WO2011013290A1 - Method for manufacturing semiconductor device - Google Patents

Method for manufacturing semiconductor device Download PDF

Info

Publication number
WO2011013290A1
WO2011013290A1 PCT/JP2010/003994 JP2010003994W WO2011013290A1 WO 2011013290 A1 WO2011013290 A1 WO 2011013290A1 JP 2010003994 W JP2010003994 W JP 2010003994W WO 2011013290 A1 WO2011013290 A1 WO 2011013290A1
Authority
WO
WIPO (PCT)
Prior art keywords
type
epitaxial layer
layer
single crystal
silicon single
Prior art date
Application number
PCT/JP2010/003994
Other languages
French (fr)
Japanese (ja)
Inventor
名古屋孝俊
高見澤彰一
佐山隆司
Original Assignee
信越半導体株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越半導体株式会社 filed Critical 信越半導体株式会社
Publication of WO2011013290A1 publication Critical patent/WO2011013290A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1464Back illuminated imager structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/84Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being other than a semiconductor body, e.g. being an insulating body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1462Coatings
    • H01L27/14621Colour filter arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14625Optical elements or arrangements associated with the device
    • H01L27/14627Microlenses

Definitions

  • the present invention relates to a method for manufacturing a semiconductor device, and more specifically, to a method for manufacturing a semiconductor device in which a back-illuminated imaging element or the like is formed on an epitaxial layer made of a semiconductor such as silicon.
  • the back-illuminated imaging element is formed by forming a wiring layer on the surface side of the epitaxial layer from the viewpoint of improving the aperture ratio for recent light reception and improving the flexibility of the layout of the wiring layer,
  • the light is incident from the back side of the epitaxial layer so that it can be imaged.
  • the light is incident from the back side of the epitaxial substrate, the incident light is photoelectrically converted in the semiconductor substrate, and the generated signal charge is converted to the surface. It has a configuration for reading from the side.
  • an insulating layer such as a silicon oxide (SiO 2 ) layer is formed on the surface of a silicon single crystal substrate, and silicon or the like is formed thereon.
  • a semiconductor epitaxial layer whose thickness is increased through an epitaxial process is formed.
  • a CCD or CMOS image sensor is formed on the semiconductor epitaxial layer.
  • the silicon single crystal substrate is removed from the back surface side by grinding or etching, the insulating layer is exposed, and a color filter or a microlens is formed on the back surface.
  • the imaging device is very sensitive to metal contamination in the material substrate device process, so that some gettering ability is given to the substrate even in the conventional structure. is doing.
  • a gettering layer for gettering metal impurities is usually formed outside the active region of the semiconductor epitaxial layer.
  • the manufacturing process of the image sensor as described above there are restrictions on the formation of the gettering layer.
  • a gettering layer is generally formed on a silicon single crystal substrate facing the SOI layer with the silicon oxide layer interposed therebetween. It is. However, in this case, the silicon oxide layer becomes a barrier for diffusion of metal impurities, and the metal that enters the semiconductor epitaxial layer cannot be gettered.
  • the removal process of the silicon single crystal substrate on the back side is essential, but this removal process is performed by grinding, polishing, etching, etc., but is very unstable. This is because although the thickness of the silicon single crystal substrate to be removed is known to some extent, it is very difficult to stop the removal at a desired position, and it has not been possible to remove it stably.
  • the SOI substrate is usually manufactured using two silicon single crystal substrates, it becomes very expensive. Therefore, a semiconductor device manufactured using an expensive SOI substrate is naturally expensive and has a problem.
  • a device formation region in order to avoid the influence of resistance fringes derived from CZ crystals in an image pickup device substrate, it is necessary to use a device formation region as an epitaxial layer. Therefore, instead of a normal SOI substrate, an ion implantation separation method (smart cut (registered) Also, the epitaxial layer having a predetermined thickness is grown on the SOI substrate formed by the above method.
  • the present invention has been made in view of the above problems, and easily manages the thickness of a semiconductor epitaxial layer serving as an active region to a desired thickness without using an SOI substrate. It is an object of the present invention to provide a method for manufacturing a semiconductor device that can perform gettering of contaminant impurities.
  • a semiconductor element is formed on one main surface of a silicon single crystal substrate having a conductivity type of P type and an N type epitaxial layer having an N type conductivity serving as an etch stop layer.
  • the P-type silicon single crystal substrate is removed by electrochemical etching.
  • the P-type silicon single crystal substrate can be removed with very high accuracy compared to conventional grinding, polishing, and etching, and a semiconductor device having an active region with a desired thickness can be obtained.
  • an insulator can be formed on the etch stop surface after electrochemical etching, and an insulator having a good quality and a desired thickness can be easily formed. Therefore, the quality of the manufactured semiconductor element can be improved.
  • the P-type silicon single crystal substrate used in the epitaxial growth process and the semiconductor epitaxial layer on which the semiconductor element is formed can be in contact with each other without an oxide film, for example, a getter is attached to the P-type silicon single crystal substrate.
  • the metal impurity concentration of the semiconductor epitaxial layer can be made extremely low, and the yield of the manufactured semiconductor device can be improved.
  • a semiconductor device in which a semiconductor element such as an imaging element is formed can be manufactured without using an expensive SOI substrate, and a method for manufacturing a semiconductor device that is less expensive than the conventional one can be obtained.
  • the N-type epitaxial layer is epitaxially grown directly on the P-type silicon single crystal substrate.
  • the N-type epitaxial layer serving as the etch stop layer directly on the P-type silicon single crystal substrate, it is possible to remove only the P-type silicon single crystal substrate. Therefore, waste of the silicon single crystal substrate and the epitaxial layer can be eliminated, and the semiconductor device can be manufactured efficiently.
  • the P-type silicon single crystal substrate is a substrate in which a polycrystalline silicon layer is formed on the main surface opposite to the main surface on which the N-type epitaxial layer is formed, or in the P-type silicon single crystal substrate. It is preferable to have oxygen precipitation nuclei. As described above, in order to give a gettering capability to a P-type silicon single crystal substrate to be removed later, a polycrystalline silicon layer is formed on the back surface side, or oxygen precipitation nuclei are provided, so that gettering can be further performed. A P-type silicon single crystal substrate with high capability can be obtained, and a semiconductor device with fewer metal impurities in the active region can be manufactured.
  • the P-type silicon single crystal substrate is held on a substrate holder that covers at least the semiconductor epitaxial layer on which the semiconductor element is formed, and then the N-type epitaxial layer is used as an etch stop layer to form an alkaline electrolyte solution. It is preferable to immerse the substrate in water.
  • the semiconductor epitaxial layer in which the semiconductor element is formed can be reliably prevented from being etched. Further, since the etching is surely stopped when the N-type epitaxial layer is exposed, only the portion to be removed such as the P-type silicon single crystal substrate can be surely and easily removed.
  • an electrode wiring is formed on the semiconductor element, and then the holding substrate is bonded to the surface on which the electrode wiring is formed.
  • a positive voltage can be easily applied to the N-type epitaxial layer, and electrochemical etching can be easily performed.
  • grounding the electrode wiring in the step after being bonded to the holding substrate static electricity or the like can be released to the ground through the electrode wiring. Therefore, the semiconductor element can be prevented from being destroyed by static electricity or the like, which is more preferable.
  • the said holding substrate has an electrode which reaches the surface on the opposite side from the said bonding surface.
  • a positive voltage can be more easily applied to the N-type epitaxial layer, and electrochemical etching can be performed more easily. It can be carried out. Moreover, it can protect more easily from electrostatic breakdown.
  • the step of removing the P-type silicon single crystal substrate preferably includes performing the electrochemical etching after performing at least one of grinding, polishing, and etching on the P-type silicon single crystal substrate. .
  • the P-type silicon single crystal substrate is removed to some extent in advance by a method such as grinding, polishing, and etching.
  • the P-type silicon single crystal substrate can be completely removed, and the effect of shortening the working time of the process can be achieved.
  • the exposed electrochemical etch stop surface to remove the N-type epitaxial layer.
  • the flatness of the surface irradiated with light, which becomes the light receiving surface can be increased, and irregular reflection can be reduced and produced.
  • the performance of the imaging device or the like can be made higher.
  • a P-type low resistance layer and a P-type high resistance layer can be formed immediately above the N-type epitaxial layer.
  • an N-type low resistance layer and an N-type high resistance layer can be formed directly on the N-type epitaxial layer.
  • an N-type layer and a partial P-type low resistance layer in the N-type layer can be formed immediately above the N-type epitaxial layer.
  • the semiconductor epitaxial layer formed on the N-type epitaxial layer can have any configuration suitable for the semiconductor element to be manufactured, and the configuration is not particularly limited.
  • a semiconductor epitaxial layer can be formed.
  • a semiconductor epitaxial layer for forming an N-type epitaxial layer and a semiconductor element on one main surface of a P-type silicon single crystal substrate having gettering capability Form.
  • a holding substrate is added, and the P-type silicon single crystal substrate can be removed by grinding or the like and electrochemical etching using the N-type epitaxial layer as an etch stop layer.
  • FIG. 5 is a process flow illustrating an example of a method for manufacturing a semiconductor device according to the present invention. It is the schematic which shows the structure in the middle of the manufacturing method of the semiconductor device which concerns on embodiment of this invention. It is the schematic which shows the structure in the middle of the manufacturing method of the semiconductor device which concerns on embodiment of this invention. It is the schematic which shows the structure in the middle of the manufacturing method of the semiconductor device which concerns on embodiment of this invention. It is the schematic which shows the structure in the middle of the manufacturing method of the semiconductor device which concerns on embodiment of this invention. It is the schematic which shows the structure in the middle of the manufacturing method of the semiconductor device which concerns on embodiment of this invention. It is the schematic which shows the structure in the middle of the manufacturing method of the semiconductor device which concerns on embodiment of this invention. It is the schematic which shows the structure in the middle of the manufacturing method of the semiconductor device which concerns on embodiment of this invention.
  • the manufacturing method of the semiconductor device of the present invention it is a figure showing other examples of the P type silicon single crystal substrate in which the semiconductor epitaxial layer was formed. It is the process flow which showed an example of the manufacturing method of the conventional semiconductor device. It is the figure which showed the outline of an example of the backside illumination type semiconductor device. It is the figure which showed the outline of an example of the conventional semiconductor device.
  • the type of the semiconductor device 40 in which light is incident from the surface side has conventionally existed in the imaging element as shown in FIG.
  • This includes, for example, a silicon single crystal substrate 41, a P + layer 50, for example, a semiconductor element having an isolation trench 44a and a photodiode 44b, a wiring layer 46, a P + layer 43a, an insulating layer 48, a microlens 49a and a color filter 49b.
  • a passivation layer 49 having The light incident from the microlens 49 a is photoelectrically converted by the photodiode 44 b and read from the wiring formed in the wiring layer 46.
  • a back-illuminated image sensor as shown in FIG. 15 has been developed.
  • This includes, for example, a holding substrate 17, a wiring layer 16, a semiconductor element having an isolation trench 14a and a photodiode 14b, a P + layer 13a, an insulating layer 18, a passivation layer 19 having a microlens 19a and a color filter 19b.
  • the light incident from the microlens 19 a is photoelectrically converted by the photodiode 14 b and read from the wiring formed in the wiring layer 16.
  • light can be incident from the surface of the wiring layer or semiconductor element layer where the gate, source, and drain are not formed, as shown by the portion surrounded by the dotted line.
  • the amount of light reaching the photodiode 14b can be increased as compared with the surface incident type.
  • Such a semiconductor device can be manufactured, for example, by a manufacturing method as shown in FIG.
  • an SOI substrate is manufactured by a general SOI substrate manufacturing method. Specifically, a plurality of silicon single crystal substrates are prepared (step 1), an oxide film is formed on the silicon single crystal substrate (step 2), hydrogen ion implantation is performed (step 3), and the oxide film is formed. (Step 4). Then, the SOI substrate is obtained by peeling from the hydrogen ion implanted layer by heat treatment or the like (step 5). In addition, the SOI substrate is annealed, and in some cases, further touch-polished, and the peeled surface is mirror-finished (smart cut method) (step 6).
  • the depth of ion implantation is 0.5 ⁇ m, and even if it is hard, about 1 ⁇ m is the limit. It is insufficient. For this reason, after polishing the SOI layer, the I layer is used as a seed layer and is epitaxially grown on the SOI wafer (step 7).
  • a semiconductor element such as an image pickup element is formed (step 8), a holding substrate is bonded to the surface (step 9), and the silicon single crystal substrate is removed by grinding, polishing, and etching (step 10).
  • Color filters, microlenses, and the like are formed on the surface on the side from which the substrate has been removed (step 11).
  • the conventional method for manufacturing a semiconductor device as shown in FIG. 14 is inevitably expensive because it is manufactured using an SOI substrate that requires two silicon single crystal substrates. Further, even if gettering capability is imparted to the silicon single crystal substrate to be removed, gettering occurs through an oxide film in which the diffusion rate of metal impurities is very slow, so that the metal impurity concentration in the semiconductor element formation region is reduced. It was difficult to reduce. The method of manufacturing the semiconductor device of the present invention has solved this problem.
  • FIG. 1 is a process flow showing an example of a method for manufacturing a semiconductor device of the present invention.
  • FIGS. 2 to 10 are schematic views showing the configuration of an intermediate stage of the semiconductor device manufacturing method according to the present embodiment.
  • a P-type silicon single crystal substrate 11 is prepared.
  • the P-type silicon single crystal substrate prepared at this time is not particularly limited except that the conductivity type is P-type, and may be any generally used one.
  • a material prepared by slicing a silicon single crystal rod doped with a P-type dopant and grown by the CZ method may be used.
  • the P-type silicon single crystal substrate to be prepared is one in which a polycrystalline silicon layer is formed on the main surface opposite to the main surface on which an N-type epitaxial layer is formed later, or the P-type silicon
  • the single crystal substrate can have oxygen precipitation nuclei.
  • the gettering capability of the P-type silicon single crystal substrate can be easily increased, and the metal impurity concentration in a region where a semiconductor element such as an imaging element to be formed later can be easily reduced.
  • the metal impurities can be removed together with the P-type silicon single crystal substrate, which is more convenient.
  • an N-type epitaxial layer 12 is epitaxially grown on the main surface of the P-type silicon single crystal substrate 11 as shown in Step 2 of FIG. 1 or FIG.
  • the N-type epitaxial layer 12 can be directly epitaxially grown on the main surface of the P-type silicon single crystal substrate 11, whereby only the P-type silicon single crystal substrate can be removed by subsequent electrochemical etching. This eliminates the need for forming unnecessary layers and is efficient.
  • a semiconductor epitaxial layer 13 is formed on the N-type epitaxial layer 12.
  • a P-type low resistance layer 13a and a P-type high resistance layer 13b are formed. This completes the epitaxial growth process.
  • the thickness of the N-type epitaxial layer 12 and the P-type low resistance layer 13a be 3 ⁇ m or less. This is preferable because it does not require a long time for epitaxial growth.
  • a semiconductor epitaxial layer grown in this epitaxial growth step is formed on the P-type low resistance layer 33a directly on the N-type epitaxial layer 32 immediately above the P-type silicon single crystal substrate 31.
  • the P-type high resistance layer 33b can be formed.
  • the N-type low resistance layer 33a ′ and the N-type high resistance layer 33b ′ can be formed immediately above the N-type epitaxial layer 32 ′.
  • an N-type layer 33a ′ ′′ and a partial P-type low resistance in the N-type layer 33a ′ ′′ are directly above the N-type epitaxial layer 32 ′ ′′.
  • Layer 33b ''' may be formed.
  • an N-type epitaxial layer 32 ′′ can be epitaxially grown directly on the P-type silicon single crystal substrate 31.
  • a polycrystalline silicon layer 34 for gettering may be provided on the surface opposite to the side on which the N-type epitaxial layer or the like is formed.
  • the semiconductor epitaxial layer 13 which becomes the semiconductor element formation region can have a structure optimal for the semiconductor element to be manufactured.
  • the structure as described above can be used, but it is not limited to this.
  • a semiconductor element 14 is formed in the semiconductor epitaxial layer 13.
  • a conventional CMOS image sensor process can be basically used.
  • a relatively deep isolation trench 14a made of an insulator, a photodiode 14b, a source 14c, a drain 14d, and a gate 14e can be formed.
  • it is more desirable to consider that alignment can be performed when the color filter and the microlens are formed on the back side.
  • a wiring layer 16 having a wiring 16 a inside is formed on the semiconductor element 14.
  • the formation of the wiring layer is not particularly limited and may be three layers, four layers or more corresponding to the advancement of the peripheral CMOS image sensor.
  • the surface on which the semiconductor element 14 and the wiring layer 16 are formed and the holding substrate 17 are bonded together.
  • the bonding is desirably performed by aligning the electrode on the side where the semiconductor element is formed and the lead-out electrode of the holding substrate, and bonding them with solder or the like.
  • the holding substrate is not particularly limited, and for example, a glass substrate, a quartz substrate, a silicon substrate (with an oxide film), or the like can be used.
  • the side on which the electrode wiring is formed and the holding substrate can be bonded together.
  • the electrode wiring in the process after bonding the holding substrate it is possible to suppress the semiconductor element from being destroyed by static electricity from an operator or the like in the subsequent process. Can be reduced.
  • a positive voltage can be easily applied to the N-type epitaxial layer, and electrochemical etching can be easily performed, which is more convenient. At this time, it is more desirable to consider that the electrode can be taken out in a bonded state by any method.
  • the holding substrate 17 can include the through electrode 20 that reaches the surface on the opposite side from the bonding surface. Thereby, a positive voltage can be more easily applied to the N-type epitaxial layer, and the semiconductor element can be protected from electrostatic breakdown.
  • the thickness of the P-type silicon single crystal substrate 11 can be reduced by performing at least one of grinding, polishing and etching.
  • the P-type silicon single crystal substrate is efficiently removed by thinning the P-type silicon single crystal substrate by at least one of grinding, polishing, and etching, which has a higher removal rate than electrochemical etching. Therefore, the working time of the removal process can be shortened.
  • grinding it is desirable to perform grinding by setting a substrate after epitaxial growth with reference to the back surface side so that the ground surface is as parallel as possible to the interface.
  • a positive voltage is applied to the N-type epitaxial layer 12, and the P-type silicon single crystal substrate 11 is removed by electrochemical etching.
  • the N-type epitaxial layer 12 is formed as an etch stop layer. As described above, it is performed by immersing in an alkaline electrolyte solution 21 and applying a voltage between the N-type epitaxial layer 12 and the working electrode 22 so that the N-type epitaxial layer 12 has a positive potential. it can. Further, it is more desirable to use the reference electrode 23 and the potentiostat 24 in order to control the applied voltage to be constant.
  • KOH is used as an alkaline electrolyte solution
  • etching is advanced electrochemically.
  • the substrate surface is at an open circuit voltage (OCP), and etching proceeds in the same manner as in a normal soaked state in KOH. .
  • OCP open circuit voltage
  • a depletion layer is formed on the P-type silicon single crystal substrate, and no voltage is applied to a place away from the interface.
  • the alkaline electrolyte solution used for etching is preferably KOH, a concentration of about 40%, and a liquid temperature of 50 to 60 ° C.
  • KOH a concentration of about 40%
  • TMAH tetramethylammonium hydroxide aqueous solution
  • ethylenediamine aqueous solution can achieve the same effect.
  • the N-type epitaxial layer 12 can be removed by polishing. Thereby, irregular reflection of light received by an imaging element or the like formed on the side where the N-type epitaxial layer is formed can be reduced, and the performance of the manufactured semiconductor device can be improved.
  • an insulating layer 18 that is transparent to incident light, and a semiconductor element based on the insulating layer 18 and the P-type high resistance layer 13b are formed.
  • a passivation layer 19 having a high refractive index that is transparent to incident light can be formed to prevent reflection of light due to a difference in refractive index from the formed layer.
  • microlenses 19a and color filters 19b can be formed on the passivation layer 19, and the semiconductor device 10 can be manufactured by forming such elements.
  • an insulating layer, a color filter, a microlens, or the like can be formed on a highly flat surface layer that has been subjected to electrochemical etching, and a desired thickness can be obtained. It can have. Further, for example, an N-type epitaxial layer or a semiconductor epitaxial layer on which a semiconductor element is formed can be formed on a P-type silicon single crystal substrate having gettering capability without an insulating film, so that the metal in the active region
  • the impurity concentration can be made lower than conventional. And it can manufacture from an epitaxial substrate instead of an SOI substrate, and can be made cheaper than before. Therefore, it is possible to manufacture a semiconductor device in which a high-performance and inexpensive backside-illuminated imaging element having a low metal impurity concentration is formed.
  • Example 1 A semiconductor device was manufactured according to the process as shown in FIG. First, a P-type silicon single crystal substrate having a P-type crystal plane (100), 10 ⁇ cm, a diameter of 8 inches (200 mm), an oxygen concentration of 15 ppma, and a heat treatment for precipitation of oxygen precipitates was prepared. Next, an N-type epitaxial layer having an N-type resistivity of 1 ⁇ cm and a thickness of 3 ⁇ m was grown using a single-wafer reactor at 1150 ° C. using trichlorosilane as a source gas.
  • a P-type low-resistance layer having a P-type resistivity of 0.1 ⁇ cm and a thickness of 1.5 ⁇ m was epitaxially grown, and then a P-type resistivity of 20 ⁇ cm and a thickness of 6 ⁇ m was epitaxially grown. .
  • CMOS image sensor as shown in FIG. 4 was produced on the produced P-type high resistance layer.
  • a wiring layer as shown in FIG. 5 was formed.
  • the thickness of the substrate was ground to about 10 ⁇ m by grinding.
  • grinding is performed by applying a potential to a KOH aqueous solution having a liquid temperature of 50 ° C. and a concentration of 30% so that the N type epitaxial layer becomes +1.5 V at the interface between the N type epitaxial layer and the P type silicon single crystal substrate.
  • the P-type silicon single crystal substrate remaining in step 1 was removed by electrochemical etching.
  • the N-type epitaxial layer was removed by polishing using a colloidal silica abrasive. Next, a low-temperature oxide film was formed on the surface from which the N-type epitaxial layer was removed. The thickness was 500 nm. Thereafter, silicon nitride for passivation was formed by plasma CVD. Thereafter, color filters and microlenses were formed to complete the semiconductor device.
  • the flatness of the exposed N-type epitaxial layer was evaluated after electrochemical etching.
  • the thickness variation was 0.2 to 0.3 ⁇ m, and it was found that the P-type silicon single crystal substrate could be removed with high accuracy.
  • the limit is about ⁇ 1 ⁇ m, and it was confirmed that the electrochemical etching of the present invention is excellent.
  • the present invention is not limited to the above embodiment.
  • the above-described embodiment is an exemplification, and the present invention has any configuration that has substantially the same configuration as the technical idea described in the claims of the present invention and that exhibits the same effects. Are included in the technical scope.

Abstract

Disclosed is a method for manufacturing a semiconductor device, which has: a step of epitaxially growing an N-type epitaxial layer, which is to be an etch stop layer and has an N-type conductivity, and a semiconductor epitaxial layer for forming a semiconductor element in this order on one main surface of a silicon single crystal substrate having a P-type conductivity; a step of forming the semiconductor element on the semiconductor epitaxial layer for forming the semiconductor element; a step of bonding a retaining substrate on the surface having the semiconductor element formed thereon; and a step of removing the P-type silicon single crystal substrate by electrochemical etching with the N-type epitaxial layer as the etch stop layer, by applying a positive voltage to the N-type epitaxial layer. Thus, the thickness of the semiconductor epitaxial layer to be an active region in a back-illuminated image pickup element and the like can be easily managed to be a desired thickness without using an SOI substrate, and gettering of contaminating impurities can be smoothly performed.

Description

半導体装置の製造方法Manufacturing method of semiconductor device
 本発明は、半導体装置の製造方法に関し、具体的には、シリコン等の半導体からなるエピタキシャル層に裏面照射型の撮像素子等が形成された半導体装置の製造方法に関する。
 
The present invention relates to a method for manufacturing a semiconductor device, and more specifically, to a method for manufacturing a semiconductor device in which a back-illuminated imaging element or the like is formed on an epitaxial layer made of a semiconductor such as silicon.
 近年、撮像素子の微細化が進んでいるが、特にCMOSイメージセンサーにおいては配線層の多層化が進み、表面側から光を入射しにくくなっている。
 そこで、半導体基板の裏面側から可視光を入射させる構造の裏面照射型の撮像素子が提案され(例えば特許文献1~4等参照)、具体的に利用されつつある。
In recent years, the miniaturization of image pickup devices has progressed. In particular, in CMOS image sensors, the number of wiring layers has increased, making it difficult for light to enter from the surface side.
In view of this, a backside-illuminated imaging device having a structure in which visible light is incident from the backside of the semiconductor substrate has been proposed (see, for example, Patent Documents 1 to 4) and is being used specifically.
 具体的には、裏面照射型の撮像素子とは、近年の受光のための開口率の向上、配線層のレイアウトの自由度の向上の観点から、エピタキシャル層の表面側に配線層を形成し、エピタキシャル層の裏面側から光を入射させて撮像できるようにしたものであり、エピタキシャル基板の裏面側から光を入射させ、該半導体基板内で入射光を光電変換し、生成された信号電荷を表面側から読み出す構成を備えているものである。 Specifically, the back-illuminated imaging element is formed by forming a wiring layer on the surface side of the epitaxial layer from the viewpoint of improving the aperture ratio for recent light reception and improving the flexibility of the layout of the wiring layer, The light is incident from the back side of the epitaxial layer so that it can be imaged. The light is incident from the back side of the epitaxial substrate, the incident light is photoelectrically converted in the semiconductor substrate, and the generated signal charge is converted to the surface. It has a configuration for reading from the side.
 裏面照射型の撮像素子の製造に通常用いられるSOI(Silicon on Insulator)基板では、シリコン単結晶基板の表面に、酸化シリコン(SiO)層等の絶縁層が形成され、その上層にシリコン等をエピタキシャル工程を経て厚さを厚くさせた半導体エピタキシャル層が形成されている。そしてその半導体エピタキシャル層に、CCDやCMOSイメージセンサーが形成される。その後、シリコン単結晶基板を裏面側から研削やエッチングによって除去し、絶縁層を露呈させ、その裏面にカラーフィルターやマイクロレンズを形成することで作製する。
 
In an SOI (Silicon on Insulator) substrate normally used for manufacturing a back-illuminated imaging device, an insulating layer such as a silicon oxide (SiO 2 ) layer is formed on the surface of a silicon single crystal substrate, and silicon or the like is formed thereon. A semiconductor epitaxial layer whose thickness is increased through an epitaxial process is formed. A CCD or CMOS image sensor is formed on the semiconductor epitaxial layer. Thereafter, the silicon single crystal substrate is removed from the back surface side by grinding or etching, the insulating layer is exposed, and a color filter or a microlens is formed on the back surface.
特開2006-19360号公報JP 2006-19360 A 特開2008-177587号公報JP 2008-177487 A 特開2003-273343号公報JP 2003-273343 A 特開2009-16431号公報JP 2009-16431 A
 ところで、裏面照射型の撮像素子の製造プロセスにおいても、撮像デバイスは、材料基板デバイス工程中での金属汚染に非常に敏感であるため、従来型の構造においても、基板に何らかのゲッタリング能力を付与している。金属不純物をゲッタリングするゲッタリング層は、通常、半導体エピタキシャル層の活性領域外に形成される。
 しかし、上記のような撮像素子の製造プロセスにおいて、ゲッタリング層の形成に制約が伴う。
By the way, even in the manufacturing process of the back-illuminated imaging device, the imaging device is very sensitive to metal contamination in the material substrate device process, so that some gettering ability is given to the substrate even in the conventional structure. is doing. A gettering layer for gettering metal impurities is usually formed outside the active region of the semiconductor epitaxial layer.
However, in the manufacturing process of the image sensor as described above, there are restrictions on the formation of the gettering layer.
 例えば、裏面照射型の撮像素子を、SOI基板のシリコン半導体エピタキシャル層に形成する場合には、酸化シリコン層を挟んでSOI層に対向するシリコン単結晶基板にゲッタリング層を形成することが一般的である。しかし、この場合、酸化シリコン層が金属不純物の拡散のバリアとなってしまい、半導体エピタキシャル層に侵入する金属をゲッタリングすることができない。 For example, when a back-illuminated imaging device is formed on a silicon semiconductor epitaxial layer of an SOI substrate, a gettering layer is generally formed on a silicon single crystal substrate facing the SOI layer with the silicon oxide layer interposed therebetween. It is. However, in this case, the silicon oxide layer becomes a barrier for diffusion of metal impurities, and the metal that enters the semiconductor epitaxial layer cannot be gettered.
 また、裏面側のシリコン単結晶基板の除去工程が必須となるが、この除去工程は研削や研磨、エッチング等によって行われるが、非常に不安定である。何故なら、除去されるシリコン単結晶基板の厚さはある程度は分かるものの、所望の位置で除去を停止することが非常に難しいためであり、安定して除去することができなかった。 Also, the removal process of the silicon single crystal substrate on the back side is essential, but this removal process is performed by grinding, polishing, etching, etc., but is very unstable. This is because although the thickness of the silicon single crystal substrate to be removed is known to some extent, it is very difficult to stop the removal at a desired position, and it has not been possible to remove it stably.
 そして、SOI基板は通常2枚のシリコン単結晶基板を用いて作製されるため、非常に高価となる。従って高価なSOI基板を用いて作製された半導体装置も当然高価になり、問題がある。特に撮像素子用基板では、CZ結晶に由来する抵抗縞の影響を避けるために、デバイス形成領域をエピタキシャル層にする必要があるため、通常のSOI基板でなく、イオン注入剥離法(スマートカット(登録商標)法とも呼ばれる。)で形成したSOI基板に所定の厚さのエピタキシャル層の成長が行われる。 And, since the SOI substrate is usually manufactured using two silicon single crystal substrates, it becomes very expensive. Therefore, a semiconductor device manufactured using an expensive SOI substrate is naturally expensive and has a problem. In particular, in order to avoid the influence of resistance fringes derived from CZ crystals in an image pickup device substrate, it is necessary to use a device formation region as an epitaxial layer. Therefore, instead of a normal SOI substrate, an ion implantation separation method (smart cut (registered) Also, the epitaxial layer having a predetermined thickness is grown on the SOI substrate formed by the above method.
 本発明は、上記問題に鑑みなされたものであって、SOI基板を用いずに、裏面照射型の撮像素子等を、活性領域となる半導体エピタキシャル層の厚さを所望の厚さに容易に管理することができ、かつ、汚染不純物のゲッタリングを円滑に行うことができる半導体装置の製造方法を提供することを目的とする。 The present invention has been made in view of the above problems, and easily manages the thickness of a semiconductor epitaxial layer serving as an active region to a desired thickness without using an SOI substrate. It is an object of the present invention to provide a method for manufacturing a semiconductor device that can perform gettering of contaminant impurities.
 上記課題を解決するため、本発明では、導電型がP型のシリコン単結晶基板の一方の主表面に、エッチストップ層となる導電型がN型のN型エピタキシャル層と、半導体素子を形成するための半導体エピタキシャル層とをこの順にエピタキシャル成長させる工程と、前記半導体素子を形成するための半導体エピタキシャル層に前記半導体素子を形成する工程と、該半導体素子が形成された表面に保持基板を貼り合わせる工程と、前記N型エピタキシャル層に正電圧を印加して、該N型エピタキシャル層をエッチストップ層として電気化学的エッチングにより前記P型シリコン単結晶基板を除去する工程とを有することを特徴とする半導体装置の製造方法を提供する。 In order to solve the above problems, in the present invention, a semiconductor element is formed on one main surface of a silicon single crystal substrate having a conductivity type of P type and an N type epitaxial layer having an N type conductivity serving as an etch stop layer. Epitaxially growing the semiconductor epitaxial layer for forming the semiconductor element in this order, forming the semiconductor element on the semiconductor epitaxial layer for forming the semiconductor element, and attaching the holding substrate to the surface on which the semiconductor element is formed And a step of applying a positive voltage to the N-type epitaxial layer and removing the P-type silicon single crystal substrate by electrochemical etching using the N-type epitaxial layer as an etch stop layer. An apparatus manufacturing method is provided.
 このように、エッチストップ層となるN型エピタキシャル層上に半導体素子を形成するための半導体エピタキシャル層をエピタキシャル成長させ、その半導体エピタキシャル層上に裏面照射型の撮像素子等の半導体素子を形成した後に、P型シリコン単結晶基板の除去を、電気化学的エッチングによって行うこととする。
 これによって、従来の研削・研磨・エッチングに比べて非常に高い精度でP型シリコン単結晶基板の除去を行うことができ、所望の厚さの活性領域の半導体装置を得ることができる。
 また、例えば電気化学的エッチングの後にエッチストップ面の上に絶縁体を形成することができ、品質が良好で厚さが所望の厚さの絶縁体を容易に形成することができる。従って、作製された半導体素子の品質も良好なものとすることができる。
Thus, after epitaxially growing a semiconductor epitaxial layer for forming a semiconductor element on the N-type epitaxial layer serving as an etch stop layer and forming a semiconductor element such as a back-illuminated imaging element on the semiconductor epitaxial layer, The P-type silicon single crystal substrate is removed by electrochemical etching.
As a result, the P-type silicon single crystal substrate can be removed with very high accuracy compared to conventional grinding, polishing, and etching, and a semiconductor device having an active region with a desired thickness can be obtained.
Further, for example, an insulator can be formed on the etch stop surface after electrochemical etching, and an insulator having a good quality and a desired thickness can be easily formed. Therefore, the quality of the manufactured semiconductor element can be improved.
 更に、エピタキシャル成長工程で用いるP型シリコン単結晶基板と半導体素子が形成される半導体エピタキシャル層は酸化膜を介せずに接しているものとすることができるため、例えばP型シリコン単結晶基板にゲッタリング能力を付与することによって、半導体エピタキシャル層の金属不純物濃度を非常に低いものとすることができ、作製した半導体装置の歩留りの向上を図ることができる。
 そして、高価なSOI基板を用いなくても撮像素子等の半導体素子が形成された半導体装置を製造することができ、従来に比べて安価な半導体装置の製造方法とすることができる。
Furthermore, since the P-type silicon single crystal substrate used in the epitaxial growth process and the semiconductor epitaxial layer on which the semiconductor element is formed can be in contact with each other without an oxide film, for example, a getter is attached to the P-type silicon single crystal substrate. By imparting ring capability, the metal impurity concentration of the semiconductor epitaxial layer can be made extremely low, and the yield of the manufactured semiconductor device can be improved.
Further, a semiconductor device in which a semiconductor element such as an imaging element is formed can be manufactured without using an expensive SOI substrate, and a method for manufacturing a semiconductor device that is less expensive than the conventional one can be obtained.
 ここで、前記エピタキシャル成長工程は、前記P型シリコン単結晶基板の直上に前記N型エピタキシャル層をエピタキシャル成長させることが好ましい。
 このように、P型シリコン単結晶基板の直上にエッチストップ層となるN型エピタキシャル層をエピタキシャル成長させることによって、除去する基板をP型シリコン単結晶基板のみとすることができる。よって、シリコン単結晶基板やエピタキシャル層の無駄を省くことができ、効率よく半導体装置を製造することができる。
Here, in the epitaxial growth step, it is preferable that the N-type epitaxial layer is epitaxially grown directly on the P-type silicon single crystal substrate.
As described above, by epitaxially growing the N-type epitaxial layer serving as the etch stop layer directly on the P-type silicon single crystal substrate, it is possible to remove only the P-type silicon single crystal substrate. Therefore, waste of the silicon single crystal substrate and the epitaxial layer can be eliminated, and the semiconductor device can be manufactured efficiently.
 また、前記P型シリコン単結晶基板は、前記N型エピタキシャル層が形成された主表面とは反対側の主表面に多結晶シリコン層が形成されたものか、若しくは該P型シリコン単結晶基板中に酸素析出核を有するものとすることが好ましい。
 このように、後に除去するP型シリコン単結晶基板に、ゲッタリング能力を付与するために、裏面側に多結晶シリコン層が形成されたり、酸素析出核を有するものとすることによって、よりゲッタリング能力が高いP型シリコン単結晶基板とすることができ、より活性領域に金属不純物が少ない半導体装置を製造することができる。なぜなら本発明では埋め込み絶縁膜を有するSOI基板を用いる必要がなく、従来の様に金属不純物の拡散速度が非常に遅い絶縁膜を介してゲッタリングが行われる訳ではないため、従来に比べて活性層の金属不純物濃度を低減することができる。
 またこれらの方法は一般的であり、容易に実施することができ、コスト的にも好適である。
Further, the P-type silicon single crystal substrate is a substrate in which a polycrystalline silicon layer is formed on the main surface opposite to the main surface on which the N-type epitaxial layer is formed, or in the P-type silicon single crystal substrate. It is preferable to have oxygen precipitation nuclei.
As described above, in order to give a gettering capability to a P-type silicon single crystal substrate to be removed later, a polycrystalline silicon layer is formed on the back surface side, or oxygen precipitation nuclei are provided, so that gettering can be further performed. A P-type silicon single crystal substrate with high capability can be obtained, and a semiconductor device with fewer metal impurities in the active region can be manufactured. This is because it is not necessary to use an SOI substrate having a buried insulating film in the present invention, and gettering is not performed through an insulating film having a very low diffusion rate of metal impurities as in the prior art. The metal impurity concentration of the layer can be reduced.
Moreover, these methods are general, can be implemented easily, and are suitable in terms of cost.
 そして、前記電気化学的エッチングは、少なくとも前記半導体素子を形成した半導体エピタキシャル層を覆う基板ホルダーに前記P型シリコン単結晶基板を保持した後、前記N型エピタキシャル層をエッチストップ層として、アルカリ電解質溶液に浸漬させて行うものとすることが好ましい。
 上述のような方法によって電気化学的エッチングを行うことによって、半導体素子が形成された半導体エピタキシャル層がエッチングされることを確実に防止することができる。また、N型エピタキシャル層が露出した時点でエッチングは確実に止まるため、P型シリコン単結晶基板等の除去したい部分のみを確実且つ容易に除去することができる。
In the electrochemical etching, the P-type silicon single crystal substrate is held on a substrate holder that covers at least the semiconductor epitaxial layer on which the semiconductor element is formed, and then the N-type epitaxial layer is used as an etch stop layer to form an alkaline electrolyte solution. It is preferable to immerse the substrate in water.
By performing the electrochemical etching by the method as described above, the semiconductor epitaxial layer in which the semiconductor element is formed can be reliably prevented from being etched. Further, since the etching is surely stopped when the N-type epitaxial layer is exposed, only the portion to be removed such as the P-type silicon single crystal substrate can be surely and easily removed.
 更に、前記半導体素子形成工程後、前記貼り合わせ工程前に、前記半導体素子上に電極配線を形成し、その後該電極配線が形成された側の表面に前記保持基板を貼り合わせることが好ましい。
 このように、電極配線を形成した後に電極配線側を保持基板に貼り付けることによって、容易にN型エピタキシャル層に正電圧を印加することができ、電気化学的エッチングを容易に行うことができる。また、保持基板と貼り合わせた後の工程において、電極配線を接地することによって、静電気等を当該電極配線を介してアースに逃すことができる。よって、半導体素子が静電気等によって破壊されることを抑制することができ、より好適である。
Furthermore, it is preferable that after the semiconductor element forming step and before the bonding step, an electrode wiring is formed on the semiconductor element, and then the holding substrate is bonded to the surface on which the electrode wiring is formed.
In this way, by attaching the electrode wiring side to the holding substrate after forming the electrode wiring, a positive voltage can be easily applied to the N-type epitaxial layer, and electrochemical etching can be easily performed. Further, by grounding the electrode wiring in the step after being bonded to the holding substrate, static electricity or the like can be released to the ground through the electrode wiring. Therefore, the semiconductor element can be prevented from being destroyed by static electricity or the like, which is more preferable.
 また、前記保持基板は、前記貼り合わせ面から逆側の表面に達する電極を有することが好ましい。
 このように、保持基板が貼り合わせ面から逆側の表面に達する電極を有するものであれば、より容易にN型エピタキシャル層に正電圧を印加することができ、電気化学的エッチングをより容易に行うことができる。また静電気破壊からもより容易に保護することができる。
Moreover, it is preferable that the said holding substrate has an electrode which reaches the surface on the opposite side from the said bonding surface.
In this way, if the holding substrate has an electrode that reaches the opposite surface from the bonding surface, a positive voltage can be more easily applied to the N-type epitaxial layer, and electrochemical etching can be performed more easily. It can be carried out. Moreover, it can protect more easily from electrostatic breakdown.
 そして、前記P型シリコン単結晶基板の除去工程は、該P型シリコン単結晶基板に研削・研磨・エッチングのうち少なくとも1つを行った後、前記電気化学的エッチングを行うものとすることが好ましい。
 このように、電気化学的エッチングのみでP型シリコン単結晶基板を除去するのではなく、研削・研磨・エッチング等の方法によってP型シリコン単結晶基板を予めある程度除去しておくことによって、短時間でP型シリコン単結晶基板を完全に除去することができ、工程の作業時間の短縮等の効果を達成することができる。
The step of removing the P-type silicon single crystal substrate preferably includes performing the electrochemical etching after performing at least one of grinding, polishing, and etching on the P-type silicon single crystal substrate. .
In this way, instead of removing the P-type silicon single crystal substrate only by electrochemical etching, the P-type silicon single crystal substrate is removed to some extent in advance by a method such as grinding, polishing, and etching. Thus, the P-type silicon single crystal substrate can be completely removed, and the effect of shortening the working time of the process can be achieved.
 更に、前記P型シリコン単結晶基板の除去工程の後、露出した電気化学的エッチストップ面に対して研磨を行って前記N型エピタキシャル層を除去することが好ましい。
 このように、研磨によってN型エピタキシャル層を除去することによって、受光面となる光が照射される側の表面の平坦度を高いものとすることができ、乱反射を低減することができ、作製される撮像素子等の性能をより高いものとすることができる。
Further, after the step of removing the P-type silicon single crystal substrate, it is preferable to polish the exposed electrochemical etch stop surface to remove the N-type epitaxial layer.
In this way, by removing the N-type epitaxial layer by polishing, the flatness of the surface irradiated with light, which becomes the light receiving surface, can be increased, and irregular reflection can be reduced and produced. The performance of the imaging device or the like can be made higher.
 前記エピタキシャル成長工程は、前記N型エピタキシャル層の直上に、P型低抵抗層とP型高抵抗層を形成することができる。または、前記N型エピタキシャル層の直上に、N型低抵抗層とN型高抵抗層を形成することができる。更に、前記N型エピタキシャル層の直上に、N型層と、該N型層中に部分的なP型低抵抗層を形成することができる。
 このように、N型エピタキシャル層上に形成する半導体エピタキシャル層は、作製する半導体素子に適したように任意の構成とすることができ、その構成は特に限定されず、例えば上述のような構成の半導体エピタキシャル層を形成することができる。
In the epitaxial growth step, a P-type low resistance layer and a P-type high resistance layer can be formed immediately above the N-type epitaxial layer. Alternatively, an N-type low resistance layer and an N-type high resistance layer can be formed directly on the N-type epitaxial layer. Furthermore, an N-type layer and a partial P-type low resistance layer in the N-type layer can be formed immediately above the N-type epitaxial layer.
As described above, the semiconductor epitaxial layer formed on the N-type epitaxial layer can have any configuration suitable for the semiconductor element to be manufactured, and the configuration is not particularly limited. A semiconductor epitaxial layer can be formed.
 以上説明したように、本発明によれば、例えばゲッタリング能力を持ったP型シリコン単結晶基板の1主表面にN型エピタキシャル層および半導体素子を形成する半導体エピタキシャル層を導入した後、撮像素子を形成する。また、その後保持基板を付加し、研削等と、N型エピタキシャル層をエッチストップ層とした電気化学的エッチングを用いてP型シリコン単結晶基板を除去することができる。そして電気化学的エッチングが行われた側にカラーフィルター、レンズ等を形成することができ、所望の厚さを有し、且つ活性領域の金属不純物濃度の低い高性能半導体素子が形成された半導体装置を製造することができる。
 
As described above, according to the present invention, for example, after introducing a semiconductor epitaxial layer for forming an N-type epitaxial layer and a semiconductor element on one main surface of a P-type silicon single crystal substrate having gettering capability, Form. Further, after that, a holding substrate is added, and the P-type silicon single crystal substrate can be removed by grinding or the like and electrochemical etching using the N-type epitaxial layer as an etch stop layer. A semiconductor device in which a color filter, a lens, and the like can be formed on the side subjected to electrochemical etching, and a high-performance semiconductor element having a desired thickness and a low metal impurity concentration in the active region is formed. Can be manufactured.
本発明の半導体装置の製造方法の一例を示した工程フローである。5 is a process flow illustrating an example of a method for manufacturing a semiconductor device according to the present invention. 本発明の実施の形態に係る半導体装置の製造方法の途中段階の構成を示す概略図である。It is the schematic which shows the structure in the middle of the manufacturing method of the semiconductor device which concerns on embodiment of this invention. 本発明の実施の形態に係る半導体装置の製造方法の途中段階の構成を示す概略図である。It is the schematic which shows the structure in the middle of the manufacturing method of the semiconductor device which concerns on embodiment of this invention. 本発明の実施の形態に係る半導体装置の製造方法の途中段階の構成を示す概略図である。It is the schematic which shows the structure in the middle of the manufacturing method of the semiconductor device which concerns on embodiment of this invention. 本発明の実施の形態に係る半導体装置の製造方法の途中段階の構成を示す概略図である。It is the schematic which shows the structure in the middle of the manufacturing method of the semiconductor device which concerns on embodiment of this invention. 本発明の実施の形態に係る半導体装置の製造方法の途中段階の構成を示す概略図である。It is the schematic which shows the structure in the middle of the manufacturing method of the semiconductor device which concerns on embodiment of this invention. 本発明の実施の形態に係る半導体装置の製造方法の途中段階の構成を示す概略図である。It is the schematic which shows the structure in the middle of the manufacturing method of the semiconductor device which concerns on embodiment of this invention. 本発明の実施の形態に係る半導体装置の製造方法の途中段階の構成を示す概略図である。It is the schematic which shows the structure in the middle of the manufacturing method of the semiconductor device which concerns on embodiment of this invention. 本発明の実施の形態に係る半導体装置の製造方法の途中段階の構成を示す概略図である。It is the schematic which shows the structure in the middle of the manufacturing method of the semiconductor device which concerns on embodiment of this invention. 本発明の実施の形態に係る半導体装置の製造方法の途中段階の構成を示す概略図である。It is the schematic which shows the structure in the middle of the manufacturing method of the semiconductor device which concerns on embodiment of this invention. 本発明の半導体装置の製造方法における電気化学的エッチングの際に用いる装置の構成の一例を示した図である。It is the figure which showed an example of the structure of the apparatus used in the case of the electrochemical etching in the manufacturing method of the semiconductor device of this invention. 本発明の電気化学的エッチングの際のN型エピタキシャル層やP型シリコン単結晶基板に印加されている電圧の状態を模式的に示した概略図である。It is the schematic which showed typically the state of the voltage applied to the N type epitaxial layer in the case of the electrochemical etching of this invention, and a P type silicon single crystal substrate. 本発明の半導体装置の製造方法において、半導体エピタキシャル層が形成されたP型シリコン単結晶基板の他の一例を示した図である。In the manufacturing method of the semiconductor device of the present invention, it is a figure showing other examples of the P type silicon single crystal substrate in which the semiconductor epitaxial layer was formed. 従来の半導体装置の製造方法の一例を示した工程フローである。It is the process flow which showed an example of the manufacturing method of the conventional semiconductor device. 裏面照射型の半導体装置の一例の概略を示した図である。It is the figure which showed the outline of an example of the backside illumination type semiconductor device. 従来の半導体装置の一例の概略を示した図である。It is the figure which showed the outline of an example of the conventional semiconductor device.
 以下、本発明について図を参照して詳細に説明するが、本発明はこれらに限定されるものではない。
 前述のように、撮像素子には、図16にあるように、表面側から光を入射させるタイプの半導体装置40が従来から存在していた。
 これは、例えば、シリコン単結晶基板41、P層50、例えばアイソレーショントレンチ44aやフォトダイオード44bを有する半導体素子、配線層46、P層43a、絶縁層48、マイクロレンズ49aやカラーフィルター49bを有するパッシベーション層49とからなるものである。そして、マイクロレンズ49aから入射した光は、フォトダイオード44bで光電変換されて、配線層46に形成された配線から読み取るものである。
Hereinafter, the present invention will be described in detail with reference to the drawings, but the present invention is not limited thereto.
As described above, the type of the semiconductor device 40 in which light is incident from the surface side has conventionally existed in the imaging element as shown in FIG.
This includes, for example, a silicon single crystal substrate 41, a P + layer 50, for example, a semiconductor element having an isolation trench 44a and a photodiode 44b, a wiring layer 46, a P + layer 43a, an insulating layer 48, a microlens 49a and a color filter 49b. And a passivation layer 49 having The light incident from the microlens 49 a is photoelectrically converted by the photodiode 44 b and read from the wiring formed in the wiring layer 46.
 しかし、図16の点線で囲んだ部分に示す様に、マイクロレンズ49aから入射した光は、配線層46の配線や半導体素子層のゲートやソース、ドレインによって遮られたり、散乱するため、フォトダイオード44bに到達する量には限界があった。 However, as shown in a portion surrounded by a dotted line in FIG. 16, light incident from the microlens 49a is blocked or scattered by the wiring of the wiring layer 46, the gate, the source, or the drain of the semiconductor element layer. There was a limit to the amount to reach 44b.
 この問題を解決するために、図15に示す様な裏面照射型の撮像素子が開発された。
 これは、例えば、保持基板17、配線層16、アイソレーショントレンチ14aやフォトダイオード14bを有する半導体素子、P層13a、絶縁層18、マイクロレンズ19aやカラーフィルター19bを有するパッシベーション層19とからなるものである。そして、マイクロレンズ19aから入射した光は、フォトダイオード14bで光電変換されて、配線層16に形成された配線から読み取られる。
In order to solve this problem, a back-illuminated image sensor as shown in FIG. 15 has been developed.
This includes, for example, a holding substrate 17, a wiring layer 16, a semiconductor element having an isolation trench 14a and a photodiode 14b, a P + layer 13a, an insulating layer 18, a passivation layer 19 having a microlens 19a and a color filter 19b. Is. The light incident from the microlens 19 a is photoelectrically converted by the photodiode 14 b and read from the wiring formed in the wiring layer 16.
 そして、図15のような半導体装置であれば、点線で囲んだ部分に示す様に、配線層や半導体素子層のゲートやソース、ドレインが形成されていない面から光を入射させることができるため、フォトダイオード14bに到達する光の量を表面入射型のものに比べて多くすることができる。 In the case of the semiconductor device as shown in FIG. 15, light can be incident from the surface of the wiring layer or semiconductor element layer where the gate, source, and drain are not formed, as shown by the portion surrounded by the dotted line. The amount of light reaching the photodiode 14b can be increased as compared with the surface incident type.
 そしてこのような半導体装置は、例えば図14に示す様な製造方法によって製造することができる。これは、まず一般的なSOI基板の製造方法によってSOI基板を製造する。
 具体的には、シリコン単結晶基板を複数枚準備し(工程1)、そのシリコン単結晶基板に酸化膜を形成した後(工程2)、水素イオン注入を行って(工程3)、酸化膜を介して貼り合わせる(工程4)。そして熱処理等によって水素イオン注入層から剥離を行ってSOI基板を得る(工程5)。
 また、SOI基板にアニール、場合によっては更にタッチポリッシュを行って、剥離面を鏡面化する(スマートカット法)(工程6)。一般的なスマートカットSOI基板のI層の厚さでは、イオン注入の深さが0.5μm、頑張っても1μm程度が限界であり、撮像素子等の半導体素子を形成するにはその厚さが不十分である。このため、SOI層の研磨を行った後I層を種層として、SOIウェーハ上にエピタキシャル成長させる(工程7)。
Such a semiconductor device can be manufactured, for example, by a manufacturing method as shown in FIG. First, an SOI substrate is manufactured by a general SOI substrate manufacturing method.
Specifically, a plurality of silicon single crystal substrates are prepared (step 1), an oxide film is formed on the silicon single crystal substrate (step 2), hydrogen ion implantation is performed (step 3), and the oxide film is formed. (Step 4). Then, the SOI substrate is obtained by peeling from the hydrogen ion implanted layer by heat treatment or the like (step 5).
In addition, the SOI substrate is annealed, and in some cases, further touch-polished, and the peeled surface is mirror-finished (smart cut method) (step 6). In the thickness of the I layer of a general smart cut SOI substrate, the depth of ion implantation is 0.5 μm, and even if it is hard, about 1 μm is the limit. It is insufficient. For this reason, after polishing the SOI layer, the I layer is used as a seed layer and is epitaxially grown on the SOI wafer (step 7).
 その後、撮像素子等の半導体素子を形成し(工程8)、該表面に保持基板を貼り合わせ(工程9)、シリコン単結晶基板を研削・研磨・エッチングによって除去し(工程10)、シリコン単結晶基板を除去した側の表面に、カラーフィルター・マイクロレンズなどを形成するものである(工程11)。 Thereafter, a semiconductor element such as an image pickup element is formed (step 8), a holding substrate is bonded to the surface (step 9), and the silicon single crystal substrate is removed by grinding, polishing, and etching (step 10). Color filters, microlenses, and the like are formed on the surface on the side from which the substrate has been removed (step 11).
 しかし、図14のような従来の半導体装置の製造方法では、2枚のシリコン単結晶基板を必要とするSOI基板を用いて作製するため、必然的に高価になる。
 また、除去する側のシリコン単結晶基板にゲッタリング能力を付与しても、金属不純物の拡散速度が非常に遅い酸化膜を介してのゲッタリングとなるため、半導体素子形成領域の金属不純物濃度を低減することが困難であった。
 この問題を解決したのが、本発明の半導体装置の製造方法である。
However, the conventional method for manufacturing a semiconductor device as shown in FIG. 14 is inevitably expensive because it is manufactured using an SOI substrate that requires two silicon single crystal substrates.
Further, even if gettering capability is imparted to the silicon single crystal substrate to be removed, gettering occurs through an oxide film in which the diffusion rate of metal impurities is very slow, so that the metal impurity concentration in the semiconductor element formation region is reduced. It was difficult to reduce.
The method of manufacturing the semiconductor device of the present invention has solved this problem.
 以下、本発明の半導体装置の製造方法について、裏面照射型のCIS(CMOSイメージセンサー)を形成する場合を例にして図を参照して説明するが、これに限定されない。
 図1は、本発明の半導体装置の製造方法の一例を示した工程フローである。また図2~10は、本実施の形態に係る半導体装置の製造方法の途中段階の構成を示す概略図である。
Hereinafter, the method for manufacturing a semiconductor device of the present invention will be described with reference to the drawings, taking as an example the case of forming a back-illuminated CIS (CMOS image sensor), but is not limited thereto.
FIG. 1 is a process flow showing an example of a method for manufacturing a semiconductor device of the present invention. FIGS. 2 to 10 are schematic views showing the configuration of an intermediate stage of the semiconductor device manufacturing method according to the present embodiment.
 まず、図1の工程1や図2に示す様に、P型シリコン単結晶基板11を準備する。
 この時準備するP型シリコン単結晶基板は、導電型がP型であること以外は特に限定されず、一般的に用いられているものであれば良い。例えばP型ドーパントをドープしてCZ法で育成したシリコン単結晶棒からスライスして作製したものを用いればよい。
First, as shown in Step 1 of FIG. 1 and FIG. 2, a P-type silicon single crystal substrate 11 is prepared.
The P-type silicon single crystal substrate prepared at this time is not particularly limited except that the conductivity type is P-type, and may be any generally used one. For example, a material prepared by slicing a silicon single crystal rod doped with a P-type dopant and grown by the CZ method may be used.
 ここで、この準備するP型シリコン単結晶基板は、後にN型エピタキシャル層が形成される主表面とは反対側の主表面に、多結晶シリコン層が形成されたものか、若しくは該P型シリコン単結晶基板中に酸素析出核を有するものとすることができる。
 これによって、P型シリコン単結晶基板のゲッタリング能力を容易に高いものとすることができ、後に形成する撮像素子等の半導体素子が形成される領域の金属不純物濃度を容易に低減することができる。またP型シリコン単結晶基板は後に除去するため、金属不純物をP型シリコン単結晶基板ごと除去でき、より好都合である。
Here, the P-type silicon single crystal substrate to be prepared is one in which a polycrystalline silicon layer is formed on the main surface opposite to the main surface on which an N-type epitaxial layer is formed later, or the P-type silicon The single crystal substrate can have oxygen precipitation nuclei.
Thereby, the gettering capability of the P-type silicon single crystal substrate can be easily increased, and the metal impurity concentration in a region where a semiconductor element such as an imaging element to be formed later can be easily reduced. . Further, since the P-type silicon single crystal substrate is removed later, the metal impurities can be removed together with the P-type silicon single crystal substrate, which is more convenient.
 次に、エピタキシャル成長工程として、図1の工程2や図3に示す様に、P型シリコン単結晶基板11の主表面上に、N型エピタキシャル層12をエピタキシャル成長させる。
 このように、P型シリコン単結晶基板11の主表面上に直接N型エピタキシャル層12をエピタキシャル成長させることができ、これによって、後の電気化学的エッチングによって除去する基板をP型シリコン単結晶基板のみとすることができ、不要な層を形成せずに済み、効率的である。
Next, as an epitaxial growth step, an N-type epitaxial layer 12 is epitaxially grown on the main surface of the P-type silicon single crystal substrate 11 as shown in Step 2 of FIG. 1 or FIG.
In this way, the N-type epitaxial layer 12 can be directly epitaxially grown on the main surface of the P-type silicon single crystal substrate 11, whereby only the P-type silicon single crystal substrate can be removed by subsequent electrochemical etching. This eliminates the need for forming unnecessary layers and is efficient.
 次に図1の工程3や図3に示す様に、N型エピタキシャル層12上に、半導体エピタキシャル層13を形成する。ここでは、P型低抵抗層13aと、P型高抵抗層13bを形成する。これでエピタキシャル成長工程は終了する。
 ここで、N型エピタキシャル層12やP型低抵抗層13aは、その厚さを3μm以下とすることが望ましい。これによって、エピタキシャル成長にかかる時間を長時間とする必要もなく、好適である。
Next, as shown in step 3 of FIG. 1 and FIG. 3, a semiconductor epitaxial layer 13 is formed on the N-type epitaxial layer 12. Here, a P-type low resistance layer 13a and a P-type high resistance layer 13b are formed. This completes the epitaxial growth process.
Here, it is desirable that the thickness of the N-type epitaxial layer 12 and the P-type low resistance layer 13a be 3 μm or less. This is preferable because it does not require a long time for epitaxial growth.
 また、このエピタキシャル成長工程において成長させる半導体エピタキシャル層は、例えば図13(a)に示すように、P型シリコン単結晶基板31の直上のN型エピタキシャル層32の直上に、P型低抵抗層33aとP型高抵抗層33bを形成するものとすることができる。または、13(b)に示す様に、N型エピタキシャル層32’の直上に、N型低抵抗層33a’とN型高抵抗層33b’を形成するものとすることができる。更に、図13(d)に示す様に、N型エピタキシャル層32’’’の直上に、N型層33a’’’と、該N型層33a’’’中に部分的なP型低抵抗層33b’’’を形成するものとすることができる。また、図13(c)に示す様に、P型シリコン単結晶基板31の直上に、N型エピタキシャル層32’’をエピタキシャル成長させるものとすることができる。
 また、N型エピタキシャル層等が形成された側とは反対側の表面に、ゲッタリングのための多結晶シリコン層34を設ける事もできる。
Further, as shown in FIG. 13A, for example, a semiconductor epitaxial layer grown in this epitaxial growth step is formed on the P-type low resistance layer 33a directly on the N-type epitaxial layer 32 immediately above the P-type silicon single crystal substrate 31. The P-type high resistance layer 33b can be formed. Alternatively, as shown in FIG. 13B, the N-type low resistance layer 33a ′ and the N-type high resistance layer 33b ′ can be formed immediately above the N-type epitaxial layer 32 ′. Further, as shown in FIG. 13 (d), an N-type layer 33a ′ ″ and a partial P-type low resistance in the N-type layer 33a ′ ″ are directly above the N-type epitaxial layer 32 ′ ″. Layer 33b '''may be formed. Further, as shown in FIG. 13C, an N-type epitaxial layer 32 ″ can be epitaxially grown directly on the P-type silicon single crystal substrate 31.
A polycrystalline silicon layer 34 for gettering may be provided on the surface opposite to the side on which the N-type epitaxial layer or the like is formed.
 本発明の半導体装置の製造方法は、先に形成したN型エピタキシャル層12に正電圧を印加して、電気化学的エッチングによってP型シリコン単結晶基板11を除去するものである。従って、半導体素子形成領域となる半導体エピタキシャル層13は、作製する半導体素子に最適な構造とすることができ、例えば上述のような構造とすることができるが、もちろんこれに限定されない。 In the method for manufacturing a semiconductor device of the present invention, a positive voltage is applied to the previously formed N-type epitaxial layer 12 and the P-type silicon single crystal substrate 11 is removed by electrochemical etching. Therefore, the semiconductor epitaxial layer 13 which becomes the semiconductor element formation region can have a structure optimal for the semiconductor element to be manufactured. For example, the structure as described above can be used, but it is not limited to this.
 その後、図1の工程4や図4に示す様に、半導体エピタキシャル層13に、半導体素子14を形成する。
 この工程は、基本的には従来のCMOSイメージセンサーのプロセスを用いることができる。
 例えば、図4に示す様に、絶縁物からなる比較的深いアイソレーショントレンチ14aと、フォトダイオード14bと、ソース14cと、ドレイン14dと、ゲート14eとを形成することができる。この際、裏面側にカラーフィルター、マイクロレンズを形成する際にアライメントができるように配慮することがより望ましい。
Thereafter, as shown in Step 4 of FIG. 1 and FIG. 4, a semiconductor element 14 is formed in the semiconductor epitaxial layer 13.
In this step, a conventional CMOS image sensor process can be basically used.
For example, as shown in FIG. 4, a relatively deep isolation trench 14a made of an insulator, a photodiode 14b, a source 14c, a drain 14d, and a gate 14e can be formed. At this time, it is more desirable to consider that alignment can be performed when the color filter and the microlens are formed on the back side.
 その後、図5に示す様に、半導体素子14上に配線16aを内部に有する配線層16を形成する。
 この配線層の形成は、周辺CMOSイメージセンサーの高度化に対応して、3層、4層或いはそれ以上であっても問題なく、特に限定されるものではない。
Thereafter, as shown in FIG. 5, a wiring layer 16 having a wiring 16 a inside is formed on the semiconductor element 14.
The formation of the wiring layer is not particularly limited and may be three layers, four layers or more corresponding to the advancement of the peripheral CMOS image sensor.
 次に、図1の工程5や図6に示す様に、半導体素子14や配線層16が形成された側の表面と、保持基板17とを貼り合わせる。
 貼り合わせは、半導体素子を形成した側の電極と保持基板の取り出し貫通電極をアライメントし、半田等で接着することが望ましい。
 また、保持基板は特に限定されないが、例えばガラス基板や石英基板、シリコン基板(酸化膜付き)などを用いることができる。
Next, as shown in Step 5 of FIG. 1 and FIG. 6, the surface on which the semiconductor element 14 and the wiring layer 16 are formed and the holding substrate 17 are bonded together.
The bonding is desirably performed by aligning the electrode on the side where the semiconductor element is formed and the lead-out electrode of the holding substrate, and bonding them with solder or the like.
The holding substrate is not particularly limited, and for example, a glass substrate, a quartz substrate, a silicon substrate (with an oxide film), or the like can be used.
 このように、電極配線が形成された側と保持基板を貼り合わせることができる。
 これによって、保持基板を貼り合わせた後の工程において、電極配線を接地することによって、後の工程において、作業者等からの静電気によって半導体素子が破壊されることを抑制することができ、不良を低減することができる。また、容易にN型エピタキシャル層に正電圧を印加することができ、電気化学的エッチングが容易に行え、より都合がよい。
 尚、この時、何れかの方法で、貼り合わせた状態で電極を外部に取り出せるように配慮することがより望ましい。
Thus, the side on which the electrode wiring is formed and the holding substrate can be bonded together.
Thus, by grounding the electrode wiring in the process after bonding the holding substrate, it is possible to suppress the semiconductor element from being destroyed by static electricity from an operator or the like in the subsequent process. Can be reduced. Further, a positive voltage can be easily applied to the N-type epitaxial layer, and electrochemical etching can be easily performed, which is more convenient.
At this time, it is more desirable to consider that the electrode can be taken out in a bonded state by any method.
 また、保持基板17は、貼り合わせ面から逆側の表面に達する貫通電極20を有するものとすることができる。
 これによって、より容易にN型エピタキシャル層に正電圧を印加でき、また静電気破壊から半導体素子を保護することができる。
Moreover, the holding substrate 17 can include the through electrode 20 that reaches the surface on the opposite side from the bonding surface.
Thereby, a positive voltage can be more easily applied to the N-type epitaxial layer, and the semiconductor element can be protected from electrostatic breakdown.
 その後、図1の工程6や図7に示す様に、P型シリコン単結晶基板11を、研削や研磨・エッチングのうち少なくとも1つを行って、その厚さを減ずることができる。
 このように、電気化学的エッチングに比べて除去速度が速い研削・研磨・エッチングのうち少なくとも1つによってP型シリコン単結晶基板を薄膜化することによって、効率よくP型シリコン単結晶基板を除去することができ、除去工程の作業時間を短時間とすることができる。
 尚、研削を行う場合は、研削仕上げ面が界面に極力平行になるようにするため、裏面側を基準にエピタキシャル成長後の基板を設置して研削を行うことが望ましい。
Thereafter, as shown in Step 6 of FIG. 1 and FIG. 7, the thickness of the P-type silicon single crystal substrate 11 can be reduced by performing at least one of grinding, polishing and etching.
In this way, the P-type silicon single crystal substrate is efficiently removed by thinning the P-type silicon single crystal substrate by at least one of grinding, polishing, and etching, which has a higher removal rate than electrochemical etching. Therefore, the working time of the removal process can be shortened.
When grinding is performed, it is desirable to perform grinding by setting a substrate after epitaxial growth with reference to the back surface side so that the ground surface is as parallel as possible to the interface.
 その後、図1の工程7や図8に示す様に、N型エピタキシャル層12に正電圧を印加して、電気化学的エッチングによってP型シリコン単結晶基板11の除去を行う。
 これは例えば図11に示す様に、少なくとも半導体素子が形成された半導体エピタキシャル層を覆うようにして基板ホルダー25にP型シリコン単結晶基板11を保持した後、N型エピタキシャル層12をエッチストップ層として、アルカリ系の電解質溶液21に浸漬させて、N型エピタキシャル層12と作用極22との間に、N型エピタキシャル層12が正電位となるように電圧を印加して行うものとすることができる。また、印加する電圧を一定に制御するために、参照電極23とポテンショスタット24を用いることがより望ましい。
Thereafter, as shown in Step 7 and FIG. 8 of FIG. 1, a positive voltage is applied to the N-type epitaxial layer 12, and the P-type silicon single crystal substrate 11 is removed by electrochemical etching.
For example, as shown in FIG. 11, after holding the P-type silicon single crystal substrate 11 on the substrate holder 25 so as to cover at least the semiconductor epitaxial layer on which the semiconductor element is formed, the N-type epitaxial layer 12 is formed as an etch stop layer. As described above, it is performed by immersing in an alkaline electrolyte solution 21 and applying a voltage between the N-type epitaxial layer 12 and the working electrode 22 so that the N-type epitaxial layer 12 has a positive potential. it can. Further, it is more desirable to use the reference electrode 23 and the potentiostat 24 in order to control the applied voltage to be constant.
 アルカリ系の電解質溶液としてKOHを用いる場合を例に説明すると、KOHの水溶液(濃度40%前後)にN型エピタキシャル層に正の電圧をかけた状態で、電気化学的にエッチングを進める。
 例えば、P型シリコン単結晶基板がKOH溶液に露出している間は、図12に示す様に、基板表面は開放電圧(OCP)となり、通常のKOHへのどぶ漬け状態と同じにエッチングが進む。また、P型シリコン単結晶基板には空乏層ができて、界面から離れたところには電圧はかからない。
 そしてP型シリコン単結晶基板がエッチングされ、正電圧が印加されたN型エピタキシャル層が溶液に露出すると、その表面では陽極酸化が進み、厚い不導体膜が形成されて、エッチングは行われなくなる。これによって、N型エピタキシャル層でエッチングをストップすることができる。
The case where KOH is used as an alkaline electrolyte solution will be described as an example. In the state where a positive voltage is applied to the N-type epitaxial layer in an aqueous solution of KOH (concentration around 40%), etching is advanced electrochemically.
For example, while the P-type silicon single crystal substrate is exposed to the KOH solution, as shown in FIG. 12, the substrate surface is at an open circuit voltage (OCP), and etching proceeds in the same manner as in a normal soaked state in KOH. . In addition, a depletion layer is formed on the P-type silicon single crystal substrate, and no voltage is applied to a place away from the interface.
When the P-type silicon single crystal substrate is etched and the N-type epitaxial layer to which a positive voltage is applied is exposed to the solution, anodic oxidation proceeds on the surface, a thick non-conductive film is formed, and etching is not performed. Thereby, the etching can be stopped at the N-type epitaxial layer.
 電気化学的エッチングを上述のような形態で行うことによって、P型シリコン単結晶基板のみを確実且つ容易に除去することができる。また、半導体素子が形成された半導体エピタキシャル層がエッチングされることを容易に抑制することができ、素子形成領域に不具合が発生することを抑制することができる。 By performing electrochemical etching in the above-described manner, only the P-type silicon single crystal substrate can be removed reliably and easily. Moreover, it can suppress easily that the semiconductor epitaxial layer in which the semiconductor element was formed is etched, and it can suppress that a malfunction arises in an element formation area.
 尚、エッチングに用いるアルカリ電解質溶液は、KOH、濃度40%前後、液温50~60℃とすることが望ましい。しかしKOHや上記条件に限定されず、その他のTMAH(水酸化テトラメチルアンモニウム水溶液)やエチレンジアミン水溶液等でも同じ作用効果を達成することができる。 The alkaline electrolyte solution used for etching is preferably KOH, a concentration of about 40%, and a liquid temperature of 50 to 60 ° C. However, it is not limited to KOH or the above conditions, and other TMAH (tetramethylammonium hydroxide aqueous solution) or ethylenediamine aqueous solution can achieve the same effect.
 次に、図1の工程8や図9に示す様に、N型エピタキシャル層12を研磨によって除去することができる。
 これによって、N型エピタキシャル層が形成された側に形成される撮像素子等が受光する光が乱反射することを低減することができ、作製される半導体装置の性能の向上を図ることができる。
Next, as shown in Step 8 of FIG. 1 and FIG. 9, the N-type epitaxial layer 12 can be removed by polishing.
Thereby, irregular reflection of light received by an imaging element or the like formed on the side where the N-type epitaxial layer is formed can be reduced, and the performance of the manufactured semiconductor device can be improved.
 その後、図1の工程9や図10に示す様に、入射する光に対して透明となるような絶縁層18や、絶縁層18やP型高抵抗層13bが基となった半導体素子が形成された層との屈折率差に起因する光の反射を防止するための、入射光に対して透明な高屈折率のパッシベーション層19を形成することができる。また、パッシベーション層19には、マイクロレンズ19aやカラーフィルター19bを形成することができ、このような素子を形成することによって半導体装置10を製造することができる。 Thereafter, as shown in Step 9 and FIG. 10 of FIG. 1, an insulating layer 18 that is transparent to incident light, and a semiconductor element based on the insulating layer 18 and the P-type high resistance layer 13b are formed. A passivation layer 19 having a high refractive index that is transparent to incident light can be formed to prevent reflection of light due to a difference in refractive index from the formed layer. In addition, microlenses 19a and color filters 19b can be formed on the passivation layer 19, and the semiconductor device 10 can be manufactured by forming such elements.
 このような本発明の半導体装置の製造方法によって、電気化学的エッチングが行われた高平坦性の表面層に絶縁層やカラーフィルター、マイクロレンズ等を形成することができ、また所望の厚さを有するものとすることができる。また、例えばゲッタリング能力を持ったP型シリコン単結晶基板上に、N型エピタキシャル層や半導体素子が形成される半導体エピタキシャル層を絶縁膜を介することなく形成することができるため、活性領域の金属不純物濃度を従来に比べて低いものとすることができる。
 そしてSOI基板ではなくエピタキシャル基板から製造することができ、従来に比べて安価なものとすることができる。
 従って、金属不純物濃度の低い、高性能且つ安価な裏面照射型の撮像素子が形成された半導体装置を製造することができる。
 
By such a method for manufacturing a semiconductor device of the present invention, an insulating layer, a color filter, a microlens, or the like can be formed on a highly flat surface layer that has been subjected to electrochemical etching, and a desired thickness can be obtained. It can have. Further, for example, an N-type epitaxial layer or a semiconductor epitaxial layer on which a semiconductor element is formed can be formed on a P-type silicon single crystal substrate having gettering capability without an insulating film, so that the metal in the active region The impurity concentration can be made lower than conventional.
And it can manufacture from an epitaxial substrate instead of an SOI substrate, and can be made cheaper than before.
Therefore, it is possible to manufacture a semiconductor device in which a high-performance and inexpensive backside-illuminated imaging element having a low metal impurity concentration is formed.
 以下、実施例を示して本発明をより具体的に説明するが、本発明はこれに限定されるものではない。
 (実施例)
 図1に示す様な工程に従って、半導体装置を製造した。
 まず、P型、結晶面が(100)、10Ωcm、直径8インチ(200mm)、酸素濃度15ppma、酸素析出物の析出熱処理済みのP型シリコン単結晶基板を準備した。
 次に、トリクロロシランを原料ガスとして、1150℃、枚葉式の反応機を用い、まず、N型の抵抗率1Ωcm、厚さ3μmのN型エピタキシャル層を成長させた。その後、P型の抵抗率0.1Ωcm、厚さ1.5μmのP型低抵抗層のエピタキシャル成長を行い、次に、P型の抵抗率20Ωcm、厚さ6μmのP型高抵抗層をエピタキシャル成長させた。
EXAMPLES Hereinafter, although an Example is shown and this invention is demonstrated more concretely, this invention is not limited to this.
(Example)
A semiconductor device was manufactured according to the process as shown in FIG.
First, a P-type silicon single crystal substrate having a P-type crystal plane (100), 10 Ωcm, a diameter of 8 inches (200 mm), an oxygen concentration of 15 ppma, and a heat treatment for precipitation of oxygen precipitates was prepared.
Next, an N-type epitaxial layer having an N-type resistivity of 1 Ωcm and a thickness of 3 μm was grown using a single-wafer reactor at 1150 ° C. using trichlorosilane as a source gas. Thereafter, a P-type low-resistance layer having a P-type resistivity of 0.1 Ωcm and a thickness of 1.5 μm was epitaxially grown, and then a P-type resistivity of 20 Ωcm and a thickness of 6 μm was epitaxially grown. .
 その後、作製したP型高抵抗層上に、図4に示す様なCMOSイメージセンサー作製を行った。その後、図5に示す様な配線層を形成した。
 そして、配線層が形成された表面と保持基板とを貼り合わせた後、P型シリコン単結晶基板を除去するにあたって、まず、研削によって基板の厚さを10μm程度まで削った。
 その後、液温50℃、濃度30%のKOH水溶液に、N型エピタキシャル層とP型シリコン単結晶基板との界面において、N型エピタキシャル層が+1.5Vになるように電位を印加して、研削で残ったP型シリコン単結晶基板を電気化学エッチングによって除去した。
Thereafter, a CMOS image sensor as shown in FIG. 4 was produced on the produced P-type high resistance layer. Thereafter, a wiring layer as shown in FIG. 5 was formed.
Then, after bonding the surface on which the wiring layer was formed and the holding substrate, in removing the P-type silicon single crystal substrate, first, the thickness of the substrate was ground to about 10 μm by grinding.
After that, grinding is performed by applying a potential to a KOH aqueous solution having a liquid temperature of 50 ° C. and a concentration of 30% so that the N type epitaxial layer becomes +1.5 V at the interface between the N type epitaxial layer and the P type silicon single crystal substrate. The P-type silicon single crystal substrate remaining in step 1 was removed by electrochemical etching.
 その後、エッチストップ面を完全に鏡面化するために、コロイダルシリカの研磨剤を用いて、N型エピタキシャル層を研磨で除去した。
 次に、低温酸化膜をN型エピタキシャル層を除去した面に形成した。厚さは500nmとした。その後、パッシベーション用の窒化シリコンをプラズマCVDで形成した。
 その後、カラーフィルターやマイクロレンズを形成して、半導体装置を完成させた。
Thereafter, in order to make the etch stop surface completely mirror-finished, the N-type epitaxial layer was removed by polishing using a colloidal silica abrasive.
Next, a low-temperature oxide film was formed on the surface from which the N-type epitaxial layer was removed. The thickness was 500 nm. Thereafter, silicon nitride for passivation was formed by plasma CVD.
Thereafter, color filters and microlenses were formed to complete the semiconductor device.
 尚、電気化学エッチング後に、露出したN型エピタキシャル層の平坦度を評価した。その結果、厚さのバラツキは0.2~0.3μmであり、高い精度でP型シリコン単結晶基板を除去できたことが判った。尚、従来の研削・研磨・エッチングでは±1μm程度が限界であり、本発明の電気化学的エッチングが優れていることが確認できた。 Note that the flatness of the exposed N-type epitaxial layer was evaluated after electrochemical etching. As a result, the thickness variation was 0.2 to 0.3 μm, and it was found that the P-type silicon single crystal substrate could be removed with high accuracy. In the conventional grinding, polishing and etching, the limit is about ± 1 μm, and it was confirmed that the electrochemical etching of the present invention is excellent.
 なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。 The present invention is not limited to the above embodiment. The above-described embodiment is an exemplification, and the present invention has any configuration that has substantially the same configuration as the technical idea described in the claims of the present invention and that exhibits the same effects. Are included in the technical scope.

Claims (11)

  1.  導電型がP型のシリコン単結晶基板の一方の主表面に、エッチストップ層となる導電型がN型のN型エピタキシャル層と、半導体素子を形成するための半導体エピタキシャル層とをこの順にエピタキシャル成長させる工程と、
     前記半導体素子を形成するための半導体エピタキシャル層に前記半導体素子を形成する工程と、
     該半導体素子が形成された表面に保持基板を貼り合わせる工程と、
     前記N型エピタキシャル層に正電圧を印加して、該N型エピタキシャル層をエッチストップ層として電気化学的エッチングにより前記P型シリコン単結晶基板を除去する工程とを有することを特徴とする半導体装置の製造方法。
     
    On one main surface of a silicon single crystal substrate having a P-type conductivity, an N-type epitaxial layer having an N-type conductivity serving as an etch stop layer and a semiconductor epitaxial layer for forming a semiconductor element are epitaxially grown in this order. Process,
    Forming the semiconductor element in a semiconductor epitaxial layer for forming the semiconductor element;
    Attaching a holding substrate to the surface on which the semiconductor element is formed;
    A step of applying a positive voltage to the N-type epitaxial layer and removing the P-type silicon single crystal substrate by electrochemical etching using the N-type epitaxial layer as an etch stop layer. Production method.
  2.  前記エピタキシャル成長工程は、前記P型シリコン単結晶基板の直上に前記N型エピタキシャル層をエピタキシャル成長させることを特徴とする請求項1に記載の半導体装置の製造方法。
     
    2. The method of manufacturing a semiconductor device according to claim 1, wherein in the epitaxial growth step, the N-type epitaxial layer is epitaxially grown directly on the P-type silicon single crystal substrate.
  3.  前記P型シリコン単結晶基板は、前記N型エピタキシャル層が形成された主表面とは反対側の主表面に多結晶シリコン層が形成されたものか、若しくは該P型シリコン単結晶基板中に酸素析出核を有するものとすることを特徴とする請求項1または請求項2に記載の半導体装置の製造方法。
     
    The P-type silicon single crystal substrate is a substrate in which a polycrystalline silicon layer is formed on the main surface opposite to the main surface on which the N-type epitaxial layer is formed, or oxygen is contained in the P-type silicon single crystal substrate. The method for manufacturing a semiconductor device according to claim 1, wherein the semiconductor device has precipitation nuclei.
  4.  前記電気化学的エッチングは、少なくとも前記半導体素子を形成した半導体エピタキシャル層を覆う基板ホルダーに前記P型シリコン単結晶基板を保持した後、前記N型エピタキシャル層をエッチストップ層として、アルカリ電解質溶液に浸漬させて行うものとすることを特徴とする請求項1ないし請求項3のいずれか1項に記載の半導体装置の製造方法。
     
    In the electrochemical etching, the P-type silicon single crystal substrate is held in a substrate holder that covers at least the semiconductor epitaxial layer on which the semiconductor element is formed, and then immersed in an alkaline electrolyte solution using the N-type epitaxial layer as an etch stop layer. The method for manufacturing a semiconductor device according to claim 1, wherein the method is performed.
  5.  前記半導体素子形成工程後、前記貼り合わせ工程前に、前記半導体素子上に電極配線を形成し、その後該電極配線が形成された側の表面に前記保持基板を貼り合わせることを特徴とする請求項1ないし請求項4のいずれか1項に記載の半導体装置の製造方法。
     
    The electrode wiring is formed on the semiconductor element after the semiconductor element forming step and before the bonding step, and then the holding substrate is bonded to the surface on the side where the electrode wiring is formed. The method for manufacturing a semiconductor device according to claim 1.
  6.  前記保持基板は、前記貼り合わせ面から逆側の表面に達する電極を有することを特徴とする請求項5に記載の半導体装置の製造方法。
     
    The method of manufacturing a semiconductor device according to claim 5, wherein the holding substrate has an electrode reaching the surface on the opposite side from the bonding surface.
  7.  前記P型シリコン単結晶基板の除去工程は、該P型シリコン単結晶基板に研削・研磨・エッチングのうち少なくとも1つを行った後、前記電気化学的エッチングを行うものとすることを特徴とする請求項1ないし請求項6のいずれか1項に記載の半導体装置の製造方法。
     
    The step of removing the P-type silicon single crystal substrate is characterized in that the electrochemical etching is performed after at least one of grinding, polishing, and etching is performed on the P-type silicon single crystal substrate. The method for manufacturing a semiconductor device according to claim 1.
  8.  前記P型シリコン単結晶基板の除去工程の後、露出した電気化学的エッチストップ面に対して研磨を行って前記N型エピタキシャル層を除去することを特徴とする請求項1ないし請求項7のいずれか1項に記載の半導体装置の製造方法。
     
    8. The N-type epitaxial layer is removed by polishing the exposed electrochemical etch stop surface after the step of removing the P-type silicon single crystal substrate. A method for manufacturing a semiconductor device according to claim 1.
  9.  前記エピタキシャル成長工程は、前記N型エピタキシャル層の直上に、P型低抵抗層とP型高抵抗層を形成するものとすることを特徴とする請求項1ないし請求項8のいずれか1項に記載の半導体装置の製造方法。
     
    The said epitaxial growth process shall form a P-type low resistance layer and a P-type high resistance layer directly on the said N type epitaxial layer, The one of Claim 1 thru | or 8 characterized by the above-mentioned. Semiconductor device manufacturing method.
  10.  前記エピタキシャル成長工程は、前記N型エピタキシャル層の直上に、N型低抵抗層とN型高抵抗層を形成するものとすることを特徴とする請求項1ないし請求項8のいずれか1項に記載の半導体装置の製造方法。
     
    9. The epitaxial growth process according to claim 1, wherein in the epitaxial growth step, an N-type low resistance layer and an N-type high resistance layer are formed immediately above the N-type epitaxial layer. Semiconductor device manufacturing method.
  11.  前記エピタキシャル成長工程は、前記N型エピタキシャル層の直上に、N型層と、該N型層中に部分的なP型低抵抗層を形成するものとすることを特徴とする請求項1ないし請求項8のいずれか1項に記載の半導体装置の製造方法。 2. The epitaxial growth step according to claim 1, wherein an N-type layer and a partial P-type low resistance layer are formed immediately above the N-type epitaxial layer. 9. A method for manufacturing a semiconductor device according to any one of items 8 to 9.
PCT/JP2010/003994 2009-07-30 2010-06-16 Method for manufacturing semiconductor device WO2011013290A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-178242 2009-07-30
JP2009178242A JP5029661B2 (en) 2009-07-30 2009-07-30 Manufacturing method of semiconductor device

Publications (1)

Publication Number Publication Date
WO2011013290A1 true WO2011013290A1 (en) 2011-02-03

Family

ID=43528965

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/003994 WO2011013290A1 (en) 2009-07-30 2010-06-16 Method for manufacturing semiconductor device

Country Status (2)

Country Link
JP (1) JP5029661B2 (en)
WO (1) WO2011013290A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2555244A1 (en) * 2011-08-03 2013-02-06 austriamicrosystems AG A method of producing a photodiode device and a photodiode device comprising an etch stop layer

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101323001B1 (en) * 2012-02-29 2013-10-29 주식회사 엘지실트론 Image sensor and method of manufacturing the same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0645617A (en) * 1992-07-21 1994-02-18 Oki Shisutetsuku Tokai:Kk Manufacture of single-crystal thin-film member
JPH06151789A (en) * 1992-11-09 1994-05-31 Canon Inc Manufacture of semiconductor substrate
JPH08264505A (en) * 1995-03-20 1996-10-11 Nissan Motor Co Ltd Method for anisotropically etching silicon semiconductor
JP2005150521A (en) * 2003-11-18 2005-06-09 Canon Inc Imaging apparatus and manufacturing method thereof
JP2006019360A (en) * 2004-06-30 2006-01-19 Sony Corp Solid-state image pickup device and its manufacturing method
JP2007013089A (en) * 2005-06-02 2007-01-18 Sony Corp Solid imaging element and its manufacturing method
JP2008311418A (en) * 2007-06-14 2008-12-25 Shin Etsu Handotai Co Ltd Epitaxial wafer, and its manufacturing method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0645617A (en) * 1992-07-21 1994-02-18 Oki Shisutetsuku Tokai:Kk Manufacture of single-crystal thin-film member
JPH06151789A (en) * 1992-11-09 1994-05-31 Canon Inc Manufacture of semiconductor substrate
JPH08264505A (en) * 1995-03-20 1996-10-11 Nissan Motor Co Ltd Method for anisotropically etching silicon semiconductor
JP2005150521A (en) * 2003-11-18 2005-06-09 Canon Inc Imaging apparatus and manufacturing method thereof
JP2006019360A (en) * 2004-06-30 2006-01-19 Sony Corp Solid-state image pickup device and its manufacturing method
JP2007013089A (en) * 2005-06-02 2007-01-18 Sony Corp Solid imaging element and its manufacturing method
JP2008311418A (en) * 2007-06-14 2008-12-25 Shin Etsu Handotai Co Ltd Epitaxial wafer, and its manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2555244A1 (en) * 2011-08-03 2013-02-06 austriamicrosystems AG A method of producing a photodiode device and a photodiode device comprising an etch stop layer

Also Published As

Publication number Publication date
JP5029661B2 (en) 2012-09-19
JP2011035069A (en) 2011-02-17

Similar Documents

Publication Publication Date Title
EP2209140B1 (en) Method for manufacturing solid-state image device
USRE47208E1 (en) Manufacturing method of solid-state image sensor
JP2011527827A (en) Backside illuminated image sensor with reduced dark current
TW200929535A (en) Image sensor and method for manufacturing the same
TWI453905B (en) Manufacturing method of semiconductor device
JP4610586B2 (en) Manufacturing method of semiconductor device
KR20150134543A (en) Wafer for fabricating of device and semiconductor device on the wafer
US20140217541A1 (en) Back-side illuminated image sensor with a junction insulation
JP5029661B2 (en) Manufacturing method of semiconductor device
JP2011014673A (en) Soi substrate and method of manufacturing the same, and method of manufacturing solid-state image pickup device with soi substrate
US9831285B2 (en) Photoelectric conversion apparatus and method of manufacturing the same
CN103441132A (en) Method for preparing back-illuminated CMOS image sensor through low-temperature silicon wafer breaking
JP2005268238A (en) Rear surface irradiation type solid state imaging device and its manufacturing method
US11605665B2 (en) Semiconductor apparatus and method for producing semiconductor apparatus
US9406717B2 (en) Passivation of back-illuminated image sensor
JP2009065167A (en) Image sensor, and manufacturing method thereof
JP5386862B2 (en) Manufacturing method of semiconductor device
JP5836581B2 (en) Manufacturing method of solid-state imaging device
TWI450389B (en) Back-side illumination image sensor and method for fabricating back-side illumination image sensor
WO2022133642A1 (en) Method for forming semiconductor structure
JP5214329B2 (en) UV sensor and manufacturing method thereof
KR20100080210A (en) Image sensor and manufacturing method of image sensor
JP2015510275A (en) Image sensor and manufacturing method thereof
KR20070034884A (en) CMOS image sensor manufacturing method
TW201340301A (en) Method for fabricating backside-illuminated sensors

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10804043

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10804043

Country of ref document: EP

Kind code of ref document: A1