WO2010149887A1 - Improved method of particle size measurement - Google Patents

Improved method of particle size measurement Download PDF

Info

Publication number
WO2010149887A1
WO2010149887A1 PCT/FR2010/000473 FR2010000473W WO2010149887A1 WO 2010149887 A1 WO2010149887 A1 WO 2010149887A1 FR 2010000473 W FR2010000473 W FR 2010000473W WO 2010149887 A1 WO2010149887 A1 WO 2010149887A1
Authority
WO
WIPO (PCT)
Prior art keywords
thin film
bar
medium
flat surface
measuring
Prior art date
Application number
PCT/FR2010/000473
Other languages
French (fr)
Inventor
Didier Frot
David Jacob
Original Assignee
IFP Energies Nouvelles
Cordouan Technologies
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IFP Energies Nouvelles, Cordouan Technologies filed Critical IFP Energies Nouvelles
Publication of WO2010149887A1 publication Critical patent/WO2010149887A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/8422Investigating thin films, e.g. matrix isolation method
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/49Scattering, i.e. diffuse reflection within a body or fluid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • G01N2021/0339Holders for solids, powders

Definitions

  • the present invention relates to an improved method for measuring the intensity of light scattered by high concentrations of particles or macromolecules of size between a few nanometers and several hundred nanometers. It applies more particularly to the correlation of photons in liquid media.
  • Measurements of the intensity of light scattered by thin films, especially colloidal media, is the basis of the object of the present invention.
  • the different faces of the prism each form a diopter, that is to say an optical surface separating two mediums of index of different refraction.
  • the laser beam enters through the face E, is totally reflected by the secant face F and leaves by the normal of the face S.
  • the face S is surmounted by a pierced piece N and delimiting a receiving tank of a certain volume sample containing the M objects to analyze.
  • the device further comprises a micro positioner G holding a bar H carrying at its end a bar D of black glass to limit the reflected or scattered light intensity due to the laser beam transmitted by the sample, parasitic intensity which must not reach the I.
  • the bar D has a radius of curvature (convex) so as to punctually guarantee a film as thin as possible and to create a very punctual analysis zone of the order of 1 mm 2 .
  • the manufacture of the convex bar is delicate. Indeed, the polishing operation (tolerance Lambda / 4) is difficult on curved shapes and significantly increases the cost of this part,
  • the black bar may have residual reflectivities which interfere with the measurement
  • the present invention improves the measurement method by using an improved device which notably provides a new geometry of finger and bar allowing, among other things, to perform a measurement under liquid flow in the cell, to facilitate the manufacture of the bar, to allow a simplified mode of implementation of the measurements, and not to damage the diopter by scratching its surface.
  • the present invention relates to a method for measuring the intensity of light scattered by a thin film of a colloidal medium in which the following steps are carried out:
  • a device comprising:
  • a monochromatic light source a convergent optical system focusing the source on the thin film to be analyzed and comprising a dioptric element, one of the faces of which constitutes a first wall delimiting the thin film; at least one photosensitive detector reacting to the diffused or retro-diffused light by the thin film; at a measuring point,
  • the thin film is formed by means of a second wall constituted by a flat surface at the end of a bar, means for positioning the flat surface at a determined distance from the first wall and means for maintaining the parallelism between the two walls.
  • the medium around the bar can be circulated to the measuring position on the thin film.
  • the flat surface can be lifted, the medium being circulated to renew the medium to be measured.
  • the bar may be carried by a body which comprises at its end sealing means so as to isolate the thin film present under the bar.
  • Direct measurements can be made through a transparent finger using an optical lens and a CCD sensor.
  • Zeta potential measurements can be made on the thin film by means of electrodes arranged at the end of the bar.
  • the bar can be mounted in a body assembled on a casing which encloses the dioptric element, said casing comprising an inlet orifice and a outlet orifice of the colloidal medium allowing circulation in the housing of said medium.
  • the light source can be transported to the optical fiber optical system, and the diffused intensity signal can be fed to the measuring means also by optical fiber.
  • the flat surface may have an area of at least 10 mm 2 .
  • FIG. 1 schematically represents a device according to the prior art
  • FIG. 2a schematically illustrates, in section, the finger of the device implemented by the method according to the invention
  • FIG. 2b illustrates a variant of the assembly of the finger
  • FIGS. 3a and 3b show a variant of the end of the bar
  • FIG. 4 schematically shows another variant of the finger which carries the bar
  • FIG. 5 shows an additional device for carrying out another type of measurement
  • FIG. 6 illustrates the device according to the invention for measurements in circulation
  • FIGS. 7, 8 and 9 show measurement results obtained respectively for a sampling of standard media: - without flow, - with flow and the finger raised, - with flow and the finger in the contact position.
  • the present invention is based on the implementation of a finger capable of producing a thin film between two flat surfaces having a high level of parallelism, said thin film of colloidal media for measurements of the scattered intensity.
  • Figure 2a shows schematically the means of realization of the device according to the invention.
  • the finger 1 consists of a bar 2 glass, or equivalent, which defines at its end a flat surface 3.
  • the bar is held in a body 4.
  • the optical specifications of the faces of this cylindrical bar are standard, a state Lambda / 4 surface area and Lambda / 2 flatness.
  • the body 4 is mechanically connected to an upper part, or cover, of a casing 5 by fastening and positioning means 6 whose functions are: to seal between the body and the casing, to provide means for adjusting the the thickness of the thin film, that is to say the distance between the lower face 3 of the bar 2, and ensure the parallelism between the face 3 of the bar and the diopter 7.
  • the parallelism between the underside of the finger and the upper face of the prism (diopter) constituting the bottom of the tank 8, is provided by self adjustment through a mechanical clearance provided by the fixing means 6.
  • This game can be realized by a low guide length (eg twice the diameter of the finger) of the body of the finger in the housing cover.
  • This self adjustment can also be achieved by adjusting the machining tolerances of the bore of the sleeve guide.
  • the fastening means 6 can also advantageously comprise an axial clearance which allows, for example under a tapping action, for example by a finger of an operator, the elimination of the fluid film ("flushing"). This movement which decreases or cancels the thickness of the film, can be antagonistic to the action of a return spring.
  • the upper face 9 of the bar is preferably inclined at an angle ⁇
  • the internal volume 10 to the body 4 contains a liquid of refractive index determined to minimize this disturbance.
  • the volume is closed by a plug 11.
  • the incident laser beam 12 is brought to the measurement point by the known optical means, in particular those described in the document EP-0654661A1, cited here by reference. It is the same for the means of measurements on the diffused ray 13.
  • FIG. 2b illustrates a variant of the finger of the measuring device according to the invention in which the body 14 comprises end sealing means 15 arranged so as to isolate a portion of the medium around the thin film trapped beneath the bar.
  • This variant is particularly suitable for highly diluted media, thus weakly diffusing.
  • FIGS. 3a and 3b illustrate another variant of a bar 16 held in a body 4.
  • the cylindrical bar carries, on at least half of the surface of the face, a cleaning assembly 17, the other part of the surface remaining available to be the measuring point.
  • the bar can be rotated about its longitudinal axis so as to clean the entire surface of the face of the diopter, in particular the measurement point, by means of partially flexible micro rods made of a material compatible with a large number of solvents organic acids or basic.
  • Industrial environments are often concentrated and sometimes contain aggregates when the dispersion is not homogeneous. To overcome the difficulties of analysis on such systems and rather than filter solutions, we can use this solution.
  • Figure 3b shows the face of the bar in view from below.
  • FIG. 4 shows a finger variant combined with a set of optical components 18 equivalent to a microscope objective, to which a CCD camera 19 is added.
  • the bar 20 may have a thin thickness and parallel faces. In this case, it acts as a protective window for the purpose of microscope 18, which makes it possible not to have to use an immersion lens which is very expensive.
  • the focus of the thin film image on the CCD sensor is provided by an extension ring (variable draw) or an optical lens system with variable focus which can be, for example, electrically controlled.
  • FIG. 5 illustrates a possibility of measurement complementary to photon counting.
  • One of the embodiments is a cylindrical bar 21 reamed about one millimeter and having two metal electrodes 22 and 23 on the walls of the bore zone, and arranged parallel to one another. In the volume defined by the bore when the finger is in contact, it is possible to measure the Zeta potential.
  • FIG. 6 shows a system integrating the device implemented according to the invention for on-line measurements.
  • the device 30 comprises a support 31 pierced with a cavity 32 closed by a prism 33 and a housing 34.
  • the casing 34 is in hydraulic communication via ducts 36 and 37.
  • the assembly of the measuring finger 40 is constituted by a bar 41 and a body 42 according to the present description.
  • the laser beam 35 can be transported to the prism 33 by an optical fiber 43 and a collimator 44a, and the diffused intensity signal 45 collected by the collimator 44b can be sent to the measuring means and to the PC by an optical fiber. 46.
  • the optical signals can be "deported" by means of optical fibers, whether in the "online measurement” version according to FIG. 6, or not.
  • the system according to Figure 6 allows a measurement method based on the functionality of the finger device capable of delimiting a thin film between two walls.
  • This finger has two positions: one remote, the other called “in contact” with the prism to measure.
  • the fluid circulates in the cavity 32 and renews itself as a function of the circulation of the medium in the conduits 35 and 36.
  • the bar of the finger is forced to come into contact with the prism, by maintaining a determined pressure on the latter, it immobilizes and isolates at least a portion of a liquid film trapped between the two interfaces, while allowing the flow to bypass the finger without disturbing the measurement. This is possible thanks to the sufficiently wide flat surface of the bar which allows to isolate the measuring point from its environment.
  • the bar has, for example, a diameter at least greater than 5 mm so as to ensure sufficient isolation of at least a portion of the liquid film, combined with the self-adjustment of the parallelism of the faces at the measuring point. It is noted that in this measurement domain under flow of the scattered intensity, the parallelism of the faces is an essential condition for the measurement. It is also possible, according to the variant described in FIG. 2b, to immobilize the liquid film by integrating a seal at the end of the body. The seal is chosen sufficiently flexible, so that once compressed, the surface of the finger is in contact with the lower diopter insulating a film.
  • the liquid medium resulting from a process can be conducted directly into the measuring cavity 32 by the pipes 36 or 37.
  • FIG. 7 represents the autocorrelation curve of a reference standard, here a monomodal latex standard of 160 nanometers in hydrodynamic diameter. It is known that there is a relationship of proportionality between the size of the objects and the slope at the origin of the autocorrelation curve.
  • Figure 8 gives the autocorrelation curve of the same standard in the presence of a flow (with a system of the type shown in Figure 6), with the finger away from the surface of the prism. It is noted that a flow modifies the slope at the origin since it is approximately 30 times smaller here than that obtained by measuring the standard (FIG. 7). This has the effect of reducing the apparent size of the same factor producing as result 6-nanometer pseudo objects instead of 160 nm.
  • FIG. 9 gives the autocorrelation curve of the same standard in the presence of a flow, but with the finger in contact with the surface. The measurement made with the contact finger gives a size measurement result in agreement with that obtained for the standard in the absence of flow, which shows that at least a portion of the film trapped under the bar is immobile. .

Abstract

Method for measuring the intensity of the light scattered by a thin film of a colloidal medium, in which the following steps are carried out: a device comprising: a monochromatic light source; a convergent optical system focusing said light source onto said thin film to be analyzed and comprising a dioptric element (7), one of the faces of which constitutes a first wall delimiting the thin film; at least one photosensitive detector reacting to the light scattered or backscattered by the thin film at a measurement point; and means for processing the signal from said photodetector is operated; and said thin film is formed by means of a second wall consisting of a plane surface (3) at the end of a rod (2), means for positioning said plane surface at a defined distance from said first wall and means for maintaining parallelism between said two walls.

Description

MÉTHODE PERFECTIONNEE DE MESURE GRANULOMÉTRIQUE IMPROVED METHOD OF GRANULOMETRIC MEASUREMENT
La présente invention concerne une méthode perfectionnée pour mesurer l'intensité de la lumière diffusée par des concentrations élevées de particules ou macromolécules de taille comprise entre quelques nanomètres et plusieurs centaines de nanomètres. Elle s'applique plus particulièrement à la corrélation de photons en milieux liquides.The present invention relates to an improved method for measuring the intensity of light scattered by high concentrations of particles or macromolecules of size between a few nanometers and several hundred nanometers. It applies more particularly to the correlation of photons in liquid media.
C'est une demande industrielle bien connue que de vouloir suivre, en continu et en différentes étapes d'un procédé, l'évolution de la taille des particules qui y circulent. Les méthodes capables de réaliser des mesures en continu sur des fluides sont celles sensibles au contraste optique entre une particule et son milieu extérieur. C'est le cas de la microscopie optique et des mesures par diffraction. Dans le domaine de taille de particules de l'ordre de 200 nanomètres et moins, ces techniques ne donnent plus de résultats. La technique de diffusion dynamique de la lumière prend alors le relais. Cette dernière technique qui est basée sur l'analyse du mouvement brownien pur, ne permet pas d'effectuer des mesures sur des liquides en écoulement, ou en présence de convexion. Ceci montre clairement que la mesure dans un flux, aussi lent soit-il, est impossible puisqu'elle conduit à des artefacts de mesure.It is a well-known industrial demand to want to follow, continuously and in different stages of a process, the evolution of the size of the particles circulating therein. Methods capable of continuous measurements on fluids are those sensitive to the optical contrast between a particle and its external environment. This is the case of optical microscopy and diffraction measurements. In the particle size range of the order of 200 nanometers or less, these techniques no longer give results. The dynamic light scattering technique then takes over. This last technique, which is based on the analysis of pure Brownian motion, does not make it possible to measure flowing liquids, or in the presence of convection. This clearly shows that the measurement in a flow, however slow, is impossible since it leads to measuring artifacts.
Les mesures de l'intensité de la lumière diffusée par des films minces, notamment de milieux colloïdaux, est à la base de l'objet de la présente invention.Measurements of the intensity of light scattered by thin films, especially colloidal media, is the basis of the object of the present invention.
On connaît le document EP-0654661A1 qui décrit des mesures de diffusion de la lumière opérées sur un film mince réalisé au moyen d'une première interface dioptrique et d'un doigt de mesure. La figure 1 montre en coupe le dispositif selon ce document antérieur. Il comporte un prisme P, d'angle A=90°, chargé de réfléchir totalement le faisceau laser L. Les différentes faces du prisme forment chacune un dioptre, c'est-à-dire une surface optique séparant deux milieux d'indice de réfraction différent. Le rayon laser entre par la face E, est totalement réfléchi par la face sécante F et sort par la normale de la face S. La face S est surmontée d'une pièce N percée et délimitant une cuve d'accueil d'un certain volume d'échantillon contenant les objets M à analyser. Le dispositif comprend en outre un micro positionneur G maintenant une barre H portant à son extrémité un barreau D en verre noir pour limiter l'intensité lumineuse réfléchie ou diffusée due au faisceau laser transmis par l'échantillon, intensité parasite qui ne doit pas atteindre le photo détecteur I. Avantageusement, le barreau D présente un rayon de courbure (convexe) de façon à ponctuellement garantir un film aussi fin que possible et à créer une zone d'analyse très ponctuelle de l'ordre de 1 mm2.Document EP-0654661A1 discloses light diffusion measurements performed on a thin film produced by means of a first dioptric interface and a measuring finger. Figure 1 shows in section the device according to this prior document. It comprises a prism P, of angle A = 90 °, responsible for totally reflecting the laser beam L. The different faces of the prism each form a diopter, that is to say an optical surface separating two mediums of index of different refraction. The laser beam enters through the face E, is totally reflected by the secant face F and leaves by the normal of the face S. The face S is surmounted by a pierced piece N and delimiting a receiving tank of a certain volume sample containing the M objects to analyze. The device further comprises a micro positioner G holding a bar H carrying at its end a bar D of black glass to limit the reflected or scattered light intensity due to the laser beam transmitted by the sample, parasitic intensity which must not reach the I. Advantageously, the bar D has a radius of curvature (convex) so as to punctually guarantee a film as thin as possible and to create a very punctual analysis zone of the order of 1 mm 2 .
Cependant, ce dispositif de l'art antérieur présente un certains nombre d'inconvénients:However, this device of the prior art has a number of disadvantages:
- endommagement de la surface du barreau, et/ou du prisme, après plusieurs utilisations susceptible de conduire à des artefacts du fait de l'intensité diffusée par ces micro rayures qui apparaissent dans le temps,damage to the surface of the bar and / or the prism, after several uses likely to lead to artefacts due to the intensity diffused by these micro scratches which appear over time,
- la fabrication du barreau convexe est délicate. En effet, l'opération de polissage (tolérance Lambda/4) est difficile sur des formes courbes et augmente significativement le coût de cette pièce,the manufacture of the convex bar is delicate. Indeed, the polishing operation (tolerance Lambda / 4) is difficult on curved shapes and significantly increases the cost of this part,
- le barreau noir peut présenter des réflectivités résiduelles qui interfèrent sur la mesure,the black bar may have residual reflectivities which interfere with the measurement,
- il est impossible de réaliser une mesure sous écoulement sans que celui-ci perturbe la mesure du fait de la faible surface de contact du barreau.- It is impossible to perform a measurement under flow without it disturbs the measurement due to the low contact surface of the bar.
Ainsi, la présente invention perfectionne la méthode de mesure en utilisant un dispositif amélioré qui fournit notamment une nouvelle géométrie de doigt et de barreau permettant, entre autres, de réaliser une mesure sous écoulement de liquide dans la cellule, de faciliter la fabrication du barreau, de permettre un mode simplifié de mise en œuvre des mesures, et de ne pas endommager le dioptre par rayure de sa surface.Thus, the present invention improves the measurement method by using an improved device which notably provides a new geometry of finger and bar allowing, among other things, to perform a measurement under liquid flow in the cell, to facilitate the manufacture of the bar, to allow a simplified mode of implementation of the measurements, and not to damage the diopter by scratching its surface.
La présente invention concerne une méthode pour mesurer l'intensité de la lumière diffusée par un film mince d'un milieu colloïdal dans laquelle on effectue les étapes suivantes:The present invention relates to a method for measuring the intensity of light scattered by a thin film of a colloidal medium in which the following steps are carried out:
- on met en œuvre un dispositif comprenant:a device comprising:
- une source lumineuse monochromatique, - un système optique convergent focalisant la source sur le film mince à analyser et comprenant un élément dioptrique dont une des faces constitue une première paroi délimitant le film mince, - au moins un détecteur photosensible réagissant à la lumière diffusée ou rétro diffusée par le film mince en un point de mesure,a monochromatic light source, a convergent optical system focusing the source on the thin film to be analyzed and comprising a dioptric element, one of the faces of which constitutes a first wall delimiting the thin film; at least one photosensitive detector reacting to the diffused or retro-diffused light by the thin film; at a measuring point,
- des moyens de traitement du signal issu du photo détecteur,means for processing the signal coming from the photo detector,
- on forme le film mince au moyen d'une deuxième paroi constituée par une surface plane à l'extrémité d'un barreau, de moyens de positionnement de la surface plane à une distance déterminée de la première paroi et des moyens de maintien du parallélisme entre les deux parois.the thin film is formed by means of a second wall constituted by a flat surface at the end of a bar, means for positioning the flat surface at a determined distance from the first wall and means for maintaining the parallelism between the two walls.
On peut faire circuler le milieu autour du barreau en position de mesure sur le film mince.The medium around the bar can be circulated to the measuring position on the thin film.
On peut soulever la surface plane, le milieu étant en circulation pour renouveler le milieu à mesurer.The flat surface can be lifted, the medium being circulated to renew the medium to be measured.
Le barreau peut être porté par un corps qui comporte à son extrémité des moyens d'étanchéité de façon à isoler le film mince présent sous le barreau.The bar may be carried by a body which comprises at its end sealing means so as to isolate the thin film present under the bar.
On peut déterminer, pour des conditions données de circulation du milieu, l'aire minimale de la surface plane pour que au moins une portion du film soit statique au point de mesure.It is possible to determine, for given conditions of circulation of the medium, the minimum area of the plane surface so that at least one portion of the film is static at the measurement point.
On peut effectuer des mesures directes au travers d'un doigt transparent à l'aide d'un objectif optique et d'un capteur CCD.Direct measurements can be made through a transparent finger using an optical lens and a CCD sensor.
On peut effectuer des mesures de potentiel Zêta sur le film mince à l'aide d'électrodes disposées à l'extrémité du barreau.Zeta potential measurements can be made on the thin film by means of electrodes arranged at the end of the bar.
On peut monter le barreau dans un corps assemblé sur un carter qui enferme l'élément dioptrique, ledit carter comportant un orifice d'entrée et un orifice de sortie du milieu colloïdal permettant une circulation dans le carter dudit milieu.The bar can be mounted in a body assembled on a casing which encloses the dioptric element, said casing comprising an inlet orifice and a outlet orifice of the colloidal medium allowing circulation in the housing of said medium.
On peut transporter la source lumineuse au système optique par fibre optique, et le signal d'intensité diffusée peut être amené aux moyens de mesure également par fibre optique.The light source can be transported to the optical fiber optical system, and the diffused intensity signal can be fed to the measuring means also by optical fiber.
La surface plane peut avoir une aire d'au moins 10 mm2.The flat surface may have an area of at least 10 mm 2 .
La présente invention sera mieux comprise et ses avantages apparaîtront plus clairement à la lecture de la description suivante de modes de mise en œuvre et de réalisation, nullement limitatifs, illustrés par les figures ci-après annexées, parmi lesquelles: - la figure 1 représente schématiquement un dispositif selon l'art antérieur,The present invention will be better understood and its advantages will appear more clearly on reading the following description of embodiments and embodiments, which are in no way limitative, illustrated by the appended figures, of which: FIG. 1 schematically represents a device according to the prior art,
- la figure 2a illustre schématiquement, en coupe le doigt du dispositif mis en œuvre par la méthode selon l'invention,FIG. 2a schematically illustrates, in section, the finger of the device implemented by the method according to the invention,
- la figure 2b illustre une variante du montage du doigt, - les figures 3a et 3b montrent une variante de l'extrémité du barreau,FIG. 2b illustrates a variant of the assembly of the finger, FIGS. 3a and 3b show a variant of the end of the bar,
- la figure 4 montre schématiquement une autre variante du doigt qui porte le barreau,FIG. 4 schematically shows another variant of the finger which carries the bar,
- la figure 5 montre un dispositif additionnel pour effectuer un autre type de mesure, - la figure 6 illustre le dispositif selon l'invention pour des mesures en circulation,FIG. 5 shows an additional device for carrying out another type of measurement, FIG. 6 illustrates the device according to the invention for measurements in circulation,
- les figures 7, 8, 9 montrent des résultats de mesures obtenues respectivement pour un échantillonnage de milieux étalons: - sans écoulement, - avec écoulement et le doigt levé, - avec écoulement et le doigt en position de contact. La présente invention repose sur la mise en œuvre d'un doigt capable de réaliser un film mince entre deux surfaces planes présentant un grand niveau de parallélisme, ledit film mince de milieux colloïdaux permettant des mesures de l'intensité diffusée.FIGS. 7, 8 and 9 show measurement results obtained respectively for a sampling of standard media: - without flow, - with flow and the finger raised, - with flow and the finger in the contact position. The present invention is based on the implementation of a finger capable of producing a thin film between two flat surfaces having a high level of parallelism, said thin film of colloidal media for measurements of the scattered intensity.
La figure 2a montre schématiquement les moyens de réalisation du dispositif selon l'invention. Le doigt 1 se compose d'un barreau 2 en verre, ou équivalent, qui définit à son extrémité une surface plane 3. Le barreau est tenu dans un corps 4. Les spécifications optiques des faces de ce barreau cylindrique sont standards, soit un état de surface de Lambda/4 et une planéité de Lambda/2.Figure 2a shows schematically the means of realization of the device according to the invention. The finger 1 consists of a bar 2 glass, or equivalent, which defines at its end a flat surface 3. The bar is held in a body 4. The optical specifications of the faces of this cylindrical bar are standard, a state Lambda / 4 surface area and Lambda / 2 flatness.
Le corps 4 est lié mécaniquement à une partie supérieure, ou capot, d'un carter 5 par des moyens de fixation et de positionnement 6 qui ont pour fonctions: de faire étanchéité entre le corps et le carter, de fournir des moyens de réglage de l'épaisseur du film mince, c'est-à-dire la distance entre la face inférieure 3 du barreau 2, et d'assurer le parallélisme entre la face 3 du barreau et le dioptre 7.The body 4 is mechanically connected to an upper part, or cover, of a casing 5 by fastening and positioning means 6 whose functions are: to seal between the body and the casing, to provide means for adjusting the the thickness of the thin film, that is to say the distance between the lower face 3 of the bar 2, and ensure the parallelism between the face 3 of the bar and the diopter 7.
Le parallélisme entre la face inférieure du doigt et la face supérieure du prisme (dioptre) constituant le fond de la cuve 8, est assuré par auto ajustement grâce à un jeu mécanique fourni par les moyens de fixation 6. On peut réaliser ce jeu par une faible longueur de guidage (par exemple deux fois le diamètre du doigt) du corps du doigt dans le capot du carter. On peut aussi obtenir cet auto ajustement en réglant les tolérances d'usinage de l'alésage du guidage du manchon. D'une manière inattendue, on a constaté que c'est le drainage du film liquide sous l'action de la poussée exercée sur le doigt qui assure un parfait parallélisme de la face inférieure 3 du doigt avec la face supérieure 7 de la cuve, dans la mesure où le barreau, ou le corps de tenu du barreau, a un degré de liberté suffisant pour s'auto aligner. Ainsi, on peut considérer que le barreau se met en place sur un coussin liquide.The parallelism between the underside of the finger and the upper face of the prism (diopter) constituting the bottom of the tank 8, is provided by self adjustment through a mechanical clearance provided by the fixing means 6. This game can be realized by a low guide length (eg twice the diameter of the finger) of the body of the finger in the housing cover. This self adjustment can also be achieved by adjusting the machining tolerances of the bore of the sleeve guide. Unexpectedly, it has been found that it is the drainage of the liquid film under the action of the thrust exerted on the finger which ensures perfect parallelism of the lower face 3 of the finger with the upper face 7 of the tank, insofar as the bar, or the holding body of the bar, has a degree of freedom sufficient to self-align. Thus, it can be considered that the bar is set up on a liquid cushion.
Les moyens de fixation 6 peuvent aussi comporter avantageusement un jeu axial qui permet, par exemple sous une action de tapotement, par exemple par un doigt d'un opérateur, l'élimination du film de fluide ("flushing"). Ce mouvement qui diminue, voire annule l'épaisseur du film, peut être antagoniste à l'action d'un ressort de rappel. La face supérieure 9 du barreau est de préférence inclinée d'un angle αThe fastening means 6 can also advantageously comprise an axial clearance which allows, for example under a tapping action, for example by a finger of an operator, the elimination of the fluid film ("flushing"). This movement which decreases or cancels the thickness of the film, can be antagonistic to the action of a return spring. The upper face 9 of the bar is preferably inclined at an angle α
(environ 5 degré) par rapport à la face inférieure de façon à ne pas perturber la lumière rétro diffusée. De plus, le volume interne 10 au corps 4 contient un liquide d'indice de réfraction déterminé pour minimiser cette perturbation. Le volume est fermé par un bouchon 11. Le faisceau laser incident 12 est amené au point de mesure par les moyens optiques connus, notamment ceux décrits dans le document EP-0654661A1, cité ici en référence. Il en est de même pour les moyens de mesures sur le rayon diffusé 13.(about 5 degrees) from the underside so as not to disturb the back scattered light. In addition, the internal volume 10 to the body 4 contains a liquid of refractive index determined to minimize this disturbance. The volume is closed by a plug 11. The incident laser beam 12 is brought to the measurement point by the known optical means, in particular those described in the document EP-0654661A1, cited here by reference. It is the same for the means of measurements on the diffused ray 13.
Ainsi, la mise en œuvre selon l'invention présente les avantages suivants.Thus, the implementation according to the invention has the following advantages.
- Lorsque le doigt est en position au contact du prisme, un film liquide emprisonné entre les deux faces planes (dioptre et barreau) est immobile et insensible à l'environnement du barreau, et notamment aux écoulements;- When the finger is in position in contact with the prism, a liquid film trapped between the two flat faces (diopter and bar) is immobile and insensitive to the environment of the bar, including flow;
- On peut approcher rapidement le doigt sur le dioptre sans se soucier de l'effet d'impact sur la surface, car le film mince assure une fonction tampon qui protège mutuellement chacune des surfaces des chocs et des rayures.- One can approach the finger quickly on the diopter without worrying about the effect of impact on the surface, because the thin film provides a buffer function that mutually protects each of the surfaces of shocks and scratches.
- On exploite cette configuration pour réaliser la fonction "flushing" qui permet le renouvellement du film mince de l'échantillon et l'optimisation de l'homogénéité en température, concentration et distribution statistique des constituants de l'échantillon dans le cas d'un mélange.This configuration is exploited to carry out the "flushing" function which allows the renewal of the thin film of the sample and the optimization of the homogeneity in temperature, concentration and statistical distribution of the constituents of the sample in the case of a sample. mixed.
- L'élimination dans le film mince d'analyse d'éventuels agrégats ou des poussières indésirables.- The elimination in the thin film of analysis of possible aggregates or undesirable dust.
- L'obtention d'un effet de cisaillement dans le film mince qui peut séparer les agrégats faiblement liés. - Le parallélisme de la face inférieure du doigt avec la face supérieure de la cuve permet de réaliser des anneaux d'interférence concentriques (pas d'effets de coin d'air) et donc de suivre par interférométrie optique précisément l'étape de drainage du film. C'est un indicateur pertinent de l'état stationnaire du film liquide que l'on désire analyser.- Achieving a shearing effect in the thin film that can separate loosely bound aggregates. - The parallelism of the underside of the finger with the upper face of the tank makes it possible to produce concentric interference rings (no air wedge effects) and therefore to follow by optical interferometry precisely the step of draining the film. It is a relevant indicator of the stationary state of the liquid film that one wishes to analyze.
La figure 2b illustre une variante du doigt du dispositif de mesure selon l'invention dans laquelle le corps 14 comprend des moyens d'étanchéité en bout 15 aménagés de façon à isoler une portion de milieu autour du film mince piégé sous le barreau. Cette variante est particulièrement adaptée aux milieux fortement dilués, donc faiblement diffusants.FIG. 2b illustrates a variant of the finger of the measuring device according to the invention in which the body 14 comprises end sealing means 15 arranged so as to isolate a portion of the medium around the thin film trapped beneath the bar. This variant is particularly suitable for highly diluted media, thus weakly diffusing.
Les figures 3a et 3b illustrent une autre variante d'un barreau 16 tenu dans un corps 4. Le barreau cylindrique porte, sur au moins la moitié de surface de la face, un ensemble nettoyant 17, l'autre partie de la surface restant disponible pour être le point de mesure. Le barreau peut être entraîné en rotation autour de son axe longitudinal de façon à nettoyer la surface totale de la face du dioptre, notamment le point de mesure, par le moyen de micro bâtonnets partiellement flexibles réalisés dans une matière compatible avec un grand nombre de solvants organiques acides ou basiques. Les milieux industriels sont souvent concentrés et parfois comportent des agrégats lorsque la dispersion n'est pas homogène. Pour remédier aux difficultés d'analyse sur de tels systèmes et plutôt que de filtrer les solutions, on peut utiliser cette solution. La figure 3b montre la face du barreau en vue de dessous.FIGS. 3a and 3b illustrate another variant of a bar 16 held in a body 4. The cylindrical bar carries, on at least half of the surface of the face, a cleaning assembly 17, the other part of the surface remaining available to be the measuring point. The bar can be rotated about its longitudinal axis so as to clean the entire surface of the face of the diopter, in particular the measurement point, by means of partially flexible micro rods made of a material compatible with a large number of solvents organic acids or basic. Industrial environments are often concentrated and sometimes contain aggregates when the dispersion is not homogeneous. To overcome the difficulties of analysis on such systems and rather than filter solutions, we can use this solution. Figure 3b shows the face of the bar in view from below.
La figure 4 montre une variante de doigt combiné avec un ensemble de constituants optiques 18 équivalents à un objectif de microscope, auquel on adjoint une caméra CCD 19. Le barreau 20 peut avoir une épaisseur mince et des faces parallèles. Dans ce cas, il joue le rôle de hublot protecteur pour l'objectif de microscope 18, ce qui permet de ne pas avoir à utiliser un objectif à immersion qui est très onéreux. La mise au point de l'image du film mince sur le capteur CCD est assurée par une bague allonge (de tirage variable) ou un système de lentille optique à focale variable qui peut être, par exemple, contrôlée électriquement. La figure 5 illustre une possibilité de mesure complémentaire au comptage de photons. Il s'agit ici de donner accès à une mesure du potentiel Zêta pour une large distribution de particules grâce à la combinaison de l'analyse de l'intensité diffusée (domaine des petites particules généralement inférieur à un micron) avec l'analyse de la mobilité électrophorétique par le moyen d'un traitement d'image (voir ci-dessus), ou du décalage en longueur d'onde de l'intensité diffusée par des particules en mouvement forcée (déplacement unidirectionnel).FIG. 4 shows a finger variant combined with a set of optical components 18 equivalent to a microscope objective, to which a CCD camera 19 is added. The bar 20 may have a thin thickness and parallel faces. In this case, it acts as a protective window for the purpose of microscope 18, which makes it possible not to have to use an immersion lens which is very expensive. The focus of the thin film image on the CCD sensor is provided by an extension ring (variable draw) or an optical lens system with variable focus which can be, for example, electrically controlled. FIG. 5 illustrates a possibility of measurement complementary to photon counting. This is to give access to a measure of the Zeta potential for a broad particle distribution through the combination of scattered intensity analysis (small particle domain generally less than one micron) with analysis of the electrophoretic mobility by means of image processing (see above), or the wavelength shift of the intensity diffused by particles in forced movement (unidirectional displacement).
Un des modes de réalisation est un barreau cylindrique 21 alésé sur environ un millimètre et comportant deux électrodes métalliques 22 et 23 sur les parois de la zone alésée, et disposées parallèlement l'une par rapport à l'autre. Dans le volume défini par l'alésage lorsque le doigt est au contact, on peut faire la mesure du potentiel Zêta .One of the embodiments is a cylindrical bar 21 reamed about one millimeter and having two metal electrodes 22 and 23 on the walls of the bore zone, and arranged parallel to one another. In the volume defined by the bore when the finger is in contact, it is possible to measure the Zeta potential.
La figure 6 montre un système intégrant le dispositif mis en œuvre selon l'invention pour des mesures en ligne. Le dispositif 30 comporte un support 31 percé d'une cavité 32 refermée par un prisme 33 et un carter 34. Le carter 34 est en communication hydraulique par des conduits 36 et 37. L'ensemble du doigt de mesure 40 est constitué par un barreau 41 et un corps 42 selon la présente description. Le faisceau laser 35 peut être transporté jusqu'au prisme 33 par une fibre optique 43 et un collimateur 44a, et le signal de l'intensité diffusée 45 collecté par le collimateur 44b peut être envoyé aux moyens de mesure et au PC par une fibre optique 46. D'une manière générale, les signaux optiques peuvent être "déportées" par le moyen de fibres optiques, que ce soit dans la version "mesure en ligne" selon la figure 6 , ou non.FIG. 6 shows a system integrating the device implemented according to the invention for on-line measurements. The device 30 comprises a support 31 pierced with a cavity 32 closed by a prism 33 and a housing 34. The casing 34 is in hydraulic communication via ducts 36 and 37. The assembly of the measuring finger 40 is constituted by a bar 41 and a body 42 according to the present description. The laser beam 35 can be transported to the prism 33 by an optical fiber 43 and a collimator 44a, and the diffused intensity signal 45 collected by the collimator 44b can be sent to the measuring means and to the PC by an optical fiber. 46. In general, the optical signals can be "deported" by means of optical fibers, whether in the "online measurement" version according to FIG. 6, or not.
Le système selon la figure 6 permet une méthode de mesure qui repose sur les fonctionnalités du dispositif de doigt capable de délimiter un film mince entre deux parois. Ce doigt possède deux positions: l'une éloignée, l'autre dite "au contact" du prisme pour faire la mesure. Lorsque le doigt est éloigné de la paroi, le fluide circule dans la cavité 32 et se renouvelle en fonction de la circulation du milieu dans les conduites 35 et 36. Lorsque l'on impose au barreau du doigt d'être au contact du prisme, en maintenant une pression déterminée sur ce dernier, il immobilise et isole au moins une partie d'un film liquide piégé entre les deux interfaces, tout en permettant à l'écoulement de contourner le doigt sans perturbation de la mesure. Ceci est possible grâce à la surface plane suffisamment large du barreau qui permet d'isoler le point de mesure de son environnement. Le barreau a, par exemple, un diamètre au moins supérieur à 5 mm de façon à garantir un isolement suffisant d'une portion, au moins, du film liquide, combinée à l'auto ajustement du parallélisme des faces au point de mesure. On note que dans ce domaine de mesure sous écoulement de l'intensité diffusée, le parallélisme des faces est une condition essentielle pour la mesure. On peut aussi, selon la variante décrite en figure 2b, immobiliser le film liquide en intégrant un joint à l'extrémité du corps. Le joint est choisi suffisamment souple, pour qu'une fois comprimé, la surface du doigt soit au contact avec le dioptre inférieur en isolant un film.The system according to Figure 6 allows a measurement method based on the functionality of the finger device capable of delimiting a thin film between two walls. This finger has two positions: one remote, the other called "in contact" with the prism to measure. When the finger is moved away from the wall, the fluid circulates in the cavity 32 and renews itself as a function of the circulation of the medium in the conduits 35 and 36. When the bar of the finger is forced to come into contact with the prism, by maintaining a determined pressure on the latter, it immobilizes and isolates at least a portion of a liquid film trapped between the two interfaces, while allowing the flow to bypass the finger without disturbing the measurement. This is possible thanks to the sufficiently wide flat surface of the bar which allows to isolate the measuring point from its environment. The bar has, for example, a diameter at least greater than 5 mm so as to ensure sufficient isolation of at least a portion of the liquid film, combined with the self-adjustment of the parallelism of the faces at the measuring point. It is noted that in this measurement domain under flow of the scattered intensity, the parallelism of the faces is an essential condition for the measurement. It is also possible, according to the variant described in FIG. 2b, to immobilize the liquid film by integrating a seal at the end of the body. The seal is chosen sufficiently flexible, so that once compressed, the surface of the finger is in contact with the lower diopter insulating a film.
On peut aussi, selon la variante décrite en figure 4, équiper le doigt d'un objectif de microscope et d'une caméra. Le fait de faire des mesures sur un film liquide au repos, n'impose pas d'utiliser une caméra rapide pour imager les particules. Dans ces conditions, l'utilisation d'une caméra avec une grande résolution spatiale (grand nombre de pixel de petite taille) présente l'avantage de pouvoir faire des mesures de particules de plus petites tailles.It is also possible, according to the variant described in FIG. 4, to equip the finger with a microscope objective and a camera. Measuring on a liquid film at rest does not require the use of a fast camera to image the particles. Under these conditions, the use of a camera with a high spatial resolution (large number of small pixel) has the advantage of being able to make measurements of particles of smaller sizes.
La méthode de mesure présente donc de nombreux avantages:The measurement method therefore has many advantages:
- Il n'est pas nécessaire de prélever un échantillon, ce qui élimine le doute sur la représentativité de l'échantillon et simplifie le mode opératoire de la mesure. En effet, le milieu liquide issu d'un procédé peut être conduit directement dans la cavité de mesure 32 par les canalisations 36 ou 37.- It is not necessary to take a sample, which eliminates doubt about the representativeness of the sample and simplifies the procedure of the measurement. Indeed, the liquid medium resulting from a process can be conducted directly into the measuring cavity 32 by the pipes 36 or 37.
- La mesure peut être répétée à volonté, doigt éloigné puis doigt au contact, sans perte de charge sur la ligne. - C'est une mesure classique de diffusion dynamique de la lumière sans avoir à faire des hypothèses supplémentaires sur le mouvement des particules. Les figures 7, 8 et 9 illustrent l'efficacité du dispositif et de la méthode de mesure sous écoulement.- The measurement can be repeated at will, finger away and finger contact, without loss of load on the line. - This is a classic measure of dynamic light scattering without having to make additional assumptions about particle motion. Figures 7, 8 and 9 illustrate the effectiveness of the device and the measurement method under flow.
Ces graphes représentent la fonction d'auto corrélation de l'intensité diffusée avec en abscisse le temps et en ordonnées l'amplitude. C'est à partir de ces courbes que l'on extrait la taille des objets responsables de l'intensité diffusée. La figure 7 représente la courbe d'auto corrélation d'un étalon de référence, ici un étalon de latex monomodal de 160 nanomètres de diamètre hydrodynamique. Il est connu qu'il existe une relation de proportionnalité entre la taille des objets et la pente à l'origine de la courbe d'auto corrélation.These graphs represent the autocorrelation function of the scattered intensity with the abscissa time and the ordinate the amplitude. It is from these curves that we extract the size of the objects responsible for the scattered intensity. FIG. 7 represents the autocorrelation curve of a reference standard, here a monomodal latex standard of 160 nanometers in hydrodynamic diameter. It is known that there is a relationship of proportionality between the size of the objects and the slope at the origin of the autocorrelation curve.
La Figure 8 donne la courbe d'auto corrélation du même étalon en présence d'un écoulement (avec un système du type représenté sur la figure 6), avec le doigt éloigné de la surface du prisme. On constate qu'un écoulement modifie la pente à l'origine puisque celle-ci est approximativement ici 30 fois plus petite que celle obtenue par la mesure de l'étalon (figure 7). Ceci a pour conséquence de diminuer la taille apparente du même facteur produisant comme résultat des pseudo objets de 6 nanomètres au lieu de 160 nm. La figure 9 donne la courbe d'auto corrélation du même étalon en présence d'un écoulement, mais avec le doigt au contact de la surface. La mesure réalisée avec le doigt au contact donne un résultat de mesure de taille en accord avec celle obtenue pour l'étalon en l'absence d'écoulement, ce qui montre bien qu'au moins une partie du film piégé sous le barreau est immobile. Figure 8 gives the autocorrelation curve of the same standard in the presence of a flow (with a system of the type shown in Figure 6), with the finger away from the surface of the prism. It is noted that a flow modifies the slope at the origin since it is approximately 30 times smaller here than that obtained by measuring the standard (FIG. 7). This has the effect of reducing the apparent size of the same factor producing as result 6-nanometer pseudo objects instead of 160 nm. FIG. 9 gives the autocorrelation curve of the same standard in the presence of a flow, but with the finger in contact with the surface. The measurement made with the contact finger gives a size measurement result in agreement with that obtained for the standard in the absence of flow, which shows that at least a portion of the film trapped under the bar is immobile. .

Claims

REVENDICATIONS
1) Méthode pour mesurer l'intensité de la lumière diffusée par un film mince d'un milieu colloïdal dans laquelle on effectue les étapes suivantes:1) Method for measuring the intensity of the light diffused by a thin film of a colloidal medium in which the following steps are carried out:
- on met en œuvre un dispositif comprenant:a device comprising:
- une source lumineuse monochromatique,a monochromatic light source,
- un système optique convergent focalisant la lumière de ladite source sur ledit film mince à analyser et comprenant un élément dioptrique (7) dont une des faces constitue une première paroi délimitant le film mince,a convergent optical system focusing the light of said source on said thin film to be analyzed and comprising a dioptric element (7) one of whose faces constitutes a first wall delimiting the thin film,
- au moins un détecteur photosensible réagissant à la lumière diffusée ou rétro diffusée par le film mince en un point de mesure, - des moyens de traitement du signal issu dudit photo détecteur,at least one photosensitive detector reacting to the diffused or retro-scattered light diffused by the thin film at a measurement point; means for processing the signal issuing from said photo detector;
- on forme ledit film mince au moyen d'une deuxième paroi constituée par une surface plane (3) à l'extrémité d'un barreau (2), de moyens de positionnement de ladite surface plane à une distance déterminée de ladite première paroi et des moyens de maintien du parallélisme entre lesdites deux parois.said thin film is formed by means of a second wall constituted by a flat surface (3) at the end of a bar (2), means for positioning said flat surface at a determined distance from said first wall and means for maintaining the parallelism between said two walls.
2) Méthode selon la revendication 1, dans laquelle on fait circuler ledit milieu autour du barreau en position de mesure sur le film mince.2) Method according to claim 1, wherein said medium is circulated around the bar in measuring position on the thin film.
3) Méthode selon la revendication 2, dans laquelle on soulève ladite surface plane, ledit milieu étant en circulation pour renouveler le milieu à mesurer.3) Method according to claim 2, wherein said flat surface is raised, said medium being circulated to renew the medium to be measured.
4) Méthode selon l'une des revendications précédentes, dans laquelle le barreau est porté par un corps (4) qui comporte à son extrémité des moyens d'étanchéité (15) de façon à isoler le film mince présent sous le barreau. 5) Méthode selon l'une des revendications précédentes, dans laquelle on détermine, pour des conditions données de circulation du milieu, l'aire minimale de la surface plane pour que au moins une portion du film soit statique au point de mesure.4) Method according to one of the preceding claims, wherein the bar is carried by a body (4) which comprises at its end sealing means (15) so as to isolate the thin film present under the bar. 5) Method according to one of the preceding claims, wherein is determined for the given conditions of circulation of the medium, the minimum area of the flat surface so that at least a portion of the film is static at the measuring point.
6) Méthode selon l'une des revendications précédentes, dans laquelle on effectue des mesures directes au travers d'un doigt transparent (20) à l'aide d'un objectif optique (18) et d'un capteur CCD (19).6) Method according to one of the preceding claims, wherein direct measurements are made through a transparent finger (20) using an optical objective (18) and a CCD sensor (19).
7) Méthode selon l'une des revendications précédentes, dans laquelle on effectue des mesures de potentiel Zêta sur le film mince à l'aide d'électrodes (22, 23) disposées à l'extrémité du barreau.7) Method according to one of the preceding claims, wherein one carries out Zeta potential measurements on the thin film with the help of electrodes (22, 23) arranged at the end of the bar.
8) Méthode selon l'une des revendications précédentes, dans laquelle on monte le barreau dans un corps assemblé sur un carter (34) qui enferme l'élément dioptrique, ledit carter comportant un orifice d'entrée (36) et un orifice de sortie (37) du milieu colloïdal permettant une circulation dans le carter dudit milieu.8) Method according to one of the preceding claims, wherein the bar is mounted in a body assembled on a housing (34) which encloses the dioptric element, said housing having an inlet port (36) and an outlet port (37) Colloidal medium for circulation in the housing of said medium.
9) Méthode selon l'une des revendications précédentes, dans laquelle on transporte la source lumineuse au système optique par fibre optique, et dans laquelle le signal d'intensité diffusée est amené aux moyens de mesure également par fibre optique.9) Method according to one of the preceding claims, wherein the light source is transported to the optical fiber optical system, and wherein the diffused intensity signal is fed to the measuring means also by optical fiber.
10) Méthode selon l'une des revendications précédentes, dans laquelle ladite surface plane a une aire d'au moins 10 mm2. 10) Method according to one of the preceding claims, wherein said flat surface has an area of at least 10 mm 2 .
PCT/FR2010/000473 2009-06-26 2010-06-24 Improved method of particle size measurement WO2010149887A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0903166A FR2947338B1 (en) 2009-06-26 2009-06-26 IMPROVED METHOD OF GRANULOMETRIC MEASUREMENT
FR0903166 2009-06-26

Publications (1)

Publication Number Publication Date
WO2010149887A1 true WO2010149887A1 (en) 2010-12-29

Family

ID=41429620

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2010/000473 WO2010149887A1 (en) 2009-06-26 2010-06-24 Improved method of particle size measurement

Country Status (2)

Country Link
FR (1) FR2947338B1 (en)
WO (1) WO2010149887A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102109454A (en) * 2011-03-17 2011-06-29 上海理工大学 Device for synchronously measuring granularity of dynamic light scattering nanometer particles of multi-particles and method thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0654661A1 (en) 1993-11-24 1995-05-24 Institut Français du Pétrole Intensity detector for light diffused by films in colloidal media
JPH08178825A (en) * 1994-12-27 1996-07-12 Shimadzu Corp Apparatus for measuring distribution of particle sizes
US5552885A (en) * 1993-03-22 1996-09-03 Steen; Harald Measuring chamber for flow cytometer
JPH09236534A (en) * 1996-02-29 1997-09-09 Shimadzu Corp Laser diffraction/scattering type granularity distribution measurement method and device
JPH10325791A (en) * 1997-05-24 1998-12-08 Horiba Ltd Pore distribution measuring device
US6275290B1 (en) * 1998-04-29 2001-08-14 Particle Measuring Systems, Inc. Chemical mechanical planarization (CMP) slurry quality control process and particle size distribution measuring systems
US6614532B1 (en) * 2000-04-28 2003-09-02 Mcgill University Apparatus and method for light profile microscopy
US6628397B1 (en) * 1999-09-15 2003-09-30 Kla-Tencor Apparatus and methods for performing self-clearing optical measurements

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5552885A (en) * 1993-03-22 1996-09-03 Steen; Harald Measuring chamber for flow cytometer
EP0654661A1 (en) 1993-11-24 1995-05-24 Institut Français du Pétrole Intensity detector for light diffused by films in colloidal media
JPH08178825A (en) * 1994-12-27 1996-07-12 Shimadzu Corp Apparatus for measuring distribution of particle sizes
JPH09236534A (en) * 1996-02-29 1997-09-09 Shimadzu Corp Laser diffraction/scattering type granularity distribution measurement method and device
JPH10325791A (en) * 1997-05-24 1998-12-08 Horiba Ltd Pore distribution measuring device
US6275290B1 (en) * 1998-04-29 2001-08-14 Particle Measuring Systems, Inc. Chemical mechanical planarization (CMP) slurry quality control process and particle size distribution measuring systems
US6628397B1 (en) * 1999-09-15 2003-09-30 Kla-Tencor Apparatus and methods for performing self-clearing optical measurements
US6614532B1 (en) * 2000-04-28 2003-09-02 Mcgill University Apparatus and method for light profile microscopy

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102109454A (en) * 2011-03-17 2011-06-29 上海理工大学 Device for synchronously measuring granularity of dynamic light scattering nanometer particles of multi-particles and method thereof

Also Published As

Publication number Publication date
FR2947338B1 (en) 2011-07-15
FR2947338A1 (en) 2010-12-31

Similar Documents

Publication Publication Date Title
EP2734884B1 (en) Conoscopic illumination optical device with a hollow cone for an optical microscope and method of optical microscopy in conoscopy
EP2556164B1 (en) Method for detecting clusters of biological particles
EP3199941A1 (en) Method for observing a sample by lens-free imaging
EP0654661B1 (en) Intensity detector for light diffused by films in colloidal media
FR2541460A1 (en) METHOD AND APPARATUS FOR DETECTING AND COUNTING PARTICLES IN CIRCULAR SUSPENSION FOR HEMATOLOGICAL AND OTHER ANALYZES
EP3503193B1 (en) Image sensor, suitable for obtaining information on the phase of a light wave
WO2010092302A2 (en) High-resolution surface plasmon microscope that includes a heterodyne fiber interferometer
EP2926123A1 (en) Probe for optical measurements in a turbid medium, and optical measurement system using said probe
EP2446245B1 (en) Improved particle size analyzer
EP3436807B1 (en) Method and system for inspecting boards for microelectronics or optics by laser doppler effect
FR2902202A1 (en) INTERFEROMETRIC CONFOCAL MICROSCOPE
WO2010149887A1 (en) Improved method of particle size measurement
FR2583164A1 (en) METHOD AND DEVICE FOR DETERMINING THE COLOR AND TURBIDITY OF A FLUID
EP0064110B1 (en) Light scattering photometer
WO2024061843A1 (en) Optical microscope with resonator
EP2877836A1 (en) Optical methods for observing samples and for detecting or metering chemical or biological species
EP3364171B1 (en) Method for detecting a local change in the refractive index of a dielectric medium placed at the surface of an optical sensor
EP3575774B1 (en) Method for observing particles, in particular submicron particles
FR3076351A1 (en) DEVICE FOR ANALYZING A SAMPLE
FR3118169A1 (en) Sperm characterization method
FR3054320A1 (en) DEVICE AND METHOD FOR SAMPLE CHARACTERIZATION BY PWR SPECTROSCOPY IMAGING
FR2998967A1 (en) Spectroscopy apparatus i.e. spectroscope, for spectroscopy of door sample for study of e.g. Raman diffusion, has adjusting unit regulating position of sample support according to three translation axes and fulcrum pin

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10734183

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10734183

Country of ref document: EP

Kind code of ref document: A1