WO2011013746A1 - Film-forming apparatus - Google Patents

Film-forming apparatus Download PDF

Info

Publication number
WO2011013746A1
WO2011013746A1 PCT/JP2010/062784 JP2010062784W WO2011013746A1 WO 2011013746 A1 WO2011013746 A1 WO 2011013746A1 JP 2010062784 W JP2010062784 W JP 2010062784W WO 2011013746 A1 WO2011013746 A1 WO 2011013746A1
Authority
WO
WIPO (PCT)
Prior art keywords
plate
substrate
film
film forming
intermediate member
Prior art date
Application number
PCT/JP2010/062784
Other languages
French (fr)
Japanese (ja)
Inventor
康男 清水
勝彦 森
浩一 松本
智彦 岡山
和 森岡
Original Assignee
株式会社アルバック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アルバック filed Critical 株式会社アルバック
Priority to JP2011524827A priority Critical patent/JPWO2011013746A1/en
Priority to CN201080026689.5A priority patent/CN102473609B/en
Publication of WO2011013746A1 publication Critical patent/WO2011013746A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
    • C23C16/509Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges using internal electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/3244Gas supply means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32715Workpiece holder
    • H01J37/32724Temperature

Definitions

  • the present invention relates to a film forming apparatus used for manufacturing a thin film solar cell, for example.
  • This application claims priority based on Japanese Patent Application No. 2009-179212 filed on Jul. 31, 2009, the contents of which are incorporated herein by reference.
  • a plasma CVD apparatus As an apparatus for forming a thin film Si layer (semiconductor layer) of this thin film solar cell, a plasma CVD apparatus is often used.
  • a plasma CVD apparatus a single-wafer PE-CVD (plasma CVD) apparatus, an inline PE-CVD apparatus, a batch PE-CVD apparatus, and the like are known.
  • the film thickness required for the ⁇ c-Si layer of the tandem solar cell is approximately 5 times the film thickness of the amorphous Si layer (approximately 1.5 ⁇ m). ) Must be secured. Further, in the process of forming the ⁇ c-Si layer, it is necessary to form a high-quality microcrystal film uniformly, and there is a limit to increasing the film formation rate. For this reason, it is required to improve productivity by increasing the number of batches. That is, there is a demand for an apparatus that realizes a high deposition rate at a low film formation rate.
  • a so-called vertical CVD apparatus for forming a film is known.
  • this vertical CVD apparatus there is known an apparatus having a carrier in which a pair of support walls (holders) for supporting a substrate extend in the vertical direction.
  • the pair of support walls are disposed substantially parallel to each other.
  • the carrier moves along a direction parallel to the floor surface on which the apparatus is installed in a state where the substrate is supported on each support wall, and transports the substrate to the film formation chamber.
  • a heater for heating each substrate is provided in the film formation chamber so as to correspond to the position between the pair of substrates.
  • high-frequency electrodes cathodes
  • plasma of a film forming gas supplied to the film formation chamber is generated by supplying power to the high-frequency electrodes.
  • the temperature in the film forming chamber increases the number of batch processes due to heat generated by the heater or heat generated by the discharge by the high frequency electrode (the film forming process is performed in the film forming chamber). The number of times it is performed increases). Even if the output of the heater is suppressed as the temperature in the film formation chamber increases, the temperature of the substrate increases due to radiant heat or the like, and becomes higher than a desired temperature. For this reason, the quality of the film
  • the present invention has been made to solve the above-described problems, and can maintain the temperature of the substrate constant, and can stabilize the quality of the film formed on the substrate even when the number of batch processing increases.
  • a film forming apparatus capable of
  • a film formation apparatus of one embodiment of the present invention includes a cathode unit and an anode that is spaced from and opposed to the cathode unit, and is disposed between the cathode unit and the anode. A desired film is formed on the formed substrate.
  • the cathode unit includes an electrode plate to which a voltage is applied, a temperature adjusting fluid flow path (circulation path) provided in the electrode plate through which the temperature adjusting fluid circulates, and the substrate in contact with the electrode plate.
  • a shower plate having a plurality of holes for supplying a process gas toward the deposition surface; a heat exchange plate provided between the electrode plate and the shower plate and in contact with the electrode plate and the shower plate; The gas flow path (introducing the process gas into the heat exchange plate and guiding the process gas introduced into the heat exchange plate to the plurality of holes of the shower plate and provided in the heat exchange plate) Distribution channel).
  • the temperature of the electrode plate constant by circulating the temperature adjusting fluid through the temperature adjusting fluid channel provided in the electrode plate.
  • the heat of the electrode plate is transferred to the shower plate via the heat exchange plate.
  • the temperature of the shower plate can be kept constant.
  • the heat exchange plate is provided with a gas flow path.
  • the heat exchange plate has a first concave portion formed by concave and convex processing, a first contact surface that contacts the electrode plate, and a first concave portion formed by concave and convex processing. And a second contact surface that contacts the electrode shower plate, and the positions of the first recess and the second recess correspond to the positions of the plurality of holes of the shower plate. preferable.
  • a space for flowing the process gas can be reliably formed (secured) around the hole of the shower plate.
  • the temperature adjusting fluid flow path is configured so that the temperature of the electrode plate gradually decreases in a direction from the outer peripheral portion of the electrode plate toward the central portion of the electrode plate. It is preferable that they are arranged. That is, the shape of the temperature adjusting fluid flow path or the pattern of the circulation path is designed so that the temperature of the electrode plate gradually decreases in the direction from the outer periphery of the electrode plate toward the center of the electrode plate. If temperature unevenness (temperature variation) occurs in the substrate, the substrate may be distorted.
  • the temperature of the center portion of the substrate is decreased by gradually decreasing the temperature of the electrode plate in the direction from the outer peripheral portion of the electrode plate toward the center portion of the electrode plate. Can be lowered from the outer peripheral portion. As a result, it is possible to prevent damage to the substrate due to thermal distortion.
  • the heat exchange plate includes a pair of first plate pieces and second plate pieces, and the first plate pieces and the second plate pieces are formed by the cathode unit. It is preferable that the layers are overlapped along the direction facing the anode.
  • the gas flow path can be easily formed inside the heat exchange plate. Specifically, a first groove is formed on the first surface of the first plate piece that contacts the second plate piece, and a second groove is formed on the second surface of the second plate piece that contacts the first plate piece. Yes. In the mating surface between the first plate piece and the second plate piece, the first surface and the second surface are in contact with each other.
  • the gas flow path can be formed in the heat exchange plate. For this reason, compared with the case where the gas flow path is formed on one plate, the processing step for forming the gas flow path can be simplified, and the processing cost can be reduced.
  • the process gas introduced into the heat exchange plate flows toward a position close to the electrode plate and is close to the electrode plate. It is preferable that the process gas that has flowed in the direction flows from the electrode plate toward the shower plate. That is, in the flow path of the gas flow path, the process gas introduced into the heat exchange plate is once discharged into the space on the electrode plate side. Thereafter, the process gas is introduced from the space on the electrode plate side to the shower plate side.
  • the process gas introduced into the heat exchange plate is dispersed over the entire space formed between the electrode plate and the shower plate, and then provided on the shower plate. Process gas can be directed toward the plurality of holes. For this reason, the process gas can be ejected uniformly from the entire shower plate, and a film can be uniformly formed on the entire substrate.
  • the present invention it is possible to keep the temperature of the electrode plate constant by circulating the temperature adjusting fluid through the temperature adjusting fluid channel provided in the electrode plate.
  • the heat of the electrode plate is transferred to the shower plate via the heat exchange plate.
  • the temperature of the shower plate can be kept constant.
  • an increase in the temperature of the substrate can be suppressed. For this reason, even if the number of batch processes increases, that is, the number of times the film forming process is performed in the film forming chamber, the quality of the film formed on the substrate can be stabilized.
  • FIG. 3 is a perspective view schematically showing a configuration of a film forming chamber in an embodiment of the present invention, which is a perspective view different from FIG. 2. It is a side view which shows the film-forming chamber in embodiment of this invention. It is a perspective view which shows roughly the structure of the electrode unit in embodiment of this invention.
  • FIG. 6 is a perspective view schematically showing a configuration of an electrode unit in the embodiment of the present invention, which is a perspective view different from FIG. 5.
  • FIG. 1 is a diagram schematically showing a configuration of a film forming apparatus.
  • the film formation apparatus 10 includes a film formation chamber 11, a preparation / removal chamber 13, a substrate removal chamber 15, a substrate removal robot 17, and a substrate storage cassette 19.
  • a microcrystal silicon film can be formed on a plurality of substrates W simultaneously.
  • the preparation / removal chamber 13 can simultaneously accommodate a substrate W (hereinafter referred to as a pre-treatment substrate) carried into the film formation chamber 11 and a substrate W (hereinafter referred to as a post-treatment substrate) carried out from the film formation chamber 11. It is.
  • pre-treatment substrate means a substrate before film formation processing (substrate before film formation treatment), and “post-treatment substrate” means after film formation processing has been performed. This means a substrate (substrate after film formation).
  • substrate removal chamber 15 the unprocessed substrate W is attached to the carrier 21 (see FIG. 11) or the processed substrate W is removed from the carrier 21.
  • the substrate removal robot 17 attaches or removes the substrate W to / from the carrier 21.
  • the substrate storage cassette 19 is used when transporting the substrate W to a different processing chamber different from the film forming apparatus 10 and stores a plurality of substrates W.
  • the substrate film forming lines 16 each including a film forming chamber 11, a loading / unloading chamber 13, and a substrate desorbing chamber 15 are provided.
  • the substrate removal robot 17 can move on the rail 18 arranged (laid) on the floor surface, and the substrate removal robot 17 performs the process of transferring the substrate W to all the substrate deposition lines 16.
  • the substrate film forming module 14 is configured by integrating the film forming chamber 11 and the loading / unloading chamber 13 and has a size that can be loaded on a transport truck.
  • FIG. 2 is a perspective view seen from a certain position
  • FIG. 3 is a perspective view seen from a position different from the position seen in FIG.
  • FIG. 4 is a side view of the film forming chamber 11.
  • the film forming chamber 11 is formed in a box shape.
  • a carrier through which the carrier 21 on which the substrate W is mounted passes through the first side surface 23 of the film formation chamber 11 connected to the preparation / removal chamber 13 (the side surface of the film formation chamber 11 shown in front of the paper surface in FIG. 2).
  • Three carry-in / out entrances 24 are formed.
  • the carrier carry-in / out port 24 is provided with a shutter 25 that opens and closes the carrier carry-in / out port 24. When the shutter 25 is closed, the carrier carry-in / out port 24 is closed so as to ensure the airtightness of the film forming chamber 11. Further, an exhaust pipe 29 used for decompressing the film forming chamber 11 so as to be in a vacuum atmosphere is connected to the lower side of the side surface of the film forming chamber 11. A vacuum pump 30 is provided in the exhaust pipe 29. (See FIG. 4).
  • FIG. 3 in order to form a film on the substrate W on the second side surface 27 (the side surface of the film forming chamber 11 shown in front of the paper surface in FIG. 3) located opposite to the first side surface 23.
  • Three electrode units 31 to be used are attached. These electrode units 31 are detachable from the film forming chamber 11.
  • a first end (one end) of the hot water pipe 28 is connected to each of the electrode units 31.
  • a hot water circulator 32 is connected to the second end (other end) of each hot water pipe 28.
  • the hot water circulator 32 supplies hot water to each of the electrode units 31 through the hot water pipe 28.
  • the hot water (cooling water) of the present embodiment corresponds to the “temperature adjusting fluid” of the present invention.
  • the temperature adjusting fluid is a fluid having a temperature higher than room temperature (27 ° C.).
  • the temperature adjusting fluid heats the cathode intermediate member 76.
  • the temperature adjusting fluid cools the cathode intermediate member 76.
  • the cathode intermediate member 76 is cooled by the temperature adjusting fluid so that the temperature of the cathode intermediate member 76 does not gradually increase due to continuous film formation.
  • 3 shows a structure in which three hot water pipes 28 connected to the electrode unit 31 are collectively connected to one hot water circulator 32.
  • the hot water circulator 32 includes the electrode unit 31. It may be provided for each.
  • FIG. 5 is a perspective view seen from a certain position
  • FIG. 6 is a perspective view seen from a position different from the position seen in FIG. It is.
  • FIG. 7 is a partial cross-sectional view of the cathode unit 68 and the anode 67 (counter electrode).
  • the electrode unit 31 can be attached to and detached from three openings 26 formed in the second side surface 27 of the film forming chamber 11 (see FIG. 3). Wheels 61 are provided below the electrode unit 31, and the electrode unit 31 is movable on the floor surface.
  • the bottom plate portion 62 to which the wheels 61 are attached is provided with a side plate portion 63 that rises from the bottom plate portion 62 along the vertical direction.
  • the side plate portion 63 is formed in a size larger than the opening portion 26 so as to close the opening portion 26 of the second side surface 27 of the film forming chamber 11. That is, the side plate portion 63 constitutes a part of the wall surface of the film forming chamber 11.
  • the first plate surface 65 of the side plate portion 63 (one surface of the side plate portion 63, the surface facing the inside of the film forming chamber 11) is used when a film is formed on the substrate W.
  • An anode 67 and a cathode unit 68 are provided so as to face each other.
  • the anode 67 is arranged so as to be spaced from both sides of the cathode unit 68 so as to sandwich the cathode unit 68, and a film formation space 81 is formed between each cathode unit 68 and the anode 67. Is formed.
  • a drive mechanism 71, a matching box 72, and a connector part 64 are attached to the second plate surface 69 of the side plate portion 63 (the other surface of the side plate portion 63).
  • the drive mechanism 71 is used to drive the anode 67.
  • the matching box 72 is used to supply power to the cathode unit 68 when a film is formed on the substrate W.
  • a hot water pipe 28 (see FIG. 3) is connected to the connector portion 64.
  • the side plate portion 63 is formed with a connection portion (not shown) used as a pipe for supplying a film forming gas (process gas) to the cathode unit 68.
  • a heater H is incorporated in the anode 67 as a temperature control device that adjusts the temperature of the substrate W.
  • the two anodes 67 and 67 are driven by a drive mechanism 71 provided on the side plate portion 63 in a direction in which the anode 67 approaches the cathode unit 68 and a direction in which the anode 67 moves away from the cathode unit 68, that is, in the horizontal direction. It is movable.
  • the drive mechanism 71 controls the distance between the substrate W and the cathode unit 68.
  • the two anodes 67 and 67 move toward the cathode unit 68 (see the arrow in FIG. 7) and come into contact with the substrate W. Further, the two anodes 67 and 67 move so as to approach the cathode unit 68, and the distance between the substrate W and the cathode unit 68 is adjusted to a desired distance. Thereafter, a film forming process for forming a film on the substrate W is performed. After the film forming process is completed, the anodes 67 and 67 move away from the cathode unit 68.
  • the drive mechanism 71 controls the positions of the anodes 67 and 67, whereby the substrate W can be easily taken out from the electrode unit 31.
  • the anode 67 is attached to the drive mechanism 71 via a hinge (not shown) or the like, and a surface 67A facing the cathode unit 68 of the anode 67 is formed in a state where the electrode unit 31 is pulled out from the film forming chamber 11. It can be rotated (opened) until it is substantially parallel to the first plate surface 65 of the side plate portion 63. That is, the anode 67 is configured to be able to turn approximately 90 ° when viewed from the vertical direction of the bottom plate portion 62 (see FIG. 5).
  • FIG. 8 is a perspective view showing the cathode intermediate member 76.
  • FIG. 9 is an enlarged cross-sectional view showing a portion indicated by reference symbol A in FIG.
  • the cathode unit 68 includes a shower plate 75 (cathode), a cathode intermediate member 76 (electrode plate), a heat exchange plate 91, an exhaust duct 79, and a floating capacitor 82. Yes.
  • the cathode intermediate member 76 is in contact with the outer peripheral portion of the shower plate 75.
  • the heat exchange plate 91 is provided in a space 77 formed between the shower plate 75 and the cathode intermediate member 76.
  • the exhaust duct 79 is provided on the outer periphery of the cathode intermediate member 76.
  • the shower plates 75 and 75 are formed of stainless steel or the like, and are disposed at positions facing both surfaces (both sides) of the cathode intermediate member 76 so as to sandwich the cathode intermediate member 76, and are opposed to the anodes 67 and 67.
  • a plurality of small holes 74 are formed in each of the shower plates 75 and 75, and a film forming gas is jetted toward the substrate W through the small holes 74.
  • the shower plates 75 and 75 are connected to the matching box 72 via the cathode intermediate member 76 and function as cathodes (high frequency electrodes).
  • the cathode intermediate member 76 has a pair of first intermediate member piece 76a and second intermediate member piece 76b.
  • the first intermediate member piece 76a and the second intermediate member piece 76b are made of aluminum or the like and are formed in a flat plate shape.
  • the first intermediate member piece 76 a and the second intermediate member piece 76 b are overlapped so as to face each other in a direction perpendicular to the surface of the cathode intermediate member 76.
  • the first intermediate member piece 76 a and the second intermediate member piece 76 b are integrally fastened (fixed) by bolts 93.
  • the first intermediate member piece 76a has a female screw portion 94
  • the second intermediate member piece 76b has a bolt hole 95 (through hole).
  • a counterbore part 95a is formed in the bolt hole 95, and the head of the bolt 93 does not protrude from the surface of the cathode intermediate member 76, and is positioned in the counterbore part 95a.
  • a flange portion 73 that can come into contact with the shower plates 75 and 75 is formed integrally with the cathode intermediate member 76 on the outer peripheral portion of the cathode intermediate member 76.
  • the cathode intermediate member 76 is electrically connected to a high-frequency power source (not shown) via a matching box 72. Thereby, in order to generate plasma between the shower plate 75 and the anode 67, a voltage having the same potential and the same phase is applied to the shower plates 75 and 75 via the cathode intermediate member 76.
  • the matching box 72 has a function of performing matching (impedance matching) between the cathode intermediate member 76 and the high frequency power source, and one matching box 72 is provided on the second plate surface 69 of the side plate portion 63 of the electrode unit 31.
  • the cathode intermediate member 76 is provided with a power feeding point to which a voltage supplied from a high frequency power source via the matching box 72 is applied.
  • Each of the feeding points is located on the upper side surface and the lower side surface in the height direction of the cathode intermediate member 76 (direction perpendicular to the floor surface). That is, the cathode intermediate member 76 has a total of two feeding points. It is arranged. Between these power supply points and the matching box 72, wiring for electrically connecting the power supply points and the matching box 72 is laid.
  • the wiring extends from the matching box 72 and is laid so as to reach each power feeding point along the outer periphery of the cathode intermediate member 76.
  • the outer periphery of the cathode intermediate member 76 and the periphery of the power supply point and the wiring are surrounded by an insulating member 89 made of alumina or quartz, for example.
  • a water pipe 92 (temperature adjusting fluid flow path, cooling flow path) through which hot water supplied from the hot water circulator 32 (see FIG. 3) is embedded is embedded.
  • the water pipe 92 includes an upper water channel 92a, an intermediate water channel 92b, and a lower water channel 92c.
  • the upper water channel 92a is laid on the upper portion (upper side in FIG. 8) of the cathode intermediate member 76 in the height direction.
  • the intermediate water channel 92 b is laid at the center of the cathode intermediate member 76 in the height direction.
  • the lower water channel 92 is laid on the lower portion (lower side in FIG. 8) of the cathode intermediate member 76 in the height direction.
  • the upper water channel 92a extends from the side plate portion 63 of the electrode unit 31 toward the center of the cathode intermediate member 76 at a center position in the height direction of the cathode intermediate member 76 (reference numeral 200). Further, the upper water channel 92a is bent toward the upper portion in the height direction (reference numeral 201) at a position close to the side plate portion 63 of the cathode intermediate member 76 (in the vicinity of the root portion 76c), and extends toward the upper portion in the height direction. (Reference numeral 202).
  • the upper water channel 92a is a position near the side plate portion 63 of the cathode intermediate member 76 (near the root portion 76c) and bends in the upper portion in the height direction (reference numeral 203), and the horizontal direction (floor surface) of the cathode intermediate member 76 In the direction horizontal to the front end 76d of the cathode intermediate member 76 (reference numeral 204). Further, the upper water channel 92a bends toward the lower portion in the height direction (reference numeral 205) and slightly extends toward the lower portion in the height direction (reference numeral 206) at a position close to the tip portion 76d of the cathode intermediate member 76. .
  • the upper water channel 92a is bent at a central position in the height direction (reference numeral 207) and slightly extends from the tip 76d of the electrode unit 31 toward the side plate portion 63 (reference numeral 208). Further, the upper water channel 92 a is bent at the positions indicated by reference numerals 209 and 210, extends in the horizontal direction as indicated by reference numeral 211, and is bent at the position indicated by reference numeral 212. Thus, the upper water channel 92 a is formed so as to be folded back toward the side plate portion 63. Further, the upper water channel 92a is bent in a U shape so as to include the position indicated by reference numeral 212, and is connected to the intermediate water channel 92b.
  • the intermediate water channel 92b extends from a position close to the side plate portion 63 of the cathode intermediate member 76 (near the root portion 76c) to a position close to the tip end portion 76d at the center position in the height direction of the cathode intermediate member 76.
  • (Reference numeral 213) bends in a U-shape and extends from a position close to the tip 76d toward a position near the root 76c (reference numeral 214). That is, the intermediate water channel 92b is formed to reciprocate once along the horizontal direction.
  • the lower water channel 92c is connected to the intermediate water channel 92b at a position indicated by reference numeral 215 that is bent in a U-shape.
  • the lower water channel 92c extends in the horizontal direction from the position indicated by reference numeral 215 toward the distal end portion 76d, bends at the positions indicated by reference numerals 216 and 217, and extends slightly in the horizontal direction toward the distal end portion 76d. (Reference numeral 208).
  • the lower water channel 92c slightly extends toward the lower portion in the height direction (reference numeral 219). Further, the lower water channel 92c is bent at a position close to the distal end portion 76d and in the lower portion in the height direction (reference numeral 220), and extends toward the side plate portion 63 in the horizontal direction of the cathode intermediate member 76 (reference numeral 221). ).
  • the lower water channel 92c is a position close to the side plate portion 63 of the cathode intermediate member 76 (near the root portion 76c), bends at the lower portion in the height direction (reference numeral 222), and extends toward the upper portion in the height direction. (Reference numeral 223). Furthermore, the lower water channel 92c bends toward the side plate portion 63 at a position close to the side plate portion 63 of the cathode intermediate member 76 (near the root portion 76c) (reference numeral 224), and at the center position in the height direction of the electrode unit 31. It extends toward the side plate portion 63 (reference numeral 225).
  • the lower water channel 92c is formed so as to be folded back toward the side plate portion 63, and is formed so as to return to the center position in the height direction.
  • the water pipe 92 is formed by a single linear water channel in which a straight line and a curve are combined, and the upper water channel 92a, the intermediate water channel 92b, and the lower water channel 92c communicate with each other.
  • the water piping 92 is arrange
  • the intermediate member pieces 76a and 76b are joined by welding, and the water pipe 92 is made of stainless steel or the like.
  • the cathode intermediate member 76 has an outer peripheral portion 76e and a central portion 76f.
  • the water channel is arranged so that the upper water channel 92a, the intermediate water channel 92b, and the lower water channel 92c are concentrated in the central portion 76f.
  • the structure in which one linear water channel is formed in the cathode intermediate member 76 has been described.
  • this structure is an embodiment of the present invention, and the present invention does not limit this structure.
  • the cathode intermediate member 76 may be provided with a branching portion that branches one water pipe into two or more water pipes. Further, the pattern of the water channel is appropriately determined so that the water channel concentrates on the central portion 76f.
  • FIG. 10 is a plan view showing the heat exchange plate 91.
  • the heat exchange plate 91 is made of aluminum and is provided in a space 77 formed between the shower plate 75 and the cathode intermediate member 76. Yes.
  • the heat exchange plate 91 is composed of a pair of first plate pieces 101 and second plate pieces 102.
  • the first plate piece 101 and the second plate piece 102 are formed in a flat plate shape so as to correspond to the shape of the space 77.
  • the first plate piece 101 and the second plate piece 102 are overlapped along the direction in which the cathode unit 68 faces the anode 67, accommodated in the space 77, and fastened (fixed) to the cathode intermediate member 76 by bolts 97. Has been.
  • a bolt hole 98 (through hole) is formed in each of the pair of first plate piece 101 and second plate piece 102, and a female screw part 99 is formed in the cathode intermediate member 76.
  • a counterbore part 98a is formed, and the head of the bolt 97 does not protrude from the surface of the heat exchange plate 91 but is positioned in the counterbore part 98a.
  • the first plate piece 101 which is one of the pair of plate pieces, has a surface 101a (first contact surface), and the second plate piece 102, which is the other plate piece, has a surface 102a (second surface). Contact surface).
  • the surface 101 a is in contact with the cathode intermediate member 76, and the surface 102 a is in contact with the shower plate 75.
  • the surface 101a of the first plate piece 101 is embossed, and a plurality of first recesses 103 are formed on the surface 101a by this embossing.
  • the surface 102a of the second plate piece 102 is also embossed, and a plurality of second recesses 104 are formed on the surface 102a by this embossing.
  • the tip of the partition wall 105 (rising wall) formed around the first recess 103 of the first plate piece 101 is in contact with the cathode intermediate member 76.
  • the tip of the partition wall 106 (rising wall) formed around the second recess 104 of the second plate piece 102 is in contact with the shower plate 75.
  • the partition 106 may be formed in an independent column shape.
  • the film forming gas flows around the partition wall 106 in the space between the shower plate 75 and the second plate piece 102.
  • the deposition gas is not supplied only to each of the plurality of second recesses 104, but is supplied to the second recess 104, which is one space defined by the partition wall 106.
  • the film gas is supplied to the film formation space 81 through the small holes 74 of the shower plate 75.
  • the partition wall 105 may be formed in an independent column shape.
  • the film forming gas flows around the partition wall 105 in the space between the cathode intermediate member 76 and the first plate piece 101.
  • the deposition gas is not supplied only to each of the plurality of first recesses 103, but the deposition gas is supplied to the first recess 103 (space 77) that is one space defined by the partition wall 105.
  • the film forming gas is supplied into the second recess 104 through the third flow path 110.
  • the embossing in the present embodiment is one of the uneven processes of the present invention, that is, one of the processing methods for forming the uneven parts (the first recessed part 103 and the second recessed part 104) on the surfaces 101a and 102a. It is. A known method may be used as long as it is a method for forming such an uneven portion.
  • the thickness of the partition 105 of the first plate piece 101 and the partition 106 of the second plate piece 102 is set so that a desired heat capacity can be exchanged between the cathode intermediate member 76 and the shower plate 75.
  • the thickness of the partition wall 105 and the thickness of the partition wall 106 may be different.
  • the second recess 104 of the second plate piece 102 that is in contact with the shower plate 75 is formed at a position corresponding to the plurality of small holes 74 formed in the shower plate 75.
  • the shape or size of the second recess 104 is determined so that the small hole 74 is not blocked by the partition wall 106 of the second plate piece 102.
  • the heat exchange plate 91 is formed with a gas flow path 107 for introducing a film forming gas supplied from a gas supply device (not shown) into the cathode unit 68.
  • the gas flow path 107 includes a first flow path 108, a second flow path 109, and a third flow path 110.
  • the first flow path 108 disperses the film forming gas introduced into the heat exchange plate 91 over the entire heat exchange plate 91, for example, in the height direction of the heat exchange plate 91 (with respect to the floor surface). It extends in the vertical direction) and in the horizontal direction (the direction horizontal to the floor). Further, as shown in FIG.
  • a second flow path 109 extending from the first flow path 108 toward the cathode intermediate member 76 is formed, and the second flow path 109 has a thickness of the first plate piece 101. It penetrates along the vertical direction.
  • the second flow path 109 connects the first flow path 108 and the space 77 of the first recess 103.
  • the third flow path 110 is formed so as to penetrate along the thickness direction of the first plate piece 101 and the second plate piece 102.
  • the third flow path 110 connects the space 77 of the first recess 103 and the space of the second recess 104.
  • a groove 108 a (first groove) is formed on the first surface 101 b of the first plate piece 101 that contacts the second plate piece 102, and a groove is formed on the second surface 102 b of the second plate piece 102 that contacts the first plate piece 101.
  • 108b (second groove) is formed. Further, in the mating surface between the first plate piece 101 and the second plate piece 102, the first surface 101b and the second surface 102b are in contact with each other, and the position of the groove 108a and the position of the 108b are matched (overlapping).
  • the first flow path 108 is formed.
  • the groove forming the first flow path 108 may be formed in either the first plate piece 101 or the second plate piece 102.
  • the second flow path 109 is formed so as to avoid the partition wall 105 of the first plate piece 101.
  • the third flow path 110 is formed at a position where the first recess 103 overlaps the second recess 104 in the overlapping direction of the first plate piece 101 and the second plate piece 102. That is, the third flow path 110 allows the first concave portion 103 of the first plate piece 101 and the second concave portion 104 of the second plate piece 102 to communicate with each other.
  • the film forming gas introduced into the heat exchanging plate 91 flows through the first flow path 108 and passes through the second flow path 109 to the first plate piece 101.
  • the first recess 103 is discharged (see arrow Y1 in FIG. 9). That is, the film forming gas flows toward a position close to the cathode intermediate member 76. Further, the space 77 formed by the first recess 103 and the cathode intermediate member 76 is filled with the film forming gas, and the film forming gas passes through the third flow path 110 and the second recess 104 of the second plate piece 102. (See arrow Y2 in FIG. 9).
  • the film forming gas is supplied to the substrate W through the small holes 74 of the shower plate 75. That is, the film forming gas that flows toward the position close to the cathode intermediate member 76 flows from the cathode intermediate member 76 toward the shower plate 75.
  • a stainless steel pipe 111 is laid in each of the flow paths 108, 109 and 110. The film forming gas flows in the pipe 111. For this reason, the film forming gas is prevented from leaking from the middle of each flow path 108, 109, 110.
  • the exhaust duct 79 provided on the outer periphery of the cathode intermediate member 76 is used to exhaust (remove) the film forming gas or the reaction product (powder) in the film forming space 81.
  • the exhaust port 80 is formed so as to communicate with (be face) the film formation space 81 formed between the substrate W and the shower plate 75 when performing the film formation process.
  • a plurality of the exhaust ports 80 are formed along the peripheral edge of the cathode unit 68, and are configured so that the film forming gas or the reaction product (powder) can be sucked and removed almost uniformly on the entire circumference of the cathode unit 68. Yes.
  • an opening (not shown) is formed on the surface of the exhaust duct 79 located below the cathode unit 68 and facing the film forming chamber 11.
  • the film forming gas removed through the exhaust port 80 is discharged into the film forming chamber 11 through this opening.
  • the gas discharged into the film formation chamber 11 is exhausted to the outside of the film formation chamber 11 through an exhaust pipe 29 provided at the lower side of the film formation chamber 11.
  • a dielectric and a floating capacitor 82 is provided between the exhaust duct 79 and the cathode intermediate member 76, that is, on the outer peripheral surface of the flange portion formed on the cathode intermediate member 76.
  • the stray capacitance body 82 has a stacked space.
  • the exhaust duct 79 is connected to the ground potential.
  • the exhaust duct 79 also functions as a shield frame used to prevent abnormal discharge that occurs in the shower plate 75 and the cathode intermediate member 76.
  • a mask 78 is provided on the peripheral edge of the cathode unit 68 so as to cover a portion (region) extending from the outer periphery of the exhaust duct 79 to the outer periphery of the cathode intermediate member 76.
  • the mask 78 covers a clamping piece 59A (see FIG. 11) of the clamping part 59 (described later) provided on the carrier 21, and is present in the space part 77 integrally with the clamping piece 59A when the film forming process is performed.
  • a gas flow path R that guides the film forming gas or the reaction product (powder) to the exhaust duct 79 is formed. That is, the gas flow path R is formed between the mask 78 and the shower plate 75 covering the carrier 21 (the sandwiching piece 59A) and between the mask 78 and the exhaust duct 79.
  • a moving rail 37 is formed so that the carrier 21 can move between the film forming chamber 11 and the loading / unloading chamber 13 and between the loading / unloading chamber 13 and the substrate desorption chamber 15. It is laid between the film chamber 11 and the substrate desorption chamber 15.
  • the preparation / removal chamber 13 is formed in a box shape.
  • a carrier carry-in / out port (not shown) through which the carrier 21 on which the substrate W is mounted is provided on one side surface (lower surface in FIG. 1) of the preparation / removal chamber 13.
  • a shutter 36 that can ensure the airtightness of the charging / extraction chamber 13 is provided at the carrier carry-in / out entrance.
  • a vacuum pump (not shown) is connected to the preparation / removal chamber 13, and the vacuum pump depressurizes the inside of the preparation / removal chamber 13 so as to be in a vacuum state.
  • the loading / unloading chamber 13 is provided with a push-pull mechanism (not shown) that moves the carrier 21 between the film forming chamber 11 and the loading / unloading chamber 13 along the moving rail 37.
  • a moving mechanism (not shown) is provided in the preparation / removal chamber 13 in order to accommodate the pre-treatment substrate and the post-treatment substrate simultaneously (collectively). This moving mechanism moves the carrier 21 by a predetermined distance in a direction substantially orthogonal to the direction in which the moving rail 37 is laid in a plan view viewed from the vertical direction of the floor surface on which the film forming apparatus 10 is installed.
  • the pre-treatment substrate can be attached to the carrier 21 arranged on the moving rail 37, and the post-treatment substrate can be detached from the carrier 21.
  • the substrate desorption chamber 15 three carriers 21 can be arranged in parallel.
  • the substrate removal robot 17 has a drive arm 45, and has a suction unit that sucks the substrate W at the tip of the drive arm 45.
  • the drive arm 45 drives between the carrier 21 disposed in the substrate removal chamber 15 and the substrate storage cassette 19. Specifically, the drive arm 45 can take out the pre-treatment substrate from the substrate accommodation cassette 19 and attach the pre-treatment substrate to the carrier 21 disposed in the substrate removal chamber 15. Further, the drive arm 45 can remove the processed substrate from the carrier 21 that has returned to the substrate removal chamber 15 and transport the substrate to the substrate storage cassette 19.
  • FIG. 8 is a perspective view showing the carrier 21.
  • the carrier 21 is used for transporting the substrate W, and two frame-shaped frames 51 to which the substrate W can be attached are formed. That is, two substrates W can be attached to one carrier 21.
  • the two frames 51 and 51 are integrated by a connecting member 52 at an upper portion thereof. Further, above the connecting member 52, a wheel 53 placed on the moving rail 37 is provided. When the wheel 53 rolls on the moving rail 37, the carrier 21 can move along the moving rail 37.
  • a frame holder 54 is provided below the frame 51 in order to suppress the shaking of the substrate W when the carrier 21 moves.
  • the front end of the frame holder 54 is fitted to a rail member (not shown) provided on the bottom surface of each chamber and having a concave cross-sectional shape.
  • a rail member (not shown) is arranged in a direction along the moving rail 37. If the frame holder 54 is composed of a plurality of rollers, the substrate W can be transported more stably.
  • Each of the frames 51 has an opening 56, a peripheral edge 57, and a clamping part 59.
  • the sandwiching portion 59 includes a sandwiching piece 59A that abuts on the front surface of the substrate W and a sandwiching piece 59B that abuts on the back surface (back surface) of the substrate W.
  • the clamping pieces 59A and 59B are connected via a spring or the like. By this spring, a biasing force acts in a direction in which the sandwiching piece 59A and the sandwiching piece 59B are close to each other.
  • the clamping piece 59A is movable in accordance with the movement of the anode 67 in the direction in which the clamping piece 59A approaches the clamping piece 59B or in the direction in which the clamping piece 59A moves away from the clamping piece 59B.
  • one carrier 21 is attached on one moving rail 37. That is, one carrier 21 that can hold a pair (two) of substrates W on one moving rail 37 is attached. Accordingly, in one set of film forming apparatus 10, three carriers 21 are attached, that is, three pairs (six substrates) are held.
  • a method for forming a film on the substrate W using the film forming apparatus 10 will be described.
  • the drawing of one substrate film forming line 16 is used, but a film is also formed on the substrate in the other three substrate film forming lines 16 by substantially the same method.
  • a substrate storage cassette 19 that stores a plurality of pre-processed substrates (substrates W) is disposed at a predetermined position.
  • the drive arm 45 of the substrate removal robot 17 is moved to take out one unprocessed substrate from the substrate storage cassette 19, and this unprocessed substrate is placed on the carrier 21 (see FIG. 8) installed in the substrate removal chamber 15. Install.
  • the arrangement direction of the unprocessed substrates arranged in the horizontal direction in the substrate accommodation cassette 19 changes to the vertical direction, and the unprocessed substrates are attached to the carrier 21.
  • This operation is repeated once, and two pre-treatment substrates are attached to one carrier 21. Further, this operation is repeated to attach the pre-treatment substrates to the remaining two carriers 21 installed in the substrate removal chamber 15. That is, at this stage, six pre-treatment substrates are attached to the three carriers 21.
  • the three carriers 21 to which the unprocessed substrates are attached move substantially simultaneously along the moving rail 37 and are accommodated in the preparation / removal chamber 13.
  • the shutter 36 at the carrier loading / unloading port (not shown) of the preparation / removal chamber 13 is closed.
  • the inside of the preparation / removal chamber 13 is kept in a vacuum state using a vacuum pump (not shown).
  • each of the three carriers 21 is moved in a direction orthogonal to the direction in which the moving rail 37 is laid using a moving mechanism. Move a predetermined distance.
  • the shutter 25 of the film forming chamber 11 is opened, and the carrier 21 to which the post-processing substrate after the film forming process is completed in the film forming chamber 11 is loaded using a push-pull mechanism (not shown). Move to. Further, the carrier 21 holding the unprocessed substrate is moved to the film forming chamber 11 using a push-pull mechanism. After the movement of the carrier 21 is completed, the shutter 25 is closed. Note that the inside of the film forming chamber 11 is kept in a vacuum state. At this time, the substrate before processing attached to the carrier 21 moves along a direction parallel to the surface of the substrate before processing. In the film forming chamber 11, the pre-treatment substrate is inserted along the vertical direction between the anode 67 and the cathode unit 68 so that the surface of the pre-treatment substrate is substantially parallel to the direction of gravity.
  • the drive mechanism 71 moves the two anodes 67 of the electrode unit 31 in the direction in which the anode 67 approaches the cathode unit 68 (see the arrow in FIG. 7), so that the anode 67 and the back surface of the substrate W come into contact with each other.
  • the pre-treatment substrate moves toward the cathode unit 68 so as to be pushed by the anode 67.
  • the pre-treatment substrate moves toward the cathode unit 68 until the gap between the substrate W and the shower plate 75 of the cathode unit 68 reaches a predetermined distance (film formation distance).
  • the gap (film formation distance) between the substrate W and the shower plate 75 of the cathode unit 68 is 5 to 15 mm, for example, about 5 mm.
  • the sandwiching piece 59A of the carrier 21 in contact with the surface of the substrate W is displaced so as to be separated from the sandwiching piece 59B as the substrate W moves (the anode 67 moves).
  • the substrate W is sandwiched between the anode 67 and the sandwiching piece 59A.
  • the clamping piece 59A comes into contact with the mask 78, and at this point, the movement of the anode 67 stops.
  • the substrate W is heated by the heater H built in the anode 67 so that the temperature of the substrate W becomes a desired temperature.
  • the hot water circulator 32 (see FIG. 3) is driven to circulate the hot water through the water pipe 92 embedded in the cathode intermediate member 76.
  • the temperature of the heater H rises to about 200 ° C., for example, but the temperature of the hot water circulating in the water pipe 92 is set to about 70 ° C. to 80 ° C., for example.
  • the heat of the cathode intermediate member 76 is transmitted to the shower plate 75 via the heat exchange plate 91.
  • the direction in which heat is transmitted is not necessarily the direction from the cathode intermediate member 76 toward the shower plate 75.
  • heat is transmitted from the shower plate 75 toward the cathode intermediate member 76, and this heat is transmitted to the hot water circulating in the water pipe 92. . That is, in this case, the substrate W is cooled through the shower plate 75 by the hot water circulating in the water pipe 92.
  • the substrate W is heated so that the temperature becomes about 170 ° C. by the heat of the heater H whose temperature is set to about 200 ° C. and the heat transmitted to the shower plate 75, The temperature is kept constant. That is, the heater H (anode 67) heats the substrate W, while the shower plate 75 cools the substrate W, and the temperature of the substrate W is adjusted.
  • an upper water channel 92a, an intermediate water channel 92b, and a lower water channel 92c are formed by a single linear water channel that is a combination of a straight line and a curved line. . Further, as shown in FIG.
  • the water pipe 92 is arranged so that the upper water passage 92 a, the intermediate water passage 92 b, and the lower water passage 92 c are denser in the center portion 76 f than the outer peripheral portion 76 e of the cathode intermediate member 76. For this reason, in the cathode intermediate member 76, the temperature of the central portion 76f is lower than the temperature of the outer peripheral portion 76e, and the temperature gradually decreases in the direction from the outer peripheral portion 76e to the central portion 76f.
  • FIG. 12 shows the relationship between the position and temperature of the cathode intermediate member 76, and is a graph showing the temperature change at the location where the temperature of the cathode intermediate member 76 is measured.
  • FIG. 12 shows the temperature distribution in the case and when the flow rate is 20 [l / min].
  • (A) shows the condition where the heat quantity is 3 [Kw] and the flow rate is 20 [l / min]
  • (B) shows the heat quantity is 3 [Kw] and the flow rate is 10 [l / min].
  • (C) shows the condition where the amount of heat is 6 [Kw] and the flow rate is 20 [l / min]
  • (D) shows the condition where the amount of heat is 6 [Kw] and the flow rate is The condition of 10 [l / min] is shown. Further, the direction from the left end O to the right end P in FIG. 12 matches the direction indicated by the arrow A in FIG.
  • the region between the left end O and the right end P is a lower portion in the height direction and close to the side plate portion 63 (base portion 76c) and an upper portion in the height direction and opposite to the side plate portion 63. It coincides (sets) with the region between (tip portion 76d). Further, the center position between the left end O and the right end P corresponds to the center position of the cathode intermediate member 76.
  • the temperature of the central portion 76f is lower than the temperature of the outer peripheral portion 76e, and the temperature gradually decreases in the direction from the outer peripheral portion 76e to the central portion 76f.
  • the piping pattern of the water piping 92 is set so as to obtain the temperature distribution of the entire cathode intermediate member 76 as shown in FIG.
  • the temperature difference between the high temperature portion and the low temperature portion in the cathode intermediate member 76 is reduced, and is generated in the cathode intermediate member 76. Heat can be dispersed. Thereby, it is possible to prevent the cathode intermediate member 76 from being damaged due to thermal distortion.
  • the temperature difference between the outer peripheral portion 76e and the central portion 76f of the cathode intermediate member 76 is set to about 20 ° C. to 50 ° C., damage to the substrate W due to thermal distortion can be prevented. If the temperature is uniform throughout the substrate W, thermal distortion does not occur.
  • a gas supply device (not shown) introduces a film forming gas into the heat exchange plate 91 of the cathode unit 68.
  • the film forming gas flows through the first flow path 108 of the gas flow path 107 and is discharged to the first recess 103 of the first plate piece 101 through the second flow path (see arrow Y1 in FIG. 9).
  • the space formed by the first recess 103 and the cathode intermediate member 76 is filled with the film forming gas, and then led to the second recess 104 of the second plate piece 102 via the third flow path 110 (FIG. 9 (see arrow Y2).
  • a film forming gas is ejected toward the substrate W through the small holes 74 of the shower plate 75.
  • the matching box 72 is activated and a voltage supplied from the high frequency power source is applied to the shower plate 75 via the matching box 72 and the cathode intermediate member 76 to form a film on the surface of the substrate W.
  • a voltage supplied from the high frequency power source is applied to the shower plate 75 via the matching box 72 and the cathode intermediate member 76 to form a film on the surface of the substrate W.
  • the heater H of the anode 67 when the temperature of the substrate W reaches a desired temperature, the heating operation is stopped.
  • plasma is generated in the film formation space 81. For this reason, when the substrate W is heated by the heat resulting from the generation of plasma as the processing time elapses, even if the heating of the anode 67 is stopped, the temperature of the substrate W rises above a desired temperature. There is a fear.
  • the substrate W is cooled via the heat exchange plate 91 and the shower plate 75.
  • the anode 67 can also function as a heat radiating plate for cooling the substrate W whose temperature has increased excessively. Therefore, the temperature of the substrate W is adjusted to a desired temperature regardless of the elapsed time of the film forming process.
  • a plurality of layers are formed on the substrate W by switching the type of film forming gas material supplied to the film formation space 81 every predetermined time. Can be formed.
  • the gas or the reaction product (powder) in the film forming space 81 is exhausted through the exhaust port 80 formed in the peripheral portion of the cathode unit 68.
  • the gas or reaction product in the film formation space 81 is exhausted to the exhaust duct 79 at the peripheral edge of the cathode unit 68 via the gas flow path R and the exhaust port 80.
  • the gas or reaction product passes through the opening of the exhaust duct 79 facing the inside of the film forming chamber 11 in the lower part of the cathode unit 68.
  • the gas or the reaction product is exhausted to the outside of the film forming chamber 11 from an exhaust pipe 29 provided at the lower side of the film forming chamber 11.
  • the reaction product (powder) generated when forming a film on the substrate W adheres to and accumulates on the inner wall surface of the exhaust duct 79 and is collected and disposed of. Since all the electrode units 31 in the film forming chamber 11 perform the same process as described above, films can be formed simultaneously on six substrates.
  • the anode 67 is moved in the direction in which the two anodes 67 are separated from each other by the drive mechanism 71, and the processed substrate and the frame 51 (the sandwiching piece 59A) are returned to their original positions. Further, by moving the anode 67 in a direction in which the two anodes 67 are separated from each other, the substrate after processing is separated from the anode 67.
  • the shutter 25 of the film formation chamber 11 is opened, and the carrier 21 is moved to the preparation / removal chamber 13 using a push-pull mechanism (not shown).
  • the inside of the preparation / removal chamber 13 is depressurized, and the carrier 21 to which the pre-treatment substrate on which a film is to be formed next is attached is already located in the preparation / removal chamber 13. Then, in the preparation / removal chamber 13, the heat stored in the processed substrate is transferred to the unprocessed substrate, and the temperature of the processed substrate is lowered.
  • the carrier 21 on which the substrate before processing is moved moves into the film forming chamber 11
  • the carrier 21 on which the substrate after processing is mounted is returned to the position of the moving rail 37 by the moving mechanism.
  • the shutter 25 is closed, the shutter 36 is opened, and the carrier 21 on which the processed substrate is mounted is moved to the substrate removal chamber 15.
  • the substrate removal robot 17 removes the processed substrate from the carrier 21 and transports the processed substrate to the substrate storage cassette 19.
  • the substrate storage cassette 19 on which the processed substrates are mounted is moved to a place (apparatus) where the next process is performed, and the film forming process in the film forming apparatus 10 is performed. Ends.
  • hot water can be circulated through the water pipe 92 embedded in the cathode intermediate member 76 to keep the temperature of the cathode intermediate member 76 constant.
  • the heat of the cathode intermediate member 76 is transmitted to the shower plate 75 via the heat exchange plate 91, and the temperature of the shower plate 75 can be kept constant.
  • the temperature of the shower plate 75 By keeping the temperature of the shower plate 75 constant, an increase in the temperature of the substrate W can be suppressed. For this reason, the quality of the film formed on the substrate W can be stabilized even if the number of batch processes increases.
  • a gas flow path 107 is provided in the heat exchange plate 91. For this reason, even if the space 77 formed between the cathode intermediate member 76 and the shower plate 75 is filled with the heat exchange plate 91, the plurality of small holes 74 provided in the shower plate 75 are formed. Thus, the deposition gas can be reliably supplied to the deposition surface of the substrate W. Therefore, a high quality film can be formed on the substrate W.
  • each of the surface 101a of the first plate piece 101 and the surface 102a of the second plate piece 102 constituting the heat exchange plate 91 is embossed.
  • a plurality of first recesses 103 are formed on the surface 101 a of the first plate piece 101
  • a plurality of second recesses 104 are formed on the surface 102 a of the second plate piece 102.
  • a pipe 111 is laid in the gas flow path 107 of the heat exchange plate 91, and the pipe 111 constitutes the gas flow path 107. For this reason, it is possible to prevent the deposition gas from leaking from the middle of the gas flow path 107. Therefore, the film forming gas introduced into the heat exchange plate 91 can be reliably guided to the small holes 74 of the shower plate 75, and the production efficiency can be improved.
  • the water pipe 92 embedded in the cathode intermediate member 76 is constituted by three water channels 92a to 92c.
  • the temperature distribution of the cathode intermediate member 76 is set so that the temperature of the cathode intermediate member 76 gradually decreases in the direction from the outer peripheral portion 76e of the cathode intermediate member 76 to the center portion 76f.
  • the temperature of the central portion 76f of the substrate W can be made lower than the temperature of the outer peripheral portion 76e (see FIG. 12). Therefore, it is possible to prevent damage to the substrate W due to thermal distortion.
  • the pair of first plate pieces 101 and second plate pieces 102 are overlapped along the direction in which the cathode unit 68 faces the anode 67. Therefore, the first flow path 108, the second flow path 109, and the third flow path 110 are formed in the first plate piece 101 and the second plate piece 102, and the first plate piece 101 and the second plate piece 102 are overlapped. By combining them, the gas flow path 107 can be formed.
  • a groove 108 a is formed on the first surface 101 b of the first plate piece 101
  • a groove 108 b is formed on the second surface 102 b of the second plate piece 102.
  • the first surface 101b is in contact with the second surface 102b so that the groove 108a overlaps the groove 108a. For this reason, compared with the case where the gas flow path 107 is formed in one plate, the process of forming the gas flow path 107 can be simplified, and the processing cost can be reduced.
  • the gas flow path 107 includes three flow paths 108, 109, and 110.
  • the film forming gas is discharged to the first recess 103 of the first plate piece 101 through the first flow path 108 and the second flow path 109 of the gas flow path 107. Thereafter, the film forming gas is guided to the small hole 74 of the shower plate 75 through the third flow path 110. Therefore, after the film forming gas introduced into the heat exchange plate 91 is dispersed throughout the space 77 located near the cathode intermediate member 76, the film forming gas is directed toward the plurality of small holes 74 of the shower plate 75. Can guide you. For this reason, the deposition gas can be ejected uniformly from the entire shower plate 75, and a film can be uniformly formed on the entire substrate W.
  • the technical scope of the present invention is not limited to the above embodiment, and various modifications can be made without departing from the spirit of the present invention.
  • the present invention does not limit this structure, and the gas flow is performed such that the surface of the gas flow path 107 is exposed to the film forming gas without laying the pipe 111 in the gas flow path 107 of the heat exchange plate 91.
  • a film forming gas may flow in the passage 107.
  • the structure in which the water pipe 92 embedded in the cathode intermediate member 76 is configured by the three water channels 92a, 92b, and 92c has been described.
  • the present invention does not limit this structure, so that the temperature distribution of the cathode intermediate member 76 in which the temperature of the cathode intermediate member 76 gradually decreases in the direction from the outer peripheral portion 76e to the central portion 76f is obtained.
  • the pipe 92 may be laid.
  • hot water temperature adjustment fluid
  • the present invention does not limit the structure for circulating the hot water, and cold water (for example, water at about 25 ° C.) or oil may be used as the cooling medium instead of the hot water.
  • the temperature of the heater H is about 200 ° C.
  • the temperature of the hot water circulating in the water pipe 92 is about 70 ° C. to 80 ° C.
  • the temperature of the substrate W is about 170 ° C.
  • the present invention does not limit this temperature condition, and each temperature may be set according to the type of film formed on the substrate W, the heating capability of the heater H, and the like.
  • the gas flow path 107 formed in the heat exchange plate 91 is configured by the three flow paths 108, 109, and 110, and the film forming gas is uniformly ejected from the entire shower plate 75.
  • the present invention does not limit this structure, and it is sufficient that a gas flow path capable of ejecting the film forming gas from the entire shower plate 75 is formed.
  • the present invention can be applied to a film forming apparatus used for manufacturing a thin film solar cell.

Abstract

Disclosed is a film-forming apparatus (10) which includes a cathode unit (68) that includes: an electrode plate (76) having a voltage applied thereto; a channel (92) for a temperature adjusting fluid, said channel being provided on the electrode plate (76) and having the temperature adjusting fluid circulating therein; a shower plate (75), which is in contact with the electrode plate (76) and has a plurality of holes (74), through which a process gas is supplied toward the substrate (W) surface, on which a film is to be formed; a heat exchanging plate (91), which is provided between the electrode plate (76) and the shower plate (75), and is in contact with the electrode plate (76) and the shower plate (75); and a gas channel (107), which introduces the process gas into the heat exchanging plate (91), guides the process gas, which has been introduced into the heat exchanging plate (91), into the holes (74) of the shower plate (75), and which is provided on the heat exchanging plate (91). The film-forming apparatus also includes an anode (67) which is disposed to face the cathode unit (68) by being spaced apart from the cathode unit.

Description

成膜装置Deposition equipment
 本発明は、例えば、薄膜太陽電池の製造に用いられる成膜装置に関する。
 本願は、2009年7月31日に出願された特願2009-179412号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a film forming apparatus used for manufacturing a thin film solar cell, for example.
This application claims priority based on Japanese Patent Application No. 2009-179212 filed on Jul. 31, 2009, the contents of which are incorporated herein by reference.
 現在の太陽電池に用いられている材料においては、単結晶Si型及び多結晶Si型の材料により大半が占められており、Siの材料不足等が懸念されている。
 そこで、近年では、製造コストが低く、材料不足のリスクが小さい薄膜Si層が形成された薄膜太陽電池の需要が高まっている。
 更に、従来型のa-Si(アモルファスシリコン)層のみを有する薄膜太陽電池に加えて、最近ではa-Si層とμc-Si(マイクロクリスタルシリコン)層を積層することにより変換効率の向上を図るタンデム型薄膜太陽電池の需要が高まっている。
 この薄膜太陽電池の薄膜Si層(半導体層)を形成する装置としては、プラズマCVD装置が用いられることが多い。
 プラズマCVD装置としては、枚葉式PE-CVD(プラズマCVD)装置、インライン型PE-CVD装置、バッチ式PE-CVD装置等が知られている。
Most of the materials used in current solar cells are occupied by single-crystal Si-type and polycrystalline Si-type materials, and there is concern about the shortage of Si materials.
Therefore, in recent years, there is an increasing demand for thin-film solar cells in which a thin-film Si layer having a low manufacturing cost and a low risk of material shortage is formed.
Furthermore, in addition to the conventional thin film solar cell having only an a-Si (amorphous silicon) layer, recently, the conversion efficiency is improved by laminating an a-Si layer and a μc-Si (microcrystal silicon) layer. There is an increasing demand for tandem thin film solar cells.
As an apparatus for forming a thin film Si layer (semiconductor layer) of this thin film solar cell, a plasma CVD apparatus is often used.
As a plasma CVD apparatus, a single-wafer PE-CVD (plasma CVD) apparatus, an inline PE-CVD apparatus, a batch PE-CVD apparatus, and the like are known.
 薄膜太陽電池に要求される変換効率を考慮すると、上記タンデム型太陽電池のμc-Si層に要求される膜厚として、アモルファスSi層の膜厚の約5倍程度の膜厚(1.5μm程度)を確保する必要がある。また、μc-Si層の成膜工程においては、良質なマイクロクリスタル膜を均一に形成する必要があり、成膜速度を大きくするには限界がある。このため、バッチ数を増加させたりすることにより、生産性を向上させることが求められている。即ち、低成膜速度で、かつ、高スループットを実現する装置が求められている。 Considering the conversion efficiency required for thin-film solar cells, the film thickness required for the μc-Si layer of the tandem solar cell is approximately 5 times the film thickness of the amorphous Si layer (approximately 1.5 μm). ) Must be secured. Further, in the process of forming the μc-Si layer, it is necessary to form a high-quality microcrystal film uniformly, and there is a limit to increasing the film formation rate. For this reason, it is required to improve productivity by increasing the number of batches. That is, there is a demand for an apparatus that realizes a high deposition rate at a low film formation rate.
 また、生産性の向上を図ると共に大型基板にも高精度に成膜可能なCVD装置として、基板の被成膜面が重力方向と略並行となるように基板が配置されている状態で基板上に膜を形成する所謂縦型CVD装置が知られている。この縦型CVD装置として、基板を支持する一対の支持壁(ホルダ)が上下方向に延在して設けられているキャリアを有する装置が知られている。この装置において、一対の支持壁は、互いに略並行に配設されている。キャリアは、各支持壁に基板が支持された状態で、装置が設置されている床面に平行な方向に沿って移動し、基板を成膜室に搬送する。一対の基板間の位置に対応するように、成膜室には各基板を加熱するヒータが設けられている。また、成膜室の両側壁においては、内面側に高周波電極(カソード)が各々配設されており、この高周波電極に給電することによって成膜室に供給される成膜ガスのプラズマを発生させている(例えば、特許文献1参照)。 In addition, as a CVD apparatus capable of improving productivity and forming a film on a large substrate with high accuracy, the substrate is placed on the substrate in a state in which the film formation surface of the substrate is substantially parallel to the direction of gravity. A so-called vertical CVD apparatus for forming a film is known. As this vertical CVD apparatus, there is known an apparatus having a carrier in which a pair of support walls (holders) for supporting a substrate extend in the vertical direction. In this apparatus, the pair of support walls are disposed substantially parallel to each other. The carrier moves along a direction parallel to the floor surface on which the apparatus is installed in a state where the substrate is supported on each support wall, and transports the substrate to the film formation chamber. A heater for heating each substrate is provided in the film formation chamber so as to correspond to the position between the pair of substrates. In addition, high-frequency electrodes (cathodes) are disposed on the inner surface of both side walls of the film formation chamber, and plasma of a film forming gas supplied to the film formation chamber is generated by supplying power to the high-frequency electrodes. (For example, refer to Patent Document 1).
特開2002-270600号公報Japanese Patent Laid-Open No. 2002-270600
 ところで、上述の従来技術においては、ヒータによる発熱又は高周波電極による放電に起因する発熱により、成膜室内(成膜空間内)の温度がバッチ処理の回数が増える(成膜室において成膜工程が行なわれる回数が増加する)に従って高くなる。成膜室内の温度上昇に伴ってヒータの出力を抑えたとしても、輻射熱等によって基板の温度が上昇し、所望の温度よりも高くなる。このため、バッチ処理の回数が増えるに従って、基板に形成される膜の品質が低下してしまうという課題がある。 By the way, in the above-described prior art, the temperature in the film forming chamber (in the film forming space) increases the number of batch processes due to heat generated by the heater or heat generated by the discharge by the high frequency electrode (the film forming process is performed in the film forming chamber). The number of times it is performed increases). Even if the output of the heater is suppressed as the temperature in the film formation chamber increases, the temperature of the substrate increases due to radiant heat or the like, and becomes higher than a desired temperature. For this reason, the quality of the film | membrane formed in a board | substrate falls as the frequency | count of batch processing increases.
 本発明は、上記の課題を解決するためになされたものであって、基板の温度を一定に保つことができ、バッチ処理の回数が増えても基板に形成される膜の品質を安定させることができる成膜装置を提供する。 The present invention has been made to solve the above-described problems, and can maintain the temperature of the substrate constant, and can stabilize the quality of the film formed on the substrate even when the number of batch processing increases. Provided is a film forming apparatus capable of
 上記の課題を解決するために、本発明の一態様の成膜装置は、カソードユニットと、前記カソードユニットに離間して対向配置されたアノードとを含み、前記カソードユニットとアノードとの間に配置された基板上に所望の膜を形成する。ここで、カソードユニットは、電圧が印加される電極プレートと、前記電極プレートに設けられて温度調整流体が循環する温度調整流体用流路(循環経路)と、前記電極プレートに接触して基板の被成膜面に向けてプロセスガスを供給する複数の孔を有するシャワープレートと、前記電極プレートと前記シャワープレートとの間に設けられて前記電極プレート及び前記シャワープレートに接触する熱交換用プレートと、前記熱交換用プレートに前記プロセスガスを導入しかつ前記熱交換用プレートに導入されたプロセスガスを前記シャワープレートの前記複数の孔に導くと共に前記熱交換用プレートに設けられたガス流路(流通経路)とを含む。 In order to solve the above-described problem, a film formation apparatus of one embodiment of the present invention includes a cathode unit and an anode that is spaced from and opposed to the cathode unit, and is disposed between the cathode unit and the anode. A desired film is formed on the formed substrate. The cathode unit includes an electrode plate to which a voltage is applied, a temperature adjusting fluid flow path (circulation path) provided in the electrode plate through which the temperature adjusting fluid circulates, and the substrate in contact with the electrode plate. A shower plate having a plurality of holes for supplying a process gas toward the deposition surface; a heat exchange plate provided between the electrode plate and the shower plate and in contact with the electrode plate and the shower plate; The gas flow path (introducing the process gas into the heat exchange plate and guiding the process gas introduced into the heat exchange plate to the plurality of holes of the shower plate and provided in the heat exchange plate) Distribution channel).
 このような構成を有する成膜装置においては、電極プレートに設けられた温度調整流体用流路に温度調整流体を循環させ、電極プレートの温度を一定に保つことができる。電極プレートの熱は、熱交換用プレートを介してシャワープレートに伝達される。これによって、シャワープレートの温度を一定に保つことができる。シャワープレートの温度を一定に保つことにより、基板の温度が上昇することを抑制できる。このため、バッチ処理の回数が増えても、即ち、成膜室において成膜工程が行なわれる回数が増加しても、基板に形成される膜の品質を安定させることができる。また、熱交換用プレートには、ガス流路が設けられている。このため、電極プレートとシャワープレートとの間に熱交換用プレートを設けた場合であっても、シャワープレートに設けられた複数の孔を介して基板の被成膜面に向けてプロセスガスを確実に供給することができる。このため、基板上に高品質な膜を形成することが可能になる。 In the film forming apparatus having such a configuration, it is possible to keep the temperature of the electrode plate constant by circulating the temperature adjusting fluid through the temperature adjusting fluid channel provided in the electrode plate. The heat of the electrode plate is transferred to the shower plate via the heat exchange plate. Thereby, the temperature of the shower plate can be kept constant. By keeping the temperature of the shower plate constant, an increase in the temperature of the substrate can be suppressed. For this reason, even if the number of batch processes increases, that is, the number of times the film forming process is performed in the film forming chamber, the quality of the film formed on the substrate can be stabilized. The heat exchange plate is provided with a gas flow path. For this reason, even when a heat exchange plate is provided between the electrode plate and the shower plate, the process gas is surely directed toward the film formation surface of the substrate through a plurality of holes provided in the shower plate. Can be supplied to. For this reason, it becomes possible to form a high-quality film on the substrate.
 本発明の一態様の成膜装置においては、前記熱交換用プレートは、凹凸加工によって形成された第1凹部を有すると共に前記電極プレートに接触する第1接触面と、凹凸加工によって形成された第2凹部を有すると共に前記電極シャワープレートに接触する第2接触面とを含み、前記第1凹部及び前記第2凹部の位置は、前記シャワープレートの前記複数の孔の位置に対応していることが好ましい。
 このような構成を有する成膜装置においては、プロセスガスを流動させる空間をシャワープレートの孔の周辺に確実に形成(確保)することができる。このため、例えば、熱交換用プレートを加工する際の加工精度が低下することに起因して、シャワープレートの孔が閉塞されてしまうことを防止できる。従って、熱交換用プレートを加工する際の加工精度を必要以上に高める必要がなく、加工コストを抑える(低減する)ことが可能になる。
In the film forming apparatus of one embodiment of the present invention, the heat exchange plate has a first concave portion formed by concave and convex processing, a first contact surface that contacts the electrode plate, and a first concave portion formed by concave and convex processing. And a second contact surface that contacts the electrode shower plate, and the positions of the first recess and the second recess correspond to the positions of the plurality of holes of the shower plate. preferable.
In the film forming apparatus having such a configuration, a space for flowing the process gas can be reliably formed (secured) around the hole of the shower plate. For this reason, it can prevent that the hole of a shower plate will be obstruct | occluded, for example resulting from the fall of the processing precision at the time of processing the heat exchange plate. Therefore, it is not necessary to increase the processing accuracy when processing the heat exchange plate more than necessary, and the processing cost can be suppressed (reduced).
 本発明の一態様の成膜装置においては、前記温度調整流体用流路は、前記電極プレートの外周部から前記電極プレートの中心部に向かう方向において前記電極プレートの温度が徐々に低くなるように配置されていることが好ましい。
 即ち、前記電極プレートの外周部から前記電極プレートの中心部に向かう方向において前記電極プレートの温度が徐々に低くなるように温度調整流体用流路の形状又は循環経路のパターンが設計されている。
 基板に温度ムラ(温度のバラツキ)が生じると、基板に歪みが生じる虞がある。特に、基板の外周部の温度よりも基板の中心部の温度が高い場合、基板の中心部において熱移動が起こり難くなり、熱歪みによって基板が損傷する虞がある。
 一方、基板全体において均一な温度が得られるように温度を管理する場合、熱歪みが生じる虞はないが、大型基板に膜を形成する成膜工程においては基板全体において均一な温度が得られるように温度を管理することが困難である。このため、本発明の一態様の成膜装置においては、前記電極プレートの外周部から前記電極プレートの中心部に向かう方向において前記電極プレートの温度を徐々に下げることによって、基板の中心部の温度を外周部よりも下げることができる。この結果、熱歪みに起因する基板の損傷を防止することが可能になる。
In the film forming apparatus of one embodiment of the present invention, the temperature adjusting fluid flow path is configured so that the temperature of the electrode plate gradually decreases in a direction from the outer peripheral portion of the electrode plate toward the central portion of the electrode plate. It is preferable that they are arranged.
That is, the shape of the temperature adjusting fluid flow path or the pattern of the circulation path is designed so that the temperature of the electrode plate gradually decreases in the direction from the outer periphery of the electrode plate toward the center of the electrode plate.
If temperature unevenness (temperature variation) occurs in the substrate, the substrate may be distorted. In particular, when the temperature of the central portion of the substrate is higher than the temperature of the outer peripheral portion of the substrate, heat transfer hardly occurs in the central portion of the substrate, and the substrate may be damaged due to thermal strain.
On the other hand, when temperature is controlled so that a uniform temperature can be obtained over the entire substrate, there is no risk of thermal distortion, but a uniform temperature can be obtained over the entire substrate in the film formation process of forming a film on a large substrate It is difficult to manage the temperature. Therefore, in the film formation apparatus of one embodiment of the present invention, the temperature of the center portion of the substrate is decreased by gradually decreasing the temperature of the electrode plate in the direction from the outer peripheral portion of the electrode plate toward the center portion of the electrode plate. Can be lowered from the outer peripheral portion. As a result, it is possible to prevent damage to the substrate due to thermal distortion.
 本発明の一態様の成膜装置においては、前記熱交換用プレートは、一対の第1プレート片及び第2プレート片を有し、前記第1プレート片及び前記第2プレート片は前記カソードユニットが前記アノードに対向する方向に沿って重ね合わされていることが好ましい。
 このような構成を有する成膜装置においては、熱交換用プレートの内部にガス流路を容易に形成することができる。具体的に、第2プレート片に接触する第1プレート片の第1面に第1溝が形成され、第1プレート片に接触する第2プレート片の第2面に第2溝が形成されている。第1プレート片及び第2プレート片の間の合わせ面において、第1面及び第2面は互いに接触している。第1プレート片に形成された第1溝の位置と第2プレート片に形成された第2溝の位置とを合わせることによってガス流路を熱交換用プレート内に形成することが可能になる。このため、1つのプレートにガス流路を形成する場合と比較して、ガス流路を形成する加工工程を簡易化することができ、加工コストを低減することができる。
In the film forming apparatus of one embodiment of the present invention, the heat exchange plate includes a pair of first plate pieces and second plate pieces, and the first plate pieces and the second plate pieces are formed by the cathode unit. It is preferable that the layers are overlapped along the direction facing the anode.
In the film forming apparatus having such a configuration, the gas flow path can be easily formed inside the heat exchange plate. Specifically, a first groove is formed on the first surface of the first plate piece that contacts the second plate piece, and a second groove is formed on the second surface of the second plate piece that contacts the first plate piece. Yes. In the mating surface between the first plate piece and the second plate piece, the first surface and the second surface are in contact with each other. By aligning the position of the first groove formed in the first plate piece with the position of the second groove formed in the second plate piece, the gas flow path can be formed in the heat exchange plate. For this reason, compared with the case where the gas flow path is formed on one plate, the processing step for forming the gas flow path can be simplified, and the processing cost can be reduced.
 本発明の一態様の成膜装置においては、前記ガス流路においては、前記熱交換用プレートに導入された前記プロセスガスは前記電極プレートに近い位置に向けて流れ、前記電極プレートに近い位置に向けて流れた前記プロセスガスは、前記電極プレートから前記シャワープレートに向けて流れることが好ましい。
 即ち、ガス流路の流通経路においては、熱交換用プレートに導入された前記プロセスガスは、一度、前記電極プレート側の空間に吐出される。その後、電極プレート側の空間から前記シャワープレート側へ前記プロセスガスが導かれる。
 このような構成を有する成膜装置においては、熱交換用プレートに導入されたプロセスガスを電極プレートとシャワープレートとの間に形成された空間部全体に分散させ、その後、シャワープレートに設けられた複数の孔に向かってプロセスガスを導くことができる。このため、シャワープレート全体から均一にプロセスガスを噴出させることができ、基板全体に均一に膜を形成することが可能になる。
In the film forming apparatus of one embodiment of the present invention, in the gas flow path, the process gas introduced into the heat exchange plate flows toward a position close to the electrode plate and is close to the electrode plate. It is preferable that the process gas that has flowed in the direction flows from the electrode plate toward the shower plate.
That is, in the flow path of the gas flow path, the process gas introduced into the heat exchange plate is once discharged into the space on the electrode plate side. Thereafter, the process gas is introduced from the space on the electrode plate side to the shower plate side.
In the film forming apparatus having such a configuration, the process gas introduced into the heat exchange plate is dispersed over the entire space formed between the electrode plate and the shower plate, and then provided on the shower plate. Process gas can be directed toward the plurality of holes. For this reason, the process gas can be ejected uniformly from the entire shower plate, and a film can be uniformly formed on the entire substrate.
 本発明によれば、電極プレートに設けられた温度調整流体用流路に温度調整流体を循環させ、電極プレートの温度を一定に保つことができる。電極プレートの熱は、熱交換用プレートを介してシャワープレートに伝達される。これによって、シャワープレートの温度を一定に保つことができる。シャワープレートの温度を一定に保つことにより、基板の温度が上昇することを抑制できる。このため、バッチ処理の回数が増えても、即ち、成膜室において成膜工程が行なわれる回数が増加しても、基板に形成される膜の品質を安定させることができる。 According to the present invention, it is possible to keep the temperature of the electrode plate constant by circulating the temperature adjusting fluid through the temperature adjusting fluid channel provided in the electrode plate. The heat of the electrode plate is transferred to the shower plate via the heat exchange plate. Thereby, the temperature of the shower plate can be kept constant. By keeping the temperature of the shower plate constant, an increase in the temperature of the substrate can be suppressed. For this reason, even if the number of batch processes increases, that is, the number of times the film forming process is performed in the film forming chamber, the quality of the film formed on the substrate can be stabilized.
本発明の実施形態における成膜装置の構成を概略的に示す図である。It is a figure which shows schematically the structure of the film-forming apparatus in embodiment of this invention. 本発明の実施形態における成膜室の構成を概略的に示す斜視図である。It is a perspective view which shows roughly the structure of the film-forming chamber in embodiment of this invention. 本発明の実施形態における成膜室の構成を概略的に示す斜視図であって、図2とは異なる斜視図である。FIG. 3 is a perspective view schematically showing a configuration of a film forming chamber in an embodiment of the present invention, which is a perspective view different from FIG. 2. 本発明の実施形態における成膜室を示す側面図である。It is a side view which shows the film-forming chamber in embodiment of this invention. 本発明の実施形態における電極ユニットの構成を概略的に示す斜視図である。It is a perspective view which shows roughly the structure of the electrode unit in embodiment of this invention. 本発明の実施形態における電極ユニットの構成を概略的に示す斜視図であって、図5とは異なる斜視図である。FIG. 6 is a perspective view schematically showing a configuration of an electrode unit in the embodiment of the present invention, which is a perspective view different from FIG. 5. 本発明の実施形態におけるカソードユニット及びアノードを示す部分断面図である。It is a fragmentary sectional view showing a cathode unit and an anode in an embodiment of the present invention. 本発明の実施形態におけるカソード中間部材を示す斜視図である。It is a perspective view which shows the cathode intermediate member in embodiment of this invention. 図7の符号Aで示された部位を示す拡大断面図である。It is an expanded sectional view which shows the site | part shown by the code | symbol A of FIG. 本発明の実施形態における熱交換用プレートを示す平面図である。It is a top view which shows the plate for heat exchange in embodiment of this invention. 本発明の実施形態におけるキャリアを示す斜視図である。It is a perspective view which shows the carrier in embodiment of this invention. 本発明の実施形態におけるカソード中間部材の測定箇所における温度変化を示す図である。It is a figure which shows the temperature change in the measurement location of the cathode intermediate member in embodiment of this invention.
 以下、本発明に係る成膜装置の実施形態について、図面に基づき説明する。
 また、以下の説明に用いる各図においては、各構成要素を図面上で認識し得る程度の大きさとするため、各構成要素の寸法及び比率を実際のものとは適宜に異ならせてある。
Hereinafter, embodiments of a film forming apparatus according to the present invention will be described with reference to the drawings.
In the drawings used for the following description, the dimensions and ratios of the respective components are appropriately changed from the actual ones in order to make the respective components large enough to be recognized on the drawings.
(成膜装置)
 図1は、成膜装置の構成を概略的に示す図である。
 図1に示すように、成膜装置10は、成膜室11と、仕込・取出室13と、基板脱着室15と、基板脱着ロボット17と、基板収容カセット19とを備えている。
 成膜室11においては、複数の基板Wに対して同時に、例えば、マイクロクリスタルシリコン膜を形成することができる。
 仕込・取出室13は、成膜室11に搬入される基板W(以下、処理前基板という)と、成膜室11から搬出された基板W(以下、処理後基板という)とを同時に収容可能である。
 以下の説明において、「処理前基板」とは、成膜処理が施される前の基板(成膜処理前基板)を意味し、「処理後基板」とは、成膜処理が施された後の基板(成膜処理後基板)を意味する。
 基板脱着室15おいては、処理前基板Wがキャリア21(図11参照)に取り付けられたり、処理後基板Wがキャリア21から取り外されたりする。
 基板脱着ロボット17は、基板Wをキャリア21に取り付けたり、キャリア21から取り外したりする。
 基板収容カセット19は、成膜装置10とは異なる別の処理室に基板Wを搬送する際に用いられ、複数の基板Wを収容する。
(Deposition system)
FIG. 1 is a diagram schematically showing a configuration of a film forming apparatus.
As shown in FIG. 1, the film formation apparatus 10 includes a film formation chamber 11, a preparation / removal chamber 13, a substrate removal chamber 15, a substrate removal robot 17, and a substrate storage cassette 19.
In the film forming chamber 11, for example, a microcrystal silicon film can be formed on a plurality of substrates W simultaneously.
The preparation / removal chamber 13 can simultaneously accommodate a substrate W (hereinafter referred to as a pre-treatment substrate) carried into the film formation chamber 11 and a substrate W (hereinafter referred to as a post-treatment substrate) carried out from the film formation chamber 11. It is.
In the following description, “pre-treatment substrate” means a substrate before film formation processing (substrate before film formation treatment), and “post-treatment substrate” means after film formation processing has been performed. This means a substrate (substrate after film formation).
In the substrate removal chamber 15, the unprocessed substrate W is attached to the carrier 21 (see FIG. 11) or the processed substrate W is removed from the carrier 21.
The substrate removal robot 17 attaches or removes the substrate W to / from the carrier 21.
The substrate storage cassette 19 is used when transporting the substrate W to a different processing chamber different from the film forming apparatus 10 and stores a plurality of substrates W.
 本実施形態においては、成膜室11,仕込・取出室13,及び基板脱着室15で構成される基板成膜ライン16が4つ設けられている。
 また、基板脱着ロボット17は床面に配置(敷設)されたレール18上を移動可能であり、全ての基板成膜ライン16への基板Wの受け渡し工程を1台の基板脱着ロボット17によって行う。
 更に、基板成膜モジュール14は、成膜室11及び仕込・取出室13が一体化して構成されており、運搬用のトラックに積載可能な大きさを有する。
In the present embodiment, four substrate film forming lines 16 each including a film forming chamber 11, a loading / unloading chamber 13, and a substrate desorbing chamber 15 are provided.
Further, the substrate removal robot 17 can move on the rail 18 arranged (laid) on the floor surface, and the substrate removal robot 17 performs the process of transferring the substrate W to all the substrate deposition lines 16.
Further, the substrate film forming module 14 is configured by integrating the film forming chamber 11 and the loading / unloading chamber 13 and has a size that can be loaded on a transport truck.
(成膜室)
 図2及び図3は、成膜室11の構成を概略的に示し、図2はある位置から見た斜視図であり、図3は、図2を見た位置とは異なる位置から見た斜視図である。図4は、成膜室11の側面図である。
 図2に示すように、成膜室11は箱型に形成されている。
 仕込・取出室13と接続される成膜室11の第1側面23(図2における紙面手前に示された成膜室11の側面)には、基板Wが搭載されたキャリア21が通過するキャリア搬出入口24が3箇所形成されている。
(Deposition room)
2 and 3 schematically show the configuration of the film forming chamber 11, FIG. 2 is a perspective view seen from a certain position, and FIG. 3 is a perspective view seen from a position different from the position seen in FIG. FIG. FIG. 4 is a side view of the film forming chamber 11.
As shown in FIG. 2, the film forming chamber 11 is formed in a box shape.
A carrier through which the carrier 21 on which the substrate W is mounted passes through the first side surface 23 of the film formation chamber 11 connected to the preparation / removal chamber 13 (the side surface of the film formation chamber 11 shown in front of the paper surface in FIG. 2). Three carry-in / out entrances 24 are formed.
 キャリア搬出入口24には、このキャリア搬出入口24を開閉するシャッタ25が設けられている。シャッタ25を閉止した時には、キャリア搬出入口24は成膜室11の気密性を確保するように閉止される。また、成膜室11の側面下部には成膜室11内が真空雰囲気となるように減圧するために用いられる排気管29が接続されており、排気管29には真空ポンプ30が設けられている(図4参照)。 The carrier carry-in / out port 24 is provided with a shutter 25 that opens and closes the carrier carry-in / out port 24. When the shutter 25 is closed, the carrier carry-in / out port 24 is closed so as to ensure the airtightness of the film forming chamber 11. Further, an exhaust pipe 29 used for decompressing the film forming chamber 11 so as to be in a vacuum atmosphere is connected to the lower side of the side surface of the film forming chamber 11. A vacuum pump 30 is provided in the exhaust pipe 29. (See FIG. 4).
 図3に示すように、第1側面23とは反対に位置する第2側面27(図3における紙面手前に示された成膜室11の側面)には、基板Wに膜を形成するために用いられる電極ユニット31が3基取り付けられている。これら電極ユニット31は、成膜室11から着脱可能である。電極ユニット31の各々には、温水配管28の第1端(一端)が接続されている。温水配管28の各々の第2端(他端)には、温水循環器32が接続されている。温水循環器32は、温水配管28を通じて電極ユニット31の各々に温水を供給する。
 なお、本実施形態の温水(冷却用水)は、本発明の「温度調整流体」に相当する。温度調整流体は、室温(27℃)よりも高い温度を有する流体である。カソード中間部材76の温度が室温の場合には、温度調整流体は、カソード中間部材76を加熱する。また、成膜工程を行うことによってカソード中間部材76の温度が温度調整流体の温度よりも上昇した場合、温度調整流体はカソード中間部材76を冷却する。また、連続成膜に起因してカソード中間部材76の温度が徐々に上昇しないように、カソード中間部材76は温度調整流体によって冷却される。
 なお、図3においては、電極ユニット31に接続されている3つの温水配管28がまとめて1つの温水循環器32に接続された構造が示されているが、温水循環器32は、電極ユニット31毎に設けられてもよい。
As shown in FIG. 3, in order to form a film on the substrate W on the second side surface 27 (the side surface of the film forming chamber 11 shown in front of the paper surface in FIG. 3) located opposite to the first side surface 23. Three electrode units 31 to be used are attached. These electrode units 31 are detachable from the film forming chamber 11. A first end (one end) of the hot water pipe 28 is connected to each of the electrode units 31. A hot water circulator 32 is connected to the second end (other end) of each hot water pipe 28. The hot water circulator 32 supplies hot water to each of the electrode units 31 through the hot water pipe 28.
The hot water (cooling water) of the present embodiment corresponds to the “temperature adjusting fluid” of the present invention. The temperature adjusting fluid is a fluid having a temperature higher than room temperature (27 ° C.). When the temperature of the cathode intermediate member 76 is room temperature, the temperature adjusting fluid heats the cathode intermediate member 76. Further, when the temperature of the cathode intermediate member 76 rises above the temperature of the temperature adjusting fluid by performing the film forming process, the temperature adjusting fluid cools the cathode intermediate member 76. Further, the cathode intermediate member 76 is cooled by the temperature adjusting fluid so that the temperature of the cathode intermediate member 76 does not gradually increase due to continuous film formation.
3 shows a structure in which three hot water pipes 28 connected to the electrode unit 31 are collectively connected to one hot water circulator 32. However, the hot water circulator 32 includes the electrode unit 31. It may be provided for each.
(電極ユニット)
 図5及び図6は、電極ユニット31の構成を概略的に示し、図5はある位置から見た斜視図であり、図6は、図5を見た位置とは異なる位置から見た斜視図である。図7は、カソードユニット68及びアノード67(対向電極)の部分断面図である。
 図5~図7に示すように、電極ユニット31は、成膜室11の第2側面27に形成された3箇所の開口部26に着脱可能である(図3参照)。電極ユニット31の下部には車輪61が設けられており、電極ユニット31は、床面上を移動可能である。
(Electrode unit)
5 and 6 schematically show the configuration of the electrode unit 31, FIG. 5 is a perspective view seen from a certain position, and FIG. 6 is a perspective view seen from a position different from the position seen in FIG. It is. FIG. 7 is a partial cross-sectional view of the cathode unit 68 and the anode 67 (counter electrode).
As shown in FIGS. 5 to 7, the electrode unit 31 can be attached to and detached from three openings 26 formed in the second side surface 27 of the film forming chamber 11 (see FIG. 3). Wheels 61 are provided below the electrode unit 31, and the electrode unit 31 is movable on the floor surface.
 また、車輪61が取り付けられた底板部62においては、底板部62から鉛直方向に沿って立ち上がる側板部63が設けられている。この側板部63は、成膜室11の第2側面27の開口部26を閉塞するように、開口部26よりも大きなサイズで形成されている。つまり、側板部63は、成膜室11の壁面の一部を構成している。
 側板部63の第1板面65(側板部63の一方の面、成膜室11の内部を向く面)には、基板W上に膜を形成する際に用いられ、基板Wの両面の各々に対向するように配置されるアノード67とカソードユニット68とが設けられている。
The bottom plate portion 62 to which the wheels 61 are attached is provided with a side plate portion 63 that rises from the bottom plate portion 62 along the vertical direction. The side plate portion 63 is formed in a size larger than the opening portion 26 so as to close the opening portion 26 of the second side surface 27 of the film forming chamber 11. That is, the side plate portion 63 constitutes a part of the wall surface of the film forming chamber 11.
The first plate surface 65 of the side plate portion 63 (one surface of the side plate portion 63, the surface facing the inside of the film forming chamber 11) is used when a film is formed on the substrate W. An anode 67 and a cathode unit 68 are provided so as to face each other.
 即ち、電極ユニット31においては、カソードユニット68を挟むように、カソードユニット68の両側から離間してアノード67が配置されており、カソードユニット68の各々とアノード67との間に成膜空間81が形成されている。
 各成膜空間81,81の各々に基板Wを配置することにより、一つの電極ユニット31において2枚の基板W上に膜を同時に形成することができる。
That is, in the electrode unit 31, the anode 67 is arranged so as to be spaced from both sides of the cathode unit 68 so as to sandwich the cathode unit 68, and a film formation space 81 is formed between each cathode unit 68 and the anode 67. Is formed.
By disposing the substrate W in each of the film formation spaces 81, 81, a film can be simultaneously formed on the two substrates W in one electrode unit 31.
 また、側板部63の第2板面69(側板部63の他方の面)には、駆動機構71,マッチングボックス72,及びコネクタ部64が取り付けられている。駆動機構71は、アノード67を駆動させるために用いられる。マッチングボックス72は、基板W上に膜を形成する際にカソードユニット68に給電するために用いられる。コネクタ部64には、温水配管28(図3参照)が接続される。更に、側板部63には、カソードユニット68に成膜ガス(プロセスガス)を供給する配管として用いられる接続部(不図示)が形成されている。 Further, a drive mechanism 71, a matching box 72, and a connector part 64 are attached to the second plate surface 69 of the side plate portion 63 (the other surface of the side plate portion 63). The drive mechanism 71 is used to drive the anode 67. The matching box 72 is used to supply power to the cathode unit 68 when a film is formed on the substrate W. A hot water pipe 28 (see FIG. 3) is connected to the connector portion 64. Further, the side plate portion 63 is formed with a connection portion (not shown) used as a pipe for supplying a film forming gas (process gas) to the cathode unit 68.
(アノード)
 図7に示すように、アノード67には、基板Wの温度を調整する温度制御装置として、ヒータHが内蔵されている。また、2枚のアノード67,67は側板部63に設けられた駆動機構71によって、アノード67がカソードユニット68に近づく方向と、アノード67がカソードユニット68から離れる方向とにおいて、即ち、水平方向において移動可能である。駆動機構71は、基板Wとカソードユニット68との距離を制御する。
(anode)
As shown in FIG. 7, a heater H is incorporated in the anode 67 as a temperature control device that adjusts the temperature of the substrate W. The two anodes 67 and 67 are driven by a drive mechanism 71 provided on the side plate portion 63 in a direction in which the anode 67 approaches the cathode unit 68 and a direction in which the anode 67 moves away from the cathode unit 68, that is, in the horizontal direction. It is movable. The drive mechanism 71 controls the distance between the substrate W and the cathode unit 68.
 具体的に、基板W上に膜を形成する際には、2枚のアノード67,67がカソードユニット68に向かって移動(図7における矢印参照)して基板Wと当接する。更に、2枚のアノード67,67は、カソードユニット68に近づくように移動し、基板Wとカソードユニット68との距離が所望の距離に調節される。その後、基板W上に膜を形成する成膜処理を行い、成膜処理が終了した後に、アノード67,67は、カソードユニット68から離れるように移動する。このように駆動機構71がアノード67,67の位置を制御することにより、基板Wを電極ユニット31から容易に取り出すことができる。 Specifically, when a film is formed on the substrate W, the two anodes 67 and 67 move toward the cathode unit 68 (see the arrow in FIG. 7) and come into contact with the substrate W. Further, the two anodes 67 and 67 move so as to approach the cathode unit 68, and the distance between the substrate W and the cathode unit 68 is adjusted to a desired distance. Thereafter, a film forming process for forming a film on the substrate W is performed. After the film forming process is completed, the anodes 67 and 67 move away from the cathode unit 68. Thus, the drive mechanism 71 controls the positions of the anodes 67 and 67, whereby the substrate W can be easily taken out from the electrode unit 31.
 更に、アノード67は、駆動機構71にヒンジ(不図示)等を介して取りつけられており、電極ユニット31を成膜室11から引き抜いた状態で、アノード67のカソードユニット68に対向する面67Aが側板部63の第1板面65と略平行になるまで回動できる(開く)。
 つまり、アノード67は、底板部62の鉛直方向から見て略90°回動できるように構成されている(図5参照)。
Further, the anode 67 is attached to the drive mechanism 71 via a hinge (not shown) or the like, and a surface 67A facing the cathode unit 68 of the anode 67 is formed in a state where the electrode unit 31 is pulled out from the film forming chamber 11. It can be rotated (opened) until it is substantially parallel to the first plate surface 65 of the side plate portion 63.
That is, the anode 67 is configured to be able to turn approximately 90 ° when viewed from the vertical direction of the bottom plate portion 62 (see FIG. 5).
(カソードユニット)
 図8は、カソード中間部材76を示す斜視図である。図9は、図7の符号Aで示された部位を示す拡大断面図である。
 図7~図9に示すように、カソードユニット68は、シャワープレート75(カソード),カソード中間部材76(電極プレート),熱交換用プレート91,排気ダクト79,及び浮遊容量体82を有している。
 カソード中間部材76は、シャワープレート75の外周部に接触している。熱交換用プレート91は、シャワープレート75とカソード中間部材76との間に形成された空間部77に設けられている。排気ダクト79は、カソード中間部材76の外周部に設けられている。
(Cathode unit)
FIG. 8 is a perspective view showing the cathode intermediate member 76. FIG. 9 is an enlarged cross-sectional view showing a portion indicated by reference symbol A in FIG.
As shown in FIGS. 7 to 9, the cathode unit 68 includes a shower plate 75 (cathode), a cathode intermediate member 76 (electrode plate), a heat exchange plate 91, an exhaust duct 79, and a floating capacitor 82. Yes.
The cathode intermediate member 76 is in contact with the outer peripheral portion of the shower plate 75. The heat exchange plate 91 is provided in a space 77 formed between the shower plate 75 and the cathode intermediate member 76. The exhaust duct 79 is provided on the outer periphery of the cathode intermediate member 76.
 シャワープレート75,75はステンレス等で形成されており、カソード中間部材76を挟むように、カソード中間部材76の両面(両側)に対向する位置に配置され、アノード67,67と対向している。シャワープレート75,75の各々には、複数の小孔74が形成されており、この小孔74を通じて基板Wに向かって成膜ガスが噴出される。シャワープレート75,75は、カソード中間部材76を介してマッチングボックス72に接続されており、カソード(高周波電極)として機能する。 The shower plates 75 and 75 are formed of stainless steel or the like, and are disposed at positions facing both surfaces (both sides) of the cathode intermediate member 76 so as to sandwich the cathode intermediate member 76, and are opposed to the anodes 67 and 67. A plurality of small holes 74 are formed in each of the shower plates 75 and 75, and a film forming gas is jetted toward the substrate W through the small holes 74. The shower plates 75 and 75 are connected to the matching box 72 via the cathode intermediate member 76 and function as cathodes (high frequency electrodes).
 カソード中間部材76は、一対の第1中間部材片76a及び第2中間部材片76bを有する。第1中間部材片76a及び第2中間部材片76bは、アルミ等からなり、平板状に形成されている。第1中間部材片76a及び第2中間部材片76bは、カソード中間部材76の面に垂直な方向において互いに対向するように、重ね合わされている。第1中間部材片76a及び第2中間部材片76bは、ボルト93によって一体に締結(固定)されている。即ち、一対の中間部材片76a,76bのうち、第1中間部材片76aには雌ネジ部94が形成され、2中間部材片76bにはボルト孔95(貫通孔)が形成されている。ボルト孔95には、ザグリ部95aが形成されており、ボルト93の頭部は、カソード中間部材76の表面から突出せず、ザグリ部95a内に位置する。 The cathode intermediate member 76 has a pair of first intermediate member piece 76a and second intermediate member piece 76b. The first intermediate member piece 76a and the second intermediate member piece 76b are made of aluminum or the like and are formed in a flat plate shape. The first intermediate member piece 76 a and the second intermediate member piece 76 b are overlapped so as to face each other in a direction perpendicular to the surface of the cathode intermediate member 76. The first intermediate member piece 76 a and the second intermediate member piece 76 b are integrally fastened (fixed) by bolts 93. That is, of the pair of intermediate member pieces 76a and 76b, the first intermediate member piece 76a has a female screw portion 94, and the second intermediate member piece 76b has a bolt hole 95 (through hole). A counterbore part 95a is formed in the bolt hole 95, and the head of the bolt 93 does not protrude from the surface of the cathode intermediate member 76, and is positioned in the counterbore part 95a.
 カソード中間部材76の外周部には、シャワープレート75,75に接触可能なフランジ部73がカソード中間部材76と一体に形成されている。また、カソード中間部材76は、不図示の高周波電源にマッチングボックス72を介して電気的に接続されている。これにより、シャワープレート75とアノード67との間にプラズマを発生させるために同電位・同位相の電圧がカソード中間部材76を介して各シャワープレート75,75に印加される。 A flange portion 73 that can come into contact with the shower plates 75 and 75 is formed integrally with the cathode intermediate member 76 on the outer peripheral portion of the cathode intermediate member 76. The cathode intermediate member 76 is electrically connected to a high-frequency power source (not shown) via a matching box 72. Thereby, in order to generate plasma between the shower plate 75 and the anode 67, a voltage having the same potential and the same phase is applied to the shower plates 75 and 75 via the cathode intermediate member 76.
 マッチングボックス72は、カソード中間部材76と高周波電源との間のマッチング(インピーダンスマッチング)を行う機能を有し、電極ユニット31の側板部63の第2板面69に1つ設けられている。カソード中間部材76には、マッチングボックス72を介して高周波電源から供給された電圧が印加される給電ポイントが配設されている。給電ポイントの各々は、カソード中間部材76の高さ方向(床面に対して鉛直な方向)における上部側面と下部側面に位置しており、即ち、カソード中間部材76には合計2つの給電ポイントが配設されている。これら給電ポイントとマッチングボックス72との間には、給電ポイントとマッチングボックス72とを電気的に接続する配線が敷設されている。 The matching box 72 has a function of performing matching (impedance matching) between the cathode intermediate member 76 and the high frequency power source, and one matching box 72 is provided on the second plate surface 69 of the side plate portion 63 of the electrode unit 31. The cathode intermediate member 76 is provided with a power feeding point to which a voltage supplied from a high frequency power source via the matching box 72 is applied. Each of the feeding points is located on the upper side surface and the lower side surface in the height direction of the cathode intermediate member 76 (direction perpendicular to the floor surface). That is, the cathode intermediate member 76 has a total of two feeding points. It is arranged. Between these power supply points and the matching box 72, wiring for electrically connecting the power supply points and the matching box 72 is laid.
 配線は、マッチングボックス72から延出し、カソード中間部材76の外周に沿って各給電ポイントに至るように敷設されている。なお、カソード中間部材76の外周と給電ポイント及び配線の周囲とは、例えば、アルミナ又は石英等で構成される絶縁部材89によって取り囲まれている。 The wiring extends from the matching box 72 and is laid so as to reach each power feeding point along the outer periphery of the cathode intermediate member 76. Note that the outer periphery of the cathode intermediate member 76 and the periphery of the power supply point and the wiring are surrounded by an insulating member 89 made of alumina or quartz, for example.
 ここで、カソード中間部材76には、温水循環器32(図3参照)から供給される温水が流通される水配管92(温度調整流体用流路、冷却流路)が埋設されている。水配管92は、上部水路92a,中間水路92b,及び下部水路92cによって構成されている。上部水路92aは、カソード中間部材76の高さ方向における上部(図8における上側)に敷設されている。中間水路92bは、カソード中間部材76の高さ方向における中央に敷設されている。下部水路92は、カソード中間部材76の高さ方向における下部(図8における下側)に敷設されている。
 上部水路92aは、カソード中間部材76の高さ方向における中央の位置において電極ユニット31の側板部63からカソード中間部材76の中央に向けて延びている(符号200)。更に、上部水路92aは、カソード中間部材76の側板部63に近い位置(根元部76cの近傍)において高さ方向の上部に向けて曲がり(符号201)、高さ方向の上部に向けて延びている(符号202)。更に、上部水路92aは、カソード中間部材76の側板部63に近い位置(根元部76cの近傍)であって高さ方向の上部において曲がり(符号203)、カソード中間部材76の水平方向(床面に対して水平な方向)であってカソード中間部材76の先端部76dに向けて延びている(符号204)。更に、上部水路92aは、カソード中間部材76の先端部76dに近い位置において高さ方向の下部に向けて曲がり(符号205)、高さ方向の下部に向けて僅かに延びている(符号206)。更に、上部水路92aは、高さ方向における中央の位置において曲がり(符号207)、電極ユニット31の先端部76dから側板部63に向けて僅かに延びている(符号208)。更に、上部水路92aは、符号209,210に示された位置において曲がり、符号211に示すように水平方向に延びており、符号212に示す位置で曲がっている。このように、上部水路92aは、側板部63に向かって折り返すように形成されている。また、上部水路92aは、符号212に示す位置を含むようにU字状に曲がり、中間水路92bに接続されている。
Here, in the cathode intermediate member 76, a water pipe 92 (temperature adjusting fluid flow path, cooling flow path) through which hot water supplied from the hot water circulator 32 (see FIG. 3) is embedded is embedded. The water pipe 92 includes an upper water channel 92a, an intermediate water channel 92b, and a lower water channel 92c. The upper water channel 92a is laid on the upper portion (upper side in FIG. 8) of the cathode intermediate member 76 in the height direction. The intermediate water channel 92 b is laid at the center of the cathode intermediate member 76 in the height direction. The lower water channel 92 is laid on the lower portion (lower side in FIG. 8) of the cathode intermediate member 76 in the height direction.
The upper water channel 92a extends from the side plate portion 63 of the electrode unit 31 toward the center of the cathode intermediate member 76 at a center position in the height direction of the cathode intermediate member 76 (reference numeral 200). Further, the upper water channel 92a is bent toward the upper portion in the height direction (reference numeral 201) at a position close to the side plate portion 63 of the cathode intermediate member 76 (in the vicinity of the root portion 76c), and extends toward the upper portion in the height direction. (Reference numeral 202). Further, the upper water channel 92a is a position near the side plate portion 63 of the cathode intermediate member 76 (near the root portion 76c) and bends in the upper portion in the height direction (reference numeral 203), and the horizontal direction (floor surface) of the cathode intermediate member 76 In the direction horizontal to the front end 76d of the cathode intermediate member 76 (reference numeral 204). Further, the upper water channel 92a bends toward the lower portion in the height direction (reference numeral 205) and slightly extends toward the lower portion in the height direction (reference numeral 206) at a position close to the tip portion 76d of the cathode intermediate member 76. . Further, the upper water channel 92a is bent at a central position in the height direction (reference numeral 207) and slightly extends from the tip 76d of the electrode unit 31 toward the side plate portion 63 (reference numeral 208). Further, the upper water channel 92 a is bent at the positions indicated by reference numerals 209 and 210, extends in the horizontal direction as indicated by reference numeral 211, and is bent at the position indicated by reference numeral 212. Thus, the upper water channel 92 a is formed so as to be folded back toward the side plate portion 63. Further, the upper water channel 92a is bent in a U shape so as to include the position indicated by reference numeral 212, and is connected to the intermediate water channel 92b.
 中間水路92bは、カソード中間部材76の高さ方向の中央の位置において、カソード中間部材76の側板部63に近い位置(根元部76cの近傍)から先端部76dに近い位置に向けて延びており(符号213)、U字状に曲がり、先端部76dに近い位置から根元部76cの近傍の位置に向けて延びている(符号214)。即ち、中間水路92bは、水平方向に沿って1往復するように形成されている。
 下部水路92cは、U字状に曲がっている符号215に示す位置において、中間水路92bに接続されている。下部水路92cは、符号215に示す位置から水平方向に先端部76dに向けて延びており、符号216,217に示された位置において曲がり、先端部76dに向けて僅かに水平方向に延びている(符号208)。下部水路92cは、高さ方向の下部に向けて僅かに延びている(符号219)。更に、下部水路92cは、先端部76dに近い位置であって高さ方向における下部において曲がり(符号220)、カソード中間部材76の水平方向であって側板部63に向けて延びている(符号221)。更に、下部水路92cは、カソード中間部材76の側板部63に近い位置(根元部76cの近傍)であって高さ方向の下部において曲がり(符号222)、高さ方向の上部に向けて延びている(符号223)。更に、下部水路92cは、カソード中間部材76の側板部63に近い位置(根元部76cの近傍)において側板部63に向けて曲がり(符号224)、高さ方向における中央の位置において電極ユニット31の側板部63に向けて延びている(符号225)。このように、下部水路92cは、側板部63に向かって折り返すように形成され、高さ方向における中央の位置に戻るように形成されている。
 そして、水配管92は、直線と曲線とが組み合わされた一本の線状の水路によって形成され、上部水路92a,中間水路92b,及び下部水路92cが連通している。また、図7に示すように、水配管92は、中間部材片76a,76bの間に配置されている。中間部材片76a,76bは、溶接によって接合されており、水配管92は、ステンレス等により形成されている。
 また、カソード中間部材76は、外周部76eと中心部76fとを有する。図8に示すように、カソード中間部材76においては、上部水路92a,中間水路92b,及び下部水路92cが中心部76fに密集するように水路が配置される。
 また、本実施形態においては、一本の線状の水路がカソード中間部材76に形成されている構造について説明したが、この構造は本発明の一形態であり、本発明はこの構造を限定しない。例えば、一つの水配管を2つ以上の水配管に分岐させる分岐部がカソード中間部材76に設けられていてもよい。また、水路のパターンは、中心部76fに水路が集中するように適切に決定される。
The intermediate water channel 92b extends from a position close to the side plate portion 63 of the cathode intermediate member 76 (near the root portion 76c) to a position close to the tip end portion 76d at the center position in the height direction of the cathode intermediate member 76. (Reference numeral 213) bends in a U-shape and extends from a position close to the tip 76d toward a position near the root 76c (reference numeral 214). That is, the intermediate water channel 92b is formed to reciprocate once along the horizontal direction.
The lower water channel 92c is connected to the intermediate water channel 92b at a position indicated by reference numeral 215 that is bent in a U-shape. The lower water channel 92c extends in the horizontal direction from the position indicated by reference numeral 215 toward the distal end portion 76d, bends at the positions indicated by reference numerals 216 and 217, and extends slightly in the horizontal direction toward the distal end portion 76d. (Reference numeral 208). The lower water channel 92c slightly extends toward the lower portion in the height direction (reference numeral 219). Further, the lower water channel 92c is bent at a position close to the distal end portion 76d and in the lower portion in the height direction (reference numeral 220), and extends toward the side plate portion 63 in the horizontal direction of the cathode intermediate member 76 (reference numeral 221). ). Further, the lower water channel 92c is a position close to the side plate portion 63 of the cathode intermediate member 76 (near the root portion 76c), bends at the lower portion in the height direction (reference numeral 222), and extends toward the upper portion in the height direction. (Reference numeral 223). Furthermore, the lower water channel 92c bends toward the side plate portion 63 at a position close to the side plate portion 63 of the cathode intermediate member 76 (near the root portion 76c) (reference numeral 224), and at the center position in the height direction of the electrode unit 31. It extends toward the side plate portion 63 (reference numeral 225). Thus, the lower water channel 92c is formed so as to be folded back toward the side plate portion 63, and is formed so as to return to the center position in the height direction.
The water pipe 92 is formed by a single linear water channel in which a straight line and a curve are combined, and the upper water channel 92a, the intermediate water channel 92b, and the lower water channel 92c communicate with each other. Moreover, as shown in FIG. 7, the water piping 92 is arrange | positioned between the intermediate member pieces 76a and 76b. The intermediate member pieces 76a and 76b are joined by welding, and the water pipe 92 is made of stainless steel or the like.
The cathode intermediate member 76 has an outer peripheral portion 76e and a central portion 76f. As shown in FIG. 8, in the cathode intermediate member 76, the water channel is arranged so that the upper water channel 92a, the intermediate water channel 92b, and the lower water channel 92c are concentrated in the central portion 76f.
In the present embodiment, the structure in which one linear water channel is formed in the cathode intermediate member 76 has been described. However, this structure is an embodiment of the present invention, and the present invention does not limit this structure. . For example, the cathode intermediate member 76 may be provided with a branching portion that branches one water pipe into two or more water pipes. Further, the pattern of the water channel is appropriately determined so that the water channel concentrates on the central portion 76f.
 図10は、熱交換用プレート91を示す平面図である。
 図7,図9,及び図10に示すように、熱交換用プレート91は、アルミニウムで形成されており、シャワープレート75とカソード中間部材76との間に形成された空間部77に設けられている。また、熱交換用プレート91は、一対の第1プレート片101及び第2プレート片102によって構成されている。第1プレート片101及び第2プレート片102は、空間部77の形状に対応するように平板状に形成されている。
 第1プレート片101及び第2プレート片102は、カソードユニット68がアノード67に対向する方向に沿って重ね合わされ、空間部77に収納されており、ボルト97によってカソード中間部材76に締結(固定)されている。
FIG. 10 is a plan view showing the heat exchange plate 91.
As shown in FIGS. 7, 9, and 10, the heat exchange plate 91 is made of aluminum and is provided in a space 77 formed between the shower plate 75 and the cathode intermediate member 76. Yes. The heat exchange plate 91 is composed of a pair of first plate pieces 101 and second plate pieces 102. The first plate piece 101 and the second plate piece 102 are formed in a flat plate shape so as to correspond to the shape of the space 77.
The first plate piece 101 and the second plate piece 102 are overlapped along the direction in which the cathode unit 68 faces the anode 67, accommodated in the space 77, and fastened (fixed) to the cathode intermediate member 76 by bolts 97. Has been.
 即ち、一対の第1プレート片101及び第2プレート片102の各々には、ボルト孔98(貫通孔)が形成されており、カソード中間部材76には雌ネジ部99が形成されている。ボルト孔98には、ザグリ部98aが形成されており、ボルト97の頭部は、熱交換用プレート91の表面から突出せず、ザグリ部98a内に位置する。
 そして、一対のプレート片のうちの一方のプレート片である第1プレート片101は表面101a(第1接触面)を有し、他方のプレート片である第2プレート片102は表面102a(第2接触面)を有する。
 表面101aは、カソード中間部材76に接触し、表面102aは、シャワープレート75に接触している。
That is, a bolt hole 98 (through hole) is formed in each of the pair of first plate piece 101 and second plate piece 102, and a female screw part 99 is formed in the cathode intermediate member 76. In the bolt hole 98, a counterbore part 98a is formed, and the head of the bolt 97 does not protrude from the surface of the heat exchange plate 91 but is positioned in the counterbore part 98a.
The first plate piece 101, which is one of the pair of plate pieces, has a surface 101a (first contact surface), and the second plate piece 102, which is the other plate piece, has a surface 102a (second surface). Contact surface).
The surface 101 a is in contact with the cathode intermediate member 76, and the surface 102 a is in contact with the shower plate 75.
 第1プレート片101の表面101aには、エンボス加工が施されており、このエンボス加工によって、表面101aに複数の第1凹部103が形成されている。
 第2プレート片102の表面102aにも、エンボス加工が施されており、このエンボス加工によって、表面102aに複数の第2凹部104が形成されている。
 第1プレート片101の第1凹部103の周囲に形成された隔壁105(立ち上がり壁)の先端は、カソード中間部材76に接触している。
 第2プレート片102の第2凹部104の周囲に形成された隔壁106(立ち上がり壁)の先端は、シャワープレート75に接触している。
 このような構造においては、カソード中間部材76とシャワープレート75との間で熱交換用プレート91を介して熱交換が行われる。
 なお、隔壁106は、独立した柱状に形成されてもよい。隔壁106が独立した柱状に形成されている場合、シャワープレート75と第2プレート片102との間の空間において、隔壁106の周囲を成膜ガスが流動する。この構造においては、複数の第2凹部104の各々のみに成膜ガスが供給されるのではなく、隔壁106によって規定された一つの空間である第2凹部104に成膜ガスが供給され、成膜ガスはシャワープレート75の小孔74を通じて成膜空間81に供給される。
 また、同様に、隔壁105は、独立した柱状に形成されてもよい。隔壁105が独立した柱状に形成されている場合、カソード中間部材76と第1プレート片101との間の空間において、隔壁105の周囲を成膜ガスが流動する。この構造においては、複数の第1凹部103の各々のみに成膜ガスが供給されるのではなく、隔壁105によって規定された一つの空間である第1凹部103(空間77)に成膜ガスが供給され、成膜ガスは第3流路110を通じて、第2凹部104内に供給される。
 また、本実施形態におけるエンボス加工は、本発明の凹凸加工の一つであって、即ち、表面101a,102aに凹凸部(第1凹部103及び第2凹部104)を形成する加工方法の一つである。このような凹凸部を形成する方法であれば、公知の方法が用いられてもよい。
The surface 101a of the first plate piece 101 is embossed, and a plurality of first recesses 103 are formed on the surface 101a by this embossing.
The surface 102a of the second plate piece 102 is also embossed, and a plurality of second recesses 104 are formed on the surface 102a by this embossing.
The tip of the partition wall 105 (rising wall) formed around the first recess 103 of the first plate piece 101 is in contact with the cathode intermediate member 76.
The tip of the partition wall 106 (rising wall) formed around the second recess 104 of the second plate piece 102 is in contact with the shower plate 75.
In such a structure, heat exchange is performed between the cathode intermediate member 76 and the shower plate 75 via the heat exchange plate 91.
Note that the partition 106 may be formed in an independent column shape. When the partition wall 106 is formed in an independent column shape, the film forming gas flows around the partition wall 106 in the space between the shower plate 75 and the second plate piece 102. In this structure, the deposition gas is not supplied only to each of the plurality of second recesses 104, but is supplied to the second recess 104, which is one space defined by the partition wall 106. The film gas is supplied to the film formation space 81 through the small holes 74 of the shower plate 75.
Similarly, the partition wall 105 may be formed in an independent column shape. When the partition wall 105 is formed in an independent columnar shape, the film forming gas flows around the partition wall 105 in the space between the cathode intermediate member 76 and the first plate piece 101. In this structure, the deposition gas is not supplied only to each of the plurality of first recesses 103, but the deposition gas is supplied to the first recess 103 (space 77) that is one space defined by the partition wall 105. The film forming gas is supplied into the second recess 104 through the third flow path 110.
Further, the embossing in the present embodiment is one of the uneven processes of the present invention, that is, one of the processing methods for forming the uneven parts (the first recessed part 103 and the second recessed part 104) on the surfaces 101a and 102a. It is. A known method may be used as long as it is a method for forming such an uneven portion.
 所望の熱容量がカソード中間部材76とシャワープレート75との間で交換できるように、第1プレート片101の隔壁105及び第2プレート片102の隔壁106の厚さは設定されている。隔壁105の厚さと隔壁106の厚さは異なってもよい。
 また、シャワープレート75に接触している第2プレート片102の第2凹部104は、シャワープレート75に形成されている複数の小孔74に対応する位置に形成されている。そして、第2プレート片102の隔壁106によって小孔74が閉塞されないように、第2凹部104の形状又は大きさが決められている。
The thickness of the partition 105 of the first plate piece 101 and the partition 106 of the second plate piece 102 is set so that a desired heat capacity can be exchanged between the cathode intermediate member 76 and the shower plate 75. The thickness of the partition wall 105 and the thickness of the partition wall 106 may be different.
The second recess 104 of the second plate piece 102 that is in contact with the shower plate 75 is formed at a position corresponding to the plurality of small holes 74 formed in the shower plate 75. The shape or size of the second recess 104 is determined so that the small hole 74 is not blocked by the partition wall 106 of the second plate piece 102.
 熱交換用プレート91には、不図示のガス供給装置から供給される成膜ガスをカソードユニット68内に導入するガス流路107が形成されている。
 また、図10に示すように、ガス流路107は、第1流路108,第2流路109,及び第3流路110によって構成されている。第1流路108は、熱交換用プレート91内に導入された成膜ガスを熱交換用プレート91全体に渡って分散させ、例えば、熱交換用プレート91の高さ方向(床面に対して鉛直な方向)及び水平方向(床面に対して水平な方向)に延在している。また、図9に示すように、第1流路108からカソード中間部材76に向かって延在する第2流路109が形成されており、第2流路109は、第1プレート片101の厚さ方向に沿って貫通している。第2流路109は、第1流路108と第1凹部103の空間77とを接続する。また、第3流路110は、第1プレート片101及び第2プレート片102の厚さ方向に沿って貫通するように形成されている。第3流路110は、第1凹部103の空間77と第2凹部104の空間とを接続する。
The heat exchange plate 91 is formed with a gas flow path 107 for introducing a film forming gas supplied from a gas supply device (not shown) into the cathode unit 68.
As shown in FIG. 10, the gas flow path 107 includes a first flow path 108, a second flow path 109, and a third flow path 110. The first flow path 108 disperses the film forming gas introduced into the heat exchange plate 91 over the entire heat exchange plate 91, for example, in the height direction of the heat exchange plate 91 (with respect to the floor surface). It extends in the vertical direction) and in the horizontal direction (the direction horizontal to the floor). Further, as shown in FIG. 9, a second flow path 109 extending from the first flow path 108 toward the cathode intermediate member 76 is formed, and the second flow path 109 has a thickness of the first plate piece 101. It penetrates along the vertical direction. The second flow path 109 connects the first flow path 108 and the space 77 of the first recess 103. Further, the third flow path 110 is formed so as to penetrate along the thickness direction of the first plate piece 101 and the second plate piece 102. The third flow path 110 connects the space 77 of the first recess 103 and the space of the second recess 104.
 第2プレート片102に接触する第1プレート片101の第1面101bに溝108a(第1溝)が形成され、第1プレート片101に接触する第2プレート片102の第2面102bに溝108b(第2溝)が形成されている。また、第1プレート片101及び第2プレート片102の間の合わせ面において、第1面101b及び第2面102bは互いに接触しており、溝108aの位置と108bの位置とを一致させる(重ね合わせる)ことによって、第1流路108が形成されている。なお、第1流路108を形成する溝は、第1プレート片101もしくは第2プレート片102のいずれか一方に形成されてもよい。
 第2流路109は、第1プレート片101の隔壁105を避けるように形成されている。
 第3流路110は、第1プレート片101及び第2プレート片102の重ね合わせ方向で、第1凹部103が第2凹部104にオーバーラップしている位置に形成されている。即ち、第3流路110は、第1プレート片101の第1凹部103と第2プレート片102の第2凹部104とを互いに連通させている。
A groove 108 a (first groove) is formed on the first surface 101 b of the first plate piece 101 that contacts the second plate piece 102, and a groove is formed on the second surface 102 b of the second plate piece 102 that contacts the first plate piece 101. 108b (second groove) is formed. Further, in the mating surface between the first plate piece 101 and the second plate piece 102, the first surface 101b and the second surface 102b are in contact with each other, and the position of the groove 108a and the position of the 108b are matched (overlapping). The first flow path 108 is formed. The groove forming the first flow path 108 may be formed in either the first plate piece 101 or the second plate piece 102.
The second flow path 109 is formed so as to avoid the partition wall 105 of the first plate piece 101.
The third flow path 110 is formed at a position where the first recess 103 overlaps the second recess 104 in the overlapping direction of the first plate piece 101 and the second plate piece 102. That is, the third flow path 110 allows the first concave portion 103 of the first plate piece 101 and the second concave portion 104 of the second plate piece 102 to communicate with each other.
 このような構成を有する熱交換用プレート91においては、熱交換用プレート91に導入された成膜ガスは、第1流路108を流動し、第2流路109を介して第1プレート片101の第1凹部103に吐出される(図9における矢印Y1参照)。即ち、成膜ガスは、カソード中間部材76に近い位置に向けて流れる。
 更に、第1凹部103とカソード中間部材76とによって形成された空間77は、成膜ガスによって充満され、成膜ガスは、第3流路110を介して第2プレート片102の第2凹部104に導かれる(図9における矢印Y2参照)。その後、成膜ガスは、シャワープレート75の小孔74を介して基板Wへと供給される。即ち、カソード中間部材76に近い位置に向けて流れた成膜ガスは、カソード中間部材76からシャワープレート75に向けて流れる。
 ここで、各流路108,109,110には、それぞれステンレス製の配管111が敷設されている。成膜ガスは、配管111内を流動する。このため、各流路108,109,110の途中から成膜ガスが漏れ出すことが防止されている。
In the heat exchanging plate 91 having such a configuration, the film forming gas introduced into the heat exchanging plate 91 flows through the first flow path 108 and passes through the second flow path 109 to the first plate piece 101. The first recess 103 is discharged (see arrow Y1 in FIG. 9). That is, the film forming gas flows toward a position close to the cathode intermediate member 76.
Further, the space 77 formed by the first recess 103 and the cathode intermediate member 76 is filled with the film forming gas, and the film forming gas passes through the third flow path 110 and the second recess 104 of the second plate piece 102. (See arrow Y2 in FIG. 9). Thereafter, the film forming gas is supplied to the substrate W through the small holes 74 of the shower plate 75. That is, the film forming gas that flows toward the position close to the cathode intermediate member 76 flows from the cathode intermediate member 76 toward the shower plate 75.
Here, a stainless steel pipe 111 is laid in each of the flow paths 108, 109 and 110. The film forming gas flows in the pipe 111. For this reason, the film forming gas is prevented from leaking from the middle of each flow path 108, 109, 110.
 図7に示すように、カソード中間部材76の外周部に設けられた排気ダクト79は、成膜空間81の成膜ガス又は反応生成物(パウダー)を排気(除去)するために用いられる。
 具体的には、成膜工程を行う際の基板Wとシャワープレート75との間に形成される成膜空間81に連通するように(面するように)排気口80が形成されている。排気口80はカソードユニット68の周縁部に沿って複数形成されており、カソードユニット68の全周において略均等に成膜ガス又は反応生成物(パウダー)を吸引して除去できるように構成されている。
As shown in FIG. 7, the exhaust duct 79 provided on the outer periphery of the cathode intermediate member 76 is used to exhaust (remove) the film forming gas or the reaction product (powder) in the film forming space 81.
Specifically, the exhaust port 80 is formed so as to communicate with (be face) the film formation space 81 formed between the substrate W and the shower plate 75 when performing the film formation process. A plurality of the exhaust ports 80 are formed along the peripheral edge of the cathode unit 68, and are configured so that the film forming gas or the reaction product (powder) can be sucked and removed almost uniformly on the entire circumference of the cathode unit 68. Yes.
 また、カソードユニット68の下部に位置する排気ダクト79の成膜室11内へ向いた面には開口部(不図示)が形成されている。排気口80を通じて除去された成膜ガス等は、この開口部を介して成膜室11内へ排出される。成膜室11内へ排出されたガスは、成膜室11の側面下部に設けられた排気管29を通じて、成膜室11の外部へ排気される。 Further, an opening (not shown) is formed on the surface of the exhaust duct 79 located below the cathode unit 68 and facing the film forming chamber 11. The film forming gas removed through the exhaust port 80 is discharged into the film forming chamber 11 through this opening. The gas discharged into the film formation chamber 11 is exhausted to the outside of the film formation chamber 11 through an exhaust pipe 29 provided at the lower side of the film formation chamber 11.
 また、排気ダクト79とカソード中間部材76との間、つまり、カソード中間部材76に形成されているフランジ部の外周面には、誘電体及び浮遊容量体82の少なくとも一つが設けられている。また、浮遊容量体82は、積層空間を有する。排気ダクト79は、接地電位に接続されている。排気ダクト79は、シャワープレート75及びカソード中間部材76にて発生する異常放電を防止するために用いられるシールド枠としても機能する。 Further, at least one of a dielectric and a floating capacitor 82 is provided between the exhaust duct 79 and the cathode intermediate member 76, that is, on the outer peripheral surface of the flange portion formed on the cathode intermediate member 76. In addition, the stray capacitance body 82 has a stacked space. The exhaust duct 79 is connected to the ground potential. The exhaust duct 79 also functions as a shield frame used to prevent abnormal discharge that occurs in the shower plate 75 and the cathode intermediate member 76.
 更に、カソードユニット68の周縁部には、排気ダクト79の外周部からカソード中間部材76の外周部に至る部位(領域)を覆うようにマスク78が設けられている。このマスク78は、キャリア21に設けられた後述する挟持部59の挟持片59A(図11参照)を被覆すると共に、成膜工程を行う際に挟持片59Aと一体となって空間部77に存在する成膜ガス又は反応生成物(パウダー)を排気ダクト79に導くガス流路Rを形成している。即ち、キャリア21(挟持片59A)を被覆するマスク78とシャワープレート75との間、及びマスク78と排気ダクト79との間にガス流路Rが形成されている。 Further, a mask 78 is provided on the peripheral edge of the cathode unit 68 so as to cover a portion (region) extending from the outer periphery of the exhaust duct 79 to the outer periphery of the cathode intermediate member 76. The mask 78 covers a clamping piece 59A (see FIG. 11) of the clamping part 59 (described later) provided on the carrier 21, and is present in the space part 77 integrally with the clamping piece 59A when the film forming process is performed. A gas flow path R that guides the film forming gas or the reaction product (powder) to the exhaust duct 79 is formed. That is, the gas flow path R is formed between the mask 78 and the shower plate 75 covering the carrier 21 (the sandwiching piece 59A) and between the mask 78 and the exhaust duct 79.
(仕込・取出室)
 図1に示すように、成膜室11と仕込・取出室13との間、及び、仕込・取出室13と基板脱着室15との間をキャリア21が移動できるように、移動レール37が成膜室11と基板脱着室15との間に敷設されている。
 仕込・取出室13は、箱型に形成されている。
 仕込・取出室13の一側面(図1における下側の面)には、基板Wが搭載されたキャリア21が通過可能なキャリア搬出入口(不図示)が設けられている。このキャリア搬出入口には、仕込・取出室13の気密性を確保できるシャッタ36が設けられている。また、仕込・取出室13には、不図示の真空ポンプが接続されており、真空ポンプは仕込・取出室13の内部を真空状態となるように減圧する。
(Preparation / removal room)
As shown in FIG. 1, a moving rail 37 is formed so that the carrier 21 can move between the film forming chamber 11 and the loading / unloading chamber 13 and between the loading / unloading chamber 13 and the substrate desorption chamber 15. It is laid between the film chamber 11 and the substrate desorption chamber 15.
The preparation / removal chamber 13 is formed in a box shape.
A carrier carry-in / out port (not shown) through which the carrier 21 on which the substrate W is mounted is provided on one side surface (lower surface in FIG. 1) of the preparation / removal chamber 13. A shutter 36 that can ensure the airtightness of the charging / extraction chamber 13 is provided at the carrier carry-in / out entrance. Further, a vacuum pump (not shown) is connected to the preparation / removal chamber 13, and the vacuum pump depressurizes the inside of the preparation / removal chamber 13 so as to be in a vacuum state.
 更に、仕込・取出室13には、移動レール37に沿って成膜室11と仕込・取出室13との間でキャリア21を移動させる不図示のプッシュ-プル機構が設けられている。
 また、仕込・取出室13内において、処理前基板及び処理後基板を同時に(一括して)収容させるために、移動機構(不図示)が設けられている。この移動機構は、成膜装置10が設置される床面の鉛直方向から見た平面図において、移動レール37が敷設する方向に略直交する方向にキャリア21を所定距離移動させる。
Further, the loading / unloading chamber 13 is provided with a push-pull mechanism (not shown) that moves the carrier 21 between the film forming chamber 11 and the loading / unloading chamber 13 along the moving rail 37.
In addition, a moving mechanism (not shown) is provided in the preparation / removal chamber 13 in order to accommodate the pre-treatment substrate and the post-treatment substrate simultaneously (collectively). This moving mechanism moves the carrier 21 by a predetermined distance in a direction substantially orthogonal to the direction in which the moving rail 37 is laid in a plan view viewed from the vertical direction of the floor surface on which the film forming apparatus 10 is installed.
(基板脱着室)
 基板脱着室15においては、移動レール37に配置されているキャリア21に対して処理前基板を取り付けることができ、処理後基板をキャリア21から取り外すことができる。基板脱着室15においては、3個のキャリア21を並列して配置することができる。
(Substrate desorption chamber)
In the substrate removal chamber 15, the pre-treatment substrate can be attached to the carrier 21 arranged on the moving rail 37, and the post-treatment substrate can be detached from the carrier 21. In the substrate desorption chamber 15, three carriers 21 can be arranged in parallel.
(基板脱着ロボット)
 基板脱着ロボット17は、駆動アーム45を有しており、駆動アーム45の先端に基板Wを吸着する吸着部を有する。また、駆動アーム45は、基板脱着室15に配置されたキャリア21と基板収容カセット19との間を駆動する。具体的に、駆動アーム45は、基板収容カセット19から処理前基板を取り出して、基板脱着室15に配置されたキャリア21に処理前基板を取り付けることができる。更に、駆動アーム45は、処理後基板を基板脱着室15に戻ってきたキャリア21から取り外し、基板収容カセット19へ搬送することができる。
(Substrate removal robot)
The substrate removal robot 17 has a drive arm 45, and has a suction unit that sucks the substrate W at the tip of the drive arm 45. The drive arm 45 drives between the carrier 21 disposed in the substrate removal chamber 15 and the substrate storage cassette 19. Specifically, the drive arm 45 can take out the pre-treatment substrate from the substrate accommodation cassette 19 and attach the pre-treatment substrate to the carrier 21 disposed in the substrate removal chamber 15. Further, the drive arm 45 can remove the processed substrate from the carrier 21 that has returned to the substrate removal chamber 15 and transport the substrate to the substrate storage cassette 19.
(キャリア)
 図8は、キャリア21を示す斜視図である。図8に示すように、キャリア21は、基板Wを搬送するために用いられ、基板Wを取り付けることができる額縁状の2個のフレーム51が形成されている。つまり、一つのキャリア21において、基板Wを2枚取り付けることができる。2個のフレーム51,51は、その上部において連結部材52によって一体化されている。
 また、連結部材52の上方には、移動レール37に載置される車輪53が設けられている。移動レール37上を車輪53が転がることにより、キャリア21が移動レール37に沿って移動可能である。
(Career)
FIG. 8 is a perspective view showing the carrier 21. As shown in FIG. 8, the carrier 21 is used for transporting the substrate W, and two frame-shaped frames 51 to which the substrate W can be attached are formed. That is, two substrates W can be attached to one carrier 21. The two frames 51 and 51 are integrated by a connecting member 52 at an upper portion thereof.
Further, above the connecting member 52, a wheel 53 placed on the moving rail 37 is provided. When the wheel 53 rolls on the moving rail 37, the carrier 21 can move along the moving rail 37.
 更に、フレーム51の下部には、キャリア21が移動する際に基板Wの揺れを抑制するためにフレームホルダ54が設けられている。フレームホルダ54の先端は、各室の底面上に設けられた、断面形状が凹状であるレール部材(不図示)に嵌合されている。なお、成膜装置10が設置される床面の鉛直方向から見た平面図において、不図示のレール部材は移動レール37に沿う方向に配置されている。
 フレームホルダ54を複数のローラで構成すれば、より安定に基板Wを搬送することができる。
Further, a frame holder 54 is provided below the frame 51 in order to suppress the shaking of the substrate W when the carrier 21 moves. The front end of the frame holder 54 is fitted to a rail member (not shown) provided on the bottom surface of each chamber and having a concave cross-sectional shape. In addition, in the plan view seen from the vertical direction of the floor surface on which the film forming apparatus 10 is installed, a rail member (not shown) is arranged in a direction along the moving rail 37.
If the frame holder 54 is composed of a plurality of rollers, the substrate W can be transported more stably.
 フレーム51の各々は、開口部56,周縁部57,及び挟持部59を有している。フレーム51に基板Wが搭載された場合に、開口部56においては基板Wの被成膜面である表面が露出される。開口部56の周縁部57において、挟持部59によって基板Wの両面が挟持され、基板Wはフレーム51に固定される。
 挟持部59は、基板Wの表面に当接する挟持片59Aと、基板Wの裏面(背面)に当接する挟持片59Bとで構成されている。挟持片59A,59Bは、バネ等を介して連結されている。このバネによって、挟持片59Aと挟持片59Bとが互いに近接する方向に向かって付勢力が作用する。
Each of the frames 51 has an opening 56, a peripheral edge 57, and a clamping part 59. When the substrate W is mounted on the frame 51, the surface that is the film formation surface of the substrate W is exposed at the opening 56. At the peripheral edge 57 of the opening 56, both surfaces of the substrate W are sandwiched by the sandwiching portion 59, and the substrate W is fixed to the frame 51.
The sandwiching portion 59 includes a sandwiching piece 59A that abuts on the front surface of the substrate W and a sandwiching piece 59B that abuts on the back surface (back surface) of the substrate W. The clamping pieces 59A and 59B are connected via a spring or the like. By this spring, a biasing force acts in a direction in which the sandwiching piece 59A and the sandwiching piece 59B are close to each other.
 また、挟持片59Aが挟持片59Bに近づく方向又は挟持片59Aが挟持片59Bから離れる方向において、挟持片59Aは、アノード67の移動に応じて移動可能である。ここで、キャリア21は、一つの移動レール37上に1つ取り付けられている。つまり、一つの移動レール37上に一対(2枚)の基板Wを保持できる1つのキャリア21が取り付けられている。従って、一組の成膜装置10においては、3個のキャリア21が取り付けられ、即ち、3対(6枚)の基板が保持される。 Also, the clamping piece 59A is movable in accordance with the movement of the anode 67 in the direction in which the clamping piece 59A approaches the clamping piece 59B or in the direction in which the clamping piece 59A moves away from the clamping piece 59B. Here, one carrier 21 is attached on one moving rail 37. That is, one carrier 21 that can hold a pair (two) of substrates W on one moving rail 37 is attached. Accordingly, in one set of film forming apparatus 10, three carriers 21 are attached, that is, three pairs (six substrates) are held.
(薄膜太陽電池の製造方法)
 次に、成膜装置10を用いて、基板Wに膜を形成する方法を説明する。
 なお、この説明においては、一つの基板成膜ライン16の図面を用いるが、他の三つの基板成膜ライン16においても略同様の方法により基板に膜を形成する。
 図1に示すように、処理前基板(基板W)を複数枚収容した基板収容カセット19を所定の位置に配置する。
(Method for manufacturing thin film solar cell)
Next, a method for forming a film on the substrate W using the film forming apparatus 10 will be described.
In this description, the drawing of one substrate film forming line 16 is used, but a film is also formed on the substrate in the other three substrate film forming lines 16 by substantially the same method.
As shown in FIG. 1, a substrate storage cassette 19 that stores a plurality of pre-processed substrates (substrates W) is disposed at a predetermined position.
 次に、基板脱着ロボット17の駆動アーム45を動かして、基板収容カセット19から処理前基板を一枚取り出し、この処理前基板を基板脱着室15に設置されているキャリア21(図8参照)に取り付ける。この時、基板収容カセット19において水平方向に配置された処理前基板の配置方向は、鉛直方向に変わり、処理前基板がキャリア21に取り付けられる。この動作をもう一度繰り返し、一つのキャリア21に2枚の処理前基板を取り付ける。
 更に、この動作を繰り返して、基板脱着室15に設置されている残り二つのキャリア21にも処理前基板をそれぞれ取り付ける。つまり、この段階で、3つのキャリア21に処理前基板を6枚取り付ける。
Next, the drive arm 45 of the substrate removal robot 17 is moved to take out one unprocessed substrate from the substrate storage cassette 19, and this unprocessed substrate is placed on the carrier 21 (see FIG. 8) installed in the substrate removal chamber 15. Install. At this time, the arrangement direction of the unprocessed substrates arranged in the horizontal direction in the substrate accommodation cassette 19 changes to the vertical direction, and the unprocessed substrates are attached to the carrier 21. This operation is repeated once, and two pre-treatment substrates are attached to one carrier 21.
Further, this operation is repeated to attach the pre-treatment substrates to the remaining two carriers 21 installed in the substrate removal chamber 15. That is, at this stage, six pre-treatment substrates are attached to the three carriers 21.
 続いて、処理前基板が取り付けられた3個のキャリア21は、移動レール37に沿って略同時に移動し、仕込・取出室13内に収容される。仕込・取出室13にキャリア21が収容された後、仕込・取出室13のキャリア搬出入口(不図示)のシャッタ36が閉じる。その後、仕込・取出室13の内部は、真空ポンプ(不図示)を用いて真空状態に保持される。
 次に、成膜装置10が設置される床面の鉛直方向から見た平面図において、移動機構を用いて、移動レール37が敷設された方向と直交する方向に3個のキャリア21の各々を所定距離移動させる。
Subsequently, the three carriers 21 to which the unprocessed substrates are attached move substantially simultaneously along the moving rail 37 and are accommodated in the preparation / removal chamber 13. After the carrier 21 is accommodated in the preparation / removal chamber 13, the shutter 36 at the carrier loading / unloading port (not shown) of the preparation / removal chamber 13 is closed. Thereafter, the inside of the preparation / removal chamber 13 is kept in a vacuum state using a vacuum pump (not shown).
Next, in the plan view seen from the vertical direction of the floor surface on which the film forming apparatus 10 is installed, each of the three carriers 21 is moved in a direction orthogonal to the direction in which the moving rail 37 is laid using a moving mechanism. Move a predetermined distance.
 続いて、成膜室11のシャッタ25を開き、成膜室11において成膜処理が終了した処理後基板が取り付けられたキャリア21をプッシュ-プル機構(不図示)を用いて仕込・取出室13に移動させる。
 更に、プッシュ-プル機構を用いて処理前基板を保持したキャリア21を成膜室11に移動させる。キャリア21の移動が完了した後に、シャッタ25が閉じる。なお、成膜室11の内部は、真空状態が保持されている。
 このとき、キャリア21に取り付けられた処理前基板は、処理前基板の面に平行な方向に沿って移動する。成膜室11内において、処理前基板の表面が重力方向と略並行となるように、処理前基板は、アノード67とカソードユニット68との間に鉛直方向に沿って挿入される。
Subsequently, the shutter 25 of the film forming chamber 11 is opened, and the carrier 21 to which the post-processing substrate after the film forming process is completed in the film forming chamber 11 is loaded using a push-pull mechanism (not shown). Move to.
Further, the carrier 21 holding the unprocessed substrate is moved to the film forming chamber 11 using a push-pull mechanism. After the movement of the carrier 21 is completed, the shutter 25 is closed. Note that the inside of the film forming chamber 11 is kept in a vacuum state.
At this time, the substrate before processing attached to the carrier 21 moves along a direction parallel to the surface of the substrate before processing. In the film forming chamber 11, the pre-treatment substrate is inserted along the vertical direction between the anode 67 and the cathode unit 68 so that the surface of the pre-treatment substrate is substantially parallel to the direction of gravity.
 次に、駆動機構71は、アノード67がカソードユニット68に近づく方向(図7における矢印参照)に電極ユニット31の2枚のアノード67を移動させて、アノード67と基板Wの裏面とを当接させる。更に、駆動機構71の駆動によって、アノード67に押されるように処理前基板がカソードユニット68に向かって移動する。また、基板Wとカソードユニット68のシャワープレート75との隙間が所定距離(成膜距離)になるまで、処理前基板がカソードユニット68に向けて移動する。なお、基板Wとカソードユニット68のシャワープレート75との隙間(成膜距離)は5~15mmで、例えば5mm程度である。 Next, the drive mechanism 71 moves the two anodes 67 of the electrode unit 31 in the direction in which the anode 67 approaches the cathode unit 68 (see the arrow in FIG. 7), so that the anode 67 and the back surface of the substrate W come into contact with each other. Let Further, by driving the drive mechanism 71, the pre-treatment substrate moves toward the cathode unit 68 so as to be pushed by the anode 67. Further, the pre-treatment substrate moves toward the cathode unit 68 until the gap between the substrate W and the shower plate 75 of the cathode unit 68 reaches a predetermined distance (film formation distance). The gap (film formation distance) between the substrate W and the shower plate 75 of the cathode unit 68 is 5 to 15 mm, for example, about 5 mm.
 このとき、基板Wの表面に当接しているキャリア21の挟持片59Aは、基板Wの移動(アノード67の移動)に伴って挟持片59Bから離れるように変位する。そして、基板Wは、アノード67と挟持片59Aとにより挟持される。基板Wがカソードユニット68に向かって移動すると、挟持片59Aがマスク78に当接し、この時点でアノード67の移動が停止する。 At this time, the sandwiching piece 59A of the carrier 21 in contact with the surface of the substrate W is displaced so as to be separated from the sandwiching piece 59B as the substrate W moves (the anode 67 moves). The substrate W is sandwiched between the anode 67 and the sandwiching piece 59A. When the substrate W moves toward the cathode unit 68, the clamping piece 59A comes into contact with the mask 78, and at this point, the movement of the anode 67 stops.
 このような状態において、アノード67に内蔵されているヒータHにより、基板Wの温度が所望の温度になるように基板Wが加熱される。また、温水循環器32(図3参照)を駆動させてカソード中間部材76に埋設されている水配管92に温水を循環させる。ここで、ヒータHの温度は、例えば、約200℃程度まで上昇するが、水配管92内を循環する温水の温度は、例えば、約70℃~80℃程度に設定されている。約70℃~80℃程度に温度が設定されている温水が水配管92を循環することにより、カソード中間部材76の熱は、熱交換用プレート91を介してシャワープレート75に伝達される。なお、熱が伝達する方向は、カソード中間部材76からシャワープレート75に向く方向とは限らない。基板Wの温度がカソード中間部材76の温度よりも高い場合には、シャワープレート75からカソード中間部材76に向く方向に熱は伝達され、この熱は水配管92内を循環する温水に伝達される。即ち、この場合、水配管92内を循環する温水によって、シャワープレート75を介して基板Wが冷却される。 In such a state, the substrate W is heated by the heater H built in the anode 67 so that the temperature of the substrate W becomes a desired temperature. Further, the hot water circulator 32 (see FIG. 3) is driven to circulate the hot water through the water pipe 92 embedded in the cathode intermediate member 76. Here, the temperature of the heater H rises to about 200 ° C., for example, but the temperature of the hot water circulating in the water pipe 92 is set to about 70 ° C. to 80 ° C., for example. When hot water whose temperature is set to about 70 ° C. to 80 ° C. circulates through the water pipe 92, the heat of the cathode intermediate member 76 is transmitted to the shower plate 75 via the heat exchange plate 91. The direction in which heat is transmitted is not necessarily the direction from the cathode intermediate member 76 toward the shower plate 75. When the temperature of the substrate W is higher than the temperature of the cathode intermediate member 76, heat is transmitted from the shower plate 75 toward the cathode intermediate member 76, and this heat is transmitted to the hot water circulating in the water pipe 92. . That is, in this case, the substrate W is cooled through the shower plate 75 by the hot water circulating in the water pipe 92.
 本実施形態においては、約200℃程度に温度が設定されたヒータHの熱と、シャワープレート75に伝達された熱とにより、温度が約170℃程度になるように基板Wは加熱され、その温度が一定に保たれる。即ち、ヒータH(アノード67)が基板Wを加熱する一方、シャワープレート75によって基板Wが冷却され、基板Wの温度が調整されている。
 また、カソード中間部材76に埋設されている水配管92においては、直線と曲線とが組み合わされた一本の線状の水路によって上部水路92a,中間水路92b,及び下部水路92cが形成されている。また、図8に示すように、カソード中間部材76の外周部76eよりも中心部76fに上部水路92a,中間水路92b,及び下部水路92cが密集するように、水配管92が配置されている。このため、カソード中間部材76においては、外周部76eの温度よりも中心部76fの温度が低く、外周部76eから中心部76fに向かう方向において温度が徐々に低くなる。
In the present embodiment, the substrate W is heated so that the temperature becomes about 170 ° C. by the heat of the heater H whose temperature is set to about 200 ° C. and the heat transmitted to the shower plate 75, The temperature is kept constant. That is, the heater H (anode 67) heats the substrate W, while the shower plate 75 cools the substrate W, and the temperature of the substrate W is adjusted.
In the water pipe 92 embedded in the cathode intermediate member 76, an upper water channel 92a, an intermediate water channel 92b, and a lower water channel 92c are formed by a single linear water channel that is a combination of a straight line and a curved line. . Further, as shown in FIG. 8, the water pipe 92 is arranged so that the upper water passage 92 a, the intermediate water passage 92 b, and the lower water passage 92 c are denser in the center portion 76 f than the outer peripheral portion 76 e of the cathode intermediate member 76. For this reason, in the cathode intermediate member 76, the temperature of the central portion 76f is lower than the temperature of the outer peripheral portion 76e, and the temperature gradually decreases in the direction from the outer peripheral portion 76e to the central portion 76f.
 より詳細に、図12に基づいてカソード中間部材76の温度分布について説明する。
 図12においては、縦軸は温度を示し、横軸はカソード中間部材76の温度が測定される位置を示す。即ち、図12は、カソード中間部材76における位置と温度との関係を示しており、カソード中間部材76の温度が測定される箇所における温度変化を示すグラフである。また、カソード中間部材76に入力される熱量が3[Kw]である場合と、その熱量が6[Kw]である場合、水配管92を循環する温水の流量が10[l/min]である場合と、その流量が20[l/min]である場合において、図12には温度分布が示されている。図12において、(A)は、熱量が3[Kw]であり流量が20[l/min]である条件を示し、(B)は、熱量が3[Kw]であり流量が10[l/min]である条件を示し、(C)は、熱量が6[Kw]であり流量が20[l/min]である条件を示し、(D)は、熱量が6[Kw]であり流量が10[l/min]である条件を示している。また、図12の左端Oから右端Pに向う方向は、図8の矢印Aに示された方向に一致している。即ち、左端Oと右端Pとの間の領域は、高さ方向の下部であって側板部63に近い位置(根元部76c)と高さ方向の上部であって側板部63とは反対の位置(先端部76d)との間の領域に一致(設定)している。また、左端Oと右端Pとの間の中央位置は、カソード中間部材76の中央位置に対応している。
More specifically, the temperature distribution of the cathode intermediate member 76 will be described with reference to FIG.
In FIG. 12, the vertical axis indicates the temperature, and the horizontal axis indicates the position where the temperature of the cathode intermediate member 76 is measured. That is, FIG. 12 shows the relationship between the position and temperature of the cathode intermediate member 76, and is a graph showing the temperature change at the location where the temperature of the cathode intermediate member 76 is measured. When the amount of heat input to the cathode intermediate member 76 is 3 [Kw] and when the amount of heat is 6 [Kw], the flow rate of the hot water circulating through the water pipe 92 is 10 [l / min]. FIG. 12 shows the temperature distribution in the case and when the flow rate is 20 [l / min]. In FIG. 12, (A) shows the condition where the heat quantity is 3 [Kw] and the flow rate is 20 [l / min], and (B) shows the heat quantity is 3 [Kw] and the flow rate is 10 [l / min]. (C) shows the condition where the amount of heat is 6 [Kw] and the flow rate is 20 [l / min], and (D) shows the condition where the amount of heat is 6 [Kw] and the flow rate is The condition of 10 [l / min] is shown. Further, the direction from the left end O to the right end P in FIG. 12 matches the direction indicated by the arrow A in FIG. That is, the region between the left end O and the right end P is a lower portion in the height direction and close to the side plate portion 63 (base portion 76c) and an upper portion in the height direction and opposite to the side plate portion 63. It coincides (sets) with the region between (tip portion 76d). Further, the center position between the left end O and the right end P corresponds to the center position of the cathode intermediate member 76.
 図12に示すように、カソード中間部材76においては、外周部76eの温度よりも中心部76fの温度が低く、外周部76eから中心部76fに向かう方向において徐々に温度が低くなっていることが確認できる。従って、図12に示すようなカソード中間部材76全体の温度分布を得られるように水配管92の配管パターンが設定されている。このため、カソード中間部材76の熱が熱交換用プレート91を介してシャワープレート75に伝達されると、或いはシャワープレート75が熱交換用プレート91を介してカソード中間部材76によって冷却されると、シャワープレート75全体の温度分布としては、図12に示すような分布形状と同じような形状を有する温度分布が得られる。これにより、シャワープレート75に対向する基板W全体の温度分布は、図12に示す分布形状と同じような形状を有する温度分布に近似する。 As shown in FIG. 12, in the cathode intermediate member 76, the temperature of the central portion 76f is lower than the temperature of the outer peripheral portion 76e, and the temperature gradually decreases in the direction from the outer peripheral portion 76e to the central portion 76f. I can confirm. Accordingly, the piping pattern of the water piping 92 is set so as to obtain the temperature distribution of the entire cathode intermediate member 76 as shown in FIG. Therefore, when the heat of the cathode intermediate member 76 is transmitted to the shower plate 75 via the heat exchange plate 91 or when the shower plate 75 is cooled by the cathode intermediate member 76 via the heat exchange plate 91, As the temperature distribution of the entire shower plate 75, a temperature distribution having a shape similar to the distribution shape as shown in FIG. 12 is obtained. Thereby, the temperature distribution of the entire substrate W facing the shower plate 75 approximates to a temperature distribution having a shape similar to the distribution shape shown in FIG.
 ここで、カソード中間部材76の外周部76eの温度よりも中心部76fの温度を低くすることにより、カソード中間部材76における高温箇所と低温箇所との温度差を小さくし、カソード中間部材76に発生する熱を分散させることができる。これにより、熱歪みに起因してカソード中間部材76が損傷することを防止できる。カソード中間部材76の外周部76eと中心部76fとの温度差が約20℃~50℃程度に設定されている場合、熱歪みに起因する基板Wの損傷を防止することが可能になる。なお、基板W全体として温度が均一であれば熱歪みが生じない。 Here, by making the temperature of the central portion 76 f lower than the temperature of the outer peripheral portion 76 e of the cathode intermediate member 76, the temperature difference between the high temperature portion and the low temperature portion in the cathode intermediate member 76 is reduced, and is generated in the cathode intermediate member 76. Heat can be dispersed. Thereby, it is possible to prevent the cathode intermediate member 76 from being damaged due to thermal distortion. When the temperature difference between the outer peripheral portion 76e and the central portion 76f of the cathode intermediate member 76 is set to about 20 ° C. to 50 ° C., damage to the substrate W due to thermal distortion can be prevented. If the temperature is uniform throughout the substrate W, thermal distortion does not occur.
 図7及び図9に示すように、基板Wを所望の温度に加熱した後、不図示のガス供給装置は、カソードユニット68の熱交換用プレート91に成膜ガスを導入する。成膜ガスは、ガス流路107の第1流路108を流通し、第2流路を介して第1プレート片101の第1凹部103に吐出される(図9における矢印Y1参照)。その後、第1凹部103とカソード中間部材76とにより形成される空間が成膜ガスによって充満され、その後、第3流路110を介して第2プレート片102の第2凹部104に導かれる(図9における矢印Y2参照)。この後、シャワープレート75の小孔74を介して基板Wに向かって成膜ガスが噴出される。 7 and 9, after heating the substrate W to a desired temperature, a gas supply device (not shown) introduces a film forming gas into the heat exchange plate 91 of the cathode unit 68. The film forming gas flows through the first flow path 108 of the gas flow path 107 and is discharged to the first recess 103 of the first plate piece 101 through the second flow path (see arrow Y1 in FIG. 9). After that, the space formed by the first recess 103 and the cathode intermediate member 76 is filled with the film forming gas, and then led to the second recess 104 of the second plate piece 102 via the third flow path 110 (FIG. 9 (see arrow Y2). Thereafter, a film forming gas is ejected toward the substrate W through the small holes 74 of the shower plate 75.
 更に、マッチングボックス72を起動させて高周波電源から供給された電圧をマッチングボックス72及びカソード中間部材76を介してシャワープレート75に印加し、基板Wの表面に膜を形成する。ここで、アノード67のヒータHにおいては、基板Wの温度が所望の温度に達すると加熱動作が停止する。シャワープレート75に電圧を印加することによって成膜空間81にプラズマが発生する。このため、処理時間の経過に伴ってプラズマの発生に起因する熱によって基板Wが加熱された場合、アノード67の加熱を停止しても、基板Wの温度が所望の温度よりも上昇してしまうおそれがある。 Further, the matching box 72 is activated and a voltage supplied from the high frequency power source is applied to the shower plate 75 via the matching box 72 and the cathode intermediate member 76 to form a film on the surface of the substrate W. Here, in the heater H of the anode 67, when the temperature of the substrate W reaches a desired temperature, the heating operation is stopped. By applying a voltage to the shower plate 75, plasma is generated in the film formation space 81. For this reason, when the substrate W is heated by the heat resulting from the generation of plasma as the processing time elapses, even if the heating of the anode 67 is stopped, the temperature of the substrate W rises above a desired temperature. There is a fear.
 しかしながら、カソード中間部材76に温水が循環されているので、熱交換用プレート91及びシャワープレート75を介して基板Wが冷却される。これに加え、アノード67を温度上昇しすぎた基板Wを冷却する放熱板として機能させることもできる。従って、基板Wの温度は、成膜処理の時間経過に関わらず所望の温度に調整される。
 なお、一度の成膜処理工程において複数の層を成膜する際には、成膜空間81に供給される成膜ガス材料の種類を所定時間毎に切り替えることによって、基板W上に複数の層を形成することができる。
However, since warm water is circulated through the cathode intermediate member 76, the substrate W is cooled via the heat exchange plate 91 and the shower plate 75. In addition to this, the anode 67 can also function as a heat radiating plate for cooling the substrate W whose temperature has increased excessively. Therefore, the temperature of the substrate W is adjusted to a desired temperature regardless of the elapsed time of the film forming process.
When a plurality of layers are formed in a single film formation process, a plurality of layers are formed on the substrate W by switching the type of film forming gas material supplied to the film formation space 81 every predetermined time. Can be formed.
 続いて、成膜処理中及び成膜処理後に、カソードユニット68の周縁部に形成された排気口80を通じて成膜空間81のガス又は反応生成物(パウダー)が排気される。具体的に、成膜空間81内のガス又は反応生成物は、ガス流路Rと排気口80とを介して、カソードユニット68の周縁部の排気ダクト79に排気される。その後、ガス又は反応生成物は、カソードユニット68の下部における成膜室11内へ向いた排気ダクト79の開口部を通過する。更に、ガス又は反応生成物は、成膜室11の側面下部に設けられた排気管29から成膜室11の外部へと排気される。
 なお、基板W上に膜を形成する際に発生した反応生成物(パウダー)は、排気ダクト79の内壁面に付着・堆積し、回収及び処分される。
 成膜室11内の全ての電極ユニット31において、上述した処理と同じ処理が実行されるため、6枚の基板に対して同時に膜を形成することができる。
Subsequently, during the film forming process and after the film forming process, the gas or the reaction product (powder) in the film forming space 81 is exhausted through the exhaust port 80 formed in the peripheral portion of the cathode unit 68. Specifically, the gas or reaction product in the film formation space 81 is exhausted to the exhaust duct 79 at the peripheral edge of the cathode unit 68 via the gas flow path R and the exhaust port 80. Thereafter, the gas or reaction product passes through the opening of the exhaust duct 79 facing the inside of the film forming chamber 11 in the lower part of the cathode unit 68. Further, the gas or the reaction product is exhausted to the outside of the film forming chamber 11 from an exhaust pipe 29 provided at the lower side of the film forming chamber 11.
The reaction product (powder) generated when forming a film on the substrate W adheres to and accumulates on the inner wall surface of the exhaust duct 79 and is collected and disposed of.
Since all the electrode units 31 in the film forming chamber 11 perform the same process as described above, films can be formed simultaneously on six substrates.
 そして、成膜処理が終了したら、駆動機構71により2枚のアノード67が互いに離れる方向にアノード67を移動させ、処理後基板及びフレーム51(挟持片59A)を元の位置に戻す。更に、2枚のアノード67が互いに離れる方向にアノード67を移動させることで、処理後基板がアノード67から離れる。
 次に、図1に示すように、成膜室11のシャッタ25を開き、プッシュ-プル機構(不図示)を用いて、キャリア21を仕込・取出室13へ移動させる。
 このとき仕込・取出室13の内部は減圧されており、次に膜が形成される処理前基板が取り付けられたキャリア21が仕込・取出室13内に既に位置している。
 そして、仕込・取出室13において、処理後基板に蓄熱されている熱が処理前基板へ伝熱し、処理後基板の温度が下がる。
Then, when the film forming process is completed, the anode 67 is moved in the direction in which the two anodes 67 are separated from each other by the drive mechanism 71, and the processed substrate and the frame 51 (the sandwiching piece 59A) are returned to their original positions. Further, by moving the anode 67 in a direction in which the two anodes 67 are separated from each other, the substrate after processing is separated from the anode 67.
Next, as shown in FIG. 1, the shutter 25 of the film formation chamber 11 is opened, and the carrier 21 is moved to the preparation / removal chamber 13 using a push-pull mechanism (not shown).
At this time, the inside of the preparation / removal chamber 13 is depressurized, and the carrier 21 to which the pre-treatment substrate on which a film is to be formed next is attached is already located in the preparation / removal chamber 13.
Then, in the preparation / removal chamber 13, the heat stored in the processed substrate is transferred to the unprocessed substrate, and the temperature of the processed substrate is lowered.
 続いて、処理前基板が搭載されたキャリア21が成膜室11内へと移動した後、移動機構によって処理後基板が搭載されたキャリア21が移動レール37の位置に戻される。シャッタ25を閉じた後、シャッタ36を開き、処理後基板が搭載されたキャリア21は基板脱着室15へ移動される。
 基板脱着室15においては、基板脱着ロボット17は、処理後基板をキャリア21から取り外し、処理後基板を基板収容カセット19に搬送する。
 全ての処理後基板をキャリアから取り外す工程が完了した後、処理後基板が搭載されている基板収容カセット19は、次工程が行なわれる場所(装置)に移動し、成膜装置10における成膜処理が終了する。
Subsequently, after the carrier 21 on which the substrate before processing is moved moves into the film forming chamber 11, the carrier 21 on which the substrate after processing is mounted is returned to the position of the moving rail 37 by the moving mechanism. After the shutter 25 is closed, the shutter 36 is opened, and the carrier 21 on which the processed substrate is mounted is moved to the substrate removal chamber 15.
In the substrate removal chamber 15, the substrate removal robot 17 removes the processed substrate from the carrier 21 and transports the processed substrate to the substrate storage cassette 19.
After the process of removing all the processed substrates from the carrier is completed, the substrate storage cassette 19 on which the processed substrates are mounted is moved to a place (apparatus) where the next process is performed, and the film forming process in the film forming apparatus 10 is performed. Ends.
 従って、上述の実施形態によれば、カソード中間部材76に埋設された水配管92に温水を循環させ、カソード中間部材76の温度を一定に保つことができる。カソード中間部材76の熱は、熱交換用プレート91を介してシャワープレート75に伝達され、シャワープレート75の温度を一定に保つことができる。シャワープレート75の温度を一定に保つことにより、基板Wの温度が上昇することを抑制できる。このため、バッチ処理の回数が増えても基板Wに形成される膜の品質を安定させることができる。 Therefore, according to the above-described embodiment, hot water can be circulated through the water pipe 92 embedded in the cathode intermediate member 76 to keep the temperature of the cathode intermediate member 76 constant. The heat of the cathode intermediate member 76 is transmitted to the shower plate 75 via the heat exchange plate 91, and the temperature of the shower plate 75 can be kept constant. By keeping the temperature of the shower plate 75 constant, an increase in the temperature of the substrate W can be suppressed. For this reason, the quality of the film formed on the substrate W can be stabilized even if the number of batch processes increases.
 また、熱交換用プレート91にガス流路107が設けられている。このため、カソード中間部材76とシャワープレート75との間に形成された空間部77が熱交換用プレート91で埋められた場合であっても、シャワープレート75に設けられた複数の小孔74を介して基板Wの被成膜面に成膜ガスを確実に供給することができる。よって、基板Wに高品質な膜を形成することが可能になる。 Further, a gas flow path 107 is provided in the heat exchange plate 91. For this reason, even if the space 77 formed between the cathode intermediate member 76 and the shower plate 75 is filled with the heat exchange plate 91, the plurality of small holes 74 provided in the shower plate 75 are formed. Thus, the deposition gas can be reliably supplied to the deposition surface of the substrate W. Therefore, a high quality film can be formed on the substrate W.
 更に、熱交換用プレート91を構成する第1プレート片101の表面101a及び第2プレート片102の表面102aの各々には、エンボス加工が施されている。このエンボス加工によって、第1プレート片101の表面101aに複数の第1凹部103が形成され、第2プレート片102の表面102aに複数の第2凹部104が形成される。このため、シャワープレート75の小孔74の周辺に成膜ガスを流動させる空間を確実に確保することができる。このため、例えば、熱交換用プレート91を加工する際の加工精度が低下することに起因して、シャワープレート75の小孔74が閉塞されてしまうことを防止できる。よって、熱交換用プレート91を加工する際の加工精度を必要以上に高める必要がなく、加工コストを抑える(低減する)ことが可能になる。 Furthermore, each of the surface 101a of the first plate piece 101 and the surface 102a of the second plate piece 102 constituting the heat exchange plate 91 is embossed. By this embossing, a plurality of first recesses 103 are formed on the surface 101 a of the first plate piece 101, and a plurality of second recesses 104 are formed on the surface 102 a of the second plate piece 102. For this reason, it is possible to reliably secure a space for allowing the deposition gas to flow around the small holes 74 of the shower plate 75. For this reason, for example, it can be prevented that the small hole 74 of the shower plate 75 is blocked due to a decrease in processing accuracy when the heat exchange plate 91 is processed. Therefore, it is not necessary to increase the processing accuracy when processing the heat exchange plate 91 more than necessary, and the processing cost can be suppressed (reduced).
 そして、熱交換用プレート91のガス流路107に配管111が敷設され、この配管111はガス流路107を構成している。このため、ガス流路107の途中から成膜ガスが漏れることを防止することができる。よって、熱交換用プレート91に導入された成膜ガスをシャワープレート75の小孔74に確実に導くことができ、生産効率の向上を図ることが可能になる。 Then, a pipe 111 is laid in the gas flow path 107 of the heat exchange plate 91, and the pipe 111 constitutes the gas flow path 107. For this reason, it is possible to prevent the deposition gas from leaking from the middle of the gas flow path 107. Therefore, the film forming gas introduced into the heat exchange plate 91 can be reliably guided to the small holes 74 of the shower plate 75, and the production efficiency can be improved.
 また、カソード中間部材76に埋設された水配管92は3つの水路92a~92cによって構成されている。カソード中間部材76の外周部76eから中心部76fに向かう方向においてカソード中間部材76の温度が徐々に低くなるように、カソード中間部材76の温度分布が設定されている。この結果、基板Wの基板の中心部76fの温度を外周部76eの温度よりも下げることができる(図12参照)。よって、熱歪みに起因する基板Wの損傷を防止することが可能になる。 Further, the water pipe 92 embedded in the cathode intermediate member 76 is constituted by three water channels 92a to 92c. The temperature distribution of the cathode intermediate member 76 is set so that the temperature of the cathode intermediate member 76 gradually decreases in the direction from the outer peripheral portion 76e of the cathode intermediate member 76 to the center portion 76f. As a result, the temperature of the central portion 76f of the substrate W can be made lower than the temperature of the outer peripheral portion 76e (see FIG. 12). Therefore, it is possible to prevent damage to the substrate W due to thermal distortion.
 更に、熱交換用プレート91においては、カソードユニット68がアノード67に対向する方向に沿って、一対の第1プレート片101及び第2プレート片102が重ね合わされている。このため、第1プレート片101及び第2プレート片102に第1流路108,第2流路109,及び第3流路110を形成し、第1プレート片101及び第2プレート片102を重ね合わせることによって、ガス流路107を形成することができる。特に、第1プレート片101の第1面101bに溝108aが形成されており、第2プレート片102の第2面102bに溝108bが形成されている。また、第1プレート片101及び第2プレート片102の間の合わせ面において、溝108aが溝108aに重ね合わさるように、第1面101bが第2面102bに接触している。また、このため、1つのプレートにガス流路107を形成する場合と比較して、ガス流路107を形成する加工を簡易化することができ、加工コストを低減することができる。 Furthermore, in the heat exchanging plate 91, the pair of first plate pieces 101 and second plate pieces 102 are overlapped along the direction in which the cathode unit 68 faces the anode 67. Therefore, the first flow path 108, the second flow path 109, and the third flow path 110 are formed in the first plate piece 101 and the second plate piece 102, and the first plate piece 101 and the second plate piece 102 are overlapped. By combining them, the gas flow path 107 can be formed. In particular, a groove 108 a is formed on the first surface 101 b of the first plate piece 101, and a groove 108 b is formed on the second surface 102 b of the second plate piece 102. In addition, in the mating surface between the first plate piece 101 and the second plate piece 102, the first surface 101b is in contact with the second surface 102b so that the groove 108a overlaps the groove 108a. For this reason, compared with the case where the gas flow path 107 is formed in one plate, the process of forming the gas flow path 107 can be simplified, and the processing cost can be reduced.
 そして、ガス流路107は、3つの流路108,109,110で構成されている。ガス流路107の第1流路108及び第2流路109を介して成膜ガスは第1プレート片101の第1凹部103に吐出されている。その後、成膜ガスは、第3流路110を介してシャワープレート75の小孔74に導かれている。このため、熱交換用プレート91に導入された成膜ガスをカソード中間部材76の近くに位置する空間部77全体に分散させた後、シャワープレート75の複数の小孔74に向けて成膜ガスを導くことができる。このため、シャワープレート75全体から均一に成膜ガスを噴出させることができ、基板W全体に均一に膜を形成することが可能になる。 The gas flow path 107 includes three flow paths 108, 109, and 110. The film forming gas is discharged to the first recess 103 of the first plate piece 101 through the first flow path 108 and the second flow path 109 of the gas flow path 107. Thereafter, the film forming gas is guided to the small hole 74 of the shower plate 75 through the third flow path 110. Therefore, after the film forming gas introduced into the heat exchange plate 91 is dispersed throughout the space 77 located near the cathode intermediate member 76, the film forming gas is directed toward the plurality of small holes 74 of the shower plate 75. Can guide you. For this reason, the deposition gas can be ejected uniformly from the entire shower plate 75, and a film can be uniformly formed on the entire substrate W.
 なお、本発明の技術範囲は、上記実施形態に限定されることなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。
 例えば、上述の実施形態では、熱交換用プレート91のガス流路107に配管111を敷設し、この配管111をガス流路107として構成している場合について説明した。しかしながら、本発明はこの構造を限定しておらず、熱交換用プレート91のガス流路107に配管111を敷設せずに、ガス流路107の表面が成膜ガスに露出するようにガス流路107内に成膜ガスが流動してもよい。この場合、第1プレート片101及び第2プレート片102の間の合わせ面に、パッキン等のシール部材を設けることが望ましい。
The technical scope of the present invention is not limited to the above embodiment, and various modifications can be made without departing from the spirit of the present invention.
For example, in the above-described embodiment, the case where the pipe 111 is laid in the gas flow path 107 of the heat exchange plate 91 and the pipe 111 is configured as the gas flow path 107 has been described. However, the present invention does not limit this structure, and the gas flow is performed such that the surface of the gas flow path 107 is exposed to the film forming gas without laying the pipe 111 in the gas flow path 107 of the heat exchange plate 91. A film forming gas may flow in the passage 107. In this case, it is desirable to provide a sealing member such as packing on the mating surface between the first plate piece 101 and the second plate piece 102.
 また、上述の実施形態においては、カソード中間部材76に埋設された水配管92が3つの水路92a,92b,92cによって構成された構造について説明した。しかしながら、本発明はこの構造を限定しておらず、外周部76eから中心部76fに向かう方向においてカソード中間部材76の温度が徐々に低くなるカソード中間部材76の温度分布が得られるように、水配管92を敷設すればよい。
 更に、上述の実施形態では、水配管92(温度調整流体用流路)内に温水(温度調整流体)を循環させた場合について説明した。しかしながら、本発明は温水を循環させる構造を限定しておらず、温水に代わって冷水(例えば、約25℃程度の水)又は油等を冷却媒体として用いてもよい。
In the above-described embodiment, the structure in which the water pipe 92 embedded in the cathode intermediate member 76 is configured by the three water channels 92a, 92b, and 92c has been described. However, the present invention does not limit this structure, so that the temperature distribution of the cathode intermediate member 76 in which the temperature of the cathode intermediate member 76 gradually decreases in the direction from the outer peripheral portion 76e to the central portion 76f is obtained. The pipe 92 may be laid.
Furthermore, in the above-described embodiment, the case where hot water (temperature adjustment fluid) is circulated in the water pipe 92 (temperature adjustment fluid flow path) has been described. However, the present invention does not limit the structure for circulating the hot water, and cold water (for example, water at about 25 ° C.) or oil may be used as the cooling medium instead of the hot water.
 また、上述の実施形態では、例えば、ヒータHの温度を約200℃程度、水配管92内を循環する温水の温度を約70℃~80℃程度、及び基板Wの温度を約170℃程度に設定した場合について説明した。しかしながら、本発明はこの温度条件を限定しておらず、基板Wに形成される膜の種類、ヒータHの加熱能力等に応じて、各々の温度を設定すればよい。
 また、上述の実施形態では、熱交換用プレート91に形成されているガス流路107が3つの流路108,109,110で構成され、シャワープレート75全体から均一に成膜ガスを噴出させる構造について説明した。しかしながら、本発明はこの構造を限定しておらず、シャワープレート75全体から成膜ガスを噴出することが可能なガス流路が形成されていればよい。
In the above-described embodiment, for example, the temperature of the heater H is about 200 ° C., the temperature of the hot water circulating in the water pipe 92 is about 70 ° C. to 80 ° C., and the temperature of the substrate W is about 170 ° C. The case of setting was explained. However, the present invention does not limit this temperature condition, and each temperature may be set according to the type of film formed on the substrate W, the heating capability of the heater H, and the like.
Further, in the above-described embodiment, the gas flow path 107 formed in the heat exchange plate 91 is configured by the three flow paths 108, 109, and 110, and the film forming gas is uniformly ejected from the entire shower plate 75. Explained. However, the present invention does not limit this structure, and it is sufficient that a gas flow path capable of ejecting the film forming gas from the entire shower plate 75 is formed.
 本発明は、薄膜太陽電池の製造に用いられる成膜装置に適用可能である。 The present invention can be applied to a film forming apparatus used for manufacturing a thin film solar cell.
 10…成膜装置 11…成膜室 67…アノード 68…カソードユニット 74…小孔(孔) 75…シャワープレート 76…カソード中間部材(電極プレート) 77…空間部 81…成膜空間 91…熱交換用プレート 92…水配管(温度調整流体用流路) 92a…上部水路 92b…中間水路 92c…下部水路 101,102…第1プレート片 101a,102a…表面(第1接触面,第2接触面) 103…第1凹部 104…第2凹部 107…ガス流路 108…第1流路 109…第2流路 110…第3流路 111…配管 H…ヒータ W…基板。 DESCRIPTION OF SYMBOLS 10 ... Film-forming apparatus 11 ... Film-forming chamber 67 ... Anode 68 ... Cathode unit 74 ... Small hole (hole) 75 ... Shower plate 76 ... Cathode intermediate member (electrode plate) 77 ... Space part 81 ... Film-forming space 91 ... Heat exchange Plate 92 ... water pipe (temperature adjusting fluid channel) 92a ... upper water channel 92b ... intermediate water channel 92c ... lower water channel 101,102 ... first plate pieces 101a, 102a ... surface (first contact surface, second contact surface) DESCRIPTION OF SYMBOLS 103 ... 1st recessed part 104 ... 2nd recessed part 107 ... Gas flow path 108 ... 1st flow path 109 ... 2nd flow path 110 ... 3rd flow path 111 ... Piping H ... Heater W ... Board | substrate.

Claims (5)

  1.  成膜装置であって、
     電圧が印加される電極プレートと、前記電極プレートに設けられて温度調整流体が循環する温度調整流体用流路と、前記電極プレートに接触して基板の被成膜面に向けてプロセスガスを供給する複数の孔を有するシャワープレートと、前記電極プレートと前記シャワープレートとの間に設けられて前記電極プレート及び前記シャワープレートに接触する熱交換用プレートと、前記熱交換用プレートに前記プロセスガスを導入しかつ前記熱交換用プレートに導入されたプロセスガスを前記シャワープレートの前記複数の孔に導くと共に前記熱交換用プレートに設けられたガス流路とを含むカソードユニットと、
     前記カソードユニットに離間して対向配置されたアノードと、
     を含むことを特徴とする成膜装置。
    A film forming apparatus,
    An electrode plate to which a voltage is applied, a temperature adjusting fluid channel provided in the electrode plate through which the temperature adjusting fluid circulates, and a process gas is supplied toward the film formation surface of the substrate in contact with the electrode plate A shower plate having a plurality of holes, a heat exchange plate provided between the electrode plate and the shower plate and contacting the electrode plate and the shower plate, and the process gas to the heat exchange plate A cathode unit that includes a process gas introduced and introduced into the heat exchange plate into the plurality of holes of the shower plate and including a gas flow path provided in the heat exchange plate;
    An anode disposed opposite to and separated from the cathode unit;
    A film forming apparatus comprising:
  2.  請求項1に記載の成膜装置であって、
     前記熱交換用プレートは、凹凸加工によって形成された第1凹部を有すると共に前記電極プレートに接触する第1接触面と、凹凸加工によって形成された第2凹部を有すると共に前記電極シャワープレートに接触する第2接触面とを含み、
     前記第1凹部及び前記第2凹部の位置は、前記シャワープレートの前記複数の孔の位置に対応している
     ことを特徴とする成膜装置。
    The film forming apparatus according to claim 1,
    The heat exchange plate has a first concave portion formed by uneven processing and has a first contact surface that contacts the electrode plate, a second concave portion formed by concave and convex processing, and contacts the electrode shower plate. A second contact surface,
    The position of the said 1st recessed part and the said 2nd recessed part respond | corresponds to the position of these holes of the said shower plate. The film-forming apparatus characterized by the above-mentioned.
  3.  請求項1又は請求項2に記載の成膜装置であって、
     前記温度調整流体用流路は、前記電極プレートの外周部から前記電極プレートの中心部に向かう方向において前記電極プレートの温度が徐々に低くなるように配置されている
     ことを特徴とする成膜装置。
    The film forming apparatus according to claim 1 or 2,
    The temperature adjusting fluid channel is arranged so that the temperature of the electrode plate gradually decreases in the direction from the outer peripheral portion of the electrode plate toward the center portion of the electrode plate. .
  4.  請求項1から請求項3のいずれか一項に記載の成膜装置であって、
     前記熱交換用プレートは、一対の第1プレート片及び第2プレート片を有し、
     前記第1プレート片及び前記第2プレート片は、前記カソードユニットが前記アノードに対向する方向に沿って重ね合わされている
     ことを特徴とする成膜装置。
    It is the film-forming apparatus as described in any one of Claims 1-3,
    The heat exchange plate has a pair of first plate pieces and second plate pieces,
    The film forming apparatus, wherein the first plate piece and the second plate piece are superposed along a direction in which the cathode unit faces the anode.
  5.  請求項1から請求項4のいずれか一項に記載の成膜装置であって、
     前記ガス流路においては、前記熱交換用プレートに導入された前記プロセスガスは前記電極プレートに近い位置に向けて流れ、前記電極プレートに近い位置に向けて流れた前記プロセスガスは、前記電極プレートから前記シャワープレートに向けて流れる
     ことを特徴とする成膜装置。
    It is the film-forming apparatus as described in any one of Claims 1-4, Comprising:
    In the gas flow path, the process gas introduced into the heat exchange plate flows toward a position close to the electrode plate, and the process gas flowing toward a position close to the electrode plate The film forming apparatus is characterized in that the film flows toward the shower plate.
PCT/JP2010/062784 2009-07-31 2010-07-29 Film-forming apparatus WO2011013746A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011524827A JPWO2011013746A1 (en) 2009-07-31 2010-07-29 Deposition equipment
CN201080026689.5A CN102473609B (en) 2009-07-31 2010-07-29 Film-forming apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009179412 2009-07-31
JP2009-179412 2009-07-31

Publications (1)

Publication Number Publication Date
WO2011013746A1 true WO2011013746A1 (en) 2011-02-03

Family

ID=43529398

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/062784 WO2011013746A1 (en) 2009-07-31 2010-07-29 Film-forming apparatus

Country Status (4)

Country Link
JP (1) JPWO2011013746A1 (en)
CN (1) CN102473609B (en)
TW (1) TWI473144B (en)
WO (1) WO2011013746A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012182360A (en) * 2011-03-02 2012-09-20 Ulvac Japan Ltd Deposition apparatus and deposition method
US9493578B2 (en) 2009-09-02 2016-11-15 Xencor, Inc. Compositions and methods for simultaneous bivalent and monovalent co-engagement of antigens

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08339984A (en) * 1995-06-13 1996-12-24 Tokyo Electron Ltd Plasma processor
JP2005123339A (en) * 2003-10-15 2005-05-12 Mitsubishi Heavy Ind Ltd Plasma cvd apparatus and electrode therefor
JP2005203627A (en) * 2004-01-16 2005-07-28 Tokyo Electron Ltd Processing apparatus

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW434745B (en) * 1995-06-07 2001-05-16 Tokyo Electron Ltd Plasma processing apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08339984A (en) * 1995-06-13 1996-12-24 Tokyo Electron Ltd Plasma processor
JP2005123339A (en) * 2003-10-15 2005-05-12 Mitsubishi Heavy Ind Ltd Plasma cvd apparatus and electrode therefor
JP2005203627A (en) * 2004-01-16 2005-07-28 Tokyo Electron Ltd Processing apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9493578B2 (en) 2009-09-02 2016-11-15 Xencor, Inc. Compositions and methods for simultaneous bivalent and monovalent co-engagement of antigens
JP2012182360A (en) * 2011-03-02 2012-09-20 Ulvac Japan Ltd Deposition apparatus and deposition method

Also Published As

Publication number Publication date
CN102473609A (en) 2012-05-23
TW201117265A (en) 2011-05-16
CN102473609B (en) 2015-04-01
TWI473144B (en) 2015-02-11
JPWO2011013746A1 (en) 2013-01-10

Similar Documents

Publication Publication Date Title
EP2293342B1 (en) Thin-film solar cell manufacturing apparatus
WO2010055669A1 (en) Electrode circuit, film formation device, electrode unit, and film formation method
TWI425111B (en) Apparatus for forming film
EP2299498B1 (en) Thin-film solar cell manufacturing apparatus
EP2290700B1 (en) Apparatus for manufacturing thin film solar cell
WO2011013746A1 (en) Film-forming apparatus
EP2299477B1 (en) Thin- film solar cell manufacturing apparatus
EP2290701B1 (en) Apparatus for manufacturing thin film solar cell
JP5378192B2 (en) Deposition equipment
WO2011013697A1 (en) Film-forming apparatus
TWI429098B (en) Apparatus for manufacturing thin film solar battery

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080026689.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10804492

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011524827

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10804492

Country of ref document: EP

Kind code of ref document: A1