WO2011009394A1 - 一种协作通信的预处理的方法、系统和装置 - Google Patents

一种协作通信的预处理的方法、系统和装置 Download PDF

Info

Publication number
WO2011009394A1
WO2011009394A1 PCT/CN2010/075273 CN2010075273W WO2011009394A1 WO 2011009394 A1 WO2011009394 A1 WO 2011009394A1 CN 2010075273 W CN2010075273 W CN 2010075273W WO 2011009394 A1 WO2011009394 A1 WO 2011009394A1
Authority
WO
WIPO (PCT)
Prior art keywords
channel matrix
base stations
base station
computing device
mimo
Prior art date
Application number
PCT/CN2010/075273
Other languages
English (en)
French (fr)
Inventor
施广宇
张洪波
杨讯
何诚
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP10801953.0A priority Critical patent/EP2418786B1/en
Publication of WO2011009394A1 publication Critical patent/WO2011009394A1/zh
Priority to US13/253,254 priority patent/US9425867B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/022Site diversity; Macro-diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03891Spatial equalizers
    • H04L25/03898Spatial equalizers codebook-based design
    • H04L25/03904Spatial equalizers codebook-based design cooperative design, e.g. exchanging of codebook information between base stations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0204Channel estimation of multiple channels

Definitions

  • the present invention relates to the field of mobile communication technologies, and more particularly to a method, system and apparatus for pre-processing cooperative communication.
  • CoMP Coordinated Multiple Point
  • Multiple-Out-put the basic purpose of which is to serve the UE or User Equipment (UE) through cooperative processing between multiple base stations, thereby effectively eliminating inter-cell interference and improving the throughput of the cell edge users.
  • UE User Equipment
  • the primary task is to determine how to properly partition these base stations to form different coordination areas (CAs) to achieve optimal system performance.
  • CA partitioning methods that have been proposed are generally the following. Among them, these methods can be divided into two categories, that is, there is no overlap in the collaboration area and the cooperation areas overlap, belonging to the work area or not overlapping. Typical methods are network-centric, network defined and UE-assisted, etc., and typical methods that overlap the cooperation areas are UE-centric and the like.
  • embodiments of the present invention provide a method, system, and apparatus for pre-processing cooperative communication, so that the complexity of the computational process can be realized while eliminating interference between cell UEs.
  • An embodiment of the present invention provides a method for pre-processing cooperative communication, including:
  • MIMO cooperation area information includes cooperation information between the base stations, and the cooperation information between the base stations is used to determine a interference relationship between the MIMO cooperation areas;
  • An embodiment of the present invention provides a method for pre-processing cooperative communication, including:
  • the precoding calculation of the UE is performed by using the channel matrix collected by all the base stations serving the same UE.
  • An embodiment of the present invention provides a system for pre-processing cooperative communication, including: a task decomposition scheduling device and a computing device, where The task decomposition scheduling apparatus is configured to acquire MIMO cooperation area information, and combine the channel matrix of the UE according to the interference relationship between the MIMO cooperation areas, where the MIMO cooperation area information includes cooperation information between the base stations. The cooperation information between the base stations is used to determine a interference relationship between the MIMO cooperation areas;
  • the computing device is configured to perform precoding calculation of the UE by using the combined channel matrix according to the scheduling of the task decomposition scheduling apparatus.
  • An embodiment of the present invention provides a task decomposition scheduling apparatus, including:
  • an acquiring unit configured to acquire MIMO cooperation area information, where the MIMO cooperation area information includes cooperation information between the base stations, where the cooperation information between the base stations is used to determine a interference relationship between the MIMO cooperation areas;
  • a task decomposition unit configured to merge the channel matrix of the UE according to a interference relationship between the MIMO cooperation regions
  • a task scheduling unit configured to schedule the computing device to perform precoding calculation of the UE by using the combined channel matrix.
  • the embodiment of the invention provides a computing device, including:
  • a receiving unit configured to receive a channel matrix collected by all base stations serving the same UE
  • a calculating unit configured to perform precoding calculation of the UE by using a channel matrix collected by all base stations serving the same UE.
  • the channel matrix of the UE is combined according to the interference relationship between the MIMO cooperation areas, and the pre-coding calculation of the UE is performed by using the combined channel matrix, thereby eliminating inter-UE The interference is reduced, and the complexity of implementing the precoding calculation process for eliminating interference between UEs is correspondingly reduced.
  • FIG. 1 is a flowchart of a method for pre-processing cooperative communication according to an embodiment of the present invention
  • FIG. 2 is a flowchart of another method for pre-processing cooperative communication according to an embodiment of the present invention
  • FIG. 4 is a schematic structural diagram of a system for pre-processing cooperative communication according to an embodiment of the present invention
  • FIG. 5 is a schematic structural diagram of a task decomposition scheduling apparatus according to an embodiment of the present invention
  • FIG. 6 is a schematic structural diagram of a computing device according to an embodiment of the present invention
  • FIG. 7 is a flowchart of a method for preprocessing a fourth type of cooperative communication according to an embodiment of the present invention
  • FIG. 8 is a schematic diagram of a network scenario according to an embodiment of the present invention.
  • the embodiment of the invention provides a preprocessing method for cooperative communication.
  • the specific process of the method is as shown in FIG. 1:
  • the information of the cooperation area may be cooperation information between the base stations and a correspondence between the base station and the UE. It can be understood that the information of the base stations in the MIMO cooperative area is obtained, that is, the number of base stations in the MIMO cooperative area, or which base stations of the MIMO cooperative area are composed, and the correspondence between the base station and the UE of the server. The correspondence between the base station and the UE can be understood as which UEs a base station serves. The cooperation information between the base stations is used to determine the relationship between the MIMO cooperation areas.
  • S102 Combine the channel matrix of the UE according to the interference relationship between the MIMO cooperation areas. It can be understood as: dividing the computing task according to the interference relationship between the MIMO cooperation regions.
  • the involved interference relationship refers to the fact that the UE in a certain cooperation area receives the signal sent by the base station to the UE while receiving the signal sent by the base station to the UE in other cooperation areas, and the interference areas between the cooperation areas constitute interference. Therefore, it can be understood that the channel matrix reported by the UE having the interference relationship is combined and saved to the computing device corresponding to the UE.
  • the interference relationship between the MIMO cooperation areas is determined by the cooperation information between the base stations.
  • This step may include:
  • the scheduling base station sends a channel matrix reported by the UE of the server.
  • the combined channel matrix is sent to a corresponding computing device.
  • the step may also include:
  • All base stations serving the same UE are scheduled to transmit the collected channel matrix to the computing device for merging.
  • all base stations serving the same UE are scheduled according to the correspondence between the base station and the UE in the MIMO cooperative area, and the collected channel matrix is sent to the computing device.
  • all the base stations serving the same UE send the collected channel matrix to the computing device, which may be equivalent to the channel matrix sent by all the base stations of the same UE by the computing device, or may be considered as merge.
  • S103 Perform precoding calculation of the UE by using the combined channel matrix. It can also be understood that the computing device corresponding to each UE is scheduled, so that the computing device performs the calculation of the precoding of the UE by using the saved combined channel matrix. Of course, after the computing device completes the calculation of the precoding of the UE, the computing device is also required to return the calculated result to the corresponding base station.
  • step S101 before the execution of step S101, it is necessary to determine the division of the cooperation area in the MIMO, that is, which base stations are composed in the MIMO cooperation area. And determine the MIMO cooperation area to which each UE belongs. Then, the base station in the MIMO cooperative area collects the channel matrix reported by the UE it serves.
  • the technical solution provided by the embodiment of the present invention will serve all base stations serving the same UE.
  • the collected channel matrices are combined, and the pre-coded calculation of the UE is performed by using the combined channel matrix, thereby eliminating inter-UE interference; when precoding calculation of each UE is required, due to channels of each UE to be used
  • the matrix is stored on different computing devices, thus realizing the complexity of implementing a precoding calculation process that eliminates inter-UE interference.
  • FIG. 2 Another embodiment of the present invention provides a pre-processing method for cooperative communication. The specific process of the method is shown in FIG. 2:
  • S201 Receive a channel matrix collected by all base stations serving the same UE.
  • Step S201 may be a combined channel matrix sent by the receiving task decomposition scheduling device, where the combined channel matrix is formed by combining channel matrices collected by all base stations serving the same UE; in this embodiment, the step In S201, the received combined channel matrix may also be saved.
  • step S201 may be to receive a channel matrix sent by all base stations serving the same UE.
  • S202 Perform precoding calculation of the UE by using a channel matrix collected by all base stations serving the same UE according to the scheduling instruction.
  • the pre-coding calculation of the UE is performed by using the combined channel matrix.
  • the precoding calculation of the UE is performed by using the combined channel matrix according to a scheduling instruction of the task decomposition scheduling apparatus.
  • the technical solution provided by the embodiment of the present invention receives the channel matrix collected by all the base stations serving the same UE, and performs precoding calculation of the UE by using the channel matrix collected by all the base stations serving the same UE. In this way, interference between UEs is eliminated.
  • the embodiment of the present invention provides a third method for eliminating interference between UEs. The specific process of the method is as shown in FIG. 3:
  • the task decomposition scheduling device acquires information about the MIMO cooperation area.
  • the task decomposition scheduling device merges the channel matrix of the UE into the corresponding computing device according to the interference relationship between the MIMO cooperation regions.
  • the channel matrix reported by the UE of the server sent by the base station may be acquired first; the device serving the same UE may be served.
  • the channel matrix collected by the base station is merged, and the combined channel matrix is stored in the corresponding computing device.
  • all base stations serving the same UE are scheduled to send the collected channel matrix. Consolidate to the computing device.
  • S302 is a key step to implement interference cancellation between UEs.
  • the channel matrix of the UE is provided for the UE.
  • the product of the precoding matrix of other UEs served by the serving base station is 0, where the base station multiplies the precoding matrix of the UE by the data to be transmitted before the base station transmits data to the corresponding UE, which can reduce or even eliminate other UEs.
  • the interference to the UE According to the condition, the calculation of each UE precoding can be performed according to the relevant channel matrix, thereby implementing the cancellation of interference between UEs in the network.
  • the UE in the network reports the channel matrix between the two base stations to which the service is provided.
  • the task decomposition scheduling device acquires the collected information from the base station.
  • the channel decomposition matrix the task decomposition scheduling device combines the acquired channel matrix or the task decomposition scheduling device to serve all the base stations of the same UE, and sends the collected channel matrix to the computing device for merging.
  • the principle of merging is as follows : Combine the channel matrices collected by all base stations serving the same UE.
  • the principle may be further specifically as follows: if a UE has two base stations providing services to it, all channel matrices collected on the two base stations will be combined and saved on one computing device; A base station provides services to it, and only needs to store all the channel matrices collected by the base station on a computing device. This situation can also be considered as a special way of combining and storing the channel matrix. In the above manner, it can be known that the channel matrices required for computing different UEs are already stored on different computing devices, so that when calculating the precoding of a UE in the network, the corresponding computing device is called and called.
  • the computing device can perform the calculation of the UE precoding according to the channel matrix required to calculate the UE, which eliminates the degree of association in the calculation process, so that the precoding calculation of the UE in the network can be distributed.
  • Parallel computing is done in a way that also reduces the complexity of the calculation process.
  • the computing device that saves the merged channel matrix may be further classified, for example, according to the number of base stations corresponding to the channel matrix stored on the computing device, if some calculations
  • the channel matrices of the two base stations are respectively stored on the device, and the computing devices can be divided into one class, which facilitates scheduling related computing devices in subsequent calculations.
  • the task decomposition scheduling apparatus schedules, by the computing device, the computing device corresponding to each UE, so that the computing device performs the calculation of the precoding of the UE.
  • the method may be performed in this manner: if a combined channel matrix held by one computing device can perform precoding calculation of multiple UEs, The computing device may first perform calculation of a common solution space of the precoding of the plurality of UEs, and then perform calculation of each UE precoding separately according to the obtained common solution space. In this way, the workload in the calculation process can be effectively reduced.
  • the computing device sends the calculated precoding of the corresponding UE to the base station that provides the UE with the service.
  • the computing device needs to send the precoding to the base station that provides the service for the corresponding UE, so that when the base station in the network sends the data information to the corresponding UE, the UE is eliminated. Interference between the two.
  • the embodiment of the present invention combines channel matrices collected on all base stations serving the same UE, and performs precoding calculation of the UE by using the combined channel matrix, thereby eliminating
  • the precoding calculation of each UE is required, since the channel matrix of each UE to be used is stored on different computing devices, the complexity of the precoding calculation process for eliminating interference between UEs is realized. degree.
  • the embodiment of the present invention further provides a system for pre-processing cooperative communication.
  • the system structure is as shown in FIG. 4, and includes: a task decomposition scheduling device 401 and a computing device 402, wherein the computing device 402 can be customized according to the network. The situation is determined by the number.
  • the task decomposition scheduling apparatus 401 is configured to acquire a MIMO cooperation area, and combine the channel matrix of the UE into the corresponding computing device according to the interference relationship between the MIMO cooperation areas, and schedule the computing device.
  • the task decomposition scheduling apparatus 401 is further configured to combine channel matrices collected by all base stations serving the same UE when there is interference between the MIMO cooperation areas, and merge the combined channel matrices.
  • the channel matrix is stored in the corresponding computing device; the computing device corresponding to each UE is scheduled, so that the computing device performs the precoding calculation of the UE by using the saved combined channel matrix;
  • the task decomposition scheduling apparatus 401 is further configured to acquire a channel matrix reported by the UE of the server sent by the base station, and combine the channel matrix collected on all the base stations serving the same UE, and merge the combined channel matrix.
  • the channel matrix is sent to the corresponding computing device 402.
  • the task decomposition scheduling apparatus 401 is further configured to schedule all base stations serving the same UE, and send the collected channel matrix to the computing device 402 for merging.
  • the computing device 402 is configured to perform precoding calculation of the UE by using the combined channel matrix according to the scheduling of the task decomposition scheduling apparatus. In this embodiment, the computing device 402 is further configured to send the calculated precoding of the corresponding UE to the base station serving the UE under the scheduling of the task decomposition scheduling apparatus.
  • the technical solution provided by the embodiment of the present invention combines channel matrices collected on all base stations serving the same UE, and performs precoding calculation of the UE by using the combined channel matrix, thereby eliminating
  • the precoding calculation of each UE is required, since the channel matrix of each UE to be used is saved on different computing devices, the decoupling of computing tasks is realized, which is beneficial to achieve mutual correlation.
  • Distributed computing correspondingly reduces the complexity of implementing a precoding calculation process that eliminates inter-UE interference.
  • the embodiment of the present invention further provides a task decomposition scheduling device, and the device structure is as shown in FIG. 5, and includes:
  • the obtaining unit 501 is configured to acquire information of a MIMO cooperation area.
  • the obtaining unit 501 is further configured to acquire a channel matrix reported by the UE of the server sent by the base station.
  • the task decomposition unit 502 is configured to merge the channel matrix of the UE into the corresponding computing device according to the interference relationship between the MIMO cooperation regions. In this embodiment, the task decomposition unit 502 is further used between the MIMO cooperation regions. When there is interference, the channel matrix collected on all base stations serving the same UE is merged into the corresponding computing device.
  • the task decomposition unit 502 is further configured to: when there is interference between the MIMO cooperation areas, according to the channel matrix acquired by the obtaining unit 501, the channel matrix collected on all base stations serving the same UE The merging is performed, and the combined channel matrix is sent to the corresponding computing device.
  • the task scheduling unit 503 is configured to schedule a computing device corresponding to each UE, so that the computing device performs the calculation of the precoding of the UE by using the combined channel matrix.
  • the task decomposing unit 502 is further configured to notify the task scheduling unit 503 to schedule and serve the same UE according to the correspondence between the base station and the UE in the MIMO cooperation area when there is interference between the MIMO cooperation areas. All base stations send the collected channel matrix to the computing device for merging.
  • the task scheduling unit 503 is further configured to schedule all base stations serving the same UE, and send the collected channel matrix to the computing device for merging.
  • all the base stations serving the same UE are scheduled according to the correspondence between the base station and the UE in the MTMO cooperation area, and the collected channel matrix is sent to the computing device for merging on the computing device.
  • the task scheduling unit 503 is further configured to: the scheduling base station sends the collected channel matrix reported by all UEs that it collects to the computing device.
  • the task scheduling unit 503 is further configured to, when the computing device completes the precoding calculation of the UE, schedule the computing device to return the calculation result to the base station serving the UE.
  • the task-disassembly scheduling device may exist in the network as a single entity.
  • the task-disassembly scheduling device may also be deployed in some manner on a certain base station or some base stations in the network. Regardless of the deployment method, the function of the task decomposition scheduling device No change.
  • the embodiment of the present invention further provides a computing device.
  • the computing device has the following structure as shown in FIG. 6, and includes:
  • the receiving unit 601 is configured to receive a channel matrix collected by all base stations serving the same UE.
  • the receiving unit 601 may be configured to receive a combined channel matrix sent by the task decomposition scheduling apparatus, where the combined channel matrix is formed by combining channel matrices collected by all base stations serving the same UE. ;
  • the calculating unit 602 is configured to perform precoding calculation of the UE by using the combined channel matrix according to scheduling of the task decomposition scheduling apparatus.
  • the saving unit 603 is configured to save the merged channel matrix received by the receiving unit 601.
  • the calculating unit 602 may perform the calculation of the precoding of the UE by using the combined channel matrix received by the receiving unit 601, or may perform the calculation of the precoding of the UE by using the combined channel matrix received by the saving unit 603.
  • a computing device may further include a sending unit 604, configured to send, according to a scheduling of the task decomposition scheduling device, a precoding of the corresponding UE to be calculated to a base station serving the UE. .
  • the receiving unit 601 is further configured to receive a channel matrix sent by all base stations serving the same UE.
  • the calculating unit 602 is further configured to perform precoding calculation of the UE according to the channel matrix sent by all the base stations serving the same UE received by the receiving unit 601.
  • the computing device can be deployed on a peer-to-peer (P2P, Peer to Peer) computing system formed by the base station.
  • P2P peer-to-peer
  • the base station on which the computing device is deployed can be connected by using P2P; As a stand-alone system exists in the network.
  • the function of the task decomposition scheduling device does not change.
  • the task decomposition scheduling device may also constitute a device with the computing device.
  • Step 701 Determine a division of the cooperation area in the MIMO.
  • step 701 how to divide the cooperation area in the MIMO may be determined by the UE according to the channel quality, or may be determined by the MIMO network according to the network status and/or the UE. The suggestion to make a determination. Wherein, when the division of the MIMO cooperation area in the present embodiment is performed, there is overlap between the respective cooperation areas.
  • Step 702 Determine a MIMO cooperation area to which each UE in the network belongs.
  • step 702 after performing the division of the cooperation area, the MIMO cooperation area to which each UE belongs in the network is determined, where the UE may be determined according to the channel quality, or may be determined by the MIMO network status and / or UE's suggestion to determine.
  • Step 703 The UE reports a channel matrix to the base station that provides the service.
  • each UE needs to report a channel matrix to all base stations that provide services for it. If only one base station provides service to a certain UE, the UE only needs to report a channel matrix to a base station, where A channel matrix refers to a channel matrix between a UE and a base station serving the UE; and if a certain UE has multiple base stations providing services thereto, the UE needs to provide a corresponding channel matrix to each base station serving the UE. .
  • the figure is a schematic diagram of the correspondence between the UE and the base station. It can be seen from FIG. 8 that UEi has base station 1 and base station 2 providing services to it, and then UE needs to report the channel matrix between it and base station 1 to base station 1, and report the channel matrix between it and base station 2 to base station 2.
  • Step 704 After receiving the channel matrix reported by the UE served by the base station, the base station saves the channel matrix on the computing device.
  • the base station collects the channel matrix reported by the UE it serves
  • the collected channel matrix is sent to the computing device for storage under the scheduling of the task decomposition scheduling device.
  • each base station collects the channel matrices reported by the UEs it serves, and stores the channel matrices on the corresponding computing device.
  • the computing device is assumed to be located. Level 1. If a UE has two base stations providing services to it, all the channel matrices collected by the two base stations are combined and saved on the new computing device. In this embodiment, the computing device is located at Level 2 With reference to FIG. 8 , since the UE has the base station 1 and the base station 2 providing services thereto, the base station 1 and the base station 2 combine and store all the collected channel matrices on a computing device, and the device is located at the level. 2 on.
  • the n base stations combine all the collected channel matrices on a computing device.
  • the computing device is assumed to be at Level n. on. It should be noted that there is no difference in level between Level 1, Level 2, and the like involved herein, but only one classification of channel matrices collected by different number of base stations.
  • Step 705 Divide the computing task, that is, specify a computing device for each UE's computing task.
  • the information of the MIMO cooperation area needs to be acquired first, and the information of the base stations in the MIMO cooperation area, that is, the number of base stations in the MIMO cooperation area, or the base stations in the MIMO cooperation area, may be understood. .
  • this step requires obtaining multiple MIMO cooperation areas.
  • the computing task is divided according to the interference relationship between the MIMO cooperation areas.
  • the division of the computing task is performed based on the interference relationship between the MIMO cooperation regions, where the interference relationship referred to herein refers to a certain
  • the interference relationship referred to herein refers to a certain
  • the interference areas constitute an interference relationship; therefore, it can be understood that there will be interference.
  • the channel matrix reported by the UE of the relationship is merged and saved to the computing device corresponding to the UE.
  • the base station 1, base stations 2 and 3 collected UE channel matrix respective services, and are stored in the corresponding computing device, in the present embodiment, assume that these devices are C u, C 12, C 13 According to the principle described above, all three computing devices are located at Level 1.
  • the UE! and UE 5 have base station 1 and base station 2 providing services thereto, and the channel matrices stored by base station 1 and base station 2 stored on c and c 12 will be merged and saved on another computing device.
  • the device is determined to be C 21 , and similarly, the UE 3 has the base station 2 and the base station 3 providing services thereto, and the base station 2 and the base station 3 collect the collected channels stored on the C 12 and C 13 .
  • the matrix will be merged and saved on another computing device.
  • the device is assumed to be C22 , and C22 and C21 are located on Level 2.
  • UE 2 and UE 6 respectively have base station 1, base station 2 and base station 3 providing services thereto, and then collected by base station 1, base station 2 and base station 3 are stored in C u , C
  • the channel matrices on 12 and C 13 will be combined and saved on the new computing device.
  • the device is assumed to be C 31 and the device is located at Level 3.
  • the precoding matrices of the six UEs are:
  • W represents the precoding matrix of the J′th UE by the base station.
  • the base station 1 since the base station 1 provides services for the UE UE 2 , the UE 5, and the UE 6 , respectively, the data information transmitted on the transmitting antenna of the base station 1 is:
  • base station 2 and base station 3 transmit data signals transmitted on the antenna
  • T Mi W
  • 6, refers to the data sent to the first UE.
  • the data information received on each UE receiving antenna is:
  • the UE 3 precoding matrix (W 23 , W 33 ) needs to satisfy:
  • the UE 4 precoding matrix (W 34 ) needs to satisfy:
  • the UE 5 precoding matrix (W 15 , W 25 ) needs to satisfy:
  • the UE 6 precoding matrix (W 16 , W 26 , W 36 ) needs to satisfy:
  • the input channel matrix needs to be (H 12 , H 22 , H 23 , H 15 , H 25 , H 16 , H 26 ), in front. It has been explained that since both UE!
  • UEi and UE 5 provide services to base station 1 and base station 2, UEi and UE 5 need to have a >3 ⁇ 4 channel matrix to base station 1 and base station 2, and the collection of base station 1 and base station 2 All the channel matrices that have arrived are merged and saved on the computing device C 21 located on Level 2, then the computing task of the UE ⁇ UE 5 is assigned to the computing device C 21 ; similarly, the UE 3 has the base station 2 and the base station 3 The service is provided, and all the channel matrices collected on the base station 2 and the base station 3 are merged and saved on the computing device C 22 on the Level 2, and the computing task of the UE 3 is assigned to the computing device C 22 ; Correspondingly, the computing task of UE 4 is assigned to computing device C 13 located at Level 1, while UE 2 and UE 6 The computing task is assigned to computing device C 31 located at Level 3.
  • Step 706 Each computing device performs calculation of corresponding UE precoding.
  • the calculations of the computing devices can be performed in parallel, which ensures the real-time performance of the computing tasks.
  • step 706 in order to reduce the repeatability of the calculation, the following manner may also be used:
  • the following manner may also be used: The same, as mentioned above, the UE ⁇ precoding matrix needs to satisfy:
  • the precoding matrix of UE 5 needs to satisfy:
  • the UEj precoding matrix and the UE 5 precoding matrix constraint equations have the same three constraint equations, namely:
  • Step 707 Each computing device sends the calculation result to the base station corresponding to the corresponding UE. After receiving the calculation result of the precoding for different UEs sent by the computing device, the base station may perform the following operations:
  • Step 708 Determine whether the CA to which the UE belongs needs to be updated. If the determination result is yes, go back to step 702, otherwise, go to step 709.
  • step 708 because the UE has mobility, and may have moved out of the previous attribution CA, then the CA to which the UE belongs needs to be re-determined, that is, the process returns to step 702.
  • Step 709 Determine whether the channel matrix reported by the UE needs to be updated.
  • the UE may have a certain change to the channel matrix on the corresponding base station, and these changes will undoubtedly affect the final calculation result. If the determination result is yes, the process returns to step 703; otherwise, The UE sends the data information to the corresponding UE by using the pre-coded value sent by the received computing device, so as to achieve no interference between the UEs.
  • the UE can be understood as a terminal device that provides a mobile communication service for the user. More common UEs can be mobile phones, pagers, wireless Internet computers or netbooks, PDAs, WiFi terminals, WiMax terminals, and of course satellite locators and information inquiry devices.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Power Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

一种协作通信的预处理的方法、 系统和装置 本申请要求于 2009 年 7 月 20 日提交中国专利局、 申请号为 200910161316.8 , 发明名称为 "一种协作通信的预处理的方法、 系统和装 置" 的中国专利申请的优先权, 在先申请文件的内容通过引用结合在本申 请中。
技术领域 本发明涉及移动通信技术领域, 更具体地说, 涉及一种协作通信的预 处理的方法、 系统和装置。
背景技术
随着移动通信技术的快速发展,多点协同(CoMP, Coordinated Multiple Point ) 技术被认为是长期演进增强型 ( LTE-A , Long Time Evolution-Advanced ) 中最具前景的核心技术之一。 作为 CoMP的一个典型 场景 协作多输入多输出 ( Co-MIMO , Cooperative-Multiple-Input
Multiple-Out-put ) , 其基本目的就是通过多个基站之间的协同处理为某个 或某些用户设备 ( UE, User Equipment )服务从而有效消除小区间干扰、 提 高小区边缘用户的吞吐量和小区的平均吞吐量。
而在进行 Co-MIMO时, 首要的任务就是确定如何为这些基站进行合理 的划分, 以形成不同的协作区域(CA, Cooperation Area ) , 从而获得最佳 的系统性能。 基于以上任务, 目前已经被提出的 CA划分方法大体有以下几 种, 其中, 这些方法可分为两大类, 分别是协作区域没有重叠和协作区域 有重叠, 属于†办作区或没有重叠的典型方法有 network-centric、 network defined and UE-assisted等 , 而属于协作区域有重叠的典型方法有 UE-centric 等。
对于上面提出的两类方法, 其中, 协作区域之间没有重叠, 是忽略了 协作区域之间的千扰影响。 而由于协作区域之间没有关联, 因而调度计算 只在协作区域内的基站之间进行且各协作区域之间的计算任务可以并行进 行, 这种方案可以有效消除各协作区域内基站之间的千扰。 但由于该类方 法对各个协作区域结合部的边缘区域的相互千扰未加考虑, 这会导致位于 那些区域的用户体验感较差, 同时, 小区间千扰仍大量存在, 并且系统可 获得的吞吐量增益有限。
协作区域有重叠这类方法则可以有效避免上述问题的出现。 由于该类 方法考虑了协作区域之间的重叠, 这样协作区域之间就存在耦合, 因而调 度过程需要所有重叠协作区域之间的协作 , 并且这种协作最终将扩展到整 个网络。 在系统的调度过程中, 需要考虑系统中所有基站之间的调度。 由 于该调度计算同时考虑了协作区域内和协作区域间的干扰, 因而可以获得 较好的吞吐量增益。 但由于该类方法将所有重叠的协作区域作为一个整体 进行调度, 这种调度的极限情况就是整个网络, 因此, 调度过程会非常复 杂, 使得在实际应用中很难被实现。
发明内容
有鉴于此, 本发明实施例提供一种协作通信的预处理的方法、 系统和 装置, 从而可以实现在消除小区 UE间千扰的同时筒化计算过程的复杂度。
本发明实施例是这样实现的:
本发明实施例提供了一种协作通信的预处理的方法, 包括:
获取 MIMO协作区域信息 ,所述 MIMO协作区域信息包括基站之间的 协作信息, 所述基站之间的协作信息用于确定 MIMO协作区域之间的千扰 关系;
根据 MIMO协作区域之间的千扰关系 , 将 UE的信道矩阵合并; 利用所述合并后的信道矩阵进行 UE的预编码计算。
本发明实施例提供了一种协作通信的预处理的方法, 包括:
接收服务于同一个 UE的所有基站所收集到的信道矩阵;
利用所述服务于同一个 UE的所有基站所收集到的信道矩阵进行 UE的 预编码计算。
本发明实施例提供了一种协作通信的预处理的系统, 包括: 任务分解 调度装置和计算设备, 其中, 所述任务分解调度装置,用于获取 MIMO协作区域信息,并根据 MIMO 协作区域之间的干扰关系, 将 UE的信道矩阵合并, 其中, 所述 MIMO协 作区域信息包括基站之间的协作信息, 所述基站之间的协作信息用于确定 MIMO协作区域之间的千扰关系;
所述计算设备, 用于根据所述任务分解调度装置的调度, 利用所述合 并后的信道矩阵进行 UE的预编码计算。
本发明实施例提供了一种任务分解调度装置, 包括:
获取单元, 用于获取 MIMO协作区域信息, 所述 MIMO协作区域信息 包括基站之间的协作信息 , 所述基站之间的协作信息用于确定 MIMO协作 区域之间的千扰关系;
任务分解单元, 用于根据 MIMO协作区域之间的千扰关系, 将 UE的 信道矩阵合并;
任务调度单元, 用于调度所述计算设备利用所述合并后的信道矩阵进 行 UE的预编码计算。
本发明实施例提供了一种计算设备, 包括:
接收单元, 用于接收服务于同一个 UE 的所有基站所收集到的信道矩 阵;
计算单元,用于利用所述服务于同一个 UE的所有基站所收集到的信道 矩阵进行 UE的预编码计算。 本发明实施例所提供的技术方案 , 根据 MIMO协作区域之间的千扰关 系 , 将 UE的信道矩阵合并, 并利用所述合并后的信道矩阵进行 UE的预编 码计算, 从而可以消除 UE间的千扰, 并相应减小了实现消除 UE间千扰的 预编码计算过程的复杂度。
附图说明
实施例或现有技术描述中所需要使用的附图作筒单地介绍, 显而易见地, 下面描述中的附图仅仅是本发明的一些实施例, 对于本领域普通技术人员 来讲, 在不付出创造性劳动性的前提下, 还可以根据这些附图获得其他的 附图。
图 1为本发明实施例所涉及的一种协作通信的预处理的方法流程图; 图 2为本发明实施例所涉及的另一种协作通信的预处理的方法流程图; 图 3为本发明实施例所涉及的第三种协作通信的预处理方法流程图; 图 4为本发明实施例所涉及的一种协作通信的预处理的系统结构示意 图;
图 5为本发明实施例所涉及的一种任务分解调度装置结构示意图; 图 6为本发明实施例所涉及的一种计算设备结构示意图;
图 7为本发明实施例所涉及的第四种协作通信的预处理的方法流程图; 图 8为本发明实施例所涉及的一种网络场景示意图。 具体实施方式 下面将结合本发明实施例中的附图 , 对本发明实施例中的技术方案进 行清楚、 完整地描述, 显然, 所描述的实施例仅仅是本发明一部分实施例, 而不是全部的实施例。 基于本发明中的实施例, 本领域普通技术人员在没 有做出创造性劳动前提下所获得的所有其他实施例, 都属于本发明保护的 范围。
本发明实施例提供了一种协作通信的预处理方法, 该方法的具体流程 如图 1所示:
S101: 获取 MIMO协作区域的信息; 在本实施例中, 也可以理解为, 协作区域的信息可以为基站之间的协作信息以及基站与 UE之间的对应关 系。 可以理解获取组成 MIMO协作区域中的基站的信息, 即 MIMO协作区 域中的基站的数量, 或该 MIMO协作区域由哪些基站组成, 和该基站与其 所服务器的 UE之间的对应关系。基站与 UE之间的对应关系可以理解为一 个基站服务哪些 UE。 所述基站之间的协作信息用于确定 MIMO协作区域 之间的千 4尤关系。
S102: 根据 MIMO协作区域之间的千扰关系 , 将 UE的信道矩阵合并。 可以理解为: 根据 MIMO协作区域之间的干扰关系划分计算任务。 此处所 涉及的千扰关系指的是某个协作区域中的 UE接收到基站发给自己信号的 同时也接收到了基站发给其它协作区域中的 UE的信号 ,则这些协作区域之 间就构成了千扰关系; 因此, 可以理解为, 将有千扰关系的 UE上报的信道 矩阵进行合并, 并保存至该 UE对应的计算设备。在本实施例中, 通过基站 之间的协作信息来确定 MIMO协作区域之间的千扰关系。
在本实施例中, 由于同一个 UE为其服务的所有基站上报信道矩阵,也 可以理解为: 该步驟可以包括:
获取基站发送的其服务的 UE上报的信道矩阵;在本步驟,调度基站发 送其服务器的 UE上报的信道矩阵。
将服务于同一个 UE的所有基站上所收集到的信道矩阵进行合并;在本 实施例中 , 根据 MIMO协作区域的基站与 UE之间的对应关系 , 将服务于 同一个 UE的所有基站上所收集到的信道矩阵进行合并。
将合并后的信道矩阵发送于对应的计算设备。
在本实施例中, 该步驟也可以包括:
调度服务于同一个 UE的所有基站,将所收集到的信道矩阵发送至计算 设备进行合并。 在本实施例中, 根据 MIMO协作区域的基站与 UE之间的 对应关系,调度服务于同一个 UE的所有基站,将所收集到的信道矩阵发送 至计算设备。在本实施例中, 服务于同一个 UE的所有基站, 将所收集到的 信道矩阵发送至计算设备上,就可以相当于计算设备收集同一个 UE的所有 基站发送的信道矩阵, 也可以认为是合并。
S103: 利用合并后的信道矩阵进行 UE的预编码计算。 也可以理解为, 调度各个 UE所对应的计算设备,以使计算设备利用所保存的合并后的信道 矩阵进行 UE的预编码的计算。 当然, 当计算设备完成 UE的预编码的计算 后, 还需要调度计算设备将计算后的结果返回对应的基站。
在本实施例中,在步驟 S101的执行前,需要确定 MIMO中协作区域的 划分, 即确定该 MIMO协作区域中由哪些基站组成。 并确定每个 UE归属 的 MIMO协作区域。 然后 , MIMO协作区域中的基站收集其服务的 UE所 上报的信道矩阵。
本发明实施例所提供的技术方案,将服务于同一个 UE的所有基站上所 收集到的信道矩阵进行合并,利用所述合并后的信道矩阵进行 UE的预编码 计算这样, 消除了 UE间干扰; 当需要进行各个 UE的预编码计算时, 由于 所要用到的各个 UE的信道矩阵保存在了不同的计算设备上,从而实现了计 了实现消除 UE间千扰的预编码计算过程的复杂度。
本发明实施例提供了另一种协作通信的预处理方法, 该方法的具体流 程如图 2所示:
S201: 接收服务于同一个 UE的所有基站所收集到的信道矩阵。
步驟 S201可以为接收任务分解调度装置发送的合并后的信道矩阵, 所 述合并后的信道矩阵由服务于同一个 UE 的所有基站所收集到的信道矩阵 合并而成; 在本实施例中, 步驟 S201中, 还可以将接收的合并后的信道矩 阵进行保存。
在本实施例中, 步驟 S201可以为接收服务于同一个 UE的所有基站发 送的信道矩阵。
S202:根据调度指令,利用所述服务于同一个 UE的所有基站所收集到 的信道矩阵进行 UE的预编码计算。
根据任务分解调度装置的调度, 利用所述合并后的信道矩阵进行 UE 的预编码计算。 在本实施例中, 根据任务分解调度装置的调度指令, 利用 所述合并后的信道矩阵进行 UE的预编码计算。
本发明实施例所提供的技术方案,接收服务于同一个 UE的所有基站所 收集到的信道矩阵,利用所述服务于同一个 UE的所有基站所收集到的信道 矩阵进行 UE的预编码计算, 这样, 消除了 UE间千扰。 本发明实施例提供了第三种消除 UE间千扰的方法,该方法的具体流程 如图 3所示:
S301: 任务分解调度装置获取 MIMO协作区域的信息;
S302:任务分解调度装置根据 MIMO协作区域之间的千扰关系,将 UE 的信道矩阵合并到对应的计算设备。 在本实施例中, 第一种方式, 可以先 获取基站发送的其服务器的 UE上报的信道矩阵;将服务于同一个 UE的所 有基站上所收集到的信道矩阵进行合并, 并将合并后的信道矩阵保存于对 应的计算设备中; 第二种方式, 调度服务于同一个 UE的所有基站, 将所收 集到的信道矩阵发送至计算设备进行合并。
在本实施例中, S302是实现消除 UE间千扰的关键步骤, 在网络中, 要使某一 UE不受其他 UE的千扰, 需要满足以下条件: 该 UE的信道矩阵 与为该 UE提供服务的基站所服务的其他 UE的预编码矩阵的乘积为 0, 其 中, 在基站向对应 UE发送数据前, 将该 UE的预编码矩阵与所要发送的数 据相乘, 可减小甚至消除其他 UE对该 UE的千扰。 根据该条件, 可以根据 相关信道矩阵进行各个 UE预编码的计算,从而实现网络中 UE间千扰的消 除。 因此, 可以得知, 要对 UE预编码进行计算, 就要将相关信道矩阵作为 输入条件来进行, 而如何在进行各个 UE的预编码计算时, 能够实现分布式 并行计算, 并且各个计算任务之间耦合较小或没有耦合, 可以釆用 S302中 所述方法来解决。 可进一步具体为:
网络中的 UE向为其提供服务的所有基站上报该两者之间的信道矩阵, 在基站收集到其所服务的 UE所上报的信道矩阵之后,任务分解调度装置从 基站处获取其所收集到的信道矩阵, 则任务分解调度装置将所获取的信道 矩阵进行合并或任务分解调度装置调度服务于同一个 UE的所有基站,将所 收集到的信道矩阵发送至计算设备进行合并, 合并的原则如下: 将服务于 同一个 UE的所有基站所收集到的信道矩阵进行合并。该原则可进一步具体 为:假如某一 UE有两个基站向其提供服务,则这两个基站上所收集到的所 有信道矩阵将被合并后保存于一个计算设备上;而如果某一 UE只有一个基 站向其提供服务, 则只需要将该基站所收集到的所有信道矩阵保存于一个 计算设备上即可, 该种情况也可认为是对信道矩阵进行合并保存的一种特 殊方式。 通过上述方式, 可以得知, 计算不同 UE所需要的信道矩阵都已保 存在了不同的计算设备上, 这样, 计算网络中某 UE的预编码时, 只需调用 相应的计算设备,而被调用的计算设备根据其中所保存的计算该 UE所需要 的信道矩阵即可进行该 UE预编码的计算,这种方式消除了计算过程中的关 联度,使网络中 UE的预编码计算可采用分布式并行计算的方式来完成,从 而也减小了计算过程中的复杂度。 需要说明的是, 还可以进一步对保存合并后的信道矩阵的计算设备进 行相应分类, 例如, 可以按照计算设备上所保存的信道矩阵所对应的基站 的个数来进行分类, 如果某几个计算设备上都分别保存了两个基站的信道 矩阵, 则可将该几个计算设备划分为一类, 这样利于在后续的计算中调度 相关的计算设备。
S303:任务分解调度装置调度各个 UE所对应的计算设备, 以使计算设 备进行 UE的预编码的计算;
在 S302中, 已实现了各个 UE预编码计算过程中的解耦合, 这样, 在 进行网络中 UE预编码的计算时,任务分解调度装置只需要调用各 UE对应 的计算设备, 被调用的计算设备利用其中所保存的计算对应 UE 的信道矩 阵, 并才艮据这些信道矩阵与所要求解的预编码矩阵的乘积为 0的原则计算 对应 UE的预编码,这种方法可以实现在多个计算设备上并行计算网络中各 个 UE的预编码。
需要说明的是,在进行各个 UE预编码的计算过程中,可釆用这样的方 式来进行: 如果一个计算设备所保存的合并后的信道矩阵可进行多个 UE 的预编码的计算,则该计算设备可以首先进行该多个 UE的预编码的共同解 空间的计算,之后,根据求解得到的共同解空间再分别进行各个 UE预编码 的计算。 这样, 可以有效减少计算过程中的工作量。
S304:计算设备将计算得到的对应 UE的预编码发送至为该 UE提供服 务的基站。
在 S304中, 计算设备在进行完相关 UE的预编码的计算之后, 需要将 该预编码发送至为对应 UE提供服务的基站上,从而实现网络中基站向对应 UE发送数据信息时, 消除各个 UE间的千扰。
本发明实施例所提供的技术方案,将服务于同一个 UE的所有基站上所 收集到的信道矩阵进行合并,利用所述合并后的信道矩阵进行 UE的预编码 计算这样, 消除了 UE间千扰; 当需要进行各个 UE的预编码计算时, 由于 所要用到的各个 UE的信道矩阵保存在了不同的计算设备上,从而实现了计 了实现消除 UE间千扰的预编码计算过程的复杂度。 相应地, 本发明实施例还提供了一种协作通信的预处理的系统, 该系 统结构如图 4所示, 包括: 任务分解调度装置 401和计算设备 402, 其中计 算设备 402可以根据网络的具体情况确定个数。 上述装置的主要作用如下: 任务分解调度装置 401: 用于获取 MIMO协作区域, 并根据 MIMO协 作区域之间的千扰关系,将 UE的信道矩阵合并到对应的计算设备,及调度 计算设备。 在本实施例中, 任务分解调度装置 401还用于当所述 MIMO协 作区域之间存在千扰时,将服务于同一个 UE的所有基站所收集到的信道矩 阵进行合并, 并将合并后的信道矩阵保存于对应的计算设备; 调度各个 UE 所对应的计算设备, 以使计算设备利用所保存的合并后的信道矩阵进行 UE 的预编码的计算;
在本实施例中, 任务分解调度装置 401 还用于获取基站发送的其服务 器的 UE上报的信道矩阵,将服务于同一个 UE的所有基站上所收集到的信 道矩阵进行合并,将合并后的信道矩阵发送于对应的计算设备 402。 也可以 是,任务分解调度装置 401还用于调度服务于同一个 UE的所有基站,将所 收集到的信道矩阵发送至计算设备 402进行合并。
计算设备 402: 用于根据所述任务分解调度装置的调度, 利用所述合并 后的信道矩阵进行 UE的预编码计算。在本实施例中,计算设备 402还用于 在所述任务分解调度装置的调度下,将计算得到的对应 UE的预编码发送至 为所述 UE提供服务的基站。
本发明实施例所提供的技术方案,将服务于同一个 UE的所有基站上所 收集到的信道矩阵进行合并,利用所述合并后的信道矩阵进行 UE的预编码 计算这样, 消除了 UE间千扰; 当需要进行各个 UE的预编码计算时, 由于 所要用到的各个 UE的信道矩阵保存在了不同的计算设备上,从而实现了计 算任务的解耦合, 利于实现相互之间不产生关联的分布式计算, 相应减小 了实现消除 UE间千扰的预编码计算过程的复杂度。 另外, 本发明实施例还提供了一种任务分解调度装置, 该装置结构如 图 5所示, 包括: 获取单元 501 , 用于获取 MIMO协作区域的信息。 在本实施例中, 获 取单元 501还用于获取基站发送的其服务器的 UE上报的信道矩阵。
任务分解单元 502, 用于根据 MIMO协作区域之间的千扰关系, 将 UE 的信道矩阵合并到对应的计算设备; 在本实施例中, 任务分解单元 502还 用于所述 MIMO协作区域之间存在千扰时, 将服务于同一个 UE的所有基 站上所收集到的信道矩阵进行合并到对应的计算设备。
在本实施例中, 任务分解单元 502还用于所述 MIMO协作区域之间存 在千扰时,根据获取单元 501获取的信道矩阵,将服务于同一个 UE的所有 基站上所收集到的信道矩阵进行合并, 并将合并后的信道矩阵发送于对应 的计算设备。
任务调度单元 503 , 用于调度各个 UE所对应的计算设备, 以使计算设 备利用合并后的信道矩阵进行 UE的预编码的计算。
在本实施例中 , 任务分解单元 502还用于所述 MIMO协作区域之间存 在千扰时 , 根据 MIMO协作区域的基站与 UE之间的对应关系 , 通知任务 调度单元 503调度服务于同一个 UE的所有基站,将所收集到的信道矩阵发 送至计算设备进行合并。
在本实施例中,任务调度单元 503还用于调度服务于同一个 UE的所有 基站, 将所收集到的信道矩阵发送至计算设备进行合并。 在本实施例中, 根据 MTMO协作区域的基站与 UE之间的对应关系 ,调度服务于同一个 UE 的所有基站, 将所收集到的信道矩阵发送至计算设备, 在计算设备上进行 合并。
在本实施例中, 任务调度单元 503还用于调度基站将所收集的其服务 的所有 UE上报的信道矩阵发送至计算设备。任务调度单元 503还用于当计 算设备完成 UE的预编码计算时,调度该计算设备将计算结果返回至为所述 UE提供服务的基站。 在实际应用中, 该任务分解调度装置可以作为一个单独的实体存在于 网络中; 另外, 该任务分解调度装置还可以被部署于网络中的某个或某些 基站上等多种方式。 而无论采用何种部署方式, 任务分解调度装置的功能 不发生变化。
除此以外, 本发明实施例还提供了一种计算设备, 该计算设备结构如 图 6所示, 包括:
接收单元 601 , 用于接收服务于同一个 UE的所有基站所收集到的信道 矩阵。 在本实施例中, 接收单元 601 可以用于接收任务分解调度装置发送 的合并后的信道矩阵,所述合并后的信道矩阵由服务于同一个 UE的所有基 站所收集到的信道矩阵合并而成;
计算单元 602, 用于根据任务分解调度装置的调度, 利用合并后的信道 矩阵进行 UE的预编码的计算。
保存单元 603, 用于保存接收单元 601接收的合并后的信道矩阵。在本 实施例中, 计算单元 602可以利用接收单元 601接收的合并后的信道矩阵 进行 UE的预编码的计算,也可以利用保存单元 603接收的合并后的信道矩 阵进行 UE的预编码的计算。
结合实际情况, 本实施例所提供的一种计算设备还可包括发送单元 604, 用于根据任务分解调度装置的调度, 向将计算得到的对应 UE的预编 码发送至为该 UE提供服务的基站。
在本实施例中,接收单元 601还可以用于接收服务于同一个 UE的所有 基站发送的信道矩阵。 此时, 计算单元 602还用于根据接收单元 601接收 的服务于同一个 UE的所有基站发送的信道矩阵进行 UE的预编码的计算。
相应地, 计算设备可以部署在基站所组成的点对点( P2P , Peer to Peer ) 计算系统上, 为了实现分布式计算的功能, 部署有计算设备的基站可以采 用 P2P的方式进行连接; 另外, 计算设备作为一个独立的系统存在于网络 中。 而无论釆用何种部署方式, 任务分解调度装置的功能不发生变化。 在 本实施例中, 任务分解调度装置也可以跟计算设备构成一个设备。
结合以上方法和具体应用场景, 对本发明所涉及的技术方案做进一步 介绍, 具体步骤如图 7所示:
步骤 701: 确定 MIMO中协作区域的划分。
在步驟 701中 , 对于如何来对 MIMO中的协作区域进行划分, 可以由 UE才艮据信道质量来进行确定,也可以由 MIMO网络才艮据网络状况和 /或 UE 的建议来进行确定。 其中, 在进行本实施例中的 MIMO协作区域的划分时 允许各个协作区域之间有重叠。
步驟 702: 确定网络中每个 UE所归属的 MIMO协作区域。
在步骤 702 中, 在进行完协作区域的划分之后, 要确定网络中的每个 UE归属的 MIMO协作区域, 其中, 此处可以由 UE才艮据信道质量来确定, 也可以由 MIMO网络状况和 /或 UE的建议来确定。
步驟 703: UE向为其提供服务的基站上报信道矩阵。
在步驟 703中,每个 UE需要向为其提供服务的所有基站上报信道矩阵, 如某个 UE只有一个基站向其提供服务,则该 UE只需向一个基站上报信道 矩阵,其中,此处的信道矩阵是指 UE与为其提供服务的基站之间的信道矩 阵; 而如果某个 UE有多个基站向其提供服务, 则该 UE需要向每一个为其 提供服务的基站上 对应的信道矩阵。如图 8所示例子,该图为 UE与基站 之间对应关系示意图。 由图 8可以得到, UEi有基站 1和基站 2向其提供服 务, 则 UE 需要向基站 1上报其和基站 1之间的信道矩阵, 而向基站 2上 报其和基站 2之间的信道矩阵。
步骤 704: 基站收到其所服务的 UE上报的信道矩阵后, 将这些信道矩 阵在计算设备上进行保存。
在本实施例中, 当基站收集完其所服务的 UE所上报的信道矩阵后,在 任务分解调度装置的调度下 , 将所收集的信道矩阵发至计算设备上进行保 存。
在步骤 704中 , 每个基站在收到其所服务的 UE所上报的信道矩阵后 , 将这些信道矩阵进行收集, 并保存在对应的计算设备上, 在本实施例中, 假定该计算设备位于 Level 1上。 如果某个 UE有两个基站向其提供服务, 则这两个基站所收集到的所有信道矩阵将合并保存在新的计算设备上, 在 本实施例中, ^^定该计算设备位于 Level 2上, 结合图 8所举例子, 由于 UE,有基站 1和基站 2向其提供服务,那么基站 1和基站 2将所收集到的所 有信道矩阵合并保存在某一计算设备上, 该设备位于 Level 2上。 而如果某 个 UE有 n个基站向其提供服务,则这 n个基站将所收集到的所有信道矩阵 合并保存在某一计算设备上, 在本实施例中, 假定该计算设备位于 Level n 上。 需要说明的是, 此处所涉及的 Level 1、 Level 2等, 并不存在层次上的 区别, 只是表示不同个数基站所收集的信道矩阵的一个分类。
步驟 705: 划分计算任务, 即为各 UE的计算任务指定计算设备。
在本实施例中, 先需要获取 MIMO协作区域的信息, 也可以理解为, 获取组成 MIMO协作区域中的基站的信息,即 MIMO协作区域中的基站的 数量, 或该 MIMO协作区域由哪些基站组成。 当然, 本步驟需要获取多个 MIMO协作区域。 然后, 再根据 MIMO协作区域之间的千扰关系划分计算 任务。
在步驟 705中, 在进行计算任务的划分时, 在本实施例中, 以 MIMO 协作区域之间的千扰关系为依据进行计算任务的划分, 其中, 此处所涉及 的干扰关系指的是某个协作区域中的 UE接收到基站发给自己信号的同时 也接收到了基站发给其它协作区域中的 UE的信号,则这些协作区域之间就 构成了干扰关系; 因此, 可以理解为, 将有干扰关系的 UE上报的信道矩阵 进行合并, 并保存至该 UE对应的计算设备。
参照图 8, 基站 1、 基站 2和基站 3收集各自服务的 UE的信道矩阵, 并分别保存在对应的计算设备上,在本实施例中,假定这些设备分别为 Cu、 C12、 C13, 依据前面所述原则, 这三个计算设备均位于 Level 1上。
UE!和 UE5有基站 1和基站 2向其提供服务,则由基站 1和基站 2所收 集到的保存在 c„和 c12上的信道矩阵将合并并保存在另一计算设备上, 在 本实施例中, 支定该设备为 C21 , 同理, UE3有基站 2和基站 3向其提供服 务, 则基站 2和基站 3将所收集到的保存在 C12和 C13上的信道矩阵将合并 并保存在另一计算设备上, 在本实施例中,假定该设备为 C22, 且 C22和 C21 同位于 Level 2上。
由图 8还可得知, UE2和 UE6分别都是有基站 1、 基站 2和基站 3向其 提供服务, 则由基站 1、 基站 2和基站 3所收集到的保存在 Cu、 C12和 C13 上的信道矩阵将合并并保存在新的计算设备上, 在本实施例中, 假定该设 备为 C31,且该设备位于 Level 3上。
进行完信道矩阵的保存工作后, 下面对计算过程中的一些原则做相应 介绍: 由于 UEi有基站 1和基站 2向其提供服务, 则 UEi的信道矩阵 可表 示为:
Figure imgf000016_0001
H21]; 相应地, 其他 UE 的矩阵可分别表示为: H2 = [H12 H22 H32] ; H3 =[H23 H33] ; H4 = [H34] ; H5 = [H15 H25] ; H6 =[H16 H26 H36],其中, H,表示第 个基站对第 个 UE的信道矩阵。
殳定 6个 UE的预编码矩阵分别为:
Figure imgf000016_0002
其中, 其中 W表示第 /个基站对第 J '个 UE的预编码矩阵。
结合图 8, 由于基站 1分别为 UE UE2、 UE5和 UE6提供服务, 因此 基站 1发射天线上发射的数据信息为:
¾i = + W12b2 + W15b5 + W16b
相应地, 基站 2和基站 3发射天线上发射的数据信
TMi = W„b, + W„b, + W„b, + W„b, + W¾b
W32b2 + W33b3 + W34b4 + W36b6
其中, 6,是指发给第 个 UE的数据。
各个 UE接收天线上接收的数据信息分别为:
= Hu (Wu^ + W12b2 + W15b5 + W16b6) + H21 (W^b, + W22b2 + W23b3 + W25b5 + W26b6) + = [HUWU +H21W21]b1 + [HUW12 +H21W22]b2 +H21W23b3 + [HUW15 +H21W25]b5
+ [H11W16+H21W26]b6+n1
= H12(W11b1 + W12b2 + W15b5 + W16b6)+ + W22b2 + W23b3 + W25b5 + W26b
+ H32(W32b2 + W33b3 + W34b4 + W36b6) + n2
= [H12WU + H22W21 ^ + [H12W12 + H22W22 + H32W32 ]b2 + [H22W23 + H32W33 ]b
+ H32W34b4 + [H12W15 +H22W25]b5 + [H12W16 +H22W26 +H32W36]b6 +n2 y3 =H23 (W21b1 + W22b2 + W23b3 + W25b5 + W26b6 ) + H33 (W32b2 + W33b3 + W34b4 + W36b6) + n = + [H23W22 + H33W32]b2 + [H23W23 + H33W33]b3 + H33W34b4
+ H23W25b5 + [H23W26 + H33W36]b6 + n3 y4 =H34(W32b2 +W33b3 + W34b4 +W36bj + n4
=HH +H H +HH +HH +n
Figure imgf000017_0001
an 。吉 —— - i ^ " 葉 n
UH
0= 丛 lH 0= ezAX ZH 0= KA ¾+nA UH
Figure imgf000017_0002
4¾n、¾n ¾n Z r '令 9an ^¾n、¾n ι r 丫 Λ °o
Figure imgf000017_0003
an an-¾ : 丄、 蚩^
Figure imgf000017_0004
°备^ ran ^^(9〜 ΐ = ·') 'u '
9u+9q[ 9 9 H + 9 9 H + 91 91H] + sq[ S 9 H + S1 91H] + W£H + εθ[εεΛ Η+ ΐΖΑ ΖΉ] + zq[A H + ΖΖΑ ΖΉ + ζιΑ 1Ή] + Tq[lzA 9ZH + UA 91H] :
Figure imgf000017_0005
su+9q[9ZAVszH + 91AVs1H] + sq[sz szH+ S1 S1H]+ £qrc szH + zq[zz szH+ s1H]+ Tq[lz szH+ " S1H] =
'«+(9q9∑ + £q£∑ + £qK +q∑∑ + lql∑ )£∑H+(9q9l + £q£l +q∑l + lqll )£lH=
C.ZS.0/0T0ZN3/X3d t6£600 OZ OAV
Figure imgf000018_0001
UE3预编码矩阵 (W23 , W33 )需满足:
Figure imgf000018_0002
UE4预编码矩阵 (W34 )需满足:
H32W34 = 0
H33W34 = 0
H36W34 = 0
UE5预编码矩阵 (W15 , W25 )需满足:
HuW15+H21W25=0
H23W25 = 0
H12W15+H22W25=0
H16W15+H26W25=0
UE6预编码矩阵 (W16 , W26 , W36 )需满足:
HUW16 + H21W26 =0
Figure imgf000018_0003
H34W36 =0
H15W16 + H25W26 =0
H12W16 + H22W26+H32W36 =0
根据上述预编码的求解原则, 对于 UEi预编码矩阵 (W W21)的求解, 需 要输入信道矩阵为(H12,H22,H23,H15,H25,H16,H26),在前面已做过说明, 由于 UE!和 UE5均是基站 1和基站 2向其提供服务, 所以 UEi和 UE5需要向基 站 1和基站 2上>¾信道矩阵, 而基站 1和基站 2的所收集到的所有信道矩 阵都已合并并保存在了位于 Level2上的计算设备 C21上, 则 UE^ UE5的 计算任务划归到计算设备 C21; 同理, UE3有基站 2和基站 3向其提供服务, 而基站 2 和基站 3 上所收集到的所有信道矩阵都已合并并保存在了位于 Level 2上的计算设备 C22上, 则 UE3的计算任务划归到计算设备 C22; 相应 地, UE4的计算任务划归到位于 Level 1上的计算设备 C13, 而 UE2和 UE6 的计算任务则划归到位于 Level 3上的计算设备 C31
至此,网络中所有 UE预编码的计算任务已分配到了不同的计算设备上 , 并且各计算设备上的计算任务已实现完全解耦, 之后可进入步驟 706。
步驟 706: 各计算设备进行相应 UE预编码的计算。
由于不同 UE的计算任务已分配到了不同的计算设备上, 在该步骤中, 各计算设备的计算可并行进行, 相应确保了计算任务的实时性。
在步驟 706中, 为了减少计算的重复性, 还可釆用以下方式来进行: 相同的 , 前面已提到, UE 々预编码矩阵需满足:
Figure imgf000019_0001
而 UE5的预编码矩阵需要满足:
HuW15+H21W25=0
H23W25 = 0
H12W15+H22W25=0
H16W15+H26W25=0
由此可以得知: UEj预编码矩阵和 UE5预编码矩阵约束方程组有三个约 束方程是相同的, 即:
H12W +H22W2,=0
H23W2, =0 (1)
H16W +H26W2i=0
其中, (WU,W2J为待求预编码矩阵。 因此, 在计算过程中, 可以先求出 满足方程组(1 )的解空间, 并将该解空间进行共享, 根据该解空间, 从而 进行
Figure imgf000019_0002
预编码的计算, 这样可以有效减少计算任务的工作量。
步驟 707: 各个计算设备将计算结果发送至相应 UE所对应的基站。 基站在接收到计算设备发来的针对不同 UE的预编码的计算结果后, 还 可执行下述操作:
步驟 708: 判断 UE所属的 CA是否需要更新, 如果判断结果为是, 则 返回执行步骤 702, 否则, 执行步骤 709。
在步骤 708中, 因为 UE具有移动性, 并有可能已移动出了之前所归属 的 CA,那么此时就需要重新确定该 UE所归属的 CA,即返回执行步驟 702。 步骤 709: 判断 UE上报的信道矩阵是否需要更新。
在步驟 709中, 由于 UE的移动性, UE向对应基站上 的信道矩阵会 存在一定的变化, 而这些变化无疑会影响最终的计算结果, 如果判断结果 为是, 则返回执行步骤 703; 否则, UE就利用接收到的计算设备发送的预 编码的值向对应 UE发送数据信息, 以实现各 UE之间无千扰。 在本实施例中 , UE可以理解为是为用户提供移动通信服务的终端设备。 比较常见 UE可以是手机, 传呼机, 无线上网的电脑或上网本, PDA, WiFi 终端, WiMax终端, 当然也可以是卫星定位仪、 资讯查询设备等。 本领域普通技术人员可以理解: 实现上述方法实施例的全部或部分步 骤可以通过程序指令相关的硬件来完成, 前述的程序可以保存于一计算机 可读取保存介质中, 该程序在执行时, 执行包括上述方法实施例的步驟; 而前述的保存介质包括: ROM ( Read-Only Memory, 只读保存记忆体)、 RAM ( Random Access Memory, 随机保存记忆体)、磁碟或者光盘等各种可 以保存程序代码的介质。 对所公开的实施例的上述说明, 使本领域专业技术人员能够实现或使 用本发明。 对这些实施例的多种修改对本领域的专业技术人员来说将是显 而易见的, 本文中所定义的一般原理可以在不脱离本发明的精神或范围的 情况下, 在其它实施例中实现。 因此, 本发明将不会被限制于本文所示的 这些实施例 , 而是要符合与本文所公开的原理和新颖特点相一致的最宽的 范围。

Claims

权利要求
1、 一种协作通信的预处理方法, 其特征在于, 包括:
获取 MIMO协作区域信息,所述 MIMO协作区域信息包括基站之间的 协作信息, 所述基站之间的协作信息用于确定 MIMO协作区域之间的千扰 关系;
根据 MIMO协作区域之间的干扰关系 , 将 UE的信道矩阵合并; 利用所述合并后的信道矩阵进行 UE的预编码计算。
2、根据权利要求 1所述的方法, 其特征在于, 所述 MIMO协作区域信 息还包括基站与 UE之间的对应关系。
3、根据权利要求 2所述的方法, 其特征在于, 所述根据 MIMO协作区 域之间的千扰关系 , 将 UE的信道矩阵合并的步驟包括:
获取基站发送的其服务器的 UE上报的信道矩阵;
当所述 MIMO协作区域之间存在千扰时, 根据所述基站与 UE之间的 对应关系, 将服务于同一个 UE的所有基站所收集到的信道矩阵进行合并; 将合并后的信道矩阵发送于对应的计算设备。
4、根据权利要求 2所述的方法, 其特征在于, 所述根据 MIMO协作区 域之间的千扰关系, 将 UE的信道矩阵合并的步驟还包括:
当所述 MIMO协作区域之间存在千扰时 , 根据所述基站与 UE之间的 对应关系,调度服务于同一个 UE的所有基站,将所收集到的信道矩阵发送 至计算设备进行合并。
5、 一种协作通信的预处理的方法, 其特征在于, 包括:
接收服务于同一个 UE的所有基站所收集到的信道矩阵;
利用所述服务于同一个 UE的所有基站所收集到的信道矩阵进行 UE的 预编码计算。
6、 根据权利要求 5所述的方法, 其特征在于, 所述接收服务于同一个 UE的所有基站所收集到的信道矩阵的步骤包括:
接收服务于同一个 UE的所有基站发送的所收集到的信道矩阵; 或 接收任务分解调度装置发送的合并后的信道矩阵, 所述合并后的信道 矩阵由服务于同一个 UE的所有基站所收集到的信道矩阵合并而成。
7、 根据权利要求 5所述的方法, 其特征在于, 还包括: 将计算得到的 对应 UE的预编码发送至为所述 UE提供服务的基站。
8、 根据权利要求 6或 7所述的方法, 其特征在于, 所述利用所述合并 后的信道矩阵进行 UE的预编码的计算, 包括:
当所述合并后的信道矩阵可进行多个 UE的预编码的计算时,进行所述 多个 UE的预编码的共同解空间的计算,才艮据所述共同解空间分别进行所述 多个 UE的预编码的计算。
9、 一种协作通信的预处理的系统, 其特征在于, 包括: 任务分解调度 装置和计算设备, 其中,
所述任务分解调度装置,用于获取 MIMO协作区域信息,并根据 MIMO 协作区域之间的干扰关系, 将 UE的信道矩阵合并, 其中, 所述 MIMO协 作区域信息包括基站之间的协作信息, 所述基站之间的协作信息用于确定 MIMO协作区域之间的千扰关系;
所述计算设备, 用于根据所述任务分解调度装置的调度, 利用所述合 并后的信道矩阵进行 UE的预编码计算。
10、 根据权利要求 9所述的系统, 其特征在于, 所述计算设备还用于 在所述任务分解调度装置的调度下,将计算得到的对应 UE的预编码发送至 为所述 UE提供服务的基站。
11、 根据权利要求 9所述的系统, 其特征在于, 所述 MIMO协作区域 信息还包括基站与 UE之间的对应关系 ,所述任务分解调度装置还用于当所 述 MIMO协作区域之间存在千扰时,根据所述基站与 UE之间的对应关系, 将服务于同一个 UE的所有基站所收集到的信道矩阵进行合并,并将合并后 的信道矩阵发送于对应的计算设备。
12、 根据权利要求 9所述的系统, 其特征在于, 所述 MIMO协作区域 信息还包括基站与 UE之间的对应关系,所述任务分解调度装置还用于当所 述 MIMO协作区域之间存在千扰时,根据所述基站与 UE之间的对应关系, 调度服务于同一个 UE的所有基站,将所收集到的信道矩阵发送至计算设备 进行合并。
13、 一种任务分解调度装置, 其特征在于, 包括:
获取单元, 用于获取 MIMO协作区域信息, 所述 MIMO协作区域信息 包括基站之间的协作信息 , 所述基站之间的协作信息用于确定 MIMO协作 区域之间的千扰关系;
任务分解单元, 用于根据 MIMO协作区域之间的千扰关系, 将 UE的 信道矩阵合并;
任务调度单元, 用于调度所述计算设备利用所述合并后的信道矩阵进 行 UE的预编码计算。
14、根据权利要求 13所述的装置, 其特征在于, 所述 MIMO协作区域 信息还包括基站与 UE之间的对应关系, 所述任务分解单元还用于当所述 MIMO协作区域之间存在千扰时, 根据所述基站与 UE之间的对应关系, 将服务于同一个 UE的所有基站所收集到的信道矩阵进行合并,并将合并后 的信道矩阵发送于对应的计算设备。
15、根据权利要求 13所述的装置, 其特征在于, 所述 MIMO协作区域 信息还包括基站与 UE之间的对应关系,所述任务分解单元还用于根据所述 基站与 UE之间的对应关系,通知任务调度单元调度服务于同一个 UE的所 有基站, 将所收集到的信道矩阵发送至计算设备进行合并。
16、 根据权利要求 13所述的装置, 其特征在于, 所述任务调度单元还 用于当所述计算设备完成 UE的预编码计算时,调度所述计算设备将计算结 果返回至为所述 UE提供服务的基站。
17、 一种计算设备, 其特征在于, 包括:
接收单元, 用于接收服务于同一个 UE 的所有基站所收集到的信道矩 阵;
计算单元,用于利用所述服务于同一个 UE的所有基站所收集到的信道 矩阵进行 UE的预编码计算。
18、 根据权利要求 17所述的装置, 其特征在于, 所述接收单元还用于 接收服务于同一个 UE的所有基站发送的所收集到的信道矩阵,或接收任务 分解调度装置合并后的信道矩阵, 所述合并后的信道矩阵由服务于同一个 UE的所有基站所收集到的信道矩阵合并而成。
19、 根据权利要求 17所述的装置, 其特征在于, 还包括: 发送单元, 用于根据所述任务分解调度装置的调度,将计算得到的对应 UE的预编码发 送至为所述 UE提供服务的基站。
PCT/CN2010/075273 2009-07-20 2010-07-20 一种协作通信的预处理的方法、系统和装置 WO2011009394A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP10801953.0A EP2418786B1 (en) 2009-07-20 2010-07-20 Pre-processing method, system and equipment for cooperative communication
US13/253,254 US9425867B2 (en) 2009-07-20 2011-10-05 Pre-processing method, system, and apparatus for cooperative communication

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200910161316.8A CN101958738B (zh) 2009-07-20 2009-07-20 一种协作通信的预处理的方法、系统和装置
CN200910161316.8 2009-07-20

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/253,254 Continuation US9425867B2 (en) 2009-07-20 2011-10-05 Pre-processing method, system, and apparatus for cooperative communication

Publications (1)

Publication Number Publication Date
WO2011009394A1 true WO2011009394A1 (zh) 2011-01-27

Family

ID=43485870

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/075273 WO2011009394A1 (zh) 2009-07-20 2010-07-20 一种协作通信的预处理的方法、系统和装置

Country Status (4)

Country Link
US (1) US9425867B2 (zh)
EP (1) EP2418786B1 (zh)
CN (1) CN101958738B (zh)
WO (1) WO2011009394A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102801505B (zh) * 2012-08-28 2015-08-12 清华大学 多用户协同发送方法、接收方法以及通信装置
CN104796220A (zh) * 2014-01-21 2015-07-22 株式会社Ntt都科摩 信道状态信息的反馈和交换方法及装置
DE102014225338A1 (de) * 2014-12-09 2016-06-09 Continental Automotive Gmbh Verfahren zum Dimmen einer Beleuchtungsvorrichtung und entsprechende Vorrichtung zur Ausführungdes Verfahrens
CN112738767B (zh) * 2020-11-30 2021-12-17 中南大学 一种基于信任的移动边缘用户任务调度方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1699145A2 (en) * 2005-03-04 2006-09-06 Samsung Electronics Co., Ltd. Beam and power allocation method for MIMO communication system
CN101373998A (zh) * 2007-08-20 2009-02-25 上海贝尔阿尔卡特股份有限公司 低信息交互的多基站协作mimo及其调度方法和装置
US20090117911A1 (en) * 2007-11-02 2009-05-07 Molisch Andreas F Cooperative Base Stations in Wireless Networks
CN101478342A (zh) * 2009-01-22 2009-07-08 清华大学 一种多天线蜂窝通信系统中多小区之间协作调度的方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8116267B2 (en) * 2006-02-09 2012-02-14 Samsung Electronics Co., Ltd. Method and system for scheduling users based on user-determined ranks in a MIMO system
CN101416465A (zh) * 2006-03-29 2009-04-22 艾利森电话股份有限公司 使用中继的无线通信网络中的方法和装置
KR100991793B1 (ko) * 2007-12-31 2010-11-03 엘지전자 주식회사 셀간 간섭 감소 방법
WO2010017101A2 (en) * 2008-08-05 2010-02-11 Interdigital Patent Holdings, Inc. Method and apparatus for implementing multi-cell cooperation techniques
KR101495824B1 (ko) * 2008-08-22 2015-02-25 삼성전자주식회사 다중 안테나 무선통신 시스템에서 프리코딩 행렬 선택 방법및 장치

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1699145A2 (en) * 2005-03-04 2006-09-06 Samsung Electronics Co., Ltd. Beam and power allocation method for MIMO communication system
CN101373998A (zh) * 2007-08-20 2009-02-25 上海贝尔阿尔卡特股份有限公司 低信息交互的多基站协作mimo及其调度方法和装置
US20090117911A1 (en) * 2007-11-02 2009-05-07 Molisch Andreas F Cooperative Base Stations in Wireless Networks
CN101478342A (zh) * 2009-01-22 2009-07-08 清华大学 一种多天线蜂窝通信系统中多小区之间协作调度的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CEWIT: "Downlink CoMP Based on Cooperative Precoding", 3GPP TSG RAN WG1 MEETING #57BIS, R1-092842, 3 July 2009 (2009-07-03), XP050351280 *
See also references of EP2418786A4 *

Also Published As

Publication number Publication date
US9425867B2 (en) 2016-08-23
US20120028666A1 (en) 2012-02-02
CN101958738B (zh) 2016-08-03
CN101958738A (zh) 2011-01-26
EP2418786A4 (en) 2012-06-06
EP2418786B1 (en) 2016-11-16
EP2418786A1 (en) 2012-02-15

Similar Documents

Publication Publication Date Title
Björnson et al. Scalable cell-free massive MIMO systems
CN104737609B (zh) 用于无线接入虚拟化的系统和方法
CN102640555B (zh) 到移动终端的下行链路信号通信中的干扰缓解
JP5364793B2 (ja) 多地点協調送信用のアンテナ選択のためのシステムおよび方法
KR101524689B1 (ko) 간섭 정렬을 위하여 선택적으로 간섭 채널들에 대한 정보를피드백하는 통신 시스템 및 그 방법
JP5032672B2 (ja) セル間干渉低減方法
TW201947898A (zh) 執行無線通訊通道的通道估計的方法及行動設備
WO2022135446A1 (zh) 通信方法和装置
JP2016514415A (ja) 多発信地点協働システムにおけるチャネル状態情報フィードバックおよびユーザ装置
JP5297557B2 (ja) 多入力多出力システムでのマルチセル協調通信の方法および装置
JP2012533206A (ja) 端末及び基地局、並びに端末の動作方法
Do et al. Impacts of imperfect SIC and imperfect hardware in performance analysis on AF non-orthogonal multiple access network
WO2012055276A1 (zh) 业务数据下发方法和装置
Kim et al. Joint optimization of signal design and resource allocation in wireless D2D edge computing
WO2011009394A1 (zh) 一种协作通信的预处理的方法、系统和装置
WO2014139121A1 (zh) 一种调度用户设备的方法及基站
WO2015184915A1 (zh) 多输入多输出系统信令传输方法和装置
WO2011009340A1 (zh) 一种协作通信的预处理方法、基站及系统
Reifert et al. Rate-splitting multiple access in cache-aided cloud-radio access networks
WO2014032421A1 (zh) 分布式多小区多用户波束成形方法、发射机及相关系统
CN107046431B (zh) 信息的传输、接收方法及装置
WO2017185982A1 (zh) 准共位置类型的处理方法、装置及计算机存储介质
KR101519310B1 (ko) 협력 다중 포인트 송신 시스템 및 장치를 위한 다운링크 사전코딩 방법 및 데이터 상호작용 방법
CN102780520A (zh) 从多个发送站进行波束成形
Devulapalli et al. Image transmission in mobile wireless multimedia sensor networks using cat swarm optimization

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10801953

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2010801953

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010801953

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE