WO2010146606A1 - Nanodispersion of a drug and process for its preparation - Google Patents

Nanodispersion of a drug and process for its preparation Download PDF

Info

Publication number
WO2010146606A1
WO2010146606A1 PCT/IN2010/000423 IN2010000423W WO2010146606A1 WO 2010146606 A1 WO2010146606 A1 WO 2010146606A1 IN 2010000423 W IN2010000423 W IN 2010000423W WO 2010146606 A1 WO2010146606 A1 WO 2010146606A1
Authority
WO
WIPO (PCT)
Prior art keywords
nanodispersion
acid
salts
drug
surfactant
Prior art date
Application number
PCT/IN2010/000423
Other languages
French (fr)
Inventor
Ajay Jaysingh Khopade
N. Arulsudar
Subhas Balaram Bhowmick
Original Assignee
Sun Pharma Advanced Research Company Ltd.,
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sun Pharma Advanced Research Company Ltd., filed Critical Sun Pharma Advanced Research Company Ltd.,
Priority to CA2765541A priority Critical patent/CA2765541A1/en
Priority to EP10789111A priority patent/EP2442805A4/en
Priority to JP2012515633A priority patent/JP5627039B2/en
Priority to AU2010261342A priority patent/AU2010261342A1/en
Priority to EA201270050A priority patent/EA201270050A1/en
Priority to MX2011013726A priority patent/MX2011013726A/en
Priority to CN2010800270138A priority patent/CN102802624A/en
Priority to US13/378,758 priority patent/US8778364B2/en
Publication of WO2010146606A1 publication Critical patent/WO2010146606A1/en
Priority to ZA2011/09510A priority patent/ZA201109510B/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/21Esters, e.g. nitroglycerine, selenocyanates
    • A61K31/215Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids
    • A61K31/22Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids of acyclic acids, e.g. pravastatin
    • A61K31/222Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids of acyclic acids, e.g. pravastatin with compounds having aromatic groups, e.g. dipivefrine, ibopamine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/54Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with at least one nitrogen and one sulfur as the ring hetero atoms, e.g. sulthiame
    • A61K31/542Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with at least one nitrogen and one sulfur as the ring hetero atoms, e.g. sulthiame ortho- or peri-condensed with heterocyclic ring systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/04Peptides having up to 20 amino acids in a fully defined sequence; Derivatives thereof
    • A61K38/12Cyclic peptides, e.g. bacitracins; Polymyxins; Gramicidins S, C; Tyrocidins A, B or C
    • A61K38/13Cyclosporins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/08Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing oxygen, e.g. ethers, acetals, ketones, quinones, aldehydes, peroxides
    • A61K47/10Alcohols; Phenols; Salts thereof, e.g. glycerol; Polyethylene glycols [PEG]; Poloxamers; PEG/POE alkyl ethers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/107Emulsions ; Emulsion preconcentrates; Micelles
    • A61K9/1075Microemulsions or submicron emulsions; Preconcentrates or solids thereof; Micelles, e.g. made of phospholipids or block copolymers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5107Excipients; Inactive ingredients
    • A61K9/5123Organic compounds, e.g. fats, sugars
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5107Excipients; Inactive ingredients
    • A61K9/513Organic macromolecular compounds; Dendrimers
    • A61K9/5138Organic macromolecular compounds; Dendrimers obtained by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyvinyl pyrrolidone, poly(meth)acrylates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5107Excipients; Inactive ingredients
    • A61K9/513Organic macromolecular compounds; Dendrimers
    • A61K9/5146Organic macromolecular compounds; Dendrimers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyethylene glycol, polyamines, polyanhydrides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents

Definitions

  • the present invention relates to a 'nanodispersion' of a drug and process for its preparation.
  • Torisel ® injection which comprises temsirolimus and dehydrated alcohol (39.5% w/v), ⁇ /-alpha-tocopherol (0.075% w/v), propylene glycol (50.3% w/v), and anhydrous citric acid (0.0025% w/v), polysorbate 80 (40.0% w/v).
  • TORISEL temsirolimus
  • Sandimmune® Injection (cyclosporine injection, USP) available in a 5 mL sterile ampoule for I. V. administration.
  • Each mL contains: cyclosporine, USP 50 mg; *Cremophor® EL (polyoxyethylated castor oil) 650 mg; alcohol, Ph. Helv32.9% by volume which must be diluted further with 0.9% Sodium Chloride Injection or 5% Dextrose Injection before use.
  • Cremophor EL a polyoxyethylated castor oil vehicle, and dehydrated ethanol USP (1:1, v/v) are used.
  • solubilizers like CremophorTM EL in large amounts lead to various adverse effects such as serious or fatal hypersensitive and hypertensive reactions, bradyarrhythmia, anemia, neutropenia and/or peripheral neuropathy.
  • WO2008127358A2 (hereafter referred to as '358 patent publication) discloses aqueous solutions for water insoluble drugs, with the use of phospholipid included in a lipid complex.
  • the proportion of at least one phospholipid is between about 5% to about 98% of a final lipid complex (e.g., a commercially usable form) by weight.
  • the amount of at least one phospholipid is between 10% to 90% by weight of the lipid complex.
  • the composition of the present invention utilizes optionally phospholipids that too in very small amounts. It was found surprisingly, that the composition comprising water insoluble drugs such as the polyene antibiotics, tacrolimus, sirolimus could be effectively solubilized without the use of large amounts of phospholipids as taught by '358 patent publication.
  • WO 2008144355 A2 discloses a stable oral liquid fenofibrate formulations that include a fenofibrate component and a pharmaceutically acceptable liquid carrier that is present in an amount sufficient to solubilize the fenofibrate and that includes a lipophilic component, a surfactant component, at least one monohydric alcohol, and optionally in some embodiments an aqueous component, wherein the formulation is substantially free of an oily phase.
  • stable liquid fenofibrate formulations including a prophylactically or therapeutically effective amount of fenofibrate and a liquid carrier present in less than 5 ml that is sufficient to maintain dissolution of the fenofibrate under ambient temperature.
  • the formulation disclosed herein are free of oily phase, the publication teaches that the formulation can contains a lipophilic component comprising at least one triglyceride of one or more fractionated vegetable fatty acids including C to ClO ; a surfactant component wherein the surfactant has a HLB value of greater than 10 in amounts as high as 30 percent to about 70 percent, preferably from about 42.5 percent to about 65 percent and/or from about 46 percent to about 57.5 percent. The presence of such high amounts of surfactant may not be desirable for the above reasons discussed.
  • a composition that is using very, very low amounts of surfactant.
  • a nanodispersion comprising nanoparticles having a mean size less than 300 nm dispersed in a vehicle comprising a water miscible solvent and water, said nanoparticles comprising a drug, a polymer and very low amount of surfactants and further is substantially free of phospholipids.
  • a nanodispersion comprising nanoparticles having a mean size less than 300 tun dispersed in a vehicle comprising a water miscible solvent and water, said nanoparticles comprising one or more drugs, a polymer and a surfactant comprising a mixture of fatty acids or its salts and sterol or its derivatives or its salts.
  • the water miscible solvent is selected from alcohols, glycols and its derivatives, polyalkylene glycols and its derivatives, glycerol, glycofurol and combinations thereof.
  • water miscible solvent is selected from the group consisting of alcohol and polyethylene glycol (PEG).
  • M A nanodispersion as described in A above, wherein the sterol or its derivatives or its salts is selected from the group consisting of cholesterol, cholesteryl esters of polar acids, phytosterols, bile acids their derivative, salts and mixtures thereof.
  • N Nanoparticles as described in A above wherein the polar acid is selected from the group consisting of succinic acid, hemisuccinic acid, sulfuric acid, phosphoric acid, glutamic acid and aspartic acid, boric acid.
  • a solution comprising one or more drugs, a polymer and a surfactant comprising a mixture of fatty acids or its salts and sterol or its derivatives or salts thereof in a water miscible solvent, which on dilution with an aqueous liquid vehicle gives a nanodispersion.
  • Nanoparticles having a mean particle size less than 300 tuns comprising one or more drugs, surfactant comprising a mixture of and fatty acid or it salts and sterol or its derivatives or its salts and a polymer.
  • the present invention provides a nanodispersion comprising nanoparticles having a mean particle size less than 300 nm dispersed in a vehicle comprising a water miscible solvent and water, said nanoparticles comprising one or more drugs, a polymer and a surfactant comprising a mixture of fatty acids or its salts and a sterol or its derivatives or its salts.
  • the present invention also provides a solution comprising one or more drugs, a polymer and a surfactant comprising a mixture of fatty acids or its salts and sterol or its derivatives or its salts in a water miscible solvent, which upon dilution with an aqueous liquid vehicle gives nanodispersion.
  • the present invention also provides nanoparticles having a mean particle size less than 300 nms comprising one or more drugs, surfactant comprising a mixture of sterol or its derivatives or its salts and fatty acid or its salts and a polymer.
  • the present invention provides a nanodispersion comprising nanoparticles having a mean particle size less than 300 nm dispersed in an aqueous vehicle comprising a water miscible solvent and water, said nanoparticles comprising a drug, a polymer and a surfactant comprising a mixture of fatty acids or its salts and sterol or its derivatives or its salts.
  • the present invention also provides a solution comprising a drug, a polymer and a surfactant comprising a mixture of fatty acids or its salts and sterol or its derivatives or its salts in a water miscible solvent, which upon dilution with an aqueous vehicle gives nanodispersion.
  • the present invention also relates to nanoparticles having a mean particle size less than 300 nms comprising drug, surfactant comprising a mixture of sterol or its derivatives or its salts and fatty acid or it salts and a polymer.
  • the nanodispersion of the present invention is devoid of toxic excipients like Cremophor and involves the use of much reduced amounts of additives (like surfactants and phospholipids) required for formulating a stable nanodispersion of drug, thus minimizing the associated toxic reactions.
  • nanoparticle as used herein means any particle having controlled dimensions of the order of nanometers.
  • the nanoparticles as claimed in the present invention can be a polymeric nanoparticle (matrix of polymer entrapping the drug) and/or a polymeric nanovesicle (polymer stabilized nano sized vesicle encapsulating the drug.) and/or a polymeric nanocapsule (polymeric membrane surrounding drug in core) and/or nano sized particles of the drug stabilized by surfactants, and the like having mean size less than 300 nm.
  • the particle size of the nanoparticles is determined using conventional methods of measuring and expressing particle size like Malvern particle size analysis, sieving, light scattering optical microscopy, image analysis, sedimentation and such other methods known to one skilled in the art.
  • Particle size distribution information can be obtained from the values Dio, D 50 , and D90, such as can be generated from a Malvern particle size determination
  • the applicants believe that the delivery of drug through nanodispersion comprising nanoparticles having mean size less than 300 nm, leads to enhanced internalization and accumulation of the drug in the target tumor tissues and cells. Such increased internalization levels provides a potent treatment strategy for curing tumors associated with cancer.
  • the particle size of the nanoparticles is in the range of 10 nm to 275 nm. In preferred embodiments of the present invention, the particle size is less than 200 nm. In most preferred embodiments of the present invention, the particle size is in the range of 10 nm to 200 nm.
  • the present invention provides a nanodispersion comprising nanoparticles having a mean size less than 300 nm dispersed in a vehicle comprising a water miscible solvent and water, said nanoparticles comprising one or more active agents, a polymer and a surfactant comprising a mixture of fatty acids or its salts and sterol or its derivatives or its salts.
  • the present invention also provides a solution comprising one or more drugs, a polymer and a surfactant comprising a mixture of fatty acids or its salts and sterol or its derivatives or its salts in a water miscible solvent, which upon dilution with an aqueous liquid vehicle gives nanodispersion.
  • the nanoparticles of the present invention have a mean particle size less than 300 nms, wherein the said particles comprises one or more drugs, surfactant comprising a mixture of sterol or its derivatives or its salts and fatty acid or it salts and a polymer.
  • the drug derivative are preferably the drugs that are poorly water soluble drugs, such as sirolimus, tacrolimus, cyclosporine, fenofibrate.
  • these drugs are poorly water soluble and poses a problem of physically unstable due to either crystallization or aggregation problem leading to inadequate bioavailability when administered either orally or parenterally.
  • the nanoparticles of the present invention comprise one or more polymers.
  • the polymer(s) that are suitable for the nanoparticles of the present invention are preferably, water soluble.
  • Polyvinylpyrrolidone one of the water soluble polymer is a tertiary amide polymer having linearly arranged monomer units of l-vinyl-2-pyrrolidone, hereinafter designated PVP, and also known as Povidone. It is commercially available as a series of products having mean molecular weights ranging from about 10,000 to about 700,000. The various products are marketed according to average molecular weights designated K- values; e.g. GAF Corporation supplies PVP having the following K-values:
  • BASF provides different water soluble grades of polyvinyl pyrrolidone as Kollidon with grades having for eg, molecular weight of 2000 to 3000 (Kollidon 12 PF), 7000-11,000 (Kollidon 17 PF), 28,000-34,000 (KoUidon25), 1,000,000-1,5000,000 (Kollidon 90 F).
  • polyvinylpyrrolidone is used as a water soluble polymer.
  • the grades of polyvinylpyrrolidone suitable for the present invention include grades having a molecular weight in the range from about 1,000 to about 45,000, preferably, from about 4,000 to about 30,000.
  • the amount of polymer used in the nano-dispersion ranging from about 0.001% w/v to about 20% w/v.
  • the polymer is preferably used in an amount ranging from about 0.01% w/v to about 5.0% w/v. Most preferably, it is used in an amount ranging from about 0.01 % w/v to about 1.0 % w/v.
  • the nanodispersion of the present invention comprises one or more surfactants.
  • surfactant is a blend of "surface active agent".
  • Surfactants are molecules, which comprises a water-soluble (hydrophilic) and a lipi-soluble (lipophilic) part.
  • the surfactants that are used in the nanodispersion of the present invention comprises a mixture of fatty acid or its salts and sterol or its derivatives or its salts.
  • fatty acids includes aliphatic (saturated or unsaturated) monocarboxylic acids derived from or contained in esterified form, in an animal or vegetable fat, oil or wax.
  • fatty acids or its salts that may be used in the compositions of the present invention include but are not limited to fatty acids or its salts having 'n' number of carbon atoms wherein 'n' ranges from about 4 to about 28.
  • the fatty acid may be a saturated fatty acid or an unsaturated fatty acid, and their salt and combinations thereof.
  • the saturated fatty acid and its salts may be selected from butyric acid, caproic acid, caprylic acid, capric acid, lauric acid, myristic acid, palmitic acid, stearic acid, arachidic acid, behenic acid, sodium caprylate, sodium laurate, sodium myristate, sodium palmitate and the like and/or mixtures thereof.
  • the unsaturated fatty acid and its salts may be selected from myristoleic acid, palmitoleic acid, oleic acid, linoleic acid, alpha linolenic acid, arachidonic acid, eicosapentaenoic acid, erucic acid, docosahexaenoic acid, sodium oleate, sodium arachidonate and the like and/or mixtures thereof.
  • sterol or its derivative or its salts that may be used in the nanodispersion or nanoparticles of the present invention may be acid esters of sterols.
  • the sterols that may be suitable according to the present invention include, but are not limited to, cholesterol, phytosterols, ergosterol, bile acids salts and mixtures thereof.
  • Acid salts of cholesterol include, but are not limited to, cholesteryl sulfate, cholesterol acetate, cholesterol chloroacetate, cholesterol benzoate, cholesterol myristate, cholesterol hemisuccinate, cholesterol phosphate, cholesterol phosphate, phosphonate, borate, nitrate, cholesterol cinnamate, cholesterol crotanoate, cholesterol butyrate, cholesterol heptanoate, cholesterol hexanoate, cholesterol octanoate, cholesterol nonanoate, cholesterol decanoate, cholesterol oleate, cholesterol propionate, cholesterol valerate, dicholesteryl carbonate and the like and mixtures thereof.
  • Phytosterols that may be used in the compositions of the present invention include sitosterol, campesterol, stigmasterol, brassicasterol and its derivatives, salts and mixture thereof.
  • Phytosterols* marketed by Sigma, U.S.A. containing bsitosterol, campesterol and dihydrobrassicasterol.
  • Bile acids include cholic acid, chenodeoxycholic acid, deoxycholic acid, glycocholic acid, taurocholic acid, ursodeoxycholic acid and its derivatives, salts and mixture thereof.
  • the sterols can also be esters of cholesterol including cholesterol hemi- succinate, salts of cholesterol including cholesterol hydrogen sulfate and cholesterol sulfate, ergosterol, esters of ergosterol including ergosterol hemi-succinate, salts of ergosterol including ergosterol hydrogen sulfate and ergosterol sulfate, lanosterol, esters of lanosterol including lanosterol hemi-succinate, salts of lanosterol including lanosterol hydrogen sulfate and lanosterol sulfate.
  • the nanoparticles comprise a surfactant which is a mixture of sterol or its derivatives or its salts and fatty acids or its salts.
  • the nanoparticles comprise of cholesterol ester of polar acids.
  • the surfactant used in the nanodispersion is a mixture of caprylic acid and cholesteryl sulfate.
  • Caprylic acid, also known as octanoic acid may be used in the embodiments in an amount ranging from about 0.001% w/v to about 5.0% w/v, more preferably from about 0.01% w/v to about 1.0%w/v and most preferably from about 0.01%w/v to about 0.5 % w/v.
  • Cholesteryl sulfate is used in the embodiments of the present invention in an amount ranging from about 0.001% w/v to about 5.0% w/v, more preferably from about 0.01%w/v to about 1.0%w/v and most preferably from about 0.01%w/v to about 0.5 %w/v.
  • the surfactant used is selected from oleic acid and cholesteryl sulphate and/or mixtures thereof.
  • the surfactant used is selected from saturated fatty acid and bile acid or bile salt and/or mixtures thereof.
  • the surfactant used is selected from the group consisting of caprylic acid and sodium glycocholate or ursodeoxycholic acid and/or mixtures thereof.
  • Bile salts when used are employed in an amount ranging from about 0.001% w/v to about 5.0% w/v, more preferably from about 0.01%w/v to about 1.0%w/v and most preferably from about 0.01%w/v to about 0.75 %w/v.
  • compositions of the present invention may further comprise very low amounts of lecithins/phospholipids and/or their derivatives.
  • 'low amounts' as used herein means that the ratio of phospholipids to drug is about 1: 4 to about 1:10, that even if phospholipids are used they are used in very low amount i.e compared to the amount of drug the amount of phospholipids is very low.
  • the prior art compositions that are liposomal require large amounts of phospholipids compared to the amount of the drug.
  • the examples of such phospholipids include, but are not limited to, lecithins natural, partially hydrogenated or hydrogenated lecithin or sphingolipids. Natural lecithins inturn are mixtures of different phospholipids.
  • the phospholipids that may be used in the compositions of the present invention is selected from phosphatidyl choline, (dimyristoylphosphatidyl choline, dipalmitotylphosphatidyl choline, distearyloylphosphatidyl choline, dioleoylphosphatidyl choline, dilauryloylphosphatidyl choline, 1-pahnitoyl-phosphatidyl choline, l-myristoyl-2-palmitoyl phosphatidyl choline, l-palmitoyl-2-myristoyl phosphatidyl choline, l-stearoyl-2-palmitoyl phosphatidyl choline); phosphatidyl ethanolamine (dimyristoyl phosphatidyl ethanolamine, dipalmitoyl phosphatidyl ethanolamine, distearoyl phosphatidyl
  • polyethylene glycol derivatives of lipids such as polyethylene glycol-distearoyl phosphatidylethanolamine (PEG-DSPE), methoxypolyethylene glycol-distearoyl phosphatidylcholine m-PEG-DSPC and the like and mixtures thereof may also be used in the compositions of the present invention.
  • PEG-DSPE polyethylene glycol-distearoyl phosphatidylethanolamine
  • methoxypolyethylene glycol-distearoyl phosphatidylcholine m-PEG-DSPC and the like and mixtures thereof may also be used in the compositions of the present invention.
  • the butylenesids that may be used in the compositions of the present invention is m-PEG-DSPE (methoxy polyethylene glycol-disteroyl phosphatidyl ethanolamine).
  • the phospholipid used is - mPEG-DSPE. It is used in an amount ranging from about 0.001%w/v to about 10.0% w/v, more preferably from about 0.01%w/v to about 5.0%w/v and most preferably from about 0.03%w/v to about 0.5 %w/v.
  • the non-aqueous solvent used in the compositions of the present invention is one in which the drug is relatively soluble.
  • the non aqueous solvent is miscible with water or aqueous solvents.
  • water miscible solvents used in the present invention includes, but are not limited to, alcohols such as ethanol, n-propanol, isopropanol; glycols such as ethylene glycol, propylene glycol, butylene glycol and its derivatives; polyethylene glycols like PEG 400 or PEG 3350; polypropylene glycol and its derivatives such as PPG-10 butanediol, PPG-10 methyl glucose ether, PPG-20 methyl glucose ether,
  • PPG- 15 stearyl ether; glycerol; glycofurpl and the like and mixtures thereof.
  • the non-aqueous solvent may be selected from the group consisting of alcohols, polyethylene glycols and/or mixtures thereof.
  • a mixture of ethanol and PEG polyethylene glycol
  • Ethanol is used in the nanodispersion composition of the present invention in an amount ranging from about 0.001% w/v to about 5% w/v, more preferably from about 0.05% w/v to about 0.5% w/v and most preferably from about 0.1% w/v to about 0.25% w/v.
  • PEG-400 is used in the embodiments of the present invention in an amount ranging from about 0.01% w/v to about 20.0% w/v, more preferably from about 0.05% w/v to about 5.0% w/v and most preferably from about 1.0% w/v to about 2.5% w/v.
  • PEG-3350 is used in the embodiments of the present invention in an amount ranging from about 0.001% w/v to about 10.0% w/v, more preferably from about 0.05% w/v to about 5.0% w/v and most preferably from about 0.1% w/v to about 3% w/v.
  • a drug pre-concentrate i.e the solution upon dilution with the aqueous vehicle gives a nanodispersion that remains stable for at least about 4 hours. This time is the time during which the nanodispersion may be administered to the patient in the form of infusion. Thus, it is always desirable to achieve minimum of 4 hours stability of the nanodispersion of the present invention.
  • the vehicle may further comprise about 5% to about 10.0 % w/v dextrose solution in water for injection or any other pharmaceutically acceptable intravenous aqueous liquid vehicle and mixtures thereof.
  • the aqueous vehicle further comprises 5 % dextrose solution in order to improve this stability but additional stabilizers may also be present in the aqueous phase.
  • additional stabilizers are hetastarch, dextran, sodium hyaluronate, glutathione, ornithin-L- aspartate and the like and mixtures thereof.
  • the solution of the present invention as claimed may be designed for oral administration.
  • the solution also referred to as pre-concentrate may be filled into hard or soft gelatin capsules.
  • the solution is dispersed in the aqueous medium and therefore, the drugs like fenofibrate are dispersed in the form of nanoparticles having a particle size in the nanometer range, sufficient to provide adequate dissolution.
  • the nanodispersion vehicle allows the drug particles to remain in the dispersion, physically stable for a desired period of time, for example, 1 hour to 3 hours which is sufficient for the drug to be absorbed into the body, when the nanodispersion is administered orally.
  • the solution may be dried to form nanoparticles.
  • the nanoparticles may be formulated along with pharmaceutically acceptable excipients to form solid dosage form like tablet, granules, pellets.
  • the nanodispersion of drug of the present invention may be typically prepared by any one of the processes listed below:
  • the therapeutically active ingredient (and/or other agents), polymer(s) and surfactant(s) selected from fatty acids or its salts* sterol or its derivatives or its salts and mixtures thereof is dissolved in water misbicle solvent such as ethanol and/or PEG, along with stirring and heating to obtain a concentrated solution of the drug.
  • the solution so obtained is filtered through a membrane filter.
  • an aqueous liquid vehicle 5% dextrose solution
  • the nanodispersion so formed is optionally homogenized and/or sonicated, filtered or lyophilized.
  • the lyophilized powder of the medicament can be reconstituted with the aqueous medium, reforming nanodispersion of the present invention, prior to administration to the patients.
  • the drug, polymer(s) and surfactant(s) selected from fatty acids or its salts, sterol or its derivatives or its salts and mixtures thereof is dissolved in water miscible solvent such as ethanol and/or PEG along with stirring and heating to obtain a concentrated solution of the drug.
  • the solution so obtained is filtered through a membrane filter and is added to an aqueous medium (5% dextrose solution) and the mixture is shaken/ agitated, thus leading to the formation of the nanodispersion of the present invention.
  • the nanodispersion so formed is optionally homogenized and/or sonicated, filtered or lyophilized.
  • the lyophilized powder of the medicament can be reconstituted with the aqueous medium, reforming nanodispersion of the present invention, prior to administration to the patients.
  • drug and surfactant(s) comprising a mixture of fatty acids or its salts and sterol or its derivatives or its salts is dissolved in water miscible solvent such as ethanol and/or PEG by slightly warming at 40 0 C in a round bottomed flask, and the solvent is evaporated to form a thin film of the drug.
  • the polymer(s) is dissolved in required quantity of an aqueous medium and this solution is added to the film with gentle agitation and shaking for 3-4 hours, thus leading to the formation of the nanodispersion of the present invention.
  • the nanodispersion so formed is optionally homogenized and / or sonicated, filtered and lyophilized.
  • the lyophilized powder of the medicament can be reconstituted with the aqueous medium, reforming nanodispersion of the present invention prior to administration to the patients.
  • the nanodispersion of the present invention is a colloidal nanodispersion of drug comprising nanoparticles having a mean size less than 300 nm, they were analyzed for physical and chemical stability. It was observed that the particles do not aggregate upon storage at room temperature for about 8 hours to 24 hours and the nanodispersion shows no sign of change in appearance, inferring that the nanodispersion is stable for the desired period of time before and during administration.
  • the nanodispersion of the present invention can be provided as a kit having two or more containers, for. example two containers, wherein the first container comprising a solution of a drug, a polymer and a surfactant comprising a mixture of fatty acids or its salts and sterol or its derivatives or its salts in a water miscible solvent, and a second container comprising an aqueous liquid vehicle, such that on addition of contents of second container to the contents of the first container or vice versa, with mild agitation or shaking, results in the formation of nanodispersion of the present invention and is suitable for intravenous administration.
  • An additional container may contain a third component for mixing prior to formation of drug nanodispersion or alter nanodispersion of the said drug is formed.
  • the present invention also provides a kit having two containers, the first container comprising a lyophilized form of the nanodispersion and a second container comprising an aqueous liquid vehicle such that prior to administration to the patients, the contents of second container can be added to the contents of the first container or vice versa with mild agitation or shaking, resulting in the formation of nanodispersion of the present invention.
  • Administering the nanodispersion of the present invention to patients in need thereof, will provide an efficient method of treatment of various types of cancers known in the art.
  • Drug, cholesteryl sulfate, caprylic acid and PVP K-12 were weighed accurately in a glass vessel. Contents were dissolved in the required quantity of absolute ethanol and PEG-400 with stirring to obtain a concentrated drug solution. The solution was filtered through 0.2 ⁇ PVDF membrane filter. The required amount of the preconcentrate was dispersed in the dextrose solution (5% w/v) (50 ml) with gentle shaking to get a transparent to transluscent nanodispersion of drug having dilution of 0.1 mg/ml. Nanodispersion was analyzed for the following tests: Appearance, pH (Mettler Toledo-seven easy, pH Meter) and Particle size (Nano-ZS, Malvern Particle size analyzer), described below.
  • the preconcentrate so prepared was found to be clear colorless slightly viscous solution. It was mixed with the aqueous phase such as dextrose solution to achieve a nanodispersion. The stability of the nanodispersion in terms of the particle size of the dispersed particles was determined initially as well as on storage for few hours.
  • EXAMPLE 2 Drug, cholesteryl sulfate, caprylic acid and PVP K- 17 were weighed accurately in a glass vessel. Contents were dissolved in the required quantity of absolute ethanol and PEG-400 with stirring to obtain a concentrated drug solution. The solution was filtered through 0.2 ⁇ PVDF membrane filter. Required amount of the preconcentrate was dispersed in the Dextrose solution (5%w/v) (50 ml) with gentle shaking to get a transparent to transluscent nanodispersion of drug having dilution of 0.5mg/ml. Nanodispersion was analyzed for the following tests: Appearance, pH (Mettler Toledo-seven easy, pH Meter) and Particle size (Nano-ZS, Malvern Particle size analyzer), described below.
  • the pre-concentrate so prepared is found to be clear colorless slightly viscous solution. It was mixed with the aqueous phase such as dextrose solution to achieve a nanodispersion. The stability of the nanodispersion in terms of the particle size of the dispersed particles was determined initially as well as on storage for few hours.
  • Sodium cholesteryl sulfate, caprylic acid, and Povidone (K- 12) were weighed accurately in a glass vessel. Contents were dissolved in the required quantity of Absolute Alcohol and PEG-400 with stirring to obtain a clear concentrated drug solution. The solution was filtered through 0.2 ⁇ PVDF membrane filter. The pre-concentrate so prepared was found to be clear colorless slightly viscous solution. The required amount of the preconcentrate was dispersed in the dextrose solution (5% w/v) with gentle shaking to get a white transluscent nanodispersion of drug having dilution of 5.0mg/ml.
  • Nanodispersion was analyzed for the following tests: Appearance, pH (Mettler Toledo- seven easy, pH Meter) and Particle size (Nano-ZS, Malvern Particle size analyzer), described below.
  • the stability of the nanodispersion in terms of the particle size of the dispersed particles was determined initially as well as on storage ie. after Ih.
  • the stability of the nanodispersion in terms of the particle size of the dispersed particles was determined initially as well as on storage i.e after 24h.
  • Sodium cholesteryl sulfate, caprylic acid, and Povidone (K- 17) were weighed accurately in a glass vessel. Contents were dissolved in the required quantity of Absolute Alcohol and PEG-400 with stirring and by heating at 60 0 C to obtain a clear concentrated drug solution. The solution was filtered through 0.2 ⁇ PVDF membrane filter. The pre- concentrate so prepared was found to be clear colorless to pale yellow slightly viscous solution. The required amount of the preconcentrate was dispersed in 0.25% Hypromellose (HPMC) solution with gentle shaking to get a nanodispersion of drug having dilution of 1.0 mg/ml.
  • HPMC Hypromellose
  • Nanodispersion was analyzed for the following tests: Appearance, pH (Mettler Toledo-seven easy, pH Meter) and Particle size (Nano-ZS, Malvern Particle size analyzer), described below. The particle size of the nanodispersion was determined initially as well as on storage till 2h.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Epidemiology (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Optics & Photonics (AREA)
  • Nanotechnology (AREA)
  • Biomedical Technology (AREA)
  • Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Emergency Medicine (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biophysics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Immunology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Molecular Biology (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Preparation (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)

Abstract

The present invention provides a nanodispersion comprising nanoparticles having a mean size less than 300 nm dispersed in a vehicle comprising a water miscible solvent and water, said nanoparticles comprising one or more drugs, a polymer and a surfactant comprising a mixture of fatty acids or its salts and sterol or its derivatives or its salts.

Description

NANODISPERSION OF A DRUG AND PROCESS FOR ITS PREPARATION
The present invention relates to a 'nanodispersion' of a drug and process for its preparation.
BACKGROUND OF THE INVENTION
There are number of pharmaceutical drugs that are poorly soluble or insoluble in aqueous solutions. Such drugs provide challenges in terms of having poor oral bioavailability or in terms of formulating them for drug delivery especially through the intravenous route. If a drug is intravenously administered, particles must be small enough to safely pass through capillaries without causing emboli. For intravenous administration, it is recognized as safe to administer drugs in the form of solution, emulsion, liposomes, nanodispersions and the like. Another requirement that should be met while formulating a drag delivery system especially for hydrophobic drugs is that the formulation should be physically stable with no substantial aggregation or crystallization of the drug or change in appearance of the formulation on storage at room temperature for desired period of time.
Certain . drugs exhibit very poor solubility in water and in most pharmaceutically acceptable solvents thus limiting their administration to patients. For example, commercially available product is Torisel® injection which comprises temsirolimus and dehydrated alcohol (39.5% w/v), ^/-alpha-tocopherol (0.075% w/v), propylene glycol (50.3% w/v), and anhydrous citric acid (0.0025% w/v), polysorbate 80 (40.0% w/v). After the TORISEL (temsirolimus) injection vial has been diluted with diluent the solution contains 35.2% alcohol. Yet another injectable available in the market comprising high amount of surfactant is Sandimmune® Injection (cyclosporine injection, USP) available in a 5 mL sterile ampoule for I. V. administration. Each mL contains: cyclosporine, USP 50 mg; *Cremophor® EL (polyoxyethylated castor oil) 650 mg; alcohol, Ph. Helv32.9% by volume which must be diluted further with 0.9% Sodium Chloride Injection or 5% Dextrose Injection before use. Cremophor EL, a polyoxyethylated castor oil vehicle, and dehydrated ethanol USP (1:1, v/v) are used. Although these solvents systems are biologically and pharmacologically acceptable, they have known to have side effects, including acute hypersensitivity reactions and peripheral neuropathies. It may be noted that the use of solubilizers like Cremophor™ EL in large amounts lead to various adverse effects such as serious or fatal hypersensitive and hypertensive reactions, bradyarrhythmia, anemia, neutropenia and/or peripheral neuropathy.
WO2008127358A2 (hereafter referred to as '358 patent publication) discloses aqueous solutions for water insoluble drugs, with the use of phospholipid included in a lipid complex. The proportion of at least one phospholipid is between about 5% to about 98% of a final lipid complex (e.g., a commercially usable form) by weight. In general, the amount of at least one phospholipid is between 10% to 90% by weight of the lipid complex. In contrast, the composition of the present invention utilizes optionally phospholipids that too in very small amounts. It was found surprisingly, that the composition comprising water insoluble drugs such as the polyene antibiotics, tacrolimus, sirolimus could be effectively solubilized without the use of large amounts of phospholipids as taught by '358 patent publication.
Another prior art, namely, PCT publication WO 2008144355 A2 discloses a stable oral liquid fenofibrate formulations that include a fenofibrate component and a pharmaceutically acceptable liquid carrier that is present in an amount sufficient to solubilize the fenofibrate and that includes a lipophilic component, a surfactant component, at least one monohydric alcohol, and optionally in some embodiments an aqueous component, wherein the formulation is substantially free of an oily phase. Also included are stable liquid fenofibrate formulations including a prophylactically or therapeutically effective amount of fenofibrate and a liquid carrier present in less than 5 ml that is sufficient to maintain dissolution of the fenofibrate under ambient temperature. It may be important to note that although the formulation disclosed herein are free of oily phase, the publication teaches that the formulation can contains a lipophilic component comprising at least one triglyceride of one or more fractionated vegetable fatty acids including C to ClO ; a surfactant component wherein the surfactant has a HLB value of greater than 10 in amounts as high as 30 percent to about 70 percent, preferably from about 42.5 percent to about 65 percent and/or from about 46 percent to about 57.5 percent. The presence of such high amounts of surfactant may not be desirable for the above reasons discussed.
United States patent application US20040005339 (Patent application '339) claims a pharmaceutical formulation of a fibrate with improved oral bioavailability comprising a fϊbrate selected from fenofibrate , derivative of fenoflbrate or mixtures thereof dissolved in a water miscible fibrate solubilizer selected from N-alkyl derivative of 2-pyrrolidone, ethylene glycol monoether, Cs-i2 fatty acid ester of polyethylene glycol, fatty acids and combinations thereof; wherein the fibrate to solubilizer weight ratio is between about 1:1 and about 1:100. We have found out a formulation that solubilizers the fenofibrate with an amount of surfactants that is lower than the amount of fenofibrate.
In view of these problems associated with marketed formulations having very high amount of surfactants or high amounts of phospholipids, we have developed a composition that is using very, very low amounts of surfactant. We have developed a nanodispersion comprising nanoparticles having a mean size less than 300 nm dispersed in a vehicle comprising a water miscible solvent and water, said nanoparticles comprising a drug, a polymer and very low amount of surfactants and further is substantially free of phospholipids. Also the present inventors have found that molecules like fenofibrate which present lot of problems of dissolution and therefore poor bioavailability, were successfully formulated to achieve desirable dissolution when the drugs like fenofibrate were incorporated into the nanodispersion vehicle of the present invention. This results was unexpected because dissolution behaviour of drugs like fenofibrate is absolutely unpredictable.
OBJECTS OF THE INVENTION
It is the object of the present invention to provide a nanodispersion of a drug that is stable for the desired period of time before and during administration by parenteral or oral route
It is the object of the present invention to provide a nanodispersion of a drug that is physically stable for the desired period of time before and during administration by parenteral route.
It is another object of the present invention to provide a nanodispersion that shows no sign of aggregation or change in appearance on storage to more than 3 hours at room temperature.
It is a further object of the present invention to provide a pre-concentrate of drug derivative which is stable chemically and shows no sign of aggregation or change in appearance on storage for at least 3 months at room temperature and which upon dilution with an aqueous liquid vehicle gives a stable nanodispersion.
SUMMARY OF THE INVENTION A. A nanodispersion comprising nanoparticles having a mean size less than 300 tun dispersed in a vehicle comprising a water miscible solvent and water, said nanoparticles comprising one or more drugs, a polymer and a surfactant comprising a mixture of fatty acids or its salts and sterol or its derivatives or its salts.
B. A nanodispersion as described in A above, wherein the drug is selected from temsirolimus, tacrolimus, sirolimus, cyclosporine, fenofibrate or its pharmaceutically acceptable salts.
C. A nanodispersion as described in A above wherein the ratio of surfactant to the drug is about 1 : 5 to 1 : 10 and wherein the said nanodispersion is stable for at least 4 hours.
D. A nanodispersion as described in A above wherein the ratio of surfactant to drug is about 1 : 5 to about 1:10 and wherein the said nanodispersion is stable for 24 hours.
E. A nanodispersion as described in A above wherein the ratio of surfactant to drug is about 1: 10 and the wherein the said nanodispersion is stable for 8 hours. F. A nanodispersion as described in A above, wherein the mean size of the nanoparticles is in the range of about 10 nm to about 200 nm.
G. A nanodispersion as described in A above, wherein the water miscible solvent is selected from alcohols, glycols and its derivatives, polyalkylene glycols and its derivatives, glycerol, glycofurol and combinations thereof.
H. A nanodispersion as described in A above, wherein the water miscible solvent is selected from the group consisting of alcohol and polyethylene glycol (PEG).
I. A nanodispersion as described in A above, wherein the polymer is a water soluble polymer. J. A nanodispersion as described in A above, wherein the water soluble polymer is selected from the group consisting of polyvinylpyrrolidone and polyethylene glycol.
K A nanodispersion as described in A above, wherein polyvinylpyrrolidone used has a molecular weight in the range of 1000 to about 50,000 and is used in the amount ranging from 0.001% w/v to 10% w/v. L. A nanodispersion as described in A above, wherein the fatty acid or its salt is selected from the group consisting of caprylic acid, oleic acid, stearic acid and mixture thereof.
M. A nanodispersion as described in A above, wherein the sterol or its derivatives or its salts is selected from the group consisting of cholesterol, cholesteryl esters of polar acids, phytosterols, bile acids their derivative, salts and mixtures thereof. N. Nanoparticles as described in A above wherein the polar acid is selected from the group consisting of succinic acid, hemisuccinic acid, sulfuric acid, phosphoric acid, glutamic acid and aspartic acid, boric acid.
O. A nanodispersion as described in A above, wherein the surfactant is used in an amount ranging from about 0.001% w/v to about 5.0 % w/v. P. A solution comprising one or more drugs, a polymer and a surfactant comprising a mixture of fatty acids or its salts and sterol or its derivatives or salts thereof in a water miscible solvent, which on dilution with an aqueous liquid vehicle gives a nanodispersion.
Q. Nanoparticles having a mean particle size less than 300 tuns comprising one or more drugs, surfactant comprising a mixture of and fatty acid or it salts and sterol or its derivatives or its salts and a polymer. The present invention provides a nanodispersion comprising nanoparticles having a mean particle size less than 300 nm dispersed in a vehicle comprising a water miscible solvent and water, said nanoparticles comprising one or more drugs, a polymer and a surfactant comprising a mixture of fatty acids or its salts and a sterol or its derivatives or its salts.
The present invention also provides a solution comprising one or more drugs, a polymer and a surfactant comprising a mixture of fatty acids or its salts and sterol or its derivatives or its salts in a water miscible solvent, which upon dilution with an aqueous liquid vehicle gives nanodispersion.
The present invention also provides nanoparticles having a mean particle size less than 300 nms comprising one or more drugs, surfactant comprising a mixture of sterol or its derivatives or its salts and fatty acid or its salts and a polymer.
DETAILED DESCRIPTION OF THE INVENTION
The present invention provides a nanodispersion comprising nanoparticles having a mean particle size less than 300 nm dispersed in an aqueous vehicle comprising a water miscible solvent and water, said nanoparticles comprising a drug, a polymer and a surfactant comprising a mixture of fatty acids or its salts and sterol or its derivatives or its salts.
The present invention also provides a solution comprising a drug, a polymer and a surfactant comprising a mixture of fatty acids or its salts and sterol or its derivatives or its salts in a water miscible solvent, which upon dilution with an aqueous vehicle gives nanodispersion.
The present invention also relates to nanoparticles having a mean particle size less than 300 nms comprising drug, surfactant comprising a mixture of sterol or its derivatives or its salts and fatty acid or it salts and a polymer. The nanodispersion of the present invention is devoid of toxic excipients like Cremophor and involves the use of much reduced amounts of additives (like surfactants and phospholipids) required for formulating a stable nanodispersion of drug, thus minimizing the associated toxic reactions.
The term nanoparticle as used herein means any particle having controlled dimensions of the order of nanometers. The nanoparticles as claimed in the present invention can be a polymeric nanoparticle (matrix of polymer entrapping the drug) and/or a polymeric nanovesicle (polymer stabilized nano sized vesicle encapsulating the drug.) and/or a polymeric nanocapsule (polymeric membrane surrounding drug in core) and/or nano sized particles of the drug stabilized by surfactants, and the like having mean size less than 300 nm. The particle size of the nanoparticles is determined using conventional methods of measuring and expressing particle size like Malvern particle size analysis, sieving, light scattering optical microscopy, image analysis, sedimentation and such other methods known to one skilled in the art. Particle size distribution information can be obtained from the values Dio, D50, and D90, such as can be generated from a Malvern particle size determination Without wishing to be bound by any theory, the applicants believe that the delivery of drug through nanodispersion comprising nanoparticles having mean size less than 300 nm, leads to enhanced internalization and accumulation of the drug in the target tumor tissues and cells. Such increased internalization levels provides a potent treatment strategy for curing tumors associated with cancer.
According to one embodiment of the present invention, the particle size of the nanoparticles is in the range of 10 nm to 275 nm. In preferred embodiments of the present invention, the particle size is less than 200 nm. In most preferred embodiments of the present invention, the particle size is in the range of 10 nm to 200 nm.
The present invention provides a nanodispersion comprising nanoparticles having a mean size less than 300 nm dispersed in a vehicle comprising a water miscible solvent and water, said nanoparticles comprising one or more active agents, a polymer and a surfactant comprising a mixture of fatty acids or its salts and sterol or its derivatives or its salts. The present invention also provides a solution comprising one or more drugs, a polymer and a surfactant comprising a mixture of fatty acids or its salts and sterol or its derivatives or its salts in a water miscible solvent, which upon dilution with an aqueous liquid vehicle gives nanodispersion.
The nanoparticles of the present invention have a mean particle size less than 300 nms, wherein the said particles comprises one or more drugs, surfactant comprising a mixture of sterol or its derivatives or its salts and fatty acid or it salts and a polymer.
The drug derivative, as mentioned in the embodiments of the present invention, are preferably the drugs that are poorly water soluble drugs, such as sirolimus, tacrolimus, cyclosporine, fenofibrate. Preferably, these drugs are poorly water soluble and poses a problem of physically unstable due to either crystallization or aggregation problem leading to inadequate bioavailability when administered either orally or parenterally.
The nanoparticles of the present invention comprise one or more polymers. The polymer(s) that are suitable for the nanoparticles of the present invention are preferably, water soluble. Polyvinylpyrrolidone, one of the water soluble polymer is a tertiary amide polymer having linearly arranged monomer units of l-vinyl-2-pyrrolidone, hereinafter designated PVP, and also known as Povidone. It is commercially available as a series of products having mean molecular weights ranging from about 10,000 to about 700,000. The various products are marketed according to average molecular weights designated K- values; e.g. GAF Corporation supplies PVP having the following K-values:
K-value Average Molecular Weight
15 about 10,000
30 about 40,000
60 about 160,000
90 about 360,000
Another supplier, BASF provides different water soluble grades of polyvinyl pyrrolidone as Kollidon with grades having for eg, molecular weight of 2000 to 3000 (Kollidon 12 PF), 7000-11,000 (Kollidon 17 PF), 28,000-34,000 (KoUidon25), 1,000,000-1,5000,000 (Kollidon 90 F). In the embodiments polyvinylpyrrolidone is used as a water soluble polymer. The grades of polyvinylpyrrolidone suitable for the present invention include grades having a molecular weight in the range from about 1,000 to about 45,000, preferably, from about 4,000 to about 30,000. According to one embodiment of the present invention, the amount of polymer used in the nano-dispersion ranging from about 0.001% w/v to about 20% w/v. The polymer is preferably used in an amount ranging from about 0.01% w/v to about 5.0% w/v. Most preferably, it is used in an amount ranging from about 0.01 % w/v to about 1.0 % w/v.
The nanodispersion of the present invention comprises one or more surfactants. The term surfactant is a blend of "surface active agent". Surfactants are molecules, which comprises a water-soluble (hydrophilic) and a lipi-soluble (lipophilic) part. The surfactants that are used in the nanodispersion of the present invention comprises a mixture of fatty acid or its salts and sterol or its derivatives or its salts.
The term fatty acids includes aliphatic (saturated or unsaturated) monocarboxylic acids derived from or contained in esterified form, in an animal or vegetable fat, oil or wax. Examples of fatty acids or its salts that may be used in the compositions of the present invention include but are not limited to fatty acids or its salts having 'n' number of carbon atoms wherein 'n' ranges from about 4 to about 28. The fatty acid may be a saturated fatty acid or an unsaturated fatty acid, and their salt and combinations thereof. The saturated fatty acid and its salts may be selected from butyric acid, caproic acid, caprylic acid, capric acid, lauric acid, myristic acid, palmitic acid, stearic acid, arachidic acid, behenic acid, sodium caprylate, sodium laurate, sodium myristate, sodium palmitate and the like and/or mixtures thereof. The unsaturated fatty acid and its salts may be selected from myristoleic acid, palmitoleic acid, oleic acid, linoleic acid, alpha linolenic acid, arachidonic acid, eicosapentaenoic acid, erucic acid, docosahexaenoic acid, sodium oleate, sodium arachidonate and the like and/or mixtures thereof.
Examples of sterol or its derivative or its salts that may be used in the nanodispersion or nanoparticles of the present invention may be acid esters of sterols. The sterols that may be suitable according to the present invention include, but are not limited to, cholesterol, phytosterols, ergosterol, bile acids salts and mixtures thereof. Acid salts of cholesterol that may be used include, but are not limited to, cholesteryl sulfate, cholesterol acetate, cholesterol chloroacetate, cholesterol benzoate, cholesterol myristate, cholesterol hemisuccinate, cholesterol phosphate, cholesterol phosphate, phosphonate, borate, nitrate, cholesterol cinnamate, cholesterol crotanoate, cholesterol butyrate, cholesterol heptanoate, cholesterol hexanoate, cholesterol octanoate, cholesterol nonanoate, cholesterol decanoate, cholesterol oleate, cholesterol propionate, cholesterol valerate, dicholesteryl carbonate and the like and mixtures thereof. Phytosterols that may be used in the compositions of the present invention include sitosterol, campesterol, stigmasterol, brassicasterol and its derivatives, salts and mixture thereof. For example, Phytosterols* marketed by Sigma, U.S.A. containing bsitosterol, campesterol and dihydrobrassicasterol. Bile acids include cholic acid, chenodeoxycholic acid, deoxycholic acid, glycocholic acid, taurocholic acid, ursodeoxycholic acid and its derivatives, salts and mixture thereof. The sterols can also be esters of cholesterol including cholesterol hemi- succinate, salts of cholesterol including cholesterol hydrogen sulfate and cholesterol sulfate, ergosterol, esters of ergosterol including ergosterol hemi-succinate, salts of ergosterol including ergosterol hydrogen sulfate and ergosterol sulfate, lanosterol, esters of lanosterol including lanosterol hemi-succinate, salts of lanosterol including lanosterol hydrogen sulfate and lanosterol sulfate.
According to one embodiment of the present invention, the nanoparticles comprise a surfactant which is a mixture of sterol or its derivatives or its salts and fatty acids or its salts. In another preferred embodiment, the nanoparticles comprise of cholesterol ester of polar acids. In one preferred embodiments, the surfactant used in the nanodispersion is a mixture of caprylic acid and cholesteryl sulfate. Caprylic acid, also known as octanoic acid may be used in the embodiments in an amount ranging from about 0.001% w/v to about 5.0% w/v, more preferably from about 0.01% w/v to about 1.0%w/v and most preferably from about 0.01%w/v to about 0.5 % w/v. Cholesteryl sulfate is used in the embodiments of the present invention in an amount ranging from about 0.001% w/v to about 5.0% w/v, more preferably from about 0.01%w/v to about 1.0%w/v and most preferably from about 0.01%w/v to about 0.5 %w/v. According to another preferred embodiment, the surfactant used is selected from oleic acid and cholesteryl sulphate and/or mixtures thereof.
According to another embodiment of the present invention, the surfactant used is selected from saturated fatty acid and bile acid or bile salt and/or mixtures thereof. According to preferred embodiment, the surfactant used is selected from the group consisting of caprylic acid and sodium glycocholate or ursodeoxycholic acid and/or mixtures thereof.
Bile salts when used are employed in an amount ranging from about 0.001% w/v to about 5.0% w/v, more preferably from about 0.01%w/v to about 1.0%w/v and most preferably from about 0.01%w/v to about 0.75 %w/v.
The compositions of the present invention may further comprise very low amounts of lecithins/phospholipids and/or their derivatives. By the term 'low amounts' as used herein means that the ratio of phospholipids to drug is about 1: 4 to about 1:10, that even if phospholipids are used they are used in very low amount i.e compared to the amount of drug the amount of phospholipids is very low. Generally, the prior art compositions that are liposomal, require large amounts of phospholipids compared to the amount of the drug.
In some embodiments when phospholipids are used in small amounts, the examples of such phospholipids, include, but are not limited to, lecithins natural, partially hydrogenated or hydrogenated lecithin or sphingolipids. Natural lecithins inturn are mixtures of different phospholipids. The phospholipids that may be used in the compositions of the present invention is selected from phosphatidyl choline, (dimyristoylphosphatidyl choline, dipalmitotylphosphatidyl choline, distearyloylphosphatidyl choline, dioleoylphosphatidyl choline, dilauryloylphosphatidyl choline, 1-pahnitoyl-phosphatidyl choline, l-myristoyl-2-palmitoyl phosphatidyl choline, l-palmitoyl-2-myristoyl phosphatidyl choline, l-stearoyl-2-palmitoyl phosphatidyl choline); phosphatidyl ethanolamine (dimyristoyl phosphatidyl ethanolamine, dipalmitoyl phosphatidyl ethanolamine, distearoyl phosphatidyl ethanolamine, lysophatidylethanolamine); sphingomyelins (brain sphingomyelin, dipalmitoyl sphingomyelin); lysolecithin; cerebrosides and the like and mixtures thereof. Further polyethylene glycol derivatives of lipids such as polyethylene glycol-distearoyl phosphatidylethanolamine (PEG-DSPE), methoxypolyethylene glycol-distearoyl phosphatidylcholine m-PEG-DSPC and the like and mixtures thereof may also be used in the compositions of the present invention. Preferably, the butylenesids that may be used in the compositions of the present invention is m-PEG-DSPE (methoxy polyethylene glycol-disteroyl phosphatidyl ethanolamine).
In one embodiment of the present invention, the phospholipid used is - mPEG-DSPE. It is used in an amount ranging from about 0.001%w/v to about 10.0% w/v, more preferably from about 0.01%w/v to about 5.0%w/v and most preferably from about 0.03%w/v to about 0.5 %w/v.
The non-aqueous solvent used in the compositions of the present invention is one in which the drug is relatively soluble. The non aqueous solvent is miscible with water or aqueous solvents. Examples of such water miscible solvents used in the present invention includes, but are not limited to, alcohols such as ethanol, n-propanol, isopropanol; glycols such as ethylene glycol, propylene glycol, butylene glycol and its derivatives; polyethylene glycols like PEG 400 or PEG 3350; polypropylene glycol and its derivatives such as PPG-10 butanediol, PPG-10 methyl glucose ether, PPG-20 methyl glucose ether,
PPG- 15 stearyl ether; glycerol; glycofurpl and the like and mixtures thereof.
In one embodiment of the present invention, the non-aqueous solvent may be selected from the group consisting of alcohols, polyethylene glycols and/or mixtures thereof. In preferred embodiment of the present invention, a mixture of ethanol and PEG (polyethylene glycol) is used as the water miscible solvent. Ethanol is used in the nanodispersion composition of the present invention in an amount ranging from about 0.001% w/v to about 5% w/v, more preferably from about 0.05% w/v to about 0.5% w/v and most preferably from about 0.1% w/v to about 0.25% w/v. Polyethylene glycols which are used preferably, include PEG-400 and PEG-3350. PEG-400 is used in the embodiments of the present invention in an amount ranging from about 0.01% w/v to about 20.0% w/v, more preferably from about 0.05% w/v to about 5.0% w/v and most preferably from about 1.0% w/v to about 2.5% w/v. PEG-3350 is used in the embodiments of the present invention in an amount ranging from about 0.001% w/v to about 10.0% w/v, more preferably from about 0.05% w/v to about 5.0% w/v and most preferably from about 0.1% w/v to about 3% w/v.
Generally, it is desirable that a drug pre-concentrate i.e the solution upon dilution with the aqueous vehicle gives a nanodispersion that remains stable for at least about 4 hours. This time is the time during which the nanodispersion may be administered to the patient in the form of infusion. Thus, it is always desirable to achieve minimum of 4 hours stability of the nanodispersion of the present invention. The vehicle may further comprise about 5% to about 10.0 % w/v dextrose solution in water for injection or any other pharmaceutically acceptable intravenous aqueous liquid vehicle and mixtures thereof. One of the embodiments of the present invention wherein drug is a hydrophobic drug such as temsirolimus, sirolimus, the aqueous vehicle further comprises 5 % dextrose solution in order to improve this stability but additional stabilizers may also be present in the aqueous phase. Examples of such stabilizers are hetastarch, dextran, sodium hyaluronate, glutathione, ornithin-L- aspartate and the like and mixtures thereof.
In one embodiment, when the solution of the present invention as claimed may be designed for oral administration. The solution, also referred to as pre-concentrate may be filled into hard or soft gelatin capsules. Upon oral administration, the solution is dispersed in the aqueous medium and therefore, the drugs like fenofibrate are dispersed in the form of nanoparticles having a particle size in the nanometer range, sufficient to provide adequate dissolution. The nanodispersion vehicle allows the drug particles to remain in the dispersion, physically stable for a desired period of time, for example, 1 hour to 3 hours which is sufficient for the drug to be absorbed into the body, when the nanodispersion is administered orally.
In another embodiment, the solution may be dried to form nanoparticles. The nanoparticles may be formulated along with pharmaceutically acceptable excipients to form solid dosage form like tablet, granules, pellets. The nanodispersion of drug of the present invention may be typically prepared by any one of the processes listed below:
1) The therapeutically active ingredient (and/or other agents), polymer(s) and surfactant(s) selected from fatty acids or its salts* sterol or its derivatives or its salts and mixtures thereof is dissolved in water misbicle solvent such as ethanol and/or PEG, along with stirring and heating to obtain a concentrated solution of the drug. The solution so obtained is filtered through a membrane filter. To this solution, an aqueous liquid vehicle (5% dextrose solution) is added slowly and the mixture is shaken/ agitated, thus leading to the formation of the nanodispersion of the present invention. The nanodispersion so formed is optionally homogenized and/or sonicated, filtered or lyophilized. The lyophilized powder of the medicament can be reconstituted with the aqueous medium, reforming nanodispersion of the present invention, prior to administration to the patients.
2) The drug, polymer(s) and surfactant(s) selected from fatty acids or its salts, sterol or its derivatives or its salts and mixtures thereof is dissolved in water miscible solvent such as ethanol and/or PEG along with stirring and heating to obtain a concentrated solution of the drug. The solution so obtained is filtered through a membrane filter and is added to an aqueous medium (5% dextrose solution) and the mixture is shaken/ agitated, thus leading to the formation of the nanodispersion of the present invention. The nanodispersion so formed is optionally homogenized and/or sonicated, filtered or lyophilized. The lyophilized powder of the medicament can be reconstituted with the aqueous medium, reforming nanodispersion of the present invention, prior to administration to the patients.
3) drug and surfactant(s) comprising a mixture of fatty acids or its salts and sterol or its derivatives or its salts is dissolved in water miscible solvent such as ethanol and/or PEG by slightly warming at 400C in a round bottomed flask, and the solvent is evaporated to form a thin film of the drug. The polymer(s) is dissolved in required quantity of an aqueous medium and this solution is added to the film with gentle agitation and shaking for 3-4 hours, thus leading to the formation of the nanodispersion of the present invention. The nanodispersion so formed is optionally homogenized and / or sonicated, filtered and lyophilized. The lyophilized powder of the medicament can be reconstituted with the aqueous medium, reforming nanodispersion of the present invention prior to administration to the patients.
As the nanodispersion of the present invention is a colloidal nanodispersion of drug comprising nanoparticles having a mean size less than 300 nm, they were analyzed for physical and chemical stability. It was observed that the particles do not aggregate upon storage at room temperature for about 8 hours to 24 hours and the nanodispersion shows no sign of change in appearance, inferring that the nanodispersion is stable for the desired period of time before and during administration.
Also, when a solution of a drug and/or other agents in water miscible solvent was tested, it was observed that the solution remains physically and chemically stable for at least a time period required for administration of the composition either orally or parenteral, with no significant change in assay of the drug and no substantial aggregation or change in appearance of the formulation. The observations are illustrated in the upcoming examples.
The nanodispersion of the present invention can be provided as a kit having two or more containers, for. example two containers, wherein the first container comprising a solution of a drug, a polymer and a surfactant comprising a mixture of fatty acids or its salts and sterol or its derivatives or its salts in a water miscible solvent, and a second container comprising an aqueous liquid vehicle, such that on addition of contents of second container to the contents of the first container or vice versa, with mild agitation or shaking, results in the formation of nanodispersion of the present invention and is suitable for intravenous administration. An additional container may contain a third component for mixing prior to formation of drug nanodispersion or alter nanodispersion of the said drug is formed.
The present invention also provides a kit having two containers, the first container comprising a lyophilized form of the nanodispersion and a second container comprising an aqueous liquid vehicle such that prior to administration to the patients, the contents of second container can be added to the contents of the first container or vice versa with mild agitation or shaking, resulting in the formation of nanodispersion of the present invention.
Administering the nanodispersion of the present invention to patients in need thereof, will provide an efficient method of treatment of various types of cancers known in the art.
While the present invention is disclosed generally above, additional aspects are further discussed and illustrated with reference to the examples below. However, the examples are presented merely to illustrate the invention and should not be considered as limitations thereto.
EXAMPLE I
Figure imgf000018_0001
Drug, cholesteryl sulfate, caprylic acid and PVP K-12 were weighed accurately in a glass vessel. Contents were dissolved in the required quantity of absolute ethanol and PEG-400 with stirring to obtain a concentrated drug solution. The solution was filtered through 0.2μ PVDF membrane filter. The required amount of the preconcentrate was dispersed in the dextrose solution (5% w/v) (50 ml) with gentle shaking to get a transparent to transluscent nanodispersion of drug having dilution of 0.1 mg/ml. Nanodispersion was analyzed for the following tests: Appearance, pH (Mettler Toledo-seven easy, pH Meter) and Particle size (Nano-ZS, Malvern Particle size analyzer), described below. The preconcentrate so prepared was found to be clear colorless slightly viscous solution. It was mixed with the aqueous phase such as dextrose solution to achieve a nanodispersion. The stability of the nanodispersion in terms of the particle size of the dispersed particles was determined initially as well as on storage for few hours.
Figure imgf000019_0001
EXAMPLE 2
Figure imgf000019_0002
Drug, cholesteryl sulfate, caprylic acid and PVP K- 17 were weighed accurately in a glass vessel. Contents were dissolved in the required quantity of absolute ethanol and PEG-400 with stirring to obtain a concentrated drug solution. The solution was filtered through 0.2μ PVDF membrane filter. Required amount of the preconcentrate was dispersed in the Dextrose solution (5%w/v) (50 ml) with gentle shaking to get a transparent to transluscent nanodispersion of drug having dilution of 0.5mg/ml. Nanodispersion was analyzed for the following tests: Appearance, pH (Mettler Toledo-seven easy, pH Meter) and Particle size (Nano-ZS, Malvern Particle size analyzer), described below.
The pre-concentrate so prepared is found to be clear colorless slightly viscous solution. It was mixed with the aqueous phase such as dextrose solution to achieve a nanodispersion. The stability of the nanodispersion in terms of the particle size of the dispersed particles was determined initially as well as on storage for few hours.
Figure imgf000020_0001
EXAMPLE 3
Figure imgf000021_0001
All the ingredients were dissolved in ethanol with heating if required. The ethanol was evaporated. The dry mixture was then melted and water was added at 60° C with silverson homogenizer. The nanodispersion with mean particle size <1000 nm (-300 to 1000 nm) is formed. The nanodispersion was spray dried. The spray dried powder was reconstituted in water to obtain nanodispersion of mean particle size 900 nm to 1700 nm. The dissolution of 50 mg fenofibrate equivalent spray dried powder was >80% within 15 min and >90% within 30 min.
EXAMPLE 4
Figure imgf000021_0002
Drug, Sodium cholesteryl sulfate, caprylic acid, and Povidone (K- 12) were weighed accurately in a glass vessel. Contents were dissolved in the required quantity of Absolute Alcohol and PEG-400 with stirring to obtain a clear concentrated drug solution. The solution was filtered through 0.2μ PVDF membrane filter. The pre-concentrate so prepared was found to be clear colorless slightly viscous solution. The required amount of the preconcentrate was dispersed in the dextrose solution (5% w/v) with gentle shaking to get a white transluscent nanodispersion of drug having dilution of 5.0mg/ml. Nanodispersion was analyzed for the following tests: Appearance, pH (Mettler Toledo- seven easy, pH Meter) and Particle size (Nano-ZS, Malvern Particle size analyzer), described below. The stability of the nanodispersion in terms of the particle size of the dispersed particles was determined initially as well as on storage ie. after Ih.
Figure imgf000022_0001
EXAMPLE 5
Figure imgf000023_0001
Drug, Sodium cholesteryl sulfate, caprylic acid, and Povidone (K- 17) were weighed accurately in a glass vessel. Contents were dissolved in the required quantity of Absolute Alcohol and PEG-400 with stirring to obtain a clear concentrated drug solution. The solution was filtered through 0.2μ PVDF membrane filter. The pre-concentrate so prepared was found to be clear colorless slightly viscous solution. The required amount of the preconcentrate was dispersed in the dextrose solution (5% w/v) with gentle shaking to get a white transluscent nanodispersion of drug having dilution of 0.1 mg/ml. Nanodispersion was analyzed for the following tests: Appearance, pH (Mettler Toledo- seven easy, pH Meter) and Particle size (Nano-ZS, Malvern Particle size analyzer), described below.
The stability of the nanodispersion in terms of the particle size of the dispersed particles was determined initially as well as on storage i.e after 24h.
Figure imgf000024_0001
EXAMPLE 6
Figure imgf000024_0002
Drug, Sodium cholesteryl sulfate, caprylic acid, and Povidone (K- 17) were weighed accurately in a glass vessel. Contents were dissolved in the required quantity of Absolute Alcohol and PEG-400 with stirring and by heating at 600C to obtain a clear concentrated drug solution. The solution was filtered through 0.2μ PVDF membrane filter. The pre- concentrate so prepared was found to be clear colorless to pale yellow slightly viscous solution. The required amount of the preconcentrate was dispersed in 0.25% Hypromellose (HPMC) solution with gentle shaking to get a nanodispersion of drug having dilution of 1.0 mg/ml. Nanodispersion was analyzed for the following tests: Appearance, pH (Mettler Toledo-seven easy, pH Meter) and Particle size (Nano-ZS, Malvern Particle size analyzer), described below. The particle size of the nanodispersion was determined initially as well as on storage till 2h.
Figure imgf000025_0001

Claims

Claim
1. A stable nanodispersion comprising nanoparticles having a mean size less than 300 nm dispersed in a vehicle comprising a water miscible solvent and water, said nanoparticles comprising one or more drugs having , a polymer and a surfactant comprising a mixture of fatty acids or its salts and sterol or its derivatives or its salts.
2. A nanodispersion as claimed in claim 1 wherein the drug is selected from a group consisting of temsirolimus, tacrolimus, sirolimus, fenofibrate, cyclosporine, tacrolimus, brinzolamide or its pharmaceutically acceptable salts.
3. A nanodispersion as claimed in claim 2 wherein the ratio of surfactant to the drug is about 1: S to 1: 10 and wherein the said nanodispersion is stable for at least 4 hours.
4. A nanodispersion as claimed in claim 3 wherein the ratio of surfactant to drug is about 1 : 5 to about 1:10 and wherein the said nanodispersion is stable for 24 hours.
5. A nanodispersion as claimed in claim 4 wherein the ratio of surfactant to drug is about 1: 10 and the wherein the said nanodispersion is stable for 8 hours.
6. A nanodispersion as claimed in claim 5 wherein the mean size of the nanoparticles is in the range of about 10 nm to about 200 nm.
7. A nanodispersion as claimed in claim 6, wherein the water miscible solvent is selected from alcohols, glycols and its derivatives, polyalkylene glycols and its derivatives, glycerol, glycofurol and combinations thereof.
8. A nanodispersion as claimed in claim 7, wherein the water miscible solvent is selected from the group consisting of alcohol and polyethylene glycol (PEG).
9. A nanodispersion as claimed in claim 8, wherein the polymer is a water soluble polymer.
10. A nanodispersion as claimed in claimed 9, wherein the water soluble polymer is selected from the group consisting of polyvinylpyrrolidone and polyethylene glycol.
11. A nanodispersion as claimed in claim 9, wherein polyvinylpyrrolidone used has a molecular weight in the range of 1000 to about 50,000 and is used in the amount ranging from 0.001 % w/v to 10% w/v.
12. A nanodispersion as claimed in claim 11, wherein the fatty acid or its salt is selected from the group consisting of caprylic acid, oleic acid, stearic acid and mixture thereof.
13. A nanodispersion as claimed in claim 12, wherein the sterol or its derivatives or its salts is selected from the group consisting of cholesterol, cholesteryl esters of polar acids, phytosterols, bile acids their derivative, salts and mixtures thereof.
14. Nanoparticles as claimed in claim 13 wherein the polar acid is selected from the group consisting of succinic acid, hemisuccinic acid, sulfuric acid, phosphoric acid, glutamic acid and aspartic acid, boric acid.
15. A nanodispersion as claimed in claim 14, wherein the surfactant is used in an amount ranging from about 0.001% w/v to about 5.0 % w/v.
16. A solution comprising one or more drugs, a polymer and a surfactant comprising a mixture of fatty acids or its salts and sterol or its derivatives or salts thereof in a water miscible solvent, which on dilution with an aqueous liquid vehicle gives nanodispersion.
17. Nanoparticles having a mean particle size less than 300 nms comprising one or more drugs, surfactant comprising a mixture of fatty acid or it salts and sterol or its derivatives or its salts and a polymer.
PCT/IN2010/000423 2009-06-19 2010-06-18 Nanodispersion of a drug and process for its preparation WO2010146606A1 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
CA2765541A CA2765541A1 (en) 2009-06-19 2010-06-18 Nanodispersion of a drug and process for its preparation
EP10789111A EP2442805A4 (en) 2009-06-19 2010-06-18 Nanodispersion of a drug and process for its preparation
JP2012515633A JP5627039B2 (en) 2009-06-19 2010-06-18 Nanodispersions of drugs and methods for their preparation
AU2010261342A AU2010261342A1 (en) 2009-06-19 2010-06-18 Nanodispersion of a drug and process for its preparation
EA201270050A EA201270050A1 (en) 2009-06-19 2010-06-18 NANODISPERSIA OF THE MEDICINE AND THE METHOD FOR ITS PREPARATION
MX2011013726A MX2011013726A (en) 2009-06-19 2010-06-18 Nanodispersion of a drug and process for its preparation.
CN2010800270138A CN102802624A (en) 2009-06-19 2010-06-18 Nanodispersion Of A Drug And Process For Its Preparation
US13/378,758 US8778364B2 (en) 2009-06-19 2010-06-18 Nanodispersion of a drug and process for its preparation
ZA2011/09510A ZA201109510B (en) 2009-06-19 2011-12-22 Nanodispersion of a drug and process for its preparation

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
IN1468/MUM/2009 2009-06-19
IN1468MU2009 2009-06-19

Publications (1)

Publication Number Publication Date
WO2010146606A1 true WO2010146606A1 (en) 2010-12-23

Family

ID=43355961

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IN2010/000423 WO2010146606A1 (en) 2009-06-19 2010-06-18 Nanodispersion of a drug and process for its preparation

Country Status (12)

Country Link
US (1) US8778364B2 (en)
EP (1) EP2442805A4 (en)
JP (1) JP5627039B2 (en)
KR (1) KR20120050414A (en)
CN (1) CN102802624A (en)
AR (1) AR077155A1 (en)
AU (1) AU2010261342A1 (en)
CA (1) CA2765541A1 (en)
EA (1) EA201270050A1 (en)
MX (1) MX2011013726A (en)
WO (1) WO2010146606A1 (en)
ZA (1) ZA201109510B (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103483353A (en) * 2012-06-13 2014-01-01 上海现代药物制剂工程研究中心有限公司 Dithiolopyrrolone compound nanoparticles and preparation method thereof
US9764031B2 (en) 2010-05-26 2017-09-19 Selecta Biosciences, Inc. Dose selection of adjuvanted synthetic nanocarriers
EP3148331A4 (en) * 2014-05-30 2017-11-08 OMS Investments, Inc. Nano-sized water-based dispersion compositions and methods of making thereof
EP3129002A4 (en) * 2014-04-09 2017-11-08 Nanoceutica Laboratories Pvt. Ltd Composition and method of producing nanoformulation of water insoluble bioactives in aqueous base
US9994443B2 (en) 2010-11-05 2018-06-12 Selecta Biosciences, Inc. Modified nicotinic compounds and related methods
RU2737893C2 (en) * 2015-08-11 2020-12-04 Айсью Медсинз Б.В. Pegylated lipid nanoparticle with a bioactive lipophilic compound

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2566474B1 (en) 2010-05-03 2017-11-15 Teikoku Pharma USA, Inc. Non-aqueous taxane pro-emulsion formulations and methods of making and using the same
JP6339940B2 (en) 2011-12-20 2018-06-06 ビョーメ バイオサイエンシズ ピーブイティー.リミテッド Topical oil composition for the treatment of fungal infections
JO3685B1 (en) * 2012-10-01 2020-08-27 Teikoku Pharma Usa Inc Non-aqueous taxane nanodispersion formulations and methods of using the same
US9446131B2 (en) 2013-01-31 2016-09-20 Merz Pharmaceuticals, Llc Topical compositions and methods for making and using same
WO2014167554A2 (en) * 2013-04-12 2014-10-16 Vyome Biosciences Pvt. Ltd. Composition and formulation of antimicrobial agents, processes thereof and methods for treating microbial infections
CN104798772B (en) * 2015-03-13 2017-05-24 中国农业科学院农业环境与可持续发展研究所 Pesticide nano-solid dispersion and preparation method thereof
JP2018516964A (en) 2015-06-09 2018-06-28 サン、ファーマ、アドバンスト、リサーチ、カンパニー、リミテッドSun Pharma Advanced Research Company Limited Methods for treating patients with locally advanced or metastatic intrahepatic or extrahepatic bile ducts or gallbladder carcinoma
US11564833B2 (en) 2015-09-25 2023-01-31 Glaukos Corporation Punctal implants with controlled drug delivery features and methods of using same
WO2017129772A1 (en) * 2016-01-29 2017-08-03 Xellia Phamaceuticals Aps Stable pharmaceutical compositions of temsirolimus
CN114749656A (en) * 2020-12-28 2022-07-15 航天神舟生物科技集团有限公司 Preparation method of metal nano iron/nano copper particle solution and working solution

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999029300A1 (en) 1997-12-10 1999-06-17 Rtp Pharma Inc. Self-emulsifying fenofibrate formulations
WO2001017546A1 (en) * 1999-09-09 2001-03-15 Elan Pharma International Ltd. Nanoparticulate compositions comprising amorphous cyclosporine and methods of making and using such compositions
WO2001028520A1 (en) 1999-10-20 2001-04-26 Vesifact Ag Microemulsion preconcentrates, microemulsion and use of such a composition
US20040005339A1 (en) 2002-06-28 2004-01-08 Shojaei Amir H. Formulations of fenofibrate and/or fenofibrate derivatives with improved oral bioavailability
US20040092428A1 (en) * 2001-11-27 2004-05-13 Hongming Chen Oral pharmaceuticals formulation comprising paclitaxel, derivatives and methods of administration thereof
US20080138424A1 (en) * 2002-05-24 2008-06-12 Elan Pharma Internationa, Ltd. Nanoparticulate fibrate formulations
WO2008127358A2 (en) 2006-10-10 2008-10-23 Jina Pharmaceuticals, Inc. Aqueous systems for the preparation of lipid-based pharmaceutical compounds; compositions, methods, and uses thereof
WO2008144355A2 (en) 2007-05-17 2008-11-27 Morton Grove Pharmaceuticals, Inc. Stable, self-microemulsifying fenofibrate compositions
US20100151037A1 (en) * 2008-08-07 2010-06-17 Yivan Jiang Method for the preparation of nanoparticles containing a poorly water-soluble pharmaceutically active compound

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5399363A (en) 1991-01-25 1995-03-21 Eastman Kodak Company Surface modified anticancer nanoparticles
US6537579B1 (en) 1993-02-22 2003-03-25 American Bioscience, Inc. Compositions and methods for administration of pharmacologically active compounds
US6753006B1 (en) 1993-02-22 2004-06-22 American Bioscience, Inc. Paclitaxel-containing formulations
US6458373B1 (en) 1997-01-07 2002-10-01 Sonus Pharmaceuticals, Inc. Emulsion vehicle for poorly soluble drugs
KR19990075621A (en) 1998-03-23 1999-10-15 임성주 Inclined Plate Culture Tank
US6017948A (en) 1998-10-30 2000-01-25 Supergen, Inc. Water-miscible pharmaceutical compositions
US6365191B1 (en) 1999-02-17 2002-04-02 Dabur Research Foundation Formulations of paclitaxel, its derivatives or its analogs entrapped into nanoparticles of polymeric micelles, process for preparing same and the use thereof
US6294192B1 (en) 1999-02-26 2001-09-25 Lipocine, Inc. Triglyceride-free compositions and methods for improved delivery of hydrophobic therapeutic agents
AU7599900A (en) 1999-09-23 2001-04-24 Dabur Research Foundation Formulations of paclitaxel entrapped into nanoparticles of polymeric micelles
US20030224058A1 (en) * 2002-05-24 2003-12-04 Elan Pharma International, Ltd. Nanoparticulate fibrate formulations
TWI230616B (en) 2000-09-25 2005-04-11 Ind Tech Res Inst Liposome for incorporating large amounts of hydrophobic substances
CA2445763A1 (en) 2001-05-01 2002-11-07 Angiotech Pharmaceuticals Inc. Compositions comprising an anti-microtubule agent and a polypeptide or a polysaccharide and the use thereof for the preparation of a medicament for the treatment of inflammatory conditions
US6780324B2 (en) 2002-03-18 2004-08-24 Labopharm, Inc. Preparation of sterile stabilized nanodispersions
ITMI20022323A1 (en) 2002-10-31 2004-05-01 Maria Rosa Gasco PHARMACEUTICAL COMPOSITIONS FOR THE TREATMENT OF OPHTHALMIC DISEASES.
US7670627B2 (en) 2002-12-09 2010-03-02 Salvona Ip Llc pH triggered targeted controlled release systems for the delivery of pharmaceutical active ingredients
US7345093B2 (en) 2004-04-27 2008-03-18 Formatech, Inc. Methods of enhancing solubility of compounds
US20050288521A1 (en) 2004-06-29 2005-12-29 Phytogen Life Sciences Inc. Semi-synthetic conversion of paclitaxel to docetaxel
US20060159766A1 (en) * 2004-12-15 2006-07-20 Elan Pharma International Limited Nanoparticulate tacrolimus formulations
BRPI0608173A2 (en) 2005-02-24 2010-11-09 Elan Pharma Int Ltd composition, use thereof, and method of producing a nanoparticulate or analogous docetaxel composition thereof
KR20080030024A (en) 2005-06-17 2008-04-03 호스피라 오스트레일리아 피티와이 리미티드 Liquid pharmaceutical formulations of docetaxel
EA015781B1 (en) 2005-10-21 2011-12-30 Панацея Биотек Лимитед Compositions for cancer therapy
KR100917809B1 (en) 2006-05-22 2009-09-18 에스케이케미칼주식회사 Stable Pharmaceutical Composition containing Docetaxel
US20100068251A1 (en) 2006-10-10 2010-03-18 Jina Pharmaceuticals, Inc. Aqueous Systems For The Preparation Of Lipid Based Pharmaceutical Compounds; Compositions, Methods, And Uses Thereof
EA016434B1 (en) * 2007-12-24 2012-04-30 Сан Фарма Адвансед Ресёрч Компани Лимитед Nanodispersion

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999029300A1 (en) 1997-12-10 1999-06-17 Rtp Pharma Inc. Self-emulsifying fenofibrate formulations
WO2001017546A1 (en) * 1999-09-09 2001-03-15 Elan Pharma International Ltd. Nanoparticulate compositions comprising amorphous cyclosporine and methods of making and using such compositions
WO2001028520A1 (en) 1999-10-20 2001-04-26 Vesifact Ag Microemulsion preconcentrates, microemulsion and use of such a composition
US20040092428A1 (en) * 2001-11-27 2004-05-13 Hongming Chen Oral pharmaceuticals formulation comprising paclitaxel, derivatives and methods of administration thereof
US20080138424A1 (en) * 2002-05-24 2008-06-12 Elan Pharma Internationa, Ltd. Nanoparticulate fibrate formulations
US20040005339A1 (en) 2002-06-28 2004-01-08 Shojaei Amir H. Formulations of fenofibrate and/or fenofibrate derivatives with improved oral bioavailability
WO2008127358A2 (en) 2006-10-10 2008-10-23 Jina Pharmaceuticals, Inc. Aqueous systems for the preparation of lipid-based pharmaceutical compounds; compositions, methods, and uses thereof
WO2008144355A2 (en) 2007-05-17 2008-11-27 Morton Grove Pharmaceuticals, Inc. Stable, self-microemulsifying fenofibrate compositions
US20100151037A1 (en) * 2008-08-07 2010-06-17 Yivan Jiang Method for the preparation of nanoparticles containing a poorly water-soluble pharmaceutically active compound

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2442805A4 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9764031B2 (en) 2010-05-26 2017-09-19 Selecta Biosciences, Inc. Dose selection of adjuvanted synthetic nanocarriers
US9994443B2 (en) 2010-11-05 2018-06-12 Selecta Biosciences, Inc. Modified nicotinic compounds and related methods
CN103483353A (en) * 2012-06-13 2014-01-01 上海现代药物制剂工程研究中心有限公司 Dithiolopyrrolone compound nanoparticles and preparation method thereof
CN103483353B (en) * 2012-06-13 2016-02-24 上海现代药物制剂工程研究中心有限公司 Dithiole the nanoparticle of pyrrolidone compound and preparation method
EP3129002A4 (en) * 2014-04-09 2017-11-08 Nanoceutica Laboratories Pvt. Ltd Composition and method of producing nanoformulation of water insoluble bioactives in aqueous base
AU2015246030B2 (en) * 2014-04-09 2020-03-12 Pulse Pharmaceuticals Pvt Ltd Composition and method of producing nanoformulation of water insoluble bioactives in aqueous base
US11458096B2 (en) 2014-04-09 2022-10-04 Pulse Pharmaceuticals Pvt. Ltd. Composition and method of producing nanoformulation of water insoluble bioactives in aqueous base
EP3148331A4 (en) * 2014-05-30 2017-11-08 OMS Investments, Inc. Nano-sized water-based dispersion compositions and methods of making thereof
RU2737893C2 (en) * 2015-08-11 2020-12-04 Айсью Медсинз Б.В. Pegylated lipid nanoparticle with a bioactive lipophilic compound
US10945966B2 (en) 2015-08-11 2021-03-16 Eyesiu Medicines B.V. PEGylated lipid nanoparticle with bioactive lipophilic compound

Also Published As

Publication number Publication date
EA201270050A1 (en) 2012-05-30
EP2442805A1 (en) 2012-04-25
US8778364B2 (en) 2014-07-15
AR077155A1 (en) 2011-08-03
AU2010261342A1 (en) 2012-01-19
JP2012530694A (en) 2012-12-06
US20120087959A1 (en) 2012-04-12
MX2011013726A (en) 2012-02-29
ZA201109510B (en) 2012-09-26
CN102802624A (en) 2012-11-28
KR20120050414A (en) 2012-05-18
JP5627039B2 (en) 2014-11-19
CA2765541A1 (en) 2010-12-23
EP2442805A4 (en) 2012-11-21

Similar Documents

Publication Publication Date Title
US8778364B2 (en) Nanodispersion of a drug and process for its preparation
CA2294337C (en) Preparation of pharmaceutical compositions
US9339553B2 (en) Liquid compositions of insoluble drugs and preparation methods thereof
AU2008346121B2 (en) Nanodispersion
TWI498329B (en) Intravenous formulations of neurokinin-1 antagonists
WO1997030695A1 (en) Drug delivery compositions suitable for intravenous injection
BR112012027279B1 (en) low oil pharmaceutical emulsion compositions comprising progestogen
JP2011529042A (en) Stable injectable oil-in-water docetaxel nanoemulsion
JP2004524368A (en) Methods and compositions for solubilizing biologically active compounds with low water solubility
US20120308663A1 (en) Lipid nanocapsules, method for preparing same and use thereof as a drug
US20150010616A1 (en) Biocompatible Particles and Method for Preparing Same
Abdelhakeem et al. Lipid-based nano-formulation platform for eplerenone oral delivery as a potential treatment of chronic central serous chorioretinopathy: in-vitro optimization and ex-vivo assessment
US8859001B2 (en) Fenoldopam formulations and pro-drug derivatives
JP2009513557A (en) Self-emulsifying and self-microemulsifying formulations for oral administration of taxoids
US20210369631A1 (en) A lipid-polymer hybrid nanoparticle
CN102227210B (en) Solution of lipophilic substances, especially medicinal solutions
RU2779262C2 (en) PHARMACEUTICAL COMPOSITION OF 3α-ETHYNYL-3β-HYDROXYANDROSTAN-17-ONE OXIME

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080027013.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10789111

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2765541

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: MX/A/2011/013726

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010261342

Country of ref document: AU

Ref document number: 13378758

Country of ref document: US

Ref document number: 2012515633

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2010789111

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20117030828

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 201270050

Country of ref document: EA

ENP Entry into the national phase

Ref document number: 2010261342

Country of ref document: AU

Date of ref document: 20100618

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: PI1014022

Country of ref document: BR

REG Reference to national code

Ref country code: BR

Ref legal event code: B01E

Ref document number: PI1014022

Country of ref document: BR

Free format text: IDENTIFICAR, EM ATE 60 (SESSENTA) DIAS, E COMPROVAR QUE O SIGNATARIO DO FORMULARIO 1.03 DA PETICAO NO 020110130175 DE 16/12/2011 E O SIGNATARIO DO FORMULARIO 1.02 DA PETICAO NO 020110135266 DE 26/12/2011 TEM PODERES PARA ATUAR EM NOME DO DEPOSITANTE, UMA VEZ QUE NAO FOI POSSIVEL IDENTIFICAR O NOME DO RESPONSAVEL PELA ASSINATURA DO FORMULARIO, NAO SENDO, ENTAO, POSSIVEL DETERMINAR SE ELE FAZ PARTE DOS PROCURADORES ELENCADOS NA PROCURACAO E O ARTIGO 216 DA LEI 9.279/1996 DE 14/05/1996 (LPI) DETERMINA QUE OS ATOS PREVISTOS NESTA LEI SERAO PRATICADOS PELAS PARTES OU POR SEUS PROCURADORES, DEVIDAMENTE QUALIFICADOS.

ENPW Started to enter national phase and was withdrawn or failed for other reasons

Ref document number: PI1014022

Country of ref document: BR