WO2011004464A1 - 二次電池の昇温装置およびそれを備える車両 - Google Patents

二次電池の昇温装置およびそれを備える車両 Download PDF

Info

Publication number
WO2011004464A1
WO2011004464A1 PCT/JP2009/062403 JP2009062403W WO2011004464A1 WO 2011004464 A1 WO2011004464 A1 WO 2011004464A1 JP 2009062403 W JP2009062403 W JP 2009062403W WO 2011004464 A1 WO2011004464 A1 WO 2011004464A1
Authority
WO
WIPO (PCT)
Prior art keywords
secondary battery
ripple
frequency
temperature
reactor
Prior art date
Application number
PCT/JP2009/062403
Other languages
English (en)
French (fr)
Inventor
勇二 西
高橋 秀典
正俊 田澤
正宣 松坂
石倉 誠
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to EP09847069.3A priority Critical patent/EP2453514B1/en
Priority to PCT/JP2009/062403 priority patent/WO2011004464A1/ja
Priority to KR1020117030325A priority patent/KR101358367B1/ko
Priority to JP2011521733A priority patent/JP5293820B2/ja
Priority to CN200980160342.7A priority patent/CN102473976B/zh
Priority to US13/260,077 priority patent/US9327611B2/en
Publication of WO2011004464A1 publication Critical patent/WO2011004464A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/27Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by heating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/63Control systems
    • H01M10/637Control systems characterised by the use of reversible temperature-sensitive devices, e.g. NTC, PTC or bimetal devices; characterised by control of the internal current flowing through the cells, e.g. by switching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/615Heating or keeping warm
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/657Means for temperature control structurally associated with the cells by electric or electromagnetic means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2200/00Safety devices for primary or secondary batteries
    • H01M2200/10Temperature sensitive devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/574Devices or arrangements for the interruption of current
    • H01M50/578Devices or arrangements for the interruption of current in response to pressure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/574Devices or arrangements for the interruption of current
    • H01M50/581Devices or arrangements for the interruption of current in response to temperature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a secondary battery temperature raising device and a vehicle including the same, and more particularly to a technique for raising the temperature of a secondary battery using heat generated by internal resistance of the secondary battery.
  • a secondary battery represented by a lithium ion battery deteriorates its charge / discharge characteristics as the temperature decreases.
  • a lithium ion battery when charged at a low temperature, lithium (Li) is deposited at the negative electrode, resulting in performance deterioration such as a reduction in battery capacity. Therefore, when the temperature of the battery is low, it is necessary to quickly raise the battery temperature.
  • Patent Document 1 JP-A-11-329516 discloses a battery temperature raising device.
  • a series circuit composed of an inductor, a capacitor, and an AC power supply is connected to both ends of a battery to constitute a resonance circuit.
  • a battery is heated up by generating the alternating voltage of the resonant frequency of a resonant circuit from alternating current power supply.
  • JP 11-329516 A Japanese Patent Laid-Open No. 2007-12568
  • an object of the present invention is to provide a secondary battery capable of effectively raising the temperature of the secondary battery by effectively generating heat from the inside of the secondary battery. It is providing the temperature rising apparatus of this, and a vehicle provided with the same.
  • Another object of the present invention is to provide a secondary battery that can effectively increase the temperature of the secondary battery by effectively generating heat from the inside, and does not hinder downsizing and cost reduction of the device. It is providing the temperature rising apparatus of this, and a vehicle provided with the same.
  • the secondary battery temperature raising device includes a ripple generator and a controller.
  • the ripple generator is connected to the secondary battery and configured to positively generate a ripple current of a predetermined frequency in the secondary battery.
  • the control device controls the ripple generating device to raise the temperature of the secondary battery by generating a ripple current in the secondary battery.
  • the predetermined frequency is set to a frequency in a frequency region where the absolute value of the impedance relatively decreases based on the frequency characteristics of the impedance of the secondary battery.
  • the ripple generator is a chopper type booster configured to be capable of boosting the output voltage higher than the voltage of the secondary battery.
  • control device sets the switching frequency of the booster to a predetermined frequency.
  • control device sets the switching frequency of the voltage booster to a value lower than that when the secondary battery is not heated.
  • the booster includes first and second switching elements and a reactor.
  • the first and second switching elements are connected in series between each of the voltage output line pairs.
  • the reactor has a predetermined inductance and is connected between a connection node of the first and second switching elements and a positive electrode of the secondary battery.
  • the control device determines the maximum energization amount of the secondary battery determined for each ripple current frequency by the frequency characteristics of the impedance of the secondary battery and the voltage limit of the secondary battery.
  • the switching frequencies of the first and second switching elements are set so that the ripple current is maximized within a range not exceeding.
  • the booster includes first and second switching elements and a reactor.
  • the first and second switching elements are connected in series between each of the voltage output line pairs.
  • the reactor has a predetermined inductance and is connected between a connection node of the first and second switching elements and a positive electrode of the secondary battery. Then, the inductance of the reactor is set so that the amount of heat generated by the secondary battery determined for each frequency of the ripple current is maximized by the frequency characteristics of the impedance of the secondary battery and the voltage limit of the secondary battery.
  • the predetermined frequency is set to approximately 1 kHz based on the frequency characteristic of the impedance of the secondary battery.
  • the secondary battery is a lithium ion battery.
  • the predetermined frequency is set to be higher than the frequency corresponding to the time constant determined by the deposition resistance of the negative electrode and the electric double layer capacity of the negative electrode when the charging current flows through the lithium ion battery.
  • the secondary battery is a lithium ion battery.
  • a control apparatus controls a ripple production
  • the secondary battery temperature raising device includes a ripple generating device and a control device.
  • the ripple generator is connected to the secondary battery and configured to positively generate a ripple current of a predetermined frequency in the secondary battery.
  • the control device controls the ripple generating device to raise the temperature of the secondary battery by generating a ripple current in the secondary battery.
  • the ripple generator is a chopper type booster configured to be capable of boosting the output voltage higher than the voltage of the secondary battery.
  • the step-up device includes first and second switching elements, first and second reactors, and a connection device. The first and second switching elements are connected in series between each of the voltage output line pairs.
  • the first reactor is provided between the connection node of the first and second switching elements and the positive electrode of the secondary battery.
  • the second reactor is provided in parallel with the first reactor, and has an inductance smaller than that of the first reactor.
  • the connecting device connects the second reactor between the connection node and the positive electrode of the secondary battery instead of the first reactor or together with the first reactor. .
  • the vehicle also has a secondary battery that stores electric power for traveling the vehicle, and any of the secondary batteries described above that raises the temperature of the secondary battery when a temperature increase of the secondary battery is required.
  • the temperature raising device is provided.
  • the secondary battery is heated from the inside by actively generating a ripple current of a predetermined frequency in the secondary battery by the ripple generator.
  • the impedance of the battery becomes large, which may cause a situation in which a sufficient current for heat generation cannot flow inside the battery while maintaining the upper and lower limit voltages of the battery.
  • the frequency of the ripple current is set to a frequency in the frequency region where the absolute value of the impedance is relatively lowered based on the frequency characteristics of the impedance of the secondary battery,
  • the secondary battery can be effectively heated by effectively generating heat from the inside.
  • FIG. 1 is an overall configuration diagram of a secondary battery temperature raising device according to Embodiment 1 of the present invention.
  • FIG. It is the figure which showed the breakdown of the voltage of a secondary battery. It is a Nyquist diagram which shows the impedance characteristic of a secondary battery. It is a Bode diagram which shows the impedance characteristic (absolute value) of a secondary battery. It is a Bode diagram which shows the impedance characteristic (phase) of a secondary battery. It is the figure which showed the peak value of the ripple current which can be sent through a secondary battery at the time of very low temperature, making the voltage which generate
  • FIG. 15 is a functional block diagram of a portion related to control of a boost converter in the ECU shown in FIG. 14. It is a flowchart for demonstrating the processing procedure of the ripple temperature rising performed by ECU. It is a wave form diagram of the electric current at the time of ripple temperature rise of a secondary battery. It is the figure which showed the other generation
  • FIG. 9 is a diagram in which the peak value of the ripple current is superimposed on FIG. 8 showing the current I0 cos ⁇ proportional to the heat generation amount.
  • FIG. 10 is a circuit diagram of a boost converter in a seventh embodiment.
  • FIG. 20 is a circuit diagram of a boost converter in a modification of the seventh embodiment. It is a Bode diagram which shows the impedance characteristic (absolute value) of a secondary battery. It is a Bode diagram which shows the impedance characteristic (phase) of a secondary battery. It is an enlarged view near the origin of the Nyquist diagram showing the impedance characteristics of the secondary battery.
  • FIG. 10 is a diagram for illustrating a characteristic part of an electrode structure of a secondary battery in an eighth embodiment.
  • FIG. 1 is an overall configuration diagram of a secondary battery temperature raising apparatus according to Embodiment 1 of the present invention.
  • the temperature raising device includes a ripple generation device 20 and a control device 30.
  • the ripple generator 20 is connected to the secondary battery 10.
  • the secondary battery 10 is a rechargeable battery represented by a lithium ion battery or a nickel metal hydride battery. Secondary battery 10 includes an internal resistor 12. As will be described later, the internal resistance 12 has temperature dependence and greatly changes depending on the frequency of the current flowing through the battery.
  • the ripple generation device 20 is controlled by the control device 30 and actively generates a ripple current I having a predetermined frequency in the secondary battery 10. For example, it is possible to generate the ripple current I in the secondary battery 10 by turning on / off the power semiconductor switching elements constituting the ripple generator 20.
  • the circuit configuration of the ripple generator 20 will be described later with an example.
  • the control device 30 controls the ripple generation device 20 so as to raise the temperature of the secondary battery 10 from the inside by generating the ripple current I in the secondary battery 10.
  • the control device 30 causes the secondary battery 10 to generate a ripple current I in a frequency region in which the absolute value of the impedance of the secondary battery 10 relatively decreases based on the frequency characteristics of the impedance of the secondary battery 10.
  • the ripple generator 20 is controlled.
  • FIG. 2 is a diagram showing a breakdown of voltages of the secondary battery 10.
  • the internal resistance is only the real part and there is no imaginary part due to L, C, or the like.
  • the calorific value Q when the current I flows through the secondary battery 10 can be expressed by the following equation, where R is the resistance value of the internal resistor 12.
  • the secondary battery 10 cannot flow the ripple current I due to the voltage ⁇ V, and the secondary battery 10 is effective. That the temperature cannot be increased. Therefore, in the present invention, paying attention to the equation (3) and the frequency characteristics of the impedance of the secondary battery 10, the absolute value of the impedance of the secondary battery 10 (the resistance value R of the internal resistor 12) is compared with other frequency regions.
  • the ripple generator 20 generates a ripple current in a relatively small frequency region. Thereby, the calorific value Q of the secondary battery 10 becomes large, and the secondary battery 10 can be effectively heated.
  • FIG. 3 is a Nyquist diagram showing the impedance characteristics of the secondary battery 10.
  • electrochemical impedance spectroscopy also referred to as EIS (Electrochemical Impedance Spectroscopy)
  • EIS Electrochemical Impedance Spectroscopy
  • impedance Z of secondary battery 10 can be expressed by the following equation.
  • the horizontal axis represents the real component (R1)
  • the vertical axis represents the imaginary component (R2).
  • R2 the imaginary component
  • indicating the magnitude of the impedance Z
  • the angle formed with the horizontal axis (real number axis) indicates the phase ⁇ of the impedance Z.
  • 4 and 5 are Bode diagrams showing the impedance characteristics of the secondary battery 10. This Bode diagram also displays the impedance characteristics of the secondary battery 10 using EIS. 4 shows the frequency characteristic of the absolute value
  • the horizontal axis indicates the frequency of the alternating current (ripple current) generated in the secondary battery 10 in logarithmic display.
  • the vertical axis represents the absolute value
  • of the impedance Z is larger than that at a non-low temperature at a low temperature where the secondary battery 10 needs to be heated, but such an increase is remarkable. This is the case when the frequency of the ripple current is low.
  • of the impedance Z is small compared to other frequency regions, and is only about three times that at non-low temperature (normal temperature) even at extremely low temperatures (see FIG. 4 part A).
  • the phase ⁇ of the impedance Z is also near zero, so that the power factor is 1 and the efficiency is good.
  • of the impedance Z of the secondary battery 10 relatively decreases based on the frequency characteristics of the impedance of the secondary battery 10 (this embodiment 1 is generated by the ripple generator 20.
  • FIG. 6 is a diagram showing a peak value I0 of a ripple current that can be passed through the secondary battery 10 at an extremely low temperature with the voltage ⁇ V generated in the internal resistance 12 of the secondary battery 10 as a constraint condition.
  • the horizontal axis represents the frequency of the ripple current
  • the vertical axis represents the peak value I0 of the ripple current (assuming a sine wave) that can flow through the secondary battery 10 under the constraint condition of the voltage ⁇ V.
  • the current that can be passed through the secondary battery 10 increases in a frequency region (near 1 kHz) in which the absolute value of the impedance of the secondary battery 10 is relatively small.
  • FIG. 7 is a diagram showing an average heat generation amount that can be generated in the secondary battery 10 at an extremely low temperature, with the voltage ⁇ V generated in the internal resistance 12 of the secondary battery 10 as a constraint condition.
  • the horizontal axis represents the frequency of the ripple current
  • the vertical axis represents the average heat generation amount of the secondary battery 10 in one ripple period.
  • the heat generation amount of the secondary battery 10 increases in a frequency region (near 1 kHz) where the absolute value of the impedance of the secondary battery 10 is relatively small.
  • FIG. 8 is a diagram showing the magnitude of I0 cos ⁇ at an extremely low temperature with the voltage ⁇ V generated in the internal resistance 12 of the secondary battery 10 as a constraint condition.
  • the calorific value Q is proportional to I0 ⁇
  • I0 cos ⁇ increases in a frequency region (near 1 kHz) where the absolute value of the impedance of secondary battery 10 is relatively small. Therefore, if the secondary battery 10 generates a ripple current having a frequency at which I0 cos ⁇ is maximum, the calorific value Q of the secondary battery 10 can be maximized.
  • the ripple current in the frequency region where the absolute value of the impedance of the secondary battery 10 relatively decreases (in the first embodiment, for example, around 1 kHz) It is generated by the ripple generator 20.
  • the calorific value Q of the secondary battery 10 can be increased, and the secondary battery 10 can be effectively heated.
  • FIG. 9 is a diagram illustrating an example of a circuit configuration of the ripple generator 20 illustrated in FIG. 9, ripple generation device 20 includes power semiconductor switching elements (hereinafter also simply referred to as “switching elements”) Q1, Q2, diodes D1, D2, reactor L1, and capacitor CH. .
  • switching elements power semiconductor switching elements
  • Switching elements Q1, Q2 are connected in series between positive electrode line PL2 and negative electrode line NL connected to the negative electrode of secondary battery 10. And the collector of switching element Q1 is connected to positive electrode line PL2, and the emitter of switching element Q2 is connected to negative electrode line NL. Diodes D1 and D2 are connected in antiparallel to switching elements Q1 and Q2, respectively.
  • Reactor L1 has one end connected to positive line PL1 connected to the positive electrode of secondary battery 10, and the other end connected to connection node ND of switching elements Q1, Q2.
  • Capacitor CH is connected between positive electrode line PL2 and negative electrode line NL.
  • switching elements Q1 and Q2 for example, an IGBT (Insulated Gate Bipolar Transistor), a power MOS (Metal Oxide Semiconductor) transistor, or the like can be used.
  • IGBT Insulated Gate Bipolar Transistor
  • MOS Metal Oxide Semiconductor
  • the ripple generator 20 generates two ripple currents IB corresponding to the switching frequency of the switching elements Q1 and Q2 by turning the switching elements Q1 and Q2 on and off in a complementary manner in accordance with the control signal PWMC from the controller 30. It is generated in the secondary battery 10. Specifically, assuming that the ripple current IB in the direction in which the secondary battery 10 is charged is positive, the ripple current IB increases in the negative direction when the switching elements Q1 and Q2 are off and on, respectively. When the ripple current IB becomes negative and then the switching elements Q1 and Q2 are turned on and off, respectively, the ripple current IB starts to increase in the positive direction.
  • the ripple current IB becomes positive and then the switching elements Q1 and Q2 are switched off and on again, the ripple current IB starts to increase in the negative direction.
  • the ripple current IB corresponding to the switching frequency of the switching elements Q1, Q2 can be generated in the secondary battery 10.
  • FIG. 10 is a functional block diagram of the control device 30.
  • control device 30 includes a ripple frequency setting unit 32, a carrier generation unit 34, and a PWM (Pulse Width Modulation) signal generation unit 36.
  • the ripple frequency setting unit 32 sets the switching frequency of the switching elements Q1 and Q2 of the ripple generator 20, that is, the frequency (hereinafter also referred to as “ripple frequency”) f of the ripple current generated in the secondary battery 10.
  • the ripple frequency setting unit 32 is based on the frequency characteristics of the impedance of the secondary battery 10 shown in FIGS. 3 to 5 (for example, a frequency having a relatively small absolute value of the impedance of the secondary battery 10 (for example, 1 kHz) is set as the ripple frequency f, and the set ripple frequency f is output to the carrier generation unit 34.
  • the carrier generation unit 34 generates a carrier signal CR (triangular wave) having a ripple frequency f received from the ripple frequency setting unit 32, and outputs the generated carrier signal CR to the PWM signal generation unit 36.
  • a carrier signal CR triangular wave
  • the PWM signal generator 36 compares the predetermined duty command value d (0.5) with the carrier signal CR received from the carrier generator 34, and the PWM signal whose logic state changes according to the comparison result. Is generated. Then, the PWM signal generation unit 36 outputs the generated PWM signal as a control signal PWMC to the switching elements Q1 and Q2 of the ripple generation device 20.
  • FIG. 11 is a diagram showing the behavior of the ripple current IB.
  • upper arm switching element Q1 is turned off and lower arm switching element Q2 is turned on.
  • the ripple current IB (FIG. 9) starts to increase in the negative direction, and the sign of the ripple current IB is switched from positive to negative at the timing when the energy stored in the reactor L1 (FIG. 9) is released.
  • the ripple current IB having the frequency of the carrier signal CR, that is, the ripple frequency f can be generated in the secondary battery 10.
  • the ripple generator 20 positively generates a ripple current in the secondary battery 10 to raise the temperature of the secondary battery 10 from the inside.
  • the ripple frequency is set to a frequency in a frequency region where the absolute value of the impedance is relatively lowered based on the frequency characteristic of the impedance of the secondary battery 10 (for example, near 1 kHz), the ripple frequency is extremely low.
  • the secondary battery 10 can be effectively heated by causing the secondary battery 10 to generate heat effectively from the inside.
  • the ripple generator 20 when the ripple generator 20 is realized by the circuit as shown in FIG. 9, the energy source for raising the temperature of the secondary battery 10 is only the secondary battery 10. Therefore (no separate power source is required), the temperature of the secondary battery 10 can be increased efficiently.
  • the internal resistance of the secondary battery is larger as the temperature is lower, and among the cells connected in series, the lower the temperature, the greater the amount of heat generated, so that the battery can be uniformly heated.
  • FIG. 12 is an equivalent circuit diagram of the electrode / electrolyte interface for the secondary battery 10.
  • the internal resistance of secondary battery 10 mainly includes negative electrode deposition resistance R1-, negative electrode reaction resistance R2-, negative electrode electric double layer capacity C-, positive electrode reaction resistance R +, and positive electrode electric resistance. It consists of a double layer capacitance C + and an electrolyte resistance Rsol.
  • the negative electrode deposition resistance R1- is a charge transfer resistance at the negative electrode 44 during charging.
  • the negative electrode reaction resistance R2- is a charge transfer resistance at the negative electrode 44 during discharge.
  • the negative electric double layer capacity C ⁇ is the capacity of the electric double layer formed at the interface between the negative electrode 44 and the electrolyte.
  • the positive electrode reaction resistance R + is a charge transfer resistance on the positive electrode 42 side.
  • the positive electric double layer capacity C + is the capacity of the electric double layer formed at the interface between the positive electrode 42 and the electrolyte.
  • the electrolyte resistance Rsol is a resistance of the electrolyte, a metal resistance such as a current collector foil, or the like.
  • a carbon-based or tin alloy-based material is used for example.
  • Li deposition occurs when current flows through the negative electrode deposition resistance R1- during charging.
  • the ripple current generated in the secondary battery 10 is high frequency, the current flows through the negative electrode electric double layer capacitance C ⁇ and hardly flows through the negative electrode deposition resistance R1 ⁇ . Therefore, in this second embodiment, the negative frequency 44 is set by setting the ripple frequency so as to be higher than the frequency corresponding to the time constant of the RC circuit composed of the negative electrode deposition resistance R1- and the negative electrode electric double layer capacitance C-. The occurrence of Li precipitation in is avoided.
  • the negative electrode deposition resistance R1- and the negative electrode electric double layer capacitance C- can be measured, for example, as follows. That is, as shown in FIG. 13, a reference electrode 46 is provided between the positive electrode 42 and the negative electrode 44, and the impedance between the negative electrode 44 and the reference electrode 46 when a current is passed between the positive electrode 42 and the negative electrode 44 is measured. Then, when the measurement results are represented by the Nyquist diagram shown in FIG. 3, the diameter of the semicircular portion is the negative electrode deposition resistance R1-, and at the apex of the semicircular portion, (negative electrode deposition resistance R1-) ⁇ (negative electrode electrical resistance).
  • the secondary battery 10 may be disassembled, and the negative electrode 44 may be provided instead of the positive electrode 42 to measure the impedance between the current collecting terminals. Even in this case, as described above, the negative electrode deposition resistance R1- can be calculated by using lithium metal for both current collecting terminals.
  • the ripple frequency is set to be higher than the frequency corresponding to the time constant of the RC circuit composed of the negative electrode deposition resistance R1- and the negative electrode electric double layer capacitance C-. . Therefore, according to this Embodiment 2, generation
  • the duty command value d at the time of ripple temperature rise is set to 0. It may be set to a value smaller than .5.
  • the energy source required for a ripple temperature rise is only the secondary battery 10. FIG. Therefore, even if the duty command value d at the time of ripple temperature rise is set to 0.5, the ripple current is offset to the discharge side by the amount of loss in the ripple generator 20, so this may be used.
  • the occurrence of Li precipitation in the negative electrode can also be avoided according to the third embodiment.
  • the secondary battery temperature raising device according to the present invention is applied to an electric vehicle.
  • FIG. 14 is an overall block diagram of an electric vehicle to which a secondary battery temperature raising device according to Embodiment 4 of the present invention is applied.
  • electrically powered vehicle 100 includes a secondary battery 10, a boost converter 22, a capacitor CH, an inverter 50, a motor generator 60, and drive wheels 65.
  • the electric vehicle 100 further includes an ECU (Electronic Control Unit) 70, a temperature sensor 82, a current sensor 84, and voltage sensors 86 and 88.
  • ECU Electronic Control Unit
  • Boost converter 22 can boost the voltage between positive electrode line PL2 and negative electrode line NL (hereinafter also referred to as “system voltage”) to be higher than the output voltage of secondary battery 10 based on control signal PWMC from ECU 70. .
  • system voltage positive electrode line PL2 and negative electrode line NL
  • PWMC control signal from ECU 70.
  • system voltage When the system voltage is lower than the target voltage, by increasing the on-duty of switching element Q2, a current can flow from positive line PL1 to positive line PL2, and the system voltage can be increased.
  • the system voltage is higher than the target voltage, by increasing the on-duty of switching element Q1, a current can flow from positive line PL2 to positive line PL1, and the system voltage can be lowered.
  • boost converter 22 forms the ripple generator 20 shown in FIG. 9 together with the capacitor CH.
  • boost converter 22 turns on / off switching elements Q1, Q2 based on control signal PWMC from ECU 70, thereby generating a ripple current in secondary battery 10. .
  • Capacitor CH smoothes the voltage between positive electrode line PL2 and negative electrode line NL.
  • Capacitor CH is used as a power buffer that temporarily stores power discharged from secondary battery 10 when the secondary battery 10 performs a ripple temperature increase.
  • Inverter 50 converts DC power supplied from positive line PL2 and negative line NL into three-phase AC based on control signal PWMI from ECU 70, and outputs it to motor generator 60 to drive motor generator 60. Inverter 50 also converts the three-phase AC power generated by motor generator 60 into DC based on control signal PWMI and outputs it to positive line PL2 and negative line NL during braking of the vehicle.
  • the motor generator 60 is an AC motor, for example, a three-phase AC motor including a rotor in which a permanent magnet is embedded. Motor generator 60 is mechanically coupled to drive wheel 65 and generates torque for driving the vehicle. Further, the motor generator 60 receives the kinetic energy of the vehicle from the drive wheels 65 and generates electric power during braking of the vehicle.
  • the temperature sensor 82 detects the temperature TB of the secondary battery 10 and outputs the detected value to the ECU 70.
  • Current sensor 84 detects current IB input / output to / from secondary battery 10 and outputs the detected value to ECU 70.
  • Voltage sensor 86 detects voltage VB between positive line PL1 and negative line NL, which corresponds to the output voltage of secondary battery 10, and outputs the detected value to ECU 70.
  • Voltage sensor 88 detects voltage VH between positive electrode line PL2 and negative electrode line NL, and outputs the detected value to ECU 70.
  • ECU 70 generates control signal PWMC for driving boost converter 22 based on the detected values of voltages VB and VH from voltage sensors 86 and 88, and outputs the generated control signal PWMC to boost converter 22. .
  • the ECU 70 also detects the temperature TB from the temperature sensor 82, the remaining capacity of the secondary battery 10 (hereinafter also referred to as “SOC (State Of Charge)”), a vehicle speed signal VS indicating the speed of the vehicle, and a shift of a shift lever (not shown). Based on the shift position signal SP indicating the position or the like, it is determined whether or not the execution condition for ripple temperature rise of the secondary battery 10 is satisfied. When the condition for executing the ripple temperature rise is satisfied, the ECU 70 generates a control signal PWMC for causing the secondary battery 10 to generate a ripple current in a frequency region (for example, near 1 kHz) where the absolute value of the impedance of the secondary battery 10 is relatively small. And the generated control signal PWMC is output to the boost converter 22.
  • SOC State Of Charge
  • ECU 70 generates a control signal PWMI for driving motor generator 60 and outputs the generated control signal PWMI to inverter 50.
  • FIG. 15 is a functional block diagram of a part related to control of the boost converter 22 in the ECU 70 shown in FIG.
  • ECU 70 includes a voltage command generation unit 110, a voltage control unit 112, a duty command generation unit 114, a PWM signal generation unit 116, a ripple temperature rise condition determination unit 118, and a ripple frequency setting unit. 120 and a carrier generation unit 122.
  • the voltage command generator 110 generates a voltage command value VR indicating the target value of the voltage VH adjusted by the boost converter 22.
  • voltage command generation unit 110 generates voltage command value VR based on the torque command value of motor generator 60 and the power of motor generator 60 calculated from the motor rotation speed.
  • the voltage controller 112 receives the voltage command value VR from the voltage command generator 110 and receives the detected values of the voltages VH and VB from the voltage sensors 88 and 86, respectively. Then, the voltage control unit 112 executes a control calculation (for example, proportional integration control) for making the voltage VH coincide with the voltage command value VR.
  • a control calculation for example, proportional integration control
  • the duty command generation unit 114 generates a duty command value d indicating the switching duty of the switching elements Q1 and Q2 of the boost converter 22 based on the control output from the voltage control unit 112.
  • a duty command value d indicating the switching duty of the switching elements Q1 and Q2 of the boost converter 22 based on the control output from the voltage control unit 112.
  • the value d is set to a predetermined value for ripple temperature rise (for example, 0.5 (step-up ratio 2)).
  • the PWM signal generation unit 116 compares the duty command value d received from the duty command generation unit 114 with the carrier signal CR received from the carrier generation unit 122, and generates a control signal PWMC whose logic state changes according to the comparison result. To do. PWM signal generation unit 116 then outputs the generated control signal PWMC to switching elements Q1 and Q2 of boost converter 22.
  • the ripple temperature rise condition determination unit 118 receives the temperature TB detected by the temperature sensor 82, the SOC of the secondary battery 10, the vehicle speed signal VS, and the shift position signal SP. Note that the SOC of the secondary battery 10 is calculated based on the detected values of the current IB and the voltage VB using various known methods. Then, the ripple temperature rise condition determination unit 118 determines the ripple temperature increase execution condition of the secondary battery 10, more specifically, the start condition, the continuation condition, and the end condition based on the respective signals. Based on the result, the duty command generation unit 114 and the ripple frequency setting unit 120 are notified of whether or not the ripple temperature increase is to be executed.
  • the ripple frequency setting unit 120 When the ripple frequency setting unit 120 receives notification from the ripple temperature rise condition determining unit 118 that the ripple temperature rise of the secondary battery 10 is to be executed, the ripple frequency setting unit 120 receives the ripple frequency f (the frequency described in the first and second embodiments) as a carrier. The data is output to the generation unit 122.
  • the carrier generation unit 122 generates a carrier signal CR (triangular wave) for generating a PWM signal in the PWM signal generation unit 116, and outputs the generated carrier signal CR to the PWM signal generation unit 116.
  • a carrier signal CR triangular wave
  • the carrier generation unit 122 when receiving the ripple frequency f from the ripple frequency setting unit 120, the carrier generation unit 122 generates a carrier signal CR having the received ripple frequency f and outputs the carrier signal CR to the PWM signal generation unit 116.
  • FIG. 16 is a flowchart for explaining a processing procedure for ripple temperature increase executed by the ECU 70. The process shown in this flowchart is called from the main routine and executed at regular time intervals or whenever a predetermined condition is satisfied.
  • ECU 70 determines whether or not the ripple temperature start condition is satisfied based on temperature TB, SOC, vehicle speed signal VS, shift position signal SP, and the like of secondary battery 10 (Ste S10).
  • the temperature TB indicates a very low temperature
  • the SOC is higher than a predetermined value
  • the vehicle speed signal VS indicates the stop of the vehicle
  • the shift position signal SP indicates the parking position
  • step S10 If it is determined in step S10 that the start condition is satisfied (YES in step S10), ECU 70 executes the ripple temperature increase by the above-described method (step S20). Next, the ECU 70 establishes the ripple temperature continuation condition based on the time after the ripple temperature increase starts, the temperature TB, SOC of the secondary battery 10, the vehicle speed signal VS, the shift position signal SP, and the like. It is determined whether or not (step S30).
  • the temperature TB is lower than a predetermined temperature rise end temperature
  • the SOC is higher than a predetermined value
  • the vehicle speed signal VS indicates a vehicle stop
  • the shift position signal SP indicates a parking position
  • the ripple temperature increase If the predetermined time has not elapsed since the start, it is determined that the ripple temperature continuation condition is satisfied. If it is determined that the continuation condition is satisfied (YES in step S30), the process proceeds to step S20, and the ripple temperature rise is continued.
  • step S30 If it is determined in step S30 that the continuation condition is not satisfied (NO in step S30), the ECU 70 ends the ripple temperature increase (step S40).
  • the ECU 70 determines a ripple temperature raising end condition based on the temperature TB, SOC, and the like of the secondary battery 10 (step S50). As an example, when the temperature TB exceeds a predetermined temperature rise end temperature or the SOC falls below a lower limit value, it is determined that the end condition is satisfied.
  • step S50 If it is determined in step S50 that the end condition is satisfied (YES in step S50), a series of processing ends. On the other hand, if it is determined in step S50 that the termination condition is not satisfied (NO in step S50), an alarm is output and a predetermined abnormality determination process is executed (step S60).
  • FIG. 17 is a waveform diagram of the current IB when the secondary battery 10 has a ripple temperature rise.
  • the current IB is positive.
  • carrier frequency fCR of boost converter 22 is set to ripple frequency f (1 kHz), and current IB varies with ripple frequency f.
  • the energy source for generating the ripple current is only the secondary battery 10
  • the current IB is offset in the negative direction (discharge direction) due to loss in the boost converter 22 or the like.
  • the switching frequency of the boost converter 22 during normal boosting operation is about several kHz to 10 kHz, whereas the ripple frequency f at the time of ripple temperature rise is about 1 kHz. It is lower than the switching frequency during normal operation. That is, ECU 70 sets the switching frequency (or carrier frequency) of step-up converter 22 at the time of ripple temperature rise lower than that during normal operation (at the time of non-ripple temperature rise).
  • the ripple current is generated by changing the carrier frequency fCR of the boost converter 22 to the ripple frequency f.
  • the carrier frequency fCR is not changed (for example, 10 kHz), and the alternating current is applied at the ripple frequency f.
  • a ripple current as shown in FIG. 18 may be generated by giving a changing current command.
  • the ripple temperature rise of the secondary battery 10 is executed using the boost converter 22. Therefore, according to the fourth embodiment, the secondary battery 10 can be effectively heated from the inside so that the temperature of the secondary battery 10 can be effectively increased, and the vehicle drive device and the vehicle itself can be downsized and reduced. A temperature increasing device for the secondary battery 10 that does not hinder costing can be realized.
  • Ip VB / L ⁇ 1 / (4 ⁇ f) (6)
  • L indicates the inductance of the reactor L1
  • FIG. 19 is a diagram in which the peak value Ip of the ripple current is superimposed on FIG. 8 showing the current I0 cos ⁇ proportional to the heat generation amount.
  • a curve k1 indicates a current I0 cos ⁇ that is proportional to a calorific value
  • a curve k2 indicates a peak value Ip expressed by equation (6). That is, the curve k1 indicates the maximum current viewed from the secondary battery 10, and the curve k2 indicates the maximum current viewed from the reactor L1.
  • the magnitude of the current exceeds the curve k1, a voltage exceeding the upper and lower limit voltage is generated, so that a current exceeding the curve k1 cannot be passed.
  • the current that can flow through reactor L1 is shown by curve k2. Therefore, by selecting the ripple frequency corresponding to the intersection P1 of the curves k1 and k2, the amount of heat generated by the secondary battery 10 can be maximized while the upper and lower limit voltages of the secondary battery 10 are maintained.
  • the heat generation amount of the secondary battery 10 due to the ripple temperature rise can be maximized.
  • intersection point P1 is not the maximum point of curve k1, so in the fifth embodiment, from the viewpoint of optimally raising the ripple temperature rise of secondary battery 10, It cannot be said that the inductance L of the reactor L1 is optimal. Since the maximum current that can be passed to the reactor L1 of the boost converter 22 is expressed by the above-described equation (6), if the inductance L of the reactor L1 of the boost converter 22 is appropriately designed, the ripple generated in the secondary battery 10 The current can be maximized.
  • FIG. 20 is a diagram for explaining a method of designing the inductance L of the reactor L1 in order to maximize the ripple current generated in the secondary battery 10.
  • a curve k3 indicates the peak value Ip of the ripple current expressed by the equation (6).
  • the inductance L of the reactor L1 is designed so that the curve k3 intersects the curve k1 at the maximum point P2 of the curve k1 indicating the current I0 cos ⁇ proportional to the calorific value.
  • boost converter 22 is designed such that inductance L of reactor L1 is smaller than that in the fifth embodiment.
  • the ripple current generated in the secondary battery 10 can be maximized by appropriately designing the inductance L of the reactor L1 of the boost converter 22.
  • the carrier frequency of the boost converter 22 (switching frequency of the switching elements Q1 and Q2) is set lower than that during normal boost operation. (For example, it is set to 1 kHz) Noise due to current increases, and noise becomes a problem as the generated noise enters the audible range. Also in terms of efficiency, the loss in reactor L1 at the time of ripple temperature rise becomes a problem.
  • a ripple temperature rising reactor is separately provided in the boost converter.
  • the inductance is designed so that a sufficient ripple current can be obtained even if the carrier frequency of boost converter 22 is maintained at the same high frequency as that during normal operation.
  • FIG. 21 is a circuit diagram of the boost converter according to the seventh embodiment.
  • the configuration other than the boost converter is the same as the configuration shown in FIG.
  • boost converter 22A further includes a reactor L2 and a switch SW1 in the configuration of boost converter 22 shown in FIG.
  • Reactor L2 is provided in parallel with reactor L1.
  • This reactor L2 is a reactor for increasing the ripple temperature, and is designed so that the inductance is smaller than that of the reactor L1 for normal boosting operation.
  • the inductance of the reactor L2 for ripple temperature rise is set to 1/10 of the inductance of the reactor L1.
  • an air-core type coil As the reactor L2, it is preferable to use an air-core type coil as the reactor L2. By using an air-core type coil, loss (iron loss) due to the reactor is reduced, and efficiency can be improved.
  • Switch SW1 is provided between reactors L1 and L2 and positive electrode line PL1.
  • Switch SW1 electrically connects positive line PL1 to one of reactors L1 and L2 in response to a switching signal CTL from ECU 70 (not shown).
  • the other configuration of boost converter 22A is the same as that of boost converter 22 shown in FIG.
  • reactor L1 is connected to positive line PL1 by switch SW1 according to switching signal CTL from ECU 70, and reactor L2 is connected to positive line PL1. Disconnected from.
  • reactor L2 is connected to positive line PL1 by switch SW1, and reactor L1 is disconnected from positive line PL1.
  • the switching frequency of switching elements Q1 and Q2 is the same as that during normal boost operation during ripple temperature rise (for example, about several kHz to 10 kHz).
  • the reactor L2 for increasing the ripple temperature is provided so that the reactor L1 is switched from the reactor L1 for normal operation to the reactor L2 when the temperature of the ripple is increased. Is not required to be set low (the carrier frequency of the boost converter 22A). Therefore, according to this Embodiment 7, it can avoid that the noise accompanying ripple temperature rise increases.
  • FIG. 22 is a circuit diagram of a boost converter in a modification of the seventh embodiment.
  • boost converter 22B includes a switch SW2 instead of switch SW1 in the configuration of boost converter 22A shown in FIG.
  • Switch SW2 is provided between reactor L2 and positive electrode line PL1. Switch SW2 is turned on / off in response to a switching signal CTL from ECU 70 (not shown). Reactor L1 is directly connected to positive electrode line PL1.
  • the other configuration of boost converter 22B is the same as that of boost converter 22A shown in FIG.
  • switch SW2 is turned off in response to switching signal CTL from ECU 70, and reactor L2 is disconnected from positive line PL1.
  • switch SW2 is turned on according to switching signal CTL, and reactor L2 is connected to positive line PL1. Since the inductance of the reactor L2 is smaller than the inductance of the reactor L1, even with such a configuration, it is possible to obtain the same characteristics as in the seventh embodiment when the temperature of the ripple is increased.
  • FIGS. 23 and 24 are Bode diagrams showing the impedance characteristics of the secondary battery 10.
  • the frequency (ripple frequency) of the ripple current generated in secondary battery 10 at the time of ripple temperature rise is the same as that during normal boost operation, for example, several Although it is kHz to 10 kHz, as indicated by arrows in FIGS. 23 and 24, in the high frequency region exceeding several kHz, the absolute value
  • FIG. 25 is an enlarged view of the vicinity of the origin of the Nyquist diagram showing the impedance characteristics of the secondary battery 10. Referring to FIG. 25, it can also be seen from FIG. 25 that when the frequency exceeds 1 kHz, the absolute value
  • the calorific value of the secondary battery 10 is proportional to I0 ⁇
  • cos ⁇ I0 2 ⁇
  • the increase in impedance due to the increase of the L component in this high frequency region is not caused by the electrochemical characteristics of the secondary battery 10 but is caused by the structure of the secondary battery 10. Therefore, in the eighth embodiment, in the secondary battery 10, an electrode structure capable of suppressing the increase of the L component in the high frequency region is shown.
  • FIG. 26 is a diagram for explaining the characteristic part of the electrode structure of the secondary battery in the eighth embodiment.
  • the electrode body 132 of the secondary battery 10 includes a main body part 134, a positive electrode current collector foil part 136, a negative electrode current collector foil part 138, a positive electrode current collector terminal 140, and a negative electrode current collector terminal 142. And a welded portion 144.
  • the structural feature of the secondary battery 10 is that a welded portion 144 that connects the positive electrode current collector terminal 140 to the positive electrode current collector foil portion 136 and a welded portion 144 that connects the negative electrode current collector terminal 142 to the negative electrode current collector foil portion 138.
  • the area of each is sufficiently large. By increasing the area of the welded portion 144, an increase in the L component can be suppressed.
  • the welded portion 144 may be formed by lines or surfaces as shown in FIG. 26, and the number of weld points may be increased.
  • a flat plate structure may be employed instead of a wound structure in which the positive electrode and the negative electrode are wound through a separator.
  • the eighth embodiment since an increase in impedance in the high frequency region can be suppressed, when the configurations of the seventh embodiment and the modification thereof are adopted, the voltage upper and lower limits of the secondary battery 10 are reduced. It is possible to avoid the possibility that the ripple current cannot be sufficiently passed under the restriction.
  • the electric vehicle 100 may be an electric vehicle using the motor generator 60 as the only driving power source, or may be a hybrid vehicle further equipped with an engine as the driving power source. May be a fuel cell vehicle further equipped with a fuel cell in addition to the secondary battery 10 as a DC power source.
  • control device 30 and ECU 70 correspond to “control device” in the present invention
  • boost converters 22, 22A, 22B correspond to “boost device” in the present invention
  • Switching elements Q1 and Q2 correspond to “first and second switching elements” in the present invention
  • reactors L1 and L2 respectively correspond to “first reactor” and “second reactor” in the present invention. Correspond.
  • 10 secondary battery 12 internal resistance, 20 ripple generation device, 22, 22A, 22B boost converter, 30 control device, 32, 120 ripple frequency setting unit, 34, 122 carrier generation unit, 36, 116 PWM signal generation unit, 42 Positive electrode, 44 negative electrode, 46 reference electrode, 50 inverter, 60 motor generator, 65 drive wheel, 70 ECU, 82 temperature sensor, 84 current sensor, 86, 88 voltage sensor, 110 voltage command generator, 112 voltage controller, 114 duty Command generation part, 118 Ripple temperature rise condition determination part, 132 electrode body, 134 electrode part, 136 positive electrode current collector foil part, 138 negative electrode current collector foil part, 140 positive electrode current collector terminal, 142 negative electrode current collector terminal, 144 weld part, PL1, PL2 positive wire, NL negative wire, L1 L2 reactor, Q1, Q2 switching element, D1, D2 diode, CH capacitor, ND connection node, R1- negative electrode deposition resistance, R2- negative electrode reaction resistance, C- negative electrode electric double layer capacity, R + positive electrode reaction resistance, C +

Landscapes

  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Secondary Cells (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

 二次電池(10)の昇温装置は、リップル生成装置(20)と、制御装置(30)とを備える。リップル生成装置(20)は、二次電池(10)に接続され、所定周波数のリップル電流(I)を二次電池(10)に積極的に発生させるように構成される。制御装置(30)は、リップル電流(I)を二次電池(10)に発生させることによって二次電池を昇温するようにリップル生成装置(20)を制御する。ここで、所定周波数は、二次電池(10)のインピーダンスの周波数特性に基づいて、インピーダンスの絶対値が相対的に低下する周波数領域の周波数に設定される。

Description

二次電池の昇温装置およびそれを備える車両
 この発明は、二次電池の昇温装置およびそれを備える車両に関し、特に、二次電池の内部抵抗による発熱を利用して二次電池を昇温する技術に関する。
 一般に、リチウムイオン電池に代表される二次電池は、温度が低下すると充放電特性が低下する。たとえば、リチウムイオン電池においては、低温時に充電されると負極においてリチウム(Li)の析出が発生し、その結果、電池の容量が低下する等の性能劣化が起こる。そこで、電池の温度が低い場合には、速やかに電池を昇温する必要がある。
 特開平11-329516号公報(特許文献1)は、電池の昇温装置を開示する。この昇温装置においては、インダクタとキャパシタと交流電源とから成る直列回路を電池の両端に接続して共振回路を構成する。そして、共振回路の共振周波数の交流電圧を交流電源から発生させることにより電池を昇温する。
 この昇温装置においては、共振時にほとんど電池の内部抵抗で電力が消費され、自己発熱により電池を昇温する。したがって、この昇温装置によれば、最小限の電力消費で効果的に電池を昇温することができるとされる(特許文献1参照)。
特開平11-329516号公報 特開2007-12568号公報
 二次電池においては、一般的に、安全性や耐久性の観点から電池の上下限電圧を守ることが要求されるが、低温下では、常温時と比べて電池のインピーダンスが大きくなるので、特に極低温下では、電池のインピーダンスが大きくなったことにより、電池の上下限電圧を守りつつ電池内部に発熱のための十分な電流を流すことができないという事態が発生し得る。
 また、上記の特開平11-329516号公報に開示される昇温装置では、インダクタ、キャパシタおよび交流電源から成る共振回路を新たに設ける必要があるので、装置の小型化および低コスト化も阻害される。
 そこで、この発明は、かかる課題を解決するためになされたものであり、その目的は、二次電池を内部から効果的に発熱させることによって二次電池を効果的に昇温可能な二次電池の昇温装置およびそれを備える車両を提供することである。
 また、この発明の別の目的は、二次電池を内部から効果的に発熱させることによって二次電池を効果的に昇温可能としつつ、装置の小型化および低コスト化を阻害しない二次電池の昇温装置およびそれを備える車両を提供することである。
 この発明によれば、二次電池の昇温装置は、リップル生成装置と、制御装置とを備える。リップル生成装置は、二次電池に接続され、所定周波数のリップル電流を二次電池に積極的に発生させるように構成される。制御装置は、リップル電流を二次電池に発生させることによって二次電池を昇温するようにリップル生成装置を制御する。ここで、所定周波数は、二次電池のインピーダンスの周波数特性に基づいて、インピーダンスの絶対値が相対的に低下する周波数領域の周波数に設定される。
 好ましくは、リップル生成装置は、二次電池の電圧以上に出力電圧を昇圧可能に構成されたチョッパ型の昇圧装置である。
 さらに好ましくは、制御装置は、二次電池の昇温が要求されると、昇圧装置のスイッチング周波数を所定周波数に設定する。
 また、さらに好ましくは、制御装置は、二次電池の昇温が要求されると、昇圧装置のスイッチング周波数を二次電池の非昇温時よりも低い値に設定する。
 また、好ましくは、昇圧装置は、第1および第2のスイッチング素子と、リアクトルとを含む。第1および第2のスイッチング素子は、電圧出力線対の各々の間に直列に接続される。リアクトルは、所定のインダクタンスを有し、第1および第2のスイッチング素子の接続ノードと二次電池の正極との間に接続される。そして、制御装置は、二次電池の昇温が要求されると、二次電池のインピーダンスの周波数特性と二次電池の電圧制限とによりリップル電流の周波数毎に定まる二次電池の最大通電量を超えない範囲でリップル電流が最大となるように第1および第2のスイッチング素子のスイッチング周波数を設定する。
 また、好ましくは、昇圧装置は、第1および第2のスイッチング素子と、リアクトルとを含む。第1および第2のスイッチング素子は、電圧出力線対の各々の間に直列に接続される。リアクトルは、所定のインダクタンスを有し、第1および第2のスイッチング素子の接続ノードと二次電池の正極との間に接続される。そして、二次電池のインピーダンスの周波数特性と二次電池の電圧制限とによりリップル電流の周波数毎に定まる二次電池の発熱量が最大となるように、リアクトルのインダクタンスが設定される。
 好ましくは、所定周波数は、二次電池のインピーダンスの周波数特性に基づいて、略1kHzに設定される。
 好ましくは、二次電池は、リチウムイオン電池である。そして、所定周波数は、リチウムイオン電池に充電電流が流れるときの負極の析出抵抗と負極の電気二重層容量とにより定まる時定数に対応する周波数よりも高くなるように設定される。
 また、好ましくは、二次電池は、リチウムイオン電池である。そして、制御装置は、リチウムイオン電池の放電側にリップル電流の平均値がオフセットしたリップル電流を二次電池に発生させるようにリップル生成装置を制御する。
 また、この発明によれば、二次電池の昇温装置は、リップル生成装置と、制御装置とを備える。リップル生成装置は、二次電池に接続され、所定周波数のリップル電流を二次電池に積極的に発生させるように構成される。制御装置は、リップル電流を二次電池に発生させることによって二次電池を昇温するようにリップル生成装置を制御する。リップル生成装置は、二次電池の電圧以上に出力電圧を昇圧可能に構成されたチョッパ型の昇圧装置である。昇圧装置は、第1および第2のスイッチング素子と、第1および第2のリアクトルと、接続装置とを含む。第1および第2のスイッチング素子は、電圧出力線対の各々の間に直列に接続される。第1のリアクトルは、第1および第2のスイッチング素子の接続ノードと二次電池の正極との間に設けられる。第2のリアクトルは、第1のリアクトルに並列に設けられ、第1のリアクトルよりもインダクタンスが小さい。接続装置は、二次電池の昇温が要求されると、第1のリアクトルに代えて、または第1のリアクトルとともに、接続ノードと二次電池の正極との間に第2のリアクトルを接続する。
 また、この発明によれば、車両は、車両走行用の電力を蓄える二次電池と、二次電池の昇温が要求されると二次電池を昇温する、上述したいずれかの二次電池の昇温装置とを備える。
 この発明においては、リップル生成装置により所定周波数のリップル電流を二次電池に積極的に発生させることによって二次電池を内部から昇温する。ここで、特に極低温下では、電池のインピーダンスが大きくなることにより、電池の上下限電圧を守りつつ電池内部に発熱のための十分な電流を流すことができないという事態が発生し得る。しかしながら、この発明においては、リップル電流の周波数は、二次電池のインピーダンスの周波数特性に基づいて、インピーダンスの絶対値が相対的に低下する周波数領域の周波数に設定されるので、極低温であっても、電池の上下限電圧を守りつつ電池内部に発熱のための十分な電流を流すことができる。したがって、この発明によれば、二次電池を内部から効果的に発熱させることによって二次電池を効果的に昇温することができる。
この発明の実施の形態1による二次電池の昇温装置の全体構成図である。 二次電池の電圧の内訳を示した図である。 二次電池のインピーダンス特性を示すナイキスト線図である。 二次電池のインピーダンス特性(絶対値)を示すボード線図である。 二次電池のインピーダンス特性(位相)を示すボード線図である。 内部抵抗に発生する電圧を拘束条件として、極低温時に二次電池に流すことができるリップル電流のピーク値を示した図である。 内部抵抗に発生する電圧を拘束条件として、極低温時に二次電池に発生させることができる平均発熱量を示した図である。 内部抵抗に発生する電圧を拘束条件として、極低温時におけるI0cosθの大きさを示した図である。 図1に示すリップル生成装置の回路構成の一例を示した図である。 制御装置の機能ブロック図である。 リップル電流の挙動を示した図である。 二次電池についての電極/電解液界面の等価回路図である。 負極のインピーダンスの測定方法を説明するための図である。 この発明の実施の形態4による二次電池の昇温装置が適用された電動車両の全体ブロック図である。 図14に示したECUの、昇圧コンバータの制御に関する部分の機能ブロック図である。 ECUにより実行されるリップル昇温の処理手順を説明するためのフローチャートである。 二次電池のリップル昇温時における電流の波形図である。 リップル電流の他の発生方法を示した図である。 発熱量に比例する電流I0cosθを示した図8に、リップル電流のピーク値を重ね合わせた図である。 二次電池に発生させるリップル電流を最大にするための、リアクトルのインダクタンスの設計方法を説明するための図である。 実施の形態7における昇圧コンバータの回路図である。 実施の形態7の変形例における昇圧コンバータの回路図である。 二次電池のインピーダンス特性(絶対値)を示すボード線図である。 二次電池のインピーダンス特性(位相)を示すボード線図である。 二次電池のインピーダンス特性を示すナイキスト線図の原点近傍の拡大図である。 実施の形態8における二次電池の電極構造の特徴部分を説明するための図である。
 以下、本発明の実施の形態について、図面を参照しながら詳細に説明する。なお、図中同一または相当部分には同一符号を付してその説明は繰返さない。
 [実施の形態1]
 図1は、この発明の実施の形態1による二次電池の昇温装置の全体構成図である。図1を参照して、昇温装置は、リップル生成装置20と、制御装置30とを備える。リップル生成装置20は、二次電池10に接続される。
 二次電池10は、リチウムイオン電池やニッケル水素電池などに代表される再充電可能な電池である。二次電池10は、内部抵抗12を含む。後述のように、この内部抵抗12は、温度依存性を有するとともに、電池に流れる電流の周波数によっても大きく変化する。
 リップル生成装置20は、制御装置30によって制御され、所定周波数のリップル電流Iを二次電池10に積極的に発生させる。たとえば、リップル生成装置20を構成する電力用半導体スイッチング素子をオン/オフさせることにより二次電池10にリップル電流Iを発生させることが可能である。リップル生成装置20の回路構成については、後ほど一例を挙げて説明する。
 制御装置30は、リップル電流Iを二次電池10に発生させることによって二次電池10を内部から昇温するようにリップル生成装置20を制御する。ここで、制御装置30は、二次電池10のインピーダンスの周波数特性に基づいて、二次電池10のインピーダンスの絶対値が相対的に低下する周波数領域のリップル電流Iを二次電池10に発生させるようにリップル生成装置20を制御する。
 以下、二次電池10にリップル電流Iを積極的に発生させることによって二次電池10を効果的に昇温する技術(以下、この昇温を「リップル昇温」とも称する。)の考え方について詳しく説明する。
 図2は、二次電池10の電圧の内訳を示した図である。なお、この図2では、簡単のため、内部抵抗は実部のみとし、L,C等による虚部は無いものとする。図2を参照して、二次電池10の端子間に発生する電圧Vは、開回路電圧OCVに、通電時に内部抵抗12に発生する電圧ΔVを考慮したものとなる。具体的には、充電電流が流れるときは、V=OCV+ΔVとなり、放電電流が流れるときは、V=OCV-ΔVとなる(ΔV>0)。
 いま、二次電池10に電流Iが流れたときの発熱量Qは、内部抵抗12の抵抗値をRとすると、以下の式で表わすことができる。
 Q=I2×R …(1)
  =I×ΔV …(2)
  =ΔV2/R …(3)
 この(1)~(3)式は等価である。(1)式によると、リップル生成装置20を用いて発生させるリップル電流Iを大きくすれば、二次電池10を効果的に昇温できるようにみえる。しかしながら、実際には、上述のように、二次電池の電圧Vについて、安全性や耐久性の観点から上下限電圧を守ることが要求される。そして、特に極低温下では、内部抵抗12の抵抗値Rが大きくなることにより電圧ΔVが大きくなるので、二次電池10の電圧Vを上下限内に抑えつつ発熱のための十分なリップル電流Iを流すことができないという事態が発生し得る。
 すなわち、内部抵抗12の抵抗値Rが大きくなる低温下(特に極低温下)では、電圧ΔVが制約となって二次電池10がリップル電流Iを流すことができず、二次電池10を効果的に昇温できないという事態が発生し得る。そこで、この発明においては、(3)式および二次電池10のインピーダンスの周波数特性に着目し、二次電池10のインピーダンス(内部抵抗12の抵抗値R)の絶対値が他の周波数領域に比べて相対的に小さい周波数領域のリップル電流をリップル生成装置20により発生させる。これにより、二次電池10の発熱量Qが大きくなり、二次電池10を効果的に昇温することができる。
 図3は、二次電池10のインピーダンス特性を示すナイキスト線図である。なお、二次電池の電気的特性を解析する手法として、電気化学的インピーダンス分光法「EIS(Electrochemical Impedance Spectroscopy)とも称される。」が知られており、このナイキスト線図は、EISを用いて二次電池10のインピーダンス特性を複素平面上に表示したものである。
 図3を参照して、二次電池10のインピーダンスZは、次式にて表わすことができる。
 Z=R1+iR2 …(4)
  =|Z|e …(5)
 図3において、横軸は、実数成分(R1)を示し、縦軸は、虚数成分(R2)を示す。なお、縦軸の虚数成分(R2)については、図3において上方向をマイナスとし、下方向をプラスとして示す。そして、原点からの距離は、インピーダンスZの大きさを示す絶対値|Z|を示し、横軸(実数軸)とのなす角は、インピーダンスZの位相θを示す。
 また、図4,図5は、二次電池10のインピーダンス特性を示すボード線図である。このボード線図も、EISを用いて二次電池10のインピーダンス特性を表示したものである。図4は、インピーダンスZの絶対値|Z|の周波数特性を示し、図5は、インピーダンスZの位相θの周波数特性を示す。
 図4,図5において、横軸は、二次電池10に発生させる交流電流(リップル電流)の周波数を対数表示で示す。縦軸は、図4においてはインピーダンスZの絶対値|Z|を対数表示で示し、図5においてはインピーダンスZの位相θを表わす。
 図3,図4に示されるように、二次電池10の昇温が要求される低温下では、インピーダンスZの絶対値|Z|は非低温時に比べて大きくなるけれども、そのような増大が顕著なのは、リップル電流の周波数が低周波の場合である。特に、周波数が1kHz近傍では、インピーダンスZの絶対値|Z|は、他の周波数領域に比べて小さく、また、極低温下でも非低温時(常温時)の高々3倍程度にしかならない(図4のA部)。さらに、図5に示されるように、その周波数領域では、インピーダンスZの位相θも零近傍であるので、力率が1となり効率もよい。
 そこで、この実施の形態1においては、この二次電池10のインピーダンスの周波数特性に基づいて、二次電池10のインピーダンスZの絶対値|Z|が相対的に低下する周波数領域(この実施の形態1では略1kHz)のリップル電流をリップル生成装置20により発生させることとしたものである。これにより、二次電池10の内部抵抗12に発生する電圧ΔVの制約を守りつつ二次電池10にリップル電流を効果的に流すことができ、その結果、二次電池10が効果的に昇温される。
 図6は、二次電池10の内部抵抗12に発生する電圧ΔVを拘束条件として、極低温時に二次電池10に流すことができるリップル電流のピーク値I0を示した図である。図6を参照して、横軸は、リップル電流の周波数を示し、縦軸は、電圧ΔVの拘束条件下で二次電池10が流せるリップル電流(正弦波を仮定)のピーク値I0を示す。なお、ここでは、一例として、電圧ΔV=0.5V、二次電池10の温度T=-30℃(極低温)の場合が示される。
 図6に示されるように、二次電池10のインピーダンスの絶対値が相対的に小さくなる周波数領域(1kHz近傍)において、二次電池10に流せる電流は増大する。低周波時や直流時においては、電圧ΔV=0.5Vという拘束条件を与えると、二次電池10にはほとんど電流を流すことができず、二次電池を昇温することができない。
 また、図7は、二次電池10の内部抵抗12に発生する電圧ΔVを拘束条件として、極低温時に二次電池10に発生させることができる平均発熱量を示した図である。図7を参照して、横軸は、リップル電流の周波数を示し、縦軸は、リップル1周期における二次電池10の平均発熱量を示す。なお、ここでも、一例として、電圧ΔV=0.5V、二次電池10の温度T=-30℃(極低温)の場合が示される。
 図7に示されるように、二次電池10のインピーダンスの絶対値が相対的に小さくなる周波数領域(1kHz近傍)において、二次電池10の発熱量は増大する。低周波時や直流時においては、電圧ΔV=0.5Vという拘束条件を与えると、二次電池10にはほとんど電流を流すことができず、二次電池を昇温することができない。
 また、図8は、二次電池10の内部抵抗12に発生する電圧ΔVを拘束条件として、極低温時におけるI0cosθの大きさを示した図である。ここで、発熱量Qは、I0×|ΔV|×cosθに比例するので、電圧ΔVを一定とすると、I0cosθは発熱量Qに比例する値である。なお、ここでも、一例として、電圧ΔV=0.5V、二次電池10の温度T=-30℃(極低温)の場合が示されている。
 図8を参照して、二次電池10のインピーダンスの絶対値が相対的に小さくなる周波数領域(1kHz近傍)において、I0cosθは大きくなる。したがって、I0cosθが最大となる周波数のリップル電流を二次電池10に発生させると、二次電池10の発熱量Qを最大にできる。
 このように、二次電池10のインピーダンスの周波数特性に基づいて、二次電池10のインピーダンスの絶対値が相対的に低下する周波数領域(この実施の形態1では、たとえば1kHz近傍)のリップル電流をリップル生成装置20により発生させる。これにより、二次電池10の発熱量Qを大きくすることができ、二次電池10を効果的に昇温することができる。
 次に、図1に示したリップル生成装置20および制御装置30の具体的な構成の一例について説明する。
 図9は、図1に示したリップル生成装置20の回路構成の一例を示した図である。図9を参照して、リップル生成装置20は、電力用半導体スイッチング素子(以下、単に「スイッチング素子」とも称する。)Q1,Q2と、ダイオードD1,D2と、リアクトルL1と、コンデンサCHとを含む。
 スイッチング素子Q1,Q2は、正極線PL2と二次電池10の負極に接続される負極線NLとの間に直列に接続される。そして、スイッチング素子Q1のコレクタが正極線PL2に接続され、スイッチング素子Q2のエミッタが負極線NLに接続される。ダイオードD1,D2は、それぞれスイッチング素子Q1,Q2に逆並列に接続される。リアクトルL1の一方端は、二次電池10の正極に接続される正極線PL1に接続され、他方端は、スイッチング素子Q1,Q2の接続ノードNDに接続される。コンデンサCHは、正極線PL2と負極線NLとの間に接続される。
 なお、上記のスイッチング素子Q1,Q2として、たとえば、IGBT(Insulated Gate Bipolar Transistor)や電力用MOS(Metal Oxide Semiconductor)トランジスタ等を用いることができる。
 このリップル生成装置20は、制御装置30からの制御信号PWMCに応じてスイッチング素子Q1,Q2が相補的にオン/オフすることにより、スイッチング素子Q1,Q2のスイッチング周波数に応じたリップル電流IBを二次電池10に発生させる。具体的には、二次電池10が充電される方向のリップル電流IBを正とすると、スイッチング素子Q1,Q2がそれぞれオフ,オン状態のとき、リップル電流IBは、負方向に増加する。リップル電流IBが負になり、その後、スイッチング素子Q1,Q2がそれぞれオン,オフ状態に切り替わると、リップル電流IBは、正方向に増加し始める。そして、リップル電流IBが正になり、その後、スイッチング素子Q1,Q2がそれぞれオフ,オン状態に再び切り替わると、リップル電流IBは、負方向に増加し始める。このようにスイッチング素子Q1,Q2のスイッチング周波数に応じたリップル電流IBを二次電池10に発生させることができる。
 図10は、制御装置30の機能ブロック図である。図10を参照して、制御装置30は、リップル周波数設定部32と、キャリア生成部34と、PWM(Pulse Width Modulation)信号生成部36とを含む。リップル周波数設定部32は、リップル生成装置20のスイッチング素子Q1,Q2のスイッチング周波数、すなわち二次電池10に発生させるリップル電流の周波数(以下「リップル周波数」とも称する。)fを設定する。具体的には、リップル周波数設定部32は、図3~図5に示した二次電池10のインピーダンスの周波数特性に基づいて、二次電池10のインピーダンスの絶対値が相対的に小さい周波数(たとえば1kHz近傍)をリップル周波数fとして設定し、その設定したリップル周波数fをキャリア生成部34へ出力する。
 キャリア生成部34は、リップル周波数設定部32から受けるリップル周波数fを有するキャリア信号CR(三角波)を生成し、その生成したキャリア信号CRをPWM信号生成部36へ出力する。
 PWM信号生成部36は、所定のデューティー指令値d(0.5とする。)を、キャリア生成部34から受けるキャリア信号CRと大小比較し、その比較結果に応じて論理状態が変化するPWM信号を生成する。そして、PWM信号生成部36は、その生成されたPWM信号を制御信号PWMCとしてリップル生成装置20のスイッチング素子Q1,Q2へ出力する。
 図11は、リップル電流IBの挙動を示した図である。図11を参照して、たとえば時刻t1において、キャリア信号CRがデューティー指令値d(=0.5)よりも大きくなると、上アームのスイッチング素子Q1がオフされ、下アームのスイッチング素子Q2がオンされる。そうすると、リップル電流IB(図9)は、負方向への増加に転じ、リアクトルL1(図9)に蓄えられていたエネルギーが放出されたタイミングでリップル電流IBの符号が正から負へ切替わる。
 時刻t2においてキャリア信号CRがデューティー指令値dよりも小さくなると、上アームのスイッチング素子Q1がオンされ、下アームのスイッチング素子Q2がオフされる。そうすると、リップル電流IBは、正方向への増加に転じ、リアクトルL1に蓄えられていたエネルギーが放出されたタイミングでリップル電流IBの符号が負から正へ切替わる。
 そして、時刻t3において再びキャリア信号CRがデューティー指令値dよりも大きくなると、スイッチング素子Q1,Q2がそれぞれオフ,オンされ、リップル電流IBは、再び負方向への増加に転じる。
 このようにして、キャリア信号CRの周波数すなわちリップル周波数fを有するリップル電流IBを二次電池10に発生させることができる。
 以上のように、この実施の形態1においては、リップル生成装置20によりリップル電流を二次電池10に積極的に発生させることによって二次電池10を内部から昇温する。ここで、リップル周波数は、二次電池10のインピーダンスの周波数特性に基づいて、インピーダンスの絶対値が相対的に低下する周波数領域の周波数に設定されるので(たとえば1kHz近傍)、極低温であっても、電池の上下限電圧を守りつつ電池内部に発熱のための十分な電流を流すことができる。したがって、この実施の形態1によれば、二次電池10を内部から効果的に発熱させることによって二次電池10を効果的に昇温することができる。
 また、この実施の形態1によれば、図9に示したような回路によりリップル生成装置20が実現される場合には、二次電池10を昇温するためのエネルギー源は二次電池10のみであるので(別途の電源は不要)、効率的に二次電池10を昇温することができる。
 さらに、この実施の形態1によれば、二次電池10の内部抵抗の発熱を用いて二次電池10の内部から発熱するので、ヒータ等を用いて電池外部から加熱する場合に発生し得る加熱ムラは発生しない。また、電池の内部抵抗は低温ほど大きく、直列接続されたセルのうち低温のセルほど発熱量が大きいので、電池を均一に昇温することができる。
 [実施の形態2]
 この実施の形態2では、二次電池10がリチウムイオン電池であって、充電方向のリップル電流によって負極におけるリチウム(Li)の析出が問題になる場合において、Li析出の発生を回避するリップル周波数が設定される。以下、この実施の形態2におけるリップル周波数の考え方について説明する。
 図12は、二次電池10についての電極/電解液界面の等価回路図である。図12を参照して、二次電池10の内部抵抗は、主に、負極析出抵抗R1-と、負極反応抵抗R2-と、負極電気二重層容量C-と、正極反応抵抗R+と、正極電気二重層容量C+と、電解液抵抗Rsolとから成る。
 負極析出抵抗R1-は、充電時における負極44での電荷移動抵抗である。負極反応抵抗R2-は、放電時における負極44での電荷移動抵抗である。負極電気二重層容量C-は、負極44と電解液との界面に形成される電気二重層の容量である。正極反応抵抗R+は、正極42側の電荷移動抵抗である。正極電気二重層容量C+は、正極42と電解液との界面に形成される電気二重層の容量である。電解液抵抗Rsolは、電解液の抵抗や集電箔等の金属抵抗等である。なお、負極44には、たとえばカーボン系やスズ合金系の材料が用いられる。
 充電時に負極析出抵抗R1-に電流が流れることによってLiの析出が発生する。一方、二次電池10に発生させるリップル電流が高周波であれば、電流は、負極電気二重層容量C-に流れ、負極析出抵抗R1-にはほとんど流れない。そこで、この実施の形態2では、負極析出抵抗R1-と負極電気二重層容量C-とから成るRC回路の時定数に対応する周波数よりも高くなるようにリップル周波数を設定することによって、負極44におけるLi析出の発生を回避する。
 なお、負極析出抵抗R1-および負極電気二重層容量C-については、たとえば以下のようにして測定できる。すなわち、図13に示すように、正極42と負極44との間に参照極46を設け、正極42および負極44間に電流を流したときの負極44および参照極46間のインピーダンスを測定する。そして、その測定結果を図3に示したナイキスト線図で表わしたとき、半円部の直径が負極析出抵抗R1-であり、半円部の頂点において(負極析出抵抗R1-)×(負極電気二重層容量C-)=1/2πf(fは周波数)の関係が成り立つことを利用して負極電気二重層容量C-を求めることができる。なお、負極44にリチウム金属を用いると負極44では析出反応しか起こらないので、負極44にリチウム金属を用いることによって負極析出抵抗R1-を測定することができる。
 あるいは、二次電池10を分解し、正極42に代えて負極44を設けて集電端子間でインピーダンスを測定してもよい。この場合においても、上述のように、両集電端子にリチウム金属を用いることによって負極析出抵抗R1-を算出することが可能である。
 以上のように、この実施の形態2においては、負極析出抵抗R1-と負極電気二重層容量C-とから成るRC回路の時定数に対応する周波数よりも高くなるようにリップル周波数が設定される。したがって、この実施の形態2によれば、負極におけるLi析出の発生を回避することができる。
 [実施の形態3]
 この実施の形態3では、二次電池10がリチウムイオン電池であって、充電方向のリップル電流によって負極におけるリチウム(Li)の析出が問題になる場合、リップル電流の平均値が放電側にオフセットするようにリップル電流を発生させる。
 具体的な方法としては、再び図9~図11を参照して、たとえば、図9に示したような回路によりリップル生成装置20が実現される場合、リップル昇温時のデューティー指令値dを0.5よりも小さな値に設定してもよい。あるいは、図9に示したような回路によりリップル生成装置20が実現される場合、リップル昇温に必要なエネルギー源は二次電池10のみである。そこで、リップル昇温時のデューティー指令値dを0.5に設定しても、リップル生成装置20における損失分だけリップル電流は放電側にオフセットするので、これを利用してもよい。
 以上のように、この実施の形態3によっても、負極におけるLi析出の発生を回避することができる。
 [実施の形態4]
 この実施の形態4では、この発明による二次電池の昇温装置が電動車両に適用される。
 図14は、この発明の実施の形態4による二次電池の昇温装置が適用された電動車両の全体ブロック図である。図14を参照して、電動車両100は、二次電池10と、昇圧コンバータ22と、コンデンサCHと、インバータ50と、モータジェネレータ60と、駆動輪65とを備える。また、電動車両100は、ECU(Electronic Control Unit)70と、温度センサ82と、電流センサ84と、電圧センサ86,88とをさらに備える。
 昇圧コンバータ22は、ECU70からの制御信号PWMCに基づいて、正極線PL2および負極線NL間の電圧(以下「システム電圧」とも称する。)を二次電池10の出力電圧以上に昇圧することができる。なお、システム電圧が目標電圧よりも低い場合、スイッチング素子Q2のオンデューティーを大きくすることによって正極線PL1から正極線PL2へ電流を流すことができ、システム電圧を上昇させることができる。一方、システム電圧が目標電圧よりも高い場合、スイッチング素子Q1のオンデューティーを大きくすることによって正極線PL2から正極線PL1へ電流を流すことができ、システム電圧を低下させることができる。
 また、昇圧コンバータ22は、コンデンサCHとともに、図9に示したリップル生成装置20を形成する。そして、所定のリップル昇温開始条件が成立すると、昇圧コンバータ22は、ECU70からの制御信号PWMCに基づいてスイッチング素子Q1,Q2をオン/オフさせることにより、二次電池10にリップル電流を発生させる。
 コンデンサCHは、正極線PL2および負極線NL間の電圧を平滑化する。また、コンデンサCHは、二次電池10のリップル昇温の実行時、二次電池10から放電される電力を一時的に蓄える電力バッファとして用いられる。
 インバータ50は、ECU70からの制御信号PWMIに基づいて、正極線PL2および負極線NLから供給される直流電力を三相交流に変換してモータジェネレータ60へ出力し、モータジェネレータ60を駆動する。また、インバータ50は、車両の制動時、モータジェネレータ60により発電された三相交流電力を制御信号PWMIに基づいて直流に変換し、正極線PL2および負極線NLへ出力する。
 モータジェネレータ60は、交流電動機であり、たとえば、永久磁石が埋設されたロータを備える三相交流電動機である。モータジェネレータ60は、駆動輪65に機械的に連結され、車両を駆動するためのトルクを発生する。また、モータジェネレータ60は、車両の制動時、車両の運動エネルギーを駆動輪65から受けて発電する。
 温度センサ82は、二次電池10の温度TBを検出し、その検出値をECU70へ出力する。電流センサ84は、二次電池10に対して入出力される電流IBを検出し、その検出値をECU70へ出力する。電圧センサ86は、二次電池10の出力電圧に相当する、正極線PL1および負極線NL間の電圧VBを検出し、その検出値をECU70へ出力する。電圧センサ88は、正極線PL2および負極線NL間の電圧VHを検出し、その検出値をECU70へ出力する。
 ECU70は、電圧センサ86,88からの電圧VB,VHの各検出値に基づいて、昇圧コンバータ22を駆動するための制御信号PWMCを生成し、その生成した制御信号PWMCを昇圧コンバータ22へ出力する。
 また、ECU70は、温度センサ82からの温度TB、二次電池10の残存容量(以下「SOC(State Of Charge)」とも称する。)、車両の速度を示す車速信号VS、図示されないシフトレバーのシフト位置を示すシフト位置信号SP等に基づいて、二次電池10のリップル昇温の実行条件が成立したか否かを判定する。リップル昇温の実行条件が成立すると、ECU70は、二次電池10のインピーダンスの絶対値が相対的に小さい周波数領域(たとえば1kHz近傍)のリップル電流を二次電池10に発生させるための制御信号PWMCを生成し、その生成した制御信号PWMCを昇圧コンバータ22へ出力する。
 また、ECU70は、モータジェネレータ60を駆動するための制御信号PWMIを生成し、その生成した制御信号PWMIをインバータ50へ出力する。
 図15は、図14に示したECU70の、昇圧コンバータ22の制御に関する部分の機能ブロック図である。図15を参照して、ECU70は、電圧指令生成部110と、電圧制御部112と、デューティー指令生成部114と、PWM信号生成部116と、リップル昇温条件判定部118と、リップル周波数設定部120と、キャリア生成部122とを含む。
 電圧指令生成部110は、昇圧コンバータ22により調整される電圧VHの目標値を示す電圧指令値VRを生成する。たとえば、電圧指令生成部110は、モータジェネレータ60のトルク指令値およびモータ回転数から算出されるモータジェネレータ60のパワーに基づいて電圧指令値VRを生成する。
 電圧制御部112は、電圧指令生成部110から電圧指令値VRを受け、電圧センサ88,86からそれぞれ電圧VH,VBの検出値を受ける。そして、電圧制御部112は、電圧VHを電圧指令値VRに一致させるための制御演算(たとえば比例積分制御)を実行する。
 デューティー指令生成部114は、電圧制御部112からの制御出力に基づいて、昇圧コンバータ22のスイッチング素子Q1,Q2のスイッチングデューティーを示すデューティー指令値dを生成する。ここで、デューティー指令生成部114は、二次電池10のリップル昇温を実行する旨の通知をリップル昇温条件判定部118から受けると、電圧制御部112からの制御出力に拘わらず、デューティー指令値dをリップル昇温用の所定値(たとえば0.5(昇圧比2))とする。
 PWM信号生成部116は、デューティー指令生成部114から受けるデューティー指令値dを、キャリア生成部122から受けるキャリア信号CRと大小比較し、その比較結果に応じて論理状態が変化する制御信号PWMCを生成する。そして、PWM信号生成部116は、その生成された制御信号PWMCを昇圧コンバータ22のスイッチング素子Q1,Q2へ出力する。
 リップル昇温条件判定部118は、温度センサ82によって検出される温度TB、二次電池10のSOC、車速信号VSおよびシフト位置信号SPを受ける。なお、二次電池10のSOCは、種々の公知の手法を用いて、電流IBおよび電圧VBの各検出値等に基づいて算出される。そして、リップル昇温条件判定部118は、それらの各信号に基づいて、二次電池10のリップル昇温の実行条件、より詳しくは、開始条件、継続条件および終了条件を判定し、それらの判定結果に基づいて、リップル昇温を実行するか否かをデューティー指令生成部114およびリップル周波数設定部120へ通知する。
 リップル周波数設定部120は、二次電池10のリップル昇温を実行する旨の通知をリップル昇温条件判定部118から受けると、リップル周波数f(実施の形態1,2で説明した周波数)をキャリア生成部122へ出力する。
 キャリア生成部122は、PWM信号生成部116においてPWM信号を生成するためのキャリア信号CR(三角波)を生成し、その生成したキャリア信号CRをPWM信号生成部116へ出力する。ここで、キャリア生成部122は、リップル周波数設定部120からリップル周波数fを受けると、その受けたリップル周波数fを有するキャリア信号CRを生成してPWM信号生成部116へ出力する。
 図16は、ECU70により実行されるリップル昇温の処理手順を説明するためのフローチャートである。なお、このフローチャートに示される処理は、一定時間毎または所定の条件が成立する毎にメインルーチンから呼び出されて実行される。
 図16を参照して、ECU70は、二次電池10の温度TB、SOC、車速信号VS、シフト位置信号SP等に基づいて、リップル昇温の開始条件が成立しているか否かを判定する(ステップS10)。一例として、温度TBが極低温を示し、SOCが所定値よりも高く、車速信号VSが車両の停止を示し、かつ、シフト位置信号SPがパーキングポジションを示しているとき、リップル昇温の開始条件が成立しているものと判定される。
 ステップS10において開始条件が成立していると判定されると(ステップS10においてYES)、ECU70は、上述の方法によりリップル昇温を実行する(ステップS20)。次いで、ECU70は、リップル昇温が開始してからの時間や、二次電池10の温度TB、SOC、車速信号VS、シフト位置信号SP等に基づいて、リップル昇温の継続条件が成立しているか否かを判定する(ステップS30)。一例として、温度TBが所定の昇温終了温度よりも低く、SOCが所定値よりも高く、車速信号VSが車両の停止を示し、シフト位置信号SPがパーキングポジションを示し、かつ、リップル昇温が開始してからの時間が所定時間を経過していなければ、リップル昇温の継続条件が成立しているものと判定される。そして、継続条件が成立していると判定されると(ステップS30においてYES)、ステップS20へ処理が移行され、リップル昇温が継続される。
 ステップS30において継続条件が不成立であると判定されると(ステップS30においてNO)、ECU70は、リップル昇温を終了する(ステップS40)。次いで、ECU70は、二次電池10の温度TB、SOC等に基づいて、リップル昇温の終了条件を判定する(ステップS50)。一例として、温度TBが所定の昇温終了温度を超えるか、SOCが下限値を下回ると、終了条件が成立しているものと判定される。
 ステップS50において終了条件が成立しているものと判定されると(ステップS50においてYES)、一連の処理が終了する。一方、ステップS50において終了条件が不成立であると判定されると(ステップS50においてNO)、警報を出力するとともに、所定の異常判定処理を実行する(ステップS60)。
 図17は、二次電池10のリップル昇温時における電流IBの波形図である。なお、二次電池10へ充電電流が流れるとき、電流IBを正とする。図17を参照して、リップル昇温時、昇圧コンバータ22のキャリア周波数fCRは、リップル周波数f(1kHzとする。)に設定されるので、電流IBはリップル周波数fで変動する。
 なお、リップル電流を生成するためのエネルギー源は二次電池10のみであるので、昇圧コンバータ22での損失等により電流IBは負方向(放電方向)にオフセットする。これにより、二次電池10がリチウムイオン電池の場合には、リップル昇温に伴なう負極でのLi析出の発生が回避される。
 なお、昇圧コンバータ22の通常の昇圧動作時(非リップル昇温時)におけるスイッチング周波数は、数kHz~10kHz程度であるのに対し、リップル昇温時のリップル周波数fは、1kHz程度であって、上記の通常動作時のスイッチング周波数よりも低い。すなわち、ECU70は、リップル昇温時、昇圧コンバータ22のスイッチング周波数(あるいはキャリア周波数)を通常動作時(非リップル昇温時)よりも低く設定する。
 なお、上記においては、昇圧コンバータ22のキャリア周波数fCRをリップル周波数fに変更することによってリップル電流を発生させるものとしたが、キャリア周波数fCRは変更せずに(たとえば10kHz)、リップル周波数fで交流変化する電流指令を与えることによって、図18に示すようなリップル電流を発生させてもよい。
 以上のように、この実施の形態4においては、昇圧コンバータ22を利用して二次電池10のリップル昇温が実行される。したがって、この実施の形態4によれば、二次電池10を内部から効果的に発熱させることによって二次電池10を効果的に昇温可能としつつ、車両駆動装置および車両自体の小型化および低コスト化を阻害しない二次電池10の昇温装置を実現することができる。
 [実施の形態5]
 再び図14を参照して、昇圧コンバータ22を用いて二次電池10のリップル昇温を行なう場合、スイッチング素子Q1,Q2のデューティー比を0.5(昇圧比2)とすると、発生するリップル電流(三角波)のピーク値Ipは、次式で表される。
 Ip=VB/L×1/(4×f) …(6)
 ここで、LはリアクトルL1のインダクタンスを示し、fは昇圧コンバータ22のスイッチング周波数(=リップル周波数,キャリア周波数)を示す。
 図19は、発熱量に比例する電流I0cosθを示した図8に、リップル電流のピーク値Ipを重ね合わせた図である。図19を参照して、曲線k1は、発熱量に比例する電流I0cosθを示し、曲線k2は、(6)式で示されるピーク値Ipを示す。すなわち、曲線k1は、二次電池10からみた最大電流を示し、曲線k2は、リアクトルL1からみた最大電流を示す。電流の大きさが曲線k1を超えると、上下限電圧を超える電圧が発生するので、曲線k1を超える電流を流すことはできない。一方、リアクトルL1に流すことができる電流は、曲線k2で示される。そこで、曲線k1,k2の交点P1に相当するリップル周波数を選定することによって、二次電池10の上下限電圧を守りつつ二次電池10の発熱量を最大にすることができる。
 以上のように、この実施の形態5によれば、既設の昇圧コンバータ22を用いた場合に、リップル昇温による二次電池10の発熱量を最大にすることができる。
 [実施の形態6]
 再び図19を参照して、交点P1は、曲線k1の最大点ではないので、実施の形態5では、二次電池10のリップル昇温を最適に実施するという観点でみると、昇圧コンバータ22のリアクトルL1のインダクタンスLは最適であるとは言えない。昇圧コンバータ22のリアクトルL1に流すことができる最大電流は、上述の(6)式で示されるから、昇圧コンバータ22のリアクトルL1のインダクタンスLを適切に設計すれば、二次電池10に発生させるリップル電流を最大にできる。
 図20は、二次電池10に発生させるリップル電流を最大にするための、リアクトルL1のインダクタンスLの設計方法を説明するための図である。図20を参照して、曲線k3は、(6)式で示されるリップル電流のピーク値Ipを示す。この実施の形態6では、発熱量に比例する電流I0cosθを示す曲線k1の最大点P2において曲線k3が曲線k1と交わるように、リアクトルL1のインダクタンスLが設計される。なお、実施の形態5と比較すれば、この実施の形態6では、実施の形態5に対してリアクトルL1のインダクタンスLが小さくなるように昇圧コンバータ22が設計される。
 以上のように、この実施の形態6によれば、昇圧コンバータ22のリアクトルL1のインダクタンスLを適切に設計することにより、二次電池10に発生させるリップル電流を最大にすることができる。
 [実施の形態7]
 上記のように昇圧コンバータ22を用いて二次電池10のリップル昇温を実施する場合、昇圧コンバータ22のキャリア周波数(スイッチング素子Q1,Q2のスイッチング周波数)を通常の昇圧動作時よりも低く設定すると(たとえば1kHzに設定)、電流によるノイズが増大するとともに、発生するノイズが可聴域に入ることにより騒音が問題となる。また、効率面においても、リップル昇温時のリアクトルL1における損失が問題となる。
 そこで、この実施の形態7では、リップル昇温用のリアクトルが昇圧コンバータに別途設けられる。そして、このリップル昇温用のリアクトルにおいて、昇圧コンバータ22のキャリア周波数を通常動作時と同じ高周波に維持しても十分なリップル電流が得られるようにインダクタンスが設計される。
 図21は、実施の形態7における昇圧コンバータの回路図である。なお、昇圧コンバータ以外の構成は、図14に示した構成と同じである。図21を参照して、昇圧コンバータ22Aは、図14に示した昇圧コンバータ22の構成において、リアクトルL2と、スイッチSW1とをさらに含む。
 リアクトルL2は、リアクトルL1に並列に設けられる。このリアクトルL2は、リップル昇温用のリアクトルであり、通常の昇圧動作用のリアクトルL1よりもインダクタンスが小さくなるように設計される。たとえば、リアクトルL1を用いた通常動作時に発生する電流リップルの10倍のリップル電流をリップル昇温時に発生させたい場合には、リップル昇温用のリアクトルL2のインダクタンスをリアクトルL1のインダクタンスの1/10に設計すればよい。
 なお、低インダクタンスおよび効率向上を考慮すると、リアクトルL2として空芯型のコイルを用いるのが好ましい。空芯型のコイルを用いることにより、リアクトルによる損失(鉄損)が低減され、効率の向上が可能となる。
 スイッチSW1は、リアクトルL1,L2と正極線PL1との間に設けられる。そして、スイッチSW1は、図示されないECU70からの切替信号CTLに応じて、リアクトルL1,L2のいずれか一方に正極線PL1を電気的に接続する。昇圧コンバータ22Aのその他の構成は、図14に示した昇圧コンバータ22と同じである。
 この昇圧コンバータ22Aにおいては、通常の昇圧動作時(非リップル昇温時)は、ECU70からの切替信号CTLに応じて、スイッチSW1によりリアクトルL1が正極線PL1に接続され、リアクトルL2は正極線PL1から切離される。一方、リップル昇温時は、切替信号CTLに応じて、スイッチSW1によりリアクトルL2が正極線PL1に接続され、リアクトルL1は正極線PL1から切離される。なお、スイッチング素子Q1,Q2のスイッチング周波数(昇圧コンバータ22Aのキャリア周波数)は、リップル昇温時も通常の昇圧動作時と同じである(たとえば、数kHz~10kHz程度)。
 以上のように、この実施の形態7においては、リップル昇温用のリアクトルL2を設けてリップル昇温時に通常動作用のリアクトルL1からリアクトルL2に切替えるようにしたので、リップル昇温時に昇圧コンバータ22のスイッチング周波数(昇圧コンバータ22Aのキャリア周波数)を低く設定する必要がない。したがって、この実施の形態7によれば、リップル昇温に伴ない騒音が増大するのを回避できる。
 また、リップル昇温用のリアクトルL2として空芯型のコイルを用いれば、リップル昇温時に、リアクトルによる損失(鉄損)が低減され、リップル昇温の効率が向上する。
 [変形例]
 上述のように、リップル昇温用のリアクトルL2のインダクタンスは、既設のリアクトルL1のインダクタンスよりも小さいので、リアクトルL1は正極線PL1に常時接続とし、リップル昇温時にリアクトルL2をリアクトルL1に並列に電気的に接続するようにしてもよい。
 図22は、実施の形態7の変形例における昇圧コンバータの回路図である。図22を参照して、昇圧コンバータ22Bは、図21に示した昇圧コンバータ22Aの構成において、スイッチSW1に代えてスイッチSW2を含む。
 スイッチSW2は、リアクトルL2と正極線PL1との間に設けられる。スイッチSW2は、図示されないECU70からの切替信号CTLに応じてオン/オフされる。なお、リアクトルL1は、正極線PL1に直接接続される。昇圧コンバータ22Bのその他の構成は、図21に示した昇圧コンバータ22Aと同じである。
 この昇圧コンバータ22Bにおいては、通常の昇圧動作時(非リップル昇温時)は、ECU70からの切替信号CTLに応じてスイッチSW2がオフされ、リアクトルL2が正極線PL1から切離される。一方、リップル昇温時は、切替信号CTLに応じてスイッチSW2がオンされ、リアクトルL2が正極線PL1に接続される。リアクトルL2のインダクタンスは、リアクトルL1のインダクタンスよりも小さいので、このような構成によっても、リップル昇温時に実施の形態7と同様の特性を得ることができる。
 [実施の形態8]
 図23,図24は、二次電池10のインピーダンス特性を示すボード線図である。図23,24を参照して、実施の形態7およびその変形例では、リップル昇温時に二次電池10に発生させるリップル電流の周波数(リップル周波数)は、通常の昇圧動作時と同じ、たとえば数kHz~10kHzであるが、図23,24において矢印で示したように、数kHzを超える高周波領域では、二次電池10のインピーダンスZの絶対値|Z|が大きくなり、位相θも大きくなる。そして、インピーダンスの増加は、上述のように、二次電池10の電圧上下限の制約下でリップル電流を十分に流すことができなくなる可能性がある。
 図25は、二次電池10のインピーダンス特性を示すナイキスト線図の原点近傍の拡大図である。図25を参照して、周波数が1kHzを超えると、二次電池10のインピーダンスZの絶対値|Z|が増加し、位相θも増加していくのが図25からもわかる。そして、この図25からは、インピーダンスの増加は、L成分の増加により位相θが90°に近づくことによるものであり、インピーダンスの実数成分の変化は小さいことがわかる。
 ここで、二次電池10の発熱量は、I0×|ΔV|cosθ=I02×|Z|cosθに比例するので、L成分の増加によりインピーダンスが増加しても、二次電池10の発熱量は、位相θが略0のとき、すなわち1kHz近傍のときとほとんど変わらない。すなわち、L成分の増加によるインピーダンスの増加は、二次電池10の発熱量の増加にほとんど寄与しないとともに、これまでにも述べたように、二次電池10の電圧上下限の制約の下では、リップル電流を十分に流すことができなくなる可能性がある。
 一方、この高周波領域における、L成分の増加によるインピーダンスの増加は、二次電池10の電気化学的特性に起因するものではなく、二次電池10の構造に起因するものである。そこで、この実施の形態8では、二次電池10において、高周波領域におけるL成分の増加を抑制可能な電極構造が示される。
 図26は、実施の形態8における二次電池の電極構造の特徴部分を説明するための図である。図26を参照して、二次電池10の電極体132は、本体部134と、正極集電箔部136と、負極集電箔部138と、正極集電端子140と、負極集電端子142と、溶接部144とを含む。
 この二次電池10の構造上の特徴は、正極集電端子140を正極集電箔部136と接続する溶接部144、および負極集電端子142を負極集電箔部138と接続する溶接部144の各々の面積が十分に大きいことである。溶接部144の面積を大きくとることによりL成分の増加を抑えることができる。なお、溶接部144の面積を大きくするには、図26に示されるように溶接部144を線や面で形成するほか、溶接点の数を増加させるなどしてもよい。
 また、電極の構造として、正極および負極をセパレータを介して捲いた捲回構造ではなく、平板型構造を採用してもよい。
 以上のように、この実施の形態8によれば、高周波領域におけるインピーダンスの増大を抑制できるので、実施の形態7およびその変形例の構成を採用した場合に、二次電池10の電圧上下限の制約下でリップル電流を十分に流すことができなくなる可能性を回避することができる。
 なお、上記において、電動車両100は、モータジェネレータ60を唯一の走行用動力源とする電気自動車であってもよいし、走行用動力源としてエンジンをさらに搭載したハイブリッド車両であってもよく、さらには、直流電源として二次電池10に加えて燃料電池をさらに搭載した燃料電池車であってもよい。
 なお、上記において、制御装置30およびECU70は、この発明における「制御装置」に対応し、昇圧コンバータ22,22A,22Bは、この発明における「昇圧装置」に対応する。また、スイッチング素子Q1,Q2は、この発明における「第1および第2のスイッチング素子」に対応し、リアクトルL1,L2は、それぞれこの発明における「第1のリアクトル」および「第2のリアクトル」に対応する。
 今回開示された実施の形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施の形態の説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 10 二次電池、12 内部抵抗、20 リップル生成装置、22,22A,22B 昇圧コンバータ、30 制御装置、32,120 リップル周波数設定部、34,122 キャリア生成部、36,116 PWM信号生成部、42 正極、44 負極、46 参照極、50 インバータ、60 モータジェネレータ、65 駆動輪、70 ECU、82 温度センサ、84 電流センサ、86,88 電圧センサ、110 電圧指令生成部、112 電圧制御部、114 デューティー指令生成部、118 リップル昇温条件判定部、132 電極体、134 電極部、136 正極集電箔部、138 負極集電箔部、140 正極集電端子、142 負極集電端子、144 溶接部、PL1,PL2 正極線、NL 負極線、L1,L2 リアクトル、Q1,Q2 スイッチング素子、D1,D2 ダイオード、CH コンデンサ、ND 接続ノード、R1- 負極析出抵抗、R2- 負極反応抵抗、C- 負極電気二重層容量、R+ 正極反応抵抗、C+ 正極電気二重層容量、Rsol 電解液抵抗、SW1,SW2 スイッチ。

Claims (11)

  1.  二次電池(10)に接続され、所定周波数のリップル電流を前記二次電池に積極的に発生させるように構成されたリップル生成装置(20;22)と、
     前記リップル電流を前記二次電池に発生させることによって前記二次電池を昇温するように前記リップル生成装置を制御するための制御装置(30;70)とを備え、
     前記所定周波数は、前記二次電池のインピーダンスの周波数特性に基づいて、前記インピーダンスの絶対値が相対的に低下する周波数領域の周波数に設定される、二次電池の昇温装置。
  2.  前記リップル生成装置は、前記二次電池の電圧以上に出力電圧を昇圧可能に構成されたチョッパ型の昇圧装置である、請求の範囲1に記載の二次電池の昇温装置。
  3.  前記制御装置は、前記二次電池の昇温が要求されると、前記昇圧装置のスイッチング周波数を前記所定周波数に設定する、請求の範囲2に記載の二次電池の昇温装置。
  4.  前記制御装置は、前記二次電池の昇温が要求されると、前記昇圧装置のスイッチング周波数を前記二次電池の非昇温時よりも低い値に設定する、請求の範囲2に記載の二次電池の昇温装置。
  5.  前記昇圧装置は、
     電圧出力線対の各々の間に直列に接続される第1および第2のスイッチング素子(Q1,Q2)と、
     前記第1および第2のスイッチング素子の接続ノードと前記二次電池の正極との間に接続され、所定のインダクタンスを有するリアクトル(L1)とを含み、
     前記制御装置は、前記二次電池の昇温が要求されると、前記二次電池のインピーダンスの周波数特性と前記二次電池の電圧制限とにより前記リップル電流の周波数毎に定まる前記二次電池の最大通電量を超えない範囲で前記リップル電流が最大となるように前記第1および第2のスイッチング素子のスイッチング周波数を設定する、請求の範囲2に記載の二次電池の昇温装置。
  6.  前記昇圧装置は、
     電圧出力線対の各々の間に直列に接続される第1および第2のスイッチング素子(Q1,Q2)と、
     前記第1および第2のスイッチング素子の接続ノードと前記二次電池の正極との間に接続されるリアクトル(L1)とを含み、
     前記二次電池のインピーダンスの周波数特性と前記二次電池の電圧制限とにより前記リップル電流の周波数毎に定まる前記二次電池の発熱量が最大となるように、前記リアクトルのインダクタンスが設定される、請求の範囲2に記載の二次電池の昇温装置。
  7.  前記所定周波数は、前記二次電池のインピーダンスの周波数特性に基づいて、略1kHzに設定される、請求の範囲1に記載の二次電池の昇温装置。
  8.  前記二次電池は、リチウムイオン電池であり、
     前記所定周波数は、前記リチウムイオン電池に充電電流が流れるときの負極の析出抵抗(R1-)と前記負極の電気二重層容量(C-)とにより定まる時定数に対応する周波数よりも高くなるように設定される、請求の範囲1に記載の二次電池の昇温装置。
  9.  前記二次電池は、リチウムイオン電池であり、
     前記制御装置は、前記リチウムイオン電池の放電側に前記リップル電流の平均値がオフセットしたリップル電流を前記二次電池に発生させるように前記リップル生成装置を制御する、請求の範囲1に記載の二次電池の昇温装置。
  10.  二次電池(10)に接続され、所定周波数のリップル電流を前記二次電池に積極的に発生させるように構成されたリップル生成装置(22A;22B)と、
     前記リップル電流を前記二次電池に発生させることによって前記二次電池を昇温するように前記リップル生成装置を制御するための制御装置(70)とを備え、
     前記リップル生成装置は、前記二次電池の電圧以上に出力電圧を昇圧可能に構成されたチョッパ型の昇圧装置であり、
     前記昇圧装置は、
     電圧出力線対の各々の間に直列に接続される第1および第2のスイッチング素子(Q1,Q2)と、
     前記第1および第2のスイッチング素子の接続ノードと前記二次電池の正極との間に設けられる第1のリアクトル(L1)と、
     前記第1のリアクトルに並列に設けられ、前記第1のリアクトルよりもインダクタンスが小さい第2のリアクトル(L2)と、
     前記二次電池の昇温が要求されると、前記第1のリアクトルに代えて、または前記第1のリアクトルとともに、前記接続ノードと前記二次電池の正極との間に前記第2のリアクトルを接続する接続装置(SW1;SW2)とを含む、二次電池の昇温装置。
  11.  車両走行用の電力を蓄える二次電池(10)と、
     前記二次電池の昇温が要求されると前記二次電池を昇温する、請求の範囲1から10のいずれかに記載の二次電池の昇温装置とを備える車両。
PCT/JP2009/062403 2009-07-08 2009-07-08 二次電池の昇温装置およびそれを備える車両 WO2011004464A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP09847069.3A EP2453514B1 (en) 2009-07-08 2009-07-08 Secondary-battery temperature-raising apparatus and vehicle having same
PCT/JP2009/062403 WO2011004464A1 (ja) 2009-07-08 2009-07-08 二次電池の昇温装置およびそれを備える車両
KR1020117030325A KR101358367B1 (ko) 2009-07-08 2009-07-08 2차 전지의 승온 장치 및 그것을 구비하는 차량
JP2011521733A JP5293820B2 (ja) 2009-07-08 2009-07-08 二次電池の昇温装置およびそれを備える車両
CN200980160342.7A CN102473976B (zh) 2009-07-08 2009-07-08 二次电池的升温装置以及包含该升温装置的车辆
US13/260,077 US9327611B2 (en) 2009-07-08 2009-07-08 Temperature elevating apparatus of secondary battery and vehicle equipped with same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/062403 WO2011004464A1 (ja) 2009-07-08 2009-07-08 二次電池の昇温装置およびそれを備える車両

Publications (1)

Publication Number Publication Date
WO2011004464A1 true WO2011004464A1 (ja) 2011-01-13

Family

ID=43428904

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/062403 WO2011004464A1 (ja) 2009-07-08 2009-07-08 二次電池の昇温装置およびそれを備える車両

Country Status (6)

Country Link
US (1) US9327611B2 (ja)
EP (1) EP2453514B1 (ja)
JP (1) JP5293820B2 (ja)
KR (1) KR101358367B1 (ja)
CN (1) CN102473976B (ja)
WO (1) WO2011004464A1 (ja)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013004256A (ja) * 2011-06-15 2013-01-07 Aisan Ind Co Ltd 電池制御方法及び電池制御システム
JP2013037859A (ja) * 2011-08-05 2013-02-21 Toshiba Corp 蓄電池装置
CN103000963A (zh) * 2011-09-14 2013-03-27 V2插电式混合动力汽车合作伙伴 用于保护电池的装置和方法
JP2013099029A (ja) * 2011-10-28 2013-05-20 Toyota Motor Corp 電動車両
JP5225519B2 (ja) * 2010-11-05 2013-07-03 三菱電機株式会社 充放電装置および充放電制御方法
JP2013169028A (ja) * 2012-02-14 2013-08-29 Toyota Motor Corp 車両の制御装置
JP2014229522A (ja) * 2013-05-23 2014-12-08 日本電気株式会社 電源システムおよび電池の予熱方法
CN105977580A (zh) * 2016-07-05 2016-09-28 河南森源重工有限公司 一种锂离子电池短路加热系统
JP2016177931A (ja) * 2015-03-19 2016-10-06 トヨタ自動車株式会社 電源システム
US9873343B2 (en) 2012-08-29 2018-01-23 Toyota Jidosha Kabushiki Kaisha Power storage system and temperature control method for the same
WO2019230157A1 (ja) * 2018-05-30 2019-12-05 住友電気工業株式会社 二次電池昇温装置、コンピュータプログラム及び二次電池昇温方法
JP2020072630A (ja) * 2018-11-02 2020-05-07 トヨタ自動車株式会社 バッテリの昇温装置
WO2020129491A1 (ja) * 2018-12-17 2020-06-25 株式会社デンソー 電池昇温装置
DE102012205852B4 (de) * 2011-04-14 2020-08-27 GM Global Technology Operations, LLC (n.d. Ges. d. Staates Delaware) Verfahren zum Erwärmen einer Fahrzeugbatterie
US11299066B2 (en) 2019-08-21 2022-04-12 Hyundai Motor Company System of increasing temperature of battery for vehicle
JP2023122157A (ja) * 2022-02-22 2023-09-01 本田技研工業株式会社 昇温装置
US11870365B2 (en) 2021-08-10 2024-01-09 Honda Motor Co., Ltd. AC generation circuit and AC generation device
JP7519831B2 (ja) 2020-07-17 2024-07-22 本田技研工業株式会社 昇温装置

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5000025B1 (ja) * 2011-01-07 2012-08-15 三菱電機株式会社 充放電装置
CN103419659B (zh) * 2012-05-22 2016-04-13 比亚迪股份有限公司 电动汽车、电动汽车的动力系统及电池加热方法
FR3005216B1 (fr) * 2013-04-29 2015-04-10 Renault Sa Procede et systeme de charge d'une batterie de vehicule automobile en fonction de la temperature
CN104282965B (zh) * 2013-10-11 2016-08-17 同济大学 一种锂离子电池自加热装置及方法
CN103560307B (zh) * 2013-11-26 2017-02-08 山东威能环保电源科技股份有限公司 一种振荡式电池组快速加热电路及方法
JP6200359B2 (ja) * 2014-03-20 2017-09-20 古河電気工業株式会社 二次電池内部温度推定装置および二次電池内部温度推定方法
JP6015707B2 (ja) * 2014-05-08 2016-10-26 トヨタ自動車株式会社 ハイブリッド車両の動力制御システム
CN105730258B (zh) * 2014-12-10 2019-07-26 比亚迪股份有限公司 汽车的点火控制系统及汽车
CN105489964B (zh) * 2015-12-22 2018-04-06 重庆科鑫三佳车辆技术有限公司 一种动力电池动态温升控制方法和装置
FR3049130B1 (fr) 2016-03-16 2019-06-28 Alstom Transport Technologies Systeme de conversion d'energie electrique, appareil de stockage d'energie electrique et chaine de traction pour un vehicule ferroviaire
CN106292820B (zh) * 2016-08-05 2017-09-08 广州金升阳科技有限公司 一种纹波电流产生电路
CN108306078A (zh) * 2018-03-07 2018-07-20 苏州汇川联合动力系统有限公司 动力电池加热系统及方法
DE102018208358B4 (de) * 2018-05-28 2023-08-31 Volkswagen Aktiengesellschaft Elektrisches Bordnetz, Fortbewegungsmittel und elektrische Schaltung zum Heizen einer Batterie
WO2020072441A1 (en) 2018-10-02 2020-04-09 Jabil Inc. Apparatus, system and method for a self-heating battery circuit
US20200176998A1 (en) * 2018-12-03 2020-06-04 Omnitek Partners Llc Methods for heating and charging energy storage devices at very low temperatures
CN111355430B (zh) * 2018-12-21 2022-05-13 比亚迪股份有限公司 电机控制电路、充放电方法、加热方法及车辆
CN111355435B (zh) * 2018-12-21 2022-04-15 比亚迪股份有限公司 电机控制电路、车辆及其加热方法
CN111355433B (zh) * 2018-12-21 2022-04-15 比亚迪股份有限公司 电机控制电路、车辆及其加热方法
CN109786898B (zh) * 2019-03-25 2021-11-19 哈尔滨理工大学 一种锂离子动力电池交变激励低温加热方法
CN110970691B (zh) * 2019-05-28 2021-10-22 宁德时代新能源科技股份有限公司 可充电电池的加热方法、控制单元及加热电路
DE102020003801A1 (de) * 2019-07-18 2021-01-21 Sew-Eurodrive Gmbh & Co Kg Verfahren und System zum Betreiben eines Systems mit Energiespeicher und Widerstand
US11292362B2 (en) 2019-08-30 2022-04-05 Hyundai Motor Company System and method for increasing temperature of battery using motor driving system
CN111029667B (zh) * 2019-11-08 2021-05-18 华为技术有限公司 电池加热系统、电动汽车和车载系统
US11349162B2 (en) 2020-01-15 2022-05-31 Ford Global Technologies, Llc Automotive battery heater
KR20220040876A (ko) * 2020-09-24 2022-03-31 (주)그리너지 리플전류를 이용한 수명 특성이 향상된 이차전지 및 수명 특성 향상방법
KR20220089347A (ko) 2020-12-21 2022-06-28 현대자동차주식회사 모터 구동 시스템을 이용한 배터리 승온 시스템 및 방법
US11757147B2 (en) * 2021-01-12 2023-09-12 Ford Global Technologies, Llc System and method for resonant heating battery
CN114851918B (zh) * 2021-01-20 2024-01-23 宁德时代新能源科技股份有限公司 充电加热装置、充电加热装置的控制方法及装置
DE102021126347A1 (de) 2021-10-12 2023-04-13 Audi Aktiengesellschaft Verfahren zur Vorbereitung einer Antriebsbatterie auf einen ausgewählten Batteriebetrieb sowie elektrische Antriebsvorrichtung und Kraftfahrzeug
TWI804154B (zh) * 2022-01-12 2023-06-01 大陸商美律電子(深圳)有限公司 儲能裝置及其溫度控制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09259937A (ja) * 1996-03-22 1997-10-03 Mitsubishi Chem Corp 二次電池の予熱方法および予熱装置
JPH11329516A (ja) 1998-05-14 1999-11-30 Nissan Motor Co Ltd 電池の昇温装置
JP2007012568A (ja) 2005-07-04 2007-01-18 Toyota Motor Corp 二次電池の制御装置
JP2008117565A (ja) * 2006-11-01 2008-05-22 Toyota Motor Corp 電源システムおよびそれを備えた車両
JP2009142069A (ja) * 2007-12-06 2009-06-25 Gs Yuasa Corporation:Kk 組電池の温度調整装置、組電池の温度調整方法

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4554500A (en) 1983-03-31 1985-11-19 Anton/Bauer, Inc. Battery charging apparatus and method
CA2104737C (en) * 1992-08-26 1997-01-28 Minoru Maehara Inverter device
US5362942A (en) * 1993-08-24 1994-11-08 Interdigital Technology Corporation Battery heating system using internal battery resistance
CN2261640Y (zh) * 1996-03-19 1997-09-03 王延生 可控硅调频温度控制器
JPH11162526A (ja) 1997-11-29 1999-06-18 Sanyo Electric Co Ltd 電池状態検出装置
JP3926514B2 (ja) 1999-08-17 2007-06-06 本田技研工業株式会社 ハイブリッド車両の制御装置
US6271648B1 (en) 2000-09-27 2001-08-07 Ford Global Tech., Inc. Method of preconditioning a battery to improve cold temperature starting of a vehicle
GB0028733D0 (en) * 2000-11-24 2001-01-10 Switched Reluctance Drives Ltd Current chopping in switched reluctance drive systems
EP1286459B1 (en) 2001-02-14 2005-10-05 Toyota Jidosha Kabushiki Kaisha Drive device and control method, storing medium and program for the drive device
JP2005509396A (ja) 2001-11-02 2005-04-07 エーカー ウェード パワー テクノロジーズ エルエルシー 大容量バッテリ用急速充電器
US7019502B2 (en) * 2002-09-06 2006-03-28 Intersil America's Inc. Synchronization of multiphase synthetic ripple voltage regulator
JP3771526B2 (ja) * 2002-10-21 2006-04-26 株式会社日立製作所 二次電池評価方法および蓄電装置
US7245108B2 (en) 2002-11-25 2007-07-17 Tiax Llc System and method for balancing state of charge among series-connected electrical energy storage units
JP2006006073A (ja) 2004-06-21 2006-01-05 Toyota Motor Corp 電源装置
US7586311B2 (en) * 2004-09-22 2009-09-08 Toyota Jidosha Kabushiki Kaisha Apparatus and method for monitoring load driving circuit for abnormality
TWI333288B (en) 2005-06-14 2010-11-11 Lg Chemical Ltd Method and apparatus of controlling for charging/discharging voltage of battery
JP2008061487A (ja) 2006-07-31 2008-03-13 Toyota Motor Corp 電源システムおよびそれを備えた車両、蓄電装置の昇温制御方法、ならびに蓄電装置の昇温制御をコンピュータに実行させるためのプログラムを記録したコンピュータ読取可能な記録媒体
JP4835383B2 (ja) 2006-10-25 2011-12-14 トヨタ自動車株式会社 電力供給ユニットの制御装置および制御方法、その方法をコンピュータに実現させるためのプログラム、そのプログラムを記録した記録媒体
JP4569575B2 (ja) 2007-01-16 2010-10-27 トヨタ自動車株式会社 二次電池の内部抵抗検出装置および検出方法
JP2010518574A (ja) * 2007-02-13 2010-05-27 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ ガス放電ランプをドライブするための装置
JP5174390B2 (ja) 2007-08-06 2013-04-03 ローム株式会社 電源装置及びこれを備えた電子機器
JP4488067B2 (ja) * 2007-12-06 2010-06-23 トヨタ自動車株式会社 車両用昇圧コンバータ回路
JP4840481B2 (ja) * 2009-07-08 2011-12-21 トヨタ自動車株式会社 二次電池の昇温制御装置およびそれを備える車両、ならびに二次電池の昇温制御方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09259937A (ja) * 1996-03-22 1997-10-03 Mitsubishi Chem Corp 二次電池の予熱方法および予熱装置
JPH11329516A (ja) 1998-05-14 1999-11-30 Nissan Motor Co Ltd 電池の昇温装置
JP2007012568A (ja) 2005-07-04 2007-01-18 Toyota Motor Corp 二次電池の制御装置
JP2008117565A (ja) * 2006-11-01 2008-05-22 Toyota Motor Corp 電源システムおよびそれを備えた車両
JP2009142069A (ja) * 2007-12-06 2009-06-25 Gs Yuasa Corporation:Kk 組電池の温度調整装置、組電池の温度調整方法

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5225519B2 (ja) * 2010-11-05 2013-07-03 三菱電機株式会社 充放電装置および充放電制御方法
JPWO2012060016A1 (ja) * 2010-11-05 2014-05-12 三菱電機株式会社 充放電装置および充放電制御方法
DE102012205852B4 (de) * 2011-04-14 2020-08-27 GM Global Technology Operations, LLC (n.d. Ges. d. Staates Delaware) Verfahren zum Erwärmen einer Fahrzeugbatterie
JP2013004256A (ja) * 2011-06-15 2013-01-07 Aisan Ind Co Ltd 電池制御方法及び電池制御システム
JP2013037859A (ja) * 2011-08-05 2013-02-21 Toshiba Corp 蓄電池装置
CN103000963A (zh) * 2011-09-14 2013-03-27 V2插电式混合动力汽车合作伙伴 用于保护电池的装置和方法
JP2013099029A (ja) * 2011-10-28 2013-05-20 Toyota Motor Corp 電動車両
JP2013169028A (ja) * 2012-02-14 2013-08-29 Toyota Motor Corp 車両の制御装置
US9873343B2 (en) 2012-08-29 2018-01-23 Toyota Jidosha Kabushiki Kaisha Power storage system and temperature control method for the same
JP2014229522A (ja) * 2013-05-23 2014-12-08 日本電気株式会社 電源システムおよび電池の予熱方法
JP2016177931A (ja) * 2015-03-19 2016-10-06 トヨタ自動車株式会社 電源システム
US10040355B2 (en) 2015-03-19 2018-08-07 Toyota Jidosha Kabushiki Kaisha Electric power supply system
CN105977580A (zh) * 2016-07-05 2016-09-28 河南森源重工有限公司 一种锂离子电池短路加热系统
WO2019230157A1 (ja) * 2018-05-30 2019-12-05 住友電気工業株式会社 二次電池昇温装置、コンピュータプログラム及び二次電池昇温方法
JP7035968B2 (ja) 2018-11-02 2022-03-15 トヨタ自動車株式会社 バッテリの昇温装置
JP2020072630A (ja) * 2018-11-02 2020-05-07 トヨタ自動車株式会社 バッテリの昇温装置
WO2020129491A1 (ja) * 2018-12-17 2020-06-25 株式会社デンソー 電池昇温装置
US11299066B2 (en) 2019-08-21 2022-04-12 Hyundai Motor Company System of increasing temperature of battery for vehicle
JP7519831B2 (ja) 2020-07-17 2024-07-22 本田技研工業株式会社 昇温装置
US12074305B2 (en) 2020-07-17 2024-08-27 Honda Motor Co., Ltd. Temperature raising device
US11870365B2 (en) 2021-08-10 2024-01-09 Honda Motor Co., Ltd. AC generation circuit and AC generation device
JP2023122157A (ja) * 2022-02-22 2023-09-01 本田技研工業株式会社 昇温装置
JP7407848B2 (ja) 2022-02-22 2024-01-04 本田技研工業株式会社 昇温装置

Also Published As

Publication number Publication date
US9327611B2 (en) 2016-05-03
KR101358367B1 (ko) 2014-02-05
CN102473976B (zh) 2015-02-11
CN102473976A (zh) 2012-05-23
KR20120023110A (ko) 2012-03-12
EP2453514B1 (en) 2017-11-22
EP2453514A1 (en) 2012-05-16
JPWO2011004464A1 (ja) 2012-12-13
JP5293820B2 (ja) 2013-09-18
US20120021263A1 (en) 2012-01-26
EP2453514A4 (en) 2014-11-05

Similar Documents

Publication Publication Date Title
JP5293820B2 (ja) 二次電池の昇温装置およびそれを備える車両
JP4840481B2 (ja) 二次電池の昇温制御装置およびそれを備える車両、ならびに二次電池の昇温制御方法
JP4811503B2 (ja) 二次電池の昇温制御装置およびそれを備える車両、ならびに二次電池の昇温制御方法
EP2068417B1 (en) Power supply system and vehicle using the same
US8267207B2 (en) Power supply system and vehicle including the same
JP4380772B2 (ja) 電源装置およびそれを備えた車両、電源装置の制御方法、ならびにその制御方法をコンピュータに実行させるためのプログラムを記録したコンピュータ読取可能な記録媒体
JP5617473B2 (ja) 電池加熱装置
WO2012056543A1 (ja) 電動車両の電源装置およびその制御方法ならびに電動車両
JP6508005B2 (ja) 電源装置
US20110187183A1 (en) Power supply apparatus for vehicle
WO2008013011A1 (fr) Système de puissance et véhicule possédant celui-ci, procédé de régulation de l'élévation de température d'un dispositif de stockage d'énergie et support d'enregistrement pouvant être lu par ordinateur sur lequel est enregistré un programme permettant à u
JP4816575B2 (ja) 電源システムおよびそれを備えた車両、ならびに電源システムの制御方法およびその制御方法をコンピュータに実行させるためのプログラムを記録したコンピュータ読取可能な記録媒体
CN110789345B (zh) 车辆用电力控制装置
US11158893B2 (en) Battery heating device
JP2008312382A (ja) 電源システムおよびそれを備えた車両、ならびに電源システムの制御方法およびその制御方法をコンピュータに実行させるためのプログラムを記録したコンピュータ読取可能な記録媒体
JP2009284668A (ja) 電源システムおよびそれを備えた車両
JP2011211797A (ja) 昇圧型dc−dcコンバータ
JP2015133776A (ja) 蓄電池の昇温装置
JP2012115018A (ja) 電力制御装置
JP2010115056A (ja) 電源システムおよび車両
JP2011067042A (ja) スイッチング制御装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980160342.7

Country of ref document: CN

REEP Request for entry into the european phase

Ref document number: 2009847069

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2009847069

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09847069

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13260077

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2011521733

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20117030325

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE