WO2011004843A1 - Pharmaceutical composition for treatment of sirs or highly pathogenic influenza infection - Google Patents

Pharmaceutical composition for treatment of sirs or highly pathogenic influenza infection Download PDF

Info

Publication number
WO2011004843A1
WO2011004843A1 PCT/JP2010/061541 JP2010061541W WO2011004843A1 WO 2011004843 A1 WO2011004843 A1 WO 2011004843A1 JP 2010061541 W JP2010061541 W JP 2010061541W WO 2011004843 A1 WO2011004843 A1 WO 2011004843A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
sirs
clp
endothelin
etr
Prior art date
Application number
PCT/JP2010/061541
Other languages
French (fr)
Japanese (ja)
Inventor
秀親 岡田
有武 岡田
則子 岡田
Original Assignee
株式会社蛋白科学研究所
公立大学法人名古屋市立大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社蛋白科学研究所, 公立大学法人名古屋市立大学 filed Critical 株式会社蛋白科学研究所
Priority to JP2011521944A priority Critical patent/JP5686734B2/en
Publication of WO2011004843A1 publication Critical patent/WO2011004843A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/04Peptides having up to 20 amino acids in a fully defined sequence; Derivatives thereof
    • A61K38/10Peptides having 12 to 20 amino acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • A61P31/16Antivirals for RNA viruses for influenza or rhinoviruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • C07K14/4701Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals not used
    • C07K14/4746Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals not used p53
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K7/00Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
    • C07K7/04Linear peptides containing only normal peptide links
    • C07K7/08Linear peptides containing only normal peptide links having 12 to 20 amino acids

Definitions

  • the present invention relates to a composition for SIRS treatment.
  • the invention also relates to a composition for the treatment of highly toxic influenza infections, in particular H5N1 avian influenza infections.
  • the invention further relates to a method for the treatment of SIRS as well as highly toxic influenza infections.
  • SIRS Systemic Inflammatory Response Syndrome
  • zepsis is a fatal disease that causes 300,000 patients to die each year in North America, and there is still no effective therapeutic agent.
  • APC activated protein C
  • Using activated protein C (APC) can only improve 30% mortality to 24%.
  • pathogenic bacteria have already increased in the body, and even if bacteria are suppressed with antibiotics, endotoxin (LPS) cannot be removed, and antibiotic treatment and treatment with symptomatic treatment such as heparin and steroids The current situation remains.
  • SIRS systemic inflammatory response syndrome
  • DIC disseminated intravascular coagulation
  • MOF multiple organ failure
  • amino acids 37 to 53 (RAARISLGPRCIKAFTE) (SEQ ID NO: 1) of C5a previously published by the present inventors are an anti-sense against the antisense homology box (AHB) peptide (Non-patent Document 3) of C5a receptor (C5aR). It is a sense peptide and is called PL37 (Non-Patent Document 4). This region of C5a is presumed to be a potential site for C5aR stimulation (Non-Patent Document 5).
  • HAB antisense homology box
  • the present inventors created a complementary peptide ASGAPAPGPAGPLRPMF (SEQ ID NO: 2) to PL37 using a computer program, MIMETIC (6-8), which binds to C5a anaphylatoxin and is mediated by complement. After confirming that lethal shock is prevented in rats, it was named PepA (Patent Document 1, Non-Patent Document 9).
  • PepA or AcPepA SEQ ID NO: 3
  • influenza viruses There are three types of influenza viruses: A, B and C. It is type A that causes a global epidemic and causes many deaths. Influenza A viruses are further classified into a number of subtypes based on the antigenicity of hemagglutinin and neuraminidase, which are viral surface proteins. So far, at least 16 mutations have been found in HA and 9 mutations in NA, and there can be as many subtypes as there are combinations thereof. Differences between these subtypes are expressed by abbreviations such as H1N1 to H16N9.
  • H5N1 is particularly called highly pathogenic avian influenza virus (in Japan, it is regulated by the Livestock Infectious Disease Prevention Law), and when infected, both humans and birds have extremely high mortality rates. .
  • chickens are said to die within 2 days if they become infected with H5N1 avian influenza and develop influenza.
  • Endothelin is a peptide that was first isolated from the culture supernatant of porcine aortic endothelial cells, and acquires a strong vasoconstrictive action when it is cleaved by an enzyme from a precursor and converted to a mature peptide.
  • This is known to be the most potent vascular smooth muscle contraction and blood pressure raising action among existing substances, and is one of the physiologically active substances currently in the limelight. It has been reported to have not only vasoconstrictive action but also various physiological actions such as cardiotonic action and renal mesangial contractile action, and at least three isoforms (endothelin-1, endothelin-2, endothelin-3) have been reported. Has been.
  • endothelin receptors type A receptor specific for endothelin-1 and type B receptor nonspecific for three isopeptides of endothelin.
  • the amino acid sequence has also been deduced.
  • the present inventors have previously identified an antisense homology box peptide of endothelin receptor A type (Non-patent Documents 3 and 2), and endotoxin shock and hemorrhagic shock caused by the peptide via endothelin receptor A type. Have been reported to attenuate inflammatory responses such as histamine and to suppress the action of histamine release. As a result of intensive studies, the present inventors have found that endothelin activity inhibitors are extremely effective in treating SIRS and highly toxic influenza infections, and have completed the present invention.
  • JP 2004-269520 A Japanese Patent No. 3923515
  • the object of the present invention is to provide a pharmaceutical composition for SIRS treatment.
  • the present invention also aims to provide a pharmaceutical composition for the treatment of highly virulent influenza virus infection.
  • the present invention further aims to provide a method for the treatment of highly virulent influenza virus infection as well as SIRS treatment.
  • the present invention provides a pharmaceutical composition for SIRS treatment containing an endothelin activity inhibitor.
  • the present invention also provides a pharmaceutical composition for the treatment of highly virulent influenza virus infection, for example, highly pathogenic avian influenza infection, containing an endothelin activity inhibitor.
  • the present invention provides a method for treating SIRS, comprising administering an effective amount of an endothelin activity inhibitor to a patient in need of SIRS treatment. Also provided is a method for treating a highly toxic influenza infection, comprising administering an effective amount of an endothelin activity inhibitor to a patient in need of treatment for a highly toxic influenza virus infection.
  • the present invention provides the use of an endothelin activity inhibitor in the manufacture of a pharmaceutical composition for SIRS treatment.
  • the present invention also provides the use of an endothelin activity inhibitor in the manufacture of a pharmaceutical composition for the treatment of highly toxic influenza infection.
  • the endothelin activity inhibitor is not particularly limited, but the peptides of SEQ ID NOs: 4 to 18 in the sequence listing, particularly the peptide of SEQ ID NO: 11 is preferably used.
  • the SIRS and highly toxic influenza virus infection can be effectively treated by the pharmaceutical composition of the present invention.
  • Example 3 is a graph showing the results of Example 1.
  • 3 is a graph showing the survival time of Example 2.
  • the survival periods of the ETR-P1 / fl group ( ⁇ ), CLP group ( ⁇ ), and Siam group (dotted line) are shown.
  • Mean survival was significantly longer in the ETR-P1 / fl group than in the CLP group: 18.9 ⁇ 2.3 (ETR-P1 / fl) vs. 9.0 ⁇ 0.8 (CLP) p ⁇ 0.005 Mann-Whitney test.
  • Two animals (33.3%) in the ETR-P1 / fl group were alive at 24 hours. All sham groups survived for 24 hours.
  • the change of the mPAP ratio of the ETR-P1 / fl group ( ⁇ ), the CLP group ( ⁇ ), and the sham group ( ⁇ ) is shown. Changes in heart rate (HR) of ETR-P1 / fl group ( ⁇ ), CLP group ( ⁇ ), and Sham group ( ⁇ ) are shown. At 6 hours and 9 hours, a significantly higher heart rate was observed in the CLP group than in the other groups (p ⁇ 0.05). The change of the mPAP / MAP ratio of the ETR-P1 / fl group ( ⁇ ), the CLP group ( ⁇ ), and the sham group ( ⁇ ) is shown. mPAP / MAP did not increase in the ETR-P1 / fl group at 9 hours.
  • the change of the serum TNF- ⁇ level in the ETR-P1 / fl group ( ⁇ ), the CLP group ( ⁇ ), and the sham group ( ⁇ ) is shown.
  • the change of the amount of HMGB-1 in the serum of the ETR-P1 / fl group ( ⁇ ), the CLP group ( ⁇ ) and the sham group ( ⁇ ) is shown.
  • the change of the amount of NOx in the serum of the ETR-P1 / fl group ( ⁇ ), the CLP group ( ⁇ ), and the sham group ( ⁇ ) is shown.
  • the endothelin activity inhibitor is not particularly limited as long as it suppresses endothelin-1 activity, and more preferably suppresses endothelin-1 action via endothelin receptor type A. It is not particularly limited.
  • endothelin receptors particularly endothelin receptor type A, bosentan, sitaxsentan, ambrisentan, atrasentan, S-139, tezosentan BMS-193884
  • compounds such as drausentan and entrasentan are known.
  • the amino acid sequence deduced from the human endothelin precursor cDNA is compared with the amino acid sequence deduced from the human endothelin receptor cDNA and sensed at the amino acid level.
  • C1 VLNLCALSVDRYRAVASWSRVI (SEQ ID NO: 4)
  • C2 CALSVDRYRAVASWGIPLITAIEI (SEQ ID NO: 5)
  • C3 QGIGIPLITAIEI (SEQ ID NO: 6)
  • C4 IADNAERYSANLSSHV (SEQ ID NO: 7)
  • C5 FLGTTTLPPNLALP (SEQ ID NO: 8)
  • C6 LNRRNGSLRIALSEHLKNRREVA (SEQ ID NO: 9)
  • a peptide in which the terminal of the C1 peptide is an amide, and any one of the specific amino acids in the sequence of the terminal amide is substituted with glycine Peptides are mentioned.
  • peptides in which the N-terminal and / or C-terminal amino acids of the C1 peptide have been removed, and those in which a part of the amino acids in the sequence have been substituted are also preferably used.
  • the following sequences are exemplified.
  • the cysteines at positions 1 and 15 form a disulfide bond.
  • C18 VALSVDRYRAVASW-NH 2 (SEQ ID NO: 18)
  • a peptide of C11 (SEQ ID NO: 11) is particularly preferably used.
  • the administration method and administration route of the pharmaceutical composition of the present invention are not particularly limited, but enteral or oral forms, for example, as nasal forms such as sprays, sugar-coated tablets, gelatin capsules, emulsions, solutions or suspensions. Alternatively, it can be administered in a rectal form such as a suppository.
  • the pharmaceutical composition of the present invention may also be administered intravenously or intramuscularly as an injection.
  • the pharmaceutical composition of the present invention contains other physiologically acceptable components such as salts, diluents, carriers, buffers, binders, surfactants, and preservatives. May be.
  • Preparations for parenteral administration include sterile aqueous solutions or suspension ampoules with physiologically acceptable solvents, or sterile powders that can be used diluted with physiologically acceptable diluents, such as endothelin activity inhibitors.
  • physiologically acceptable diluents such as endothelin activity inhibitors.
  • the dose of the pharmaceutical composition of the present invention is not limited, and may be appropriately determined depending on the patient's age, weight, sex, symptom, desired effect, and the like.
  • the pharmaceutical composition of the present invention is suitably used for SIRS treatment.
  • SIRS Systemic Inflammatory Response“ Syndrome ”
  • SIRS Systemic Inflammatory Response“ Syndrome
  • pathological conditions diagnosed with SIRS those caused by infectious diseases are diagnosed as zepsis or sepsis. Whether or not the cause is an infection is determined by confirmation of an infection focus by a pathogenic microorganism or an abnormal increase in CRP (10 or more).
  • SIRS means various bacteremia, fungiemia, parasitemia, viremia, trauma, burns, pancreatitis, surgery, etc. that cause SIRS. This includes preventing the onset of SIRS in an invaded patient, reducing the degree of SIRS onset or preventing death due to the onset of SIRS. Furthermore, SIRS treatment includes preventing death in patients who have already developed SIRS according to the above diagnostic criteria.
  • the pharmaceutical composition of the present invention can be used not only for patients who develop SIRS, but also for patients who are predicted to develop SIRS, specifically bacteremia, fungiemia, parasites. It is suitably used for the treatment of SIRS in patients undergoing various invasions such as septicemia, viremia, trauma, burns, pancreatitis, and surgery. In addition, it is known that death due to highly toxic influenza virus infection is caused by developing SIRS. Therefore, the pharmaceutical composition of the present invention is suitably used for the treatment of patients infected with highly toxic influenza viruses regardless of the presence or absence of symptoms or their strength.
  • the present invention is also suitably used for the treatment of patients with highly toxic influenza virus infection.
  • strongly toxic influenza virus infection means an infection caused by influenza virus, which is known to have a high possibility of developing SIRS and dying due to influenza infection.
  • influenza viruses include H5N1 avian influenza virus that is currently known, and includes those viruses or other viruses that are highly toxic due to mutation.
  • the pharmaceutical composition of the present invention is useful for the treatment of a patient who is infected with a highly virulent influenza virus or a patient who is suspected of having the infection regardless of the onset of symptoms.
  • “Treatment of highly virulent influenza virus infection” includes any of suppression of symptoms caused by virulent influenza viruses, reduction of symptoms that develop, and treatment of symptoms that have already occurred. Furthermore, in this invention, it uses suitably also in order to rescue the patient from whom serious pneumonia resulting from a virulent influenza virus and SIRS symptom already developed from death.
  • the pharmaceutical composition of the present invention can be effectively used for treatment of birds infected with highly toxic influenza viruses such as H5N1 avian influenza virus infection and prevention of spread of infection.
  • highly toxic influenza viruses such as H5N1 avian influenza virus infection
  • a chicken infected with influenza virus occurs in a poultry house, it can be cured by administering the pharmaceutical composition of the present invention to the infected chicken to prevent the spread of infection.
  • the spread of influenza virus infection can be prevented by administering the pharmaceutical composition of the present invention in advance to chickens kept in the same chicken house where infected chickens are produced or in neighboring chicken houses.
  • ETR-P1 / f1 in neonatal porcine peritonitis model (1)
  • the effect of the pharmaceutical composition of the present invention was confirmed in a neonatal porcine peritonitis model that is close to the actual pathological condition of Zepsis infection.
  • the newborn pig was laparotomized under inhalation anesthesia, the ileocecal region was tagged, a hole was opened with an 18-gauge injection needle so that feces leaked out, the intestine was returned to the abdominal cavity, and the abdominal wall was sutured.
  • This treatment is a peritonitis model called CLP (Cecal Ligation and Puncture), and a newborn pig subjected to CLP develops a systemic inflammatory response syndrome (SIRS) and dies.
  • CLP Cercal Ligation and Puncture
  • SIRS systemic inflammatory response syndrome
  • From 30 minutes after this CLP treatment 0.05 mg / kg / hr of ETR-P1 / fl was continuously administered intravenously.
  • the survival period of each of the sham surgery group, the CLP surgery group, and the ETR-P1 / f1 administration group after the CLP surgery was examined. All animals were euthanized after 24 hours.
  • the test was conducted in 8 untreated groups, 10 CLP surgery groups, and 7 ETR-P1 / f1 administration groups after CLP surgery. The results are shown in FIG.
  • Newborn pigs were raised with mother pigs and isolated only during treatment. Newborn pigs weighed between 1450 and 2200 g with a median of 1715 g.
  • the piglet was administered intramuscularly with 10 mg / kg ketamine chloride. Thereafter, sodium pentobarbital in a 5% glucose aqueous solution was administered from the peripheral blood vessel at a rate of 5 mg / kg / h during the treatment period to maintain anesthesia.
  • Each piglet was intubated with a 4 mm inner diameter tube and ventilated with an infant ventilator (IV-100, Sechrist Industries, Anaheim, CA, USA).
  • the inspiratory / expiratory pressure at the start was 14/4 cmH 2 O, and the inspiratory time was 0.5 seconds.
  • Indoor air was used for artificial respiration. The respiratory pressure was then adjusted to maintain PaCO 2 at 30-50 mmHg.
  • a 4F polyvinyl catheter was inserted into the left femoral artery by the cut-down method and used for blood sample acquisition, mean arterial pressure (MAP) and heart rate (HR) measurement.
  • MAP mean arterial pressure
  • HR heart rate
  • a 4-Fr Bellman angiographic catheter (American Edwards Laboratories, Irvine, Calif., USA) was inserted through the fluoroscopic right lateral vein, placed in the main pulmonary artery, and used for mPAP measurement. Further, a 4F polyvinyl catheter was inserted from the left external jaw vein to reach the superior vena cava, and used for measuring the central vena cava pressure.
  • MAP Mean arterial pressure
  • mPAP mean pulmonary arterial pressure
  • HR heart rate
  • CLP treatment CLP group CLP treatment was performed as follows. An incision was made so that the cecum and terminal ileum (approximately 4 cm) could be exposed to the abdomen of the newborn pig. The ileocecal artery was confirmed and ligated near the cecum to stop blood flow to the distal end of the cecum. A cut of about 1 cm was made on the antimesenteric side. After gently squeezing feces from the cecum into the abdominal cavity, the abdominal incision was bound.
  • Siamese treatment (siamese group) In the sham group, after the abdominal incision of the newborn piglet, the cecum and the terminal ileum were exposed to the outside for 2 minutes and then returned to the abdominal cavity, and the abdominal incision was closed.
  • ETR-P1 / fl administration ETR-P1 / fl group
  • ETR-P1 / fl administration started 30 minutes after CLP treatment.
  • a solution of ETR-P1 / fl in 5% glucose was administered into the central vein so that the dose of ETR-P1 / fl was 0.05 mg / kg / h.
  • the solution volume for intravenous administration was adjusted to 5 mL / kg / h.
  • Test Protocol In each group, blood samples were collected from the femoral artery catheter under aseptic conditions to measure arterial blood gases, serum TNF- ⁇ , NO metabolites, and HMGB-1. Blood samples were taken before CLP or sham treatment and 1, 3, 6, and 9 hours after treatment. Sampling was also performed after 12 hours in the ETR-P1 / fl group and the Sham group. All samples were stored in sterile tubes.
  • HMGB-1 was measured using an ELISA kit for HMGB-1 (Shino-Test Corporation, Sagamihara, Japan).
  • Measurement of stroke volume M-mode echocardiography was performed using a SONOS500 (Hewlett Packard) with a 5.0 MHz transducer before CLP or sham treatment and 1, 3, 6 and 9 hours after treatment. .
  • the ETR-P1 / fl group and the sham group were also measured 12 hours after CLP / sham treatment.
  • Two-dimensional M-mode measurement of the left ventricle was performed from the apex long-axis image, and the stroke volume was calculated. The measurement was performed three times at each measurement, and the average value at each measurement was calculated.
  • the first and second survival targets were calculated as CLP group survival time and 2 ⁇ SEM, CLP group survival time and 2 ⁇ SD, respectively.
  • the third survival target was at the end of the study 24 hours after CLP surgery.
  • the 95% confidence interval was between 14.4 and 23.4 hours for the ETR-P1 / fl group and between 7.5 and 10.5 hours for the CLP group.
  • 83.3% (n 5)
  • 50% (n 3)
  • none of the CLP groups could reach the first survival target (FIG. 2). All animals in the sham group survived for 24 hours.
  • Relative mPAP / MAP values gradually increased in the CLP group and were significantly higher at 9 hours compared to the Sham group and the ETR-P1 / fl group: 0.73 ⁇ 0.08 (CLP group) vs. 0. 46 ⁇ 0.07 (sham group) and 0.50 ⁇ 0.058 (ETR-P1 / fl group), both p ⁇ 0.05 (FIG. 3C).
  • the relative mPAP / MAP value of the ETR-P1 / fl group was close to that of the Sham group.
  • heart rate increased at 3 hours after CLP treatment: 184.8 ⁇ 13.0 beats / minute [before CLP], 237.8 ⁇ 15 .5 beats / minute [1h], 272.2 ⁇ 14.0 beats / minute [3h], p ⁇ 0.05 and p ⁇ 0.01, respectively.
  • the relative cardiac output (CO) showed a significant decrease at 3, 6 and 9 hours, and was significantly lower than the sham group (Table 2).
  • the relative stroke volume of the ETR-P1 / fl group gradually decreased, the difference between the ETR-P1 / fl group and the sham group was not significant.
  • HMGB-1 showed detectable values at 3, 6 and 9 hours in the CLP group and was significantly higher than the ETR-P1 / fl group and the Siam group (FIG. 4B). Serum HMGB-1 was not detected at all in the Siam group, but there was no significant difference in serum HMGB-1 levels between the ETR-P1 / fl group and the Sham group.
  • Serum NOx levels in the ETR-P1 / fl group and the Siam group were comparable throughout the study period. In both groups, the same level of NOx as before the start of the test was maintained. On the other hand, NOx levels in the CLP group began to increase from 1 hour after CLP surgery and were higher than those in the ETR-P1 / fl group and the Sham group at 3, 6 and 9 hours (FIG. 4C).
  • the composition of the present invention is useful for treating SIRS.
  • the composition of the present invention suppresses an increase in both TNF- ⁇ , which is an inflammatory mediator that occurs early in zepsis, and HMGB-1, which is an inflammatory mediator that occurs in the late stage of zepsis.
  • TNF- ⁇ which is an inflammatory mediator that occurs early in zepsis
  • HMGB-1 which is an inflammatory mediator that occurs in the late stage of zepsis.
  • elevated plasma TNF- ⁇ correlates with the severity of endotoxemia.
  • HMGB-1 is a protein known only as a nuclear transcription factor, but is now thought to be a mediator associated with delayed endotoxin lethality and systemic inflammation.
  • HMGB-1 levels correlate with the severity of septic shock as well as TNF- ⁇ levels. Therefore, a decrease in the level of HMGB-1 is an index for measuring the effectiveness of sepsis treatment.
  • H5N1 influenza virus (H5N1 IV) preparation at 10 5.3 TCID 50 was the culture supernatant of MDCK cells infected in GIT medium.
  • ETR-P1 / f1 which is an endothelin activity inhibitor, has a strong therapeutic effect against H5N1 avian influenza virus infection, which is a highly toxic influenza virus.
  • Such a therapeutic effect also shows the use as a prevention method against the spread of highly pathogenic avian influenza virus H5N1 infection.

Abstract

Disclosed are a pharmaceutical composition for treating SIRS and a pharmaceutical composition for treating highly pathogenic influenza, each of which comprises an endothelin activity inhibitor. Preferably, the endothelin activity inhibitor to be used has the following sequence: ALSVD(X)Y(X)AVAS (wherein X represents an amino acid residue), particularly the following sequence: VLNLCALSVDRYRAVASWSRVI-NH2. The pharmaceutical compositions are useful for patients who have developed sepsis or SIRS including sepsis, patients who are in the environments where the development of SIRS is expected, patients who have been infected by highly pathogenic influenza, and patients who are more likely to be infected by highly pathogenic influenza.

Description

SIRSまたは強毒性インフルエンザ感染症処置のための医薬組成物Pharmaceutical composition for treatment of SIRS or highly toxic influenza infection
 本発明は、SIRS処置のための組成物に関する。本発明はまた、強毒性インフルエンザ感染症、特にH5N1トリインフルエンザ感染症処置のための組成物に関する。本発明はさらに、SIRS並びに強毒性インフルエンザ感染症の処置のための方法に関する。 The present invention relates to a composition for SIRS treatment. The invention also relates to a composition for the treatment of highly toxic influenza infections, in particular H5N1 avian influenza infections. The invention further relates to a method for the treatment of SIRS as well as highly toxic influenza infections.
 ゼプシスを含む全身性炎症反応症候群(SIRS) は、北米において毎年300,000名の患者の死因である致死的な疾患であり、いまだに有効な治療剤が存在しない。米国では年間75万人にゼプシスが発症し、22万人が死亡しているが特効救命薬がない。活性化プロテインC(APC)を用いても30%の死亡率を24%に改善できるに過ぎない。ゼプシスでは既に体内に病原細菌が増加しており、抗生物質で細菌を抑制しても菌体内毒素(LPS)を取り除くことは出来ず、抗生物質投与とヘパリンやステロイドなどの対症療法での治療にとどまっているのが現状である。 Systemic Inflammatory Response Syndrome (SIRS) including zepsis is a fatal disease that causes 300,000 patients to die each year in North America, and there is still no effective therapeutic agent. In the United States, 750,000 people develop zepsis annually and 220,000 people die, but there is no special lifesaving medicine. Using activated protein C (APC) can only improve 30% mortality to 24%. In Zepsis, pathogenic bacteria have already increased in the body, and even if bacteria are suppressed with antibiotics, endotoxin (LPS) cannot be removed, and antibiotic treatment and treatment with symptomatic treatment such as heparin and steroids The current situation remains.
 ゼプシスは全身性炎症反応症候群(SIRS)の一種であり、SIRSは播種性血管内凝固(DIC)および多臓器不全 (MOF)を引き起こし、これらは非常に致死的である。補体の第5成分(C5) から補体活性化の際に生じるC5 コンバターゼによって放出される74-アミノ酸ペプチドのC5a アナフィラトキシンのSIRSにおける中心的役割が提唱されている(非特許文献1および2)。 Zepsis is a type of systemic inflammatory response syndrome (SIRS), which causes disseminated intravascular coagulation (DIC) and multiple organ failure (MOF), which are very fatal. A central role in the SIRS of the C5a anaphylatoxin, a 74-amino acid peptide released by C5 タ ー ゼ convertase generated during complement activation from the fifth component (C5) of complement has been proposed (Non-patent Documents 1 and 2). ).
 ここで本発明者らが先に公表したC5aのアミノ酸37~53(RAARISLGPRCIKAFTE)(配列番号1)は、C5a 受容体 (C5aR)のアンチセンスホモロジーボックス(AHB) ペプチド(非特許文献3)に対するアンチセンスペプチドであり、PL37と称されている(非特許文献4)。C5aのこの領域はC5aR 刺激のための可能性のある部位であると推定されている(非特許文献5)。本発明者らはコンピュータプログラム、MIMETIC (非特許文献6-8)を用いて、PL37に対する相補性ペプチドASGAPAPGPAGPLRPMF(配列番号2)を作成し、これがC5a アナフィラトキシンに結合し、補体に媒介される致死的なショックをラットにおいて防止することを確認し、PepAと名付けた(特許文献1、非特許文献9) 。特許文献1の系では、全身症状の発症誘導前にPepAまたはPepAのN-末端アラニンのアセチル化したペプチドであるAcPepA(配列番号3)を投与してゼプシスの発症そのものを予防的に抑えることに成功している。 Here, amino acids 37 to 53 (RAARISLGPRCIKAFTE) (SEQ ID NO: 1) of C5a previously published by the present inventors are an anti-sense against the antisense homology box (AHB) peptide (Non-patent Document 3) of C5a receptor (C5aR). It is a sense peptide and is called PL37 (Non-Patent Document 4). This region of C5a is presumed to be a potential site for C5aR stimulation (Non-Patent Document 5). The present inventors created a complementary peptide ASGAPAPGPAGPLRPMF (SEQ ID NO: 2) to PL37 using a computer program, MIMETIC (6-8), which binds to C5a anaphylatoxin and is mediated by complement. After confirming that lethal shock is prevented in rats, it was named PepA (Patent Document 1, Non-Patent Document 9). In the system of Patent Document 1, PepA or AcPepA (SEQ ID NO: 3), which is an acetylated peptide of N-terminal alanine of PepA, is administered before the onset of systemic symptoms to prevent the onset of zepsis prophylactically. Has succeeded.
 インフルエンザウイルスにはA、BおよびCの3つの型がある。世界的な流行を起こし、多くの死者が出るのは主にA型である。A型インフルエンザウイルスは更にウイルス表面のタンパク質であるヘマグルチニンおよびノイラミニダーゼの抗原性により多くの亜型に分類される。これまでに少なくともHAに16種類、NAに9種類の変異が見つかっており、その組み合わせの数の亜型が存在し得る。これら亜型の違いはH1N1~H16N9といった略称で表現されている。 There are three types of influenza viruses: A, B and C. It is type A that causes a global epidemic and causes many deaths. Influenza A viruses are further classified into a number of subtypes based on the antigenicity of hemagglutinin and neuraminidase, which are viral surface proteins. So far, at least 16 mutations have been found in HA and 9 mutations in NA, and there can be as many subtypes as there are combinations thereof. Differences between these subtypes are expressed by abbreviations such as H1N1 to H16N9.
 インフルエンザウイルスは、ヒトを含む哺乳類および鳥類に感染する。従来は種の壁があるためヒトにはヒトインフルエンザ、鳥類にはトリインフルエンザのみが感染すると考えられてきたが、近年ヒトおよびトリの両方に感染するインフルエンザウイルスが出現している。これらの中で、特にH5N1は高病原性トリインフルエンザウイルスと呼ばれ(日本では家畜伝染病予防法で規定されている)、これに感染した場合は、ヒトおよびトリの両者で極めて致死率が高い。例えばH5N1トリインフルエンザに感染し、インフルエンザを発症するとニワトリは2日以内に死亡するといわれている。 Flu virus infects mammals and birds including humans. Conventionally, due to the species barrier, it has been considered that only human influenza is infected in humans and avian influenza is infected in birds. In recent years, influenza viruses that infect both humans and birds have emerged. Among these, H5N1 is particularly called highly pathogenic avian influenza virus (in Japan, it is regulated by the Livestock Infectious Disease Prevention Law), and when infected, both humans and birds have extremely high mortality rates. . For example, chickens are said to die within 2 days if they become infected with H5N1 avian influenza and develop influenza.
 エンドセリンは、最初ブタ大動脈内皮細胞の培養上清から単離されたペプチドであり、前駆体から酵素で切断されて成熟ペプチドに変換されると強力な血管収縮作用を獲得する。これは既存の物質中最も強力な血管平滑筋収縮作用および血圧上昇作用であることが知られており、現在脚光を浴びている生理活性物質のひとつである。血管収縮作用だけではなく、強心作用、腎メサンギウム収縮作用など多岐にわたる生理作用を有することが報告されており、また、少なくとも3つのアイソフォーム(エンドセリン-1、エンドセリン-2、エンドセリン-3)が報告されている。
 一方、エンドセリンレセプターとしてはエンドセリン-1に特異的なA型受容体とエンドセリンの3種のイソペプチドに対して非特異的なB型受容体の2種類が知られており、cDNAのクローニングによりそのアミノ酸配列も推定されている。
 しかし、かかる多岐にわたる生理活性を有するエンドセリンについては、SIRS並びに強毒性インフルエンザ感染症におけるその役割に関する報告は全く見当たらない。
Endothelin is a peptide that was first isolated from the culture supernatant of porcine aortic endothelial cells, and acquires a strong vasoconstrictive action when it is cleaved by an enzyme from a precursor and converted to a mature peptide. This is known to be the most potent vascular smooth muscle contraction and blood pressure raising action among existing substances, and is one of the physiologically active substances currently in the limelight. It has been reported to have not only vasoconstrictive action but also various physiological actions such as cardiotonic action and renal mesangial contractile action, and at least three isoforms (endothelin-1, endothelin-2, endothelin-3) have been reported. Has been.
On the other hand, two types of endothelin receptors are known: type A receptor specific for endothelin-1 and type B receptor nonspecific for three isopeptides of endothelin. The amino acid sequence has also been deduced.
However, there are no reports regarding the role of endothelin having such diverse physiological activities in SIRS and highly toxic influenza infection.
 本発明者等は先にエンドセリン受容体A型のアンチセンスホモロジーボックスペプチドを同定し(非特許文献3、特許文献2)、該ペプチドがエンドセリン受容体A型を介して生じるエンドトキシンショック、出血性ショック等の炎症応答を減弱化し、ヒスタミン放出等の作用を抑制することを報告している。今回、発明者らは、鋭意検討した結果、エンドセリン活性抑制剤がSIRS並びに強毒性インフルエンザ感染症の処置に極めて有効であることを見出し、本発明を完成するに至った。 The present inventors have previously identified an antisense homology box peptide of endothelin receptor A type (Non-patent Documents 3 and 2), and endotoxin shock and hemorrhagic shock caused by the peptide via endothelin receptor A type. Have been reported to attenuate inflammatory responses such as histamine and to suppress the action of histamine release. As a result of intensive studies, the present inventors have found that endothelin activity inhibitors are extremely effective in treating SIRS and highly toxic influenza infections, and have completed the present invention.
特開2004-269520号公報JP 2004-269520 A 特許3923515号公報Japanese Patent No. 3923515
 本発明は、SIRS処置のための医薬組成物を提供することを目的とする。本発明はまた、強毒性インフルエンザウイルス感染症の処置のための医薬組成物を提供することを目的とする。本発明は更に、強毒性インフルエンザウイルス感染症の処置並びにSIRS処置のための方法を提供することを目的とする。 The object of the present invention is to provide a pharmaceutical composition for SIRS treatment. The present invention also aims to provide a pharmaceutical composition for the treatment of highly virulent influenza virus infection. The present invention further aims to provide a method for the treatment of highly virulent influenza virus infection as well as SIRS treatment.
 本発明は、エンドセリン活性抑制剤を含有する、SIRS処置のための医薬組成物を提供する。 The present invention provides a pharmaceutical composition for SIRS treatment containing an endothelin activity inhibitor.
 本発明はまた、エンドセリン活性抑制剤を含有する、強毒性インフルエンザウイルス感染症、例えば高病原性トリインフルエンザ感染症の処置のための医薬組成物を提供する。 The present invention also provides a pharmaceutical composition for the treatment of highly virulent influenza virus infection, for example, highly pathogenic avian influenza infection, containing an endothelin activity inhibitor.
 別の観点において、本発明はSIRS処置の必要な患者へエンドセリン活性抑制剤の有効量を投与することを含む、SIRS処置方法を提供する。また、強毒性インフルエンザウイルス感染症の処置が必要な患者へエンドセリン活性抑制剤の有効量を投与することを含む、強毒性インフルエンザ感染症の処置方法を提供する。 In another aspect, the present invention provides a method for treating SIRS, comprising administering an effective amount of an endothelin activity inhibitor to a patient in need of SIRS treatment. Also provided is a method for treating a highly toxic influenza infection, comprising administering an effective amount of an endothelin activity inhibitor to a patient in need of treatment for a highly toxic influenza virus infection.
 更に別の観点において、本発明はエンドセリン活性抑制剤の、SIRS処置のための医薬組成物の製造における使用を提供する。本発明はまた、エンドセリン活性抑制剤の、強毒性インフルエンザ感染症処置のための医薬組成物の製造における使用を提供する。 In yet another aspect, the present invention provides the use of an endothelin activity inhibitor in the manufacture of a pharmaceutical composition for SIRS treatment. The present invention also provides the use of an endothelin activity inhibitor in the manufacture of a pharmaceutical composition for the treatment of highly toxic influenza infection.
 本発明において、エンドセリン活性抑制剤としては特に限定されないが、配列表の配列番号4~18のペプチド、特に配列番号11に記載のペプチドが好適に用いられる。 In the present invention, the endothelin activity inhibitor is not particularly limited, but the peptides of SEQ ID NOs: 4 to 18 in the sequence listing, particularly the peptide of SEQ ID NO: 11 is preferably used.
 本発明の医薬組成物により、SIRS並びに強毒性インフルエンザウイルス感染症を効果的に処置することが可能である。 The SIRS and highly toxic influenza virus infection can be effectively treated by the pharmaceutical composition of the present invention.
実施例1の結果を示すグラフである。3 is a graph showing the results of Example 1. 実施例2の生存期間を示すグラフである。ETR-P1/fl群(■)、CLP群(●)およびシャム群(点線)の生存期間を示す。平均生存期間はETR-P1/fl群はCLP群より有意に長かった:18.9±2.3(ETR-P1/fl)対9.0±0.8(CLP)p<0.005, Mann-Whitney test。ETR-P1/fl群の2匹(33.3%)は24時間の時点で生存していた。シャム群は全て24時間生存した。3 is a graph showing the survival time of Example 2. The survival periods of the ETR-P1 / fl group (■), CLP group (●), and Siam group (dotted line) are shown. Mean survival was significantly longer in the ETR-P1 / fl group than in the CLP group: 18.9 ± 2.3 (ETR-P1 / fl) vs. 9.0 ± 0.8 (CLP) p <0.005 Mann-Whitney test. Two animals (33.3%) in the ETR-P1 / fl group were alive at 24 hours. All sham groups survived for 24 hours. ETR-P1/fl群(△)、CLP群(●)およびシャム群(○)のMAP(Mean Arterial Pressure)比の変化を示す。6時間、9時間においてMAPはETR-P1/fl群においてCLPのみの群より有意に高い値を維持していた(p<0.01)。図中、§:p<0.05対シャム群、¶:p<0.05対ETR-P1/fl群、各値は平均±SEMにて示した。以下図3および図4において同じ記号を用いた。The change in the MAP (Mean Arterial Pressure) ratio of the ETR-P1 / fl group (Δ), CLP group (●), and Sham group (◯) is shown. At 6 hours and 9 hours, MAP maintained a significantly higher value in the ETR-P1 / fl group than in the CLP only group (p <0.01). In the figure, §: p <0.05 vs. Siam group, ¶: p <0.05 vs. ETR-P1 / fl group, each value is shown as mean ± SEM. Hereinafter, the same symbols are used in FIGS. 3 and 4. ETR-P1/fl群(△)、CLP群(●)およびシャム群(○)のmPAP比の変化を示す。The change of the mPAP ratio of the ETR-P1 / fl group (Δ), the CLP group (●), and the sham group (◯) is shown. ETR-P1/fl群(△)、CLP群(●)およびシャム群(○)の心拍数(HR)の変化を示す。6時間、9時間において、CLP群では他の群と比して有意に高い心拍数が認められた(p<0.05)。Changes in heart rate (HR) of ETR-P1 / fl group (Δ), CLP group (●), and Sham group (◯) are shown. At 6 hours and 9 hours, a significantly higher heart rate was observed in the CLP group than in the other groups (p <0.05). ETR-P1/fl群(△)、CLP群(●)およびシャム群(○)のmPAP/MAP比の変化を示す。mPAP/MAPは9時間においてETR-P1/fl群では上昇しなかった。The change of the mPAP / MAP ratio of the ETR-P1 / fl group (Δ), the CLP group (●), and the sham group (◯) is shown. mPAP / MAP did not increase in the ETR-P1 / fl group at 9 hours. ETR-P1/fl群(△)、CLP群(●)およびシャム群(○)の血清中のTNF-αレベルの変化を示す。The change of the serum TNF-α level in the ETR-P1 / fl group (Δ), the CLP group (●), and the sham group (◯) is shown. ETR-P1/fl群(△)、CLP群(●)およびシャム群(○)の血清中のHMGB-1量の変化を示す。The change of the amount of HMGB-1 in the serum of the ETR-P1 / fl group (Δ), the CLP group (●) and the sham group (◯) is shown. ETR-P1/fl群(△)、CLP群(●)およびシャム群(○)の血清中のNOx量の変化を示す。The change of the amount of NOx in the serum of the ETR-P1 / fl group (Δ), the CLP group (●), and the sham group (◯) is shown.
 本発明の医薬組成物において、エンドセリン活性抑制剤としては、エンドセリン-1の活性を抑制するものであればよく、より好ましくはエンドセリン受容体A型を介するエンドセリン-1の作用を抑制するものであれば特に限定的ではない。 In the pharmaceutical composition of the present invention, the endothelin activity inhibitor is not particularly limited as long as it suppresses endothelin-1 activity, and more preferably suppresses endothelin-1 action via endothelin receptor type A. It is not particularly limited.
 エンドセリンとエンドセリン受容体で拮抗する化合物として、EP-A-552489、EP-A-528312、EP-A-499266、WO91/13089、EP-A-436189、EP-A-457195、EP-A-510526、WO92/12991、特開平4-288099、特開平4-244097、特開平4-261198、EP-A-496452、EP-A-526708、EP-A-526642、EP-A-510526、EP-A-460679、WO92/20706、EP-A-626174、EP-A-655463、EP-A-714909、特開平7-173161などが提案されている。また、エンドセリン受容体、特にエンドセリン受容体A型の拮抗作用を有する物質として、ボセンタン(bosentan)、シタキセンタン(sitaxsentan)、アンブリセンタン(ambrisentan)、アトラセンタン(atrasentan)、S-139、テゾセンタン(tezosentan)、BMS-193884、ドラウセンタン(drausentan)およびエントラセンタン(entrasentan)等の化合物が知られている。 As compounds that antagonize endothelin and endothelin receptor, EP-A-552489, EP-A-528312, EP-A-499266, WO91 / 13089, EP-A-436189, EP-A-457195, EP-A-510526 , WO92 / 12991, JP-A-4-288099, JP-A-4-244097, JP-A-4-261198, EP-A-496452, EP-A-526708, EP-A-526642, EP-A-510526, EP-A -460679, WO92 / 20706, EP-A-626174, EP-A-655463, EP-A-714909, and JP-A-7-173161 have been proposed. In addition, as substances having an antagonistic action on endothelin receptors, particularly endothelin receptor type A, bosentan, sitaxsentan, ambrisentan, atrasentan, S-139, tezosentan BMS-193884, compounds such as drausentan and entrasentan are known.
 本発明の医薬組成物において特に好適に用いられるのは、ヒトのエンドセリン前駆体のcDNAから推定されるアミノ酸配列とヒトのエンドセリンレセプターのcDNAから推定されるアミノ酸配列とを比較し、アミノ酸レベルでセンスアミノ酸・アンチセンスアミノ酸の対応関係で少なくとも80%相補的な関係になっている部分のヒトエンドセリンレセプターのアミノ酸配列を含有するペプチド、その類縁体である。かかるペプチドとしては特許第3923515号に開示されており、特に下記アミノ酸配列を含有するペプチドが例示される:
C1:VLNLCALSVDRYRAVASWSRVI(配列番号4)
C2:CALSVDRYRAVASWGIPLITAIEI(配列番号5)
C3:QGIGIPLITAIEI(配列番号6)
C4:IADNAERYSANLSSHV(配列番号7)
C5:FLGTTLRPPNLALP(配列番号8)
C6:LNRRNGSLRIALSEHLKNRREVA(配列番号9)
In the pharmaceutical composition of the present invention, the amino acid sequence deduced from the human endothelin precursor cDNA is compared with the amino acid sequence deduced from the human endothelin receptor cDNA and sensed at the amino acid level. A peptide containing the amino acid sequence of the human endothelin receptor at least 80% complementary in the corresponding amino acid / antisense amino acid relationship, and its analogs. Such peptides are disclosed in Japanese Patent No. 3923515, and in particular, peptides containing the following amino acid sequences are exemplified:
C1: VLNLCALSVDRYRAVASWSRVI (SEQ ID NO: 4)
C2: CALSVDRYRAVASWGIPLITAIEI (SEQ ID NO: 5)
C3: QGIGIPLITAIEI (SEQ ID NO: 6)
C4: IADNAERYSANLSSHV (SEQ ID NO: 7)
C5: FLGTTTLPPNLALP (SEQ ID NO: 8)
C6: LNRRNGSLRIALSEHLKNRREVA (SEQ ID NO: 9)
 本願発明の医薬組成物において用いられる好ましいエンドセリン活性抑制剤としては、C1ペプチドの末端をアミド体としたペプチド、および当該末端アミド体の配列中、特定のアミノ酸のいずれか1つをグリシンで置換したペプチドが挙げられる。具体的には以下の配列が好適に用いられる:
C11:VLNLCALSVDRYRAVASWSRVI-NH2(配列番号11)
C12:VLNLCALSVDRYRAVASGSRVI-NH2(配列番号12)
C13:VLNLCALSVDRYGAVASWSRVI-NH2(配列番号13)
C14:VLNLCALSVDGYRAVASWSRVI-NH2(配列番号14)
C15:VLNLGALSVDRYRAVASWSRVI-NH2(配列番号15)
上記式および以下の式において、「-NH2」はC末端のカルボキシル基がアミド化された化合物を示す。また、C1ペプチドのN末端および/またはC末端のアミノ酸を除去したペプチド、およびその配列中のアミノ酸の一部を置換したものも好適に用いられる。具体的には以下に示す配列が例示される。
C16:CALSVDRYRAVASW-NH(配列番号16)
C17:CALSVDRYRAVASWC-NH(配列番号17)但し、1位と15位のシステインはジスルフィド結合を形成している。
C18:VALSVDRYRAVASW-NH(配列番号18)
As a preferred endothelin activity inhibitor used in the pharmaceutical composition of the present invention, a peptide in which the terminal of the C1 peptide is an amide, and any one of the specific amino acids in the sequence of the terminal amide is substituted with glycine Peptides are mentioned. Specifically, the following sequences are preferably used:
C11: VNLNLCALSVDRYRAVASWSRVI-NH 2 (SEQ ID NO: 11)
C12: VLNLCALSVSVRYRAVASGSRVI-NH 2 (SEQ ID NO: 12)
C13: VLNLCALSVSVRYGAVASWSRVI-NH 2 (SEQ ID NO: 13)
C14: VLNLCALSVDGYRAVASWSRVI-NH 2 (SEQ ID NO: 14)
C15: VLNLGALSVDRYRAVASWSRVI-NH 2 (SEQ ID NO: 15)
In the above formula and the following formula, “—NH 2 ” represents a compound in which the C-terminal carboxyl group is amidated. Further, peptides in which the N-terminal and / or C-terminal amino acids of the C1 peptide have been removed, and those in which a part of the amino acids in the sequence have been substituted are also preferably used. Specifically, the following sequences are exemplified.
C16: CALSVDRYRAVASW-NH 2 (SEQ ID NO: 16)
C17: CALSVDRYRAVASW-NH 2 (SEQ ID NO: 17) However, the cysteines at positions 1 and 15 form a disulfide bond.
C18: VALSVDRYRAVASW-NH 2 (SEQ ID NO: 18)
 上記C1~6並びにC11~18のペプチドはいずれも、エンドセリン-1によるマウス3T3細胞内カルシウムイオン濃度増加およびエンドセリン-1によるラット大動脈平滑筋血管収縮のいずれかの試験においてエンドセリン-1の作用を抑制することが確認されたものである(特許第3923515号)。 The above peptides C1-6 and C11-18 all inhibit endothelin-1 action in endothelin-1 in either mouse 3T3 intracellular calcium ion concentration increase or rat aortic smooth muscle vasoconstriction in endothelin-1 (Japanese Patent No. 3923515).
 即ちこれらのペプチドの骨格となる配列:
ALSVD(X)Y(X)AVASW(配列番号10)
(式中、Xはいずれかのアミノ酸を示す)
を含有するペプチドはエンドセリンの活性を抑制する効果を示し、本願において好適に用いられる。
That is, the sequence that forms the backbone of these peptides:
ALSVD (X) Y (X) AVASW (SEQ ID NO: 10)
(Wherein X represents any amino acid)
Peptides containing lysine have the effect of suppressing the activity of endothelin and are preferably used in the present application.
 本発明においては、特にC11(配列番号11)のペプチドが好適に用いられる。 In the present invention, a peptide of C11 (SEQ ID NO: 11) is particularly preferably used.
 本発明の医薬組成物の投与方法並びに投与経路は特に限定されないが、経腸または経口形態で、たとえば錠剤、糖衣錠、ゼラチンカプセル、乳剤、液剤または懸濁剤として、噴霧剤などの経鼻形態で、あるいは坐剤などの経直腸形態で、投与できる。本発明の医薬組成物はまた、注射剤として、静脈投与または筋肉内投与してもよい。 The administration method and administration route of the pharmaceutical composition of the present invention are not particularly limited, but enteral or oral forms, for example, as nasal forms such as sprays, sugar-coated tablets, gelatin capsules, emulsions, solutions or suspensions. Alternatively, it can be administered in a rectal form such as a suppository. The pharmaceutical composition of the present invention may also be administered intravenously or intramuscularly as an injection.
 本発明の医薬組成物は、エンドセリン活性抑制剤に加えて、塩、希釈剤、担体、バッファー、結合剤、界面活性剤、保存剤のような生理的に許容される他の成分を含有していてもよい。非経口的投与製剤は、滅菌水溶液又は生理学的に許容される溶媒との懸濁液アンプル、または生理学的に許容される希釈液で用時希釈して使用しうる滅菌粉末、例えばエンドセリン活性抑制剤がペプチドである場合には通常ペプチド溶液を凍結乾燥して得られる粉末、を含有するアンプルとして提供される。 In addition to the endothelin activity inhibitor, the pharmaceutical composition of the present invention contains other physiologically acceptable components such as salts, diluents, carriers, buffers, binders, surfactants, and preservatives. May be. Preparations for parenteral administration include sterile aqueous solutions or suspension ampoules with physiologically acceptable solvents, or sterile powders that can be used diluted with physiologically acceptable diluents, such as endothelin activity inhibitors. When is a peptide, it is usually provided as an ampoule containing a powder obtained by lyophilizing a peptide solution.
 本発明の医薬組成物の投与量としては限定的でなく、患者の年齢、体重、性別、症状、所望の効果等により適宜決定すればよい。 The dose of the pharmaceutical composition of the present invention is not limited, and may be appropriately determined depending on the patient's age, weight, sex, symptom, desired effect, and the like.
 本発明の医薬組成物は、SIRSの処置に好適に用いられる。 The pharmaceutical composition of the present invention is suitably used for SIRS treatment.
 本明細書および請求の範囲において「SIRS(Systemic Inflammatory Response Syndrome」とは、過剰な炎症反応が全身性に起こり、炎症により種々の臓器障害を誘起する致命的な病態を意味する。「SIRS」は、米国において下記診断基準を満たす症状を示すものと定義づけられており、本明細書においてもかかる定義に従うものとする: In the present specification and claims, “SIRS (Systemic Inflammatory Response“ Syndrome ”) means a fatal pathological condition in which an excessive inflammatory reaction occurs systemically and induces various organ disorders due to inflammation. , In the United States is defined as exhibiting symptoms that meet the following diagnostic criteria, and this specification shall also be followed:
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 SIRSと診断された病態のなかで感染症が原因となっているものがゼプシスあるいは敗血症であると診断される。感染症が原因であるか否かは病原微生物による感染巣の確認やCRPの異常上昇(10以上)により判定される。 Among the pathological conditions diagnosed with SIRS, those caused by infectious diseases are diagnosed as zepsis or sepsis. Whether or not the cause is an infection is determined by confirmation of an infection focus by a pathogenic microorganism or an abnormal increase in CRP (10 or more).
 本願明細書並びに請求の範囲において、「SIRSの処置」とは、SIRSの誘因となる菌血症、真菌血症、寄生虫血症、ウイルス血症、外傷、熱傷、膵炎、手術などの種々の侵襲を受けた患者においてSIRSの発症を予防すること、SIRS発症の程度を減弱化あるいはSIRSの発症による死亡を阻止することを含む。また、さらにSIRSの処置には既に上記診断基準によるSIRSが発症した患者において死亡を防止することを含む。 In the present specification and claims, “treatment of SIRS” means various bacteremia, fungiemia, parasitemia, viremia, trauma, burns, pancreatitis, surgery, etc. that cause SIRS. This includes preventing the onset of SIRS in an invaded patient, reducing the degree of SIRS onset or preventing death due to the onset of SIRS. Furthermore, SIRS treatment includes preventing death in patients who have already developed SIRS according to the above diagnostic criteria.
 従って、本発明の医薬組成物は、SIRSを発症している患者のみならず、SIRSを発症することが予測される状況にある患者、具体的には、菌血症、真菌血症、寄生虫血症、ウイルス血症、外傷、熱傷、膵炎、手術などの種々の侵襲を受けている患者におけるSIRSの処置に好適に用いられる。また、強毒性インフルエンザウイルス感染症による死亡はSIRSを発症することによるものであることが知られている。従って、本発明の医薬組成物は、症状の発現の有無、その強弱を問わず強毒性インフルエンザウイルスに感染した患者の処置に好適に用いられる。 Therefore, the pharmaceutical composition of the present invention can be used not only for patients who develop SIRS, but also for patients who are predicted to develop SIRS, specifically bacteremia, fungiemia, parasites. It is suitably used for the treatment of SIRS in patients undergoing various invasions such as septicemia, viremia, trauma, burns, pancreatitis, and surgery. In addition, it is known that death due to highly toxic influenza virus infection is caused by developing SIRS. Therefore, the pharmaceutical composition of the present invention is suitably used for the treatment of patients infected with highly toxic influenza viruses regardless of the presence or absence of symptoms or their strength.
 本発明はまた、強毒性インフルエンザウイルス感染症患者の処置に好適に用いられる。ここで「強毒性インフルエンザウイルス感染症」とは、インフルエンザ感染によりSIRSを発症して死亡する可能性が高いことが知られているインフルエンザウイルスによる感染症を意味する。かかるインフルエンザウイルスとして、現在知られているものではH5N1トリインフルエンザウイルスがあるが、該ウイルス、あるいはその他のウイルスが突然変異により強毒性となったものいずれも含むものとする。 The present invention is also suitably used for the treatment of patients with highly toxic influenza virus infection. Here, “strongly toxic influenza virus infection” means an infection caused by influenza virus, which is known to have a high possibility of developing SIRS and dying due to influenza infection. Such influenza viruses include H5N1 avian influenza virus that is currently known, and includes those viruses or other viruses that are highly toxic due to mutation.
 本発明の医薬組成物は、症状の発現の前後を問わず、強毒性インフルエンザウイルスに感染している患者、あるいは該感染の疑われる患者の処置に有用である。「強毒性インフルエンザウイルス感染症の処置」とは、強毒性インフルエンザウイルスに起因する症状の発症の抑制、発症する症状の軽減化並びに既に発症した場合の症状の治療のいずれをも含むものとする。さらに、本発明においては、強毒性インフルエンザウイルスに起因する重篤な肺炎やSIRS症状が既に発症した患者を死から救うためにも好適に用いられる。 The pharmaceutical composition of the present invention is useful for the treatment of a patient who is infected with a highly virulent influenza virus or a patient who is suspected of having the infection regardless of the onset of symptoms. “Treatment of highly virulent influenza virus infection” includes any of suppression of symptoms caused by virulent influenza viruses, reduction of symptoms that develop, and treatment of symptoms that have already occurred. Furthermore, in this invention, it uses suitably also in order to rescue the patient from whom serious pneumonia resulting from a virulent influenza virus and SIRS symptom already developed from death.
 本発明の医薬組成物は強毒性インフルエンザウイルス、例えばH5N1トリインフルエンザウイルス感染症に感染した鳥類の治療並びに感染拡大防止のために有効に用いることができる。例えば、鶏舎内でインフルエンザウイルスに感染した鶏が発生した場合に、該感染鶏へ本発明の医薬組成物を投与することによって治癒させて感染拡大を防ぐことができる。また、感染鶏が生じた同一鶏舎や近隣の鶏舎に飼われている鶏に予め本発明の医薬組成物を投与することにより、インフルエンザウイルス感染拡大を防ぐことができる。 The pharmaceutical composition of the present invention can be effectively used for treatment of birds infected with highly toxic influenza viruses such as H5N1 avian influenza virus infection and prevention of spread of infection. For example, when a chicken infected with influenza virus occurs in a poultry house, it can be cured by administering the pharmaceutical composition of the present invention to the infected chicken to prevent the spread of infection. In addition, the spread of influenza virus infection can be prevented by administering the pharmaceutical composition of the present invention in advance to chickens kept in the same chicken house where infected chickens are produced or in neighboring chicken houses.
 本発明を実施例によりさらに詳細に説明する。
使用ペプチド:
エンドセリン活性抑制剤ETR-P1/f1
VLNLCALSVDRYRAVASWSRVI-NH2(配列番号11)
AcePepA(参考):
ASGAPAPGPAGPLRPMF(配列番号3)N末端アセチル化
アナフィラトキシンC5a不活化ペプチド。ヒトC5aのアミノ酸37-53位をターゲットとして得られたアンチセンスペプチドであり、ゼプシスショックを抑制する作用を有する(特開2004-269520およびMol. Immunol. 45:4113(2008))。
The invention is explained in more detail by means of examples.
Peptides used:
Endothelin activity inhibitor ETR-P1 / f1
VLNLCALSVDRYRAVASWSRVI-NH 2 (SEQ ID NO: 11)
AcePepA (reference):
ASGAPAPGPAGPPLRPMF (SEQ ID NO: 3) N-terminal acetylated anaphylatoxin C5a inactivating peptide. It is an antisense peptide obtained by targeting amino acid positions 37-53 of human C5a, and has an action of suppressing zepsis shock (Japanese Patent Application Laid-Open No. 2004-269520 and Mol. Immunol. 45: 4113 (2008)).
新生仔ブタ腹膜炎モデルにおけるETR-P1/f1の作用(1)
 実際のゼプシス感染病態に近い、新生仔ブタ腹膜炎モデルにおいて本発明の医薬組成物の効果を確認した。
 新生仔ブタを吸入麻酔下で開腹し、回盲部を桔札して18ゲージの注射針で孔を開け糞便が漏れ出るようにしたあと腸管を腹腔内に戻し、腹壁を縫合した。この処置はCLP (Cecal Ligation and Puncture) と呼ばれる腹膜炎モデルであり、CLPを施された新生仔ブタは全身性炎症反応症候群(SIRS:Systemic Inflammatory Response Syndrome)を起こして死亡する。
 このCLP処置30分後から0.05mg/kg/hrの量のETR-P1/flを静脈内に連続投与した。シャム手術群、CLP手術群およびCLP手術後ETR-P1/f1投与群それぞれの生存期間を調べた。なお、全動物は24時間後に安楽死させた。試験は無処置群8頭、CLP手術群10頭、CLP手術後ETR-P1/f1投与群7頭にて行った。結果を図1に示す。
 CLP手術のみ実施した群では18時間までに全例が死亡し、平均生存期間はCLP処置後約10時間(10.24±1hr)であった。一方ETR-P1/f1投与群では生存期間は術後24時間目でも7頭中2頭が生存しており、平均生存期間は約18時間(18±2.05hr)まで延長された。したがって、本発明の医薬組成物はSIRSを抑制することがわかる。
Action of ETR-P1 / f1 in neonatal porcine peritonitis model (1)
The effect of the pharmaceutical composition of the present invention was confirmed in a neonatal porcine peritonitis model that is close to the actual pathological condition of Zepsis infection.
The newborn pig was laparotomized under inhalation anesthesia, the ileocecal region was tagged, a hole was opened with an 18-gauge injection needle so that feces leaked out, the intestine was returned to the abdominal cavity, and the abdominal wall was sutured. This treatment is a peritonitis model called CLP (Cecal Ligation and Puncture), and a newborn pig subjected to CLP develops a systemic inflammatory response syndrome (SIRS) and dies.
From 30 minutes after this CLP treatment, 0.05 mg / kg / hr of ETR-P1 / fl was continuously administered intravenously. The survival period of each of the sham surgery group, the CLP surgery group, and the ETR-P1 / f1 administration group after the CLP surgery was examined. All animals were euthanized after 24 hours. The test was conducted in 8 untreated groups, 10 CLP surgery groups, and 7 ETR-P1 / f1 administration groups after CLP surgery. The results are shown in FIG.
In the group in which only CLP surgery was performed, all cases died by 18 hours, and the average survival time was about 10 hours (10.24 ± 1 hr) after CLP treatment. On the other hand, in the ETR-P1 / f1 administration group, 2 out of 7 animals survived even 24 hours after the operation, and the average survival time was extended to about 18 hours (18 ± 2.05 hr). Therefore, it turns out that the pharmaceutical composition of this invention suppresses SIRS.
新生仔ブタ腹膜炎モデルにおけるETR-P1/f1の作用(2)
 実施例1と同様の新生仔ブタ腹膜炎モデルにおいて本発明の医薬組成物の作用の詳細を観察した。
Action of ETR-P1 / f1 in neonatal porcine peritonitis model (2)
The details of the action of the pharmaceutical composition of the present invention were observed in a neonatal porcine peritonitis model similar to that in Example 1.
使用動物
 米国国立衛生研究所(NIH)の実験動物取り扱い指針に従い試験を行った。試験プロトコルは名古屋市立大学大学院医学研究科の倫理委員会の承認を得た。18匹の生後3日目の雑種新生仔ブタを近隣農家より入手した。新生仔ブタは6匹ずつ3群に分けた:
1)CLP(Cecal Ligation and Puncture)群
2)ETR-P1/fl群:CLP処置30分後からETR-P1/flを静脈内に連続投与。
3)シャム群:CLP処置と同様に開腹し、一旦回盲部を引き出した後腹腔内に戻し腹壁を縫合した。
Animals used Tests were conducted in accordance with the National Animal Health Laboratory (NIH) laboratory animal handling guidelines. The test protocol was approved by the Ethics Committee of Nagoya City University Graduate School of Medicine. Eighteen newborn hybrid piglets on the third day of life were obtained from neighboring farmers. Newborn piglets were divided into 3 groups of 6 each:
1) CLP (Cecal Ligation and Puncture) group 2) ETR-P1 / fl group: ETR-P1 / fl was continuously administered intravenously 30 minutes after CLP treatment.
3) Sham group: The abdomen was opened in the same manner as the CLP treatment, the ileocecal region was once pulled out, and then returned to the abdominal cavity, and the abdominal wall was sutured.
 新生仔ブタは母ブタと共に飼育し、処置時にのみ隔離した。新生仔ブタの体重は1450~2200gの間、中央値は1715gであった。 Newborn pigs were raised with mother pigs and isolated only during treatment. Newborn pigs weighed between 1450 and 2200 g with a median of 1715 g.
 仔ブタへ10mg/kg塩化ケタミンを筋肉内投与した。その後5%グルコース水溶液中のペントバルビタールナトリウムを末梢血管より5mg/kg/hの速度で処置期間中投与して麻酔を維持した。各仔ブタは気管内へ内径4mmの管を挿管して乳児用人工呼吸器(IV-100,Sechrist Industries, Anaheim, CA, USA)にて人工呼吸を行った。開始時の吸気・呼気圧を14/4cmHOとし、吸気時間を0.5秒とした。人工呼吸には室内の空気を用いた。その後呼吸圧をPaCOが30-50mmHgを維持するよう調節した。カットダウン法により4Fポリビニルカテーテルを左側大腿動脈へ挿入して血液サンプルの取得、平均動脈圧(MAP)および心拍数(HR)の測定に用いた。4-Frベルマン血管造影用カテーテル(American Edwards Laboratories, Irvine, CA, USA)を蛍光透視した右側外顎静脈より挿入し、肺主動脈へ設置してmPAPの測定に用いた。さらに4Fポリビニルカテーテルを左外顎静脈より挿入して上大静脈へ到達させ、中心大静脈圧の測定に用いた。平均動脈圧(MAP)、平均肺動脈圧(mPAP)および心拍数(HR)は新生児用モニター(model 78801 B, Hewlett Packard, Andover, MA, USA)にて測定し、データをMacLab/8s system (ADI Instruments, Mountain View, CA, USA)にて集めた。体温は直腸温をモニターし、温熱パッドおよびポリビニルカバーを用いて維持した。 The piglet was administered intramuscularly with 10 mg / kg ketamine chloride. Thereafter, sodium pentobarbital in a 5% glucose aqueous solution was administered from the peripheral blood vessel at a rate of 5 mg / kg / h during the treatment period to maintain anesthesia. Each piglet was intubated with a 4 mm inner diameter tube and ventilated with an infant ventilator (IV-100, Sechrist Industries, Anaheim, CA, USA). The inspiratory / expiratory pressure at the start was 14/4 cmH 2 O, and the inspiratory time was 0.5 seconds. Indoor air was used for artificial respiration. The respiratory pressure was then adjusted to maintain PaCO 2 at 30-50 mmHg. A 4F polyvinyl catheter was inserted into the left femoral artery by the cut-down method and used for blood sample acquisition, mean arterial pressure (MAP) and heart rate (HR) measurement. A 4-Fr Bellman angiographic catheter (American Edwards Laboratories, Irvine, Calif., USA) was inserted through the fluoroscopic right lateral vein, placed in the main pulmonary artery, and used for mPAP measurement. Further, a 4F polyvinyl catheter was inserted from the left external jaw vein to reach the superior vena cava, and used for measuring the central vena cava pressure. Mean arterial pressure (MAP), mean pulmonary arterial pressure (mPAP) and heart rate (HR) were measured on a newborn monitor (model 78801 B, Hewlett Packard, Andover, MA, USA), and the data was measured using the MacLab / 8s system (ADI Instruments, Mountain View, CA, USA). Body temperature was monitored by rectal temperature and maintained using a thermal pad and polyvinyl cover.
CLP処置(CLP群)
 CLP処置は下記のとおり行った。新生仔ブタの腹部へ盲腸および回腸末端(約4cm)を暴露可能なように切開部を作成した。回盲部動脈を確認し、盲腸近傍で結紮して盲腸の遠端への血流を止めた。約1cmの切れ目を抗腸間膜側へ作成した。盲腸から糞便を腹腔内へ穏やかに絞り出した後、腹部切開部を綴じた。
CLP treatment (CLP group)
CLP treatment was performed as follows. An incision was made so that the cecum and terminal ileum (approximately 4 cm) could be exposed to the abdomen of the newborn pig. The ileocecal artery was confirmed and ligated near the cecum to stop blood flow to the distal end of the cecum. A cut of about 1 cm was made on the antimesenteric side. After gently squeezing feces from the cecum into the abdominal cavity, the abdominal incision was bound.
シャム処置(シャム群)
 シャム群においては、新生仔ブタの腹部切開後、盲腸および回腸末端を2分間外部へ暴露した後に腹腔内へ戻し、腹部切開部を閉じた。
Siamese treatment (siamese group)
In the sham group, after the abdominal incision of the newborn piglet, the cecum and the terminal ileum were exposed to the outside for 2 minutes and then returned to the abdominal cavity, and the abdominal incision was closed.
CLP処置+ETR-P1/fl投与(ETR-P1/fl群)
 ETR-P1/fl投与はCLP処置の30分後に開始した。ETR-P1/flの5%グルコース中溶液をETR-P1/fl投与量が0.05mg/kg/hとなるよう、中心静脈内へ投与した。静脈投与の溶液量は5mL/kg/hとなるよう調節した。
CLP treatment + ETR-P1 / fl administration (ETR-P1 / fl group)
ETR-P1 / fl administration started 30 minutes after CLP treatment. A solution of ETR-P1 / fl in 5% glucose was administered into the central vein so that the dose of ETR-P1 / fl was 0.05 mg / kg / h. The solution volume for intravenous administration was adjusted to 5 mL / kg / h.
 各動物は死亡するまで、または24時間観察した。24時間生存した動物はナトリウムフェノバルビタール致死量を投与して殺した。 Each animal was observed for 24 hours until death. Animals that survived 24 hours were killed by administering a lethal dose of sodium phenobarbital.
 試験プロトコル
 各群において、血液サンプルを無菌下で大腿動脈カテーテルより採取して、動脈血液ガス(arterial blood gases)、血清TNF-α、NO代謝物、HMGB-1を測定した。血液サンプルはCLPまたはシャム処置前、および処置1、3、6および9時間後に採取した。サンプリングはETR-P1/fl群およびシャム群では12時間後にも行った。全てのサンプルは滅菌チューブに保存した。
Test Protocol In each group, blood samples were collected from the femoral artery catheter under aseptic conditions to measure arterial blood gases, serum TNF-α, NO metabolites, and HMGB-1. Blood samples were taken before CLP or sham treatment and 1, 3, 6, and 9 hours after treatment. Sampling was also performed after 12 hours in the ETR-P1 / fl group and the Sham group. All samples were stored in sterile tubes.
 測定
 動脈血液ガスは標準分析器(モデル1248; CIBA Corning, Medfield, MA, USA)を用いて測定した。血清TNF-αはブタTNF-α用イムノアッセイキット(R&D Systems, Minneapolis, MN, USA)を用いて測定した。NO代謝物は血中NO2 - + NO3 - (NOx)濃度を測定して評価した。NOx濃度は全窒素並びに窒素ELISAキット(R&D Systems)を用いて測定した。HMGB-1はHMGB-1用ELISAキット(Shino-Test Corporation, Sagamihara, Japan)を用いて測定した。
Measurement Arterial blood gas was measured using a standard analyzer (Model 1248; CIBA Corning, Medfield, MA, USA). Serum TNF-α was measured using an immunoassay kit for porcine TNF-α (R & D Systems, Minneapolis, MN, USA). NO metabolites were evaluated by measuring the blood NO 2 + NO 3 (NOx) concentration. The NOx concentration was measured using total nitrogen and a nitrogen ELISA kit (R & D Systems). HMGB-1 was measured using an ELISA kit for HMGB-1 (Shino-Test Corporation, Sagamihara, Japan).
 拍出量の測定
 M-モード心エコー試験を5.0MHzのトランスデューサーを有するSONOS500(ヒューレットパッカード社)を用いて、CLPまたはシャム処置前、および処置後1、3、6および9時間後に行った。ETR-P1/fl群およびシャム群についてはCLP/シャム処置12時間後にも測定を行った。心尖部長軸像より左心室の二次元Mモード測定を行い、拍出量を計算した。測定は各測定時にそれぞれ3回行い、各測定時の平均値を算出した。第1及び第2生存ターゲットをそれぞれCLP群の生存時間および2×SEM、CLP群の生存時間および2×SDとして算出した。第3の生存ターゲットはCLP手術後24時間の試験終了時とした。
Measurement of stroke volume M-mode echocardiography was performed using a SONOS500 (Hewlett Packard) with a 5.0 MHz transducer before CLP or sham treatment and 1, 3, 6 and 9 hours after treatment. . The ETR-P1 / fl group and the sham group were also measured 12 hours after CLP / sham treatment. Two-dimensional M-mode measurement of the left ventricle was performed from the apex long-axis image, and the stroke volume was calculated. The measurement was performed three times at each measurement, and the average value at each measurement was calculated. The first and second survival targets were calculated as CLP group survival time and 2 × SEM, CLP group survival time and 2 × SD, respectively. The third survival target was at the end of the study 24 hours after CLP surgery.
統計分析
 データの分布はShapiro-Wilk testにて分析した。CLP手術後9時間迄は、各群の測定値の平均をそれぞれの測定時間においてANOVA検定に基づいて比較し、その後Bonferroni post hoc testを行った。データが正規分布ではない場合にはKrusal-Wallis testを用い有意差が見出された場合にはMann-Whitney testを用いて分析した。9時間以降は非対象Student’s t-testを用いた。データが正規分布でない場合にはMann-Whitney test を用いてETR-P1/fl群のデータとシャム群のデータを比較した。3つの群間の生存期間の相違は Kaplan-Meier testを用いて計算し、Kruskal-Wallis test 次いでMann-Whitney testを用いて比較した。データは平均±SEMで示した。差が危険率0.05未満の場合に有意差であると認定した。全てのデータ分析は市販の統計分析ソフトウエアパッケージSPSS(Statistical Package for Social Sciences, Chicago, Illinois, USA)を用いて行った。
Statistical analysis Data distribution was analyzed with the Shapiro-Wilk test. Up to 9 hours after the CLP operation, the average of the measurement values of each group was compared based on the ANOVA test at each measurement time, and then the Bonferroni post hoc test was performed. When data was not normally distributed, Krusal-Wallis test was used, and when a significant difference was found, analysis was performed using Mann-Whitney test. After 9 hours, non-target Student's t-test was used. When the data were not normally distributed, the data of the ETR-P1 / fl group was compared with the data of the Siam group using the Mann-Whitney test. Differences in survival between the three groups were calculated using the Kaplan-Meier test and compared using the Kruskal-Wallis test followed by the Mann-Whitney test. Data are shown as mean ± SEM. A difference was found to be significant when the risk factor was less than 0.05. All data analysis was performed using the commercially available statistical analysis software package SPSS (Statistical Package for Social Sciences, Chicago, Illinois, USA).
結果
 各測定結果を表2、表3、および図2~4に示す。
Figure JPOXMLDOC01-appb-T000002
Results The measurement results are shown in Table 2, Table 3, and FIGS.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
動物の状態並びに生存期間
 CLP群、シャム群、およびETR-P1/fl群の体重に有意差は無く、それぞれ1646±88g、1718±50gおよび1850±106gであった。
Animal status and survival time There was no significant difference in body weight between the CLP group, the Siam group, and the ETR-P1 / fl group, which were 1646 ± 88 g, 1718 ± 50 g, and 1850 ± 106 g, respectively.
 ETR-P1/fl群の生存期間はCLP群より有意に長かった(18.9±2.3h対9.0±0.8h、P=0.005)。95%信頼区間として、ETR-P1/fl群では14.4時間から23.4時間の間、CLP群では7.5時間から10.5時間の間であった。ETR-P1/fl群では83.3%(n=5)、50%(n=3)および33.3%(n=2)の動物がそれぞれ、第1、第2および第3生存ターゲットに到達した。対してCLP群では1匹も第1生存ターゲットに到達できなかった(図2)。シャム群の動物は全て24時間生存した。 The survival period of the ETR-P1 / fl group was significantly longer than that of the CLP group (18.9 ± 2.3 h vs. 9.0 ± 0.8 h, P = 0.005). The 95% confidence interval was between 14.4 and 23.4 hours for the ETR-P1 / fl group and between 7.5 and 10.5 hours for the CLP group. In the ETR-P1 / fl group, 83.3% (n = 5), 50% (n = 3) and 33.3% (n = 2) animals were the first, second and third survival targets, respectively. Reached. In contrast, none of the CLP groups could reach the first survival target (FIG. 2). All animals in the sham group survived for 24 hours.
血液pHおよび過剰塩基への作用
 シャム群では血液pH値の変化は無かったが、CLP群では6から9時間の間に血液pHは顕著に下がった(表2)。ETR-P1/fl群においては、血液pHのレベルはシャム群のレベルに相当するものであった。6時間と9時間において、ETR-P1/fl群の血液pHレベルはCLP群と比し有意に高かった(それぞれ7.35±0.03対7.25±0.02、p=0.02(6時間);7.33±0.04対7.18±0.03、p=0.01(9時間))(表2)。
Effect on blood pH and excess base There was no change in blood pH value in the sham group, but blood pH decreased significantly between 6 and 9 hours in the CLP group (Table 2). In the ETR-P1 / fl group, the blood pH level corresponded to that in the sham group. At 6 hours and 9 hours, the blood pH level of the ETR-P1 / fl group was significantly higher than that of the CLP group (7.35 ± 0.03 vs 7.25 ± 0.02, respectively, p = 0.02). (6 hours); 7.33 ± 0.04 vs 7.18 ± 0.03, p = 0.01 (9 hours)) (Table 2).
 CLP群およびETR-P1/fl群における動脈過剰塩基(BE)値は低下した。ETR-P1/fl群のBEレベルはCLP群より高く維持されていたが、その差は有意ではなかった(表2)。 Arterial excess base (BE) values in the CLP group and the ETR-P1 / fl group decreased. The BE level in the ETR-P1 / fl group was maintained higher than that in the CLP group, but the difference was not significant (Table 2).
血圧への作用
 CLP/シャム処置3時間後まで3つの群の間で相対平均動脈圧(MAP)に差はなかった(図3―A)。CLP群では相対MAP値が徐々に下がり6時間後には60%、9時間では75%下がった。CLP群の動物の相対MAP値はCLP処置前より有意に低かった(0.37±0.03[6h]および0.24±0.01[9h]いずれもp<0.01)が、シャム群の相対MAPは試験期間中ほとんど変化がなかった。ETR-P1/fl群の動物における相対MAP値においては有意ではないがゆっくりとした減少が認められ、6時間並びに9時間においてはCLP群より有意に高かった(0.75±0.10対0.37±0.03[6h]、0.76±0.11対0.24±0.01[9h];いずれもp<0.01)(図3A)。試験期間中、ETR-P1/fl群とシャム群の間で相対MAP値の差は無かった。
Effects on blood pressure There was no difference in relative mean arterial pressure (MAP) between the three groups until 3 hours after CLP / sham treatment (FIG. 3-A). In the CLP group, the relative MAP value gradually decreased, 60% after 6 hours, and 75% after 9 hours. Relative MAP values for animals in the CLP group were significantly lower than before CLP treatment (both 0.37 ± 0.03 [6h] and 0.24 ± 0.01 [9h] p <0.01), but sham The relative MAP of the group remained almost unchanged during the study period. There was a non-significant but slow decrease in the relative MAP values in animals in the ETR-P1 / fl group, which was significantly higher than the CLP group at 6 and 9 hours (0.75 ± 0.10 vs. 0). 37 ± 0.03 [6h], 0.76 ± 0.11 vs. 0.24 ± 0.01 [9h]; both p <0.01) (FIG. 3A). There was no difference in relative MAP values between the ETR-P1 / fl group and the Siam group during the study period.
 6時間後の相対平均肺動脈圧(mPAP)値はCLP群ではシャム群より高かった:1.30±0.09(CLP群)対0.90±0.08(シャム群)、p<0.05(図3B)。9時間後においてもCLP群の相対mPAP値はシャム群より高かったが、その差は有意なものではなくなった。ETR-P1/fl群の相対mPAP値はシャム群に近いものであったが、CLP群との有意差はなかった。 Relative mean pulmonary artery pressure (mPAP) values after 6 hours were higher in the CLP group than in the Sham group: 1.30 ± 0.09 (CLP group) vs. 0.90 ± 0.08 (Sham group), p <0. 05 (FIG. 3B). Even after 9 hours, the relative mPAP value of the CLP group was higher than that of the Sham group, but the difference was not significant. The relative mPAP value of the ETR-P1 / fl group was close to that of the Sham group, but there was no significant difference from the CLP group.
 相対mPAP/MAP値はCLP群で徐々に上昇し、9時間においてはシャム群並びにETR-P1/fl群に比して有意に高かった:0.73±0.08(CLP群)対0.46±0.07(シャム群)および0.50±0.058(ETR-P1/fl群)、両者p<0.05(図3C)。ETR-P1/fl群の相対mPAP/MAP値はシャム群と近いものであった。 Relative mPAP / MAP values gradually increased in the CLP group and were significantly higher at 9 hours compared to the Sham group and the ETR-P1 / fl group: 0.73 ± 0.08 (CLP group) vs. 0. 46 ± 0.07 (sham group) and 0.50 ± 0.058 (ETR-P1 / fl group), both p <0.05 (FIG. 3C). The relative mPAP / MAP value of the ETR-P1 / fl group was close to that of the Sham group.
心拍数、拍出量並びに体温への作用
 CLP群において、心拍数(HR)はCLP処置後3時間において増加した:184.8±13.0拍/分[CLP前]、237.8±15.5拍/分[1h]、272.2±14.0拍/分[3h]、それぞれp<0.05およびp<0.01。そして、CLP処置後1時間並びに3時間のCLP群のHRはシャム群並びにETR-P1/fl群より高かった:[1h=237.8±15.5拍/分(CLP)185.5±11.1拍/分(シャム群)176.9±15.8拍/分(ETR-P1/fl群)]、[3h=272.2±14.0拍/分(CLP)210.3±15.6拍/分(シャム群)、210.2±22.2拍/分(ETR-P1/fl群)](全件p<0.05)(図3D)。試験期間を通じてETR-P1/fl群のHRはシャム群と近い値を維持していた。
Effects on heart rate, stroke volume and body temperature In the CLP group, heart rate (HR) increased at 3 hours after CLP treatment: 184.8 ± 13.0 beats / minute [before CLP], 237.8 ± 15 .5 beats / minute [1h], 272.2 ± 14.0 beats / minute [3h], p <0.05 and p <0.01, respectively. And the HR of the CLP group at 1 hour and 3 hours after CLP treatment was higher than that of the Sham group and the ETR-P1 / fl group: [1h = 237.8 ± 15.5 beats / minute (CLP) 185.5 ± 11 .1 beat / minute (sham group) 176.9 ± 15.8 beat / minute (ETR-P1 / fl group)], [3h = 272.2 ± 14.0 beat / minute (CLP) 210.3 ± 15 .6 beats / minute (sham group), 210.2 ± 22.2 beats / minute (ETR-P1 / fl group)] (all cases p <0.05) (FIG. 3D). Throughout the test period, the HR of the ETR-P1 / fl group maintained a value close to that of the Sham group.
 CLP群において、相対拍出量(CO)は3、6及び9時間においてかなりの低下を示し、またシャム群より有意に低かった(表2)。ETR-P1/fl群の相対拍出量は徐々に低下したが、ETR-P1/fl群とシャム群の間の差は有意とはならなかった。 In the CLP group, the relative cardiac output (CO) showed a significant decrease at 3, 6 and 9 hours, and was significantly lower than the sham group (Table 2). Although the relative stroke volume of the ETR-P1 / fl group gradually decreased, the difference between the ETR-P1 / fl group and the sham group was not significant.
 試験期間全体において3群間で体温については差は無かった(表3)。 There was no difference in body temperature between the three groups during the entire test period (Table 3).
炎症性メディエーター
 CLP群の血清TNF-αレベルは急速に上昇し(1h)、1、3、6および9時間の何れの時点においてもシャム群より高かった:1h=253.2±44.2pg/mL(CLP群)9.2±3.0pg/mL(シャム群)、3h=187.7±26.6pg/mL(CLP群)7.0±1.8pg/mL(シャム群)、6h=138.7±25.4pg/mL(CLP群)、13.6±2.6pg/mL(シャム群)、9h=126.0±31.9pg/mL(CLP群)31.7±8.2pg/mL(シャム群)(全件p<0.01)。ETR-P1/fl群においてはこれに対し、血清TNF-αレベルはシャム群と同程度の値を保ち、1,3および6時間の時点でCLP群より低かった:h=±0.0pg/mL,3h=2±16.1pg/mL,6h=35.5±19.5pg/mL(全件p<0.01)(図4A)。
Serum TNF-α levels in the inflammatory mediator CLP group rose rapidly (1 h) and were higher than those in the Sham group at any time point of 1, 3, 6, and 9 hours: 1 h = 253.2 ± 44.2 pg / mL (CLP group) 9.2 ± 3.0 pg / mL (sham group), 3h = 187.7 ± 26.6 pg / mL (CLP group) 7.0 ± 1.8 pg / mL (sham group), 6h = 138.7 ± 25.4 pg / mL (CLP group), 13.6 ± 2.6 pg / mL (sham group), 9h = 126.0 ± 31.9 pg / mL (CLP group) 31.7 ± 8.2 pg / ML (siamese group) (all cases p <0.01). In contrast, in the ETR-P1 / fl group, serum TNF-α levels remained comparable to those in the Sham group and were lower than those in the CLP group at 1, 3 and 6 hours: h = ± 0.0 pg / mL, 3h = 2 ± 16.1 pg / mL, 6h = 35.5 ± 19.5 pg / mL (all cases p <0.01) (FIG. 4A).
 HMGB-1はCLP群において3、6および9時間において検出可能な値を示し、ETR-P1/fl群およびシャム群より有意に高かった(図4B)。血清HMGB-1はシャム群では全く検出されなかったが、ETR-P1/fl群およびシャム群の間で血清HMGB-1レベルの有意差は無かった。 HMGB-1 showed detectable values at 3, 6 and 9 hours in the CLP group and was significantly higher than the ETR-P1 / fl group and the Siam group (FIG. 4B). Serum HMGB-1 was not detected at all in the Siam group, but there was no significant difference in serum HMGB-1 levels between the ETR-P1 / fl group and the Sham group.
 ETR-P1/fl群とシャム群の血清NOxレベルは試験期間を通して同程度であった。両群において、試験開始前と同程度のNOxレベルを保っていた。CLP群のNOxレベルは一方で、CLP手術後1時間より増加しはじめ、3,6および9時間ではETR-P1/fl群並びにシャム群より高かった(図4C)。 Serum NOx levels in the ETR-P1 / fl group and the Siam group were comparable throughout the study period. In both groups, the same level of NOx as before the start of the test was maintained. On the other hand, NOx levels in the CLP group began to increase from 1 hour after CLP surgery and were higher than those in the ETR-P1 / fl group and the Sham group at 3, 6 and 9 hours (FIG. 4C).
 12時間から24時間の間にはETR-P1/fl群とシャム群の間で相対MAP、相対mPAPおよびmPAP/MAPについての差は無かった(表3)。 There was no difference in relative MAP, relative mPAP and mPAP / MAP between the ETR-P1 / fl group and the Siam group between 12 hours and 24 hours (Table 3).
 実施例1および2の結果より本願発明の組成物がSIRSの処置に有用であることがわかる。また、本発明の組成物がゼプシスの早い時期に生じる炎症性メディエーターであるTNF-α、およびゼプシス後期に生じる炎症性メディエーターであるHMGB-1の両方の上昇を抑える。敗血症患者において、血漿中TNF-αの上昇は内毒素血症の重篤度と相関する。HMGB―1は核転写因子としてのみ知られていたタンパク質であるが、現在は遅延型エンドトキシン致死および全身性炎症と関連するメディエーターであると考えられている。HMGB-1レベルはTNF-αレベルと同様敗血症性ショックの重篤度と相関する。従って、HMGB-1のレベルの低下は敗血症の治療の有効性を測る指標となる From the results of Examples 1 and 2, it can be seen that the composition of the present invention is useful for treating SIRS. In addition, the composition of the present invention suppresses an increase in both TNF-α, which is an inflammatory mediator that occurs early in zepsis, and HMGB-1, which is an inflammatory mediator that occurs in the late stage of zepsis. In sepsis patients, elevated plasma TNF-α correlates with the severity of endotoxemia. HMGB-1 is a protein known only as a nuclear transcription factor, but is now thought to be a mediator associated with delayed endotoxin lethality and systemic inflammation. HMGB-1 levels correlate with the severity of septic shock as well as TNF-α levels. Therefore, a decrease in the level of HMGB-1 is an index for measuring the effectiveness of sepsis treatment.
 H5N1トリインフルエンザウイルス感染症に対するETR-P1/flの効果
 H5N1 トリインフルエンザウイルス感染症に対するETR-P1/fl並びにAcePepAの効果を調べた。AcePepAがサルや豚でSIRSに対する救命効果を発揮することについては、本願発明者らが先に報告している(特開2004-269520およびPCT/JP2009/061872 )。
 105.3 TCID50のH5N1インフルエンザウイルス(H5N1 IV)0.2mlを雄の10日齢のニワトリのヒナ(体重約80g)へ経鼻感染させた。
 AcePepA投与群では、ウイルス感染30分後、1日後及び2日後に該ペプチド(2mg/ml生理食塩水中)0.08mlを筋肉内投与した。
 ETR-P1/f1投与群(1)では、ウイルス感染30分後、該ペプチド(0.2mg/ml生理食塩中)0.08mlを筋肉内投与した。
 ETR-P1/f1投与群(2)では、ウイルス感染30分間後、1日後、及び2日後に該ペプチド(0.2mg/ml生理食塩中)0.08mlを筋肉内投与した。結果を表4に示す。
Effect of ETR-P1 / fl on H5N1 avian influenza virus infection The effects of ETR-P1 / fl and AcePepA on H5N1 avian influenza virus infection were examined. The inventors of the present application have previously reported that AcePepA exerts a lifesaving effect on SIRS in monkeys and pigs (JP 2004-269520 and PCT / JP2009 / 061872).
10 5.3 0.2 ml of TCID 50 H5N1 influenza virus (H5N1 IV) was intranasally infected into male 10-day-old chicks (body weight approximately 80 g).
In the AcePepA administration group, 0.08 ml of the peptide (2 mg / ml in physiological saline) was intramuscularly administered 30 minutes, 1 day, and 2 days after virus infection.
In the ETR-P1 / f1 administration group (1), 0.08 ml of the peptide (in 0.2 mg / ml physiological saline) was intramuscularly administered 30 minutes after virus infection.
In the ETR-P1 / f1 administration group (2), 0.08 ml of the peptide (in 0.2 mg / ml physiological saline) was intramuscularly administered 30 minutes, 1 day, and 2 days after virus infection. The results are shown in Table 4.
Figure JPOXMLDOC01-appb-T000004
* H5N1 influenza virus (H5N1 IV) preparation at 105.3 TCID50 was the culture supernatant of MDCK cells infected in GIT medium.
Figure JPOXMLDOC01-appb-T000004
* H5N1 influenza virus (H5N1 IV) preparation at 10 5.3 TCID 50 was the culture supernatant of MDCK cells infected in GIT medium.
 無処置群並びにAcePepA投与群では2日目までに全例が死亡した。これに対して、ETR-P1/f1投与群では初日のみに投与した場合も初日、1日、2日目に投与した場合も同様に全例が3日目まで生存していた。 In the untreated group and the AcePepA administration group, all cases died by the second day. On the other hand, in the ETR-P1 / f1 administration group, all cases survived until the third day in the same manner when administered only on the first day or when administered on the first day, the first day, and the second day.
 上記結果より、エンドセリン活性抑制剤であるETR-P1/f1が強毒性インフルエンザウイルスであるH5N1トリインフルエンザウイルス感染症に対して強力な治療効果を有することが示される。かかる治療効果は、高病原性鳥インフルエンザウイルスH5N1の感染拡大に対する防疫法としての用途も併せて示すものである。 The above results indicate that ETR-P1 / f1, which is an endothelin activity inhibitor, has a strong therapeutic effect against H5N1 avian influenza virus infection, which is a highly toxic influenza virus. Such a therapeutic effect also shows the use as a prevention method against the spread of highly pathogenic avian influenza virus H5N1 infection.

Claims (18)

  1. エンドセリン活性抑制剤を含む、SIRS処置用医薬組成物。 A pharmaceutical composition for treating SIRS, comprising an endothelin activity inhibitor.
  2. エンドセリン活性抑制剤が、エンドセリン-1の活性を抑制する、請求項1記載の組成物。 The composition according to claim 1, wherein the endothelin activity inhibitor inhibits the activity of endothelin-1.
  3. エンドセリン活性抑制剤が、
    ALSVD(X)Y(X)AVAS (配列番号10)
    (式中、Xはいずれかのアミノ酸を示す)
    のアミノ酸配列を有するペプチドである、請求項2記載の組成物。
    Endothelin activity inhibitor
    ALSVD (X) Y (X) AVAS (SEQ ID NO: 10)
    (Wherein X represents any amino acid)
    The composition according to claim 2, which is a peptide having the amino acid sequence of
  4. エンドセリン活性抑制剤が、配列番号4~9および11~18何れかに記載のペプチドである、請求項2記載の組成物。 The composition according to claim 2, wherein the endothelin activity inhibitor is the peptide according to any of SEQ ID NOs: 4 to 9 and 11 to 18.
  5. エンドセリン活性抑制剤が、配列番号11記載のペプチドである、請求項4記載の組成物。 The composition according to claim 4, wherein the endothelin activity inhibitor is a peptide represented by SEQ ID NO: 11.
  6. SIRSがゼプシスである、請求項1~5何れかに記載の組成物。 The composition according to any one of claims 1 to 5, wherein SIRS is zepsis.
  7. SIRSが強毒性インフルエンザウイルス感染に起因するものである、請求項1~5何れかに記載の組成物。 The composition according to any one of claims 1 to 5, wherein SIRS is caused by infection with a virulent influenza virus.
  8. 強毒性インフルエンザウイルスがH5N1トリインフルエンザウイルスである、請求項7記載の組成物。 8. The composition of claim 7, wherein the virulent influenza virus is H5N1 avian influenza virus.
  9. ヒトの処置に用いられる、請求項1~8何れかに記載の組成物。 The composition according to any one of claims 1 to 8, which is used for human treatment.
  10. 鳥類の処置に用いられる、請求項1~8何れかに記載の組成物。 The composition according to any one of claims 1 to 8, which is used for treatment of birds.
  11. エンドセリン活性抑制剤を含む、強毒性インフルエンザウイルス感染症処置用組成物。 A composition for treating highly toxic influenza virus infection, comprising an endothelin activity inhibitor.
  12. エンドセリン活性抑制剤が、エンドセリン-1の活性を抑制する、請求項11記載の組成物。 The composition according to claim 11, wherein the endothelin activity inhibitor inhibits endothelin-1 activity.
  13. エンドセリン活性抑制剤が、
    ALSVD(X)Y(X)AVAS (配列番号10)
    (式中、Xはいずれかのアミノ酸を示す)
    のアミノ酸配列を有するペプチドである、請求項11記載の組成物。
    Endothelin activity inhibitor
    ALSVD (X) Y (X) AVAS (SEQ ID NO: 10)
    (Wherein X represents any amino acid)
    The composition according to claim 11, which is a peptide having the amino acid sequence of
  14. エンドセリン活性抑制剤が、配列番号4~9および11~18何れかに記載のペプチドである、請求項11記載の組成物。 The composition according to claim 11, wherein the endothelin activity inhibitor is the peptide according to any one of SEQ ID NOs: 4 to 9 and 11 to 18.
  15. エンドセリン活性抑制剤が、配列番号11記載のペプチドである、請求項11記載の組成物。 The composition according to claim 11, wherein the endothelin activity inhibitor is a peptide represented by SEQ ID NO: 11.
  16. 強毒性インフルエンザウイルスがH5N1トリインフルエンザウイルスである、請求項11~15何れかに記載の組成物。 The composition according to any one of claims 11 to 15, wherein the virulent influenza virus is H5N1 avian influenza virus.
  17. 鳥類を処置するためのものである、請求項11~16何れかに記載の組成物。 The composition according to any one of claims 11 to 16, which is for treating birds.
  18. ヒトを処置するためのものである、請求項11~16何れかに記載の組成物。 The composition according to any one of claims 11 to 16, which is for treating a human.
PCT/JP2010/061541 2009-07-08 2010-07-07 Pharmaceutical composition for treatment of sirs or highly pathogenic influenza infection WO2011004843A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011521944A JP5686734B2 (en) 2009-07-08 2010-07-07 Pharmaceutical composition for treatment of SIRS or highly toxic influenza infection

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009161524 2009-07-08
JP2009-161524 2009-07-08

Publications (1)

Publication Number Publication Date
WO2011004843A1 true WO2011004843A1 (en) 2011-01-13

Family

ID=43429267

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/061541 WO2011004843A1 (en) 2009-07-08 2010-07-07 Pharmaceutical composition for treatment of sirs or highly pathogenic influenza infection

Country Status (2)

Country Link
JP (1) JP5686734B2 (en)
WO (1) WO2011004843A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011231107A (en) * 2010-04-06 2011-11-17 Kyoto Prefectural Public Univ Corp Therapeutic drug of highly pathogenic avian influenza virus h5n1 infection aiming at endothelin receptor
JPWO2016104436A1 (en) * 2014-12-22 2017-10-26 国立大学法人 岡山大学 Cytokine storm inhibitor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995009643A1 (en) * 1993-10-07 1995-04-13 Kurashiki Boseki Kk Endothelin activity inhibitor
JPH09208487A (en) * 1996-02-07 1997-08-12 Takeda Chem Ind Ltd Prophylactic or treating agent for virus disease
JPH09241297A (en) * 1996-03-01 1997-09-16 Hidechika Okada Detection of antisense homology box in protein molecule
WO2007101111A2 (en) * 2006-02-23 2007-09-07 Erimos Pharmaceuticals Llc Methods of treating influenza viral infections
JP2010116325A (en) * 2008-11-11 2010-05-27 Institute For Protein Science Co Ltd Peptide composition for saving life of sirs patient

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995009643A1 (en) * 1993-10-07 1995-04-13 Kurashiki Boseki Kk Endothelin activity inhibitor
JPH09208487A (en) * 1996-02-07 1997-08-12 Takeda Chem Ind Ltd Prophylactic or treating agent for virus disease
JPH09241297A (en) * 1996-03-01 1997-09-16 Hidechika Okada Detection of antisense homology box in protein molecule
WO2007101111A2 (en) * 2006-02-23 2007-09-07 Erimos Pharmaceuticals Llc Methods of treating influenza viral infections
JP2010116325A (en) * 2008-11-11 2010-05-27 Institute For Protein Science Co Ltd Peptide composition for saving life of sirs patient

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
CHEN Y ET AL.: "Increase in expression of endothelin and iNOS in lungs and brains after influenza A virus infection", JOURNAL OF JAPANESE BIOCHEMICAL SOCIETY, vol. 74, no. 8, 25 August 2002 (2002-08-25), pages 951 *
CHIEKO MITAKA: "Byotai to Shikkan kara Mita Endothelin Haiketsushosei Shock", JAPANESE JOURNAL OF CLINICAL MEDICINE, vol. 62, no. 9, 28 September 2004 (2004-09-28), pages 661 - 664 *
GIRIPUTRO S ET AL.: "Clinical and epidemiological features of patients with confirmed avian influenza presenting to Sulianti Saroso Infectious Diseases Hospital, Indonesia", ANNALS OF THE ACADEMY OF MEDICINE, vol. 37, no. 6, June 2008 (2008-06-01), pages 454 - 457 *
GUPTA A ET AL.: "Despite minimal hemodynamic alterations endotoxemia modulates NOS and p38- MAPK phosphorylation via metalloendopeptidases", MOLECULAR AND CELLULAR BIOCHEMISTRY, vol. 265, no. 1-2, October 2004 (2004-10-01), pages 47 - 56 *
SHARMIN S ET AL.: "Novel bioactive 31-amino acid endothelins are inducible and sensitive inflammatory mediators", JOURNAL OF JAPANESE BIOCHEMICAL SOCIETY, vol. 74, no. 8, 25 August 2002 (2002-08-25), pages 951 *
YAO D ET AL.: "Pathologic mechanisms of influenza encephalitis with an abnormal expression of inflammatory cytokines and accumulation of mini-plasmin", JOURNAL OF MEDICAL INVESTIGATION, vol. 50, no. 1-2, February 2003 (2003-02-01), pages 1 - 8 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011231107A (en) * 2010-04-06 2011-11-17 Kyoto Prefectural Public Univ Corp Therapeutic drug of highly pathogenic avian influenza virus h5n1 infection aiming at endothelin receptor
JPWO2016104436A1 (en) * 2014-12-22 2017-10-26 国立大学法人 岡山大学 Cytokine storm inhibitor
JP2021046437A (en) * 2014-12-22 2021-03-25 国立大学法人 岡山大学 Cytokine storm inhibitor

Also Published As

Publication number Publication date
JP5686734B2 (en) 2015-03-18
JPWO2011004843A1 (en) 2012-12-20

Similar Documents

Publication Publication Date Title
JP2012505160A (en) How to treat inflammation
US20090298797A1 (en) Combination therapy for the treatment of influenza
US11364227B2 (en) Sphingosine kinase 2 inhibitor for treating coronavirus infection
WO2010056910A2 (en) Methods of treating cardiovascular disorders
JP2013538564A (en) Antiviral agent
US11304989B2 (en) Peptides for use in the treatment of viral infections
WO2021233885A1 (en) Mimotope peptides of the spike protein from the sars-cov-2 virus
CN115335120A (en) Method for inhibiting MASP-2 for the treatment and/or prevention of coronavirus induced acute respiratory distress syndrome
Zhirnov et al. Protective effect of protease inhibitors in influenza virus infected animals
JP5686734B2 (en) Pharmaceutical composition for treatment of SIRS or highly toxic influenza infection
EP4021482A1 (en) Pegloticase for treatment of gout in renal transplant recipients
US11160814B1 (en) Methods of treatment for disease from coronavirus exposure
JPWO2018038168A1 (en) Hemagglutinin-binding peptide, and preventive / therapeutic agent for influenza virus infection including the same
JP2023521592A (en) Peptides for the treatment of cytokine storm syndrome
CN116406273A (en) Azelastine as an antiviral treatment
Redig Mycotic infections in birds I: Aspergillosis.
JP2021510157A (en) Use of RPS2 peptide to regulate endothelial cell dysfunction
TOPAL et al. COVID 19: The Relationship Among Angiotensin-Converting Enzyme 2 (ACE 2), Renin-Angiotensin-Aldesterone System (RAS), and Chronic Diseases
RU2815303C1 (en) Method of treating covid-19 in children at risk of severe clinical course of disease
US20230330089A1 (en) Covid prevention and treatment using an integrin inhibitor
JP2017160168A (en) Influenza therapeutic agent
US20230000845A1 (en) Biomarkers of coronavirus pneumonia
US11655298B2 (en) Composition for treating fulminant acute pneumonia including CD69 antagonist
WO2011062263A1 (en) Pharmaceutical composition
WO2023192779A2 (en) Combined prevention and treatment of patients with respiratory diseases caused by rna viral infections

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10797154

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2011521944

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10797154

Country of ref document: EP

Kind code of ref document: A1