WO2010138194A2 - Immunomodulatory agent-polymeric compounds - Google Patents
Immunomodulatory agent-polymeric compounds Download PDFInfo
- Publication number
- WO2010138194A2 WO2010138194A2 PCT/US2010/001561 US2010001561W WO2010138194A2 WO 2010138194 A2 WO2010138194 A2 WO 2010138194A2 US 2010001561 W US2010001561 W US 2010001561W WO 2010138194 A2 WO2010138194 A2 WO 2010138194A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- compound
- substituted
- carbon atoms
- combined
- alkyl
- Prior art date
Links
- 0 *C(*)(*(*)(*)C(*)(*)C(O*)=O)C(Nc1c2nc(*)[n](*)c2*(*)c(*)n1)=O Chemical compound *C(*)(*(*)(*)C(*)(*)C(O*)=O)C(Nc1c2nc(*)[n](*)c2*(*)c(*)n1)=O 0.000 description 8
- JJTUDXZGHPGLLC-UHFFFAOYSA-N CC(C(OC1C)=O)OC1=O Chemical compound CC(C(OC1C)=O)OC1=O JJTUDXZGHPGLLC-UHFFFAOYSA-N 0.000 description 1
- NVNWHRIYBUUBAJ-UHFFFAOYSA-N CCOCc1nc(c(N)nc2ccccc22)c2[n]1CC(C)(C)NS(C)(=O)=O Chemical compound CCOCc1nc(c(N)nc2ccccc22)c2[n]1CC(C)(C)NS(C)(=O)=O NVNWHRIYBUUBAJ-UHFFFAOYSA-N 0.000 description 1
- BXNMTOQRYBFHNZ-UHFFFAOYSA-N CCOCc1nc(c(N)nc2ccccc22)c2[n]1CC(C)(C)O Chemical compound CCOCc1nc(c(N)nc2ccccc22)c2[n]1CC(C)(C)O BXNMTOQRYBFHNZ-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G63/00—Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
- C08G63/91—Polymers modified by chemical after-treatment
- C08G63/912—Polymers modified by chemical after-treatment derived from hydroxycarboxylic acids
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/39—Medicinal preparations containing antigens or antibodies characterised by the immunostimulating additives, e.g. chemical adjuvants
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D473/00—Heterocyclic compounds containing purine ring systems
- C07D473/26—Heterocyclic compounds containing purine ring systems with an oxygen, sulphur, or nitrogen atom directly attached in position 2 or 6, but not in both
- C07D473/32—Nitrogen atom
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/385—Haptens or antigens, bound to carriers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/435—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
- A61K31/4353—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom ortho- or peri-condensed with heterocyclic ring systems
- A61K31/437—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom ortho- or peri-condensed with heterocyclic ring systems the heterocyclic ring system containing a five-membered ring having nitrogen as a ring hetero atom, e.g. indolizine, beta-carboline
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/495—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
- A61K31/505—Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
- A61K31/519—Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim ortho- or peri-condensed with heterocyclic rings
- A61K31/52—Purines, e.g. adenine
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/495—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
- A61K31/505—Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
- A61K31/519—Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim ortho- or peri-condensed with heterocyclic rings
- A61K31/525—Isoalloxazines, e.g. riboflavins, vitamin B2
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/0005—Vertebrate antigens
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/0013—Therapeutic immunisation against small organic molecules, e.g. cocaine, nicotine
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/50—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
- A61K47/51—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
- A61K47/56—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule
- A61K47/58—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained by reactions only involving carbon-to-carbon unsaturated bonds, e.g. poly[meth]acrylate, polyacrylamide, polystyrene, polyvinylpyrrolidone, polyvinylalcohol or polystyrene sulfonic acid resin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/50—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
- A61K47/51—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
- A61K47/56—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule
- A61K47/59—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/50—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
- A61K47/51—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
- A61K47/56—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule
- A61K47/59—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes
- A61K47/593—Polyesters, e.g. PLGA or polylactide-co-glycolide
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/50—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
- A61K47/51—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
- A61K47/56—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule
- A61K47/59—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes
- A61K47/60—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes the organic macromolecular compound being a polyoxyalkylene oligomer, polymer or dendrimer, e.g. PEG, PPG, PEO or polyglycerol
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/50—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
- A61K47/51—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
- A61K47/62—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being a protein, peptide or polyamino acid
- A61K47/64—Drug-peptide, drug-protein or drug-polyamino acid conjugates, i.e. the modifying agent being a peptide, protein or polyamino acid which is covalently bonded or complexed to a therapeutically active agent
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/50—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
- A61K47/69—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
- A61K47/6921—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere
- A61K47/6925—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a microcapsule, nanocapsule, microbubble or nanobubble
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/50—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
- A61K47/69—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
- A61K47/6921—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere
- A61K47/6927—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores
- A61K47/6929—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores the form being a nanoparticle, e.g. an immuno-nanoparticle
- A61K47/6931—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores the form being a nanoparticle, e.g. an immuno-nanoparticle the material constituting the nanoparticle being a polymer
- A61K47/6935—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores the form being a nanoparticle, e.g. an immuno-nanoparticle the material constituting the nanoparticle being a polymer the polymer being obtained otherwise than by reactions involving carbon to carbon unsaturated bonds, e.g. polyesters, polyamides or polyglycerol
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/50—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
- A61K47/69—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
- A61K47/6921—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere
- A61K47/6927—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores
- A61K47/6929—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores the form being a nanoparticle, e.g. an immuno-nanoparticle
- A61K47/6931—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores the form being a nanoparticle, e.g. an immuno-nanoparticle the material constituting the nanoparticle being a polymer
- A61K47/6935—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores the form being a nanoparticle, e.g. an immuno-nanoparticle the material constituting the nanoparticle being a polymer the polymer being obtained otherwise than by reactions involving carbon to carbon unsaturated bonds, e.g. polyesters, polyamides or polyglycerol
- A61K47/6937—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores the form being a nanoparticle, e.g. an immuno-nanoparticle the material constituting the nanoparticle being a polymer the polymer being obtained otherwise than by reactions involving carbon to carbon unsaturated bonds, e.g. polyesters, polyamides or polyglycerol the polymer being PLGA, PLA or polyglycolic acid
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/48—Preparations in capsules, e.g. of gelatin, of chocolate
- A61K9/50—Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
- A61K9/51—Nanocapsules; Nanoparticles
- A61K9/5107—Excipients; Inactive ingredients
- A61K9/513—Organic macromolecular compounds; Dendrimers
- A61K9/5138—Organic macromolecular compounds; Dendrimers obtained by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyvinyl pyrrolidone, poly(meth)acrylates
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/28—Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/30—Drugs for disorders of the nervous system for treating abuse or dependence
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/30—Drugs for disorders of the nervous system for treating abuse or dependence
- A61P25/34—Tobacco-abuse
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P29/00—Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P3/00—Drugs for disorders of the metabolism
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
- A61P37/02—Immunomodulators
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
- A61P37/02—Immunomodulators
- A61P37/04—Immunostimulants
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P43/00—Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y5/00—Nanobiotechnology or nanomedicine, e.g. protein engineering or drug delivery
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D471/00—Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
- C07D471/02—Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
- C07D471/04—Ortho-condensed systems
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D473/00—Heterocyclic compounds containing purine ring systems
- C07D473/26—Heterocyclic compounds containing purine ring systems with an oxygen, sulphur, or nitrogen atom directly attached in position 2 or 6, but not in both
- C07D473/32—Nitrogen atom
- C07D473/34—Nitrogen atom attached in position 6, e.g. adenine
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G63/00—Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
- C08G63/02—Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
- C08G63/06—Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from hydroxycarboxylic acids
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G63/00—Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
- C08G63/02—Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
- C08G63/06—Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from hydroxycarboxylic acids
- C08G63/08—Lactones or lactides
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G64/00—Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
- C08G64/42—Chemical after-treatment
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J3/00—Processes of treating or compounding macromolecular substances
- C08J3/24—Crosslinking, e.g. vulcanising, of macromolecules
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/555—Medicinal preparations containing antigens or antibodies characterised by a specific combination antigen/adjuvant
- A61K2039/55511—Organic adjuvants
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/555—Medicinal preparations containing antigens or antibodies characterised by a specific combination antigen/adjuvant
- A61K2039/55511—Organic adjuvants
- A61K2039/55544—Bacterial toxins
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/555—Medicinal preparations containing antigens or antibodies characterised by a specific combination antigen/adjuvant
- A61K2039/55511—Organic adjuvants
- A61K2039/55555—Liposomes; Vesicles, e.g. nanoparticles; Spheres, e.g. nanospheres; Polymers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/555—Medicinal preparations containing antigens or antibodies characterised by a specific combination antigen/adjuvant
- A61K2039/55511—Organic adjuvants
- A61K2039/55561—CpG containing adjuvants; Oligonucleotide containing adjuvants
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/60—Medicinal preparations containing antigens or antibodies characteristics by the carrier linked to the antigen
- A61K2039/6093—Synthetic polymers, e.g. polyethyleneglycol [PEG], Polymers or copolymers of (D) glutamate and (D) lysine
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/62—Medicinal preparations containing antigens or antibodies characterised by the link between antigen and carrier
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/62—Medicinal preparations containing antigens or antibodies characterised by the link between antigen and carrier
- A61K2039/627—Medicinal preparations containing antigens or antibodies characterised by the link between antigen and carrier characterised by the linker
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2367/00—Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
- C08J2367/04—Polyesters derived from hydroxy carboxylic acids, e.g. lactones
Definitions
- This invention relates to compositions, and related compounds and methods, of conjugates of immunomodulatory agents and polymers or unit(s) thereof.
- the conjugates may be contained within synthetic nanocarriers, and the immunomodulatory agents may be released from the synthetic nanocarriers in a pH sensitive manner.
- Immunomodulatory agents are used to produce immune responses in subjects. It is at times advantageous to attach such agents to delivery vehicles.
- known attachment chemistries often require certain reactive groups, utilize certain activation steps for attachment to occur, and/or result in conjugates that do not exhibit optimal properties.
- the biodegradable polymer or unit thereof comprises a polyester, polycarbonate, or a polyamide, or unit thereof.
- the biodegradable polymer or unit thereof comprises poly(lactic acid), poly(glycolic acid), poly(lactic-co-glycolic acid), or polycaprolactone, or unit thereof.
- the present invention provides a compound that comprises a structure as in formula (II):
- Ri H, OH, SH, NH 2 , or substituted or unsubstituted alkyl, alkoxy, alkylthio, or alkylamino;
- R 2 H, alkyl, or substituted alkyl;
- Y N or C;
- R 4 is H, or substituted or unsubstituted alkyl, alkoxy, alkylthio, or alkylamino when not combined with R 3 to form a carbocycle or heterocycle with the carbon atoms of the pyridine ring to which they are connected; or is combined with R 3 to form a carbocycle or heterocycle with the carbon atoms of the pyridine ring to which they are connected;
- R 5 is a polymer or unit
- the polymer or unit thereof comprises a polyester, polycarbonate, polyamide, or a polyether, or unit thereof.
- the polymer or unit thereof comprises poly(lactic acid), poly(glycolic acid), poly(lactic-co-glycolic acid), polycaprolactone, or poly(ethylene glycol), or unit thereof.
- the polymer is biodegradable.
- Rj is H
- R 2 is isobutyl
- Y is C
- R 3 and R 4 are combined to form a benzene ring with the carbon atoms of the pyridine ring to which they are connected.
- Ri is ethoxymethyl
- R 2 is hydroxyisobutyl
- Y C
- R 3 and R 4 are combined to form a benzene ring with the carbon atoms of the pyridine ring to which they are connected.
- Ri is ethoxymethyl
- R 2 is methanesulfonamidoisobutyl
- Y C
- R 3 and R 4 are combined to form a benzene ring with the carbon atoms of the pyridine ring to which they are connected.
- Ri is OH
- R 2 is benzyl
- Y N
- R 3 is absent
- R 4 is butoxy.
- Y is N
- Ri is OH
- R 2 is benzyl
- R 3 is absent
- R 4 is butylamino
- Y is N
- Ri is OH
- R 2 is benzyl
- R 3 is absent
- R 4 is butoxy.
- Y is N, Ri is OH, R 2 is benzyl, R 3 is absent, and R 4 is benzylamino. In one embodiment, Y is N, Ri is OH, R 2 is benzyl, R 3 is absent, and R 4 is pentyl.
- composition further comprises a pharmaceutically acceptable excipient.
- a synthetic nanocarrier that comprises the compound having a formula (I) or (II).
- the synthetic nanocarrier further comprises a B cell antigen and/or a T cell antigen.
- the synthetic nanocarrier further comprises an antigen presenting cell (APC) targeting feature.
- the synthetic nanocarrier is a dendrimer, buckyball, nanowire, peptide or protein-based nanoparticle, nanoparticle that comprises a combination of nanomaterials, spheroidal nanoparticle, cubic nanoparticle, pyramidal nanoparticle, oblong nanoparticle, cylindrical nanoparticle, or toroidal nanoparticle.
- a composition is provided comprising a synthetic nanocarrier.
- the composition further comprises a pharmaceutically acceptable excipient.
- a composition comprising a vaccine comprising a compound of formula (I) or (II) is provided.
- a composition comprising a vaccine comprising a composition comprising a compound of formula (I) or (II) is provided.
- a composition comprising a vaccine comprising the synthetic nanocarrier comprising a compound of formula (I) or (II) is provided.
- a method comprises a administering to a subject any of the above described compounds, compositions, or synthetic nanocarrier is provided.
- an immune response is induced or enhanced in the subject following administering to a subject any of the above described compounds, compositions, or synthetic nanocarrier.
- R 1 H, OH, SH, NH 2 , or substituted or unsubstituted alkyl, alkoxy, alkylthio, or alkylamino
- R 2 H, alkyl, or substituted alkyl
- Y N or C
- R 4 is H, or substituted or unsubstituted alkyl, alkoxy, alkylthio, or alkylamino when not combined with R 3 to form a carbocycle or heterocycle with the carbon atoms of the pyridine ring to which they are connected; or is combined with R 3 to form a carbocycle or heterocycle with the carbon atoms of the pyridine ring to which they are connected
- Rg is a biodegradable polymer or unit
- the biodegradable polymer or unit thereof comprises a polyester, polycarbonate, or a polyamide, or unit thereof.
- the biodegradable polymer or unit thereof comprises poly(lactic acid), poly(glycolic acid), poly(lactic-co-glycolic acid), or polycaprolactone, or unit thereof.
- Ri H, OH, SH, NH 2 , or substituted or unsubstituted alkyl, alkoxy, alkylthio, or alkylamino
- R 2 H, alkyl, or substituted alkyl
- Y N or C
- R 4 is H, or substituted or unsubstituted alkyl, alkoxy, alkylthio, or alkylamino when not combined with R 3 to form a carbocycle or heterocycle with the carbon atoms of the pyridine ring to which they are connected; or is combined with R 3 to form a carbocycle or heterocycle with the carbon atoms of the pyridine ring to which they are connected
- R 5 is a polymer or unit thereof;
- Ri H, OH, SH, NH 2 , or substituted or unsubstituted alkyl, alkoxy, alkylthio, or alkylamino;
- R 2 H, alkyl, or substituted alkyl;
- Y N or C;
- R 4 is H, or substituted or unsubstituted alkyl, alkoxy, alkylthio, or alkylamino when not combined with R 3 to form a carbocycle or heterocycle with the carbon atoms of the pyridine ring to which they are connected; or is combined with R 3 to form a carbocycle or heterocycle with the carbon atoms of the pyridine ring to which they are connected;
- R 5 is a polymer or unit
- H, OH, SH, NH 2 , or substituted or unsubstituted alkyl, alkoxy, alkylthio, or alkylamino
- R 2 H, alkyl, or substituted alkyl
- Y N or C
- R 4 is H, or substituted or unsubstituted alkyl, alkoxy, alkylthio, or alkylamino when not combined with R 3 to form a carbocycle or heterocycle with the carbon atoms of the pyridine ring to which they are connected; or is combined with R 3 to form a carbocycle or heterocycle with the carbon atoms of the pyridine ring to which they are connected
- R 5 is a polymer or unit thereof
- the alcohol is a polymer or unit thereof with a terminal hydroxyl group.
- the polymer or unit thereof comprises a polyester, polycarbonate, polyamide, or a polyether, or unit thereof.
- the polymer or unit thereof comprises, poly(lactic acid), poly(glycolic acid), poly(lactic-co-glycolic acid), polycaprolactone, or poly(ethylene glycol), or unit thereof.
- the catalyst is a phosphazine base, 1 ,8-diazabicycloundec-7-ene, 1,4,7-triazabicyclodecene, or N- methyl-l,4,7-triazabicyclodecene.
- the polymer has a weight average molecular weight ranging from 800 Daltons to 10,000 Daltons, as determined using gel permeation chromatography.
- the polymer or unit thereof does not comprise polyketal or unit thereof.
- Ri is H, R 2 is isobutyl, Y is C, and R 3 and R 4 are combined to form a benzene ring with the carbon atoms of the pyridine ring to which they are connected.
- Ri is ethoxymethyl
- R 2 is methanesulfonamidoisobutyl
- Y C
- R 3 and R 4 are combined to form a benzene ring with the carbon atoms of the pyridine ring to which they are connected.
- Rj is OH
- R 2 is benzyl
- Y N
- R 3 is absent
- R 4 is butoxy.
- Y is N
- Ri is OH
- R 2 is benzyl
- R 3 is absent
- R 4 is butylamino
- Y is N
- Ri is OH
- R 2 is benzyl
- R 3 is absent
- R 4 is butoxy.
- Y is N, Rj is OH, R 2 is benzyl, R 3 is absent, and R 4 is benzylamino.
- Y is N, Ri is OH, R 2 is benzyl, R 3 is absent, and R 4 is pentyl.
- the present invention provides a compound that comprises a structure as in formula (IV):
- Ri H, OH, SH, NH 2 , or substituted or unsubstituted alkyl, alkoxy, alkylthio, or alkylamino;
- R 2 H, alkyl, or substituted alkyl;
- Y N or C;
- R 4 is H, or substituted or unsubstituted alkyl, alkoxy, alkylthio, or alkylamino when not combined with R 3 to form a carbocycle or heterocycle with the carbon atoms of the pyridine ring to which they are connected; or is combined with R 3 to form a carbocycle or heterocycle with the carbon atoms of the pyridine ring to which they are connected;
- X is C, N, O,
- Ri is H, R 2 is isobutyl, Y is C, and R 3 and R 4 are combined to form a benzene ring with the carbon atoms of the pyridine ring to which they are connected.
- Ri is ethoxymethyl
- R 2 is methanesulfonamidoisobutyl
- Y C
- R 3 and R 4 are combined to form a benzene ring with the carbon atoms of the pyridine ring to which they are connected.
- Ri is OH
- R 2 is benzyl
- Y N
- R 3 is absent
- R 4 is butoxy.
- Y is N
- Rj is OH
- R 2 is benzyl
- R 3 is absent
- R 4 is butylamino
- Y is N
- Ri is OH
- R 2 is benzyl
- R 3 is absent
- R 4 is butoxy.
- Y is N, Ri is OH, R 2 is benzyl, R 3 is absent, and R 4 is benzylamino.
- Y is N, Ri is OH, R 2 is benzyl, R 3 is absent, and R 4 is pentyl.
- a composition is provided having a compound of formula (IV).
- the present invention provides a method for making a compound that comprises a structure as in formula (IV):
- Ri H, OH, SH, NH 2 , or substituted or unsubstituted alkyl, alkoxy, alkylthio, or alkylamino;
- R 2 H, alkyl, or substituted alkyl;
- Y N or C;
- R 4 is H, or substituted or unsubstituted alkyl, alkoxy, alkylthio, or alkylamino when not combined with R 3 to form a carbocycle or heterocycle with the carbon atoms of the pyridine ring to which they are connected; or is combined with R 3 to form a carbocycle or heterocycle with the carbon atoms of the pyridine ring to which they are connected;
- X is C, N, O,
- R 1 is H
- R 2 is isobutyl
- Y is C
- R 3 and R 4 are combined to form a benzene ring with the carbon atoms of the pyridine ring to which they are connected.
- Ri is ethoxymethyl
- R 2 is hydroxyisobutyl
- Y C
- R 3 and R 4 are combined to form a benzene ring with the carbon atoms of the pyridine ring to which they are connected.
- Ri is ethoxymethyl
- R 2 is methanesulfonamidoisobutyl
- Y C
- R 3 and R 4 are combined to form a benzene ring with the carbon atoms of the pyridine ring to which they are connected.
- Ri is OH
- R 2 is benzyl
- Y N
- R 3 is absent
- R 4 is butoxy.
- Y is N
- Rj is OH
- R 2 is benzyl
- R 3 is absent
- R 4 is butylamino
- Y is N
- Ri is OH
- R 2 is benzyl
- R 3 is absent
- R 4 is butoxy.
- Y is N, Rj is OH, R 2 is benzyl, R 3 is absent, and R 4 is benzylamino.
- Y is N, Ri is OH, R 2 is benzyl, R 3 is absent, and R 4 is pentyl.
- the present invention provides a method for making a conjugate that comprises a structure as in formula (VI):
- the present invention provides a method for making a conjugate that comprises a structure as in formula (VI):
- the present invention provides a method for making a conjugate that comprises a structure as in formula (VI):
- the compound of formula (VII) is selected from the group consisting polyketaldiols, poly(ethylene)glycol, polycaprolactone diol, diblock polylactide-co-poly(ethylene)glycol, diblock polylactide/polyglycolide-co-poly(ethylene)glycol, diblock polyglycolide-co- poly(ethylene)glycol, poly(propylene) glycol, and poly(hexamethylene carbonate)diol.
- the catalyst is a phosphazine base, 1 ⁇ -diazabicycloundec ⁇ -ene, 1 ,4,7-triazabicyclodecene, or N-methyl-MJ-triazabicyclodecene.
- the polymer has a weight average molecular weight ranging from 800 Daltons to 10,000 Daltons, as determined using gel permeation chromatography.
- the polymer does not comprise polyketal or unit thereof.
- Ri is H
- R 2 is isobutyl
- Y is C
- R 3 and R 4 are combined to form a benzene ring with the carbon atoms of the pyridine ring to which they are connected.
- R 1 is ethoxymethyl
- R 2 is hydroxyisobutyl
- Y C
- R 3 and R 4 are combined to form a benzene ring with the carbon atoms of the pyridine ring to which they are connected.
- Ri is ethoxymethyl
- R 2 is methanesulfonamidoisobutyl
- Y C
- R 3 and R 4 are combined to form a benzene ring with the carbon atoms of the pyridine ring to which they are connected.
- R 1 is OH
- R 2 is benzyl
- Y N
- R 3 is absent
- R 4 is butoxy.
- Y is N
- R 1 is OH
- R 2 is benzyl
- R 3 is absent
- R 4 is butylamino
- Y is N
- Ri is OH
- R 2 is benzyl
- R 3 is absent
- R 4 is butoxy.
- Y is N, R 1 is OH, R 2 is benzyl, R 3 is absent, and R 4 is benzylamino. In still yet another embodiment, Y is N, R 1 is OH, R 2 is benzyl, R 3 is absent, and R 4 is pentyl.
- each R 4 independently, is H, or substituted or unsubstituted alkyl, alkoxy, alkylthio, or alkylamino when not combined with R 3 to form a carbocycle or heterocycle with the carbon atoms of the pyridine ring to which they are connected; or is combined with R 3 to form a carbocycle or heterocycle with the carbon atoms of the carbon atoms of the
- the polymer is selected from the group consisting of polyketaldiols, poly(ethylene)glycol, polycaprolactone diol, diblock polylactide-co- poly(ethylene)glycol, diblock polylactide/polyglycolide-co-poly(ethylene)glycol, diblock polyglycolide-co-poly(ethylene)glycol, poly(propylene) glycol, poly(hexamethylene carbonate)diol, and poly(tetrahydrofuran).
- the polymer includes a unit of a polymer.
- the polymer has a weight average molecular weight ranging from 800 Daltons to 10,000 Daltons, as determined using gel permeation chromatography.
- the polymer does not comprise polyketal or unit thereof.
- Ri is H
- R 2 is isobutyl
- Y is C
- R 3 and R 4 are combined to form a benzene ring with the carbon atoms of the pyridine ring to which they are connected.
- Ri is ethoxymethyl
- R 2 is hydroxyisobutyl
- Y C
- R 3 and R 4 are combined to form a benzene ring with the carbon atoms of the pyridine ring to which they are connected.
- Ri is ethoxymethyl
- R 2 is methanesulfonamidoisobutyl
- Y C
- R 3 and R 4 are combined to form a benzene ring with the carbon atoms of the pyridine ring to which they are connected.
- Rj is OH
- R 2 is benzyl
- Y N
- R 3 is absent
- R 4 is butoxy.
- Y is N
- Ri is OH
- R 2 is benzyl
- R 3 is absent
- R 4 is butylamino
- Y is N
- Ri is OH
- R 2 is benzyl
- R 3 is absent
- R 4 is butoxy.
- Y is N, Ri is OH, R 2 is benzyl, R 3 is absent, and R 4 is benzylamino. In yet a further embodiment, Y is N, Ri is OH, R 2 is benzyl, R 3 is absent, and R 4 is pentyl.
- composition comprising the above compounds.
- the composition further comprises a pharmaceutically acceptable excipient.
- a synthetic nanocarrier that comprises any of the foregoing compounds.
- the synthetic nanocarrier further comprises a B cell antigen and/or a T cell antigen.
- the synthetic nanocarrier further comprises an antigen presenting cell (APC) targeting feature.
- the synthetic nanocarrier is a dendrimer, buckyball, nanowire, peptide or protein-based nanoparticle, nanoparticle that comprises a combination of nanomaterials, spheroidal nanoparticle, cubic nanoparticle, pyramidal nanoparticle, oblong nanoparticle, cylindrical nanoparticle, or toroidal nanoparticle.
- composition comprising any of the foregoing synthetic nanocarriers is provided.
- the composition further comprises a pharmaceutically acceptable excipient.
- compositions comprising a vaccine comprising any of the foregoing compounds are provided. In yet another embodiment, a composition comprising a vaccine comprising any of the foregoing compositions is provided. In another embodiment, a composition comprising a vaccine comprising any of the foregoing synthetic nanocarriers is provided.
- a method comprising administering any of the foregoing compounds, compositions or synthetic nanocarriers to a subject.
- the method is one where an immune response is induced or enhanced in the subject.
- compositions, synthetic nanocarriers, and vaccines comprising any of the compounds provided are also provided.
- any of the methods of making a compound provided herein are also provided.
- Fig. 1 shows the release of resiquimod (R848) from synthetic nanocarrier formulations at pH 7.4, 37 0 C.
- Fig. 2 shows the release of R848 from synthetic nanocarrier formulations at pH 4.5, 37 0 C.
- Fig. 3 shows the release of R848 from synthetic nanocarrier formulations at pH 7.4 and pH 4.5 at 24 hours.
- Fig. 4 shows the level of antibody induction by synthetic nanocarriers with a CpG- containing immunostimulatory nucleic acid (Groups 2 and 3) as compared to the level of antibody induction by synthetic nanocarriers without the CpG-containing immunostimulatory nucleic acid (Group 1).
- Fig. 5 shows the level of antibody induction by synthetic nanocarriers that release a phosphodiester, non-thioated CpG-containing immunostimulatory nucleic acid or a thioated CpG-containing immunostimulatory nucleic acid.
- Fig. 6 shows the level of antibody induction by synthetic nanocarriers that release R848 at different rates.
- Ri H, OH, SH, NH 2 , or substituted or unsubstituted alkyl, alkoxy, alkylthio, or alkylamino;
- R 2 H, alkyl, or substituted alkyl
- R 4 is H, or substituted or unsubstituted alkyl, alkoxy, alkylthio, or alkylamino when not combined with R 3 to form a carbocycle or heterocycle with the carbon atoms of the pyridine ring to which they are connected; or is combined with R 3 to form a carbocycle or heterocycle with the carbon atoms of the pyridine ring to which they are connected; and
- R 8 is a biodegradable polymer or unit thereof.
- an immunomodulatory agent When using synthetic nanocarriers to produce an immune response in a subject, it is advantageous to include with the synthetic nanocarriers an immunomodulatory agent.
- an agent includes agents that are immunomodulatory when uncoupled from the synthetic nanocarrier but may not exhibit immunomodulatory properties when coupled to the synthetic nanocarrier. It is particularly advantageous to include the immunomodulatory agent as part of the synthetic nanocarriers itself. To achieve this, the immunomodulatory agent may be covalently attached to an appropriate polymer or unit thereof.
- the compounds and conjugates provided herein in some embodiments, comprise an immunomodulatory agent, which also is intended to include an agent that is immunomodulatory when uncoupled from the polymer or unit thereof but that may not exhibit immunomodulatory properties when coupled to the polymer or unit thereof.
- the compounds provided herein can be incorporated into one or more synthetic nanocarriers.
- the compounds are incorporated into synthetic nanocarriers by methods known in the art or described elsewhere herein.
- the polymer or unit thereof of the compounds or conjugates provided is a biodegradable polymer or unit thereof.
- the polymer or unit thereof therefore, may comprise a polyester, polycarbonate, or polyamide, or unit thereof. It follows that the polymer or unit thereof may comprise poly(lactic acid), poly(glycolic acid), poly(lactic-co- glycolic acid), or polycaprolactone, or unit thereof.
- the polymer comprises a polyether, such as poly(ethylene glycol) (PEG) or unit thereof
- the polymer is a block-co-polymer of a polyether and a biodegradable polymer such that the polymer is biodegradable.
- the polymer or unit thereof does not comprise a polyether, such as poly(ethylene glycol), or unit thereof.
- the polymer does not solely comprise a polyether or unit thereof, such as poly(ethylene glycol), or unit thereof.
- the compounds, conjugates, and synthetic nanocarriers provided herein are unique in composition and are useful for the preparation of vaccines and associated materials.
- R 2 H, alkyl, or substituted alkyl
- R 4 is H, or substituted or unsubstituted alkyl, alkoxy, alkylthio, or alkylamino when not combined with R 3 to form a carbocycle or heterocycle with the carbon atoms of the pyridine ring to which they are connected; or is combined with R 3 to form a carbocycle or heterocycle with the carbon atoms of the pyridine ring to which they are connected; and
- R 8 is a biodegradable polymer or unit thereof.
- R 2 H, alkyl, or substituted alkyl
- R 4 is H, or substituted or unsubstituted alkyl, alkoxy, alkylthio, or alkylamino when not combined with R 3 to form a carbocycle or heterocycle with the carbon atoms of the pyridine ring to which they are connected; or is combined with R 3 to form a carbocycle or heterocycle with the carbon atoms of the pyridine ring to which they are connected; and
- R 8 is a polymer or unit thereof.
- Ri H, OH, SH, NH 2 , or substituted or unsubstituted alkyl, alkoxy, alkylthio, or alkylamino;
- R 4 is H, or substituted or unsubstituted alkyl, alkoxy, alkylthio, or alkylamino when not combined with R 3 to form a carbocycle or heterocycle with the carbon atoms of the pyridine ring to which they are connected; or is combined with R 3 to form a carbocycle or heterocycle with the carbon atoms of the pyridine ring to which they are connected;
- R 5 is a polymer or unit thereof
- X C, N, O, or S
- R 6 and R 7 are each independently absent, H, or substituted.
- R 9 , Rio, Ri 1 , and Ri 2 are each independently H, a halogen, OH, thio, NH 2 , or substituted or unsubstituted alkyl, aryl, heterocyclic, alkoxy, aryloxy, alkylthio, arylthio, alkylamino, or arylamino.
- agents such as immunomodulatory agents, comprising a structure as in formula (III)
- agents such as immunomodulatory agents, comprising a structure as in formula (III)
- terminal alcohols are less reactive, making attachment chemistry problematic.
- imides such as those comprising a structure as in formula (IV)
- the resulting reaction product links the imide to the alcohol via an ester bond.
- a method for making a conjugate that comprises a structure as in formula (II):
- R 2 H, alkyl, or substituted alkyl
- R 4 is H, or substituted or unsubstituted alkyl, alkoxy, alkylthio, or alkylamino when not combined with R 3 to form a carbocycle or heterocycle with the carbon atoms of the pyridine ring to which they are connected; or is combined with R 3 to form a carbocycle or heterocycle with the carbon atoms of the pyridine ring to which they are connected;
- R 5 is a polymer or unit thereof
- X is C, N, O, or S
- R 6 and R 7 are each independently H or substituted
- R 9 , Rio, Rn, and Ri 2 are each independently H, a halogen, OH, thio, NH 2 , or substituted or unsubstituted alkyl, aryl, heterocyclic, alkoxy, aryloxy, alkylthio, arylthio, alkylamino, or arylamino; and heating the alcohol, catalyst, and compound.
- a method for making a conjugate that comprises a structure as in formula (II): comprises: combining an alcohol and a compound comprising a structure as in formula (IV):
- Ri H, OH, SH, NH 2 , or substituted or unsubstituted alkyl, alkoxy, alkylthio, or alkylamino;
- R 2 H, alkyl, or substituted alkyl
- R 4 is H, or substituted or unsubstituted alkyl, alkoxy, alkylthio, or alkylamino when not combined with R 3 to form a carbocycle or heterocycle with the carbon atoms of the pyridine ring to which they are connected; or is combined with R 3 to form a carbocycle or heterocycle with the carbon atoms of the pyridine ring to which they are connected;
- R 5 is a polymer or unit thereof
- X is C, N, O, or S
- R 6 and R 7 are each independently H or substituted
- R9, Rio, Rn, and Rj 2 are each independently H, a halogen, OH, thio, NH 2 , or substituted or unsubstituted alkyl, aryl, heterocyclic, alkoxy, aryloxy, alkylthio, arylthio, alkylamino, or arylamino; heating the alcohol and compound; and adding a catalyst.
- Rj H, OH, SH, NH 2 , or substituted or unsubstituted alkyl, alkoxy, alkylthio, or alkylamino;
- R 2 H, alkyl, or substituted alkyl
- R4 is H, or substituted or unsubstituted alkyl, alkoxy, alkylthio, or alkylamino when not combined with R 3 to form a carbocycle or heterocycle with the carbon atoms of the pyridine ring to which they are connected; or is combined with R 3 to form a carbocycle or heterocycle with the carbon atoms of the pyridine ring to which they are connected;
- R 5 is a polymer or unit thereof; X is C, N, O, or S;
- R ⁇ and R 7 are each independently H or substituted
- R 9 , R] 0 , Rii, and Ri 2 are each independently H, a halogen, OH, thio, NH 2 , or substituted or unsubstituted alkyl, aryl, heterocyclic, alkoxy, aryloxy, alkylthio, arylthio, alkylamino, or arylamino.
- the imide compound comprises a structure as in formula (IV):
- Ri H, OH, SH, NH 2 , or substituted or unsubstituted alkyl, alkoxy, alkylthio, or alkylamino;
- R 2 H, alkyl, or substituted alkyl
- R4 is H, or substituted or unsubstituted alkyl, alkoxy, alkylthio, or alkylamino when not combined with R 3 to form a carbocycle or heterocycle with the carbon atoms of the pyridine ring to which they are connected; or is combined with R 3 to form a carbocycle or heterocycle with the carbon atoms of the pyridine ring to which they are connected;
- X is C, N, O, or S
- R 6 and R 7 are each independently H or substituted
- R 9 , Rio, Rn, and R i2 are each independently H, a halogen, OH, thio, NH 2 , or substituted or unsubstituted alkyl, aryl, heterocyclic, alkoxy, aryloxy, alkylthio, arylthio, alkylamino, or arylamino.
- a compound can be made by methods that comprise combining, in the presence of a solvent and/or heat, with or without a dehydrating agent, such as a carboxylic acid anhydride or acetic anhydride, and a base, such as pyridine compound, a compound that comprises a structure as in formula (III):
- Ri H, OH, SH, NH 2 , or substituted or unsubstituted alkyl, alkoxy, alkylthio, or alkylamino;
- R 2 H, alkyl, or substituted alkyl
- R 4 is H, or substituted or unsubstituted alkyl, alkoxy, alkylthio, or alkylamino when not combined with R 3 to form a carbocycle or heterocycle with the carbon atoms of the pyridine ring to which they are connected; or is combined with R 3 to form a carbocycle or heterocycle with the carbon atoms of the pyridine ring to which they are connected;
- X is C, N, O, or S
- R ⁇ and R 7 are each independently H or substituted
- R9, Rio, Rn, and Rj 2 are each independently H, a halogen, OH, thio, NH 2 , or substituted or unsubstituted alkyl, aryl, heterocyclic, alkoxy, aryloxy, alkylthio, arylthio, alkylamino, or arylamino.
- the inventors have also unexpectedly and surprisingly discovered that it is possible to make polymeric synthetic nanocarriers using polymers that have a weight average molecular weight ranging from about 800 Daltons to about 10,000 Daltons, as determined using gel permeation chromatography. In the formulation of polymeric synthetic nanocarriers, it has been generally believed that the molecular weight of polymers should be or exceed 10,000 Daltons. At times, it is advantageous to append to the polymers an immunomodulatory compound that can be released from the synthetic nanocarrier by a nonspecific degradation step within the body. If the synthetic nanocarriers are to be used to target the endosomal/lysosomal compartment, then it is particularly advantageous to have this degradation step occur preferentially at an acidic pH.
- the compounds provided herein or the synthetic nanocarriers that comprise the compounds may also be pH sensitive (i.e., exhibit increased release of the immunomodulatory agent at or about a pH of 4.5 as compared to the release of the immunomodulatory agent at or about physiological pH (i.e., pH or 7.4).
- the property of having relatively low release of immunomodulatory agents at or about physiological pH but increased release at or about a pH of 4.5 is desirable for it targets the immunomodulatory agents to the endosomal/lysosomal compartment of, for example, antigen presenting cells (APCs) which tend to possess a pH that is at or about 4.5. This low pH level is found primarily in the upper gastrointestinal tract and endosome/lysosomes.
- accelerated release at pH at or about 4.5 provides for an enhanced concentration of the immunomodulatory agent in the target compartment.
- the immunomodulatory agent exhibits a pH sensitive dissociation and is then free to interact with receptors within the endosome/lysosome and stimulate a desired immune response.
- the coupling of the polymer may occur at a position on the immunomodulatory agent or compound of interest that, generally, substantially reduces or eliminates the biological activity of the immunomodulatory agent or compound of interest, the coupling can effectively produce a "pro-drug" like effect.
- This effect in combination with accelerated release in conditions present in the endosome/lysosome, means that off-target effects (e.g., adverse events) are reduced and safety margins increased for compositions and vaccines that comprise the inventive compounds and compositions.
- administering means providing a compound, conjugate, synthetic nanocarrier, or composition provided herein to a patient in a manner that is pharmacologically useful.
- APC targeting feature means one or more portions of which the inventive synthetic nanocarriers are comprised that target the synthetic nanocarriers to professional antigen presenting cells ("APCs"), such as but not limited to dendritic cells, SCS macrophages, follicular dendritic cells, and B cells.
- APC targeting features may comprise immunofeature surface(s) and/or targeting moieties that bind known targets on APCs.
- APC targeting features may comprise one or more B cell antigens present on a surface of synthetic nanocarriers.
- APC targeting features may also comprise one or more dimensions of the synthetic nanoparticles that is selected to promote uptake by APCs.
- targeting moieties for known targets on macrophages comprise any targeting moiety that specifically binds to any entity (e.g., protein, lipid, carbohydrate, small molecule, etc.) that is prominently expressed and/or present on macrophages (i.e., subcapsular sinus-Mph markers).
- entity e.g., protein, lipid, carbohydrate, small molecule, etc.
- Exemplary SCS-Mph markers include, but are not limited to, CD4 (L3T4, W3/25, T4); CD9 (p24, DRAP-I, MRP-I); CDl Ia (LFA- l ⁇ , ⁇ L Integrin chain); CDl Ib ( ⁇ M Integrin chain, CR3, MoI, C3niR, Mac-1); CDl Ic ( ⁇ X Integrin, pl50, 95, AXb2); CDwl2 (p90-120); CD13 (APN, gpl50, EC 3.4.1 1.2); CD14 (LPS-R); CD15 (X-Hapten, Lewis, X, SSEA-I, 3-FAL); CD15s (Sialyl Lewis X); CD15u (3' sulpho Lewis X); CD15su (6 sulpho-sialyl Lewis X); CD 16a (FCRIIIA); CD16b (FcgRIIIb); CDwI 7 (Lactosylceramide, LacC
- targeting moieties for known targets on dendritic cells comprise any targeting moiety that specifically binds to any entity (e.g., protein, lipid, carbohydrate, small molecule, etc.) that is prominently expressed and/or present on DCs (i.e., a DC marker).
- entity e.g., protein, lipid, carbohydrate, small molecule, etc.
- DC markers include, but are not limited to, CDIa (R4, T6, HTA-I); CDIb (Rl); CDIc (M241, R7); CDId (R3); CDIe (R2); CDl Ib ( ⁇ M Integrin chain, CR3, MoI, C3niR, Mac-1); CDl Ic ( ⁇ X Integrin, pl50, 95, AXb2); CDwI 17 (Lactosylceramide, LacCer); CD19 (B4); CD33 (gp67); CD 35 (CRl, C3b/C4b receptor); CD 36 (GpIIIb, GPIV, PASIV); CD39 (ATPdehydrogenase, NTPdehydrogenase-1); CD40 (Bp50); CD45 (LCA, T200, B220, Ly5); CD45RA; CD45RB; CD45RC; CD45RO (UCHL- 1); CD49d (VLA-4 ⁇ , ⁇ 4 Integrin); CD49e (VLA-5 ⁇ , ⁇ ,
- targeting can be accomplished by any targeting moiety that specifically binds to any entity (e.g., protein, lipid, carbohydrate, small molecule, etc.) that is prominently expressed and/or present on B cells (i.e., B cell marker).
- entity e.g., protein, lipid, carbohydrate, small molecule, etc.
- Exemplary B cell markers include, but are not limited to, CDIc (M241, R7); CDId (R3); CD2 (E-rosette R, TI l, LFA-2); CD5 (Tl, Tp67, Leu-1, Ly-I); CD6 (T12); CD9 (p24, DRAP-I, MRP-I); CDl Ia (LFA-l ⁇ , ⁇ L Integrin chain); CDl Ib ( ⁇ M Integrin chain, CR3, MoI, C3niR, Mac- 1); CDl Ic ( ⁇ X Integrin, P150, 95, AXb2); CDwl7 (Lactosylceramide, LacCer); CD18 (Integrin ⁇ 2, CDl Ia, b, c ⁇ -subunit); CD 19 (B4); CD20 (Bl, Bp35); CD21 (CR2, EBV-R, C3dR); CD22 (BL-CAM, Lyb8, Siglec-2); CD23 (FceRII, B6,
- B cell targeting can be accomplished by any targeting moiety that specifically binds to any entity (e.g., protein, lipid, carbohydrate, small molecule, etc.) that is prominently expressed and/or present on B cells upon activation (i.e., activated B cell marker).
- entity e.g., protein, lipid, carbohydrate, small molecule, etc.
- Exemplary activated B cell markers include, but are not limited to, CDIa (R4, T6, HTA-I); CDIb (Rl); CD15s (Sialyl Lewis X); CD15u (3 1 sulpho Lewis X); CD15su (6 sulpho-sialyl Lewis X); CD30 (Ber-H2, Ki-I); CD69 (AIM, EA 1, MLR3, gp34/28, VEA); CD70 (Ki-24, CD27 ligand); CD80 (B7, B7-1, BBl); CD86 (B7-2/B70); CD97 (BLKDD/F12); CD 125 (IL-5R ⁇ ); CD 126 (IL-6R ⁇ ); CD 138 (Syndecan-1, Heparan sulfate proteoglycan); CD 152 (CTLA-4); CD252 (OX40L, TNF(ligand) superfamily, member 4); CD253 (TRAIL, TNF(ligand) superfamily, member 10); CD
- B cell antigen means any antigen that naturally is or could be engineered to be recognized by a B cell, and triggers (naturally or being engineered as known in the art) an immune response in a B cell (e.g., an antigen that is specifically recognized by a B cell receptor on a B cell).
- an antigen that is a T cell antigen is also a B cell antigen.
- the T cell antigen is not also a B cell antigen.
- B cell antigens include, but are not limited to proteins, peptides, small molecules, and carbohydrates.
- the B cell antigen is a non-protein antigen (i.e., not a protein or peptide antigen).
- the B cell antigen is a carbohydrate associated with an infectious agent. In some embodiments, the B cell antigen is a glycoprotein or glycopeptide associated with an infectious agent.
- the infectious agent can be a bacterium, virus, fungus, protozoan, parasite or prion.
- the B cell antigen is a poorly immunogenic antigen. In some embodiments, the B cell antigen is an abused substance or a portion thereof. In some embodiments, the B cell antigen is an addictive substance or a portion thereof. Addictive substances include, but are not limited to, nicotine, a narcotic, a cough suppressant, a tranquilizer, and a sedative.
- the B cell antigen is a toxin, such as a toxin from a chemical weapon or natural sources, or a pollutant.
- the B cell antigen may also be a hazardous environmental agent.
- the B cell antigen is an alloantigen, an allergen, a contact sensitizer, a degenerative disease antigen, a hapten, an infectious disease antigen, a cancer antigen, an atopic disease antigen, an addictive substance, a xenoantigen, or a metabolic disease enzyme or enzymatic product thereof.
- Biodegradable polymer means a polymer that degrades over time when introduced into the body of a subject.
- Biodegradable polymers include but are not limited to, polyesters, polycarbonates, polyketals, or polyamides. Such polymers may comprise poly(lactic acid), poly(glycolic acid), poly(lactic-co-glycolic acid), or polycaprolactone.
- the biodegradable polymer comprises a block-co-polymer of a polyether, such as poly(ethylene glycol), and a polyester, polycarbonate, or polyamide, or other biodegradable polymer.
- the biodegradable polymer comprises a block-co-polymer of poly(ethylene glycol) and poly(lactic acid), poly(glycolic acid), poly(lactic-co-glycolic acid), or polycaprolactone.
- the biodegradable polymer does not comprise a polyether, such as poly(ethylene glycol), or consist solely of the polyether.
- the biodegradable polymer in embodiments, have a weight average molecular weight ranging from about 800 to about 50,000 Daltons, as determined using gel permeation chromatography.
- the weight average molecular weight is from about 800 Daltons to about 10,000 Daltons, preferably from 800 Daltons to 10,000 Daltons, as determined using gel permeation chromatography. In other embodiments, the weight average molecular weight is from 1000 Daltons to 10,000 Daltons, as determined by gel permeation chromatography.
- the biodegradable polymer does not comprise polyketal or a unit thereof.
- "Couple” or “Coupled” or “Couples” (and the like) means attached to a polymer or unit thereof or attached to or contained within the synthetic nanocarrier.
- the covalent coupling is mediated by one or more linkers. In some embodiments, the coupling is non-covalent.
- the non-covalent coupling is mediated by charge interactions, affinity interactions, metal coordination, physical adsorption, hostguest interactions, hydrophobic interactions, TT stacking interactions, hydrogen bonding interactions, van der Waals interactions, magnetic interactions, electrostatic interactions, dipole-dipole interactions, and/or combinations thereof.
- the coupling may arise in the context of encapsulation within the synthetic nanocarriers, using conventional techniques. Any of the aforementioned couplings may be arranged to be on a surface or within an inventive synthetic nanocarrier.
- Dosage form means a compound, conjugate, synthetic nanocarrier, or composition provided herein in a medium, carrier, vehicle, or device suitable for administration to a subject.
- Encapsulate means to enclose within a synthetic nanocarrier, preferably enclose completely within a synthetic nanocarrier. Most or all of a substance that is encapsulated is not exposed to the local environment external to the synthetic nanocarrier. Encapsulation is distinct from absorbtion, which places most or all of a substance on a surface of a synthetic nanocarrier, and leaves the substance exposed to the local environment external to the synthetic nanocarrier. In embodiments, the immunomodulatory agent or B cell and/or T cell antigen is encapsulated within the synthetic nanocarrier.
- Immunomodulatory agent means an agent that modulates an immune response.
- Modulate refers to inducing, enhancing, stimulating, or directing an immune response.
- Such agents include immunostimulatory agents that stimulate (or boost) an immune response to an antigen but is not an antigen or derived from an antigen.
- the immunomodulatory agent is on the surface of the synthetic nanocarrier and/or is incorporated within the synthetic nanocarrier.
- the immunomodulatory agent is coupled to the synthetic nanocarrier via the polymer or unit thereof of the compounds or conjugates provided.
- all of the immunomodulatory agents of a synthetic nanocarrier are identical to one another.
- a synthetic nanocarrier comprises a number of different types of immunomodulatory agents.
- a synthetic nanocarrier comprises multiple individual immunomodulatory agents, all of which are identical to one another.
- a synthetic nanocarrier comprises exactly one type of immunomodulatory agent.
- a synthetic nanocarrier comprises exactly two distinct types of immunomodulatory agents.
- a synthetic nanocarrier comprises greater than two distinct types of immunomodulatory agents.
- “Maximum dimension of a synthetic nanocarrier” means the largest dimension of a nanocarrier measured along any axis of the synthetic nanocarrier.
- “Minimum dimension of a synthetic nanocarrier” means the smallest dimension of a synthetic nanocarrier measured along any axis of the synthetic nanocarrier. For example, for a spheroidal synthetic nanocarrier, the maximum and minimum dimension of a synthetic nanocarrier would be substantially identical, and would be the size of its diameter. Similarly, for a cubic synthetic nanocarrier, the minimum dimension of a synthetic nanocarrier would be the smallest of its height, width or length, while the maximum dimension of a synthetic nanocarrier would be the largest of its height, width or length.
- a minimum dimension of at least 75%, preferably at least 80%, more preferably at least 90%, of the synthetic nanocarriers in a sample, based on the total number of synthetic nanocarriers in the sample is greater than 100 nm.
- a maximum dimension of at least 75%, preferably at least 80%, more preferably at least 90%, of the synthetic nanocarriers in a sample, based on the total number of synthetic nanocarriers in the sample is equal to or less than 5 ⁇ m.
- a minimum dimension of at least 75%, preferably at least 80%, more preferably at least 90%, of the synthetic nanocarriers in a sample, based on the total number of synthetic nanocarriers in the sample is equal to or greater than 110 nm, more preferably equal to or greater than 120 nm, more preferably equal to or greater than 130 nm, and more preferably still equal to or greater than 150 nm.
- a maximum dimension of at least 75%, preferably at least 80%, more preferably at least 90%, of the synthetic nanocarriers in a sample, based on the total number of synthetic nanocarriers in the sample is equal to or less than 3 ⁇ m, more preferably equal to or less than 2 ⁇ m, more preferably equal to or less than 1 ⁇ m, more preferably equal to or less than 800 nm, more preferably equal to or less than 600 nm, and more preferably still equal to or less than 500 nm.
- a maximum dimension of at least 75%, preferably at least 80%, more preferably at least 90%, of the synthetic nanocarriers in a sample, based on the total number of synthetic nanocarriers in the sample is equal to or greater than lOOnm, more preferably equal to or greater than 120 nm, more preferably equal to or greater than 130 nm, more preferably equal to or greater than 140 nm, and more preferably still equal to or greater than 150 nm.
- Measurement of synthetic nanocarrier sizes is obtained by suspending the synthetic nanocarriers in a liquid (usually aqueous) media and using dynamic light scattering (e.g. using a Brookhaven ZetaPALS instrument).
- “Pharmaceutically acceptable excipient” means a pharmacologically inactive substance added to an inventive compound, conjugate, synthetic nanocarrier or composition to further facilitate its administration.
- pharmaceutically acceptable excipients include calcium carbonate, calcium phosphate, various diluents, various sugars and types of starch, cellulose derivatives, gelatin, vegetable oils, and polyethylene glycols.
- Release Rate means the rate that an entrapped immunomodulatory agent flows from a composition, such as a synthetic nanocarrier, into a surrounding media in an in vitro release test.
- the synthetic nanocarrier is prepared for the release testing by placing into the appropriate in vitro release media. This is generally done by exchanging the buffer after centrifugation to pellet the synthetic nanocarrier and reconstitution of the synthetic nanocarriers using a mild condition.
- the assay is started by placing the sample at 37 0 C in an appropriate temperature-controlled apparatus. A sample is removed at various time points.
- the synthetic nanocarriers are separated from the release media by centrifugation to pellet the synthetic nanocarriers.
- the release media is assayed for the immunomodulatory agent that has dispersed from the synthetic nanocarriers.
- the immunomodulatory agent is measured using HPLC to determine the content and quality of the immunomodulatory agent.
- the pellet containing the remaining entrapped immunomodulatory agent is dissolved in solvents or hydrolyzed by base to free the entrapped immunomodulatory agent from the synthetic nanocarriers.
- the pellet-containing immunomodulatory agent is then also measured by HPLC to determine the content and quality of the immunomodulatory agent that has not been released at a given time point.
- Subject means an animal, including mammals such as humans and primates; avians; domestic household or farm animals such as cats, dogs, sheep, goats, cattle, horses and pigs; laboratory animals such as mice, rats and guinea pigs; fish; and the like.
- Synthetic nanocarrier(s) means a discrete object that is not found in nature, and that possesses at least one dimension that is less than or equal to 5 microns in size. Albumin nanoparticles are expressly included as synthetic nanocarriers.
- Synthetic nanocarriers include the compounds and compositions provided herein and, therefore, can be polymeric nanoparticles.
- synthetic nanocarriers can comprise one or more polymeric matrices.
- the synthetic nanocarriers can also include other nanomaterials and may be, for example, lipid-polymer nanoparticles.
- a polymeric matrix can be surrounded by a coating layer (e.g., liposome, lipid monolayer, micelle, etc.).
- the synthetic nanocarrier is not a micelle.
- a synthetic nanocarrier may comprise a core comprising a polymeric matrix surrounded by a lipid layer (e.g., lipid bilayer, lipid monolayer, etc.).
- the various elements of the synthetic nanocarriers can be coupled with the polymeric matrix.
- the synthetic nanocarriers may comprise one or more lipids.
- a synthetic nanocarrier may comprise a liposome.
- a synthetic nanocarrier may comprise a lipid bilayer.
- a synthetic nanocarrier may comprise a lipid monolayer.
- a synthetic nanocarrier may comprise a micelle.
- a synthetic nanocarrier may comprise a non- polymeric core (e.g., metal particle, quantum dot, ceramic particle, bone particle, viral particle, proteins, nucleic acids, carbohydrates, etc.) surrounded by a lipid layer (e.g., lipid bilayer, lipid monolayer, etc.).
- the synthetic nanocarriers may comprise lipid-based nanoparticles, metallic nanoparticles, surfactant-based emulsions, dendrimers, buckyballs, nanowires, virus-like particles, peptide or protein-based particles (such as albumin nanoparticles).
- Synthetic nanocarriers may be a variety of different shapes, including but not limited to spheroidal, cubic, pyramidal, oblong, cylindrical, toroidal, and the like.
- Synthetic nanocarriers according to the invention comprise one or more surfaces.
- Exemplary synthetic nanocarriers that can be adapted for use in the practice of the present invention comprise: (1) the biodegradable nanoparticles disclosed in U.S.
- Patent 5,543,158 to Gref et al. (2) the polymeric nanoparticles of Published U.S. Patent Application 20060002852 to Saltzman et al., (3) the lithographically constructed nanoparticles of Published U.S. Patent Application 20090028910 to DeSimone et al., (4) the disclosure of WO 2009/051837 to von Andrian et al., or (5) the nanoparticles disclosed in Published U.S. Patent Application 2008/0145441 to Penades et al.
- Synthetic nanocarriers according to the invention that have a minimum dimension of equal to or less than about 100 nm, preferably equal to or less than 100 nm, do not comprise a surface with hydroxyl groups that activate complement or alternatively comprise a surface that consists essentially of moieties that are not hydroxyl groups that activate complement.
- synthetic nanocarriers according to the invention that have a minimum dimension of equal to or less than about 100 nm, preferably equal to or less than 100 nm, do not comprise a surface that substantially activates complement or alternatively comprise a surface that consists essentially of moieties that do not substantially activate complement.
- synthetic nanocarriers according to the invention that have a minimum dimension of equal to or less than about 100 nm, preferably equal to or less than 100 nm, do not comprise a surface that activates complement or alternatively comprise a surface that consists essentially of moieties that do not activate complement.
- synthetic nanocarriers may possess an aspect ratio greater than 1 :1, 1 :1.2, 1 :1.5, 1 :2, 1 :3, 1 :5, 1 :7, or greater than 1 :10.
- synthetic nanocarriers are spheres or spheroids. In some embodiments, synthetic nanocarriers are flat or plate-shaped. In some embodiments, synthetic nanocarriers are cubes or cubic. In some embodiments, synthetic nanocarriers are ovals or ellipses. In some embodiments, synthetic nanocarriers are cylinders, cones, or pyramids.
- each synthetic nanocarrier has similar properties. For example, at least 80%, at least 90%, or at least 95% of the synthetic nanocarriers may have a minimum dimension or maximum dimension that falls within 5%, 10%, or 20% of the average diameter or average dimension.
- a population of synthetic nanocarriers may be heterogeneous with respect to size, shape, and/or composition.
- Synthetic nanocarriers can be solid or hollow and can comprise one or more layers. In some embodiments, each layer has a unique composition and unique properties relative to the other layer(s).
- synthetic nanocarriers may have a core/shell structure, wherein the core is one layer (e.g., a polymeric core) and the shell is a second layer (e.g., a lipid bilayer or monolayer).
- the core is one layer (e.g., a polymeric core) and the shell is a second layer (e.g., a lipid bilayer or monolayer).
- Synthetic nanocarriers may comprise a plurality of different layers.
- T cell antigen means any antigen that is recognized by and triggers an immune response in a T cell (e.g., an antigen that is specifically recognized by a T cell receptor on a T cell or an NKT cell via presentation of the antigen or portion thereof bound to a Class I or Class II major histocompatability complex molecule (MHC), or bound to a CDl complex).
- an antigen that is a T cell antigen is also a B cell antigen.
- the T cell antigen is not also a B cell antigen.
- T cell antigens generally are proteins or peptides.
- T cell antigens may be an antigen that stimulates a CD8+ T cell response, a CD4+ T cell response, or both. The T cell antigens, therefore, in some embodiments can effectively stimulate both types of responses.
- the T cell antigen is a T-helper antigen, which is a T cell antigen that can generate an augmented response to an unrelated B cell antigen through stimulation of T cell help.
- a T-helper antigen may comprise one or more peptides derived from tetanus toxoid, Epstein-Barr virus, influenza virus, respiratory syncytial virus, measles virus, mumps virus, rubella virus, cytomegalovirus, adenovirus, diphtheria toxoid, or a PADRE peptide.
- a T-helper antigen may comprise one or more lipids, or glycolipids, including but not limited to: ⁇ - galactosylceramide ( ⁇ -GalCer), ⁇ -linked glycosphingolipids (from Sphingomonas spp.), galactosyl diacylglycerols (from Borrelia burgdorferi), lypophosphoglycan (from Leishmania donovan ⁇ ), and phosphatidylinositol tetramannoside (PIM4) (from Mycobacterium leprae).
- ⁇ -galactosylceramide ⁇ -GalCer
- ⁇ -linked glycosphingolipids from Sphingomonas spp.
- galactosyl diacylglycerols from Borrelia burgdorferi
- lypophosphoglycan from Leishmania donovan ⁇
- PIM4 phosphatidylinositol tetramanno
- CD4+ T-cell antigens may be derivatives of a CD4+ T-cell antigen that is obtained from a source, such as a natural source.
- CD4+ T-cell antigen sequences such as those peptides that bind to MHC II, may have at least 70%, 80%, 90%, or 95% identity to the antigen obtained from the source.
- the T cell antigen preferably a T-helper antigen, may be coupled to, or uncoupled from, a synthetic nanocarrier.
- Unit thereof refers to a monomeric unit of a polymer, the polymer generally being made up of a series of linked monomers.
- Vaccine means a composition of matter that improves the immune response to a particular pathogen or disease.
- a vaccine typically contains factors that stimulate a subject's immune system to recognize a specific antigen as foreign and eliminate it from the subject's body.
- a vaccine also establishes an immunologic 'memory' so the antigen will be quickly recognized and responded to if a person is re-challenged.
- Vaccines can be prophylactic (for example to prevent future infection by any pathogen), or therapeutic (for example a vaccine against a tumor specific antigen for the treatment of cancer).
- Vaccines according to the invention may comprise one or more of the compounds, conjugates, synthetic nanocarriers, or compositions provided herein.
- the immunomodulatory agent and polymers or unit thereof are coupled covalently via an amide or ester bond.
- these conjugates form part of a synthetic nanocarrier.
- a polymer such as polylactide (PLA) or polylactide-co-glycolide (PLGA)
- PLA polylactide
- PLGA polylactide-co-glycolide
- an immunostimulatory agent such as resiquimod (also known as R848)
- solvents that may be suitable for use in the invention include, but are not limited to, /7-cresol, toluene, xylene, mesitylene, diethyl ether, glycol, petroleum ether, hexane, cyclohexane, pentane, dichloromethane (or methylene chloride), chloroform, dioxane, tetrahydrofuran (THF), dimethyl sulfoxide (DMSO), dimethylformamide (DMF), ethyl acetate (EtOAc), triethylamine, acetonitrile, methyl-/-butyl ether (MTBE), N- methylpyrrolidone (NMP), dimethylacetamide (DMAC), isopropyl, a solvent or a mixture of solvents.
- solvents that may be suitable for use in the invention include, but are not limited to, /7-cresol, toluene, xylene, mesitylene, dieth
- a reaction or any step of the methods provided may be carried out at any suitable temperature. In some cases, a reaction or any step of the methods provided is carried out at about room temperature (e.g., about 25 0 C, about 20 0 C, between about 20 0 C and about 25 0 C, or the like).
- room temperature e.g., about 25 0 C, about 20 0 C, between about 20 0 C and about 25 0 C, or the like.
- the reaction or any step of the methods provided may be carried out at a temperature below or above room temperature, for example, at about -20 0 C, at about -10 0 C, at about 0 0 C, at about 10 0 C, at about 30 0 C, about 40 0 C, about 50 0 C, about 60 0 C, about 70 0 C, about 80 0 C, about 90 0 C, about 100 0 C , about 120 0 C, about 140 0 C, about 150 0 C or greater.
- the reaction or any step of the methods provided is conducted at temperatures between 0 0 C and 120 0 C.
- reaction or any step of the methods provided may be carried out at more than one temperature (e.g., reactants added at a first temperature and the reaction mixture agitated at a second wherein the transition from a first temperature to a second temperature may be gradual or rapid).
- the reaction or any step of the methods provided may be allowed to proceed for any suitable period of time. In some cases, the reaction or any step of the methods provided is allowed to proceed for about 10 minutes, about 20 minutes, about 30 minutes, about 40 minutes, about 50 minutes, about 1 hour, about 2 hours, about 4 hours, about 8 hours, about 12 hours, about 16 hours, about 24 hours, about 2 days, about 3 days, about 4 days, or more. In some cases, aliquots of the reaction mixture may be removed and analyzed at an intermediate time to determine the progress of the reaction or any step of the methods provided. In some embodiments, a reaction or any step of the methods provided may be carried out under an inert atmosphere in anhydrous conditions (e.g., under an atmosphere of nitrogen or argon, anhydrous solvents, etc.)
- anhydrous conditions e.g., under an atmosphere of nitrogen or argon, anhydrous solvents, etc.
- reaction products and/or intermediates may be isolated (e.g., via distillation, column chromatography, extraction, precipitation, etc.) and/or analyzed (e.g., gas liquid chromatography, high performance liquid chromatography, nuclear magnetic resonance spectroscopy, etc.) using commonly known techniques.
- a conjugate or synthetic nanocarrier that includes the conjugated may be analyzed to determine the loading of immunomodulatory agent, for example, using reverse phase HPLC.
- the polymers may have any suitable molecular weight.
- the polymers may have a low or high molecular weight.
- Non-limiting molecular weight values include 100 Da, 200 Da, 300 Da, 500 Da, 750 Da, 1000 Da, 2000 Da, 3000 Da, 4000 Da, 5000 Da, 6000 Da, 7000 Da, 8000 Da, 9000 Da, 10,000 Da, or greater.
- the polymers have a weight average molecular weight of about 800 Da to about 10,000 Da.
- the molecular weight of a polymer may be determined using gel permeation chromatography.
- a polymer e.g., PLA, PLGA
- a reactive acylating agent such as an acyl halide, acylimidazole, active ester, etc. using an activating reagent commonly used in amide synthesis.
- the resulting activated polymer or unit thereof e.g., PLA, PLGA
- an immunomodulatory agent e.g., R848
- a base e.g., PLA-R848
- Activating reagents that can be used to convert polymers or units thereof, such as PLA or PLGA, to an activated acylating form include, but are not limited to cyanuric fluoride, N,N-tetramethylfluoroformamidinium hexafluorophosphate (TFFH); Acylimidazoles, such as carbonyl diimidazole (CDI), N,N'-carbonylbis(3- methylimidazolium) triflate (CBMIT); and Active esters, such as N-hydroxylsuccinimide (NHS or HOSu) in the presence of a carbodiimide such as N,N'-dicyclohexylcarbodiimide (DCC), N-ethyl-N'-(3-(dimethylamino)propyl)carbodiimide hydrochloride (EDC) or N, N 1 - diisopropylcarbodiimide (DIC); N,N'-dis
- the activated polymer or unit thereof may be isolated (e.g., via precipitation, extraction, etc.) and/or stored under suitable conditions (e.g., at low temperature, under argon) following activation, or may be used immediately.
- the activated polymer or unit thereof may be reacted with an immunostimulatory agent under any suitable conditions. In some cases, the reaction is carried out in the presence of a base and/or catalyst.
- bases/catalysts include diisopropylethylamine (DIPEA) and 4- dimethylaminopyridine (DMAP).
- a polymer or unit thereof e.g., PLA, PLGA having any suitable molecular weight
- an immunomodulatory agent e.g., R848
- an activating or coupling reagent which converts the polymer or unit thereof (e.g., PLA, PLGA) to a reactive acylating agent in situ, to give the desired conjugate (e.g., PLA-R848, PLGA-R848).
- Coupling or activating agents include but are not limited to: activating agents used in the presence of an carbodiimide such as EDC or DCC or DIC, such as 1 - Hydroxybenzotriazole (HOBt), 1 -Hydroxy-7-azabenzotriazole (HOAt), 3,4-Dihydro-3- hydroxy-4-oxo-l,2,3-benzotriazine (HO-Dhbt), N-Hydroxysuccinimide (NHS or HOSu), Pentafluorophenol (PFP);
- Immunomodulatory agents can also be coupled to polymers or units thereof that are terminated in a hydroxyl group.
- polymers or units thereof include polyethylene glycol, polylactide, polylactide-co-glycolide, polycaprolactone, and other like polyesters, or units thereof.
- the reaction proceeds as follows where an imide of the general structure (IV) will react with the terminal hydroxyl of the aforementioned polymers or units thereof using a catalyst used in lactone ring opening polymerizations.
- the resulting reaction product (II) links the amide of the agent to the polymer or unit thereof via an ester bond.
- the compounds of formula (IV) and (II) are as follows:
- Rj H, OH, SH, NH 2 , or substituted or unsubstituted alkyl, alkoxy, alkylthio, or alkylamino
- R 2 H, alkyl, or substituted alkyl
- Y N or C
- R 4 is H, or substituted or unsubstituted alkyl, alkoxy, alkylthio, or alkylamino when not combined with R 3 to form a carbocycle or heterocycle with the carbon atoms of the pyridine ring to which they are connected; or is combined with R 3 to form a carbocycle or heterocycle with the carbon atoms of the pyridine ring to which they are connected
- R 5 is a polymer or unit thereof
- Catalysts include, but are not limited to, phosphazine bases, 1,8-diazabicycloundec- 7-ene (DBU), 1 ⁇ -triazabicyclodecene (TBD), and N-methyl-l,4,7-triazabicyclodecene (MTDB).
- DBU 1,8-diazabicycloundec- 7-ene
- TBD 1 ⁇ -triazabicyclodecene
- MTDB N-methyl-l,4,7-triazabicyclodecene
- suitable solvents include methylene chloride, chloroform, and THF.
- R 5 -OH contains two hydroxyl groups (e.g., a diol, HO-R 5 -OH), each of which are functionalized by reaction with an imide associated with R848.
- HO-R 5 -OH is a poly-diol such as poly(hexamethyl carbonate) diol or polycaprolactone diol.
- the reaction may be carried out as follows:
- suitable polymers include polyketaldiols, poly(ethylene)glycol, polycaprolactone diol, diblock polylactide-co- poly(ethylene)glycol, diblock polylactide/polyglycolide-co-poly(ethylene)glycol, diblock polyglycolide-co-poly(ethylene)glycol, poly(propylene) glycol, poly(hexamethylene carbonate)diol, and poly(tetrahydrofuran).
- one of the diol groups may be protected with a protecting group (e.g., t-butyloxycarbonyl), thus the poly-diol would be a compound of formula HO-R 5 -OP, wherein P is a protecting group.
- the protecting group may be removed and the second diol group may be reacted with any suitable reagent (e.g., PLGA, PLA).
- a conjugate (e.g., R848-PLA) can be formed via a one-pot ring-opening polymerization of an immunomodulatory agent (e.g., R848) with a polymer or unit thereof (e.g., D/L-lactide) in the presence of a catalyst, for example, as shown in the following scheme:
- an immunomodulatory agent e.g., R848
- a polymer or unit thereof e.g., D/L-lactide
- the immunomodulatory agent and the polymer or unit thereof may be combined into a single reaction mixture comprising a catalyst.
- the reaction may proceed at a suitable temperature (e.g., at about 150 0 C) and the resulting conjugate may be isolated using commonly known techniques.
- suitable catalysts include DMAP and tin ethylhexanoate.
- a conjugate can be formed via two-step ring opening polymerization of an immunomodulatory agent (e.g., R848) with one or more polymers or units thereof (e.g., D/L-lactide and glycolide) in the presence of a catalyst, for example, as shown in the following scheme:
- an immunomodulatory agent e.g., R848
- polymers or units thereof e.g., D/L-lactide and glycolide
- the polymers or units thereof may be first combined, and in some cases, heated (e.g., to 135 0 C) to form a solution.
- the immunomodulatory agent may be added to a solution comprising the polymers or units thereof, followed by addition of a catalyst (e.g., tin ethylhexanoate).
- a catalyst e.g., tin ethylhexanoate
- the resulting conjugate may be isolated using commonly known techniques.
- suitable catalysts include DMAP and tin ethylhexanoate.
- a compound or conjugate provided herein, another immunomodulatory agent, antigen, and/or targeting moiety can be covalently associated with a polymeric matrix. In some embodiments, covalent association is mediated by a linker. In some embodiments, a compound or conjugate provided herein, another immunomodulatory agent, antigen, and/or targeting moiety can be noncovalently associated with a polymeric matrix. For example, in some embodiments, a compound or conjugate provided herein, another immunomodulatory agent, antigen, and/or targeting moiety can be encapsulated within, surrounded by, and/or dispersed throughout a polymeric matrix. Alternatively or additionally, a compound or conjugate provided herein, another immunomodulatory agent, antigen, and/or targeting moiety can be associated with a polymeric matrix by hydrophobic interactions, charge interactions, van der Waals forces, etc.
- a polymeric matrix comprises one or more polymers.
- Polymers may be natural or unnatural (synthetic) polymers.
- Polymers may be homopolymers or copolymers comprising two or more monomers. In terms of sequence, copolymers may be random, block, or comprise a combination of random and block sequences.
- polymers in accordance with the present invention are organic polymers.
- polymers suitable for use in the present invention include, but are not limited to polyethylenes, polycarbonates (e.g., poly(l,3-dioxan-2one)), polyanhydrides (e.g., poly(sebacic anhydride)), polyhydroxyacids (e.g., poly( ⁇ -hydroxyalkanoate)), polypropylfumerates, polycaprolactones, polyamides (e.g., polycaprolactam), polyacetals, polyethers, polyesters (e.g., polylactide, polyglycolide), poly(orthoesters), polycyanoacrylates, polyvinyl alcohols, polyurethanes, polyphosphazenes, polyacrylates, polymethacrylates, polyureas, polystyrenes, polyamines, and polysaccharides (e.g., chitosan).
- polyethylenes e.g., poly(l,3-dioxan-2one)
- polymers in accordance with the present invention include polymers which have been approved for use in humans by the U.S. Food and Drug Administration (FDA) under 21 C.F.R. ⁇ 177.2600, including but not limited to polyesters (e.g., polylactic acid, poly(lactic-co-glycolic acid), polycaprolactone, polyvalerolactone, poly(l,3-dioxan-2one)); polyanhydrides (e.g., poly(sebacic anhydride)); polyethers (e.g., polyethylene glycol); polyurethanes; polymethacrylates; polyacrylates; and polycyanoacrylates.
- FDA U.S. Food and Drug Administration
- polymers can be hydrophilic.
- polymers may comprise anionic groups (e.g., phosphate group, sulphate group, carboxylate group); cationic groups (e.g., quaternary amine group); or polar groups (e.g., hydroxyl group, thiol group, amine group).
- a synthetic nanocarrier comprising a hydrophilic polymeric matrix generates a hydrophilic environment within the synthetic nanocarrier.
- polymers can be hydrophobic.
- a synthetic nanocarrier comprising a hydrophobic polymeric matrix generates a hydrophobic environment within the synthetic nanocarrier. Selection of the hydrophilicity or hydrophobicity of the polymer may have an impact on the nature of materials that are incorporated (e.g., coupled) within the synthetic nanocarrier.
- polymers may be modified with one or more moieties and/or functional groups.
- moieties or functional groups can be used in accordance with the present invention.
- polymers may be modified with PEG, with a carbohydrate, and/or with acyclic polyacetals derived from polysaccharides (Papisov, 2001, ACS Symposium Series, 786:301).
- polymers may be modified with a lipid or fatty acid group.
- a fatty acid group may be one or more of butyric, caproic, caprylic, capric, lauric, myristic, palmitic, stearic, arachidic, behenic, or lignoceric acid.
- a fatty acid group may be one or more of palmitoleic, oleic, vaccenic, linoleic, alpha-linoleic, gamma-linoleic, arachidonic, gadoleic, arachidonic, eicosapentaenoic, docosahexaenoic, or erucic acid.
- polymers may be polyesters, including copolymers comprising lactic acid and glycolic acid units, such as poly(lactic acid-co-glycolic acid) and poly(lactide-co-glycolide), collectively referred to herein as "PLGA”; and homopolymers comprising glycolic acid units, referred to herein as "PGA,” and lactic acid units, such as poly-L-lactic acid, poly-D-lactic acid, poly-D,L-lactic acid, poly-L-lactide, poly-D-lactide, and poly-D,L-lactide, collectively referred to herein as "PLA.”
- exemplary polyesters include, for example, polyhydroxyacids; PEG copolymers and copolymers of lactide and glycolide (e.g., PLA-PEG copolymers, PGA-PEG copolymers, PLGA-PEG copolymers, and derivatives thereof.
- polyesters include, for example, polyanhydrides, poly(ortho ester), poly(ortho ester)-PEG copolymers, poly(caprolactone), poly(caprolactone)-PEG copolymers, polylysine, polylysine-PEG copolymers, poly(ethyleneimine), poly(ethylene imine)-PEG copolymers, poly(L-lactide- co-L-lysine), poly(serine ester), poly(4-hydroxy-L-proline ester), poly[ ⁇ -(4-aminobutyl)-L- glycolic acid], and derivatives thereof.
- a polymer may be PLGA.
- PLGA is a biocompatible and biodegradable co-polymer of lactic acid and glycolic acid, and various forms of PLGA are characterized by the ratio of lactic acid:glycolic acid.
- Lactic acid can be L-lactic acid, D- lactic acid, or D,L-lactic acid.
- the degradation rate of PLGA can be adjusted by altering the lactic acid:glycolic acid ratio.
- PLGA to be used in accordance with the present invention is characterized by a lactic acid:glycolic acid ratio of approximately 85:15, approximately 75:25, approximately 60:40, approximately 50:50, approximately 40:60, approximately 25:75, or approximately 15:85.
- polymers may be one or more acrylic polymers.
- acrylic polymers include, for example, acrylic acid and methacrylic acid copolymers, methyl methacrylate copolymers, ethoxyethyl methacrylates, cyanoethyl methacrylate, aminoalkyl methacrylate copolymer, poly(acrylic acid), poly(methacrylic acid), methacrylic acid alkylamide copolymer, poly(methyl methacrylate), poly(methacrylic acid anhydride), methyl methacrylate, polymethacrylate, poly(methyl methacrylate) copolymer, polyacrylamide, aminoalkyl methacrylate copolymer, glycidyl methacrylate copolymers, polycyanoacrylates, and combinations comprising one or more of the foregoing polymers.
- the acrylic polymer may comprise fully-polymerized copolymers of acrylic and methacrylic acid esters with a low content of quaternary ammoni
- polymers can be cationic polymers.
- cationic polymers are able to condense and/or protect negatively charged strands of nucleic acids (e.g., DNA, RNA, or derivatives thereof).
- Amine-containing polymers such as poly(lysine) (Zauner et al., 1998, Adv. Drug Del. Rev., 30:97; and Kabanov et al., 1995, Bioconjugate Chem., 6:7), polyethylene imine) (PEI; Boussif et al., 1995, Proc. Natl. Acad.
- polymers can be degradable polyesters bearing cationic side chains (Putnam et al., 1999, Macromolecules, 32:3658; Barrera et al., 1993, J. Am. Chem. Soc, 115:1 1010; Kwon et al., 1989, Macromolecules, 22:3250; Lim et al., 1999, J. Am. Chem. Soc, 121 :5633; and Zhou et al., 1990, Macromolecules, 23:3399).
- polyesters include poly(L-lactide-co-L-lysine) (Barrera et al., 1993, J. Am. Chem.
- polymers can be linear or branched polymers. In some embodiments, polymers can be dendrimers. In some embodiments, polymers can be substantially cross-linked to one another. In some embodiments, polymers can be substantially free of cross-links. In some embodiments, polymers can be used in accordance with the present invention without undergoing a cross-linking step. It is further to be understood that inventive compounds and synthetic nanocarriers may comprise block copolymers, graft copolymers, blends, mixtures, and/or adducts of any of the foregoing and other polymers. Those skilled in the art will recognize that the polymers listed herein represent an exemplary, not comprehensive, list of polymers that can be of use in accordance with the present invention.
- synthetic nanocarriers may comprise metal particles, quantum dots, ceramic particles, etc.
- synthetic nanocarriers may optionally comprise one or more amphiphilic entities.
- an amphiphilic entity can promote the production of synthetic nanocarriers with increased stability, improved uniformity, or increased viscosity.
- amphiphilic entities can be associated with the interior surface of a lipid membrane (e.g., lipid bilayer, lipid monolayer, etc.). Many amphiphilic entities known in the art are suitable for use in making synthetic nanocarriers in accordance with the present invention.
- amphiphilic entities include, but are not limited to, phosphoglycerides; phosphatidylcholines; dipalmitoyl phosphatidylcholine (DPPC); dioleylphosphatidyl ethanolamine (DOPE); dioleyloxypropyltriethylammonium (DOTMA); dioleoylphosphatidylcholine; cholesterol; cholesterol ester; diacylglycerol; diacylglycerolsuccinate; diphosphatidyl glycerol (DPPG); hexanedecanol; fatty alcohols such as polyethylene glycol (PEG); polyoxyethylene-9-lauryl ether; a surface active fatty acid, such as palmitic acid or oleic acid; fatty acids; fatty acid monoglycerides; fatty acid diglycerides; fatty acid amides; sorbitan trioleate (Span®85) glycocholate; sorbitan monolaurate (Span®20); polysorbate 20
- amphiphilic entity component may be a mixture of different amphiphilic entities. Those skilled in the art will recognize that this is an exemplary, not comprehensive, list of substances with surfactant activity. Any amphiphilic entity may be used in the production of synthetic nanocarriers to be used in accordance with the present invention.
- synthetic nanocarriers may optionally comprise one or more carbohydrates.
- Carbohydrates may be natural or synthetic.
- a carbohydrate may be a derivatized natural carbohydrate.
- a carbohydrate comprises monosaccharide or disaccharide, including but not limited to glucose, fructose, galactose, ribose, lactose, sucrose, maltose, trehalose, cellbiose, mannose, xylose, arabinose, glucoronic acid, galactoronic acid, mannuronic acid, glucosamine, galatosamine, and neuramic acid.
- a carbohydrate is a polysaccharide, including but not limited to pullulan, cellulose, microcrystalline cellulose, hydroxypropyl methylcellulose (HPMC), hydroxycellulose (HC), methylcellulose (MC), dextran, cyclodextran, glycogen, starch, hydroxyethylstarch, carageenan, glycon, amylose, chitosan, N,O- carboxylmethylchitosan, algin and alginic acid, starch, chitin, heparin, konjac, glucommannan, pustulan, heparin, hyaluronic acid, curdlan, and xanthan.
- the carbohydrate is a sugar alcohol, including but not limited to mannitol, sorbitol, xylitol, erythritol, maltitol, and lactitol.
- Synthetic nanocarriers may be prepared using a wide variety of methods known in the art.
- synthetic nanocarriers can be formed by methods as nanoprecipitation, flow focusing using fluidic channels, spray drying, single and double emulsion solvent evaporation, solvent extraction, phase separation, milling, microemulsion procedures, microfabrication, nanofabrication, sacrificial layers, simple and complex coacervation, and other methods well known to those of ordinary skill in the art.
- aqueous and organic solvent syntheses for monodisperse semiconductor, conductive, magnetic, organic, and other nanomaterials have been described (Pellegrino et al., 2005, Small, 1 :48; Murray et al., 2000, Ann. Rev. Mat.
- synthetic nanocarriers are prepared by a nanoprecipitation process or spray drying. Conditions used in preparing synthetic nanocarriers may be altered to yield particles of a desired size or property (e.g., hydrophobicity, hydrophilicity, external morphology, "stickiness," shape, etc.). The method of preparing the synthetic nanocarriers and the conditions (e.g., solvent, temperature, concentration, air flow rate, etc.) used may depend on the materials to be coupled to the synthetic nanocarriers and/or the composition of the polymer matrix.
- Conditions used in preparing synthetic nanocarriers may be altered to yield particles of a desired size or property (e.g., hydrophobicity, hydrophilicity, external morphology, "stickiness," shape, etc.).
- the method of preparing the synthetic nanocarriers and the conditions (e.g., solvent, temperature, concentration, air flow rate, etc.) used may depend on the materials to be coupled to the synthetic nanocarriers and/or the composition of the polymer matrix.
- particles prepared by any of the above methods have a size range outside of the desired range, particles can be sized, for example, using a sieve.
- Coupling can be achieved in a variety of different ways, and can be covalent or non- covalent. Such couplings may be arranged to be on a surface or within an inventive synthetic nanocarrier. Elements of the inventive synthetic nanocarriers (such as moieties of which an immunofeature surface is comprised, targeting moieties, polymeric matrices, and the like) may be directly coupled with one another, e.g., by one or more covalent bonds, or may be coupled by means of one or more linkers.
- Additional methods of functionalizing synthetic nanocarriers may be adapted from Published US Patent Application 2006/0002852 to Saltzman et al., Published US Patent Application 2009/0028910 to DeSimone et al., or Published International Patent Application WO/2008/127532 Al to Murthy et al.
- Linkers may be used to form amide linkages, ester linkages, disulfide linkages, etc.
- Linkers may contain carbon atoms or heteroatoms (e.g., nitrogen, oxygen, sulfur, etc.).
- a linker is an aliphatic or heteroaliphatic linker.
- the linker is a polyalkyl linker.
- the linker is a polyether linker.
- the linker is a polyethylene linker.
- the linker is a polyethylene glycol (PEG) linker.
- the linker is a cleavable linker.
- cleavable linkers include protease cleavable peptide linkers, nuclease sensitive nucleic acid linkers, lipase sensitive lipid linkers, glycosidase sensitive carbohydrate linkers, pH sensitive linkers, hypoxia sensitive linkers, photo-cleavable linkers, heat-labile linkers, enzyme cleavable linkers (e.g., esterase cleavable linker), ultrasound-sensitive linkers, x-ray cleavable linkers, etc.
- the linker is not a cleavable linker.
- a variety of methods can be used to couple a linker or other element of a synthetic nanocarrier with the synthetic nanocarrier.
- General strategies include passive adsorption (e.g., via electrostatic interactions), multivalent chelation, high affinity non-covalent binding between members of a specific binding pair, covalent bond formation, etc. (Gao et al., 2005, Curr. Op. Biotechnol., 16:63).
- click chemistry can be used to associate a material with a synthetic nanocarrier.
- Non-covalent specific binding interactions can be employed.
- a particle or a biomolecule can be functionalized with biotin with the other being functionalized with streptavidin. These two moieties specifically bind to each other noncovalently and with a high affinity, thereby associating the particle and the biomolecule.
- Other specific binding pairs could be similarly used.
- histidine-tagged biomolecules can be associated with particles conjugated to nickel-nitrolotriaceteic acid (Ni-NTA).
- compositions of the invention can be made in any suitable manner, and the invention is in no way limited to compositions that can be produced using the methods described herein. Selection of an appropriate method may require attention to the properties of the particular moieties being associated.
- compositions according to the invention comprise inventive compounds, conjugates, or synthetic nanocarriers, optionally, in combination with pharmaceutically acceptable excipients.
- inventive compounds, conjugates, synthetic nanocarriers, or compositions are suspended in sterile saline solution for injection together with a preservative.
- inventive compounds, conjugates, synthetic nanocarriers, or compositions are manufactured under sterile conditions or are terminally sterilized. This can ensure that resulting compositions are sterile and non-infectious, thus improving safety when compared to non-sterile compositions. This provides a valuable safety measure, especially when subjects receiving inventive compounds, conjugates, synthetic nanocarriers, or compositions have immune defects, are suffering from infection, and/or are susceptible to infection.
- inventive compounds, conjugates, synthetic nanocarriers, or compositions may be lyophilized and stored in suspension or as lyophilized powder depending on the formulation strategy for extended periods without losing activity.
- inventive compounds, conjugates, synthetic nanocarriers, or compositions may be administered by a variety of routes of administration, including but not limited to parenteral, subcutaneous, intramuscular, intradermal, oral, intranasal, transmucosal, rectal; ophthalmic, transdermal, transcutaneous or by a combination of these routes.
- inventive compounds, conjugates, synthetic nanocarriers, or compositions and methods described herein can be used to induce, enhance, stimulate, modulate, or direct an immune response.
- inventive compounds, conjugates, synthetic nanocarriers, or compositions and methods described herein can be used in the diagnosis, prophylaxis and/or treatment of conditions such as cancers, infectious diseases, metabolic diseases, degenerative diseases, inflammatory diseases, immunological diseases, or other disorders and/or conditions.
- inventive compounds, conjugates, synthetic nanocarriers, or compositions and methods described herein can also be used for the prophylaxis or treatment of an addiction, such as an addiction to nicotine or a narcotic.
- inventive compounds, conjugates, synthetic nanocarriers, or compositions and methods described herein can also be used for the prophylaxis and/or treatment of a condition resulting from the exposure to a toxin, hazardous substance, environmental toxin, or other harmful agent.
- R848 dl-lactide R848-PLA R848 loading 3 mg/g
- a mixture of R848 (0.2 mmol, 63 mg), D/L-lactide (40 mmol, 5.8 g), and 4- dimethylaminopyridine (DMAP) (50 mg, 0.4 mmol) in 2 mL of anhydrous toluene was heated slowly to 150 0 C (oil bath temperature) and maintained at this temperature for 18 h (after 3 hr, no R848 was left). The mixture was cooled to ambient temperature and the resulting mixture was quenched with water (50 mL) to precipitate out the resulting polymer, R848-PLA.
- DMAP 4- dimethylaminopyridine
- the polymer was then washed sequentially with 45 mL each of MeOH, iPrOH, and ethyl ether. The polymer was dried under vacuum at 30 0 C to give an off-white puffy solid (5.0 g). Polymeric structure was confirmed by 1 H NMR in CDCl 3 . A small sample of the polymer was treated with 2 N NaOH aq in THF/MeOH to determine the loading of R848 on the polymer by reverse phase HPLC. The loading of R848 is 3 mg per gram of polymer (0.3% loading - 27.5% of theory).
- PLA-CO2H A solution of PLA-CO2H (average MW: 950, DPI: 1.32; 5.0 g, 5.26 mmol) and HBTU (4.0 g, 10.5 mmol) in EtOAc (120 mL) was stirred at room temperature under argon for 45 min. Compound R848 (1.65 g, 5.26 mmol) was added, followed by DIPEA (5.5 mL, 31.6 mmol). The mixture was stirred at room temperature for 6 h and then at 50-55 0 C for 15 h.
- Example 8 Conjugation Of R848 To PCADK Via Imide Ring Opening
- PCADK polyketal
- PCADK is synthesized in a 50 mL two-necked flask, connected to a short-path distilling head.
- 5.5 mg of re-crystallized p-toluenesulfonic acid (0.029 mmol, Aldrich, St. Louis, MO)
- ethyl acetate a 30 mL benzene solution (kept at 100 0 C), which contains 1 ,4-cyclohexanedimethanol (12.98 g, 90.0 mmol, Aldrich).
- the ethyl acetate is allowed to boil off, and distilled 2,2-dimethoxypropane (10.94 mL, 90.0 mmol, Aldrich) is added to the benzene solution, initiating the polymerization reaction. Additional doses of 2,2-dimethoxypropane (5 mL) and benzene (25 mL) are subsequently added to the reaction every hour for 6 hours via a metering funnel to compensate for 2,2-dimethoxypropane and benzene that is distilled off. After 8 hours, the reaction is stopped by addition of 500 ⁇ L of triethylamine. The polymer is isolated by precipitation in cold hexane (stored at -2O 0 C) followed by vacuum filtration.
- the molecular weight of PCADK is determined by gel permeation chromatography (GPC) (Shimadzu, Kyoto, Japan) equipped with a UV detector. THF is used as the mobile phase at a flow rate of 1 ml/min. Polystyrene standards from Polymer Laboratories (Amherst, MA) are used to establish a molecular weight calibration curve. This compound is used to generate the PCADK particles in all subsequent experiments.
- R848 may be conjugated to the terminal alcohol groups of the PCADK having molecular weight 6000 via imide ring opening, according to the step 2 shown below.
- Step 2 Conjugation of PCADK to R848
- step 2 the polymer from step 1 (12 g, 2.0 x 10 "3 moles) is dissolved in methylene chloride 100 mL, and the lactam of R848 (3.3 g, 8.0 x 10 "3 moles) is added. This slurry is stirred as l,5,7-triazabicyclo-[4,4,0]dec-5-ene (TBD, 0.835 g, 6 X 10 '3 moles) is added in a single portion. After stirring at room temperature overnight, a clear solution forms. The solution is diluted with methylene chloride (100 mL) and the solution is washed with 5% citric acid. This solution is dried over sodium sulfate after which it is filtered and evaporated under vacuum. After drying under high vacuum there is obtained 1 1.3 grams (81%) of polymer. A portion is hydrolyzed in acid and the R848 content is determined to be 9% by weight.
- Imide ring opening is used to attach R854 to the terminal alcohol groups of poly- caprolactonediol of molecular weight 2000.
- the polycaprolactone diol is purchased from Aldrich Chemical Company, Cat. #189421, and has the following structure:
- the polycaprolactone diol-R854 conjugate has the following structure:
- the polymer (5 g, 2.5 x 10 '3 moles) is dissolved in methylene chloride 25 mL and the lactam of R854 (2.4 g, 5.0 x 10 "3 moles) is added. This slurry is stirred as 1,5,7- triazabicyclo-[4,4,0]dec-5-ene (TBD, 0.557 g, 4 X 10 "3 moles) is added in a single portion. After stirring at room temperature for 15 minutes, a clear pale yellow solution forms. The solution is diluted with methylene chloride (100 mL) and the solution is washed with 5% citric acid. This solution is dried over sodium sulfate after which it is filtered and evaporated under vacuum. After drying under high vacuum there is obtained 5.2 grams (70%) of polymer. A portion is hydrolyzed in acid and the R848 content is determined to be 18.5% by weight.
- Imide ring opening is used to attach R848 to the terminal alcohol groups of poly- (hexamethylene carbonate)diol of molecular weight 2000.
- the poly(hexamethylene carbonate) diol is purchased from Aldrich Chemical Company, Cat # 461164, and has the following structure:
- the poly(hexamethylene carbonate) diol-R848 conjugate has the following structure:
- the polymer (5 g, 2.5 x 10 moles) is dissolved in methylene chloride 25 mL and the lactam of R848 (2.06 g, 5.0 X 10 "3 moles) is added. This slurry is stirred as 1,5,7- triazabicyclo-[4,4,0]dec-5-ene (TBD, 0.557 g, 4 X 10 "3 moles) is added in a single portion. After stirring at room temperature overnight a clear pale yellow solution forms. The solution is diluted with methylene chloride (100 mL) and the solution is washed with 5% citric acid. This solution is dried over sodium sulfate after which it is filtered and evaporated under vacuum.
- Example 11 Polylactic Acid Conjugates Of An Imidazoquinoline Using A Tin Ethylhexanoate Catalyst
- the reaction was stirred in an oil bath set at 120 °C until all of the lactide had dissolved and then tin ethylhexanoate (75 mg, 60 ⁇ L) was added via pipette. Heating was continued under argon for 16 hours. After cooling, water (20 mL) was added and stirring was continued for 30 minutes. The reaction was diluted with additional toluene (200 mL) and was then washed with water (200 mL). The toluene solution was then washed in turn with 10% sodium chloride solution containing 5% cone. Hydrochloric acid (200 mL) followed by saturated sodium bicarbonate (200 mL).
- the reaction was stirred in an oil bath set at 120 °C until all of the lactide had dissolved and then tin ethylhexanoate (19 mg, 15 ⁇ L) was added via pipette. Heating was continued under argon for 16 hours. After cooling, the reaction was diluted with ether (200 mL) and the solution was washed with water (200 mL). The solution was dried over magnesium sulfate, filtered and evaporated under vacuum to give 880 mg. of crude polylactic acid-R-848 conjugate. The crude polymer was chromatographed on silica using 10% methanol in methylene chloride as eluent. The fractions containing the conjugate were pooled and evaporated to give the purified conjugate.
- Example 13 Low Molecular Weight Polylactic Acid Co-Glycolic Acid Conjugates Of An Imidazoquinoline
- the reaction was stirred in an oil bath set at 120°C until all of the R848, glycolide and lactide had dissolved and then tin ethylhexanoate (50 mg, 39 ⁇ L) was added via pipette. Heating was continued under argon for 16 hours. After cooling, the reaction was diluted with ethyl acetate (200 mL) and the solution was washed with water (200 mL). The solution was dried over magnesium sulfate, filtered and evaporated under vacuum to give crude PLGA-R-848 conjugate. The crude polymer was chromatographed on silica using 10% methanol in methylene chloride as eluent.
- Example 14 Polylactic Acid Conjugates Of An Imidazoquinoline Using A Lithium Diisopropylamide Catalysis
- the imidazoquinoline (R-848), D/L lactide, and associated glassware were all dried under vacuum at 50 °C for 8 hours prior to use.
- To a round bottom flask equipped with a stir bar and condenser was added the R-848 (33 mg, 1.05 x 10 "4 moles), and dry toluene (5 mL). This was heated to reflux to dissolve all of the R-848.
- the solution was stirred under nitrogen and cooled to room temperature to provide a suspension of finely divided R-848.
- a solution of lithium diisopropyl amide 2.0 M in THF, 50 ⁇ L, 1.0 x 10 "4 moles
- the polymer was dissolved in methylene chloride (10 mL) and the solution was dripped into stirred hexane (200 mL). The precipitated polymer was isolated by decantation and was dried under vacuum to give 1.47 grams of the polylactic acid - R-848 conjugate as a white solid. A portion of the polymer was hydrolyzed in base and examined by HPLC for R-848 content. By comparison to a standard curve of R-848 concentration vs. HPLC response, it was determined that the polymer contained 10.96 mg of R-848 per gram of polymer.
- PLA D/L-polylactide
- Resomer R202H from Boehringer-Ingelheim, KOH equivalent acid number of 0.21 mmol/g, intrinsic viscosity (iv): 0.21 dl/g)
- DCM dichloromethane
- EDC 2.0 g, 10.5 mmol, 5 eq
- NHS 1.2 g, 10.5 mmol, 5 eq
- the solution was concentrated to remove most of DCM and the residue was added to a solution of 250 mL of diethyl ether and 5 mL of MeOH to precipitate out the activated PLA-NHS ester.
- the solvents were removed and the polymer was washed twice with ether (2 x 200 mL) and dried under vacuum to give PLA-NHS activated ester as a white foamy solid ( ⁇ 8 g recovered, 1 H NMR confirmed the presence of NHS ester).
- the PLA-NHS ester is stored under argon in a below -10 0 C freezer before use.
- reaction can be performed in DMF, THF, dioxane, or CHCl 3 instead of DCM.
- DCC can be used instead of EDC (resulting DCC-urea is filtered off before precipitation of the PLA-NHS ester from ether).
- the amount of EDC or DCC and NHS can be in the range of 2-10 eq of the PLA.
- PLA D/L-polylactide
- DCM dichloromethane
- EDC 2.0 g, 10.5 mmol, 5 eq
- NHS 1.2 g, 10.5 mmol, 5 eq
- the resulting solution is stirred at room temperature for 3 days.
- the solution is concentrated to remove most of DCM and the residue is added to a solution of 250 mL of diethyl ether and 5 mL of MeOH to precipitate out the activated PLA-NHS ester.
- PLA-NHS activated ester is stored under argon in a below -10 0 C freezer before use.
- the reaction can be performed in DMF, THF, dioxane, or CHC13 instead of DCM.
- DCC can be used instead of EDC (resulting DCC-urea is filtered off before precipitation of the PLA-NHS ester from ether).
- the amount of EDC or DCC and NHS can be in the range of 2-10 eq of the PLA.
- low MW PLGA with 50% to 75% glycolide is converted to the corresponding PLGA-NHS activated ester and is stored under argon in a below -10 0 C freezer before use.
- PLA (R202H, acid number of 0.21 mmol/g) (2.0 g, 0.42 mmol, 1.0 eq) was dissolved in 10 mL of dry acetonitrile. N,N'-disuccinimidyl carbonate (DSC) (215 mg, 1.26 mmol, 3.0 eq) and catalytic amount of 4-(N,N-dimethylamino)pyridine (DMAP) were added. The resulting mixture was stirred under argon for 1 day. The resulting solution was concentrated to almost dryness.
- DSC N,N'-disuccinimidyl carbonate
- DMAP 4-(N,N-dimethylamino)pyridine
- PLA (R202H) (5.0 g, 1.05 mmol) was dissolved in 25 mL of anhydrous DCM and 2.5 mL of anhydrous DMF. DCC (650 mg, 3.15 mmol, 5.0 eq) and pentafluorophenol (PFP) (580 mg, 3.15 mmol, 5.0 eq) were added. The resulting solution was stirred at room temperature for 6 days and then concentrated to remove DCM. The resulting residue was added to 250 mL of ether to precipitate out the activated PLA polymer which was washed with ether (2 x 10OmL) and dried under vacuum to give PLA-PFP activated ester as a white foamy solid (4.0 g).
- Example 20 Polylactic Acid Or PLGA Conjugates Of An Imidazoquinoline
- PLA-NHS 1.0 g
- R848 132 mg, 0.42 mmol
- DIPEA diisopropylethylamine
- the resulting solution was heated at 50-60 0 C for 2 days.
- the solution was cooled to room temperature and added to 40 mL of de-ionized (DI) water to precipitate out the polymer product.
- R848-PLA conjugate was then washed with DI water (40 mL) and ether (2 x 40 mL) and dried at 30 0 C under vacuum to give R848-PLA conjugate as a white foamy solid (0.8 g, H NMR showed the conjugation of R848 to PLA via the amide bond).
- the degree of conjugation (loading) of R848 on the polymer was confirmed by HPLC analysis as follows: a weighed amount of polymer was dissolved in THF/MeOH and treated with 15% NaOH. The resulting hydrolyzed polymer products were analyzed for the amount of R848 by HPLC in comparison with a standard curve.
- Example 21 Polylactic Acid Or PLGA Conjugates Of An Imidazoquinoline
- PLA-NHS 1.0 g, 0.21 mmol, 1.0 eq
- R848 132 mg, 0.42 mmol, 2.0 eq
- DIPEA 0.15 mL, 0.84 mmol, 4.0 eq
- DMAP 25 mg, 0.21 mmol, 1.0 eq
- the polymer was then washed with DI water (40 mL) and ether (2 x 40 mL) and dried at 30 0 C under vacuum to give PLA-R848 conjugate as a white foamy solid (0.7 g, 20 mg of the polymer was hydrolyzed in solution of 0.2 mL of THF, 0.1 mL of MeOH and 0.1 mL of 15% NaOH.
- the amount of R848 on the polymer was determined to be about 35 mg/g by reverse phase HPLC analysis (C 18 column, mobile phase A: 0.1% TFA in water, mobile phase B: 0.1 % TFA in CH3CN, gradient).
- PLA (R202H) (2.0 g, 0.42 mmol, 1.0 eq), DCC (260 mg, 1.26 mmol, 3.0 eq), NHS (145 mg, 1.26 mmol, 3.0 eq), R848 (200 mg, 0.63 mmol, 1.5 eq), DMAP (77 mg, 0.63 mmol, 1.5 eq) and DIPEA (0.223 mL, 1.26 mmol, 3.0 eq) were dissolved in 4 mL of dry DMF. The mixture was heated at 50-55 0 C for 3 days. The mixture was cooled to room temperature and diluted with DCM. The DCC-urea was filtered off and the filtrate was concentrated to remove DCM.
- PLA (R202H) (2.0 g, 0.42 mmol, 1.0 eq), EDC (242 mg, 1.26 mmol, 3.0 eq), HOAt (171 mg, 1.26 mmol, 3.0 eq), R848 (200 mg, 0.63 mmol, 1.5 eq), and DIPEA (0.223 mL, 1.26 mmol, 3.0 eq) were dissolved in 4 mL of dry DMF. The mixture was heated at 50-55 0 C for 2 days.
- the solution was cooled to room temperature and added to water (40 mL) to precipitate out the polymer product which was washed with water (40 mL), ether/MeOH (40 mL/2 mL) and ether (40 mL).
- the orange colored polymer was dissolved in 4 mL of DCM and the resulting solution was added to 40 mL of ether to precipitate out the polymer without much of the orange color.
- the light colored polymer was washed with ether (40 mL). After drying under vacuum at 30 0 C, the desired PLA-R848 conjugate was obtained as a light brown foamy solid (1.5 g).
- Example 24 Polylactic Acid Or PLGA Conjugates Of An Imidazoquinoline
- PLA (R202H) (1.0 g, 0.21 mmol, 1.0 eq), EDC (161 mg, 0.84 mmol, 4.0 eq), HOBt.H2O (65 mg, 0.42 mmol, 2.0 eq), R848 (132 mg, 0.42 mmol, 2.0 eq), and DIPEA (0.150 mL, 0.84 mmol, 4.0 eq) were dissolved in 2 mL of dry DMF. The mixture was heated at 50-55 0 C for 2 days. The solution was cooled to room temperature and added to water (40 mL) to precipitate out the polymer product.
- the orange colored polymer was dissolved in 2 mL of DCM and the resulting solution was added to 40 mL of ether to precipitate out the polymer which was washed with water/acetone (40 mL/2 mL) and ether (40 mL). After drying under vacuum at 30 0 C, the desired PLA-R848 conjugate was obtained as an off-white foamy solid (1.0 g, loading of R848 on polymer was about 45 mg/g based on HPLC analysis and confirmed by 1 H NMR). In the same manner, PLGA (75% Lactide)-R848 and PLGA (50% lactide)-R848 were prepared.
- t-butyloxycarbonyl (tBOC) protected polyglycine carboxylic acid (I) is prepared by ring opening polymerization of glycine N-carboxyanhydride (Aldrich cat #369772) using 6-aminohexanoic acid benzyl ester (Aldrich cat #S33465) by the method of Aliferis et al. (Biomacromolecules, 5_, 1653, (2004)). Protection of the end amino group as the t-BOC carbamate followed by hydrogenation over palladium on carbon to remove the benzyl ester completes the synthesis of BOC protected polyglycine carboxylic acid (I).
- the polymer is isolated by filtration and the polymer is then washed with 2-propanol (4 x 25 mL) to remove residual reagents and dried under vacuum at 35-40 0 C for 3 days.
- the polymer is isolated as an off white solid in a yield of 5.1 g (88%).
- the R848 loading that can be determined by NMR is 10.1%.
- the r-BOC protecting group is removed using trifluoroacetic acid and the resulting polymer is grafted to PLA with carboxyl end groups by conventional methods.
- Step 1 A t-BOC protected polyglycine/R848 conjugate (5 g) is dissolved in trifluoroacetic acid (25 mL) and this solution is warmed at 50°C for one hour. After cooling, the trifluoroacetic acid is removed under vacuum and the residue is triturated in ethyl acetate (25 mL). The polymer is isolated by filtration and is washed well with 2- propanol. After drying under vacuum there is obtained 4.5 grams of polymer as an off white solid.
- Step 2 A mixture of PLGA (Lakeshores Polymers, MW -5000, 7525DLG1 A, acid number 0.7 mmol/g, 10 g, 7.0 mmol) and HBTU (5.3 g, 14 mmol) in anhydrous DMF (100 mL) is stirred at RT under argon for 50 minutes.
- the polymer from above (1.4 g, 7 mmol) dissolved in dry DMF (20 mL) is added, followed by diisopropylethylamine (DIPEA) (5 mL, 28 mmol). The mixture is stirred at RT for 6 h and then at 50-55° C overnight (16 h).
- DIPEA diisopropylethylamine
- a mixture of PLGA (Lakeshores Polymers, MW -5000, 7525DLG1A, acid number 0.7 mmol/g, 1.0 g, 7.0 mmol) and HBTU (0.8 g, 2.1 mmol) in anhydrous EtOAc (30 mL) is stirred at RT under argon for 30 minutes.
- Compound (I) (0.22 g,0.7 mmol) in 2 mL of dry DMSO is added, followed by diisopropylethylamine (DIPEA) (0.73 mL, 4.2 mmol). The mixture is stirred at room temperature for 20 h.
- DIPEA diisopropylethylamine
- Example 28 Preparation Of PLGA-2,9-Dibenzyl-8-Hydroxyadenine Conjugate
- a mixture of PLGA (Lakeshores Polymers, MW -5000, 7525DLG1A, acid number 0.7 mmol/g, 1.0 g, 7.0 mmol) and HBTU (0.8 g, 2.1 mmol) in anhydrous EtOAc (30 mL) is stirred at RT under argon for 30 minutes.
- Compound (II) (0.24 g,0.7 mmol) in 2 mL of dry DMSO is added, followed by diisopropylethylamine (DIPEA) (0.73 mL, 4.2 mmol). The mixture is stirred at RT for 20 h.
- DIPEA diisopropylethylamine
- the poly(hexamethylene carbonate) diol is purchased from Aldrich Chemical Company, Cat # 461164.
- the polymer (5 g, 2.5 x 10 "3 moles) is dissolved in methylene chloride 25 mL and the lactam of 2-pentyl-8-hydroxy-9-benzyladenine (2.05 g, 5.0 x 10 "3 moles) is added. This slurry is stirred as l,5,7-triazabicyclo-[4,4,0]dec-5-ene (TBD, 0.557 g, 4 x 10 "3 moles) is added in a single portion. After stirring at room temperature overnight a clear pale yellow solution forms. The solution is diluted with methylene chloride (100 mL), and the solution is washed with 5% citric acid. This solution is dried over sodium sulfate after which it is filtered and evaporated under vacuum. After drying under high vacuum there is obtained 5.5 grams (78%) of polymer. NMR is used to determine the benzyladenine content which is 18%.
- a 3-nicotine-PEG-PLA polymer was synthesized as follows:
- the nicotine/PEG polymer (0.20 g, 5.7 x 10 '5 moles) was dissolved in dry tetrahydrofuran (10 mL) under nitrogen and the solution was stirred as a solution of lithium aluminum hydride in tetrahydrofuran (1.43 mL of 2.0 M, 2.85 x 10 '3 moles) was added. The addition of the lithium aluminum hydride caused the polymer to precipitate as a gelatinous mass. The reaction was heated to 80 0 C under a slow stream of nitrogen and the tetrahydrofuran was allowed to evaporate. The residue was then heated at 80 °C for 2 hours. After cooling, water (0.5 mL) was cautiously added.
- the flask was placed in an oil bath set at 120 0 C, and once the lactide had dissolved, tin ethylhexanoate (5.5 mg, 1.36 x 10 "5 moles) was added. The reaction was allowed to proceed at 120 0 C for 16 hours. After cooling to room temperature, water (15 mL) was added and stirring was continued for 30 minutes. Methylene chloride (200 mL) was added, and after agitation in a separatory funnel, the phases were allowed to settle. The methylene chloride layer was isolated and dried over anhydrous magnesium sulfate. After filtration to remove the drying agent, the filtrates were evaporated under vacuum to give the polymer as a colorless foam.
- Resiquimod (aka R848) was synthesized according to the synthesis provided in Example 99 of US Patent 5,389,640 to Gerster et al.
- R848 was conjugated to PLA by a method provided above, and the PLA structure was confirmed by NMR.
- PLA-PEG-nicotine conjugate was prepared according to Example 30.
- PLA was purchased (Boehringer Ingelheim Chemicals, Inc., 2820 North Normandy Drive, Orlando, VA 23805).
- the polyvinyl alcohol (Mw 11 KD - 31 KD, 85-89% hydrolyzed) was purchased from VWR scientific.
- Ovalbumin peptide 323-339 was obtained from Bachem Americas Inc. (3132 Kashiwa Street, Torrance CA 90505. Part # 4064565).
- Solution #1 (0.25 to 0.75 mL), solution #2 (0.25 mL), solution #3 (0.25 to 0.5 mL) and solution #4 (0.ImL) were combined in a small vial and the mixture was sonicated at 50% amplitude for 40 seconds using a Branson Digital Sonifier 250.
- solution #5 2.0 mL
- sonication at 35% amplitude for 40 seconds using the Branson Digital Sonifier 250 forms the second emulsion.
- This was added to a beaker containing phosphate buffer solution (30 mL) and this mixture was stirred at room temperature for 2 hours to form the nanoparticles.
- nanoparticle dispersion a portion of the nanoparticle dispersion (7.4 mL) was transferred to a centrifuge tube and spun at 5,300g for one hour, supernatant was removed, and the pellet was re-suspended in 7.4 mL of phosphate buffered saline. The centrifuge procedure was repeated and the pellet was re-suspended in 2.2 mL of phosphate buffered saline for a final nanoparticle dispersion of about 10 mg/mL.
- Ovalbumin peptide 323-339 a 17 amino acid peptide known to be a T cell epitope of Ovalbumin protein, was purchased from Bachem Americas Inc. (3132 Kashiwa Street, Torrance CA 90505.)
- Resiquimod (aka R848) was synthesized according to a method provided in US Patent 6,608,201.
- PLA-R848, resiquimod was conjugated to PLA with a molecular weight of approximately 2,500 Da according to a method provided above.
- PLGA-R848, resiquimod was conjugated to PLGA with a molecular weight of approximately 4,100 Da according to a method provided above.
- PS- 1826 DNA oligonucleotide with fully phosphorothioated backbone having nucleotide sequence 5'-TCC ATG ACG TTC CTG ACG TT-3' with a sodium counter-ion was purchased from Oligos Etc (9775 SW Commerce Circle C-6, Wilsonville, OR 97070.)
- PO- 1826 DNA oligonucleotide with phosphodiester backbone having nucleotide sequence 5'-TCC ATG ACG TTC CTG ACG TT-3' with a sodium counter-ion was purchased from Oligos Etc. (9775 SW Commerce Circle C-6, Wilsonville, OR 97070.) ⁇
- PLA with an inherent viscosity of 0.21 dL/g was purchased from SurModics Pharmaceuticals (756 Tom Martin Drive, Birmingham, AL 35211. Product Code 100 DL 2A.)
- PLA with an inherent viscosity of 0.71 dL/g was purchased from SurModics Pharmaceuticals (756 Tom Martin Drive, Birmingham, AL 35211. Product Code 100 DL 7A.)
- PLA with an inherent viscosity of 0.19 dL/g was purchased from Boehringer Ingelheim Chemicals, Inc. (Petersburg, VA. Product Code R202H.)
- PLA-PEG-nicotine with a molecular weight of approximately 18,500 to 22,000 Da was prepared according to a method provided above.
- PLA-PEG-R848 with a molecular weight of approximately 15,000 Da was synthesized was prepared according to a method provided above.
- Solution IA Ovalbumin peptide 323 - 339 @ 35 mg/mL in dilute hydrochloric acid aqueous solution.
- the solution was prepared by dissolving ovalbumin peptide in 0.13N hydrochloric acid solution at room temperature.
- Solution IB Ovalbumin peptide 323 - 339 @ 70 mg/mL in dilute hydrochloric acid aqueous solution.
- the solution was prepared by dissolving ovalbumin peptide in 0.13N hydrochloric acid solution at room temperature.
- Solution 2A 0.21 -IV PLA @ 75 mg/mL and PLA-PEG-nicotine @ 25 mg/ml in methylene chloride.
- the solution was prepared by first preparing two separate solutions at room temperature: 0.21 -IV PLA @ 100 mg/mL in pure methylene chloride and PLA-PEG- nicotine @ 100 mg/mL in pure methylene chloride.
- the final solution was prepared by adding 3 parts PLA solution for each part of PLA-PEG-nicotine solution.
- Solution 2B 0.71 -IV PLA @ 75 mg/mL and PLA-PEG-nicotine @ 25 mg/ml in methylene chloride.
- the solution was prepared by first preparing two separate solutions at room temperature: 0.71 -IV PLA @ 100 mg/mL in pure methylene chloride and PLA-PEG- nicotine @ 100 mg/mL in pure methylene chloride.
- the final solution was prepared by adding 3 parts PLA solution for each part of PLA-PEG-nicotine solution.
- Solution 2C 0.19-IV PLA @ 75 mg/mL and PLA-PEG-nicotine @ 25 mg/ml in methylene chloride.
- the solution was prepared by first preparing two separate solutions at room temperature: 0.19-IV PLA @ 100 mg/mL in pure methylene chloride and PLA-PEG- nicotine @ 100 mg/mL in pure methylene chloride. The final solution was prepared by adding 3 parts PLA solution for each part of PLA-PEG-nicotine solution.
- Solution 3 A Oligonucleotide (either PS- 1826 or PO- 1826) @ 200 mg/ml in purified water. The solution was prepared by dissolving oligonucleotide in purified water at room temperature.
- Solution 4A Same as Solution #2A.
- Solution 4B Same as Solution #2B.
- Solution 5 A Polyvinyl alcohol @ 50 mg/mL in 100 mM pH 8 phosphate buffer.
- W 1/02 was prepared by combining solution 1 and solution 2 in a small pressure tube and sonicating at 50% amplitude for 40 seconds using a Branson Digital Sonifier 250.
- W3/O4 was prepared by combining solution 3 and solution 4 in a small pressure tube and sonicating at 50% amplitude for 40 seconds using a Branson Digital Sonifier 250.
- a third emulsion with two inner emulsion ([W1/O2,W3/O4]/W5) emulsion was prepared by combining 0.5 ml of each primary emulsion (W 1/02 and W3/O4) and solution 5 and sonicating at 30% amplitude for 40 to 60 seconds using the Branson Digital Sonifier 250.
- the third emulsion was added to a beaker containing 7OmM phosphate buffer solution (30 mL) and stirred at room temperature for 2 hours to allow for the methylene chloride to evaporate and for the nanocarriers to form.
- a portion of the nanocarriers were washed by transferring the nanocarrier suspension to a centrifuge tube and spinning at 13,823g for one hour, removing the supernatant, and re-suspending the pellet in phosphate buffered saline. The washing procedure was repeated and the pellet was re-suspended in phosphate buffered saline for a final nanocarrier dispersion of about 10 mg/mL.
- oligonucleotide and peptide in the nanocarrier were determined by HPLC analysis.
- Solution IA Ovalbumin peptide 323 - 339 @ 69 mg/mL in de-ionized water.
- the solution was prepared by slowly adding ovalbumin peptide to the water while mixing at room temperature.
- Solution IB Ovalbumin peptide 323 - 339 @ 70 mg/mL in dilute hydrochloric acid aqueous solution.
- the solution was prepared by dissolving ovalbumin peptide in 0.13N hydrochloric acid solution at room temperature.
- Solution 1C Oligonucleotide (PS- 1826) @ 50 mg/ml in purified water. The solution was prepared by dissolving oligonucleotide in purified water at room temperature.
- Solution ID Ovalbumin peptide 323 - 339 @ 17.5 mg/mL in dilute hydrochloric acid aqueous solution.
- the solution was prepared by dissolving ovalbumin peptide @ 70 mg/ml in 0.13N hydrochloric acid solution at room temperature and then diluting the solution with 3 parts purified water per one part of starting solution.
- Solution 2 A R848 @ 10 mg/ml and 0.19-IV PLA @ 100 mg/mL in pure methylene chloride prepared at room temperature.
- Solution 2B PLA-R848 @ 100 mg/ml in pure methylene chloride prepared at room temperature.
- Solution 2C PLGA-R848 @ 100 mg/ml in pure methylene chloride prepared at room temperature.
- Solution 2D PLA-PEG-R848 @ 100 mg/ml in pure methylene chloride prepared at room temperature.
- Solution 3 A PLA-PEG-nicotine @ 100 mg/ml in pure methylene chloride prepared at room temperature.
- Solution 4A 0.19-IV PLA @ 100 mg/mL in pure methylene chloride prepared at room temperature.
- Solution 5A Polyvinyl alcohol @ 50 mg/mL in de-ionized water.
- Solution 5B Polyvinyl alcohol @ 50 mg/mL in 100 mM pH 8 phosphate buffer.
- the water in oil (W/O) primary emulsion was prepared by combining solution 1 and solution 2, solution 3, and solution 4 in a small pressure tube and sonicating at 50% amplitude for 40 seconds using a Branson Digital Sonifier 250.
- the water/oil/water (W/O/W) double emulsion was prepared by adding solution 5 to the primary emulsion and sonicating at 30% to 35% amplitude for 40 seconds using the Branson Digital Sonifier 250.
- the double emulsion was added to a beaker containing phosphate buffer solution (30 mL) and stirred at room temperature for 2 hours to allow for the methylene chloride to evaporate and for the nanocarriers to form.
- a portion of the nanocarriers were washed by transferring the nanocarrier suspension to a centrifuge tube and spinning at 5,000 to 9,500 RPM for one hour, removing the supernatant, and re-suspending the pellet in phosphate buffered saline. The washing procedure was repeated and the pellet was re-suspended in phosphate buffered saline for a final nanocarrier dispersion of about 10 mg/mL.
- CpG immunological agent
- Agilent 1100 reverse phase HPLC on Agilent 1100 system at 260 nm equipped with Waters XBridge C- 18 (2.5 micron particle, 5Ox 4.6 mm ID (part No. 186003090), column temp. 600C) using mobile phase A of 2% acetonitrile in 100 mM TEA- acetic acid buffer, pH about 8.0 and mobile B as 90% acetonitrile, 10% water (column equilibrated at 5% B, increased to 55% B in 8.5 min, then ramped to 90% B to 12 minutes. Strength of B was rapidly decreased to 5% in one minute and equilibrated until stop time, 16 minutes. The flow rate was 1 mL/min until end of the method, 16 minutes).
- Nicotine analog was measured using reverse phase HPLC on Agilent 1100 system at 254 nm equipped with Waters X-Bridge C- 18 (5 micron particle, 100 x 4.6 mm ID, column temp at 400C) using Mobile Phase A (MPA) of 95% water/5% acetonitrile/0.1% TFA and Mobile Phase B (MPB) of 90 % acetonitrile/ 10% water/0.09% TFA (gradient: column was equilibrated at 5% B increased to 45% B in 14 minutes. Then ramped up to 95% B from 14 to 20 minutes. Mobile B strength was quickly decreased back to 5% and requilibrated until the end of the method.
- MPA Mobile Phase A
- MPB Mobile Phase B
- the flow rate of the method was maintained at 0.5 ml/min with total run time of 25 minutes.
- the NC suspension was centrifuged @14000 rpm for about 15-30 minutes depending on particle size.
- the collected pellets were treated with 200 uL of cone.
- NH 4 OH (8 M) for 2h with agitation until the solution turns clear.
- a 200 uL of 1% TFA was added to neutralize the mixture solution, which brought the total volume of the pellet solution to 200 uL.
- An aliquot of 50 uL of the solution was diluted with MPA(or water) to 200 uL and analyzed on HPLC as above to determine the amount present in the pellets.
- NC suspension from the manufacture (about 10 mg/mL suspension in PBS) was spun down at 14000rpm for 15 to 30 minutes depending on particle size.
- the collected pellets were re-suspended with 500 uL of water and sonicated for 30 minutes to fully disperse the particles.
- the NC was then heated at 600 0 C for 10 minutes. Additional 200 uL of 1 N NaOH was added to the mixture, heated for another 5 minutes where the mixture becomes clear.
- the hydrolyzed NC solution was centrifuged briefly at 14000 rpm. A final 2x dilution of the clear solution using water was then made and assayed on the reverse HPLC described above.
- Encapsulated T cell antigens e.g., ova peptide, or human peptide, TT2pDT5t
- NC suspension from the manufacture (about 10 mg/mL suspension in PBS) was spun down at 14000rpm for 15 to 30 minutes.
- 100 uL of acetonitrile was added to the pellets to dissolve the polymer components of the NC.
- the mixture was vortexed and sonicated for 1 to 5 minutes.
- 100 uL 0.2% TFA was added to the mixture to extract the peptides and sonicated for another 5 minutes to ensure the break down of the aggregates.
- the mixture was centrifuged at 14000rpm for 15 minutes to separate any insoluble materials (e.g., polymers).
- a 50 uL aliquot of the supernatant diluted with 150 uL of MPA (or water) was taken and assayed on the reverse phase HPLC as described above.
- the total amount of R848 and ova peptide present in the nanoparticles was as shown in Table 1.
- An aqueous suspension of the tested synthetic nanocarriers was then diluted to a final stock volume of 4.4 mL with PBS.
- a 200 ⁇ L aliquot was immediately removed from each of the NP sample and centrifuged @ 14000 rpm in a microcentrifuge tubes using a Microcentrifuge ( Model: Galaxy 16). 100 ⁇ L of supernatant was removed and diluted to 200 ⁇ L in HPLC Mobile Phase A (MPA) and assayed for the amount of R848 and ova peptide released on the reverse phase HPLC.
- MPA HPLC Mobile Phase A
- the remaining pellets (conjugated R848 samples only) from each sample was treated with 200 uL of cone. NH4OH (8 M) for 3h with mixing. After the mixture was settled, 200 uL of 1% TFA was added to bring total volume of the pellet to 400 uL. An aliquot of 50 uL of the solution was diluted with MPA to 200 uL and analyzed on HPLC as above to determine the amount of R848 and ova peptide that remained in the pellet after in vitro release to close the mass balance. For unconjugated samples, the sample was diluted with TFA in acetonitrile and assayed as above for R848 and peptide.
- Citrate IVR a. Add 9 x 200 uL of each of the samples to microcentrifuge tubes. (3 x 200 for unconjugated) b. Centrifuge for 20 minutes @ 6000 rpm. c. Remove the supernatants. d. To each tube, add 500 ⁇ L of citrate buffer and resuspend thoroughly. e. Place samples in 37C oven
- antigen e.g., ova peptide, T cell antigen
- immunostimulatory agents e.g., R848, CpG
- PBS phosphate buffered saline solution
- the release of R848 from the nanocarrier composed of conjugated R848 and the ova peptide was achieved by exchanging desired amount of the aqueous suspension of the tested synthetic nanocarriers obtained from the manufacture (e.g., about 10 mg/mL in PBS) into the same volume of the appropriate release media (Citrate buffer 10OmM) via centrifugation and re-suspension.
- desired amount of the aqueous suspension of the tested synthetic nanocarriers obtained from the manufacture e.g., about 10 mg/mL in PBS
- the appropriate release media e.g., about 10 mg/mL in PBS
- a 150 ⁇ L aliquot was immediately removed from NC suspension prior placing the NC suspension to 37 0 C thermal chamber and centrifuged @ 14000 rpm in microcentrifuge tubes using a microcentrifuge (Model: Galaxy 16). 100 ⁇ L of the supernatant was removed and diluted to 200 ⁇ L with HPLC Mobile Phase A (MPA) or water and assayed for the amount of R848 and ova peptide released on the reverse phase HPLC.
- MPA HPLC Mobile Phase A
- the remaining pellets from each time point were treated with 100 uL OfNH 4 OH (8 M) for 2h (or more) with agitation until solution turn clear.
- a 100 uL of 1% TFA was added to neutralize the mixture, which brought the total volume of the pellet solution to 200 uL.
- the release of CpG was determined similar to the measurement of R848 and ova peptide in terms of sample preparation and monitored time points. However, the amount of the CpG in the release media was assayed by the reverse phase HPLC method described above.
- NC-Nic was a composition of nanocarriers exhibiting nicotine on the outer surface and, for all groups of mice except for Group 1, carrying CpG- 1826 (thioated) adjuvant, which was released from the nanocarriers at different rates.
- the nanocarriers were prepared according to a method provided above. Serum anti-nicotine antibodies were then measured on days 26 and 40. EC 50 for anti- nicotine antibodies as measured in standard ELISA against polylysine-nicotine are shown in Fig. 4.
- the Group 1 mice were administered NC-Nic w/o CpG- 1826 containing Ova peptide and polymers, 75% of which were PLA and 25% were PLA-PEG-Nic.
- the Group 2 mice were administered NC-Nic containing ova peptide, polymers, 75% of which were PLA and 25% were PLA-PEG-Nic, and 3.2% CpG-1826; release rate at 24 hours: 4.2 ⁇ g CpG per mg of NC.
- the Group 3 mice were administered NC-Nic containing polymers, 75% of which were PLA and 25% were PLA-PEG-Nic, and 3.1% CpG-1826; release rate at 24 hours: 15 ⁇ g CpG per mg of NC. Release was determined at a pH of 4.5.
- Fig. 4 demonstrate that entrapment of adjuvant into nanocarriers is beneficial for the immune response against NC-associated antigen, and, furthermore, that the higher release rate of entrapped CpG adjuvant from within the nanocarriers (NC) at 24 hours produced an immune response, which was elevated compared to one induced by NC with a slower release rate of CpG adjuvant (a TLR9 agonist).
- NC-Nic was a composition of nanocarriers exhibiting nicotine on the outer surface and carrying one of two forms of CpG- 1826 adjuvant.
- the nanocarriers were prepared according to a method provided above. EC 50 for anti-nicotine antibodies as measured in standard ELISA against polylysine-nicotine are shown in Fig. 5.
- the Group 1 mice were administered NC-Nic containing ova peptide, polymers, 75% of which were PLA and 25% were PLA-PEG-Nic, and 6.2% CpG- 1826 (thioated); release rate at 24 hours: 16.6 ⁇ g CpG per mg of NC.
- the Group 2 mice were administered NC-Nic containing ova peptide, polymers, 75% of which were PLA and 25% were PLA- PEG-Nic, and 7.2% CpG-1826 (thioated); release rate at 24 hours: 13.2 ⁇ g CpG per mg of NC.
- the Group 3 mice were administered NC-Nic containing ova peptide, polymers, 75% of which were PLA and 25% were PLA-PEG-Nic, and 7.9% CpG- 1826 (phosphodiester or PO, non-thioated); release rate at 24 hours: 19.6 ⁇ g CpG per mg of NC.
- the Group 4 mice were administered NC-Nic containing ova peptide, polymers, 75% of which were PLA and 25% were PLA-PEG-Nic, and 8.5% CpG-1826 (PO, non-thioated); release rate at 24 hours: 9.3 ⁇ g CpG per mg of NC. Release was determined at a pH of 4.5.
- mice Groups of five mice were immunized three times (subcutaneously, hind limbs) at 2- week intervals (days 0, 14 and 28) with 100 ⁇ g of NC-Nic and serum anti-nicotine antibodies were then measured on days 26, 40 and 54.
- the nanocarriers were prepared according to a method provided above. EC 50 for anti-nicotine antibodies as measured in standard ELISA against polylysine-nicotine are shown in Fig. 6.
- the Group 1 mice were administered NC-Nic containing ova peptide and polymers, 75% of which were PLA and 25% were PLA-PEG-Nic, but without adjuvant.
- the Group 2 mice were administered NC-Nic containing ova peptide, polymers, 75% of which were PLA and 25% were PLA-PEG-Nic, and 1.0% R848; of which 92% is released at 2 hours and more than 96% is released at 6 hours.
- the Group 3 mice were administered NC-Nic containing ova peptide, polymers, 75% of which were PLA-R848 and 25% were PLA-PEG- Nic, and 1.3% R848, of which 29.4% is released at 6 hours and 67.8% is released at 24 hours.
- mice were administered NC-Nic containing ova peptide, polymers, 75% of which were PLA-R848 and 25% were PLA-PEG-Nic, and 1.4% of R848, of which 20.4% is released at 6 hours and 41.5% is released at 24 hours.
- the Group 5 mice were administered NC-Nic containing ova peptide, polymers, 25% of which were PLA-PEG- R848, 50% PLA, and 25% were PLA-PEG-Nic, and 0.7% of R848; of which less than 1% is released at 24 hours. Release was determined at a pH of 4.5.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Medicinal Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Pharmacology & Pharmacy (AREA)
- General Health & Medical Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Organic Chemistry (AREA)
- Epidemiology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Nanotechnology (AREA)
- Immunology (AREA)
- General Chemical & Material Sciences (AREA)
- Microbiology (AREA)
- Mycology (AREA)
- Polymers & Plastics (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Biomedical Technology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Molecular Biology (AREA)
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Neurology (AREA)
- Neurosurgery (AREA)
- Biophysics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Medical Informatics (AREA)
- General Engineering & Computer Science (AREA)
- Biotechnology (AREA)
- Psychiatry (AREA)
- Addiction (AREA)
- Hospice & Palliative Care (AREA)
- Oncology (AREA)
- Communicable Diseases (AREA)
- Rheumatology (AREA)
- Pain & Pain Management (AREA)
Abstract
Description
Claims
Priority Applications (11)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
MX2011012599A MX2011012599A (en) | 2009-05-27 | 2010-05-26 | Immunomodulatory agent-polymeric compounds. |
BRPI1010674A BRPI1010674A2 (en) | 2009-05-27 | 2010-05-26 | polymeric compounds of immunomodulatory agents |
JP2012513053A JP6297776B2 (en) | 2009-05-27 | 2010-05-26 | Immunomodulators-polymer compounds |
EP10726348A EP2435095A2 (en) | 2009-05-27 | 2010-05-26 | Immunomodulatory agent-polymeric compounds |
CA2762653A CA2762653A1 (en) | 2009-05-27 | 2010-05-26 | Immunomodulatory agent-polymeric compounds |
EA201171480A EA030246B1 (en) | 2009-05-27 | 2010-05-26 | Immunomodulatory agent-polymeric compounds |
KR1020117030993A KR101916875B1 (en) | 2009-05-27 | 2010-05-26 | Immunomodulatory agent-polymeric compounds |
KR1020187031961A KR20180122487A (en) | 2009-05-27 | 2010-05-26 | Immunomodulatory agent-polymeric compounds |
AU2010254551A AU2010254551B2 (en) | 2009-05-27 | 2010-05-26 | Immunomodulatory agent-polymeric compounds |
CN201080028246.XA CN102481376B (en) | 2009-05-27 | 2010-05-26 | Immunomodulatory agent-polymeric compounds |
IL216550A IL216550A (en) | 2009-05-27 | 2011-11-23 | Immunomodulatory agent-polymeric compounds, compositions comprising them, methods for their production and their uses |
Applications Claiming Priority (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US21711709P | 2009-05-27 | 2009-05-27 | |
US21712909P | 2009-05-27 | 2009-05-27 | |
US21711609P | 2009-05-27 | 2009-05-27 | |
US21712409P | 2009-05-27 | 2009-05-27 | |
US61/217,129 | 2009-05-27 | ||
US61/217,124 | 2009-05-27 | ||
US61/217,117 | 2009-05-27 | ||
US61/217,116 | 2009-05-27 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2010138194A2 true WO2010138194A2 (en) | 2010-12-02 |
WO2010138194A3 WO2010138194A3 (en) | 2011-06-30 |
Family
ID=43012672
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2010/001561 WO2010138194A2 (en) | 2009-05-27 | 2010-05-26 | Immunomodulatory agent-polymeric compounds |
PCT/US2010/001560 WO2010138193A2 (en) | 2009-05-27 | 2010-05-26 | Targeted synthetic nanocarriers with ph sensitive release of immunomodulatory agents |
PCT/US2010/001559 WO2010138192A2 (en) | 2009-05-27 | 2010-05-26 | Nanocarriers possessing components with different rates of release |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2010/001560 WO2010138193A2 (en) | 2009-05-27 | 2010-05-26 | Targeted synthetic nanocarriers with ph sensitive release of immunomodulatory agents |
PCT/US2010/001559 WO2010138192A2 (en) | 2009-05-27 | 2010-05-26 | Nanocarriers possessing components with different rates of release |
Country Status (12)
Country | Link |
---|---|
US (9) | US20100303850A1 (en) |
EP (3) | EP2435094A2 (en) |
JP (8) | JP6282395B2 (en) |
KR (6) | KR20180026571A (en) |
CN (7) | CN107252482A (en) |
AU (6) | AU2010254550B2 (en) |
BR (3) | BRPI1010674A2 (en) |
CA (3) | CA2762653A1 (en) |
EA (6) | EA022699B1 (en) |
IL (3) | IL216550A (en) |
MX (5) | MX350667B (en) |
WO (3) | WO2010138194A2 (en) |
Cited By (36)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010138193A3 (en) * | 2009-05-27 | 2011-06-03 | Selecta Biosciences, Inc. | Targeted synthetic nanocarriers with ph sensitive release of immunomodulatory agents |
US8124590B2 (en) * | 2000-03-10 | 2012-02-28 | Dynavax Technologies Corporation | Biodegradable immunomodulatory formulations and methods for use thereof |
WO2013151736A2 (en) | 2012-04-02 | 2013-10-10 | modeRNA Therapeutics | In vivo production of proteins |
US8652487B2 (en) | 2011-04-29 | 2014-02-18 | Selecta Biosciences, Inc. | Tolerogenic synthetic nanocarriers for inducing regulatory B cells |
WO2014152540A1 (en) | 2013-03-15 | 2014-09-25 | Moderna Therapeutics, Inc. | Compositions and methods of altering cholesterol levels |
WO2014152211A1 (en) | 2013-03-14 | 2014-09-25 | Moderna Therapeutics, Inc. | Formulation and delivery of modified nucleoside, nucleotide, and nucleic acid compositions |
WO2015006747A2 (en) | 2013-07-11 | 2015-01-15 | Moderna Therapeutics, Inc. | Compositions comprising synthetic polynucleotides encoding crispr related proteins and synthetic sgrnas and methods of use. |
WO2015034925A1 (en) | 2013-09-03 | 2015-03-12 | Moderna Therapeutics, Inc. | Circular polynucleotides |
WO2015034928A1 (en) | 2013-09-03 | 2015-03-12 | Moderna Therapeutics, Inc. | Chimeric polynucleotides |
WO2015075557A2 (en) | 2013-11-22 | 2015-05-28 | Mina Alpha Limited | C/ebp alpha compositions and methods of use |
US9066978B2 (en) | 2010-05-26 | 2015-06-30 | Selecta Biosciences, Inc. | Dose selection of adjuvanted synthetic nanocarriers |
WO2016014846A1 (en) | 2014-07-23 | 2016-01-28 | Moderna Therapeutics, Inc. | Modified polynucleotides for the production of intrabodies |
WO2017070626A2 (en) | 2015-10-22 | 2017-04-27 | Modernatx, Inc. | Respiratory virus vaccines |
WO2017112943A1 (en) | 2015-12-23 | 2017-06-29 | Modernatx, Inc. | Methods of using ox40 ligand encoding polynucleotides |
WO2017120612A1 (en) | 2016-01-10 | 2017-07-13 | Modernatx, Inc. | Therapeutic mrnas encoding anti ctla-4 antibodies |
US9994443B2 (en) | 2010-11-05 | 2018-06-12 | Selecta Biosciences, Inc. | Modified nicotinic compounds and related methods |
US10046064B2 (en) | 2014-09-07 | 2018-08-14 | Selecta Biosciences, Inc. | Methods and compositions for attenuating exon skipping anti-viral transfer vector immune responses |
WO2019048645A1 (en) | 2017-09-08 | 2019-03-14 | Mina Therapeutics Limited | Stabilized cebpa sarna compositions and methods of use |
WO2019048631A1 (en) | 2017-09-08 | 2019-03-14 | Mina Therapeutics Limited | Hnf4a sarna compositions and methods of use |
US10335395B2 (en) | 2013-05-03 | 2019-07-02 | Selecta Biosciences, Inc. | Methods of administering immunosuppressants having a specified pharmacodynamic effective life and therapeutic macromolecules for the induction of immune tolerance |
WO2019197845A1 (en) | 2018-04-12 | 2019-10-17 | Mina Therapeutics Limited | Sirt1-sarna compositions and methods of use |
WO2020033791A1 (en) | 2018-08-09 | 2020-02-13 | Verseau Therapeutics, Inc. | Oligonucleotide compositions for targeting ccr2 and csf1r and uses thereof |
WO2020208361A1 (en) | 2019-04-12 | 2020-10-15 | Mina Therapeutics Limited | Sirt1-sarna compositions and methods of use |
US10933129B2 (en) | 2011-07-29 | 2021-03-02 | Selecta Biosciences, Inc. | Methods for administering synthetic nanocarriers that generate humoral and cytotoxic T lymphocyte responses |
US11345932B2 (en) | 2018-05-16 | 2022-05-31 | Synthego Corporation | Methods and systems for guide RNA design and use |
WO2022122872A1 (en) | 2020-12-09 | 2022-06-16 | Ucl Business Ltd | Therapeutics for the treatment of neurodegenerative disorders |
US11426451B2 (en) | 2017-03-11 | 2022-08-30 | Selecta Biosciences, Inc. | Methods and compositions related to combined treatment with antiinflammatories and synthetic nanocarriers comprising an immunosuppressant |
WO2022200810A1 (en) | 2021-03-26 | 2022-09-29 | Mina Therapeutics Limited | Tmem173 sarna compositions and methods of use |
EP4074834A1 (en) | 2012-11-26 | 2022-10-19 | ModernaTX, Inc. | Terminally modified rna |
EP4144378A1 (en) | 2011-12-16 | 2023-03-08 | ModernaTX, Inc. | Modified nucleoside, nucleotide, and nucleic acid compositions |
WO2023099884A1 (en) | 2021-12-01 | 2023-06-08 | Mina Therapeutics Limited | Pax6 sarna compositions and methods of use |
WO2023104964A1 (en) | 2021-12-09 | 2023-06-15 | Ucl Business Ltd | Therapeutics for the treatment of neurodegenerative disorders |
WO2023161350A1 (en) | 2022-02-24 | 2023-08-31 | Io Biotech Aps | Nucleotide delivery of cancer therapy |
WO2023170435A1 (en) | 2022-03-07 | 2023-09-14 | Mina Therapeutics Limited | Il10 sarna compositions and methods of use |
US11884918B2 (en) | 2019-01-25 | 2024-01-30 | Synthego Corporation | Systems and methods for modulating CRISPR activity |
WO2024134199A1 (en) | 2022-12-22 | 2024-06-27 | Mina Therapeutics Limited | Chemically modified sarna compositions and methods of use |
Families Citing this family (54)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6993506B2 (en) | 2000-12-05 | 2006-01-31 | Jgr Acquisition, Inc. | Method and device utilizing polymorphic data in e-commerce |
JP4817599B2 (en) * | 2003-12-25 | 2011-11-16 | 独立行政法人科学技術振興機構 | Immune activity enhancer and method for enhancing immune activity using the same |
EP2323628B1 (en) | 2008-08-13 | 2022-04-13 | California Institute of Technology | Carrier nanoparticles and related compositions, methods and systems |
MX2011006205A (en) | 2008-12-09 | 2011-09-01 | Novavax Inc | Modified rsv f proteins and methods of their use. |
PE20110998A1 (en) * | 2008-12-09 | 2012-02-10 | Coley Pharm Group Inc | IMMUNOSTIMULATORY OLIGONUCLEOTIDES |
US11446374B2 (en) | 2008-12-09 | 2022-09-20 | Novavax, Inc. | Modified RSV F proteins and methods of their use |
US20110223201A1 (en) * | 2009-04-21 | 2011-09-15 | Selecta Biosciences, Inc. | Immunonanotherapeutics Providing a Th1-Biased Response |
JP5933437B2 (en) * | 2009-08-26 | 2016-06-08 | セレクタ バイオサイエンシーズ インコーポレーテッドSelecta Biosciences,Inc. | Composition to induce T cell help |
US20130323319A1 (en) | 2010-11-12 | 2013-12-05 | Getts Consulting And Project Management | Modified immune-modulating particles |
EP2648756A4 (en) * | 2010-12-10 | 2016-06-08 | California Inst Of Techn | Targeting kidney mesangium with nanoparticles of defined diameter |
EP2495567A1 (en) * | 2011-03-04 | 2012-09-05 | Erasmus University Medical Center Rotterdam | Methods and means for monitoring disruption of tissue homeostasis in the total body |
CA2830948A1 (en) * | 2011-03-25 | 2012-10-04 | Selecta Biosciences, Inc. | Osmotic mediated release synthetic nanocarriers |
JP6231474B2 (en) | 2011-04-18 | 2017-11-15 | ユニバーシティ・オブ・ジョージア・リサーチ・ファウンデイション・インコーポレイテッド | Vaccine delivery method |
CA2868391A1 (en) | 2012-04-02 | 2013-10-10 | Stephane Bancel | Polynucleotides comprising n1-methyl-pseudouridine and methods for preparing the same |
ES2738481T3 (en) | 2012-06-21 | 2020-01-23 | Univ Northwestern | Conjugated peptide particles |
US9468681B2 (en) | 2013-03-01 | 2016-10-18 | California Institute Of Technology | Targeted nanoparticles |
KR102266567B1 (en) * | 2013-03-11 | 2021-06-21 | 크리스탈 딜리버리 비.브이. | Vaccination composition |
WO2014160465A2 (en) | 2013-03-13 | 2014-10-02 | Cour Pharmaceuticals Development Company | Immune-modifying particles for the treatment of inflammation |
CA2910579C (en) * | 2013-05-03 | 2023-09-26 | Selecta Biosciences, Inc. | Dosing combinations for reducing undesired humoral immune responses |
US20140356361A1 (en) * | 2013-06-04 | 2014-12-04 | Selecta Biosciences, Inc. | Repeated administration of non-immunosuppressive antigen specific immunotherapeutics |
DK3033102T4 (en) | 2013-08-13 | 2024-02-26 | Univ Northwestern | PEPTIDE CONJUGATED PARTICLES |
DE102013015112B4 (en) | 2013-09-13 | 2016-07-14 | Holger Frey | Cleavable polyethylene glycol (PEG) macromolecules for inclusion of (glyco) proteins / antigens / allergens in degradable polyethylene glycol (PEG) nanoparticles and process for their preparation |
EP3049114B1 (en) | 2013-09-27 | 2021-11-10 | Massachusetts Institute of Technology | Carrier-free biologically-active protein nanostructures |
US10428331B2 (en) | 2014-01-16 | 2019-10-01 | Musc Foundation For Research Development | Targeted nanocarriers for the administration of immunosuppressive agents |
US9919058B2 (en) | 2014-07-15 | 2018-03-20 | The United States Of America, As Represented By The Secretary, Department Of Health And Human Services | Polyketal particles including a CpG oligodeoxynucleotide for the treatment of lung cancer |
US20170348402A1 (en) * | 2014-07-30 | 2017-12-07 | The Research Foundation For The State University Of New York | System and method for delivering genetic material or protein to cells |
WO2017003668A1 (en) | 2015-07-01 | 2017-01-05 | California Institute Of Technology | Cationic mucic acid polymer-based delivery systems |
EP3334417A4 (en) | 2015-08-12 | 2019-07-17 | Massachusetts Institute of Technology | Cell surface coupling of nanoparticles |
CN114796474A (en) * | 2015-09-03 | 2022-07-29 | 诺瓦瓦克斯股份有限公司 | Vaccine compositions with improved stability and immunogenicity |
EP3347047A1 (en) * | 2015-09-09 | 2018-07-18 | The United States Of America, As Represented By The Secretary, Department Of Health And Human Services | Expression vector delivery system and use thereof for inducing an immune response |
KR20180085761A (en) | 2015-11-20 | 2018-07-27 | 크리스탈 딜리버리 비.브이. | Active targeting nanoparticles |
CN109069440A (en) * | 2016-03-02 | 2018-12-21 | 得克萨斯州大学系统董事会 | The nano vaccine of activation STING for immunization therapy |
JP7185530B2 (en) | 2016-06-13 | 2022-12-07 | トルク セラピューティクス, インコーポレイテッド | Methods and compositions for promoting immune cell function |
EP3487527A4 (en) * | 2016-07-21 | 2020-03-11 | Case Western Reserve University | Plant virus or virus-like particle constructs |
IL297655A (en) * | 2017-01-10 | 2022-12-01 | Nektar Therapeutics | Multi-arm polymer conjugates of tlr agonist compounds and related immunotherapeutic treatment methods |
CN111148509A (en) | 2017-07-24 | 2020-05-12 | 诺瓦瓦克斯股份有限公司 | Methods and compositions for treating respiratory disorders |
EP3678701A4 (en) | 2017-09-05 | 2021-12-01 | Torque Therapeutics, Inc. | Therapeutic protein compositions and methods of making and using the same |
SG11202009206QA (en) | 2018-03-19 | 2020-10-29 | Novavax Inc | Multivalent influenza nanoparticle vaccines |
JP7072757B2 (en) * | 2018-05-30 | 2022-05-23 | ゲノム アンド カンパニー | A pharmaceutical composition for preventing or treating cancer, which contains a CD300E inhibitor as an active ingredient. |
US20190381188A1 (en) | 2018-06-13 | 2019-12-19 | California Institute Of Technology | Nanoparticles For Crossing The Blood Brain Barrier And Methods Of Treatment Using The Same |
AU2020204970A1 (en) * | 2019-01-04 | 2021-06-24 | Ascendis Pharma Oncology Division A/S | Conjugates of pattern recognition receptor agonists |
US20220054478A1 (en) * | 2019-01-04 | 2022-02-24 | Ascendis Pharma Oncology Division A/S | Minimization of systemic inflammation |
CN111249453B (en) * | 2020-02-26 | 2021-11-19 | 浙江大学 | Nano vaccine and preparation method thereof |
WO2021231702A1 (en) * | 2020-05-15 | 2021-11-18 | Rutgers, The State University Of New Jersey | Compositions and methods for treating wounds |
CN116322650A (en) * | 2020-07-01 | 2023-06-23 | 赛络生物医药有限公司 | Platelet membrane coated nanoparticles and uses thereof |
WO2022044025A1 (en) * | 2020-08-31 | 2022-03-03 | Rav Bariach (08) Industries Ltd. | Mechanical muti-point lock with an electro-mechanical unit for remote operation |
US11952492B2 (en) * | 2020-11-20 | 2024-04-09 | Encapsys, Llc | Biodegradable, controlled release microcapsules |
CN112494460B (en) * | 2020-12-10 | 2022-03-11 | 浙江大飞龙动物保健品股份有限公司 | Tilmicosin powder and preparation method thereof |
EP4277654A1 (en) | 2021-01-18 | 2023-11-22 | Conserv Bioscience Limited | Coronavirus immunogenic compositions, methods and uses thereof |
CA3216491A1 (en) | 2021-04-16 | 2022-10-20 | Asklepios Biopharmaceutical, Inc. | Rational polyploid aav virions that cross the blood brain barrier and elicit reduced humoral response |
KR20240056724A (en) * | 2021-09-17 | 2024-04-30 | 일루미나, 인코포레이티드 | Reagent compositions, methods, cartridges and systems |
US12060328B2 (en) | 2022-03-04 | 2024-08-13 | Reset Pharmaceuticals, Inc. | Co-crystals or salts of psilocybin and methods of treatment therewith |
KR20240076105A (en) * | 2022-11-23 | 2024-05-30 | 주식회사 바임 | Biodegradable polymer dispersion, AND method for preparing thereof |
CN117224699B (en) * | 2023-09-05 | 2024-03-19 | 贵州大学 | Nanocomposite and preparation method and application thereof |
Citations (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4638045A (en) | 1985-02-19 | 1987-01-20 | Massachusetts Institute Of Technology | Non-peptide polyamino acid bioerodible polymers |
US4806621A (en) | 1986-01-21 | 1989-02-21 | Massachusetts Institute Of Technology | Biocompatible, bioerodible, hydrophobic, implantable polyimino carbonate article |
US4946929A (en) | 1983-03-22 | 1990-08-07 | Massachusetts Institute Of Technology | Bioerodible articles useful as implants and prostheses having predictable degradation rates |
US5010167A (en) | 1989-03-31 | 1991-04-23 | Massachusetts Institute Of Technology | Poly(amide-and imide-co-anhydride) for biological application |
US5019379A (en) | 1987-07-31 | 1991-05-28 | Massachusetts Institute Of Technology | Unsaturated polyanhydrides |
US5389640A (en) | 1991-03-01 | 1995-02-14 | Minnesota Mining And Manufacturing Company | 1-substituted, 2-substituted 1H-imidazo[4,5-c]quinolin-4-amines |
US5399665A (en) | 1992-11-05 | 1995-03-21 | Massachusetts Institute Of Technology | Biodegradable polymers for cell transplantation |
US5512600A (en) | 1993-01-15 | 1996-04-30 | Massachusetts Institute Of Technology | Preparation of bonded fiber structures for cell implantation |
US5514378A (en) | 1993-02-01 | 1996-05-07 | Massachusetts Institute Of Technology | Biocompatible polymer membranes and methods of preparation of three dimensional membrane structures |
US5543158A (en) | 1993-07-23 | 1996-08-06 | Massachusetts Institute Of Technology | Biodegradable injectable nanoparticles |
US5578325A (en) | 1993-07-23 | 1996-11-26 | Massachusetts Institute Of Technology | Nanoparticles and microparticles of non-linear hydrophilic-hydrophobic multiblock copolymers |
US5716404A (en) | 1994-12-16 | 1998-02-10 | Massachusetts Institute Of Technology | Breast tissue engineering |
US5736372A (en) | 1986-11-20 | 1998-04-07 | Massachusetts Institute Of Technology | Biodegradable synthetic polymeric fibrous matrix containing chondrocyte for in vivo production of a cartilaginous structure |
US5770417A (en) | 1986-11-20 | 1998-06-23 | Massachusetts Institute Of Technology Children's Medical Center Corporation | Three-dimensional fibrous scaffold containing attached cells for producing vascularized tissue in vivo |
US5804178A (en) | 1986-11-20 | 1998-09-08 | Massachusetts Institute Of Technology | Implantation of cell-matrix structure adjacent mesentery, omentum or peritoneum tissue |
US5837752A (en) | 1997-07-17 | 1998-11-17 | Massachusetts Institute Of Technology | Semi-interpenetrating polymer networks |
US5902599A (en) | 1996-02-20 | 1999-05-11 | Massachusetts Institute Of Technology | Biodegradable polymer networks for use in orthopedic and dental applications |
US6007845A (en) | 1994-07-22 | 1999-12-28 | Massachusetts Institute Of Technology | Nanoparticles and microparticles of non-linear hydrophilic-hydrophobic multiblock copolymers |
US6095148A (en) | 1995-11-03 | 2000-08-01 | Children's Medical Center Corporation | Neuronal stimulation using electrically conducting polymers |
US6123727A (en) | 1995-05-01 | 2000-09-26 | Massachusetts Institute Of Technology | Tissue engineered tendons and ligaments |
US6506577B1 (en) | 1998-03-19 | 2003-01-14 | The Regents Of The University Of California | Synthesis and crosslinking of catechol containing copolypeptides |
US6608201B2 (en) | 1992-08-28 | 2003-08-19 | 3M Innovative Properties Company | Process for preparing 1-substituted, 2-substituted 1H-imidazo[4,5-c]quinolin-4-amines |
US6632922B1 (en) | 1998-03-19 | 2003-10-14 | The Regents Of The University Of California | Methods and compositions for controlled polypeptide synthesis |
US6686446B2 (en) | 1998-03-19 | 2004-02-03 | The Regents Of The University Of California | Methods and compositions for controlled polypeptide synthesis |
US6818732B2 (en) | 2001-08-30 | 2004-11-16 | The Regents Of The University Of California | Transition metal initiators for controlled poly (beta-peptide) synthesis from beta-lactam monomers |
US20060002852A1 (en) | 2004-07-01 | 2006-01-05 | Yale University | Targeted and high density drug loaded polymeric materials |
US20080145441A1 (en) | 2000-10-16 | 2008-06-19 | Midatech Limited | Nanoparticles |
WO2008127532A1 (en) | 2007-04-12 | 2008-10-23 | Emory University | Novel strategies for delivery of active agents using micelles and particles |
US20090028910A1 (en) | 2003-12-19 | 2009-01-29 | University Of North Carolina At Chapel Hill | Methods for Fabrication Isolated Micro-and Nano-Structures Using Soft or Imprint Lithography |
WO2009051837A2 (en) | 2007-10-12 | 2009-04-23 | Massachusetts Institute Of Technology | Vaccine nanotechnology |
Family Cites Families (230)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR7461M (en) | 1968-06-19 | 1970-01-05 | ||
GB1355961A (en) | 1970-02-27 | 1974-06-12 | Wellcome Found | Preparation of immunosuppressive antilymphocytic serum |
CH594444A5 (en) | 1972-12-04 | 1978-01-13 | Gerd Birrenbach | |
DK143689C (en) | 1975-03-20 | 1982-03-15 | J Kreuter | PROCEDURE FOR THE PREPARATION OF AN ADVERTISED VACCINE |
US4756907A (en) | 1978-10-17 | 1988-07-12 | Stolle Research & Development Corp. | Active/passive immunization of the internal female reproductive organs |
US6309669B1 (en) | 1984-03-16 | 2001-10-30 | The United States Of America As Represented By The Secretary Of The Army | Therapeutic treatment and prevention of infections with a bioactive materials encapsulated within a biodegradable-biocompatible polymeric matrix |
US4631211A (en) | 1985-03-25 | 1986-12-23 | Scripps Clinic & Research Foundation | Means for sequential solid phase organic synthesis and methods using the same |
JPS63122620A (en) | 1986-11-12 | 1988-05-26 | Sanraku Inc | Polylactic acid microsphere and production thereof |
FR2608988B1 (en) | 1986-12-31 | 1991-01-11 | Centre Nat Rech Scient | PROCESS FOR THE PREPARATION OF COLLOIDAL DISPERSIBLE SYSTEMS OF A SUBSTANCE, IN THE FORM OF NANOPARTICLES |
US5912017A (en) | 1987-05-01 | 1999-06-15 | Massachusetts Institute Of Technology | Multiwall polymeric microspheres |
US5229490A (en) | 1987-05-06 | 1993-07-20 | The Rockefeller University | Multiple antigen peptide system |
US6130082A (en) | 1988-05-05 | 2000-10-10 | American Cyanamid Company | Recombinant flagellin vaccines |
US4929624A (en) * | 1989-03-23 | 1990-05-29 | Minnesota Mining And Manufacturing Company | Olefinic 1H-imidazo(4,5-c)quinolin-4-amines |
US5114703A (en) * | 1989-05-30 | 1992-05-19 | Alliance Pharmaceutical Corp. | Percutaneous lymphography using particulate fluorocarbon emulsions |
US5733572A (en) * | 1989-12-22 | 1998-03-31 | Imarx Pharmaceutical Corp. | Gas and gaseous precursor filled microspheres as topical and subcutaneous delivery vehicles |
GB9016885D0 (en) * | 1990-08-01 | 1990-09-12 | Scras | Sustained release pharmaceutical compositions |
ES2108111T3 (en) | 1991-04-02 | 1997-12-16 | Biotech Australia Pty Ltd | ORAL SUPPLY SYSTEMS FOR MICROPARTICLES. |
US5811447A (en) | 1993-01-28 | 1998-09-22 | Neorx Corporation | Therapeutic inhibitor of vascular smooth muscle cells |
US6235313B1 (en) | 1992-04-24 | 2001-05-22 | Brown University Research Foundation | Bioadhesive microspheres and their use as drug delivery and imaging systems |
WO1994002068A1 (en) | 1992-07-21 | 1994-02-03 | The General Hospital Corporation | System of drug delivery to the lymphatic tissues |
GB9216082D0 (en) | 1992-07-28 | 1992-09-09 | Univ Nottingham | Lymphatic delivery composition |
FR2695563B1 (en) * | 1992-09-11 | 1994-12-02 | Pasteur Institut | Microparticles carrying antigens and their use for the induction of humoral or cellular responses. |
AU4932493A (en) | 1992-09-25 | 1994-04-26 | Dynagen, Inc. | An immunobooster for delayed release of immunogen |
US5928647A (en) | 1993-01-11 | 1999-07-27 | Dana-Farber Cancer Institute | Inducing cytotoxic T lymphocyte responses |
WO1994018955A1 (en) * | 1993-02-22 | 1994-09-01 | Alza Corporation | Compositions for oral delivery of active agents |
EP0689430B1 (en) | 1993-03-17 | 1997-08-13 | Silica Gel Ges.M.B.H | Superparamagnetic particles, process for producing the same and their use |
WO1995003035A1 (en) | 1993-07-23 | 1995-02-02 | Massachusetts Institute Of Technology | Polymerized liposomes with enhanced stability for oral delivery |
US5798340A (en) | 1993-09-17 | 1998-08-25 | Gilead Sciences, Inc. | Nucleotide analogs |
US5500161A (en) * | 1993-09-21 | 1996-03-19 | Massachusetts Institute Of Technology And Virus Research Institute | Method for making hydrophobic polymeric microparticles |
EP0740548B1 (en) | 1994-02-28 | 2002-12-04 | Nanopharm AG | Drug targeting system, method for preparing same and its use |
GB9412273D0 (en) * | 1994-06-18 | 1994-08-10 | Univ Nottingham | Administration means |
EP1167377B2 (en) | 1994-07-15 | 2012-08-08 | University of Iowa Research Foundation | Immunomodulatory oligonucleotides |
US6207646B1 (en) | 1994-07-15 | 2001-03-27 | University Of Iowa Research Foundation | Immunostimulatory nucleic acid molecules |
US6239116B1 (en) | 1994-07-15 | 2001-05-29 | University Of Iowa Research Foundation | Immunostimulatory nucleic acid molecules |
ATE252894T1 (en) | 1995-01-05 | 2003-11-15 | Univ Michigan | SURFACE-MODIFIED NANOPARTICLES AND METHODS FOR THEIR PRODUCTION AND USE |
WO1997004747A1 (en) | 1995-07-27 | 1997-02-13 | Dunn James M | Drug delivery systems for macromolecular drugs |
AU710347B2 (en) | 1995-08-31 | 1999-09-16 | Alkermes Controlled Therapeutics, Inc. | Composition for sustained release of an agent |
US5874064A (en) | 1996-05-24 | 1999-02-23 | Massachusetts Institute Of Technology | Aerodynamically light particles for pulmonary drug delivery |
US5922695A (en) | 1996-07-26 | 1999-07-13 | Gilead Sciences, Inc. | Antiviral phosphonomethyoxy nucleotide analogs having increased oral bioavarilability |
US6368598B1 (en) | 1996-09-16 | 2002-04-09 | Jcrt Radiation Oncology Support Services, Inc. | Drug complex for treatment of metastatic prostate cancer |
DE69737935T2 (en) | 1996-10-25 | 2008-04-03 | Minnesota Mining And Manufacturing Co., St. Paul | The immune response modifying compound for the treatment of TH2-mediated and related diseases |
US6042820A (en) | 1996-12-20 | 2000-03-28 | Connaught Laboratories Limited | Biodegradable copolymer containing α-hydroxy acid and α-amino acid units |
CA2281838A1 (en) | 1997-02-28 | 1998-09-03 | University Of Iowa Research Foundation | Use of nucleic acids containing unmethylated cpg dinucleotide in the treatment of lps-associated disorders |
AU753688B2 (en) | 1997-03-10 | 2002-10-24 | Ottawa Civic Loeb Research Institute | Use of nucleic acids containing unmethylated CpG dinucleotide as an adjuvant |
US6211159B1 (en) | 1997-04-11 | 2001-04-03 | University Of Toronto | Flagellin gene, FlaC of campylobacter |
US6060082A (en) | 1997-04-18 | 2000-05-09 | Massachusetts Institute Of Technology | Polymerized liposomes targeted to M cells and useful for oral or mucosal drug delivery |
DE69838294T2 (en) | 1997-05-20 | 2009-08-13 | Ottawa Health Research Institute, Ottawa | Process for the preparation of nucleic acid constructs |
US6989435B2 (en) | 1997-09-11 | 2006-01-24 | Cambridge University Technical Services Ltd. | Compounds and methods to inhibit or augment an inflammatory response |
DE19745950A1 (en) | 1997-10-17 | 1999-04-22 | Dds Drug Delivery Service Ges | Drug carrier particle for site specific drug delivery, especially to CNS |
NZ504800A (en) | 1997-11-28 | 2001-10-26 | Sumitomo Pharma | 6-Amino-9-benzyl-8-hydroxy-purine derivatives and interferon inducers, antiviral agents, anticancer agents and therapeutic agents for immunologic diseases thereof |
US6197229B1 (en) * | 1997-12-12 | 2001-03-06 | Massachusetts Institute Of Technology | Method for high supercoiled DNA content microspheres |
US6254890B1 (en) | 1997-12-12 | 2001-07-03 | Massachusetts Institute Of Technology | Sub-100nm biodegradable polymer spheres capable of transporting and releasing nucleic acids |
FR2775435B1 (en) | 1998-02-27 | 2000-05-26 | Bioalliance Pharma | NANOPARTICLES COMPRISING AT LEAST ONE POLYMER AND AT LEAST ONE COMPOUND CAPABLE OF COMPLEXING ONE OR MORE ACTIVE INGREDIENTS |
US6232287B1 (en) * | 1998-03-13 | 2001-05-15 | The Burnham Institute | Molecules that home to various selected organs or tissues |
CA2323929C (en) | 1998-04-03 | 2004-03-09 | University Of Iowa Research Foundation | Methods and products for stimulating the immune system using immunotherapeutic oligonucleotides and cytokines |
JP2002513763A (en) | 1998-05-06 | 2002-05-14 | ユニバーシティ オブ アイオワ リサーチ ファウンデーション | Methods for preventing and treating parasitic infections and related diseases using CPG oligonucleotides |
DE19827164A1 (en) * | 1998-06-18 | 1999-12-23 | Merck Patent Gmbh | Catalytic titanium (IV) oxide mediated geminal symmetrical dialkylation of carboxamides |
US6242589B1 (en) | 1998-07-14 | 2001-06-05 | Isis Pharmaceuticals, Inc. | Phosphorothioate oligonucleotides having modified internucleoside linkages |
ES2260923T3 (en) | 1998-07-29 | 2006-11-01 | Chiron Corporation | MICORPARTICLES WITH ADSORBENT SURFACES, MANUFACTURING PROCEDURES AND USE OF THE SAME. |
DE19839214C1 (en) * | 1998-08-28 | 2000-05-25 | Aventis Res & Tech Gmbh & Co | Process for the production of spherical microparticles with a smooth surface which consist wholly or partly of at least one water-insoluble linear polysaccharide, and microparticles obtainable by this process and their use |
US6306640B1 (en) | 1998-10-05 | 2001-10-23 | Genzyme Corporation | Melanoma antigenic peptides |
PL205109B1 (en) * | 1998-11-02 | 2010-03-31 | Elan Pharma Int Ltd | Multiparticulate modified release composition |
US7521068B2 (en) | 1998-11-12 | 2009-04-21 | Elan Pharma International Ltd. | Dry powder aerosols of nanoparticulate drugs |
US7238711B1 (en) | 1999-03-17 | 2007-07-03 | Cambridge University Technical Services Ltd. | Compounds and methods to inhibit or augment an inflammatory response |
US6444192B1 (en) | 1999-02-05 | 2002-09-03 | The Regents Of The University Of California | Diagnostic imaging of lymph structures |
US7238368B2 (en) | 1999-04-23 | 2007-07-03 | Alza Corporation | Releasable linkage and compositions containing same |
EP1880736A1 (en) | 1999-04-23 | 2008-01-23 | Alza Corporation | Releasable linkage and composition containing same |
US6800296B1 (en) | 1999-05-19 | 2004-10-05 | Massachusetts Institute Of Technology | Modification of surfaces using biological recognition events |
US6815170B1 (en) | 1999-06-30 | 2004-11-09 | John Wayne Cancer Institute | Methods for lymph node identification |
EP1202671A4 (en) * | 1999-08-13 | 2004-11-10 | Point Biomedical Corp | Microparticles useful as ultrasonic contrast agents and for lymphatic system |
CA2391534A1 (en) | 1999-11-15 | 2001-05-25 | Drug Innovation & Design, Inc. | Selective cellular targeting: multifunctional delivery vehicles |
EP1294930B1 (en) | 2000-01-13 | 2011-03-30 | Nanosphere, Inc. | Nanoparticles having oligonucleotides attached thereto and uses therefor |
US20050032733A1 (en) | 2001-05-18 | 2005-02-10 | Sirna Therapeutics, Inc. | RNA interference mediated inhibition of gene expression using chemically modified short interfering nucleic acid (SiNA) |
US8202979B2 (en) | 2002-02-20 | 2012-06-19 | Sirna Therapeutics, Inc. | RNA interference mediated inhibition of gene expression using chemically modified short interfering nucleic acid |
US20050020525A1 (en) | 2002-02-20 | 2005-01-27 | Sirna Therapeutics, Inc. | RNA interference mediated inhibition of gene expression using chemically modified short interfering nucleic acid (siNA) |
CA2400172C (en) | 2000-02-28 | 2010-04-20 | Genesegues, Inc. | Nanocapsule encapsulation system and method |
US20030129251A1 (en) | 2000-03-10 | 2003-07-10 | Gary Van Nest | Biodegradable immunomodulatory formulations and methods for use thereof |
US7129222B2 (en) * | 2000-03-10 | 2006-10-31 | Dynavax Technologies Corporation | Immunomodulatory formulations and methods for use thereof |
US7192725B2 (en) | 2000-05-19 | 2007-03-20 | University Of Toronto | Flagellin gene, flaC of Campylobacter |
AU2001297913A1 (en) | 2000-10-13 | 2002-12-23 | Ligocyte Pharmaceuticals, Inc. | Polyvalent nanoparticles |
AU2002245205B2 (en) | 2000-10-19 | 2007-07-19 | Ecole Polytechnique Federale De Lausanne | Block copolymers for multifunctional self-assembled systems |
US7592008B2 (en) | 2000-11-20 | 2009-09-22 | The Board Of Trustees Of The University Of Illinois, A Body Corporate And Politic Of The State Of Illinois | Membrane scaffold proteins |
US7097837B2 (en) | 2001-02-19 | 2006-08-29 | Pharmexa A/S | Synthetic vaccine agents |
US20030175950A1 (en) | 2001-05-29 | 2003-09-18 | Mcswiggen James A. | RNA interference mediated inhibition of HIV gene expression using short interfering RNA |
EP1528937B1 (en) | 2001-06-05 | 2016-08-10 | The Regents Of The University Of Michigan | Nanoemulsion vaccines |
WO2003005952A2 (en) | 2001-07-10 | 2003-01-23 | Corixa Corporation | Compositions and methods for delivery of proteins and adjuvants encapsulated in microspheres |
US20030133988A1 (en) | 2001-08-07 | 2003-07-17 | Fearon Karen L. | Immunomodulatory compositions, formulations, and methods for use thereof |
US8088388B2 (en) | 2002-02-14 | 2012-01-03 | United Biomedical, Inc. | Stabilized synthetic immunogen delivery system |
CA2476626A1 (en) | 2002-02-20 | 2003-08-28 | Chiron Corporation | Microparticles with adsorbed polypeptide-containing molecules |
US20030232013A1 (en) | 2002-02-22 | 2003-12-18 | Gary Sieckman | Therapeutic and diagnostic targeting of cancers cells with tumor homing peptides |
US7635463B2 (en) * | 2002-02-27 | 2009-12-22 | Pharmain Corporation | Compositions for delivery of therapeutics and other materials |
ES2734652T3 (en) | 2002-04-04 | 2019-12-11 | Zoetis Belgium S A | Immunostimulatory oligonucleotides containing G and U |
US20040038303A1 (en) * | 2002-04-08 | 2004-02-26 | Unger Gretchen M. | Biologic modulations with nanoparticles |
US7285289B2 (en) * | 2002-04-12 | 2007-10-23 | Nagy Jon O | Nanoparticle vaccines |
US20080233181A1 (en) | 2002-04-12 | 2008-09-25 | Nagy Jon O | Nanoparticle adjuvants for sub-unit vaccines |
US7524630B2 (en) * | 2002-04-22 | 2009-04-28 | University Of Florida Research Foundation, Inc. | Functionalized nanoparticles and methods of use |
DE60332725D1 (en) * | 2002-05-30 | 2010-07-08 | Scripps Research Inst | COPPER-CATALYZED LEADING OF AZIDES AND ACETYLENES |
AU2003276131A1 (en) * | 2002-06-18 | 2003-12-31 | Epigenesis Pharmaceuticals, Inc. | A dry powder oligonucleotide formulation, preparation and its uses |
US20040142887A1 (en) | 2002-07-10 | 2004-07-22 | Chengji Cui | Antigen-polymer compositions |
KR101228376B1 (en) * | 2002-07-18 | 2013-01-31 | 사이토스 바이오테크놀로지 아게 | Hapten-carrier conjugates and uses thereof |
US7488792B2 (en) | 2002-08-28 | 2009-02-10 | Burnham Institute For Medical Research | Collagen-binding molecules that selectively home to tumor vasculature and methods of using same |
US20060189554A1 (en) | 2002-09-24 | 2006-08-24 | Russell Mumper | Nanoparticle-Based vaccine delivery system containing adjuvant |
US7008411B1 (en) | 2002-09-30 | 2006-03-07 | Advanced Cardiovascular Systems, Inc. | Method and apparatus for treating vulnerable plaque |
NO20024755D0 (en) | 2002-10-03 | 2002-10-03 | Amersham Health As | Method |
SE0203687D0 (en) | 2002-12-13 | 2002-12-13 | Ian Harwigsson Med Adagit Fa | Pharmaceutical Porous Particles |
US20040156846A1 (en) | 2003-02-06 | 2004-08-12 | Triton Biosystems, Inc. | Therapy via targeted delivery of nanoscale particles using L6 antibodies |
DE602004008582T2 (en) | 2003-02-17 | 2008-05-21 | Peter Burkhard | PEPTIDIC NANOTEHICLES AS DRUG DISPENSING AND ANTIGEN DISPLAY SYSTEMS |
US20040191215A1 (en) | 2003-03-25 | 2004-09-30 | Michael Froix | Compositions for induction of a therapeutic response |
WO2004084871A1 (en) | 2003-03-26 | 2004-10-07 | Ltt Bio-Pharma Co., Ltd. | Intravenous nanoparticles for targenting drug delivery and sustained drug release |
EP1605972A2 (en) * | 2003-03-26 | 2005-12-21 | Cytos Biotechnology AG | Hiv-peptide-carrier-conjugates |
US7731967B2 (en) * | 2003-04-30 | 2010-06-08 | Novartis Vaccines And Diagnostics, Inc. | Compositions for inducing immune responses |
US7727969B2 (en) * | 2003-06-06 | 2010-06-01 | Massachusetts Institute Of Technology | Controlled release nanoparticle having bound oligonucleotide for targeted delivery |
EP1646427A1 (en) | 2003-07-22 | 2006-04-19 | Cytos Biotechnology AG | Cpg-packaged liposomes |
US20050042298A1 (en) * | 2003-08-20 | 2005-02-24 | Pardridge William M. | Immunonanoparticles |
AU2004281634B2 (en) | 2003-09-03 | 2011-01-27 | Dendritherapeutics, Inc. | Multiplex vaccines |
US7943179B2 (en) | 2003-09-23 | 2011-05-17 | Massachusetts Institute Of Technology | pH triggerable polymeric particles |
US20080160089A1 (en) * | 2003-10-14 | 2008-07-03 | Medivas, Llc | Vaccine delivery compositions and methods of use |
JP2007514519A (en) | 2003-10-20 | 2007-06-07 | ウィリアム・マーシュ・ライス・ユニバーシティ | Method for producing microcapsules comprising polymer and charged nanoparticles |
CA2546616A1 (en) | 2003-11-21 | 2005-06-09 | Alza Corporation | Gene delivery mediated by liposome-dna complex with cleavable peg surface modification |
WO2005055949A2 (en) * | 2003-12-09 | 2005-06-23 | The Children's Hospital Of Philadelphia | Sustained release preparations composed of biocompatible complex microparticles |
WO2005065418A2 (en) | 2003-12-31 | 2005-07-21 | Board Of Regents, The University Of Texas System | Compositions and methods of use of targeting peptides for diagnosis and therapy |
US20070087986A1 (en) | 2004-01-26 | 2007-04-19 | Brett Premack | Compositions and methods for enhancing immunity by chemoattractant adjuvants |
WO2005097993A2 (en) | 2004-02-19 | 2005-10-20 | Coley Pharmaceutical Group, Inc. | Immunostimulatory viral rna oligonucleotides |
AU2005244260B2 (en) * | 2004-04-09 | 2010-08-05 | 3M Innovative Properties Company | Methods, compositions, and preparations for delivery of immune response modifiers |
ES2246695B1 (en) | 2004-04-29 | 2007-05-01 | Instituto Cientifico Y Tecnologico De Navarra, S.A. | STIMULATING COMPOSITION OF THE IMMUNE RESPONSE THAT INCLUDES NANOPARTICLES BASED ON A COPYLIMER OF METHYL VINYL ETER AND MALEIC ANHYDRIDE. |
US20060017339A1 (en) * | 2004-06-03 | 2006-01-26 | Lalit Chordia | Brushless canned motor |
CN1997395B (en) | 2004-06-11 | 2012-08-29 | 独立行政法人理化学研究所 | Drug having regulatory cell ligand contained in liposome |
US7713550B2 (en) | 2004-06-15 | 2010-05-11 | Andrx Corporation | Controlled release sodium valproate formulation |
WO2006014579A2 (en) * | 2004-07-08 | 2006-02-09 | The Regents Of California | Enhancing class i antigen presentation with synthetic sequences |
US8017151B2 (en) * | 2004-09-07 | 2011-09-13 | Board Of Regents Of The University Of Nebraska By And Behalf Of The University Of Nebraska Medical Center | Amphiphilic polymer-protein conjugates and methods of use thereof |
CN1692943A (en) | 2004-09-17 | 2005-11-09 | 四川大学 | Preparation and application of CpG DNA molecule anti-infection and immunity prepn |
GB0421296D0 (en) | 2004-09-24 | 2004-10-27 | Angiogene Pharm Ltd | Bioreductively-activated prodrugs |
AU2005291058B2 (en) | 2004-10-01 | 2011-09-29 | Midatech Limited | Nanoparticles comprising antigens and adjuvants and immunogenic structure |
AU2005294214A1 (en) | 2004-10-07 | 2006-04-20 | Emory University | Multifunctional nanoparticles conjugates and their use |
WO2007001448A2 (en) | 2004-11-04 | 2007-01-04 | Massachusetts Institute Of Technology | Coated controlled release polymer particles as efficient oral delivery vehicles for biopharmaceuticals |
CA2586765A1 (en) | 2004-11-05 | 2006-12-28 | The General Hospital Corporation | Purposeful movement of human migratory cells away from an agent source |
WO2007013893A2 (en) | 2004-11-15 | 2007-02-01 | Novartis Vaccines And Diagnostics Inc. | Immunogenic compositions containing anthrax antigen, biodegradable polymer microparticles, and polynucleotide-containing immunological adjuvant |
US20060111271A1 (en) | 2004-11-24 | 2006-05-25 | Cerny Erich H | Active and passive immunization against pharmacologically active hapten molecules using a synthetic carrier compound composed of similar elements |
CA2590768A1 (en) | 2004-12-14 | 2006-06-22 | Alnylam Pharmaceuticals, Inc. | Rnai modulation of mll-af4 and uses thereof |
US20060257359A1 (en) | 2005-02-28 | 2006-11-16 | Cedric Francois | Modifying macrophage phenotype for treatment of disease |
JP2008534508A (en) | 2005-03-22 | 2008-08-28 | メドスター ヘルス インコーポレイテッド | Delivery system and method for diagnosing and treating cardiovascular disease |
US20080305161A1 (en) | 2005-04-13 | 2008-12-11 | Pfizer Inc | Injectable depot formulations and methods for providing sustained release of nanoparticle compositions |
AU2006241149A1 (en) | 2005-04-26 | 2006-11-02 | Coley Pharmaceutical Gmbh | Modified oligoribonucleotide analogs with enhanced immunostimulatory activity |
CN101217967B (en) | 2005-05-04 | 2014-09-10 | 诺松制药股份公司 | Novel use of enantiomer |
WO2006122223A2 (en) | 2005-05-10 | 2006-11-16 | Emory University | Strategies for delivery of active agents using micelles and particles |
CN101189020A (en) * | 2005-05-10 | 2008-05-28 | N·巴拉班 | Compositions for administering RNAIII-inhibiting peptides |
US9290617B2 (en) | 2005-07-06 | 2016-03-22 | Molly S. Shoichet | Method of biomolecule immobilization on polymers using click-type chemistry |
CA2618807C (en) | 2005-08-12 | 2015-01-06 | University Health Network | Methods and devices for lymphatic targeting |
US8765181B2 (en) * | 2005-09-09 | 2014-07-01 | Beijing Diacrid Medical Technology Co., Ltd | Nano anticancer micelles of vinca alkaloids entrapped in polyethylene glycolylated phospholipids |
PT1957647E (en) | 2005-11-25 | 2015-06-01 | Zoetis Belgium S A | Immunostimulatory oligoribonucleotides |
WO2008051245A2 (en) | 2005-12-02 | 2008-05-02 | Novartis Ag | Nanoparticles for use in immunogenic compositions |
CA2636139A1 (en) | 2005-12-14 | 2007-06-21 | Cytos Biotechnology Ag | Immunostimulatory nucleic acid packaged particles for the treatment of hypersensitivity |
WO2007070682A2 (en) | 2005-12-15 | 2007-06-21 | Massachusetts Institute Of Technology | System for screening particles |
US7842312B2 (en) | 2005-12-29 | 2010-11-30 | Cordis Corporation | Polymeric compositions comprising therapeutic agents in crystalline phases, and methods of forming the same |
WO2007089870A2 (en) * | 2006-01-31 | 2007-08-09 | Medivas, Llc | Vaccine delivery compositions and methods of use |
US8021689B2 (en) | 2006-02-21 | 2011-09-20 | Ecole Polytechnique Federale de Lausanne (“EPFL”) | Nanoparticles for immunotherapy |
WO2007100699A2 (en) | 2006-02-24 | 2007-09-07 | Novartis Ag | Microparticles containing biodegradable polymer and cationic polysaccharide for use in immunogenic compositions |
WO2008105773A2 (en) | 2006-03-31 | 2008-09-04 | Massachusetts Institute Of Technology | System for targeted delivery of therapeutic agents |
US20100247653A1 (en) | 2006-04-11 | 2010-09-30 | Hans Lautenschlager | Nanoparticles containing nicotine and/or cotinine, dispersions, and use thereof |
CA2652280C (en) | 2006-05-15 | 2014-01-28 | Massachusetts Institute Of Technology | Polymers for functional particles |
US20110052697A1 (en) * | 2006-05-17 | 2011-03-03 | Gwangju Institute Of Science & Technology | Aptamer-Directed Drug Delivery |
ES2427994T3 (en) | 2006-06-12 | 2013-11-05 | Cytos Biotechnology Ag | Processes for packaging oligonucleotides into viral bacterial phage particles |
WO2008054892A2 (en) * | 2006-06-16 | 2008-05-08 | Florida Atlantic University | Chitin micro-particles as an adjuvant |
WO2007150030A2 (en) | 2006-06-23 | 2007-12-27 | Massachusetts Institute Of Technology | Microfluidic synthesis of organic nanoparticles |
WO2008019142A2 (en) | 2006-08-04 | 2008-02-14 | Massachusetts Institute Of Technology | Oligonucleotide systems for targeted intracellular delivery |
US20080171059A1 (en) | 2006-08-07 | 2008-07-17 | Shanshan Wu Howland | Methods and compositions for increased priming of t-cells through cross-presentation of exogenous antigens |
BRPI0716658A2 (en) | 2006-08-11 | 2015-02-10 | Panacea Biotec Ltd | PARTICULARS FOR DISTRIBUTION OF ACTIVE INGREDIENTS, MANUFACTURING PROCESS AND COMPOSITIONS |
WO2008033432A2 (en) | 2006-09-12 | 2008-03-20 | Coley Pharmaceutical Group, Inc. | Immune modulation by chemically modified ribonucleosides and oligoribonucleotides |
EP2077821B1 (en) | 2006-10-12 | 2019-08-14 | The University Of Queensland | Compositions and methods for modulating immune responses |
WO2008147456A2 (en) | 2006-11-20 | 2008-12-04 | Massachusetts Institute Of Technology | Drug delivery systems using fc fragments |
US20090093551A1 (en) | 2006-12-08 | 2009-04-09 | Bhatia Sangeeta N | Remotely triggered release from heatable surfaces |
WO2008071774A1 (en) | 2006-12-14 | 2008-06-19 | Cytos Biotechnology Ag | Purification process for coat protein of rna bacteriophages |
US20080149123A1 (en) | 2006-12-22 | 2008-06-26 | Mckay William D | Particulate material dispensing hairbrush with combination bristles |
EA019151B1 (en) * | 2007-02-07 | 2014-01-30 | Дзе Регентс Оф Дзе Юниверсити Оф Калифорния | Conjugates of synthetic tlr agonists and uses thereof |
US9217129B2 (en) | 2007-02-09 | 2015-12-22 | Massachusetts Institute Of Technology | Oscillating cell culture bioreactor |
WO2008115641A2 (en) | 2007-02-15 | 2008-09-25 | Yale University | Modular nanoparticles for adaptable vaccines |
WO2008118861A2 (en) | 2007-03-23 | 2008-10-02 | The University Of North Carolina At Chapel Hill | Discrete size and shape specific organic nanoparticles designed to elicit an immune response |
WO2008121926A1 (en) | 2007-03-30 | 2008-10-09 | Particle Sciences, Inc. | Particle formulations and uses thereof |
US20090074828A1 (en) | 2007-04-04 | 2009-03-19 | Massachusetts Institute Of Technology | Poly(amino acid) targeting moieties |
WO2008124634A1 (en) | 2007-04-04 | 2008-10-16 | Massachusetts Institute Of Technology | Polymer-encapsulated reverse micelles |
AU2008236566A1 (en) | 2007-04-09 | 2008-10-16 | Chimeros, Inc. | Self-assembling nanoparticle drug delivery system |
US8394914B2 (en) | 2007-08-24 | 2013-03-12 | Board Of Trustees Of Michigan State University | Functional polyglycolide nanoparticles derived from unimolecular micelles |
WO2009038685A1 (en) | 2007-09-18 | 2009-03-26 | The Scripps Research Institute | Ligands for copper-catalyzed azide-alkyne cycloaddition reactions |
EP2217930B1 (en) * | 2007-10-24 | 2013-03-06 | Tallinn University Of Technology | Maldi ms-based high-throughput screening method for substances inhibiting aggregation of alzheimer's amyloid beta peptides |
US8815253B2 (en) * | 2007-12-07 | 2014-08-26 | Novartis Ag | Compositions for inducing immune responses |
WO2009109428A2 (en) | 2008-02-01 | 2009-09-11 | Alpha-O Peptides Ag | Self-assembling peptide nanoparticles useful as vaccines |
EP2262489A2 (en) | 2008-02-28 | 2010-12-22 | Deutsches Krebsforschungszentrum, Stiftung des öffentlichen Rechts | Hollow nanoparticles and uses thereof |
US20110151015A1 (en) | 2008-03-04 | 2011-06-23 | Liquikia Technologies, Inc. | Immunomodulator particles and methods of treating |
US20090297621A1 (en) | 2008-06-03 | 2009-12-03 | Abbott Cardiovascular Systems Inc. | Microparticles For The Treatment Of Disease |
US8613951B2 (en) * | 2008-06-16 | 2013-12-24 | Bind Therapeutics, Inc. | Therapeutic polymeric nanoparticles with mTor inhibitors and methods of making and using same |
ES2765240T3 (en) * | 2008-06-16 | 2020-06-08 | Pfizer | Drug-loaded polymeric nanoparticles and manufacturing procedures and use thereof |
AU2009266940A1 (en) * | 2008-07-01 | 2010-01-07 | Emory University | Synergistic induction of humoral and cellular immunity by combinatorial activation of toll-like receptors |
WO2010017330A1 (en) | 2008-08-06 | 2010-02-11 | Novartis Ag | Microparticles for use in immunogenic compositions |
WO2010018132A1 (en) | 2008-08-11 | 2010-02-18 | Smithkline Beecham Corporation | Compounds |
UA103195C2 (en) | 2008-08-11 | 2013-09-25 | Глаксосмитклайн Ллк | Purine derivatives for use in the treatment of allergic, inflammatory and infectious diseases |
JP2011530562A (en) | 2008-08-11 | 2011-12-22 | グラクソスミスクライン エルエルシー | Purine derivatives for the treatment of allergic, inflammatory and infectious diseases |
US8575181B2 (en) | 2008-08-11 | 2013-11-05 | Glaxosmithkline Llc | Purine derivatives for use in the treatment of allergic, inflammatory and infectious diseases |
US8323696B2 (en) * | 2008-08-29 | 2012-12-04 | Ecole Polytechnique Federale De Lausanne | Nanoparticles for immunotherapy |
US8889635B2 (en) | 2008-09-30 | 2014-11-18 | The Regents Of The University Of Michigan | Dendrimer conjugates |
US8277812B2 (en) | 2008-10-12 | 2012-10-02 | Massachusetts Institute Of Technology | Immunonanotherapeutics that provide IgG humoral response without T-cell antigen |
US8591905B2 (en) | 2008-10-12 | 2013-11-26 | The Brigham And Women's Hospital, Inc. | Nicotine immunonanotherapeutics |
US8343497B2 (en) * | 2008-10-12 | 2013-01-01 | The Brigham And Women's Hospital, Inc. | Targeting of antigen presenting cells with immunonanotherapeutics |
US8343498B2 (en) | 2008-10-12 | 2013-01-01 | Massachusetts Institute Of Technology | Adjuvant incorporation in immunonanotherapeutics |
CN107050440B (en) | 2009-04-01 | 2021-10-29 | 迈阿密大学 | Vaccine compositions and methods of use thereof |
US20110223201A1 (en) | 2009-04-21 | 2011-09-15 | Selecta Biosciences, Inc. | Immunonanotherapeutics Providing a Th1-Biased Response |
AU2010242867B2 (en) | 2009-05-01 | 2016-05-12 | Qiagen Gaithersburg, Inc. | A non-target amplification method for detection of RNA splice-forms in a sample |
CN107252482A (en) * | 2009-05-27 | 2017-10-17 | 西莱克塔生物科技公司 | Nano-carrier processing component with different rates of release |
WO2011005850A1 (en) | 2009-07-07 | 2011-01-13 | The Research Foundation Of State University Of New York | Lipidic compositions for induction of immune tolerance |
JP5933437B2 (en) * | 2009-08-26 | 2016-06-08 | セレクタ バイオサイエンシーズ インコーポレーテッドSelecta Biosciences,Inc. | Composition to induce T cell help |
JP5965844B2 (en) | 2009-12-15 | 2016-08-10 | バインド セラピューティックス インコーポレイテッド | Therapeutic polymer nanoparticle compositions having high glass transition temperature or high molecular weight copolymers |
US20110171248A1 (en) | 2010-01-08 | 2011-07-14 | Selecta Biosciences, Inc. | Synthetic virus-like particles conjugated to human papillomavirus capsid peptides for use as vaccines |
US20110229556A1 (en) | 2010-03-19 | 2011-09-22 | Massachusetts Institute Of Technology | Lipid-coated polymer particles for immune stimulation |
US20110262491A1 (en) | 2010-04-12 | 2011-10-27 | Selecta Biosciences, Inc. | Emulsions and methods of making nanocarriers |
US20110272836A1 (en) | 2010-04-12 | 2011-11-10 | Selecta Biosciences, Inc. | Eccentric vessels |
US20110293701A1 (en) * | 2010-05-26 | 2011-12-01 | Selecta Biosciences, Inc. | Multivalent synthetic nanocarrier vaccines |
US20120058153A1 (en) * | 2010-08-20 | 2012-03-08 | Selecta Biosciences, Inc. | Synthetic nanocarrier vaccines comprising proteins obtained or derived from human influenza a virus hemagglutinin |
BR112013004288A2 (en) * | 2010-08-23 | 2016-05-31 | Selecta Biosciences Inc | galenic forms of multiple epitopes directed to induce an immune response to antigens. |
WO2012061717A1 (en) | 2010-11-05 | 2012-05-10 | Selecta Biosciences, Inc. | Modified nicotinic compounds and related methods |
US20120171229A1 (en) | 2010-12-30 | 2012-07-05 | Selecta Biosciences, Inc. | Synthetic nanocarriers with reactive groups that release biologically active agents |
CA2830948A1 (en) | 2011-03-25 | 2012-10-04 | Selecta Biosciences, Inc. | Osmotic mediated release synthetic nanocarriers |
MX2013012593A (en) | 2011-04-29 | 2014-08-21 | Selecta Biosciences Inc | Tolerogenic synthetic nanocarriers to reduce antibody responses. |
CN109172819A (en) | 2011-07-29 | 2019-01-11 | 西莱克塔生物科技公司 | Generate the synthesis nano-carrier of body fluid and cytotoxic T lymphocyte (CTL) immune response |
WO2013036297A1 (en) | 2011-09-06 | 2013-03-14 | Selecta Biosciences, Inc. | Therapeutic protein-specific induced tolerogenic dendritic cells and methods of use |
KR20220025907A (en) | 2013-05-03 | 2022-03-03 | 셀렉타 바이오사이언시즈, 인크. | Tolerogenic synthetic nanocarriers to reduce or prevent anaphylaxis in response to a non-allergenic antigen |
US20140356361A1 (en) | 2013-06-04 | 2014-12-04 | Selecta Biosciences, Inc. | Repeated administration of non-immunosuppressive antigen specific immunotherapeutics |
US20160220501A1 (en) | 2015-02-03 | 2016-08-04 | Selecta Biosciences, Inc. | Tolerogenic synthetic nanocarriers to reduce immune responses to therapeutic proteins |
US20150359865A1 (en) | 2014-06-17 | 2015-12-17 | Selecta Biosciences, Inc. | Tolerogenic synthetic nanocarriers for t-cell-mediated autoimmune disease |
AU2015279738A1 (en) | 2014-06-25 | 2016-12-22 | Selecta Biosciences, Inc. | Methods and compositions for treatment with synthetic nanocarriers and immune checkpoint inhibitors |
MX2017002931A (en) | 2014-09-07 | 2017-05-30 | Selecta Biosciences Inc | Methods and compositions for attenuating anti-viral transfer vector immune responses. |
DK3215192T3 (en) | 2014-11-05 | 2021-05-03 | Selecta Biosciences Inc | PROCEDURES AND COMPOSITIONS RELATED TO SYNTHETIC NANOUS CARRIERS WITH RAPAMYCIN IN A STABLE SUPER SATURATED CONDITION |
-
2010
- 2010-05-26 CN CN201710310145.5A patent/CN107252482A/en active Pending
- 2010-05-26 EP EP10726347A patent/EP2435094A2/en not_active Withdrawn
- 2010-05-26 AU AU2010254550A patent/AU2010254550B2/en not_active Ceased
- 2010-05-26 AU AU2010254551A patent/AU2010254551B2/en not_active Ceased
- 2010-05-26 US US12/788,261 patent/US20100303850A1/en not_active Abandoned
- 2010-05-26 EA EA201171479A patent/EA022699B1/en not_active IP Right Cessation
- 2010-05-26 CN CN201080028246.XA patent/CN102481376B/en not_active Expired - Fee Related
- 2010-05-26 US US12/788,266 patent/US8629151B2/en not_active Expired - Fee Related
- 2010-05-26 CN CN2010800281096A patent/CN102481374A/en active Pending
- 2010-05-26 KR KR1020187006036A patent/KR20180026571A/en not_active Application Discontinuation
- 2010-05-26 KR KR1020187006038A patent/KR20180026572A/en not_active Application Discontinuation
- 2010-05-26 JP JP2012513051A patent/JP6282395B2/en not_active Expired - Fee Related
- 2010-05-26 KR KR1020187031961A patent/KR20180122487A/en not_active Application Discontinuation
- 2010-05-26 MX MX2014000083A patent/MX350667B/en unknown
- 2010-05-26 MX MX2011012599A patent/MX2011012599A/en active IP Right Grant
- 2010-05-26 EP EP10726348A patent/EP2435095A2/en not_active Withdrawn
- 2010-05-26 JP JP2012513053A patent/JP6297776B2/en not_active Expired - Fee Related
- 2010-05-26 MX MX2011012598A patent/MX2011012598A/en active IP Right Grant
- 2010-05-26 MX MX2014000090A patent/MX357630B/en unknown
- 2010-05-26 CN CN201611202126.2A patent/CN107080848A/en active Pending
- 2010-05-26 BR BRPI1010674A patent/BRPI1010674A2/en not_active IP Right Cessation
- 2010-05-26 BR BRPI1012034A patent/BRPI1012034A2/en not_active Application Discontinuation
- 2010-05-26 CN CN201611027629.0A patent/CN107033339A/en active Pending
- 2010-05-26 CN CN201611196015.5A patent/CN107096018A/en active Pending
- 2010-05-26 KR KR20117031003A patent/KR20120023830A/en not_active Application Discontinuation
- 2010-05-26 MX MX2011012597A patent/MX2011012597A/en active IP Right Grant
- 2010-05-26 AU AU2010254549A patent/AU2010254549B2/en not_active Ceased
- 2010-05-26 WO PCT/US2010/001561 patent/WO2010138194A2/en active Application Filing
- 2010-05-26 CA CA2762653A patent/CA2762653A1/en not_active Abandoned
- 2010-05-26 EA EA201791383A patent/EA201791383A1/en unknown
- 2010-05-26 JP JP2012513052A patent/JP6297775B2/en not_active Expired - Fee Related
- 2010-05-26 WO PCT/US2010/001560 patent/WO2010138193A2/en active Application Filing
- 2010-05-26 EA EA201500447A patent/EA201500447A1/en unknown
- 2010-05-26 US US12/788,260 patent/US20110020388A1/en not_active Abandoned
- 2010-05-26 CA CA2762647A patent/CA2762647A1/en not_active Abandoned
- 2010-05-26 EA EA201171478A patent/EA028288B1/en not_active IP Right Cessation
- 2010-05-26 CN CN201080028146.7A patent/CN102481375B/en not_active Expired - Fee Related
- 2010-05-26 BR BRPI1012036A patent/BRPI1012036A2/en not_active Application Discontinuation
- 2010-05-26 CA CA2762650A patent/CA2762650A1/en not_active Abandoned
- 2010-05-26 KR KR1020117030993A patent/KR101916875B1/en active IP Right Grant
- 2010-05-26 WO PCT/US2010/001559 patent/WO2010138192A2/en active Application Filing
- 2010-05-26 KR KR20117030991A patent/KR20120061040A/en not_active Application Discontinuation
- 2010-05-26 EP EP10723818A patent/EP2435092A2/en not_active Withdrawn
- 2010-05-26 EA EA201171480A patent/EA030246B1/en not_active IP Right Cessation
- 2010-05-26 EA EA201890311A patent/EA201890311A1/en unknown
-
2011
- 2011-11-23 IL IL216550A patent/IL216550A/en not_active IP Right Cessation
- 2011-11-23 IL IL216548A patent/IL216548B/en active IP Right Grant
- 2011-11-23 IL IL216549A patent/IL216549A0/en unknown
-
2013
- 2013-07-22 US US13/948,129 patent/US20140030344A1/en not_active Abandoned
- 2013-12-23 US US14/138,601 patent/US9006254B2/en not_active Expired - Fee Related
-
2014
- 2014-05-08 US US14/273,099 patent/US20140242173A1/en not_active Abandoned
-
2015
- 2015-03-13 US US14/658,040 patent/US9884112B2/en not_active Expired - Fee Related
- 2015-10-02 JP JP2015197067A patent/JP2016041708A/en active Pending
- 2015-10-16 JP JP2015204808A patent/JP6236048B2/en not_active Expired - Fee Related
- 2015-11-09 JP JP2015219625A patent/JP2016094411A/en active Pending
-
2016
- 2016-01-11 AU AU2016200137A patent/AU2016200137B2/en not_active Ceased
-
2017
- 2017-01-20 AU AU2017200388A patent/AU2017200388A1/en not_active Abandoned
- 2017-01-20 AU AU2017200383A patent/AU2017200383A1/en not_active Abandoned
- 2017-05-25 JP JP2017104002A patent/JP2017200925A/en active Pending
- 2017-10-27 JP JP2017207967A patent/JP2018065808A/en active Pending
-
2018
- 2018-02-05 US US15/889,014 patent/US20180256709A1/en not_active Abandoned
-
2020
- 2020-01-27 US US16/773,551 patent/US20200390881A1/en not_active Abandoned
Patent Citations (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4946929A (en) | 1983-03-22 | 1990-08-07 | Massachusetts Institute Of Technology | Bioerodible articles useful as implants and prostheses having predictable degradation rates |
US4638045A (en) | 1985-02-19 | 1987-01-20 | Massachusetts Institute Of Technology | Non-peptide polyamino acid bioerodible polymers |
US4806621A (en) | 1986-01-21 | 1989-02-21 | Massachusetts Institute Of Technology | Biocompatible, bioerodible, hydrophobic, implantable polyimino carbonate article |
US5736372A (en) | 1986-11-20 | 1998-04-07 | Massachusetts Institute Of Technology | Biodegradable synthetic polymeric fibrous matrix containing chondrocyte for in vivo production of a cartilaginous structure |
US5804178A (en) | 1986-11-20 | 1998-09-08 | Massachusetts Institute Of Technology | Implantation of cell-matrix structure adjacent mesentery, omentum or peritoneum tissue |
US5770417A (en) | 1986-11-20 | 1998-06-23 | Massachusetts Institute Of Technology Children's Medical Center Corporation | Three-dimensional fibrous scaffold containing attached cells for producing vascularized tissue in vivo |
US5019379A (en) | 1987-07-31 | 1991-05-28 | Massachusetts Institute Of Technology | Unsaturated polyanhydrides |
US5010167A (en) | 1989-03-31 | 1991-04-23 | Massachusetts Institute Of Technology | Poly(amide-and imide-co-anhydride) for biological application |
US5389640A (en) | 1991-03-01 | 1995-02-14 | Minnesota Mining And Manufacturing Company | 1-substituted, 2-substituted 1H-imidazo[4,5-c]quinolin-4-amines |
US6608201B2 (en) | 1992-08-28 | 2003-08-19 | 3M Innovative Properties Company | Process for preparing 1-substituted, 2-substituted 1H-imidazo[4,5-c]quinolin-4-amines |
US5399665A (en) | 1992-11-05 | 1995-03-21 | Massachusetts Institute Of Technology | Biodegradable polymers for cell transplantation |
US5512600A (en) | 1993-01-15 | 1996-04-30 | Massachusetts Institute Of Technology | Preparation of bonded fiber structures for cell implantation |
US5696175A (en) | 1993-01-15 | 1997-12-09 | Massachusetts Institute Of Technology | Preparation of bonded fiber structures for cell implantation |
US5514378A (en) | 1993-02-01 | 1996-05-07 | Massachusetts Institute Of Technology | Biocompatible polymer membranes and methods of preparation of three dimensional membrane structures |
US5578325A (en) | 1993-07-23 | 1996-11-26 | Massachusetts Institute Of Technology | Nanoparticles and microparticles of non-linear hydrophilic-hydrophobic multiblock copolymers |
US5543158A (en) | 1993-07-23 | 1996-08-06 | Massachusetts Institute Of Technology | Biodegradable injectable nanoparticles |
US6007845A (en) | 1994-07-22 | 1999-12-28 | Massachusetts Institute Of Technology | Nanoparticles and microparticles of non-linear hydrophilic-hydrophobic multiblock copolymers |
US5716404A (en) | 1994-12-16 | 1998-02-10 | Massachusetts Institute Of Technology | Breast tissue engineering |
US6123727A (en) | 1995-05-01 | 2000-09-26 | Massachusetts Institute Of Technology | Tissue engineered tendons and ligaments |
US6095148A (en) | 1995-11-03 | 2000-08-01 | Children's Medical Center Corporation | Neuronal stimulation using electrically conducting polymers |
US5902599A (en) | 1996-02-20 | 1999-05-11 | Massachusetts Institute Of Technology | Biodegradable polymer networks for use in orthopedic and dental applications |
US5837752A (en) | 1997-07-17 | 1998-11-17 | Massachusetts Institute Of Technology | Semi-interpenetrating polymer networks |
US6506577B1 (en) | 1998-03-19 | 2003-01-14 | The Regents Of The University Of California | Synthesis and crosslinking of catechol containing copolypeptides |
US6632922B1 (en) | 1998-03-19 | 2003-10-14 | The Regents Of The University Of California | Methods and compositions for controlled polypeptide synthesis |
US6686446B2 (en) | 1998-03-19 | 2004-02-03 | The Regents Of The University Of California | Methods and compositions for controlled polypeptide synthesis |
US20080145441A1 (en) | 2000-10-16 | 2008-06-19 | Midatech Limited | Nanoparticles |
US6818732B2 (en) | 2001-08-30 | 2004-11-16 | The Regents Of The University Of California | Transition metal initiators for controlled poly (beta-peptide) synthesis from beta-lactam monomers |
US20090028910A1 (en) | 2003-12-19 | 2009-01-29 | University Of North Carolina At Chapel Hill | Methods for Fabrication Isolated Micro-and Nano-Structures Using Soft or Imprint Lithography |
US20060002852A1 (en) | 2004-07-01 | 2006-01-05 | Yale University | Targeted and high density drug loaded polymeric materials |
WO2008127532A1 (en) | 2007-04-12 | 2008-10-23 | Emory University | Novel strategies for delivery of active agents using micelles and particles |
WO2009051837A2 (en) | 2007-10-12 | 2009-04-23 | Massachusetts Institute Of Technology | Vaccine nanotechnology |
Non-Patent Citations (22)
Title |
---|
"Cross-Linking", PIERCE CHEMICAL TECHNICAL LIBRARY |
BARRERA ET AL., J. AM. CHEM. SOC., vol. 115, 1993, pages 11010 |
BOUSSIF ET AL., PROC. NATL. ACAD. SCI., USA, vol. 92, 1995, pages 7297 |
DEMING ET AL., NATURE, vol. 390, 1997, pages 386 |
GAO ET AL., CURR. OP. BIOTECHNOL., vol. 16, 2005, pages 63 |
HAENSLER ET AL., BIOCONJUGATE CHEM., vol. 4, 1993, pages 372 |
KABANOV ET AL., BIOCONJUGATE CHEM., vol. 6, 1995, pages 7 |
KAMBER ET AL.: "Organocatalytic Ring-Opening Polymerization", CHEM. REV., vol. 107, 2007, pages 585840 - 13 |
KUKOWSKA-LATALLO ET AL., PROC. NATL. ACAD. SCI., USA, vol. 93, 1996, pages 4897 |
KWON ET AL., MACROMOLECULES, vol. 22, 1989, pages 3250 |
LANGER, ACC. CHEM. RES., vol. 33, 2000, pages 94 |
LANGER, J. CONTROL. RELEASE, vol. 62, 1999, pages 7 |
LIM ET AL., J. AM. CHEM. SOC., vol. 121, 1999, pages 5633 |
LIM ET AL., J. AM. CHEM. SOC., vol. 123, 2001, pages 2460 |
PAPISOV, ACS SYMPOSIUM SERIES, vol. 786, 2001, pages 301 |
PUTNAM ET AL., MACROMOLECULES, vol. 32, 1999, pages 3658 |
TANG ET AL., BIOCONJUGATE CHEM., vol. 7, 1996, pages 703 |
UHRICH ET AL., CHEM. REV., vol. 99, 1999, pages 3181 |
V. CERUNDOLO ET AL.: "Harnessing invariant NKT cells in vaccination strategies", NATURE REV IMMUN, 2009 |
WANG ET AL., J. AM. CHEM. SOC., vol. 123, 2001, pages 9480 |
ZAUNER ET AL., ADV. DRUG DEL. REV., vol. 30, 1998, pages 97 |
ZHOU ET AL., MACROMOLECULES, vol. 23, 1990, pages 3399 |
Cited By (84)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8124590B2 (en) * | 2000-03-10 | 2012-02-28 | Dynavax Technologies Corporation | Biodegradable immunomodulatory formulations and methods for use thereof |
WO2010138193A3 (en) * | 2009-05-27 | 2011-06-03 | Selecta Biosciences, Inc. | Targeted synthetic nanocarriers with ph sensitive release of immunomodulatory agents |
WO2010138192A3 (en) * | 2009-05-27 | 2011-06-03 | Selecta Biosciences, Inc. | Nanocarriers possessing components with different rates of release |
US8629151B2 (en) | 2009-05-27 | 2014-01-14 | Selecta Biosciences, Inc. | Immunomodulatory agent-polymeric compounds |
US9884112B2 (en) | 2009-05-27 | 2018-02-06 | Selecta Biosciences, Inc. | Immunomodulatory agent-polymeric compounds |
EA028288B1 (en) * | 2009-05-27 | 2017-10-31 | Селекта Байосайенсиз, Инк. | Nanocarriers possessing components with different rates of release |
EA022699B1 (en) * | 2009-05-27 | 2016-02-29 | Селекта Байосайенсиз, Инк. | Targeted synthetic nanocarriers with ph sensitive release of immunomodulatory agents |
US9006254B2 (en) | 2009-05-27 | 2015-04-14 | Selecta Biosciences, Inc. | Immunomodulatory agent-polymeric compounds |
US9764031B2 (en) | 2010-05-26 | 2017-09-19 | Selecta Biosciences, Inc. | Dose selection of adjuvanted synthetic nanocarriers |
US9066978B2 (en) | 2010-05-26 | 2015-06-30 | Selecta Biosciences, Inc. | Dose selection of adjuvanted synthetic nanocarriers |
US9994443B2 (en) | 2010-11-05 | 2018-06-12 | Selecta Biosciences, Inc. | Modified nicotinic compounds and related methods |
JP2014514333A (en) * | 2011-04-29 | 2014-06-19 | セレクタ バイオサイエンシーズ インコーポレーテッド | Tolerogenic synthetic nanocarriers for allergy treatment |
US9289477B2 (en) | 2011-04-29 | 2016-03-22 | Selecta Biosciences, Inc. | Tolerogenic synthetic nanocarriers to reduce cytotoxic T lymphocyte responses |
US10039822B2 (en) | 2011-04-29 | 2018-08-07 | Selecta Biosciences, Inc. | Method for providing polymeric synthetic nanocarriers for generating antigen-specific tolerance immune responses |
US10004802B2 (en) | 2011-04-29 | 2018-06-26 | Selecta Biosciences, Inc. | Tolerogenic synthetic nanocarriers for generating CD8+ regulatory T cells |
JP2014514331A (en) * | 2011-04-29 | 2014-06-19 | セレクタ バイオサイエンシーズ インコーポレーテッド | Tolerogenic synthetic nanocarriers |
US9993548B2 (en) | 2011-04-29 | 2018-06-12 | Selecta Biosciences, Inc. | Tolerogenic synthetic nanocarriers for inducing regulatory B cells |
US11235057B2 (en) | 2011-04-29 | 2022-02-01 | Selecta Biosciences, Inc. | Methods for providing polymeric synthetic nanocarriers for generating antigen-specific tolerance immune responses |
JP2014514335A (en) * | 2011-04-29 | 2014-06-19 | セレクタ バイオサイエンシーズ インコーポレーテッド | Tolerogenic synthetic nanocarriers for inducing regulatory B cells |
US9987354B2 (en) | 2011-04-29 | 2018-06-05 | Selecta Biosciences, Inc. | Tolerogenic synthetic nanocarriers for antigen-specific deletion of T effector cells |
US11779641B2 (en) | 2011-04-29 | 2023-10-10 | Selecta Biosciences, Inc. | Tolerogenic synthetic nanocarriers for allergy therapy |
US8652487B2 (en) | 2011-04-29 | 2014-02-18 | Selecta Biosciences, Inc. | Tolerogenic synthetic nanocarriers for inducing regulatory B cells |
US9265815B2 (en) | 2011-04-29 | 2016-02-23 | Selecta Biosciences, Inc. | Tolerogenic synthetic nanocarriers |
JP2014514332A (en) * | 2011-04-29 | 2014-06-19 | セレクタ バイオサイエンシーズ インコーポレーテッド | Tolerogenic synthetic nanocarriers that reduce antibody responses |
JP2014517828A (en) * | 2011-04-29 | 2014-07-24 | セレクタ バイオサイエンシーズ インコーポレーテッド | Tolerogenic synthetic nanocarriers that reduce cytotoxic T lymphocyte responses |
US9289476B2 (en) | 2011-04-29 | 2016-03-22 | Selecta Biosciences, Inc. | Tolerogenic synthetic nanocarriers for allergy therapy |
US9295718B2 (en) | 2011-04-29 | 2016-03-29 | Selecta Biosciences, Inc. | Tolerogenic synthetic nanocarriers to reduce immune responses to therapeutic proteins |
US11717569B2 (en) | 2011-04-29 | 2023-08-08 | Selecta Biosciences, Inc. | Tolerogenic synthetic nanocarriers |
US10441651B2 (en) | 2011-04-29 | 2019-10-15 | Selecta Biosciences, Inc. | Tolerogenic synthetic nanocarriers for generating CD8+ regulatory T cells |
US10420835B2 (en) | 2011-04-29 | 2019-09-24 | Selecta Biosciences, Inc. | Tolerogenic synthetic nanocarriers for antigen-specific deletion of T effector cells |
JP2014514334A (en) * | 2011-04-29 | 2014-06-19 | セレクタ バイオサイエンシーズ インコーポレーテッド | Tolerogenic synthetic nanocarriers for generating CD8 + regulatory T cells |
JP2014513102A (en) * | 2011-04-29 | 2014-05-29 | セレクタ バイオサイエンシーズ インコーポレーテッド | Tolerogenic synthetic nanocarriers for reducing immune responses to therapeutic proteins |
US10933129B2 (en) | 2011-07-29 | 2021-03-02 | Selecta Biosciences, Inc. | Methods for administering synthetic nanocarriers that generate humoral and cytotoxic T lymphocyte responses |
EP4144378A1 (en) | 2011-12-16 | 2023-03-08 | ModernaTX, Inc. | Modified nucleoside, nucleotide, and nucleic acid compositions |
WO2013151736A2 (en) | 2012-04-02 | 2013-10-10 | modeRNA Therapeutics | In vivo production of proteins |
EP4074834A1 (en) | 2012-11-26 | 2022-10-19 | ModernaTX, Inc. | Terminally modified rna |
WO2014152211A1 (en) | 2013-03-14 | 2014-09-25 | Moderna Therapeutics, Inc. | Formulation and delivery of modified nucleoside, nucleotide, and nucleic acid compositions |
WO2014152540A1 (en) | 2013-03-15 | 2014-09-25 | Moderna Therapeutics, Inc. | Compositions and methods of altering cholesterol levels |
US10357483B2 (en) | 2013-05-03 | 2019-07-23 | Selecta Biosciences, Inc. | Methods comprising dosing combinations for reducing undesired humoral immune responses |
US10434088B2 (en) | 2013-05-03 | 2019-10-08 | Selecta Biosciences, Inc. | Methods related to administering immunosuppressants and therapeutic macromolecules at a reduced pharmacodynamically effective dose |
US10668053B2 (en) | 2013-05-03 | 2020-06-02 | Selecta Biosciences, Inc. | Tolerogenic synthetic nanocarriers to reduce or prevent anaphylaxis in response to a non-allergenic antigen |
US11298342B2 (en) | 2013-05-03 | 2022-04-12 | Selecta Biosciences, Inc. | Methods providing a therapeutic macromolecule and synthetic nanocarriers comprising immunosuppressant locally and concomitantly to reduce both type I and type IV hypersensitivity |
US10357482B2 (en) | 2013-05-03 | 2019-07-23 | Selecta Biosciences, Inc. | Methods providing a therapeutic macromolecule and synthetic nanocarriers comprising immunosuppressant locally and concomitantly to reduce both type I and type IV hypersensitivity |
US10335395B2 (en) | 2013-05-03 | 2019-07-02 | Selecta Biosciences, Inc. | Methods of administering immunosuppressants having a specified pharmacodynamic effective life and therapeutic macromolecules for the induction of immune tolerance |
EP3971287A1 (en) | 2013-07-11 | 2022-03-23 | ModernaTX, Inc. | Compositions comprising synthetic polynucleotides encoding crispr related proteins and synthetic sgrnas and methods of use |
WO2015006747A2 (en) | 2013-07-11 | 2015-01-15 | Moderna Therapeutics, Inc. | Compositions comprising synthetic polynucleotides encoding crispr related proteins and synthetic sgrnas and methods of use. |
WO2015034925A1 (en) | 2013-09-03 | 2015-03-12 | Moderna Therapeutics, Inc. | Circular polynucleotides |
WO2015034928A1 (en) | 2013-09-03 | 2015-03-12 | Moderna Therapeutics, Inc. | Chimeric polynucleotides |
EP3985118A1 (en) | 2013-11-22 | 2022-04-20 | MiNA Therapeutics Limited | C/ebp alpha short activating rna compositions and methods of use |
EP3594348A1 (en) | 2013-11-22 | 2020-01-15 | Mina Therapeutics Limited | C/ebp alpha short activating rna compositions and methods of use |
WO2015075557A2 (en) | 2013-11-22 | 2015-05-28 | Mina Alpha Limited | C/ebp alpha compositions and methods of use |
WO2016014846A1 (en) | 2014-07-23 | 2016-01-28 | Moderna Therapeutics, Inc. | Modified polynucleotides for the production of intrabodies |
US10046064B2 (en) | 2014-09-07 | 2018-08-14 | Selecta Biosciences, Inc. | Methods and compositions for attenuating exon skipping anti-viral transfer vector immune responses |
US10071114B2 (en) | 2014-09-07 | 2018-09-11 | Selecta Biosciences, Inc. | Methods and compositions for attenuating gene expression modulating anti-viral transfer vector immune responses |
US11633422B2 (en) | 2014-09-07 | 2023-04-25 | Selecta Biosciences, Inc. | Methods and compositions for attenuating anti-viral transfer vector immune responses |
WO2017070626A2 (en) | 2015-10-22 | 2017-04-27 | Modernatx, Inc. | Respiratory virus vaccines |
EP4349404A2 (en) | 2015-10-22 | 2024-04-10 | ModernaTX, Inc. | Respiratory virus vaccines |
EP4011451A1 (en) | 2015-10-22 | 2022-06-15 | ModernaTX, Inc. | Metapneumovirus mrna vaccines |
EP4349405A2 (en) | 2015-10-22 | 2024-04-10 | ModernaTX, Inc. | Respiratory virus vaccines |
WO2017112943A1 (en) | 2015-12-23 | 2017-06-29 | Modernatx, Inc. | Methods of using ox40 ligand encoding polynucleotides |
EP4039699A1 (en) | 2015-12-23 | 2022-08-10 | ModernaTX, Inc. | Methods of using ox40 ligand encoding polynucleotides |
WO2017120612A1 (en) | 2016-01-10 | 2017-07-13 | Modernatx, Inc. | Therapeutic mrnas encoding anti ctla-4 antibodies |
US11426451B2 (en) | 2017-03-11 | 2022-08-30 | Selecta Biosciences, Inc. | Methods and compositions related to combined treatment with antiinflammatories and synthetic nanocarriers comprising an immunosuppressant |
WO2019048632A1 (en) | 2017-09-08 | 2019-03-14 | Mina Therapeutics Limited | Stabilized hnf4a sarna compositions and methods of use |
WO2019048645A1 (en) | 2017-09-08 | 2019-03-14 | Mina Therapeutics Limited | Stabilized cebpa sarna compositions and methods of use |
EP4233880A2 (en) | 2017-09-08 | 2023-08-30 | MiNA Therapeutics Limited | Hnf4a sarna compositions and methods of use |
EP4183882A1 (en) | 2017-09-08 | 2023-05-24 | MiNA Therapeutics Limited | Stabilized hnf4a sarna compositions and methods of use |
WO2019048631A1 (en) | 2017-09-08 | 2019-03-14 | Mina Therapeutics Limited | Hnf4a sarna compositions and methods of use |
EP4219715A2 (en) | 2017-09-08 | 2023-08-02 | MiNA Therapeutics Limited | Stabilized cebpa sarna compositions and methods of use |
EP4242307A2 (en) | 2018-04-12 | 2023-09-13 | MiNA Therapeutics Limited | Sirt1-sarna compositions and methods of use |
WO2019197845A1 (en) | 2018-04-12 | 2019-10-17 | Mina Therapeutics Limited | Sirt1-sarna compositions and methods of use |
US11802296B2 (en) | 2018-05-16 | 2023-10-31 | Synthego Corporation | Methods and systems for guide RNA design and use |
US11697827B2 (en) | 2018-05-16 | 2023-07-11 | Synthego Corporation | Systems and methods for gene modification |
US11345932B2 (en) | 2018-05-16 | 2022-05-31 | Synthego Corporation | Methods and systems for guide RNA design and use |
WO2020033791A1 (en) | 2018-08-09 | 2020-02-13 | Verseau Therapeutics, Inc. | Oligonucleotide compositions for targeting ccr2 and csf1r and uses thereof |
US11884918B2 (en) | 2019-01-25 | 2024-01-30 | Synthego Corporation | Systems and methods for modulating CRISPR activity |
WO2020208361A1 (en) | 2019-04-12 | 2020-10-15 | Mina Therapeutics Limited | Sirt1-sarna compositions and methods of use |
WO2022122872A1 (en) | 2020-12-09 | 2022-06-16 | Ucl Business Ltd | Therapeutics for the treatment of neurodegenerative disorders |
WO2022200810A1 (en) | 2021-03-26 | 2022-09-29 | Mina Therapeutics Limited | Tmem173 sarna compositions and methods of use |
WO2023099884A1 (en) | 2021-12-01 | 2023-06-08 | Mina Therapeutics Limited | Pax6 sarna compositions and methods of use |
WO2023104964A1 (en) | 2021-12-09 | 2023-06-15 | Ucl Business Ltd | Therapeutics for the treatment of neurodegenerative disorders |
WO2023161350A1 (en) | 2022-02-24 | 2023-08-31 | Io Biotech Aps | Nucleotide delivery of cancer therapy |
WO2023170435A1 (en) | 2022-03-07 | 2023-09-14 | Mina Therapeutics Limited | Il10 sarna compositions and methods of use |
WO2024134199A1 (en) | 2022-12-22 | 2024-06-27 | Mina Therapeutics Limited | Chemically modified sarna compositions and methods of use |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20200390881A1 (en) | Nanocarriers possessing components with different rates of release |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201080028246.X Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10726348 Country of ref document: EP Kind code of ref document: A2 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2762653 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010254551 Country of ref document: AU |
|
WWE | Wipo information: entry into national phase |
Ref document number: MX/A/2011/012599 Country of ref document: MX |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012513053 Country of ref document: JP Ref document number: 9334/DELNP/2011 Country of ref document: IN |
|
ENP | Entry into the national phase |
Ref document number: 2010254551 Country of ref document: AU Date of ref document: 20100526 Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010726348 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 20117030993 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 201171480 Country of ref document: EA |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: PI1010674 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: PI1010674 Country of ref document: BR Kind code of ref document: A2 Effective date: 20111125 |