WO2010140574A1 - Physical quantity sensor - Google Patents

Physical quantity sensor Download PDF

Info

Publication number
WO2010140574A1
WO2010140574A1 PCT/JP2010/059231 JP2010059231W WO2010140574A1 WO 2010140574 A1 WO2010140574 A1 WO 2010140574A1 JP 2010059231 W JP2010059231 W JP 2010059231W WO 2010140574 A1 WO2010140574 A1 WO 2010140574A1
Authority
WO
WIPO (PCT)
Prior art keywords
movable
support
anchor
spring
portions
Prior art date
Application number
PCT/JP2010/059231
Other languages
French (fr)
Japanese (ja)
Inventor
尚信 大川
菊入 勝也
矢澤 久幸
高橋 亨
亨 宮武
Original Assignee
アルプス電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2009133981 priority Critical
Priority to JP2009-133981 priority
Priority to JP2009199145 priority
Priority to JP2009-199145 priority
Application filed by アルプス電気株式会社 filed Critical アルプス電気株式会社
Publication of WO2010140574A1 publication Critical patent/WO2010140574A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/125Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by capacitive pick-up
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/84Types of semiconductor device ; Multistep manufacturing processes therefor controllable by variation of applied mechanical force, e.g. of pressure

Abstract

Disclosed is a physical quantity sensor wherein the movable electrode has a wide area, the rigidity of the movable section can be heightened, and the vibration in the directions other than the detection direction can be effectively minimized. The physical quantity sensor comprises anchor sections (41, 42) secured and supported, a movable section (51) displacing in the height direction, multiple support sections (44, 46, 48, 50) swingably coupled to the anchor sections (41, 42) and the movable section (51), a sensing section for sensing the displacement of the movable section (51), and multiple spring sections (43, 45, 47, 49, 52 to 55) interposed between the support sections and the anchor sections and between the support sections and the movable section. The movable section (51) is configured so as to have an inner movable section (51a) coupled to the insides of the support sections through first spring sections (52 to 55) and an outer movable section (51b) integrated with the inner movable section (51a) and disposed outside the support sections.

Description

物理量センサPhysical quantity sensor
 本発明は、シリコン基板から切り出すなどして形成された可動部の高さ方向への変位量を検知し、これにより、外部から作用する加速度などの物理量の測定を可能とした物理量センサに関する。 The present invention relates to a physical quantity sensor that detects the amount of displacement in the height direction of a movable part formed by cutting out from a silicon substrate, thereby enabling measurement of a physical quantity such as acceleration acting from the outside.
 例えば、物理量センサは、シリコン基板をエッチング処理して、高さ方向に変位可能に支持された可動部を備える。 For example, the physical quantity sensor includes a movable part that is supported so as to be displaceable in the height direction by etching a silicon substrate.
 かかる場合、例えば、下記の特許文献1のように、高さ方向に変位する可動部は、可動部の周囲に位置する支持梁にばね部を介して連結された構造である。 In such a case, for example, as disclosed in Patent Document 1 below, the movable portion that is displaced in the height direction has a structure that is connected to a support beam positioned around the movable portion via a spring portion.
 しかしながら従来では、支持梁の内側にのみ高さ方向へ変位する可動部を設ける構成としているため、前記可動部の面積が小さくなった。可動部は検知部の可動電極として構成されることから、可動電極の面積の低減により、検出精度が低下する問題があった。そして、物理量センサの小型化により益々、可動電極の面積が小さくなった。 However, conventionally, since the movable portion that is displaced in the height direction is provided only inside the support beam, the area of the movable portion is reduced. Since the movable part is configured as a movable electrode of the detection part, there is a problem that the detection accuracy decreases due to the reduction of the area of the movable electrode. And the area of the movable electrode has become smaller due to the downsizing of the physical quantity sensor.
 また可動部が小さくなることで、可動部の剛性が低下し、物理量センサに衝撃等が加わった場合に、可動部が対向面に衝突等して変形したり、損傷を受ける問題があった。 Also, since the movable part becomes smaller, the rigidity of the movable part is lowered, and when an impact or the like is applied to the physical quantity sensor, there is a problem that the movable part collides with the opposing surface and is deformed or damaged.
 また、検出方向(高さ方向)以外の振動を抑制して、検出精度を向上させることが必要であった。 Also, it was necessary to improve the detection accuracy by suppressing vibrations other than the detection direction (height direction).
国際公開第2009/099125号のパンフレットPamphlet of International Publication No. 2009/099125 特開2005-283393号公報JP 2005-283393 A
 そこで本発明は、上記従来の課題を解決するものであり、特に、可動電極の面積を広くでき、可動部の剛性を高めることができ、更には検出方向以外の振動を効果的に抑制することが可能な物理量センサを提供することを目的としている。 Therefore, the present invention solves the above-described conventional problems, and in particular, the area of the movable electrode can be increased, the rigidity of the movable part can be increased, and vibrations other than the detection direction can be effectively suppressed. It is an object to provide a physical quantity sensor capable of satisfying the requirements.
 本発明における物理量センサは、
 固定支持されるアンカ部と、高さ方向に変位する可動部と、前記アンカ部と前記可動部とに回動自在に連結された複数本の支持部と、前記可動部の変位を検知するための検知部と、前記支持部と前記アンカ部との間、及び前記支持部と前記可動部の間に介在する複数本のばね部と、を有しており、
 前記可動部は、前記支持部の内側にて第1ばね部を介して連結される内側可動部と、前記内側可動部と一体となり前記支持部の外側に位置する外側可動部とを有して構成されることを特徴とするものである。
The physical quantity sensor in the present invention is
An anchor portion that is fixedly supported, a movable portion that is displaced in a height direction, a plurality of support portions that are pivotally connected to the anchor portion and the movable portion, and a displacement of the movable portion And a plurality of spring portions interposed between the support portion and the anchor portion, and between the support portion and the movable portion,
The movable portion includes an inner movable portion that is coupled to the inner side of the support portion via a first spring portion, and an outer movable portion that is integrated with the inner movable portion and is positioned outside the support portion. It is characterized by being configured.
 このように、本発明では、支持部の内側に位置する内側可動部と一体に前記支持部の外側に外側可動部を設けたことで、可動電極の面積を大きくでき、また可動部の剛性を高めることができる。したがって検出精度及び信頼性(破壊耐性)を向上させることができる。 Thus, in the present invention, the area of the movable electrode can be increased and the rigidity of the movable portion can be increased by providing the outer movable portion outside the support portion integrally with the inner movable portion located inside the support portion. Can be increased. Therefore, detection accuracy and reliability (destruction resistance) can be improved.
 本発明では、前記外側可動部は枠体状で形成されることが好ましい。これにより、より効果的に、可動電極の面積を大きくでき、また可動部の剛性を高めることができる。 In the present invention, the outer movable portion is preferably formed in a frame shape. Thereby, the area of a movable electrode can be enlarged more effectively and the rigidity of a movable part can be improved.
 また本発明では、前記外側可動部と前記支持部間が第2ばね部を介して連結されていることが好ましい。検出方向以外の振動を抑制でき、より効果的に、検出精度及び信頼性を向上させることができる。 In the present invention, it is preferable that the outer movable portion and the support portion are connected via a second spring portion. Vibrations other than the detection direction can be suppressed, and detection accuracy and reliability can be improved more effectively.
 また本発明では、前記第1ばね部と前記第2ばね部とが前記支持部を介して対向した位置に設けられることが、より効果的に、検出方向以外の振動を抑制でき、好ましい。 Further, in the present invention, it is preferable that the first spring portion and the second spring portion are provided at positions facing each other via the support portion, because vibrations other than the detection direction can be more effectively suppressed.
 また本発明では、前記高さ方向に直交する平面内にて直交する2方向を左右方向(Y1-Y2)、前後方向(X1-X2方向)としたとき、
 前記内側可動部は、左方向(Y1)の前方(X1)、左方向(Y1)の後方(X2)、右方向(Y2)の前方(X1)、右方向(Y2)の後方(X2)の各位置で、前記第1ばね部を介して前記支持部に支持されることが好ましい。これにより、内側可動部から一体に外側可動部を形成しやすい。また可動部をバランスよく支持でき、前記可動部を高さ方向に適切に平行移動させやすい。
Further, in the present invention, when two directions orthogonal to each other in a plane orthogonal to the height direction are a left-right direction (Y1-Y2) and a front-rear direction (X1-X2 direction),
The inner movable portion includes a front (X1) in the left direction (Y1), a rear (X2) in the left direction (Y1), a front (X1) in the right direction (Y2), and a rear (X2) in the right direction (Y2). It is preferable that the support portion is supported by the first spring portion at each position. Thereby, it is easy to form the outer movable part integrally from the inner movable part. Further, the movable part can be supported in a balanced manner, and the movable part can be easily translated in the height direction appropriately.
 また本発明では、前記高さ方向に直交する平面内にて直交する2方向を左右方向(Y1-Y2)、前後方向(X1-X2方向)としたとき、
 前記アンカ部は、左右方向(Y)に間隔を空けて配置された左側アンカ部と、右側アンカ部とを有して構成され、
 前記左側アンカ部から第3ばね部を介して前方(X1)に向けて延びる第1支持部と、前記左側アンカ部から前記第3ばね部を介して後方(X2)に向けて延びる第2支持部と、前記右側アンカ部から前記第3ばね部を介して前方(X1)に向けて延びる第3支持部と、前記右側アンカ部から前記第3ばね部を介して後方(X2)に向けて延びる第4支持部と、を有し、
 各支持部の先端位置と前記内側可動部とが前記第1ばね部を介して連結されていることが好ましい。このように可動部を四隅で吊る構造としたことで、可動部をバランスよく支持でき、可動部を高さ方向へ平行移動させやすい。
Further, in the present invention, when two directions orthogonal to each other in a plane orthogonal to the height direction are a left-right direction (Y1-Y2) and a front-rear direction (X1-X2 direction),
The anchor portion is configured to include a left anchor portion and a right anchor portion that are spaced apart in the left-right direction (Y).
A first support portion extending from the left anchor portion through the third spring portion toward the front (X1), and a second support extending from the left anchor portion through the third spring portion toward the rear (X2). A third support portion extending from the right anchor portion toward the front (X1) via the third spring portion, and from the right anchor portion toward the rear (X2) via the third spring portion. A fourth support portion extending,
It is preferable that the tip position of each support part and the inner movable part are connected via the first spring part. By adopting a structure in which the movable part is suspended at the four corners as described above, the movable part can be supported in a balanced manner, and the movable part can be easily translated in the height direction.
 また本発明では、各支持部の先端位置と前記外側可動部とが第2ばね部を介して連結され、各支持部を介して前記第1ばね部と前記第2ばね部とが対向した位置関係にあることが好ましい。これにより、より効果的に、検出方向以外の振動の発生を抑制でき、可動部の動作安定性を向上させることができ、検出精度及び信頼性をより効果的に向上させることができる。 In the present invention, the tip position of each support portion and the outer movable portion are connected via a second spring portion, and the first spring portion and the second spring portion are opposed to each other via each support portion. It is preferable to have a relationship. Thereby, generation | occurrence | production of a vibration other than a detection direction can be suppressed more effectively, the operation | movement stability of a movable part can be improved, and detection accuracy and reliability can be improved more effectively.
 また本発明では、前記左側アンカ部と第1支持部の間、あるいは、前記左側アンカ部と第2支持部の間の少なくともいずれか一方には前記第3ばね部が複数個、設けられ、
 前記右側アンカ部と第3支持部の間、あるいは、前記右側アンカ部と第4支持部の間の少なくともいずれか一方には前記第3ばね部が複数個、設けられる構成によっても効果的に、検出方向以外の振動の発生を抑制でき、可動部の動作安定性を向上させることができる。
Further, in the present invention, a plurality of the third spring portions are provided between at least one of the left anchor portion and the first support portion or between the left anchor portion and the second support portion,
Effectively by a configuration in which a plurality of the third spring portions are provided between the right anchor portion and the third support portion or at least one of the right anchor portion and the fourth support portion, Generation of vibrations other than in the detection direction can be suppressed, and the operational stability of the movable part can be improved.
 また本発明では、前記左側アンカ部と前記右側アンカ部の間には中央アンカ部が設けられ、
 前記第1支持部あるいは前記第2支持部は、前記左側アンカ部及び前記中央アンカ部の双方に連結されており、
 前記第4支持部あるいは前記第3支持部は、前記右側アンカ部及び前記中央アンカ部の双方に連結されていることが好ましい。これにより、より効果的に、検出方向以外の振動の発生を抑制できることが後述する実験で証明されている。
In the present invention, a central anchor portion is provided between the left anchor portion and the right anchor portion,
The first support part or the second support part is connected to both the left anchor part and the central anchor part,
The fourth support part or the third support part is preferably connected to both the right anchor part and the central anchor part. As a result, it has been proved by experiments to be described later that generation of vibrations other than the detection direction can be more effectively suppressed.
 また本発明では、前記中央アンカ部、前記左側アンカ部及び前記右側アンカ部は、前記左右方向(Y)に延びる同一線上に配置されていることが好ましい。 In the present invention, it is preferable that the center anchor portion, the left anchor portion, and the right anchor portion are arranged on the same line extending in the left-right direction (Y).
 また本発明では、前記第1支持部及び前記第4支持部、あるいは前記第2支持部及び前記第3支持部には、各支持部が回動して前記可動部が高さ方向に変位したときに前記可動部の変位方向に対し逆方向に変位して前記可動部の変位を抑制するための脚部が設けられていることが好ましい。これにより可動部に強い物理量が作用等しても可動部に対する負担や損傷を軽減でき、良好な検出精度を得ることができる。また可動部や対向する対向面側に突起等を設けずとも簡単な構造にて耐スティッキング性を向上させることができる。 In the present invention, each of the first support part and the fourth support part, or the second support part and the third support part is rotated and the movable part is displaced in the height direction. It is sometimes preferable to provide a leg portion for displacing the movable portion in a direction opposite to the displacement direction of the movable portion to suppress the displacement of the movable portion. As a result, even if a strong physical quantity acts on the movable part, the burden and damage to the movable part can be reduced, and good detection accuracy can be obtained. Further, it is possible to improve the sticking resistance with a simple structure without providing a protrusion or the like on the movable part or the opposed surface side.
 本発明の構成によれば、支持部の内側に位置する内側可動部と一体に前記支持部の外側に外側可動部を設けたことで、可動電極の面積を大きくでき、また可動部の剛性を高めることができる。したがって検出精度及び信頼性(破壊耐性)を向上させることができる。 According to the configuration of the present invention, the outer movable portion is provided outside the support portion integrally with the inner movable portion located inside the support portion, so that the area of the movable electrode can be increased and the rigidity of the movable portion can be increased. Can be increased. Therefore, detection accuracy and reliability (destruction resistance) can be improved.
 更には、検出方向以外の振動を抑制でき、可動部の動作安定性を向上させることができ、より効果的に、検出精度及び信頼性を向上させることができる。 Furthermore, vibrations other than the detection direction can be suppressed, the operation stability of the movable part can be improved, and detection accuracy and reliability can be improved more effectively.
本発明の実施形態における物理量センサを模式的に示した平面図、The top view which showed typically the physical quantity sensor in embodiment of this invention, 図1よりも好ましい構造の物理量センサを模式的に示した平面図、FIG. 2 is a plan view schematically showing a physical quantity sensor having a more preferable structure than FIG. 図1とは別の構造の物理量センサを模式的に示した平面図、FIG. 2 is a plan view schematically showing a physical quantity sensor having a structure different from that shown in FIG. 本発明の好ましい実施形態における物理量センサの平面図、A plan view of a physical quantity sensor in a preferred embodiment of the present invention, 本実施形態の物理量センサが静止している状態を示す斜視図、The perspective view showing the state where the physical quantity sensor of this embodiment is stationary, 本実施形態の物理量センサが動作している状態を示す斜視図、The perspective view which shows the state which the physical quantity sensor of this embodiment is operating, 本実施形態の物理量センサが動作している状態を示す斜視図、The perspective view which shows the state which the physical quantity sensor of this embodiment is operating, (a)は、図5の物理量センサの側面図、(b)は、図6の物理量センサの側面図、(c)は、図7の物理量センサの側面図、(A) is a side view of the physical quantity sensor of FIG. 5, (b) is a side view of the physical quantity sensor of FIG. 6, and (c) is a side view of the physical quantity sensor of FIG. 図5に示す連結部付近を示す部分拡大斜視図、The partial expansion perspective view which shows the connection part vicinity shown in FIG. 図5に示す一部を拡大して示した部分拡大平面図、FIG. 5 is an enlarged partial plan view showing a part of FIG. 本実施形態の脚部がストッパ面上に当接した状態を示す部分拡大断面図、The partial expanded sectional view which shows the state which the leg part of this embodiment contacted on the stopper surface, 本発明の別の実施形態における物理量センサの平面図、The top view of the physical quantity sensor in another embodiment of the present invention, 本発明の別の実施形態における物理量センサの平面図、The top view of the physical quantity sensor in another embodiment of the present invention, 本発明の好ましい実施形態における物理量センサの平面図、A plan view of a physical quantity sensor in a preferred embodiment of the present invention, 本発明の好ましい実施形態における物理量センサの平面図、A plan view of a physical quantity sensor in a preferred embodiment of the present invention, 本発明の好ましい実施形態における物理量センサの平面図、A plan view of a physical quantity sensor in a preferred embodiment of the present invention, 図4の物理量センサと図13の物理量センサとの検出モード、縦振動モード及び回転モードの各固有振動数を測定したグラフ。The graph which measured each natural frequency of the detection mode of the physical quantity sensor of FIG. 4, and the physical quantity sensor of FIG. 13, longitudinal vibration mode, and rotation mode.
 各図に示す物理量センサに関しては、Y方向が左右方向であり、Y1方向が左方向でY2方向が右方向、X方向が前後方向であり、X1方向が前方でX2方向が後方である。また、Y方向とX方向の双方に直交する方向が上下方向(Z方向;高さ方向)である。 Regarding the physical quantity sensor shown in each figure, the Y direction is the left-right direction, the Y1 direction is the left direction, the Y2 direction is the right direction, the X direction is the front-rear direction, the X1 direction is the front, and the X2 direction is the rear. Further, the direction perpendicular to both the Y direction and the X direction is the vertical direction (Z direction; height direction).
 図1は本実施形態における物理量センサを模式的に示した平面図である。
 図1に示す物理量センサ40は、シリコン基板をエッチング(ディープRIE)等により微細加工して形成されたものである。なお、以下に説明する可動部と、各支持部及び各アンカ部は夫々分離して形成されている。
FIG. 1 is a plan view schematically showing a physical quantity sensor in the present embodiment.
The physical quantity sensor 40 shown in FIG. 1 is formed by finely processing a silicon substrate by etching (deep RIE) or the like. In addition, the movable part demonstrated below, each support part, and each anchor part are each formed separately.
 図1に示すように物理量センサ40は、中心位置Oよりも左側(Y1)に位置する左側アンカ部41、中心位置Oよりも右方向(Y2)に位置する右側アンカ部42を備える。中心位置Oは、可動部51の左右方向(Y)の長さ及び前後方向(X)の長さの中心、あるいは、物理量センサの左右方向(Y)の長さ及び前後方向(X)の長さの中心である。左側アンカ部41のX1-X2方向の中心、右側アンカ部42のX1-X2方向の中心、及び中心位置OはY1-Y2方向の同軸上に位置している。 1, the physical quantity sensor 40 includes a left anchor portion 41 located on the left side (Y1) from the center position O and a right anchor portion 42 located on the right side (Y2) from the center position O. The center position O is the center of the length of the movable portion 51 in the left-right direction (Y) and the length in the front-rear direction (X), or the length of the physical quantity sensor in the left-right direction (Y) and the length in the front-rear direction (X). It is the heart. The center of the left anchor portion 41 in the X1-X2 direction, the center of the right anchor portion 42 in the X1-X2 direction, and the center position O are located on the same axis in the Y1-Y2 direction.
 前記アンカ部41,42は図示しない支持基板(シリコン基板)に絶縁層(SiO2層)を介して固定支持されている。 The anchor portions 41 and 42 are fixedly supported on a support substrate (silicon substrate) (not shown) via an insulating layer (SiO 2 layer).
 図1に示すように左側アンカ部41から第3ばね部43を介して前方(X1)に向けて第1支持部44が延出して形成されている。また、図1に示すように左側アンカ部41から第3ばね部45を介して後方(X2)に向けて第2支持部46が延出して形成されている。 As shown in FIG. 1, a first support portion 44 extends from the left anchor portion 41 through the third spring portion 43 toward the front (X1). Moreover, as shown in FIG. 1, the 2nd support part 46 is extended and formed toward the back (X2) via the 3rd spring part 45 from the left side anchor | foot_warmer part 41. As shown in FIG.
 また図1に示すように右側アンカ部42から第3ばね部47を介して前方(X1)に向けて第3支持部48が延出して形成されている。また、図1に示すように右側アンカ部42から第3ばね部49を介して後方(X2)に向けて第4支持部50が延出して形成されている。 Further, as shown in FIG. 1, a third support portion 48 extends from the right anchor portion 42 through the third spring portion 47 toward the front (X1). Further, as shown in FIG. 1, a fourth support portion 50 is formed to extend rearward (X2) from the right anchor portion 42 via the third spring portion 49.
 各支持部44,46,48,50は、いずれも一定幅の直線形状(帯状)で形成されている。 The support portions 44, 46, 48, and 50 are all formed in a straight line shape (band shape) with a constant width.
 図1に示すように、各支持部44,46,48,50により囲まれた内側に内側可動部51aが設けられている。そして、各支持部44,46,48,50の先端位置(アンカ部41,42との接続位置と反対側の位置)と内側可動部51aの側部とが第1ばね部52~55を介して連結されている。図1に示すように内側可動部51aの四隅が第1ばね部52~55を介して各支持部44,46,48,50に連結されている。 As shown in FIG. 1, an inner movable portion 51a is provided on the inner side surrounded by the support portions 44, 46, 48, and 50. The tip positions of the support portions 44, 46, 48, 50 (positions opposite to the connection positions with the anchor portions 41, 42) and the side portions of the inner movable portion 51a are interposed via the first spring portions 52-55. Are connected. As shown in FIG. 1, the four corners of the inner movable portion 51a are connected to the support portions 44, 46, 48, and 50 via first spring portions 52 to 55, respectively.
 図1に示すように、第1ばね部52と第1ばね部54、及び第1ばね部53と第1ばね部55はY1-Y2方向で対向した位置に設けられる。また、第1ばね部52と第1ばね部53、及び第1ばね部54と第1ばね部55とはX1-X2方向にて対向した位置に設けられる。 As shown in FIG. 1, the first spring portion 52 and the first spring portion 54, and the first spring portion 53 and the first spring portion 55 are provided at positions facing each other in the Y1-Y2 direction. Further, the first spring portion 52 and the first spring portion 53, and the first spring portion 54 and the first spring portion 55 are provided at positions facing each other in the X1-X2 direction.
 図1に示すように、内側可動部51aと一体となって、各支持部44,46,48,50の外側の位置に外側可動部51bが形成されている。内側可動部51aと外側可動部51bとで可動部51が構成される。 As shown in FIG. 1, an outer movable portion 51b is formed at a position outside each support portion 44, 46, 48, 50 integrally with the inner movable portion 51a. The movable portion 51 is configured by the inner movable portion 51a and the outer movable portion 51b.
 図1に示すように外側可動部51bは、第1支持部44及び第2支持部46のY1側にてX1-X2方向に延出して形成された第1外側可動片51b1と、第3支持部48及び第4支持部50のY2側にてX1-X2方向に延出して形成された第2外側可動片51b2と、第1外側可動片51b1と第2外側可動部51b2間をX1側にて連結し、Y1-Y2方向に向けて延出する第3外側可動片51b3と、第1外側可動片51b1と第2外側可動片51b2間をX2側にて連結し、Y1-Y2方向に向けて延びる第4外側可動片51b4とで構成された枠体状となっている。 As shown in FIG. 1, the outer movable portion 51b includes a first outer movable piece 51b1 that extends in the X1-X2 direction on the Y1 side of the first support portion 44 and the second support portion 46, and a third support. The second outer movable piece 51b2 formed to extend in the X1-X2 direction on the Y2 side of the portion 48 and the fourth support portion 50, and between the first outer movable piece 51b1 and the second outer movable portion 51b2 on the X1 side The third outer movable piece 51b3 extending in the Y1-Y2 direction and the first outer movable piece 51b1 and the second outer movable piece 51b2 are connected on the X2 side, and directed in the Y1-Y2 direction. It is in the shape of a frame composed of a fourth outer movable piece 51b4 that extends.
 そして、内側可動部51aのX1-X2方向の側部が第3外側可動片51b3及び第4外側可動片51b4と一体となっている。 The side portions of the inner movable portion 51a in the X1-X2 direction are integrated with the third outer movable piece 51b3 and the fourth outer movable piece 51b4.
 可動部51は、各第1ばね部52~55により吊られ、上記した支持基板の表面から浮いた状態で支持されている。 The movable part 51 is suspended by the first spring parts 52 to 55 and is supported in a state of being lifted from the surface of the support substrate.
 各第1ばね部52~55及び各第3ばね部43,45,47,49は、支持部44,46,48,50に比べて幅寸法が小さく、あるいは、膜厚が薄く形成されており、第1ばね部52~55及び第3ばね部43,45,47,49は弾性変形可能な部分となっている。一方、各支持部44,46,48,50は幅寸法が広く形成されて剛性が高く、可動部51と各支持部44,46,48,50との間、及び各アンカ部41,42と各支持部44,46,48,50との間は高さ方向に回動自在に連結されている。 Each of the first spring portions 52 to 55 and each of the third spring portions 43, 45, 47, and 49 have a smaller width or a smaller film thickness than the support portions 44, 46, 48, and 50. The first spring portions 52 to 55 and the third spring portions 43, 45, 47, and 49 are elastically deformable portions. On the other hand, each support part 44, 46, 48, 50 is formed with a wide width and has high rigidity, and between the movable part 51 and each support part 44, 46, 48, 50, and each anchor part 41, 42, The support portions 44, 46, 48, and 50 are connected to each other so as to be rotatable in the height direction.
 図1に示す物理量センサ40に外部から例えば加速度が与えられると、加速度は、可動部51及び各アンカ部41,42に作用する。このとき、可動部51は慣性力によって絶対空間内で留まろうとし、その結果、各アンカ部41,42に対して可動部51が加速度の作用方向と逆の方向へ相対的に移動する。 For example, when acceleration is applied to the physical quantity sensor 40 shown in FIG. 1 from the outside, the acceleration acts on the movable portion 51 and the anchor portions 41 and 42. At this time, the movable part 51 tries to stay in the absolute space by the inertial force, and as a result, the movable part 51 moves relative to the anchor parts 41 and 42 in the direction opposite to the direction in which the acceleration acts.
 このとき、各支持部44,46,48,50が高さ方向に回動動作し、一方、各第1ばね部52~55及び各第3ばね部43,45,47,49は捩れ変形する。これにより、可動部51を高さ方向に平行移動させることが出来る。 At this time, the support portions 44, 46, 48, 50 rotate in the height direction, while the first spring portions 52 to 55 and the third spring portions 43, 45, 47, 49 are torsionally deformed. . Thereby, the movable part 51 can be translated in the height direction.
 図1に示す本実施形態では、可動部51に、各支持部の外側に位置し、内側可動部51aと一体に形成された外側可動部51bを設けている。 In the present embodiment shown in FIG. 1, the movable portion 51 is provided with an outer movable portion 51b that is located outside each support portion and formed integrally with the inner movable portion 51a.
 可動部51は、検知部の可動電極を構成している。可動部51と対向して固定電極(図示しない)が設けられ、可動部51が変位することで、例えば静電容量が変化することで、可動部51の変位量を検出することが出来る。 The movable part 51 constitutes a movable electrode of the detection part. A fixed electrode (not shown) is provided to face the movable portion 51, and the displacement of the movable portion 51 can be detected by changing the capacitance, for example, by changing the capacitance.
 図1に示す本実施形態では、可動部51を内側可動部51aのみならず、内側可動部51aと一体となって、各支持部44,46,48,50の外側に外側可動部51bを設けたことで、可動電極の面積を広くでき、且つ可動部51の剛性を高めることができる。したがって、物理量センサ40の小型化においても検出精度を従来に比べて向上させることができ、且つ信頼性(破壊耐性)を向上させることができる。 In the present embodiment shown in FIG. 1, the movable portion 51 is integrated not only with the inner movable portion 51a but also with the inner movable portion 51a, and the outer movable portion 51b is provided outside the support portions 44, 46, 48, and 50. As a result, the area of the movable electrode can be increased, and the rigidity of the movable portion 51 can be increased. Therefore, even in the downsizing of the physical quantity sensor 40, the detection accuracy can be improved as compared with the conventional one, and the reliability (destructive resistance) can be improved.
 ところで揺動自在に支持された可動部2を備える物理量センサ40では、検出方向(高さ方向)以外の振動を抑制できるようにしなければ効果的に検出精度を向上させることができない。 Incidentally, in the physical quantity sensor 40 including the movable part 2 supported so as to be swingable, the detection accuracy cannot be effectively improved unless vibrations other than the detection direction (height direction) can be suppressed.
 そこで、ばね部の配置を次の図2のように設定することで、より効果的に検出方向以外の振動を抑制することができる。 Therefore, vibrations other than the detection direction can be more effectively suppressed by setting the arrangement of the spring portion as shown in FIG.
 図2は、本実施形態における物理量センサ60を模式的に示した平面図である。図2において、図1と同じ符号が付された部分は図1と同じ部分を示している。 FIG. 2 is a plan view schematically showing the physical quantity sensor 60 in the present embodiment. 2, the same reference numerals as those in FIG. 1 denote the same parts as in FIG.
 図2に示す実施形態では、外側可動部51bと各支持部44,46,48,50間が第2ばね部61~64を介して連結されている。 In the embodiment shown in FIG. 2, the outer movable portion 51b and the support portions 44, 46, 48, 50 are connected via second spring portions 61-64.
 図2に示すように第2ばね部61は、第1支持部44の先端位置(アンカ部41と接続される側と反対側の位置)と外側可動部51bの側部との間に介在している。そして、第1ばね部52と第2ばね部61とが第1支持部44のY1-Y2方向の両側にて対向している。 As shown in FIG. 2, the second spring part 61 is interposed between the tip position of the first support part 44 (position opposite to the side connected to the anchor part 41) and the side part of the outer movable part 51b. ing. The first spring portion 52 and the second spring portion 61 are opposed to each other on both sides of the first support portion 44 in the Y1-Y2 direction.
 また図2に示すように第2ばね部62は、第2支持部46の先端位置(アンカ部41と接続される側と反対側の位置)と外側可動部51bの側部との間に介在している。そして、第1ばね部53と第2ばね部62とが第2支持部46のY1-Y2方向の両側にて対向している。 As shown in FIG. 2, the second spring part 62 is interposed between the tip position of the second support part 46 (position opposite to the side connected to the anchor part 41) and the side part of the outer movable part 51b. is doing. The first spring portion 53 and the second spring portion 62 face each other on both sides of the second support portion 46 in the Y1-Y2 direction.
 また図2に示すように第2ばね部63は、第3支持部48の先端位置(アンカ部42と接続される側と反対側の位置)と外側可動部51bの側部との間に介在している。そして、第1ばね部54と第2ばね部63とが第3支持部48のY1-Y2方向の両側にて対向している。 As shown in FIG. 2, the second spring part 63 is interposed between the tip position of the third support part 48 (position opposite to the side connected to the anchor part 42) and the side part of the outer movable part 51b. is doing. The first spring portion 54 and the second spring portion 63 oppose each other on both sides of the third support portion 48 in the Y1-Y2 direction.
 また図2に示すように第2ばね部64は、第4支持部50の先端位置(アンカ部42と接続される側と反対側の位置)と外側可動部51bの側部との間に介在している。そして、第1ばね部55と第2ばね部64とが第4支持部50のY1-Y2方向の両側にて対向している。 As shown in FIG. 2, the second spring part 64 is interposed between the tip position of the fourth support part 50 (position opposite to the side connected to the anchor part 42) and the side part of the outer movable part 51b. is doing. The first spring portion 55 and the second spring portion 64 face each other on both sides of the fourth support portion 50 in the Y1-Y2 direction.
 図2に示すように、第1支持部44及び第3支持部48に接続された各ばね部52,54,61,63はY1-Y2方向の軸上に一列に配置されている。また、第4支持部46及び第4支持部50に接続された各ばね部53,55,62,64は、Y1-Y2方向の軸上に一列に配置されている。また、第1ばね部52と第1ばね部53、第1ばね部54と第1ばね部55、第2ばね部61と第2ばね部62、及び、第2ばね部63と第2ばね部64はいずれもX1-X2方向に対向した位置関係となっている。 As shown in FIG. 2, the spring portions 52, 54, 61, 63 connected to the first support portion 44 and the third support portion 48 are arranged in a line on the axis in the Y1-Y2 direction. Further, the spring portions 53, 55, 62, and 64 connected to the fourth support portion 46 and the fourth support portion 50 are arranged in a line on the axis in the Y1-Y2 direction. The first spring portion 52 and the first spring portion 53, the first spring portion 54 and the first spring portion 55, the second spring portion 61 and the second spring portion 62, and the second spring portion 63 and the second spring portion. 64 has a positional relationship facing each other in the X1-X2 direction.
 図1のように、各支持部44,46,48,50を第1ばね部52~55を介して内側可動部51aとのみ連結した構成では、特に左右方向(Y1-Y2方向)の変位に対しては、片持ち梁の変形と同様に変位量が大きくなりやすい。そこで、図2に示すように、各支持部44,46,48,50の両側を第1ばね部52~55及び第2ばね部61~64を介して内側可動部51aと外側可動部51bとに連結したことで、検出方向(高さ方向)以外の振動、特に左右方向(Y1-Y2方向)の振動をより効果的に抑制することが可能になる。 As shown in FIG. 1, in the configuration in which the support portions 44, 46, 48, and 50 are connected only to the inner movable portion 51a via the first spring portions 52 to 55, displacement in the left-right direction (Y1-Y2 direction) is particularly significant. On the other hand, the amount of displacement tends to be large as in the case of cantilever deformation. Therefore, as shown in FIG. 2, the inner movable portion 51a and the outer movable portion 51b are connected to both sides of the support portions 44, 46, 48, and 50 via the first spring portions 52 to 55 and the second spring portions 61 to 64, respectively. As a result of the connection, vibrations other than the detection direction (height direction), particularly vibrations in the left-right direction (Y1-Y2 direction) can be more effectively suppressed.
 例えば、図1のように、内側可動部51aと各支持部44,46,48,50との間のみに第1ばね部52~55を配置した構成では、検出方向(高さ方向)の振動モードの固有振動数が2.44kHzで、左右方向(Y1-Y2)の振動モードの固有振動数が5.65kHzであった。一方、図2のように、内側可動部51aと各支持部44,46,48,50との間に第1ばね部52~55を配置し、さらに、外側可動部51bと各支持部44,46,48,50との間に第2ばね部61~64を配置した構成では、検出方向(高さ方向)の振動モードの固有振動数が2.20kHzで、左右方向(Y1-Y2)の振動モードの固有振動数が6.15kHzであった。このように、図2の構成のほうが、検出方向での固有振動数と、左右方向(Y1-Y2)での固有振動数とを効果的に離すことができ、その結果、可動部2の運動安定性が向上し、検出精度及び信頼性をより効果的に向上させることができる。 For example, as shown in FIG. 1, in the configuration in which the first spring portions 52 to 55 are disposed only between the inner movable portion 51a and the support portions 44, 46, 48, 50, vibration in the detection direction (height direction). The natural frequency of the mode was 2.44 kHz, and the natural frequency of the vibration mode in the left-right direction (Y1-Y2) was 5.65 kHz. On the other hand, as shown in FIG. 2, the first spring parts 52 to 55 are arranged between the inner movable part 51a and the support parts 44, 46, 48, 50, and further, the outer movable part 51b and the support parts 44, In the configuration in which the second spring portions 61 to 64 are disposed between 46, 48 and 50, the natural frequency of the vibration mode in the detection direction (height direction) is 2.20 kHz, and the left and right direction (Y1-Y2) The natural frequency of the vibration mode was 6.15 kHz. As described above, the configuration shown in FIG. 2 can effectively separate the natural frequency in the detection direction and the natural frequency in the left-right direction (Y1-Y2). Stability is improved, and detection accuracy and reliability can be improved more effectively.
 なお本実施形態では、各支持部44,46,48,50の前後方向(X1-X2方向)への長さ寸法Lを長くすることで、可動部51(あるいは物理量センサ)の中心位置Oを回転軸として回転する振動モードを抑制しやすくなる。 In this embodiment, the center position O of the movable portion 51 (or physical quantity sensor) is set by increasing the length L in the front-rear direction (X1-X2 direction) of each support portion 44, 46, 48, 50. It becomes easy to suppress the vibration mode which rotates as a rotating shaft.
 特に、可動部51(あるいは物理量センサ)の中心位置Oよりも前方(X1)に位置する可動部51の前方領域の質点O1及び、中心位置Oよりも後方(X2)に位置する可動部51の後方領域の質点O2が共に、内側可動部51aの領域内(あるいはY1-Y2方向にて対向する各支持部の間の領域内)にあることで、前記回転モードを抑制することが出来る。 In particular, the mass point O1 of the front region of the movable part 51 located forward (X1) from the center position O of the movable part 51 (or physical quantity sensor) and the movable part 51 located behind (X2) from the center position O. Both the mass points O2 in the rear region are within the region of the inner movable portion 51a (or the region between the support portions facing each other in the Y1-Y2 direction), so that the rotation mode can be suppressed.
 図3に示す物理量センサ70は、図1に示す物理量センサ40の変形例を模式的に示した平面図である。なお図3において、図1と同じ符号は図1と同じ部分を示している。 The physical quantity sensor 70 shown in FIG. 3 is a plan view schematically showing a modification of the physical quantity sensor 40 shown in FIG. 3, the same reference numerals as those in FIG. 1 denote the same parts as those in FIG.
 図3に示す物理量センサ70では、第1可動部71と第2可動部72とが設けられ、これら可動部71,72は高さ方向に対して逆方向に変位するように支持されている。第1可動部71と第2可動部72とは異なる質量で形成される。 In the physical quantity sensor 70 shown in FIG. 3, a first movable part 71 and a second movable part 72 are provided, and these movable parts 71 and 72 are supported so as to be displaced in a direction opposite to the height direction. The first movable part 71 and the second movable part 72 are formed with different masses.
 図3に示すように、第2支持部73及び第3支持部76は、図1と異なって全体が直線状でなく途中で屈曲したクランク形状で形成されている。 As shown in FIG. 3, the second support portion 73 and the third support portion 76 are formed in a crank shape that is bent in the middle rather than in a straight shape, unlike FIG. 1.
 第2支持部73は、左側アンカ部41と第3ばね部74を介して接続された位置から、第1支持部44よりも内側の位置であって前方(X1)に向けて延びる連結腕73aを備え、連結腕73aの先端部は第4ばね部75を介して第2可動部72に連結されている。 The second support portion 73 is a connecting arm 73a extending from the position connected to the left anchor portion 41 and the third spring portion 74 to the front (X1) at a position inside the first support portion 44. The distal end portion of the connecting arm 73a is connected to the second movable portion 72 via the fourth spring portion 75.
 また図3に示すように、第3支持部76は、右側アンカ部42と第3ばね部77を介して接続された位置から、第4支持部50よりも内側の位置であって後方(X2)に向けて延びる連結腕76aを備え、連結腕76aの先端部は第4ばね部78を介して第2可動部72に連結されている。 As shown in FIG. 3, the third support portion 76 is located on the inner side of the fourth support portion 50 and rearward (X2) from the position connected to the right anchor portion 42 and the third spring portion 77. ) And a distal end portion of the connecting arm 76a is connected to the second movable portion 72 via a fourth spring portion 78.
 図3に示すように、第1可動部71は、各支持部44,73,76,50の内側であって各第1ばね部52~55を介して各支持部44,73、76,50と連結される内側可動部71aと、前記内側可動部71aと一体となって各支持部44,73,76,50の外側に位置する枠体状の外側可動部71bとで構成される。 As shown in FIG. 3, the first movable portion 71 is inside the support portions 44, 73, 76, 50 and is supported by the support portions 44, 73, 76, 50 via the first spring portions 52-55. And an inner movable portion 71a connected to the inner movable portion 71a and a frame-shaped outer movable portion 71b that is integrated with the inner movable portion 71a and is located outside the support portions 44, 73, 76, and 50.
 図3に示す実施形態では、第1可動部71と第2可動部72とで質量差を持たせているが、第1可動部71に外側可動部71bを設けたことで前記質量差を大きくしやすい。 In the embodiment shown in FIG. 3, the first movable portion 71 and the second movable portion 72 have a mass difference. However, the outer movable portion 71b is provided in the first movable portion 71 to increase the mass difference. It's easy to do.
 そして図3の構成とすることで、第1可動部71と固定部との間の静電容量の変化と第2可動部72と固定部との間の静電容量の変化とが逆の出力となる。この静電容量の変化の差を求めることにより、可動部の移動状態を高感度で且つ温度変化などに起因するノイズを相殺して検出することができる。 With the configuration of FIG. 3, an output in which the change in capacitance between the first movable portion 71 and the fixed portion and the change in capacitance between the second movable portion 72 and the fixed portion are opposite to each other is output. It becomes. By obtaining the difference in capacitance change, it is possible to detect the moving state of the movable part with high sensitivity and canceling noise caused by temperature change.
 図4はより好ましい物理量センサの構造を示す平面図である。
 図4と図5に示すように、物理量センサ1は、長方形の長辺1a,1bおよび短辺1c,1dで囲まれた外枠部分が可動部2である。長辺1a,1bの延びる方向が前後方向であり、短辺1c,1dの延びる方向が左右方向である。
FIG. 4 is a plan view showing a more preferable structure of the physical quantity sensor.
As shown in FIGS. 4 and 5, in the physical quantity sensor 1, the outer frame portion surrounded by the rectangular long sides 1 a and 1 b and the short sides 1 c and 1 d is the movable portion 2. The direction in which the long sides 1a, 1b extend is the front-rear direction, and the direction in which the short sides 1c, 1d extend is the left-right direction.
 図4に示す物理量センサ1の長方形の長辺1a,1bの長さ寸法は1mm以下であり、短辺1c,1dの長さ寸法は0.8mm以下である。さらに、厚み寸法は0.1mm以下である。 The length dimension of the long sides 1a and 1b of the rectangle of the physical quantity sensor 1 shown in FIG. 4 is 1 mm or less, and the length dimension of the short sides 1c and 1d is 0.8 mm or less. Furthermore, the thickness dimension is 0.1 mm or less.
 図4,図5に示すように第1支持部3と第4支持部4の平面形状はクランク状で形成されている。 As shown in FIGS. 4 and 5, the planar shape of the first support portion 3 and the fourth support portion 4 is formed in a crank shape.
 図4に示すように第1支持部3は、前方(X1)に延びる第1連結腕3aと、後方(X2)に延びる脚部3bとが一体に形成されている。なお、ここで、第1連結腕3aは、中央アンカ部5及び左側アンカ部6との連結位置である支点連結部12a,12bから前方(X1)に位置する側であり、脚部3bは、前記支点連結部12a,12bから後方(X2)に位置する側と規定する。 As shown in FIG. 4, the 1st support part 3 is integrally formed with the 1st connection arm 3a extended in the front (X1), and the leg part 3b extended in back (X2). Here, the first connecting arm 3a is a side located forward (X1) from the fulcrum connecting portions 12a and 12b, which are the connecting positions of the center anchor portion 5 and the left anchor portion 6, and the leg portion 3b is It is defined as the side located rearward (X2) from the fulcrum connecting portions 12a and 12b.
 また図4に示すように第4支持部4は、後方(X2)に延びる第1連結腕4aと、前方(X1)に延びる脚部4bとが一体に形成されている。なお、ここで、第1連結腕4aは、中央アンカ部5及び右側アンカ部7との連結位置である支点連結部13a,13から後方(X2)に位置する側であり、脚部4bは、前記支点連結部13a,13bから前方(X1)に位置する側と規定する。 Further, as shown in FIG. 4, the fourth support part 4 is formed integrally with a first connecting arm 4a extending rearward (X2) and a leg part 4b extending forward (X1). Here, the first connecting arm 4a is a side located rearward (X2) from the fulcrum connecting portions 13a and 13 which are connecting positions with the central anchor portion 5 and the right anchor portion 7, and the leg portion 4b is It is defined as the side located forward (X1) from the fulcrum connecting portions 13a and 13b.
 第1連結腕3a,4a及び脚部3b,4bは各アンカ部5~7から離れる方向であって、前後方向(X1-X2方向)に平行に所定の幅寸法にて延出する形状で形成されている。例えば、図4に示すように、各支持部3,4の第1連結腕3a,4a及び脚部3b,4bの幅寸法(Y1-Y2方向への寸法)はほぼ同じとされている。 The first connecting arms 3a, 4a and the legs 3b, 4b are formed in a shape extending away from the respective anchor portions 5-7 and extending in a predetermined width dimension in parallel to the front-rear direction (X1-X2 direction). Has been. For example, as shown in FIG. 4, the width dimensions (dimensions in the Y1-Y2 direction) of the first connecting arms 3a, 4a and the leg portions 3b, 4b of the support portions 3, 4 are substantially the same.
 図4に示すように第1支持部3と第4支持部4は、点対称で形成されている。よって各アンカ部5~7から見て、第1支持部3の第1連結腕3aと第4支持部4の第1連結腕4aの延出方向、及び第1支持部3の脚部3bと第4支持部4の脚部4bの延出方向がそれぞれ逆になっている。 As shown in FIG. 4, the 1st support part 3 and the 4th support part 4 are formed in point symmetry. Therefore, when viewed from the anchor portions 5 to 7, the extending direction of the first connecting arm 3a of the first support portion 3 and the first connecting arm 4a of the fourth support portion 4 and the leg portion 3b of the first support portion 3 The extending directions of the leg portions 4b of the fourth support portion 4 are reversed.
 図4に示すように、中央アンカ部5、左側アンカ部6及び右側アンカ部7が設けられている。図4に示すように物理量センサ1の短辺1cと短辺1dとの中点において左右方向(Y)に延びる線を横中心線Oxとしたときに、中央アンカ部5、左側アンカ部6及び右側アンカ部7の夫々を前後方向に二分する中点が、前記横中心線Ox上に位置している。また中央アンカ部5、左側アンカ部6及び右側アンカ部7の前後方向(X)の幅寸法は略同一である。 As shown in FIG. 4, a central anchor part 5, a left anchor part 6, and a right anchor part 7 are provided. As shown in FIG. 4, when the horizontal center line Ox is a line extending in the left-right direction (Y) at the midpoint between the short side 1c and the short side 1d of the physical quantity sensor 1, the center anchor portion 5, the left anchor portion 6 and A midpoint that bisects each of the right anchor portions 7 in the front-rear direction is located on the horizontal center line Ox. The width dimension in the front-rear direction (X) of the center anchor portion 5, the left anchor portion 6, and the right anchor portion 7 is substantially the same.
 例えば各アンカ部5~7は図8(a)に示す固定部(支持基板)10に固定支持される。この固定部10は例えばシリコン基板であり、各アンカ部5~7と固定部10との間には図示しない酸化絶縁層(SiO2層)が介在している。固定部10、酸化絶縁層、及び図1に示す可動部2、支持部3,4及びアンカ部5~7等を構成するシリコン基板は、例えばSOI基板である。図8(a)に示す静止状態において可動部2と固定部10との間の間隔T1は、1~5μm程度である。 For example, the anchor portions 5 to 7 are fixedly supported by a fixing portion (supporting substrate) 10 shown in FIG. The fixing portion 10 is, for example, a silicon substrate, and an oxide insulating layer (SiO 2 layer) (not shown) is interposed between the anchor portions 5 to 7 and the fixing portion 10. The silicon substrate constituting the fixed portion 10, the oxide insulating layer, the movable portion 2, the support portions 3 and 4, the anchor portions 5 to 7 and the like shown in FIG. 1 is, for example, an SOI substrate. In the stationary state shown in FIG. 8A, the interval T1 between the movable portion 2 and the fixed portion 10 is about 1 to 5 μm.
 図4、図5に示すように、可動部2と、各支持部3,4及び各アンカ部5~7は夫々分離して形成されている。このうち、各アンカ部5~7と固定部10との間には上記した酸化絶縁層が介在し、各アンカ部5~7が固定部10に固定支持された状態になっているが、可動部2及び各支持部3,4と、固定部10との間には酸化絶縁層は存在せず、可動部2及び各支持部3,4と固定部10との間は空間となっている(図8(a))。 As shown in FIGS. 4 and 5, the movable portion 2, the support portions 3 and 4, and the anchor portions 5 to 7 are formed separately from each other. Among these, the above-described oxide insulating layer is interposed between each anchor portion 5-7 and the fixed portion 10, and each anchor portion 5-7 is fixedly supported by the fixed portion 10, but it is movable. There is no oxide insulating layer between the part 2 and each support part 3, 4 and the fixed part 10, and there is a space between the movable part 2 and each support part 3, 4 and the fixed part 10. (FIG. 8 (a)).
 図4に示すように、第1支持部3の第1連結腕3aの先端部と可動部2とが連結部11aにおいて回動自在に連結されており、第4支持部4の第1連結腕4aの先端部と可動部2とが連結部11bにおいて回動自在に連結されている。 As shown in FIG. 4, the distal end portion of the first connection arm 3 a of the first support portion 3 and the movable portion 2 are rotatably connected to each other at the connection portion 11 a, and the first connection arm of the fourth support portion 4. The front end portion of 4a and the movable portion 2 are rotatably connected at a connecting portion 11b.
 また図4に示すように、第1支持部3の第1連結腕3aは左側アンカ部6との近接位置で二股に分かれ、左側アンカ部6と中央アンカ部5との間に位置する部分と中央アンカ部5及び左側アンカ部6とが支点連結部12a,12bにおいて回動自在に連結されている。また図4に示すように、第4支持部4の第1連結腕4aは、右側アンカ部7との近接位置で二股に分かれ、右側アンカ部7と中央アンカ部5との間に位置する部分と中央アンカ部5及び右側アンカ部7とが支点連結部13a,13bにおいて回動自在に連結されている。 As shown in FIG. 4, the first connecting arm 3 a of the first support portion 3 is divided into two forks at a position close to the left anchor portion 6, and a portion positioned between the left anchor portion 6 and the central anchor portion 5. The center anchor portion 5 and the left anchor portion 6 are pivotally coupled at fulcrum coupling portions 12a and 12b. Further, as shown in FIG. 4, the first connecting arm 4 a of the fourth support portion 4 is divided into two forks at a position close to the right anchor portion 7, and is located between the right anchor portion 7 and the central anchor portion 5. And the center anchor portion 5 and the right anchor portion 7 are pivotally coupled at fulcrum coupling portions 13a and 13b.
 また図4に示す実施形態では、左側アンカ部6の後方(X2)に、可動部2及び左側アンカ部6と分離して形成された第2支持部14が設けられ、右側アンカ部7の前方(X1)に、可動部2及び右側アンカ部7と分離して形成された第3支持部15が設けられている。第2支持部14と第3支持部15は点対称で形成される。また、第2支持部14及び第3支持部15は、左側アンカ部6や右側アンカ部7から離れる方向であって、前後方向(X1-X2方向)に平行に所定幅にて延出して形成されている。第2支持部14及び第3支持部15の幅寸法(Y1-Y2方向への寸法)は、第1連結腕3a,4aの幅寸法と同じであることが好ましい。 In the embodiment shown in FIG. 4, the second support portion 14 formed separately from the movable portion 2 and the left anchor portion 6 is provided behind the left anchor portion 6 (X2). (X1) is provided with a third support portion 15 formed separately from the movable portion 2 and the right anchor portion 7. The second support part 14 and the third support part 15 are formed in point symmetry. The second support portion 14 and the third support portion 15 are formed in a direction away from the left anchor portion 6 and the right anchor portion 7 and extending with a predetermined width in parallel to the front-rear direction (X1-X2 direction). Has been. The width dimension of the second support part 14 and the third support part 15 (dimension in the Y1-Y2 direction) is preferably the same as the width dimension of the first connecting arms 3a, 4a.
 そして、図4に示すように第2支持部14の先端部と可動部2とは、連結部16aにおいて、回動自在に連結されている。また、第3支持部15の先端部と可動部2とは、連結部16bにおいて、回動自在に連結されている。また図4に示すように、第2支持部14と左側アンカ部6とは、支点連結部17aにおいて、回動自在に連結されている。また第3支持部と右側アンカ部7とは、支点連結部17bにおいて、回動自在に連結されている。 And as shown in FIG. 4, the front-end | tip part of the 2nd support part 14 and the movable part 2 are rotatably connected in the connection part 16a. Moreover, the front-end | tip part of the 3rd support part 15 and the movable part 2 are rotatably connected in the connection part 16b. As shown in FIG. 4, the second support portion 14 and the left anchor portion 6 are rotatably connected at a fulcrum connecting portion 17 a. Further, the third support portion and the right anchor portion 7 are rotatably connected at a fulcrum connecting portion 17b.
 図4に示すように、第1支持部3の第1連結腕3a及び第2支持部14はともに、左側アンカ部6よりも左方向(Y1)の位置にて延出する後端部3c,14aを備えており、第1連結腕3aの後端部3cと、第2支持部14の後端部14aとが所定の間隔を空けて対向配置されている。そして、第1連結腕3aの後端部3cと第2支持部14の後端部14aとの間が連結部18aを介して連結されている。また図4に示すように、第4支持部4の第1連結腕4a及び第3支持部15はともに、右側アンカ部7よりも右方向(Y2)の位置にて延出する後端部4c,15aを備えており、第1連結腕4aの後端部4cと、第3支持部15の後端部15aとが所定の間隔を空けて対向配置されている。そして、第1連結腕4aの後端部4cと第3支持部15の後端部15aとの間が連結部18bを介して連結されている。 As shown in FIG. 4, the first connection arm 3 a and the second support portion 14 of the first support portion 3 both have a rear end portion 3 c that extends at a position in the left direction (Y1) with respect to the left anchor portion 6. 14a, and the rear end portion 3c of the first connecting arm 3a and the rear end portion 14a of the second support portion 14 are arranged to face each other with a predetermined interval. And between the rear-end part 3c of the 1st connection arm 3a and the rear-end part 14a of the 2nd support part 14 is connected via the connection part 18a. Also, as shown in FIG. 4, the first connecting arm 4 a and the third support portion 15 of the fourth support portion 4 both have a rear end portion 4 c that extends at a position in the right direction (Y2) with respect to the right anchor portion 7. 15a, and the rear end portion 4c of the first connecting arm 4a and the rear end portion 15a of the third support portion 15 are arranged to face each other with a predetermined interval. And between the rear-end part 4c of the 1st connection arm 4a and the rear-end part 15a of the 3rd support part 15 is connected via the connection part 18b.
 ここで、第1支持部3の第1連結腕3aの先端部から後端部3cまでのX1-X2方向への長さ寸法、第4支持部4の第1連結腕4aの先端部から後端部4cまでのX1-X2方向への長さ寸法、第2支持部14の先端部から後端部14aまでのX1-X2方向への長さ寸法、及び、第3支持部15の先端部から後端部15aまでのX1-X2方向への長さ寸法は、それぞれ同一寸法に調整されている。 Here, the length in the X1-X2 direction from the front end portion of the first connecting arm 3a of the first support portion 3 to the rear end portion 3c, and from the front end portion of the first connecting arm 4a of the fourth support portion 4 to the rear. The length dimension in the X1-X2 direction to the end portion 4c, the length dimension in the X1-X2 direction from the front end portion of the second support portion 14 to the rear end portion 14a, and the front end portion of the third support portion 15 The length dimension in the X1-X2 direction from the rear end portion 15a to the rear end portion 15a is adjusted to the same dimension.
 図9は図4に示す連結部16b付近を拡大して示した部分拡大斜視図である。
 図5に示すように、連結部16aでは、可動部2に溝19が形成されており、この溝19の内部において、第3支持部15と、可動部2とを繋ぐ第1ばね部(トーションバー)20aが設けられている。この第1ばね部20aは、可動部2および第3支持部15と同様にシリコンで形成されている。すなわち、長方形のシリコン基板をエッチングして、可動部2や第3支持部15を分離する際に、可動部2と第3支持部15とを連結するようにシリコン基板の一部を残しシリコンを円柱状や角柱状に加工して、第1ばね部20aが形成されている。図9では、第1ばね部20aの厚さは、可動部2の厚さに比べて薄くなっているが、同じ厚さであってもよい。すなわち第1ばね部20aとなる部分のシリコン基板をエッチングにて幅細に切り出すことで、ばね性を持たせることが出来る。
FIG. 9 is a partially enlarged perspective view showing the vicinity of the connecting portion 16b shown in FIG. 4 in an enlarged manner.
As shown in FIG. 5, in the connecting portion 16 a, a groove 19 is formed in the movable portion 2, and a first spring portion (torsion) that connects the third support portion 15 and the movable portion 2 inside the groove 19. Bar) 20a is provided. The first spring portion 20 a is formed of silicon, like the movable portion 2 and the third support portion 15. That is, when the rectangular silicon substrate is etched to separate the movable part 2 and the third support part 15, the silicon is left leaving a part of the silicon substrate so that the movable part 2 and the third support part 15 are connected. The first spring portion 20a is formed by processing into a columnar shape or a prismatic shape. In FIG. 9, the thickness of the first spring portion 20 a is thinner than the thickness of the movable portion 2, but it may be the same thickness. In other words, the silicon substrate at the portion that becomes the first spring portion 20a is cut out by etching so that the spring property can be provided.
 図9に示す構造は、図1に示す各連結部11a,11b,16aにおいても同様である。 The structure shown in FIG. 9 is the same in the connecting portions 11a, 11b, and 16a shown in FIG.
 また図10は、中央アンカ部5と右側アンカ部7、及びその周囲部を拡大して示した部分拡大平面図である。 FIG. 10 is a partially enlarged plan view showing the central anchor portion 5 and the right anchor portion 7 and their peripheral portions in an enlarged manner.
 図10に示すように、各支点連結部12a,13a,13b,17bにおいても溝内に第3ばね部(トーションバー)20b~20eが設けられて各アンカ部5,7と第1連結腕3a,4a及び第3支持部15が第3ばね部(トーションバー)20b~20eを介して連結されている。また図示しなかった左側アンカ部6と第1連結腕3a及び第2支持部14との支点連結部12b,17aにおいても図10と同様の構造で形成されている。 As shown in FIG. 10, third spring portions (torsion bars) 20b to 20e are also provided in the grooves at the respective fulcrum connecting portions 12a, 13a, 13b, and 17b, and the anchor portions 5 and 7 and the first connecting arms 3a. , 4a and the third support portion 15 are connected via third spring portions (torsion bars) 20b to 20e. Further, the fulcrum connecting portions 12b and 17a of the left anchor portion 6 and the first connecting arm 3a and the second support portion 14 which are not shown are also formed in the same structure as in FIG.
 図4に示すように、連結部11a,16bに設けられた第1ばね部は、左右方向(Y)において同軸上に設けられる。また、連結部16a,11bに設けけられた第1ばね部は、左右方向(Y)において同軸上に設けられる。また、支点連結部12a,12b,17bに設けられた第3ばね部は、左右方向(Y)において同軸上に設けられる。また、支点連結部13a,13b,17aに設けられた第3ばね部は、左右方向(Y)において同軸上に設けられる。 As shown in FIG. 4, the 1st spring part provided in connection part 11a, 16b is provided coaxially in the left-right direction (Y). Moreover, the 1st spring part provided in connection part 16a, 11b is provided coaxially in the left-right direction (Y). Moreover, the 3rd spring part provided in fulcrum connection part 12a, 12b, 17b is provided coaxially in the left-right direction (Y). Moreover, the 3rd spring part provided in the fulcrum connection part 13a, 13b, 17a is provided coaxially in the left-right direction (Y).
 また図10に示すように、第3支持部15の後端部15aと第4支持部4の第1連結腕4aの後端部4c間に位置する連結部18cには溝21内に折り曲げ形成された第5ばね部22が設けられ、第5ばね部22の一方の端部が第3支持部15の後端部15aに、第5ばね部22の他方の端部が第4支持部4の第1連結腕4aの後端部4cに接続されている。第5ばね部22が前後方向(X)に平行に伸びず迂回しているのは、幅細の第5ばね部22の長さ寸法を稼いでばね定数を小さくし、第3支持部と第4支持部間を強固に結合しないためである。また、連結部18a,18bに設けられた第5ばね部は、左右方向(Y)において同軸上に設けられる。また、連結部18aに設けられた第5ばね部と、連結部18bに設けられた第5ばね部とは点対称で形成される。 Further, as shown in FIG. 10, the connecting portion 18 c located between the rear end portion 15 a of the third support portion 15 and the rear end portion 4 c of the first connecting arm 4 a of the fourth support portion 4 is formed in a groove 21. The fifth spring portion 22 is provided, one end of the fifth spring portion 22 is at the rear end portion 15a of the third support portion 15, and the other end of the fifth spring portion 22 is at the fourth support portion 4. Is connected to the rear end 4c of the first connecting arm 4a. The reason why the fifth spring portion 22 detours without extending in parallel in the front-rear direction (X) is to increase the length of the narrow fifth spring portion 22 to reduce the spring constant, This is because the four support portions are not firmly coupled. Moreover, the 5th spring part provided in connection part 18a, 18b is provided coaxially in the left-right direction (Y). Moreover, the 5th spring part provided in the connection part 18a and the 5th spring part provided in the connection part 18b are formed in point symmetry.
 各ばね部が捻り変形することで、各支持部を可動部2及び各アンカ部5~7に対して回動させることが出来る。また、各ばね部を形成しているシリコンが弾性材料であるため、可動部2などに外力が作用していないときは、図4および図5に示すように、各ばね部の弾性復元力により、可動部2の表面と各支持部及び各脚部の表面とが同一面となるように復元する。 Each spring part is twisted and deformed, so that each support part can be rotated with respect to the movable part 2 and each of the anchor parts 5-7. Further, since the silicon forming each spring portion is an elastic material, when an external force is not acting on the movable portion 2 or the like, the elastic restoring force of each spring portion is used as shown in FIGS. Then, the surface of the movable portion 2 is restored so that the surfaces of the support portions and the leg portions are flush with each other.
 図8(a)に示すように、物理量センサ1には、可動部2と高さ方向にて離れた一方に固定部10と他方に対向部(対向部;カバー部材)30が設けられる。図8(a)の静止状態において、可動部2と対向部30との間の間隔T2は、1~5μm程度である。 As shown in FIG. 8A, the physical quantity sensor 1 is provided with a fixed portion 10 on one side separated from the movable portion 2 in the height direction and an opposing portion (opposing portion; cover member) 30 on the other side. In the stationary state of FIG. 8A, the interval T2 between the movable portion 2 and the facing portion 30 is about 1 to 5 μm.
 また図8(a)には図示しないが、対向部30の表面30aには、固定電極が設けられている。対向部30は例えばシリコン基板であり、固定電極は、対向部30の表面30aに絶縁層を介して導電性金属材料をスパッタしまたはメッキすることで形成されている。 Although not shown in FIG. 8A, a fixed electrode is provided on the surface 30a of the facing portion 30. The facing portion 30 is, for example, a silicon substrate, and the fixed electrode is formed by sputtering or plating a conductive metal material on the surface 30a of the facing portion 30 via an insulating layer.
 また、可動部2の表面(下面)2cには、対向部30に形成された固定電極に対面する可動電極(図示しない)が絶縁層を介してスパッタやメッキ工程で形成されている。あるいは、可動部2が、低抵抗シリコン基板などの導電性材料で形成されている場合には、可動部2それ自体を可動電極として使用することも可能である。 Further, on the surface (lower surface) 2c of the movable part 2, a movable electrode (not shown) facing the fixed electrode formed on the facing part 30 is formed by a sputtering or plating process through an insulating layer. Alternatively, when the movable portion 2 is formed of a conductive material such as a low resistance silicon substrate, the movable portion 2 itself can be used as a movable electrode.
 この物理量センサ1は、外部から力(加速度等)が作用していないときに、各ばね部の弾性復元力により、図5、図8(a)に示すように、全ての部分の表面が同一平面となった状態を維持している。 In the physical quantity sensor 1, when no force (acceleration or the like) is applied from the outside, the surface of all parts is the same as shown in FIGS. 5 and 8A due to the elastic restoring force of each spring part. The flat surface is maintained.
 物理量センサ1に外部から例えば加速度が与えられると、加速度は、可動部2及び各アンカ部5~7に作用する。このとき、可動部2は慣性力によって絶対空間内で留まろうとし、その結果、各アンカ部5~7に対して可動部2が加速度の作用方向と逆の方向へ相対的に移動する。 When acceleration is applied to the physical quantity sensor 1 from the outside, for example, the acceleration acts on the movable portion 2 and the anchor portions 5 to 7. At this time, the movable part 2 tries to stay in the absolute space due to the inertial force, and as a result, the movable part 2 moves relative to each of the anchor parts 5 to 7 in a direction opposite to the direction in which the acceleration acts.
 図6及び図8(b)は、アンカ部5~7、固定部10及び対向部30に対して下向きの加速度が作用したときの動作を示している。このとき、可動部2は慣性力により図5及び図8(a)の静止状態の位置から上方向へ向けて変位すべく、第1支持部3が支点連結部12a、12bを中心に高さ方向に回動し、第4支持部4が支点連結部13a,13bを中心として高さ方向に回動し、第2支持部14が支点連結部17aを中心として高さ方向に回動し、第3支持部15が支点連結部17bを中心として高さ方向に回動する。図4等に示すように、各支持部3,4,14,15の左右方向(Y)への幅寸法は、第1ばね部の幅よりも十分に大きく、各支持部3,4,14,15の剛性は高い。このため、可動部2が高さ方向へ変位する際、各支持部3,4,14,15自体が例えば曲がったり捩れたりはほとんどせず、各支持部3,4,14,15は略直方体形状を保ちながら適切に回動動作する。一方、この回動動作時、各連結部11a,11b,16a,16b及び支点連結部12a,12b,13a,13b、17a,17bに設けられた第1ばね部及び第3ばね部は捩れ変形する。さらに、図4、図6、図8(b)に示すように、第2支持部14の後端部14aと第1支持部3の第1連結腕3aの後端部3cとの間が第5ばね部により連結され、第3支持部15の後端部15aと第4支持部4の第1連結腕4aの後端部4cとの間が第5ばね部により連結されている。よって、図6、図8(b)に示すように可動部2が高さ方向へ変位したときに、各支持部14,15の後端部14a,15aと各支持部(連結腕)3,4(3a,4a)の後端部3c,4cの高さ位置がばらつくのを抑制できる。 FIG. 6 and FIG. 8B show the operation when downward acceleration is applied to the anchor portions 5 to 7, the fixed portion 10, and the facing portion 30. At this time, the movable portion 2 has a height about the fulcrum coupling portions 12a and 12b so that the movable portion 2 is displaced upward from the stationary position of FIGS. 5 and 8A due to inertial force. The fourth support portion 4 rotates in the height direction around the fulcrum connecting portions 13a and 13b, the second support portion 14 rotates in the height direction around the fulcrum connecting portion 17a, The 3rd support part 15 rotates to a height direction centering | focusing on the fulcrum connection part 17b. As shown in FIG. 4 etc., the width dimension in the left-right direction (Y) of each support part 3, 4, 14, 15 is sufficiently larger than the width of the first spring part, and each support part 3, 4, 14 , 15 has high rigidity. For this reason, when the movable part 2 is displaced in the height direction, the support parts 3, 4, 14, and 15 themselves are hardly bent or twisted, for example, and the support parts 3, 4, 14, and 15 are substantially rectangular parallelepipeds. It rotates properly while maintaining its shape. On the other hand, the first spring portion and the third spring portion provided in each of the connecting portions 11a, 11b, 16a, 16b and the fulcrum connecting portions 12a, 12b, 13a, 13b, 17a, 17b are torsionally deformed during the rotating operation. . Further, as shown in FIGS. 4, 6, and 8 (b), there is a gap between the rear end portion 14 a of the second support portion 14 and the rear end portion 3 c of the first connecting arm 3 a of the first support portion 3. The fifth spring portion is connected to the rear end portion 15a of the third support portion 15 and the rear end portion 4c of the first connection arm 4a of the fourth support portion 4 by the fifth spring portion. Therefore, as shown in FIGS. 6 and 8B, when the movable portion 2 is displaced in the height direction, the rear end portions 14a and 15a of the support portions 14 and 15 and the support portions (connecting arms) 3, respectively. 4 (3a, 4a) can prevent the rear end portions 3c, 4c from varying in height.
 本実施形態の可動部2の支持機構により可動部2を高さ方向に安定して平行移動させることが出来る。 The movable part 2 can be stably translated in the height direction by the support mechanism of the movable part 2 of the present embodiment.
 また図6及び図8(b)に示すように、第1支持部3が支点連結部12a,12bを中心として高さ方向に回動し、第4支持部4が支点連結部13a,13bを中心として高さ方向に回動したときに、第1連結腕3a,4aの先端部は上方に向けて変位し、一方、脚部3b,4bの先端部は下方に変位する。図6、図8(b)に示すように、脚部3b,4bの先端部31,32がアンカ部5~7の位置よりも下方に向けて突出する。 Further, as shown in FIGS. 6 and 8B, the first support portion 3 rotates in the height direction around the fulcrum connection portions 12a and 12b, and the fourth support portion 4 moves the fulcrum connection portions 13a and 13b. When pivoting in the height direction as the center, the distal ends of the first connecting arms 3a, 4a are displaced upward, while the distal ends of the legs 3b, 4b are displaced downward. As shown in FIGS. 6 and 8 (b), the tip portions 31 and 32 of the leg portions 3b and 4b protrude downward from the positions of the anchor portions 5 to 7, respectively.
 さらに加速度が加わって可動部2が上方へ変位すると、第1支持部3及び第4支持部4の更なる回動動作により、脚部3b,4bの先端部31,32のアンカ部5~7からの突出量がさらに大きくなる(図7、図8(c)参照)。このとき可動部2が固定部10の表面10aに当接するよりも先に、図8(c)に示すように脚部3b,4bの先端部31,32が対向部30の表面(ストッパ面)30aに当接し、可動部2が図8(c)の状態よりもさらに上方に変位できなくなり、可動部2の変位が抑制される。このように脚部3b,4bと対向部30の表面(ストッパ面)30aとで可動部2の変位を抑制するストッパ機構が構成されている。 When the acceleration is further applied and the movable portion 2 is displaced upward, the anchor portions 5 to 7 of the tip portions 31 and 32 of the leg portions 3b and 4b are moved by the further rotation of the first support portion 3 and the fourth support portion 4. The amount of protrusion from the lens becomes even larger (see FIGS. 7 and 8 (c)). At this time, before the movable part 2 comes into contact with the surface 10a of the fixed part 10, as shown in FIG. 8C, the tip parts 31 and 32 of the leg parts 3b and 4b are the surface (stopper surface) of the facing part 30. Abutting on 30a, the movable part 2 cannot be displaced further upward than the state of FIG. 8C, and the displacement of the movable part 2 is suppressed. In this way, the leg portions 3b, 4b and the surface (stopper surface) 30a of the facing portion 30 constitute a stopper mechanism that suppresses the displacement of the movable portion 2.
 このように本実施形態では、可動部2の変位方向とは逆方向に変位する脚部3b,4bを設け、可動部2の変位を抑制するストッパ機構を設けたことで、可動部2に強い物理量が作用したり、物理量が長時間にわたって作用した場合でも、各連結部に対する負担や損傷を低減できる。また可動部2が固定部10の表面10aに当接するよりも先に上記のストッパ機構により可能部2の高さ方向への変位が抑制されるため、可動部2が固定部10に衝突する等の不具合を防止することが出来る。 As described above, in this embodiment, the leg portions 3b and 4b that are displaced in the direction opposite to the displacement direction of the movable portion 2 are provided, and the stopper mechanism that suppresses the displacement of the movable portion 2 is provided. Even when a physical quantity acts or when a physical quantity acts for a long time, it is possible to reduce the burden and damage to each connecting portion. In addition, since the displacement of the movable portion 2 in the height direction is suppressed by the stopper mechanism before the movable portion 2 comes into contact with the surface 10a of the fixed portion 10, the movable portion 2 collides with the fixed portion 10. Can be prevented.
 また本実施形態では、脚部3b,4bの先端部31,32が図8(c)に示すように対向部30の表面30aに線接触あるいは点接触で当接する。したがって、面接触の場合に比べてより効果的に耐スティッキング性を向上させることができる。ただし図11に示すように脚部3b,4bの先端部31,32の角部31a,32a(先端面31b,32bと下面(対向部との対向面)31c,32cとが交わる部分)を凸型のR状とすることで、脚部3b,4bあるいは対向部30の表面30aに設けられた突起部35に対する損傷を抑制することができ好適である。 Further, in this embodiment, the tip portions 31 and 32 of the leg portions 3b and 4b abut on the surface 30a of the facing portion 30 by line contact or point contact as shown in FIG. 8C. Therefore, the sticking resistance can be improved more effectively than in the case of surface contact. However, as shown in FIG. 11, the corners 31a and 32a of the tip portions 31 and 32 of the leg portions 3b and 4b (portions where the tip surfaces 31b and 32b and the lower surfaces (opposite surfaces facing the opposing portions) 31c and 32c intersect) are convex. The R shape of the mold is preferable because it can suppress damage to the protrusions 35 provided on the leg portions 3b, 4b or the surface 30a of the facing portion 30.
 また本実施形態では、物理量センサ1の小型化を促進でき且つ薄型化を実現できる。すなわち脚部3b,4bを有する支持部3,4をシリコン基板の厚さ範囲内で形成でき、また図8(a)の静止状態での可動部2と対向部30との間の間隔T2を狭小化することで物理量センサ1の薄型化を実現できる。なお、可動部2と対向部30との間の間隔T2を狭小化しても、脚部3b,4bの前後方向(X)の長さ寸法を調整することで、可動部2が所定量、変位できるように調整でき、所定のセンサ感度を保つことができる。また図11に示すように、対向部30の表面30aに突起部35(例えば固定電極として機能させることも出来る)が設けられ、この突起部35の表面(この表面がストッパ面となる)に脚部3b,4bの先端部31,32が当接する形態では、突起部35の厚さ寸法も加味して、可動部2と対向部30との間の間隔T2や、脚部3b,4bの前後方向(X)の長さ寸法を調整する。 In this embodiment, the physical quantity sensor 1 can be reduced in size and can be reduced in thickness. That is, the support portions 3 and 4 having the leg portions 3b and 4b can be formed within the thickness range of the silicon substrate, and the interval T2 between the movable portion 2 and the facing portion 30 in the stationary state of FIG. The physical quantity sensor 1 can be reduced in thickness by being narrowed. Even if the interval T2 between the movable portion 2 and the facing portion 30 is narrowed, the movable portion 2 is displaced by a predetermined amount by adjusting the length dimension in the front-rear direction (X) of the leg portions 3b and 4b. It is possible to adjust so that the predetermined sensor sensitivity can be maintained. Further, as shown in FIG. 11, a projection 35 (for example, can function as a fixed electrode) is provided on the surface 30a of the facing portion 30, and a leg is provided on the surface of this projection 35 (this surface serves as a stopper surface). In the form in which the tip portions 31 and 32 of the portions 3b and 4b abut, the distance T2 between the movable portion 2 and the facing portion 30 and the front and rear of the leg portions 3b and 4b are also taken into account in consideration of the thickness dimension of the protruding portion 35. Adjust the length dimension in direction (X).
 図11では、突起部35が脚部3b,4bの先端部31,32と当接する位置にあるが、突起部35は可動部2と高さ方向で対向する位置に設けられることが必要であり、図11と違って、突起部35が脚部3b,4bの先端部31,32と当接しない位置にあってもよい。かかる場合、脚部3b,4bの先端部31,32は対向部30の表面30aに当接することとなる。 In FIG. 11, the protrusion 35 is in a position where it abuts against the tip portions 31, 32 of the legs 3 b, 4 b, but the protrusion 35 needs to be provided at a position facing the movable part 2 in the height direction. Unlike FIG. 11, the protrusion 35 may be in a position where it does not contact the tip portions 31 and 32 of the legs 3b and 4b. In such a case, the tip portions 31 and 32 of the leg portions 3 b and 4 b come into contact with the surface 30 a of the facing portion 30.
 なお図8に示す実施形態の物理量センサ1は、物理量の作用により、可動部2がアンカ部5~7よりも上方に変位するように設置されているが、物理量の作用により可動部2がアンカ部5~7よりも下方に変位する場合には、本実施形態の物理量センサ1を図8(a)の状態から上下反転させて使用すればよい。また、物理量の作用により可動部2がアンカ部5~7の上下方向に変位するような場合は、図8(a)の静止状態にて可動部2と固定部10の表面10aとの間の間隔T1を、可動部2と対向部30の表面30aとの間の間隔T2と同程度に狭小化するか、あるいは、対向部30の表面30aに突起(図示しない)等を設けて、可動部2が下方に変位した場合でも、可動部2が直接、対向部30の表面30aに当接しないように構成するとよい。 The physical quantity sensor 1 of the embodiment shown in FIG. 8 is installed so that the movable part 2 is displaced above the anchor parts 5 to 7 by the action of the physical quantity, but the movable part 2 is anchored by the action of the physical quantity. In the case of displacement below the parts 5 to 7, the physical quantity sensor 1 of the present embodiment may be used by turning it upside down from the state of FIG. Further, when the movable part 2 is displaced in the vertical direction of the anchor parts 5 to 7 by the action of the physical quantity, the movable part 2 and the surface 10a of the fixed part 10 are stationary in the stationary state of FIG. The interval T1 is narrowed to the same extent as the interval T2 between the movable portion 2 and the surface 30a of the facing portion 30, or a protrusion (not shown) or the like is provided on the surface 30a of the facing portion 30 to move the movable portion. Even when 2 is displaced downward, the movable portion 2 may be configured not to directly contact the surface 30 a of the facing portion 30.
 なお、加速度が小さい場合は、脚部3b,4bは、対向部30の表面(ストッパ面)30aに当接しない。脚部3b,4bは、可動部2がある所定以上に変位するのを抑制するためのものであり、物理量が生じたときに脚部3b,4bが必ず、対向部30の表面(ストッパ面)30aに当接するわけではない。 When the acceleration is small, the leg portions 3b and 4b do not come into contact with the surface (stopper surface) 30a of the facing portion 30. The leg portions 3b and 4b are for suppressing the movable portion 2 from being displaced more than a predetermined amount. When a physical quantity is generated, the leg portions 3b and 4b are always on the surface (stopper surface) of the facing portion 30. It does not contact 30a.
 図4に示す実施形態においても可動部2は、各支持部3,4,14,15の内側に設けられる内側可動部2aと、前記内側可動部2aと一体となって、各支持部3,4,14、15の外側に設けられる外側可動部2bとで構成される。外側可動部2bは枠体状で形成されている。これにより、可動部2の剛性を高めることができ、また検知部の可動電極の面積を広げることができ、検出精度及び信頼性に優れた物理量センサ1を製造できる。 Also in the embodiment shown in FIG. 4, the movable portion 2 includes an inner movable portion 2 a provided inside each of the support portions 3, 4, 14, and 15, and the inner movable portion 2 a integrally with each support portion 3. 4, 14, 15 and the outer movable part 2 b provided outside. The outer movable part 2b is formed in a frame shape. Thereby, the rigidity of the movable part 2 can be increased, the area of the movable electrode of the detection part can be increased, and the physical quantity sensor 1 excellent in detection accuracy and reliability can be manufactured.
 また、図4に示す実施形態では、中央アンカ部5と、左側アンカ部6と、右側アンカ部7とが設けられている。そして、各アンカ部5~7の中心が左右方向(Y)に延びる横中心線Ox上に配置されている。このため各支点連結部12a,12b,13a,13b,17a,17bが横中心線Oxから前後方向に大きく離れていない。これにより、例えば、各アンカ部5~7を固定支持する固定部10に熱による歪みや外力による歪みが生じたときでも、各支点連結部12a,12b,13a,13b,17a,17bが上下に大きく動くのを抑えることが出来る。そのため、可動部2が加速度等が作用していない中立姿勢から上下方向にずれるのを抑制でき、オフセットノイズ(前記中立姿勢からのずれに基づく出力)を低減することが出来る。 Further, in the embodiment shown in FIG. 4, a central anchor portion 5, a left anchor portion 6, and a right anchor portion 7 are provided. The centers of the anchor portions 5 to 7 are arranged on the horizontal center line Ox extending in the left-right direction (Y). For this reason, each fulcrum connection part 12a, 12b, 13a, 13b, 17a, 17b is not greatly separated in the front-back direction from the horizontal center line Ox. As a result, for example, even when distortion due to heat or distortion due to external force occurs in the fixing portion 10 that fixes and supports the anchor portions 5 to 7, the fulcrum coupling portions 12a, 12b, 13a, 13b, 17a, and 17b are moved up and down. It can suppress a large movement. Therefore, it is possible to suppress the movable unit 2 from shifting vertically from a neutral posture in which no acceleration or the like is applied, and offset noise (output based on a deviation from the neutral posture) can be reduced.
 また図4に示す実施形態では、左側アンカ部6と右側アンカ部7のみならず中央アンカ部5を設け、第1支持部3を左側アンカ部6及び中央アンカ部5の双方に連結し、第4支持部4を右側アンカ部7及び中央アンカ部5の双方に連結している。図4に示す実施形態では、可動部2と各支持部間を連結する第1ばね部と、各アンカ部と各支持部間を連結する第3ばね部との総数が10本である。このようにアンカ部5~7を3つ設け、更にばね部の配置及び本数を調整することで、より効果的に検出方向(高さ方向)以外の振動を抑制でき、可動部2の検出方向以外の動作を抑制できる。したがって、図4に示す物理量センサ1では、より効果的に検出精度及び信頼性(破壊耐性)を向上させることができる。 In the embodiment shown in FIG. 4, not only the left anchor portion 6 and the right anchor portion 7 but also the central anchor portion 5 is provided, the first support portion 3 is connected to both the left anchor portion 6 and the central anchor portion 5, 4 The support part 4 is connected to both the right anchor part 7 and the center anchor part 5. In the embodiment shown in FIG. 4, the total number of the first spring part that connects the movable part 2 and each support part and the third spring part that connects each anchor part and each support part is ten. By providing three anchor portions 5 to 7 and adjusting the arrangement and number of spring portions in this way, vibrations other than the detection direction (height direction) can be more effectively suppressed, and the detection direction of the movable portion 2 can be suppressed. Operations other than can be suppressed. Therefore, the physical quantity sensor 1 shown in FIG. 4 can improve the detection accuracy and reliability (destructive resistance) more effectively.
 すなわち図12に示すようにアンカ部を、左側アンカ部6と右側アンカ部7だけにし、中央アンカ部5を省略することも出来るが、以下の表1に示すように、図12のように中央アンカ部5を省略した物理量センサでは、図4のように、左側アンカ部6及び右側アンカ部7と、さらに中央アンカ部5を設けた実施形態に比べて、高さ方向(Z)での固有振動数と、左右方向(Y)での固有振動数が接近しやすくなる。したがって図4に示す実施形態のほうが図12に示す実施形態よりも検出方向以外の振動を効果的に抑制でき、検出方向以外の可動部2の動作を抑制することが出来る。 That is, as shown in FIG. 12, the anchor portion can be only the left anchor portion 6 and the right anchor portion 7 and the central anchor portion 5 can be omitted. However, as shown in Table 1 below, as shown in FIG. In the physical quantity sensor in which the anchor portion 5 is omitted, as shown in FIG. 4, as compared with the embodiment in which the left anchor portion 6 and the right anchor portion 7 and the central anchor portion 5 are further provided, the physical quantity sensor is unique in the height direction (Z). The frequency and the natural frequency in the left-right direction (Y) can be easily approached. Therefore, the embodiment shown in FIG. 4 can effectively suppress vibrations other than the detection direction and the operation of the movable part 2 other than the detection direction can be suppressed more than the embodiment shown in FIG.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 図13に示す物理量センサ80は図3に示す物理量センサ70をより具体化した平面図である。図13において図3と同じ符号は図3と同じ部分を示している。 The physical quantity sensor 80 shown in FIG. 13 is a more specific plan view of the physical quantity sensor 70 shown in FIG. 13, the same reference numerals as those in FIG. 3 denote the same parts as those in FIG.
 すなわち図13に示す物理量センサ80は、高さ方向に対して逆方向に変位する第1可動部71と第2可動部72とを備えている。 That is, the physical quantity sensor 80 shown in FIG. 13 includes a first movable portion 71 and a second movable portion 72 that are displaced in the direction opposite to the height direction.
 図13に示す物理量センサ80は、第1支持部44の後端部44aと、左側アンカ部41よりも後方(X2)に延びる位置での第2支持部73の後端部73bとが第5ばね部81を介して連結されている。 In the physical quantity sensor 80 shown in FIG. 13, the rear end portion 44a of the first support portion 44 and the rear end portion 73b of the second support portion 73 at a position extending rearward (X2) from the left anchor portion 41 are fifth. It is connected via a spring part 81.
 また図13に示す物理量センサ80は、右側アンカ部42よりも前方(X1)に延びる位置での第3支持部76の後端部76bと第4支持部50の後端部50aとが第5ばね部82を介して連結されている。 Further, in the physical quantity sensor 80 shown in FIG. 13, the rear end portion 76b of the third support portion 76 and the rear end portion 50a of the fourth support portion 50 at a position extending forward (X1) from the right anchor portion 42 are fifth. It is connected via a spring part 82.
 また図13では、第2支持部73の左側アンカ部41よりも前方(X1)に延びる連結腕73aは、第2可動部72の外周の約半分を囲むように形成されており、また第3支持部76の右側アンカ部42よりも後方(X2)に延びる連結腕76aは、第2可動部72の外周の残り約半分を囲むように形成されている。 In FIG. 13, the connecting arm 73a extending forward (X1) from the left anchor portion 41 of the second support portion 73 is formed so as to surround approximately half of the outer periphery of the second movable portion 72, and the third A connecting arm 76a extending rearward (X2) from the right anchor portion 42 of the support portion 76 is formed so as to surround the remaining half of the outer periphery of the second movable portion 72.
 そして図13に示すように、連結腕73a,76a同士が2箇所でばね部85,86を介して連結されている。 Then, as shown in FIG. 13, the connecting arms 73a and 76a are connected to each other through spring portions 85 and 86 at two places.
 図13に示す物理量センサ80は、アンカ部41,42が2つで、第1ばね部52~55と第3ばね部43,74,77,49との総数が8本である。これは図12と同じ構成である。 The physical quantity sensor 80 shown in FIG. 13 has two anchor portions 41 and 42, and the total number of the first spring portions 52 to 55 and the third spring portions 43, 74, 77, and 49 is eight. This is the same configuration as FIG.
 一方、図4に示す物理量センサ1は、アンカ部5~7が3つで、第1ばね部と第3ばね部との総数が10本である。 On the other hand, the physical quantity sensor 1 shown in FIG. 4 has three anchor portions 5 to 7, and the total number of first and third spring portions is ten.
 図17は、図4の物理量センサ1と図13の物理量センサ80との検出モード、縦振動モード、及び回転モードの各固有振動数を調べた結果である。検出モードは高さ方向の振動モードであり、縦振動モードはX1-X2方向の振動モードであり、回転モードとは、物理量センサの中心位置を回転軸としたときの振動モードである。 FIG. 17 shows the result of examining the natural frequency of the detection mode, the longitudinal vibration mode, and the rotation mode of the physical quantity sensor 1 of FIG. 4 and the physical quantity sensor 80 of FIG. The detection mode is a vibration mode in the height direction, the longitudinal vibration mode is a vibration mode in the X1-X2 direction, and the rotation mode is a vibration mode when the center position of the physical quantity sensor is the rotation axis.
 図17に示すように、図4の物理量センサ1では、図13の物理量センサ80に比べて縦振動モード及び回転モードの各固有振動数が大きくなり、且つ検出モードの固有振動数との差が大きくなることがわかった。したがって図4に示す物理量センサ1は図13に示す物理量センサ80に比べて可動部2が検出方向以外の振動を受けづらく、動作安定性を向上させることができ、検出精度及び信頼性に優れた物理量センサを製造できることがわかった。 As shown in FIG. 17, in the physical quantity sensor 1 in FIG. 4, the natural frequencies in the longitudinal vibration mode and the rotation mode are larger than in the physical quantity sensor 80 in FIG. 13, and the difference from the natural frequency in the detection mode is different. It turns out that it grows. Therefore, the physical quantity sensor 1 shown in FIG. 4 is less susceptible to vibrations in directions other than the detection direction as compared with the physical quantity sensor 80 shown in FIG. 13, can improve operational stability, and has excellent detection accuracy and reliability. It was found that a physical quantity sensor can be manufactured.
 以上によりアンカ部の数は2つより3つ以上とすることが好ましく、また可動部に接続される第1ばね部及びアンカ部に接続される第3ばね部の総数を10本以上とすることが、検出方向以外の振動をより効果的に抑制できて好適である。 Accordingly, the number of anchor portions is preferably three or more than two, and the total number of first spring portions connected to the movable portion and third spring portions connected to the anchor portions is 10 or more. However, it is preferable because vibrations other than the detection direction can be more effectively suppressed.
 図14に示す物理量センサ90は、図4に示す物理量センサ1の好ましい変形例である。図14において図4と同じ符号は図4と同じ部分を示している。 A physical quantity sensor 90 shown in FIG. 14 is a preferred modification of the physical quantity sensor 1 shown in FIG. 14, the same reference numerals as those in FIG. 4 denote the same parts as those in FIG.
 図14に示す物理量センサ90には、各支持部3,4,14,15の内側可動部2aに接続される第1ばね部91~94のほかに、外側可動部2bに接続される第2ばね部95~98が設けられ、各支持部2,4,14,15の両側に設けられた第1ばね部と第2ばね部とはY1-Y2方向にて対向配置されている。 The physical quantity sensor 90 shown in FIG. 14 includes a second spring connected to the outer movable portion 2b in addition to the first spring portions 91 to 94 connected to the inner movable portion 2a of the support portions 3, 4, 14, and 15. Spring portions 95 to 98 are provided, and the first spring portion and the second spring portion provided on both sides of each of the support portions 2, 4, 14, and 15 are arranged to face each other in the Y1-Y2 direction.
 図14に示す実施形態は図2でも説明したように、検出方向以外の振動をより効果的に抑制でき、特にY1-Y2方向の横振動をより効果的に抑制できる。 14, the embodiment shown in FIG. 2 can more effectively suppress vibrations other than the detection direction, and in particular can more effectively suppress lateral vibrations in the Y1-Y2 direction.
 図14に示す実施形態では、アンカ部の数が3つで、各支持部と接続される第1ばね部及び第2ばね部と、各アンカ部に接続される第3ばね部との総数が14本である。 In the embodiment shown in FIG. 14, the number of anchor portions is three, and the total number of first and second spring portions connected to each support portion and third spring portions connected to each anchor portion is as follows. 14
 図15に示す物理量センサには図14と異なって第2ばね部95~98が設けられていないが、左側アンカ部6及び右側アンカ部7と各支持部3,4,14,15間を連結する第3ばね部の数を増やしている。 Unlike the FIG. 14, the physical quantity sensor shown in FIG. 15 is not provided with the second spring portions 95 to 98, but the left anchor portion 6 and the right anchor portion 7 are connected to the support portions 3, 4, 14, and 15. The number of third spring portions to be increased is increased.
 図15に示す実施形態では、図4や図14異なって第3ばね部111~118は全部で8本であり、左側アンカ部6と第2支持部14とがY1-Y2方向に間隔を空けて並設された2本の第3ばね部112,113により連結されている。また右側アンカ部7と第3支持部15とがY1-Y2方向に間隔を空けて並設された2本の第3ばね部116,117により連結されている。 In the embodiment shown in FIG. 15, there are a total of eight third spring portions 111 to 118 unlike FIG. 4 and FIG. 14, and the left anchor portion 6 and the second support portion 14 are spaced apart in the Y1-Y2 direction. Are connected by two third spring portions 112 and 113 arranged side by side. Further, the right anchor portion 7 and the third support portion 15 are connected by two third spring portions 116 and 117 arranged in parallel with a space in the Y1-Y2 direction.
 図15において、左側アンカ部6と第1支持部3との間、及び右側アンカ部7と第4支持部4との間に、Y1-Y2方向に間隔を空けて並設された複数の第3ばね部112,113を介在させることも出来る。 In FIG. 15, a plurality of second lines arranged in parallel in the Y1-Y2 direction between the left anchor portion 6 and the first support portion 3 and between the right anchor portion 7 and the fourth support portion 4 are arranged. Three spring portions 112 and 113 can also be interposed.
 ただし、図15に示すようにクランク状で形成された第2支持部14と左側アンカ部6との間、及びクランク状で形成された第3支持部15と右側アンカ部7との間に複数の第3ばね部を設けることが、ばね部の配置のバランスがよくなり、可動部2を適切に高さ方向へ平行移動させやすい。また、検出方向以外の振動の発生を効果的に抑制することが出来る。 However, as shown in FIG. 15, there are a plurality of portions between the second support portion 14 and the left anchor portion 6 formed in a crank shape, and between the third support portion 15 and the right anchor portion 7 formed in a crank shape. Providing the third spring part improves the balance of the arrangement of the spring parts and facilitates the movable part 2 to be appropriately translated in the height direction. Further, it is possible to effectively suppress the occurrence of vibrations other than the detection direction.
 図15に示す実施形態では、アンカ部の数が3つで、各支持部と接続される第1ばね部91~94と、各アンカ部5~7に接続される第3ばね部111~118との総数が12本である。 In the embodiment shown in FIG. 15, the number of anchor portions is three, the first spring portions 91 to 94 connected to the support portions, and the third spring portions 111 to 118 connected to the anchor portions 5 to 7. And the total number is 12.
 図16に示す物理量センサ99は、図15の構成に図14の構成を組み合わせたものであり、すなわち図15の各支持部の先端部と外側可動部2bとの間に第2ばね部95~98を設けている。 The physical quantity sensor 99 shown in FIG. 16 is a combination of the configuration shown in FIG. 15 with the configuration shown in FIG. 15, that is, the second spring portions 95 to 95 between the distal end portion of each support portion and the outer movable portion 2b shown in FIG. 98 is provided.
 図16に示す実施形態では、アンカ部の数が3つで、各支持部と接続される第1ばね部91~94及び第2ばね部95~98と、各アンカ部5~7に接続される第3ばね部111~118との総数が16本である。 In the embodiment shown in FIG. 16, the number of anchor portions is three, and the first spring portions 91 to 94 and the second spring portions 95 to 98 connected to the support portions and the anchor portions 5 to 7 are connected. The total number of the third spring portions 111 to 118 is 16.
 図15のように、アンカ部5~7に接続される第3ばね部111~118の数を増やし、さらに加えて図16のように、外側可動部2bと各支持部間を連結する第2ばね部95~98を設けることで、より効果的に、検出方向以外の振動を抑制でき、可動部2の運動安定性を向上させることができ、検出精度及び信頼性(破壊耐性)に優れた物理量センサを製造できる。 As shown in FIG. 15, the number of the third spring portions 111 to 118 connected to the anchor portions 5 to 7 is increased, and in addition, as shown in FIG. 16, the second movable portion 2b is connected to each support portion. By providing the spring portions 95 to 98, vibrations other than the detection direction can be more effectively suppressed, the motion stability of the movable portion 2 can be improved, and the detection accuracy and reliability (breakage resistance) are excellent. A physical quantity sensor can be manufactured.
 上記の実施形態ではいずれも外側可動部が枠体状であったが、枠体状でなく、一部で分断され、外部可動部が複数存在する形態であってもよい。ただし外側可動部を枠体状で形成することで可動部の剛性をより効果的に高めることができ、また検知部としての可動電極の面積を大きくすることができる。 In any of the above-described embodiments, the outer movable portion has a frame shape. However, the outer movable portion may not be a frame shape, but may be partially divided and have a plurality of external movable portions. However, by forming the outer movable portion in a frame shape, the rigidity of the movable portion can be more effectively increased, and the area of the movable electrode as the detection portion can be increased.
 なお、本実施形態では、可動部2と、対向部30に設けられた固定電極との間の静電容量変化により、加速度等の物理量を検出することが可能であるが、検知部の構成は静電容量式に限定するものではない。ただし静電容量式としたことで簡単で且つ高精度な検知部の構成を実現できる。 In the present embodiment, it is possible to detect a physical quantity such as acceleration by a capacitance change between the movable part 2 and the fixed electrode provided in the facing part 30, but the configuration of the detection part is It is not limited to the capacitance type. However, since the capacitance type is used, a simple and highly accurate configuration of the detection unit can be realized.
 本実施形態は加速度センサのみならず角速度センサ、衝撃センサ等、物理量センサ全般に適用可能である。 This embodiment can be applied not only to acceleration sensors but also to general physical quantity sensors such as angular velocity sensors and impact sensors.
1、40、60、70、80、90、99 物理量センサ
2、51 可動部
2a、51a、71a 内側可動部
2b、51b、71b 外側可動部
3,4、44、46、48、50、73、76 支持部
3a,4a 第1連結腕
3b,4b 脚部
5 中央アンカ部
6、41 左側アンカ部
7、42 右側アンカ部
10 固定部
11a,11b,16a,16b,18a,18b,18c 連結部
12a,12b,13a,13b,17a,17b 支点連結部
14、15 支持部
20a、52~55、91~94 第1のばね部
20b~20e、43、45、47、49、74、77、111~118 第3ばね部
30 対向部
30a 対向部の表面(ストッパ面)
31,32 脚部の先端部
35 突起部
61~64、95~98 第2ばね部
71 第1可動部
72 第2可動部
1, 40, 60, 70, 80, 90, 99 Physical quantity sensor 2, 51 Movable part 2a, 51a, 71a Inner movable part 2b, 51b, 71b Outer movable part 3, 4, 44, 46, 48, 50, 73, 76 Supporting parts 3a, 4a First connecting arms 3b, 4b Leg part 5 Center anchor part 6, 41 Left anchor part 7, 42 Right anchor part 10 Fixed part 11a, 11b, 16a, 16b, 18a, 18b, 18c Connecting part 12a , 12b, 13a, 13b, 17a, 17b Support point connecting portions 14, 15 Support portions 20a, 52-55, 91-94 First spring portions 20b-20e, 43, 45, 47, 49, 74, 77, 111- 118 3rd spring part 30 Opposing part 30a Surface (stopper surface) of opposing part
31, 32 Leg tip 35 Projections 61 to 64, 95 to 98 Second spring portion 71 First movable portion 72 Second movable portion

Claims (11)

  1.  固定支持されるアンカ部と、高さ方向に変位する可動部と、前記アンカ部と前記可動部とに回動自在に連結された複数本の支持部と、前記可動部の変位を検知するための検知部と、前記支持部と前記アンカ部との間、及び前記支持部と前記可動部の間に介在する複数本のばね部と、を有しており、
     前記可動部は、前記支持部の内側にて第1ばね部を介して連結される内側可動部と、前記内側可動部と一体となり前記支持部の外側に位置する外側可動部とを有して構成されることを特徴とする物理量センサ。
    An anchor portion that is fixedly supported, a movable portion that is displaced in a height direction, a plurality of support portions that are pivotally connected to the anchor portion and the movable portion, and a displacement of the movable portion And a plurality of spring portions interposed between the support portion and the anchor portion, and between the support portion and the movable portion,
    The movable portion includes an inner movable portion that is coupled to the inner side of the support portion via a first spring portion, and an outer movable portion that is integrated with the inner movable portion and is positioned outside the support portion. A physical quantity sensor characterized by comprising.
  2.  前記外側可動部は枠体状で形成される請求項1記載の物理量センサ。 The physical quantity sensor according to claim 1, wherein the outer movable portion is formed in a frame shape.
  3.  前記外側可動部と前記支持部間が第2ばね部を介して連結されている請求項1又は2に記載の物理量センサ。 The physical quantity sensor according to claim 1 or 2, wherein the outer movable part and the support part are connected via a second spring part.
  4.  前記第1ばね部と前記第2ばね部とが前記支持部を介して対向した位置に設けられる請求項3記載の物理量センサ。 4. The physical quantity sensor according to claim 3, wherein the first spring part and the second spring part are provided at positions facing each other through the support part.
  5.  前記高さ方向に直交する平面内にて直交する2方向を左右方向(Y1-Y2)、及び前後方向(X1-X2方向)としたとき、
     前記内側可動部は、左方向(Y1)の前方(X1)、左方向(Y1)の後方(X2)、右方向(Y2)の前方(X1)、右方向(Y2)の後方(X2)の各位置で、前記第1ばね部を介して前記支持部に支持される請求項1ないし4のいずれか1項に記載の物理量センサ。
    When two directions orthogonal to each other in a plane orthogonal to the height direction are a left-right direction (Y1-Y2) and a front-rear direction (X1-X2 direction),
    The inner movable portion includes a front (X1) in the left direction (Y1), a rear (X2) in the left direction (Y1), a front (X1) in the right direction (Y2), and a rear (X2) in the right direction (Y2). 5. The physical quantity sensor according to claim 1, wherein the physical quantity sensor is supported by the support portion through the first spring portion at each position.
  6.  前記高さ方向に直交する平面内にて直交する2方向を左右方向(Y1-Y2)、及び前後方向(X1-X2方向)としたとき、
     前記アンカ部は、左右方向(Y)に間隔を空けて配置された左側アンカ部と、右側アンカ部とを有して構成され、
     前記左側アンカ部から第3ばね部を介して前方(X1)に向けて延びる第1支持部と、前記左側アンカ部から前記第3ばね部を介して後方(X2)に向けて延びる第2支持部と、前記右側アンカ部から前記第3ばね部を介して前方(X1)に向けて延びる第3支持部と、前記右側アンカ部から前記第3ばね部を介して後方(X2)に向けて延びる第4支持部と、を有し、
     各支持部の先端位置と前記内側可動部とが前記第1ばね部を介して連結されている請求項1ないし5のいずれか1項に記載の物理量センサ。
    When two directions orthogonal to each other in a plane orthogonal to the height direction are a left-right direction (Y1-Y2) and a front-rear direction (X1-X2 direction),
    The anchor portion is configured to include a left anchor portion and a right anchor portion that are spaced apart in the left-right direction (Y).
    A first support portion extending from the left anchor portion to the front (X1) via the third spring portion, and a second support extending from the left anchor portion to the rear (X2) via the third spring portion. A third support portion extending from the right anchor portion toward the front (X1) via the third spring portion, and from the right anchor portion toward the rear (X2) via the third spring portion. A fourth support portion extending,
    The physical quantity sensor according to any one of claims 1 to 5, wherein a tip position of each support portion and the inner movable portion are connected via the first spring portion.
  7.  各支持部の先端位置と前記外側可動部とが第2ばね部を介して連結され、各支持部を介して前記第1ばね部と前記第2ばね部とが対向した位置関係にある請求項6記載の物理量センサ。 The front end position of each support portion and the outer movable portion are coupled via a second spring portion, and the first spring portion and the second spring portion are in a positional relationship facing each other via each support portion. 6. The physical quantity sensor according to 6.
  8.  前記左側アンカ部と第1支持部の間、あるいは、前記左側アンカ部と第2支持部の間の少なくともいずれか一方には前記第3ばね部が複数個、設けられ、
     前記右側アンカ部と第3支持部の間、あるいは、前記右側アンカ部と第4支持部の間の少なくともいずれか一方には前記第3ばね部が複数個、設けられる請求項6又は7に記載の物理量センサ。
    A plurality of the third spring portions are provided between at least one of the left anchor portion and the first support portion or between the left anchor portion and the second support portion,
    The said 3rd spring part is provided with two or more between the said right anchor part and the 3rd support part, or at least any one between the said right anchor part and the 4th support part. Physical quantity sensor.
  9.  前記左側アンカ部と前記右側アンカ部の間には中央アンカ部が設けられ、
     前記第1支持部あるいは第2支持部は、前記左側アンカ部及び前記中央アンカ部の双方に連結されており、
     前記第4支持部あるいは第3支持部は、前記右側アンカ部及び前記中央アンカ部の双方に連結されている請求項6ないし8のいずれか1項に記載の物理量センサ。
    A central anchor portion is provided between the left anchor portion and the right anchor portion,
    The first support part or the second support part is connected to both the left anchor part and the central anchor part,
    The physical quantity sensor according to any one of claims 6 to 8, wherein the fourth support part or the third support part is connected to both the right anchor part and the central anchor part.
  10.  前記中央アンカ部、前記左側アンカ部及び前記右側アンカ部は、前記左右方向(Y)に延びる同一線上に配置されている請求項9記載の物理量センサ。 10. The physical quantity sensor according to claim 9, wherein the central anchor portion, the left anchor portion, and the right anchor portion are arranged on the same line extending in the left-right direction (Y).
  11.  前記第1支持部及び前記第4支持部、あるいは前記第2支持部及び前記第3支持部には、各支持部が回動して前記可動部が高さ方向に変位したときに前記可動部の変位方向に対し逆方向に変位して前記可動部の変位を抑制するための脚部が設けられている請求項6ないし10のいずれか1項に記載の物理量センサ。 In the first support part and the fourth support part, or the second support part and the third support part, the movable part is rotated when each support part is rotated and the movable part is displaced in the height direction. The physical quantity sensor according to claim 6, further comprising a leg portion that is displaced in a direction opposite to a displacement direction of the movable portion to suppress the displacement of the movable portion.
PCT/JP2010/059231 2009-06-03 2010-06-01 Physical quantity sensor WO2010140574A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2009133981 2009-06-03
JP2009-133981 2009-06-03
JP2009199145 2009-08-31
JP2009-199145 2009-08-31

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011518444A JP5089807B2 (en) 2009-06-03 2010-06-01 Physical quantity sensor

Publications (1)

Publication Number Publication Date
WO2010140574A1 true WO2010140574A1 (en) 2010-12-09

Family

ID=43297708

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/059231 WO2010140574A1 (en) 2009-06-03 2010-06-01 Physical quantity sensor

Country Status (2)

Country Link
JP (1) JP5089807B2 (en)
WO (1) WO2010140574A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013105591A1 (en) * 2012-01-11 2013-07-18 アルプス電気株式会社 Physical quantity sensor
JP2014219251A (en) * 2013-05-08 2014-11-20 アルプス電気株式会社 Mems device and method of manufacturing the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005534016A (en) * 2002-07-19 2005-11-10 アナログ・デバイスズ・インク Reduction of offset in accelerometer
JP2008139282A (en) * 2006-11-09 2008-06-19 Mitsubishi Electric Corp Acceleration sensor
WO2010001947A1 (en) * 2008-07-04 2010-01-07 アルプス電気株式会社 Capacitance detection type movable sensor

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0989927A (en) * 1995-09-28 1997-04-04 Zexel Corp Multi-axial acceleration sensor
JP4178192B2 (en) * 1998-04-22 2008-11-12 ミツミ電機株式会社 Physical quantity detection sensor
JP2000019198A (en) * 1998-06-29 2000-01-21 Zexel Corp Acceleration sensor
US6845670B1 (en) * 2003-07-08 2005-01-25 Freescale Semiconductor, Inc. Single proof mass, 3 axis MEMS transducer
JP5301767B2 (en) * 2006-06-13 2013-09-25 日立オートモティブシステムズ株式会社 Inertial sensor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005534016A (en) * 2002-07-19 2005-11-10 アナログ・デバイスズ・インク Reduction of offset in accelerometer
JP2008139282A (en) * 2006-11-09 2008-06-19 Mitsubishi Electric Corp Acceleration sensor
WO2010001947A1 (en) * 2008-07-04 2010-01-07 アルプス電気株式会社 Capacitance detection type movable sensor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013105591A1 (en) * 2012-01-11 2013-07-18 アルプス電気株式会社 Physical quantity sensor
JP2014219251A (en) * 2013-05-08 2014-11-20 アルプス電気株式会社 Mems device and method of manufacturing the same

Also Published As

Publication number Publication date
JP5089807B2 (en) 2012-12-05
JPWO2010140574A1 (en) 2012-11-22

Similar Documents

Publication Publication Date Title
JP5223003B2 (en) Physical quantity sensor
JP5175308B2 (en) Physical quantity sensor
JP5193300B2 (en) Capacitance detection type movable sensor
JP3863168B2 (en) Excitation contact detection sensor
JP5446187B2 (en) Vibrating piece and vibration type sensor
CN102428348B (en) Micromechanical sensor
TWI642616B (en) Microelectromechanical device with motion limiters
JP2007298385A (en) Electrostatic capacity sensor
JP2010503839A (en) Resonant beam accelerometer with rotating pivot lever arm
JP5089807B2 (en) Physical quantity sensor
JPWO2011111539A1 (en) Physical quantity sensor
JP5898571B2 (en) MEMS sensor
JP5081692B2 (en) Physical quantity sensor
JP6304402B2 (en) Improved gyroscope structure and gyroscope device
JP2010216842A (en) Dynamic quantity detection sensor
JP2012078121A (en) Physical quantity sensor
JP5872450B2 (en) MEMS structure
JP5747092B2 (en) Physical quantity sensor
WO2009099123A1 (en) Physical quantity sensor and method of manufacturing same
JP3127831U (en) probe
JP6175868B2 (en) MEMS equipment
JP6020341B2 (en) Capacitive physical quantity sensor and manufacturing method thereof
JP2010216837A (en) Sensor for detecting dynamic quantity
JP2014115081A (en) Physical quantity sensor
WO2015186740A1 (en) Mems structure

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10783357

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011518444

Country of ref document: JP

ENP Entry into the national phase in:

Ref document number: 2011518444

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase in:

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10783357

Country of ref document: EP

Kind code of ref document: A1