505。 步骤 504、 节点将所述端口的协议报文和数据报文的转发功能都阻塞。 步骤 505、判断所述端口是否检测到相邻链路发生了故障, 如果发生了 故障, 则转入步骤 506。
步骤 506、 节点将所述端口的协议报文和数据报文的转发功能都阻塞。 具体地, 我们通过两个, 但不限于这两个的实例来描述根据本发明的 具体实施方法。
实例 1为: 子环上出现强制切换和单通故障的实例。
如图 6a所示, 环网包含的节点有 A、 B、 C、 D、 E、 F和 G, 包含的链 路有 〈G, A〉、 〈A, B〉、 〈B , C〉、 〈C, D〉、 〈D, E〉和〈E, F〉链路。 节点 A为控制节点, 与它的 w端口直连链路〈A, B〉为环保护链路。 节点 A的 w端口在正常情况下阻塞数据报文的转发。 随后, 节点 C的 e端口启 动了 FS, 节点 C阻塞 e端口的协议报文和数据报文的转发功能, 刷新地址 转发表, 然后沿着子环上的两个端口周期性地向外发送 FS协议报文。 子环 上的其它节点首次收到该协议报文后,刷新各自的地址转发表,控制节点 A 还要打开 w端口的数据报文的转发功能。
如图 6b所示, 链路〈E, D〉发生了单通故障, 即: E— D的方向是畅 通的, D→E方向不通; 节点 E阻塞 e端口的协议 ·^艮文和数据 4艮文的转发功 能, 刷新地址转发表, 并且向外周期性地发送 SF报文。 节点 C、 D和 F首 次收到节点 E发送来的 SF报文后, 刷新各自的地址转发表。 由于节点 C 的 e端口对协议报文和数据报文都进行阻塞,所以节点 A、 B和 G收不到 E 发送来的 SF报文。 因而, 节点 A、 B和 G不会出现持续刷新的现象。其中, 此时的 e端口启动了 FS。
实例 2为: 子环上出现多个单通故障的实例。
如图 7a所示, 链路〈: B, C〉首先发生了单通故障, 即: C— B的方向 是畅通的, B→C方向不通; 节点 C检测到故障后, 阻塞 e端口的协议报文 和数据报文的转发功能, 刷新地址转发表, 并且向外周期性地发送 SF2报 文。 子环上的其它节点首次收到节点 E发送来的 SF报文后,刷新各自的地 址转发表。 控制节点 A还要打开 w端口的数据报文的转发功能。
紧接着, 链路〈E, D〉发生了单通故障, 即: E— D的方向是畅通的, D→E方向不通; 节点 E阻塞 e端口的协议报文和数据报文的转发功能, 刷 新地址转发表, 并且向外周期性地发送 SF ^艮文。 节点 C、 D和 F首次收到 节点 E发送来的 SF报文后,刷新各自的地址转发表。 由于节点 C的 e端口 对协议报文和数据报文都进行阻塞, 所以节点 A、 B和 G收不到 E发送来 的 SF报文。 因而, 节点 A、 B和 G不会出现持续刷新的现象。 其中, 此时 e端口的相邻链路发生了故障。
通过分析可以看出, 现有的无虚拟通道的子环控制信道的方案会造成 子环始终处于持续刷新的状态。 因此, 设计一种新的子环控制信道阻塞协 议报文的方法, 对提升子环的性能和防止广播风暴是非常有意义的。
这里, 以上涉及到的子环以 Sub-Ring表示; 互连节点以 Interconnection Node表示; 虚拟通道以 Virtual Channel表示。
以上所述仅为本发明的优选实施例而已, 并不用于限制本发明, 对于 本领域的技术人员来说, 本发明可以有各种更改和变化。 凡在本发明的精 神和原则之内, 所作的任何修改、 等同替换、 改进等, 均应包含在本发明 的保护范围之内。

Claims

权利要求书
1、一种无虚拟通道的子环控制信道阻塞协议报文的方法,其特征在于, 该方法包括: 当启动强制切换或检测到故障时, 阻塞相关报文的转发。
2、 根据权利要求 1所述的方法, 其特征在于, 所述当启动强制切换或 检测到故障时, 阻塞相关报文的转发, 具体包括:
判断位于子环上的节点的端口是否启动强制切换; 当启动强制切换时, 节点阻塞所述端口的相关报文的转发; 当未启动强制切换时, 判断所述端 口是否检测到相邻链路发生故障, 发生故障时, 所述节点阻塞所述端口的 相关报文的转发。
3、 根据权利要求 1或 2所述的方法, 其特征在于, 所述相关报文为协 议报文和数据报文。
4、 根据权利要求 1或 2所述的方法, 其特征在于, 所述故障为单通故 障。
5、 根据权利要求 2所述的方法, 其特征在于, 在所述发生故障时, 所 述节点阻塞所述端口的相关报文的转发之后, 该方法还包括:
刷新地址转发表; 向外周期性地发送信号故障报文。
6、一种无虚拟通道的子环控制信道阻塞协议报文的系统,其特征在于, 该系统包括: 阻塞模块, 用于当启动强制切换或检测到故障时, 阻塞相关 报文的转发。
7、 根据权利要求 6所述的系统, 其特征在于, 该系统还包括: 强制切 换判断模块和故障判断模块; 其中,
强制切换判断模块, 用于判断位于子环上的节点的端口是否启动强制 切换;
故障判断模块, 用于判断所述端口是否检测到相邻链路发生故障。
8、 根据权利要求 6或 7所述的系统, 其特征在于, 所述相关报文为协 议报文和数据报文。
9、 根据权利要求 6或 7所述的系统, 其特征在于, 所述故障为单通故 障。
PCT/CN2009/076012 2009-08-28 2009-12-24 无虚拟通道的子环控制信道阻塞协议报文的方法和系统 WO2011022917A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020127004654A KR101302815B1 (ko) 2009-08-28 2009-12-24 가상 채널이 없는 서브 링 제어 채널이 프로토콜 메시지를 블로킹 하는 방법 및 시스템
JP2012525849A JP5465784B2 (ja) 2009-08-28 2009-12-24 仮想チャネルのないサブリング制御チャンネルがプロトコルメッセージをブロックする方法及びシステム
US13/392,948 US8649261B2 (en) 2009-08-28 2009-12-24 Method and system for blocking protocol messages at a sub-ring control channel without virtual channel
EP09848649.1A EP2472796A4 (en) 2009-08-28 2009-12-24 Method and system for blocking protocol messages at a sub-ring control channel without virtual channel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200910167599.7 2009-08-28
CN200910167599.7A CN101997748B (zh) 2009-08-28 2009-08-28 无虚拟通道的子环控制信道阻塞协议报文的方法和系统

Publications (1)

Publication Number Publication Date
WO2011022917A1 true WO2011022917A1 (zh) 2011-03-03

Family

ID=43627173

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/076012 WO2011022917A1 (zh) 2009-08-28 2009-12-24 无虚拟通道的子环控制信道阻塞协议报文的方法和系统

Country Status (6)

Country Link
US (1) US8649261B2 (zh)
EP (1) EP2472796A4 (zh)
JP (1) JP5465784B2 (zh)
KR (1) KR101302815B1 (zh)
CN (1) CN101997748B (zh)
WO (1) WO2011022917A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9264254B2 (en) * 2012-03-30 2016-02-16 Ciena Corporation Generalized service protection systems and methods
CN103166868B (zh) * 2013-03-04 2015-09-16 杭州华三通信技术有限公司 用于防邻居震荡的方法和装置
WO2014199471A1 (ja) * 2013-06-12 2014-12-18 三菱電機株式会社 通信システム、通信装置およびプロテクション方法
US9344323B2 (en) * 2014-01-23 2016-05-17 Ciena Corporation G.8032 ethernet multiple fault recovery mechanisms
US9407535B2 (en) 2014-04-03 2016-08-02 Ciena Corporation Packet network linear protection systems and methods in a dual home or multi-home configuration

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1960310A (zh) * 2006-11-01 2007-05-09 华为技术有限公司 一种实现环网保护的方法及系统
CN101075935A (zh) * 2007-06-27 2007-11-21 华为技术有限公司 一种实现环网保护的方法、系统及装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002118580A (ja) * 2000-10-10 2002-04-19 Nec Corp リングプロテクション方法
JP3931088B2 (ja) * 2002-01-22 2007-06-13 三菱電機株式会社 ネットワークシステムおよびネットワーク構成方法
JP4020753B2 (ja) * 2002-10-25 2007-12-12 富士通株式会社 リング切替方法
JP2005269059A (ja) * 2004-03-17 2005-09-29 Fujitsu Ltd データ中継装置、データ中継方法およびデータ中継プログラム
US8050183B2 (en) * 2005-05-06 2011-11-01 Cisco Technology, Inc. System and method for implementing reflector ports within hierarchical networks
US8345576B2 (en) * 2007-06-19 2013-01-01 Red Hat, Inc. Methods and systems for dynamic subring definition within a multi-ring
CN101741670B (zh) * 2008-11-27 2012-12-19 中兴通讯股份有限公司 一种多环以太网的保护方法
US20120130759A1 (en) * 2010-11-24 2012-05-24 International Business Machines Corporation System and method for risk optimized, spatially sensitive preventive maintenance scheduling for asset management

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1960310A (zh) * 2006-11-01 2007-05-09 华为技术有限公司 一种实现环网保护的方法及系统
CN101075935A (zh) * 2007-06-27 2007-11-21 华为技术有限公司 一种实现环网保护的方法、系统及装置

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Ethernet ring protection switching", ITU-T G8032/Y.1344, 30 June 2008 (2008-06-30), XP017466874 *
"Extreme Networks' Ethernet Automatic Protection Switching (EAPS)", IETF RFC 3619, 31 October 2003 (2003-10-31), XP015009401 *
See also references of EP2472796A4 *

Also Published As

Publication number Publication date
US8649261B2 (en) 2014-02-11
JP2013503511A (ja) 2013-01-31
US20120155246A1 (en) 2012-06-21
EP2472796A4 (en) 2017-05-03
KR20120035943A (ko) 2012-04-16
KR101302815B1 (ko) 2013-09-02
CN101997748A (zh) 2011-03-30
JP5465784B2 (ja) 2014-04-09
CN101997748B (zh) 2015-08-12
EP2472796A1 (en) 2012-07-04

Similar Documents

Publication Publication Date Title
US8208369B2 (en) Ethernet ring system and a master node and an initialization method thereof
CA2570333C (en) Method for implementing bidirectional protection switching in multiple protocol label switching network
CN101999224B (zh) 对虚拟专用lan业务的冗余的以太网自动保护切换接入
JP4899959B2 (ja) Vpn装置
EP2319209B1 (en) Methods for establishing a traffic connection and an associated monitoring connection
JP4526423B2 (ja) リング間接続方法及び装置
US20100287405A1 (en) Method and apparatus for internetworking networks
JP5546461B2 (ja) チェーン及びリングネットワークにおける透過的なオートリカバリのための方法及びシステム
JP4167072B2 (ja) リング・トポロジーに対する選択的保護
WO2008046358A1 (fr) Procédé et dispositif destinés à réaliser une pénétration d&#39;un statut de liaison de réseau point à multipoint
WO2009036705A1 (fr) Procédé de détection de panne d&#39;interface et équipement de nœud de réseau
WO2010060250A1 (zh) 以太环网的地址刷新方法及装置
WO2006108352A1 (fr) Procede de gestion de panne et appareil permettant l&#39;interfonctionnement entre ethernet et un reseau de commutation multiprotocole par etiquette
US20100254257A1 (en) Method for processing failure of slave port of master node in ethernet ring network system
WO2010031210A1 (zh) 一种跨环转发协议帧的方法及以太网多环中的共享节点
CN101714939A (zh) 一种以太环网主节点的故障处理方法及相应以太环网
WO2011022917A1 (zh) 无虚拟通道的子环控制信道阻塞协议报文的方法和系统
WO2010102490A1 (zh) 以太环网中交换节点端口的地址刷新方法及交换节点
EP2129042B1 (en) A multicast network system, node and a method for detecting a fault of a multicast network link
EP2319210A1 (en) Methods for establishing a traffic connection and an associated monitoring connection
WO2010139173A1 (zh) 一种地址刷新方法及系统
WO2011094971A1 (zh) 防止以太环网节点地址表重复刷新的方法和装置
WO2011011934A1 (zh) 一种以太网隧道分段保护方法和装置
WO2010094193A1 (zh) 一种以太网保护中协议通道的实现方法
WO2012068866A1 (zh) 一种以太环网中刷新mac的方法及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09848649

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20127004654

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2012525849

Country of ref document: JP

Ref document number: 2009848649

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13392948

Country of ref document: US