WO2011012245A1 - Organometallic transition metal compound, catalyst system and preparation of polyolefins - Google Patents
Organometallic transition metal compound, catalyst system and preparation of polyolefins Download PDFInfo
- Publication number
- WO2011012245A1 WO2011012245A1 PCT/EP2010/004436 EP2010004436W WO2011012245A1 WO 2011012245 A1 WO2011012245 A1 WO 2011012245A1 EP 2010004436 W EP2010004436 W EP 2010004436W WO 2011012245 A1 WO2011012245 A1 WO 2011012245A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- transition metal
- polymerization
- metal compound
- radical
- catalyst system
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F10/00—Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07F—ACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
- C07F17/00—Metallocenes
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F10/00—Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
- C08F10/04—Monomers containing three or four carbon atoms
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F4/00—Polymerisation catalysts
- C08F4/42—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
- C08F4/44—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
- C08F4/60—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
- C08F4/62—Refractory metals or compounds thereof
- C08F4/64—Titanium, zirconium, hafnium or compounds thereof
- C08F4/659—Component covered by group C08F4/64 containing a transition metal-carbon bond
- C08F4/65912—Component covered by group C08F4/64 containing a transition metal-carbon bond in combination with an organoaluminium compound
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F4/00—Polymerisation catalysts
- C08F4/42—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
- C08F4/44—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
- C08F4/60—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
- C08F4/62—Refractory metals or compounds thereof
- C08F4/64—Titanium, zirconium, hafnium or compounds thereof
- C08F4/659—Component covered by group C08F4/64 containing a transition metal-carbon bond
- C08F4/65916—Component covered by group C08F4/64 containing a transition metal-carbon bond supported on a carrier, e.g. silica, MgCl2, polymer
Definitions
- the present invention relates to organometallic transition metal compounds.
- the present invention further relates to catalyst systems comprising at least one of the organometallic transition metal compounds of the present invention and a process for preparing LLDPE (linear low density polyethylene) by copolymerization of ethylene and at least one ⁇ -olefin having 3 to 12 carbon atoms in the presence of one of the catalyst systems of the present invention.
- LLDPE linear low density polyethylene
- LLDPE-copolymers of ethylene with ⁇ -olefins such as propene, 1-butene, 1-pentene, 1-hexene or 1-octene
- ⁇ -olefins such as propene, 1-butene, 1-pentene, 1-hexene or 1-octene
- US patent 5,420,220 a monomodal LLDPE is disclosed which is produced by copolymerization of ethylene and hexene with a catalytic active bis(n-butylcyclopentadienyl) zirconium dichloride in a fluidized bed reactor.
- the use of higher ⁇ -olefin comonomers involves the problem of reduced efficiency of comonomer incorporation, i.e. the higher the ⁇ -olefin is the lower is the comonomer incorporation.
- WO 03/066699 A1 describes a polymerization catalyzed by a single site catalyst wherein ethylene is copolymerized with at least two C 4-I2 ⁇ -olefins.
- WO2007/037836 A1 and WO2007/101053 A1 refer to hybrid catalyst systems using two different metallocene catalysts for the production of bimodal polyethylene.
- the inventions refer to metallocene-based catalyst system which can produce high molecular weight polyethylene with low levels of long chain branching and to other metallocene-based catalyst systems which are more responsive to hydrogen and produce low molecular weight polyethylene.
- metallocene catalyst systems which can achieve an improvement in the combination of high molar mass of the copolymer and high comonomer incorporation, also when using higher ⁇ -olefins, and which are especially suitable for hybrid catalyst systems with other transition metal compounds suitable as catalysts for lower molecular weight polymers.
- organometallic transition metal compounds which, when used as catalyst constituents, are able to achieve a high comonomer incorporation and at the same time make it possible to provide ethylene copolymers having high molecular weights compared to the known metallocenes. Furthermore, the organometallic transition metal compounds should be able to be obtained in an economical way. We have found that this object is achieved by organometallic transition metal compounds of the formula (I)
- M 1 is an element of group 3, 4, 5 or 6 of the Periodic Table of the Elements or the lanthanides, the radicals X are identical or different and are each a halogen or an organic radical having from 1 to 40 carbon atoms, with two organic radicals X also being able to be joined to one another, n is a natural number from 1 to 4,
- R 1 , R 2 , R 3 , R 4 , R 7 are identical or different and are each hydrogen or an organic radical having from 1 to 40 carbon atoms,
- R 5 and R 6 are identical or different and are each hydrogen or an organic radical having from 1 to 40 carbon atoms or R 5 and R 6 together with the atoms connecting them form a monocyclic or polycyclic, substituted or unsubstituted ring system which has from 5 to 40 carbon atoms and may also contain heteroatoms selected from the group consisting of the elements N 1 O and S, in particular S and N,
- R 8 and R 9 are identical or different and each an organic radical having from 3 to 40 carbon atoms.
- M 1 is an element of group 3, 4, 5 or 6 of the Periodic Table of the Elements or the lanthanides, for example titanium, zirconium, hafnium, vanadium, niobium, tantalum, chromium, molybdenum or
- tungsten preferably titanium, zirconium, hafnium. Particularly preferred is M being zirconium or hafnium and especially zirconium.
- the radicals X are identical or different, preferably identical, and are each a halogen or an organic radical having from 1 to 40 carbon atoms, with two organic radicals X also being able to be joined to one another.
- X is preferably C 1 -C 2O -, in particular Ci-C 4 -alkyl, C 2 -C 20 -, in particular C 2 -C 4 - alkenyl, C 6 -C 30 -, in particular C 6 -C 22 -aryl, a C 6 -C 30 -, in particular C 6 -C 22 -arylalkyl group, -OR 10 or -NR 10 R 11 , in particular -OR 10 , where two radicals X may also be joined to one another.
- radicals X it is also possible for two radicals X to form a substituted or unsubstituted diene ligand, in particular a 1 ,3- diene ligand.
- the radicals R 10 and R 11 are each C 1 -C 10 -, preferably C 1 -C 4 -SlKyI 1 C 6 -C 30 -, preferably C 6 -C 22 -aryl, C 6 -C 30 -, preferably C 6 -C 22 - arylalkyl, C 1 -C 10 -, preferably C 1 -C 4 -OuOrOaIKyI or C 6 -C 30 -, preferably C 6 -C 20 -fluoroaryl.
- X being halogen, for example fluorine, bromine, chlorine, iodine. Most preferably X are identical and each methyl or chlorine.
- the index n is a natural number from 1 to 4 which is in general equal to the oxidation number of M 1 minus 2. In the case of elements of group 4 of the Periodic Table of the Elements, n is 2.
- R 1 , R 2 , R 3 , R 4 , R 7 are identical or different and are each hydrogen or an organic radical having from 1 to 40 carbon atoms, for example C 1 -C 40 -SlKyI 1 CrC ⁇ -fluoroalKyl, C 2 -C 40 -alKenyl, C 6 -C 40 - aryl, C 6 -C 22 -fluoroaryl, C 6 -C 40 -arylalKyl, or a C 2 -C 40 -heteroaromatic radical containing at least one heteroatom selected from the group consisting of the elements O, N and S.
- R 1 and R 3 preferably are identical and are each hydrogen.
- R 2 preferably is hydrogen or a Ci-C 8 -alKyl radical.
- R 4 and R 7 preferably are the same or different and are each selected from hydrogen, a C 1 -C 1O -SlKyI, a C 6 - C 40 -aryl radical, or C 5 -C 40 -heteroaromatic radical containing at least one heteroatom selected from the group consisting of O, N, S and P.
- R 4 and R 7 being identical and each hydrogen.
- R 5 and R 6 are identical or different and are each hydrogen or an organic radical having from 1 to
- ⁇ 40 carbon atoms, for example a cyclic, branched or unbranched C 1 -C 20 -, preferably C 1 -C 8 -BlKyI radical, a C 2 -C 20 -, preferably C 2 -C 8 -alKenyl radical, a C 6 -C 30 -, preferably C 6 -C 22 -aryl radical, a C 6 -
- R 8 and R 9 are identical or different and each an organic radical having from 3 to 40 carbon atoms. Since the steric interactions of the radicals R 8 and R 9 with the growing polymer chain are of particular importance for the polymerization behavior and the resulting properties of the polymers which can be obtained, preference is given to organometallic transition metal compounds of the formula (I) in which both radicals R 8 and R 9 are identical or different and each a C 6 -C 40 -aryl radical or C 6 -C 40 -arylalKyl or C 3 -C 40 -aliphatic radical being branched in the ⁇ -position, e.g.
- C 3 -C 20 - preferably C 3 -C 8 -alkyl radical, a C 3 -C 20 -, preferably C 3 -C 8 -alKenyl radical or a C 3 -C 20 -, preferably C 5 -C 8 -cycloalKyl radical.
- organometallic transition metal compounds of the formula (I) in which the radicals R 8 and R 9 are identical, in particular compounds in which R 8 and R 9 are organic radical being an aromatic system, especially preferred phenyl.
- organic radical having from 1 to 40 carbon atoms refers to, for example, d-Co-alkyl radicals, C ⁇ do-fluoroalkyl radicals, CrC ⁇ -alkoxy radicals, saturated C 3 -C 2 o-heterocyclic radicals, C 6 -C 40 -aryl radicals, C 2 -C 40 -heteroaromatic radicals, C 6 - do-fluoroaryl radicals, C 3 -Ci 0 -aryloxy radicals, C 3 -C 18 -trialkylsilyl radicals, C 2 -C 20 -alkenyl radicals,
- alkyl encompasses linear or singly or multiply branched saturated hydrocarbons, which may also be cyclic. Preference is given to Ci-C 18 -alkyl such as methyl, ethyl, n-propyl, n-butyl, n-pentyl, n-hexyl, n-heptyl, n-octyl, n-nonyl, n-decyl, cyclopentyl, cyclohexyl, isopropyl, isobutyl, isopentyl, isohexyl, sec-butyl or tert-butyl.
- alkenyl as used in the present context encompasses linear or singly or multiply branched hydrocarbons having at least one C-C double bond, if desired a plurality of C-C double bonds, which may be cumulated or alternating.
- aryl refers, for example, to aromatic and fused or unfused polyaromatic hydrocarbon substituents which may be monosubstituted or polysubstituted by linear or branched Crds-alkyl, C 1 -C 18 -SIkOXy, C 2 -C 10 -alkenyl or halogen, in particular fluorine.
- substituted and substituted aryl radicals are, in particular, phenyl, pentafluorophenyl, 4-methylphenyl, 4-ethylphenyl, 4-n-propylphenyl, 4-isopropylphenyl, 4-tert- butylphenyl, 4-methoxyphenyl, 1-naphthyl, 9-anthryl, 9-phenanthryl, 3,5-dimethylphenyl, 3,5-di- fert-butylphenyl or 4-trifluoromethylphenyl.
- arylalkyl refers, for example, to aryl-containing substituents whose aryl radical is linked via an alkyl chain to the remainder of the molecule.
- the novel organometallic transition metal compounds of the formula (I) give an increase in the previously achievable comonomer content during copolymerization of ethylene with a comonomer, and at the same time give a satisfactory molar mass.
- the novel organometallic transition metal compounds of the formula (I) act, particularly in the presence of suitable cocatalysts, as highly active catalyst constituents for the polymerization of olefins.
- the catalyst system comprises at least one activating compound. They are preferably used in an excess or in stoichiometric amounts based on the catalysts which they activate. In general, the molar ratio of catalyst to activating compound can be from 1 :0.1 to 1 :10000.
- Such activator compounds are uncharged, strong Lewis acids, ionic compounds having a Lewis-acid cation or an ionic compounds containing a Br ⁇ nsted acid as cation in general.
- activators of the polymerization catalysts of the present invention especially on definition of strong, uncharged Lewis acids and Lewis acid cations, and preferred embodiments of such activators, their mode of preparation as well as particularities and the stoichiometry of their use have already been set forth in detail in WO 05/103096 A1 from the same applicant.
- Examples are aluminoxanes, hydroxyaluminoxanes, boranes, boroxins, boronic acids and borinic acids.
- strong, uncharged Lewis acids for use as activating compounds are given in WO 03/31090 A1 and WO 05/103096 A1 incorporated hereto by reference.
- Suitable activating compounds are both as an example and as a strongly preferred embodiment, compounds such as an aluminoxane, a strong uncharged Lewis acid, an ionic compound having a Lewis-acid cation or an ionic compound containing.
- aluminoxanes it is possible to use, for example, the compounds described in WO 00/31090 A1 incorporated hereto by reference.
- aluminoxanes are open-chain or cyclic aluminoxane compounds of the general formula (III) or (IV)
- R 1B -R 4B are each, independently of one another, a Ci-C 6 -alkyl group, preferably a methyl, ethyl, butyl or isobutyl group and I is an integer from 1 to 40, preferably from 4 to 25.
- a particularly useful aluminoxane compound is methyl aluminoxane (MAO).
- modified aluminoxanes in which some of the hydrocarbon radicals have been replaced by hydrogen atoms or alkoxy, aryloxy, siloxy or amide radicals can also be used in place of the aluminoxane compounds of the formula (III) or (IV) as activating compound.
- Boranes and boroxines are particularly useful as activating compound, such as trialkylborane, triarylborane or trimethylboroxine. Particular preference is given to using boranes which bear at least two perfluorinated aryl radicals.
- borinic acids having perfluorinated aryl radicals for example (C 6 F 5 ) 2 BOH.
- boron-based Lewis acids compounds that can be used as activating compounds are given WO05/103096 incorporated hereto by reference, as said above.
- the catalytic active compound of formula (I) is especially suitable for hybrid catalyst system, comprising a second active catalytic compound.
- examples of those active catalytic compounds are other early transition metal compounds or late transition metal compounds.
- the catalyst system comprises a compound of formula (I) and a late transition metal compound, especially an iron compound.
- Especially preferred compounds are 2,6-diacetylpyridinebis(2,4-dimethylphenylimine)iron dichloride, 2,6-diacetylpyridinebis(2,4,6-trimethylphenylimine)iron dichloride, 2,6- diacetylpyridinebis(2-chloro-6-methylphenyl)iron dichloride, 2,6-diacetylpyridinebis(2,6- diisopropylphenylimine)iron dichloride, 2,6-diacetylpyridinebis(2,6-dichlorophenylimine)iron dichloride, 2, 6-pyridinedicarboxaldehydebis(2,6-diisopropylphenylimine)iron dichloride.
- the catalyst system may further comprise, as additional component, a metal compound as defined both by way of generic formula, its mode and stoichiometry of use and specific examples in WO 05/103096, incorporated hereto by reference.
- the metal compound can likewise be reacted in any order with the catalyst components (A) and (B) and optionally with the activating compound and the support.
- the ethylene is polymerized optionally with ⁇ -olefins having from 3 to 12 carbon atoms.
- the ⁇ -olefins having from 3 to 12 carbon atoms are preferably in particular linear C 3 -C 10 -I- alkenes such as propene, 1-butene, 1-pentene, 1-hexene, 1-heptene, 1-octene, 1-decene or branched C 3 -C 10 -I -alkenes such as 4-methyl-1-pentene.
- Particularly preferred ⁇ -olefins are 1- butene and 1-hexene. It is also possible to polymerize mixtures of various ⁇ -olefins.
- Monomer mixtures containing at least 50 mol% of ethene are preferably used.
- the polymerization can be carried out in a known manner in bulk, in suspension, in the gas phase or in a supercritical medium in the customary reactors used for the polymerization of olefins. It can be carried out batchwise or preferably continuously in one or more stages. Solution processes, suspension processes, stirred gas-phase processes or gas-phase fluidized-bed processes are all possible. As solvent or suspension medium, it is possible to use inert hydrocarbons, for example isobutane, or else the monomers themselves.
- the polymerizations are usually carried out at temperatures in the range from -60 to 350 0 C,
- the mean residence times are usually from 0.5 to 5 hours, preferably from 0.5 to 3 hours.
- the advantageous pressure and temperature ranges for carrying out the polymerizations usually depend on the polymerization method. In the case of high-pressure polymerization processes, which are customarily carried out at pressures of from 1000 to 4000 bar, in particular from 2000 to 3500 bar,
- 10 high polymerization temperatures are generally also set.
- Advantageous temperature ranges for these high-pressure polymerization processes are from 200 to 32O 0 C, in particular from 220 to 29O 0 C.
- a temperature which is at least a few degrees below the softening temperature of the polymer.
- temperatures of from 50 to 18O 0 C, preferably from 70 to 120 0 C, are set in these polymerization
- the polymerization is usually carried out in a suspension medium, preferably an inert hydrocarbon such as isobutane or mixtures of hydrocarbons or else in the monomers themselves.
- a suspension medium preferably an inert hydrocarbon such as isobutane or mixtures of hydrocarbons or else in the monomers themselves.
- the polymerization temperatures are generally in the range from -20 to 115°C, and the pressure is generally in the range from 1 to 100 bar.
- the solids content of the suspension is generally in the range from 10 to 80%.
- phase polymerization in particular in gas-phase fluidized-bed reactors, solution polymerization and suspension polymerization, in particular in loop reactors and stirred tank reactors.
- the gas- phase polymerization can also be carried out in the condensed or supercondensed mode, in which part of the circulating gas is cooled to below the dew point and is recirculated as a two- phase mixture to the reactor.
- a multizone reactor in which the 3Q two polymerization zones are linked to one another and the polymer is passed alternately through these two zones a number of times.
- the two zones can also have different polymerization conditions.
- Such a reactor is described, for example, in WO 97/04015.
- bimodal polyethylenes are their use for producing pressure pipes for the transport of gas, drinking water and wastewater.
- Pressure pipes made of polyethylene are
- the preparation of the polyethylene of the invention in the reactor reduces the energy consumption, requires no subsequent blending processes and makes simple control of the molecular weight distributions and the molecular weight fractions of the various polymers possible. In addition, good mixing of the polyethylene is achieved.
- the melting point T m was determined by means of a DSC measurement in accordance with ISO Standard 3146 in a first heating phase at a heating rate of 20 0 C per minute to 200 0 C, a dynamic crystallization at a cooling rate of 20°C per minute down to 25°C and a second heating phase at a heating rate of 20 0 C per minute back to 200 0 C.
- the melting point was then the temperature at which the curve of enthalpy versus temperature measured in the second heating phase displayed a maximum.
- the viscosity number was determined in an Ubbelohde viscometer PVS 1 fitted with an S 5 measuring head (both from Lauda) in decalin at 135°C.
- 20 mg of polymer were dissolved in 20 ml of decalin at 135°C for 2 hours.
- 15 ml of the solution were placed in the viscometer and the instrument carried out a minimum of three running-out time measurements until a consistent result had been obtained.
- Metallocene 1 2,5-diphenylcyclopentadienyl indenyl zirconium dichloride
- Metallocene 1 11.6 mg were solved In 300 ml toluene at 40 0 C. The color of solution was bright ?f) yellow. 2.5 ml MAO 30% and 3 ml hexene were added to the solution.
- Ethylene was passed through the catalytic solution at 40°C at ambient pressure and 1 ml hexene were added during polymerization.
- the temperature was controlled manually by cooling with ice bath and kept within range of target temperature +5°C. After 10 minutes the polymerization was 25 stopped with 50ml methanol and 30ml HCI. After addition of 250ml methanol the mixture was filtered and washed with methanol.
- the polymer was dried at 70 0 C for 4 hours. Yield was 14g, which was 3582 kg Polyethylene/(mol Zr h). Polymerization conditions and results are listed in Table 1 below.
- Comparative metallocene 2 Bis(2,5-diphenylcyclopentadienyl) zirconium dichloride 40 Comparative catalyst 2 was prepared as described in Example 1 for Catalyst 1 with the exception that instead of Metallocene 1 Comparative Metallocene 2 was used.
- the polymerization was performed in the same way like in Example 1 with the difference that Comparative Catalyst 2 was used instead of Catalyst 1.
- Comparative catalyst 3 was prepared as described in Example 1 for Catalyst 1 with the exception that instead of Metallocene 1 Comparative Metallocene 3 was used.
- the polymerization was performed in the same way like in Example 1 with the difference that catalyst 3 was used instead of catalyst 1.
- the polymer was dried at 70 0 C for 4 hours. Yield was 17.3g, which was 2563 kg Polyethylene/(mol Zr h). Polymerization conditions and results are listed in Table 1 below.
- Example 4 supported catalyst systems
- silica Sylopol XPO2107 from Grace calcinated at 600 0C for 6 h was used.
- a 1.7-l-Steelautoclave was filled under Argon with 10Og polyethylene powder having a particle size of > 1 mm at 70°C (the polyethylene powder was already dried at 80 0 C for 8 hours in vacuum and stored under Argon atmosphere).
- a 240-l-Steelautoclave was filled with 240I of Exxsol D 140/170 under nitrogen at 83°C.
- the new non-symmetric catalysts show a surprising high activity while still being suitable for the preparation of high molecular polyethylene having a good incorporation of a comonomer. It is remarkable that in respect to the unsupported catalyst system no drop of intrinsic viscosity can be observed.
- a 1.7-l-Steelautoclave was filled under Argon at 70 0 C with 10Og PE-powder (which was already dried at 80 0 C for 8 hours in vacuum and stored under Argon atmosphere) having a particle size of > 1mm.
- 10Og PE-powder which was already dried at 80 0 C for 8 hours in vacuum and stored under Argon atmosphere
- 200mg lsoprenylaluminum (IPRA in heptane 50mg/ml) as well as 50mg Costelan AS 100 (Costelan in heptane 50mg/ml) were added.
- 50mg Costelan AS 100 Costelan in heptane 50mg/ml
- a 240-l-Steelautoclave was filled with 240I of Exxsol D 140/170 from Exxon under nitrogen at 83 0 C. Subsequently, 75mmol triethyalumnium (10,3ml TEA 100% in 89.7ml Exxsol) and 500ml hexene were added at 83°C. First with ethylene pressure was increased up to 8 bar at 83°. Then the catalyst were rinsed with 70ml Exxsol and polymerization started. In the first 10 minutes the pressure was stepwise increased to 10 bar and was kept constant for 3 hours via adding additional ethylene and hexene during the polymerization. After polymerization the pressure was released. The polymer was removed from the autoclave and dried for 8h under nitrogen. Table 3: polymerization - hybrid catalysts
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
Abstract
Description
Claims
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020127002120A KR101743312B1 (en) | 2009-07-27 | 2010-07-20 | Organometallic transition metal compound, catalyst system and preparation of polyolefins |
US13/381,327 US8471050B2 (en) | 2009-07-27 | 2010-07-20 | Organometallic transition metal compound, catalyst system and preparation of polyolefins |
JP2012522004A JP5654014B2 (en) | 2009-07-27 | 2010-07-20 | Production of organometallic transition metal compounds, catalyst systems, and polyolefins |
EP10736627.0A EP2459600B1 (en) | 2009-07-27 | 2010-07-20 | Organometallic transition metal compound, catalyst system and preparation of polyolefins |
CN2010800336718A CN102471400B (en) | 2009-07-27 | 2010-07-20 | Organometallic transition metal compound, catalyst system and preparation of polyolefins |
BR112012001993-7A BR112012001993B1 (en) | 2009-07-27 | 2010-07-20 | ORGANOMETHALIC COMPOUND OF TRANSITION METAL, CATALYST SYSTEM AND PREPARATION OF POLYOLEFINS |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP09009670.2 | 2009-07-27 | ||
EP09009670 | 2009-07-27 | ||
US27315909P | 2009-07-31 | 2009-07-31 | |
US61/273,159 | 2009-07-31 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011012245A1 true WO2011012245A1 (en) | 2011-02-03 |
Family
ID=42752415
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2010/004436 WO2011012245A1 (en) | 2009-07-27 | 2010-07-20 | Organometallic transition metal compound, catalyst system and preparation of polyolefins |
Country Status (7)
Country | Link |
---|---|
US (1) | US8471050B2 (en) |
EP (1) | EP2459600B1 (en) |
JP (1) | JP5654014B2 (en) |
KR (1) | KR101743312B1 (en) |
CN (1) | CN102471400B (en) |
BR (1) | BR112012001993B1 (en) |
WO (1) | WO2011012245A1 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101828929B1 (en) * | 2015-06-12 | 2018-02-13 | 주식회사 엘지화학 | Compound for preparing polyolefin for preparing fiber and supported catalyst comprising the same |
CN111225927A (en) * | 2017-10-25 | 2020-06-02 | 埃克森美孚化学专利公司 | Unbridged indacenyl metallocenes |
US10703838B2 (en) | 2017-10-31 | 2020-07-07 | Exxonmobil Chemical Patents Inc. | Mixed catalyst systems with four metallocenes on a single support |
WO2021034459A1 (en) | 2019-08-22 | 2021-02-25 | Exxonmobil Chemical Patents Inc. | Isotactic propylene homopolymers and copolymers produced with c1 symmetric metallocene catalysts |
US11001657B2 (en) | 2017-10-25 | 2021-05-11 | Exxonmobil Chemical Patents Inc. | Unbridged indacenyl metallocenes |
WO2022108973A1 (en) | 2020-11-23 | 2022-05-27 | Exxonmobil Chemical Patents Inc. | Metallocene polypropylene prepared using aromatic solvent-free supports |
WO2023034889A1 (en) | 2021-09-02 | 2023-03-09 | Exxonmobil Chemical Patents Inc. | C1 symmetric metallocene catalysts tailored for production of vinyl-terminated polypropylene oligomers and macromonomers |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3792292B1 (en) | 2016-09-30 | 2023-06-07 | Univation Technologies, LLC | Polymerization catalysts with improved ethylene enchainment |
Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3242150A (en) | 1960-03-31 | 1966-03-22 | Phillips Petroleum Co | Method and apparatus for the recovery of solid olefin polymer from a continuous path reaction zone |
US3248179A (en) | 1962-02-26 | 1966-04-26 | Phillips Petroleum Co | Method and apparatus for the production of solid polymers of olefins |
US5420220A (en) | 1993-03-25 | 1995-05-30 | Mobil Oil Corporation | LLDPE films |
WO1997004015A1 (en) | 1995-07-20 | 1997-02-06 | Montell Technology Company B.V. | Process and apparatus for the gas-phase polymerization of alpha-olefins |
WO1997036937A1 (en) | 1996-03-29 | 1997-10-09 | The Dow Chemical Company | Metallocene cocatalyst |
WO1999006414A1 (en) | 1997-07-31 | 1999-02-11 | Targor Gmbh | Compounds containing boron and aluminium |
WO2000031090A1 (en) | 1998-11-25 | 2000-06-02 | Targor Gmbh | Metallocene monohalogenides |
US6262201B1 (en) * | 1998-06-19 | 2001-07-17 | Phillips Petroleum Company | Aryl substituted metallocene catalysts and their use |
WO2003031090A1 (en) | 2001-10-05 | 2003-04-17 | Sundwig Gmbh | Device for detecting stress distribution of metal bands loaded by band tension |
WO2003066699A1 (en) | 2002-02-04 | 2003-08-14 | Borealis Technology Oy | Polymer film |
US20040249096A1 (en) * | 2003-06-05 | 2004-12-09 | Mccullough Laughlin Gerard | Class of metallocenes and method of producing polyethylene |
WO2005103095A1 (en) * | 2004-04-26 | 2005-11-03 | Basell Polyolefine Gmbh | Polyethylene and catalyst composition for its preparation |
EP1710247A1 (en) * | 2004-01-28 | 2006-10-11 | Idemitsu Kosan Co., Ltd. | Transition metal compound and catalyst for olefin polymerization |
WO2007037836A2 (en) | 2005-09-15 | 2007-04-05 | Chevron Phillips Chemical Co Lp | Polymerization catalysts and process for producing bimodal polymers in a single reactor |
WO2007101053A1 (en) | 2006-02-22 | 2007-09-07 | Chevron Phillips Chemical Company Lp | Dual metallocene catalysts for polymerization of bimodal polymers |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1174946C (en) * | 2001-06-14 | 2004-11-10 | 中国石油化工股份有限公司 | Indenyl and aryl substituted cyclopentadienyl metallocene compound |
CA2625592A1 (en) | 2005-09-09 | 2007-03-15 | Essex P.B. & R. Corp. | Breathing apparatus |
-
2010
- 2010-07-20 KR KR1020127002120A patent/KR101743312B1/en active IP Right Grant
- 2010-07-20 BR BR112012001993-7A patent/BR112012001993B1/en active IP Right Grant
- 2010-07-20 JP JP2012522004A patent/JP5654014B2/en active Active
- 2010-07-20 EP EP10736627.0A patent/EP2459600B1/en not_active Revoked
- 2010-07-20 CN CN2010800336718A patent/CN102471400B/en active Active
- 2010-07-20 WO PCT/EP2010/004436 patent/WO2011012245A1/en active Application Filing
- 2010-07-20 US US13/381,327 patent/US8471050B2/en active Active
Patent Citations (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3242150A (en) | 1960-03-31 | 1966-03-22 | Phillips Petroleum Co | Method and apparatus for the recovery of solid olefin polymer from a continuous path reaction zone |
US3248179A (en) | 1962-02-26 | 1966-04-26 | Phillips Petroleum Co | Method and apparatus for the production of solid polymers of olefins |
US5420220A (en) | 1993-03-25 | 1995-05-30 | Mobil Oil Corporation | LLDPE films |
WO1997004015A1 (en) | 1995-07-20 | 1997-02-06 | Montell Technology Company B.V. | Process and apparatus for the gas-phase polymerization of alpha-olefins |
WO1997036937A1 (en) | 1996-03-29 | 1997-10-09 | The Dow Chemical Company | Metallocene cocatalyst |
WO1999006414A1 (en) | 1997-07-31 | 1999-02-11 | Targor Gmbh | Compounds containing boron and aluminium |
US6262201B1 (en) * | 1998-06-19 | 2001-07-17 | Phillips Petroleum Company | Aryl substituted metallocene catalysts and their use |
WO2000031090A1 (en) | 1998-11-25 | 2000-06-02 | Targor Gmbh | Metallocene monohalogenides |
WO2003031090A1 (en) | 2001-10-05 | 2003-04-17 | Sundwig Gmbh | Device for detecting stress distribution of metal bands loaded by band tension |
WO2003066699A1 (en) | 2002-02-04 | 2003-08-14 | Borealis Technology Oy | Polymer film |
US20040249096A1 (en) * | 2003-06-05 | 2004-12-09 | Mccullough Laughlin Gerard | Class of metallocenes and method of producing polyethylene |
EP1710247A1 (en) * | 2004-01-28 | 2006-10-11 | Idemitsu Kosan Co., Ltd. | Transition metal compound and catalyst for olefin polymerization |
WO2005103095A1 (en) * | 2004-04-26 | 2005-11-03 | Basell Polyolefine Gmbh | Polyethylene and catalyst composition for its preparation |
WO2005103096A1 (en) | 2004-04-26 | 2005-11-03 | Basell Polyolefine Gmbh | Polyethylene for injection moldings |
WO2007037836A2 (en) | 2005-09-15 | 2007-04-05 | Chevron Phillips Chemical Co Lp | Polymerization catalysts and process for producing bimodal polymers in a single reactor |
WO2007101053A1 (en) | 2006-02-22 | 2007-09-07 | Chevron Phillips Chemical Company Lp | Dual metallocene catalysts for polymerization of bimodal polymers |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101828929B1 (en) * | 2015-06-12 | 2018-02-13 | 주식회사 엘지화학 | Compound for preparing polyolefin for preparing fiber and supported catalyst comprising the same |
CN111225927A (en) * | 2017-10-25 | 2020-06-02 | 埃克森美孚化学专利公司 | Unbridged indacenyl metallocenes |
US11001657B2 (en) | 2017-10-25 | 2021-05-11 | Exxonmobil Chemical Patents Inc. | Unbridged indacenyl metallocenes |
US10703838B2 (en) | 2017-10-31 | 2020-07-07 | Exxonmobil Chemical Patents Inc. | Mixed catalyst systems with four metallocenes on a single support |
WO2021034459A1 (en) | 2019-08-22 | 2021-02-25 | Exxonmobil Chemical Patents Inc. | Isotactic propylene homopolymers and copolymers produced with c1 symmetric metallocene catalysts |
WO2022108973A1 (en) | 2020-11-23 | 2022-05-27 | Exxonmobil Chemical Patents Inc. | Metallocene polypropylene prepared using aromatic solvent-free supports |
WO2023034889A1 (en) | 2021-09-02 | 2023-03-09 | Exxonmobil Chemical Patents Inc. | C1 symmetric metallocene catalysts tailored for production of vinyl-terminated polypropylene oligomers and macromonomers |
Also Published As
Publication number | Publication date |
---|---|
BR112012001993A2 (en) | 2016-05-03 |
US20120142874A1 (en) | 2012-06-07 |
KR101743312B1 (en) | 2017-06-02 |
CN102471400A (en) | 2012-05-23 |
JP5654014B2 (en) | 2015-01-14 |
JP2013500283A (en) | 2013-01-07 |
KR20120042862A (en) | 2012-05-03 |
EP2459600A1 (en) | 2012-06-06 |
US8471050B2 (en) | 2013-06-25 |
CN102471400B (en) | 2013-12-11 |
EP2459600B1 (en) | 2013-11-20 |
BR112012001993B1 (en) | 2019-06-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2459600B1 (en) | Organometallic transition metal compound, catalyst system and preparation of polyolefins | |
KR101066969B1 (en) | Method for preparing olefin polymer using transition metal catalyst having better copolymerization | |
US5907021A (en) | High temperature olefin polymerization process | |
WO2007003378A2 (en) | Catalyst | |
ZA200106367B (en) | Metallocene compounds, process for their preparation and their use in catalytic systems for the polymerization of olefins. | |
ES2391973T3 (en) | Supported polymerization catalysts | |
WO2001030858A1 (en) | Stereospecific living polymerization of olefins by a novel ziegler-natta catalyst composition | |
CA2503461A1 (en) | Modified (mao + aluminum alkyl) activator | |
CN108290971B (en) | Metallocene supported catalyst and method for preparing polyolefin using the same | |
EP3239156B1 (en) | Novel group 4 transition metal compound and use of same | |
JP6854758B2 (en) | New Group 4 Transition Metal Compounds and Their Applications | |
JPH10182716A (en) | Catalytic system for polymerizing and copolymerizing alpha olefin | |
WO2020132422A1 (en) | Heterocycle-heterocycle-based group iv transition metal catalysts for olefin polymerization | |
CN106573941A (en) | Novel group 4 transition metal compound and use thereof | |
KR20220094138A (en) | Metal-ligand complex, catalyst composition for preparing ethylene-based polymer containing the same, and preparation method of ethylene-based polymer using the same | |
JP2022070870A (en) | Unsymmetrical metallocene catalysts and uses thereof | |
EP1063244A2 (en) | High temperature olefin polymerization process | |
EP4055069A1 (en) | Biphenylphenol polymerization catalysts | |
JP2023515574A (en) | Hybrid catalyst compositions, catalysts containing same and methods for their preparation | |
CA2316135C (en) | Aluminum phosphinimine complexes for olefin polymerization | |
US20030028041A1 (en) | Novel aluminum complexes for olefin polymerization | |
US6794329B2 (en) | Catalyst activator | |
JP2022159008A (en) | Transition metal compound, olefin-polymerization catalyst and method for producing olefin polymer | |
JP2024500603A (en) | Metal-ligand complex, catalyst composition for producing an ethylene polymer containing the same, and method for producing an ethylene polymer using the same | |
US20020123580A1 (en) | Transition metal catalyst compounds having deuterium substituted ligand and catalyst systems thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201080033671.8 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10736627 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 786/CHENP/2012 Country of ref document: IN |
|
REEP | Request for entry into the european phase |
Ref document number: 2010736627 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012522004 Country of ref document: JP Ref document number: 2010736627 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 20127002120 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13381327 Country of ref document: US |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112012001993 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: 112012001993 Country of ref document: BR Kind code of ref document: A2 Effective date: 20120127 |