WO2010137140A1 - Multi-blade fan - Google Patents

Multi-blade fan Download PDF

Info

Publication number
WO2010137140A1
WO2010137140A1 PCT/JP2009/059710 JP2009059710W WO2010137140A1 WO 2010137140 A1 WO2010137140 A1 WO 2010137140A1 JP 2009059710 W JP2009059710 W JP 2009059710W WO 2010137140 A1 WO2010137140 A1 WO 2010137140A1
Authority
WO
WIPO (PCT)
Prior art keywords
impeller
casing
suction port
blade
air
Prior art date
Application number
PCT/JP2009/059710
Other languages
French (fr)
Japanese (ja)
Inventor
一輝 岡本
健一 迫田
仁 菊地
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to US13/201,006 priority Critical patent/US20120009059A1/en
Priority to PCT/JP2009/059710 priority patent/WO2010137140A1/en
Priority to KR1020117020925A priority patent/KR20110113660A/en
Priority to CN200980156448.XA priority patent/CN102317633B/en
Priority to JP2011515796A priority patent/JP5230805B2/en
Priority to TW098130902A priority patent/TWI388730B/en
Publication of WO2010137140A1 publication Critical patent/WO2010137140A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D17/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D17/08Centrifugal pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/4206Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for elastic fluid pumps
    • F04D29/4213Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for elastic fluid pumps suction ports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00457Ventilation unit, e.g. combined with a radiator
    • B60H1/00471The ventilator being of the radial type, i.e. with radial expulsion of the air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/05Shafts or bearings, or assemblies thereof, specially adapted for elastic fluid pumps
    • F04D29/053Shafts
    • F04D29/054Arrangements for joining or assembling shafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/08Sealings
    • F04D29/16Sealings between pressure and suction sides
    • F04D29/161Sealings between pressure and suction sides especially adapted for elastic fluid pumps
    • F04D29/162Sealings between pressure and suction sides especially adapted for elastic fluid pumps of a centrifugal flow wheel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/4206Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for elastic fluid pumps
    • F04D29/4226Fan casings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/44Fluid-guiding means, e.g. diffusers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/44Fluid-guiding means, e.g. diffusers
    • F04D29/441Fluid-guiding means, e.g. diffusers especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/50Inlet or outlet
    • F05D2250/51Inlet

Definitions

  • the present invention relates to a multiblade fan, and more particularly to a multiblade fan that can improve noise performance or air blowing performance.
  • a general multi-blade fan includes a scroll casing having a bell mouth-shaped suction port and an impeller accommodated in the casing.
  • the impeller is a multi-blade impeller (sirocco fan) formed by arranging a plurality of blades in an annular shape, and is housed in the casing with its rotating shaft directed toward the suction port of the casing.
  • the conventional multi-blade blower adopts a configuration in which the suction port is deformed in accordance with the suction flow velocity (see Patent Document 1), a configuration in which a taper is provided on the end of the blade (see Patent Document 2), and the like. Yes.
  • Patent Document 1 a configuration in which the suction port is deformed in accordance with the suction flow velocity
  • Patent Document 2 a configuration in which a taper is provided on the end of the blade
  • the multiblade fan performs static pressure recovery using a scroll-type casing having a predetermined expansion. For this reason, when the air intake position changes, the speed of the air flow in the impeller changes, and the deviation of the air flow toward the main plate changes. For this reason, in the structure which changes the shape of the blade
  • An object of the present invention is to provide a multiblade fan that can improve noise performance or air blowing performance.
  • a multiblade blower comprises a scroll-type casing having a bell mouth-like suction port, a plurality of blades arranged in an annular shape, and a rotating shaft directed toward the suction port.
  • a multi-blade blower comprising an impeller housed in the casing, wherein the central axis of the suction port and the rotational axis of the impeller intersect with each other while having an inclination angle, or are mutually twisted Due to the positional relationship, the gap between the suction port and the impeller is enlarged from the rotating shaft of the impeller toward the vicinity of the outlet of the casing.
  • the gap between the suction port and the impeller is enlarged from the rotating shaft of the impeller toward the vicinity of the outlet of the casing.
  • the air flowing into the impeller from the suction port can gently curve in the impeller and pass between the blades.
  • the velocity distribution of the intake air in the impeller (air flow bias) and the inflow angle to the blades change relatively, and the velocity distribution of the air passing between the blades is made uniform in the direction of the rotation axis of the impeller.
  • FIG. 1 is a plan sectional view showing a multiblade blower according to this embodiment.
  • 2 is a cross-sectional view taken along line AA showing the multiblade fan shown in FIG.
  • FIG. 3 is an explanatory view showing the operation of the multiblade fan shown in FIG. 1.
  • FIG. 4 is an explanatory diagram showing the operation of the multiblade fan shown in FIG. 1.
  • FIG. 5 is a graph showing noise characteristics with respect to the position of the gap between the suction port and the impeller.
  • FIG. 6 is a graph showing the results of the performance test of the multiblade fan.
  • FIG. 7 is a graph showing the results of the performance test of the multiblade fan.
  • FIG. 8 is an explanatory diagram showing a configuration of the multiblade fan shown in FIG. 1.
  • FIG. 1 is a plan sectional view showing a multiblade blower according to this embodiment.
  • 2 is a cross-sectional view taken along line AA showing the multiblade fan shown in FIG.
  • FIG. 9 is an explanatory view showing a modification of the multiblade blower described in FIG. 1.
  • FIG. 10 is an explanatory view showing a modification of the multiblade blower described in FIG. 1.
  • FIG. 11 is a block diagram showing a conventional multiblade fan.
  • FIG. 12 is an explanatory view showing the operation of the multiblade fan shown in FIG. 11.
  • the multi-blade fan 1 is a blower having a multi-blade impeller (sirocco fan), and is applied to, for example, air conditioning equipment, duct fans, ventilation fans, and the like. Moreover, this multiblade fan 1 may employ
  • the multiblade blower 1 includes a casing 2, an impeller 3, and a drive motor 4 (see FIGS. 1 and 2).
  • the casing 2 is, for example, a scroll-type casing, and includes a casing body 21, a suction port 22, and an air outlet 23.
  • the casing body 21 has a scroll shape in plan view.
  • the suction port 22 is a bell mouth-shaped suction port, and is formed on one side of the casing body 21 (upper surface in the axial direction of the scroll shape) and at the center of the scroll shape.
  • the air outlet 23 is formed on the peripheral surface of the casing body 21 (a scroll-shaped surface in the turning direction).
  • the casing 2 is made of, for example, resin and is formed by die cutting.
  • the impeller 3 is a multi-blade impeller (sirocco fan) formed by arranging a plurality of blades 31 in a ring shape.
  • the impeller 3 is arranged with its rotation axis m facing the suction port 22 side of the casing 2 and its circumferential surface facing the circumferential direction of the casing 2.
  • the impeller 3 is configured by arranging and fixing a plurality of blades 31 in a ring shape with a predetermined interval along the peripheral edge of the substantially disc-shaped main plate 32. Thereby, a blade ring by a plurality of blades 31 is formed on the main plate 32.
  • a reinforcing annular member 33 is fitted into the end portions (end portions on the side opposite to the main plate 32) of the blades 31.
  • the impeller 3 is accommodated in the casing 2 with the end of the blade 31 facing the suction port 22 of the casing 2 and the peripheral surface of the blade ring facing the circumferential direction of the casing 2.
  • the drive motor 4 is a motor that drives the impeller 3 to rotate.
  • the drive motor 4 is arranged to be connected to the main plate 32 of the impeller 3 from the lower surface side of the casing 2.
  • the drive motor 4 is ON / OFF controlled by an external switch, for example.
  • the central axis l of the suction port 22 is the bell-mouth shaped central axis of the suction port 22.
  • the gap L from the suction port 22 to the blade 31 of the impeller 3 is enlarged near the air outlet 23 of the casing 2 (FIGS. 1 and 1). 2).
  • the gap L from the opening surface of the suction port 22 to the end of the blade 31 of the impeller 3 is the rotational axis m of the impeller 3. It is enlarged as it goes to the blower outlet 23 vicinity of the casing 2 from.
  • size of the clearance gap L between the suction inlet 22 and the impeller 3 can be suitably selected according to the specification etc. of the multiblade fan 1.
  • the gap L between the suction port 22 and the impeller 3 is enlarged from the rotation shaft m of the impeller 3 toward the vicinity of the air outlet 23 of the casing 2.
  • the inflowing air can gently curve in the impeller 3 (see FIG. 3).
  • the speed of the air passing between the blades 31 and 31 as compared with the configuration in which the air flows biased toward the main plate (see FIG. 11).
  • the distribution is made uniform in the axial direction of the impeller 3. Thereby, the noise performance and ventilation performance of the multiblade fan 1 are improved.
  • the air passage in the casing body 21 is expanded most in the vicinity of the air outlet 23 (see FIG. 1).
  • the air easily flows, the inertial force is increased by increasing the flow velocity of the air passing through the blade 31 of the impeller 3, and the velocity distribution of the air passing between the blades 31, 31 is increased.
  • the bias toward the main plate side is further increased. Therefore, at this position, the gap L between the suction port 22 and the impeller 3 is enlarged in the vicinity of the air outlet 23 (see FIG. 2), so that the velocity distribution of the intake air in the impeller 3 and the blade 31 are increased. Is greatly changed, and a large deviation of the velocity distribution of the air passing between the blades 31, 31 toward the main plate is effectively made uniform. Thereby, a noise characteristic improves efficiently.
  • the position where the gap L between the suction port 22 and the impeller 3 is maximized is appropriately selected based on the scroll shape of the casing 2 and the like.
  • a circumferential angle ⁇ [[ ⁇ [] applied to the rotational direction of the impeller 3 with reference to a direction parallel to the axial direction of the outlet 23 of the casing 2 through the rotational axis m of the impeller 3. °] is defined (see FIG. 1).
  • the central axis l of the suction port 22 of the casing 2 and the rotational axis m of the impeller 3 are in a positional relationship in which they intersect with each other while having an inclination angle ⁇ , or in a positional relationship of twists.
  • a circumferential angle ⁇ having suitable noise characteristics may be selected.
  • FIG. 5 shows the relationship between the circumferential angle ⁇ and the noise characteristics.
  • the noise characteristic is shown by a noise difference with the conventional example as a reference (0 [dB]).
  • [performance test] 6 and 7 are graphs showing the results of the performance test of the multiblade fan. In this embodiment, performance tests on (1) blowing performance (static pressure performance) and (2) noise performance were performed.
  • the multi-blade fan 1 of the example has improved air blowing characteristics and noise characteristics as compared to the conventional multi-blade fan.
  • the static pressure is increased by about 10 [Pa]
  • the noise is reduced by about 1 [dB].
  • the inertial force is increased by increasing the flow velocity of the air passing between the blades 31 and 31 of the impeller 3, and the velocity distribution of the air passing between the blades 31 and 31 toward the main plate is increased.
  • the bias is further increased. Therefore, by setting a large gap L between the suction port 22 and the impeller 3 at this position, the velocity distribution of the intake air in the impeller 3 and the inflow angle ⁇ to the blade 31 are greatly changed, and the blade The large deviation of the velocity distribution of the air passing between 31 and 31 toward the main plate is effectively made uniform. Thereby, there exists an advantage which can improve a noise characteristic effectively.
  • the suction axis 22 and the rotation axis m of the impeller 3 have a tilt angle ⁇ and intersect each other, or are in a twisted relationship with each other.
  • the gap L between the mouth 22 and the impeller 3 is adjusted. That is, the gap L between the suction port 22 and the impeller 3 is adjusted by adjusting the positional relationship between the central axis l of the suction port 22 and the rotation axis m of the impeller 3. Due to this gap L, the velocity distribution of the intake air in the impeller 3 and the inflow angle ⁇ to the blade 31 change relatively, and the velocity distribution of the air passing between the blades 31, 31 is made uniform. . Therefore, there is an advantage that the velocity distribution of the air passing between the blades 31 and 31 can be made uniform with a simple configuration as compared with the configuration in which the dimensions and shapes of the impeller and the bell mouth are changed in a complicated manner.
  • both the central axis l of the suction port 22 and the rotation axis m of the impeller 3 are arranged to be inclined with respect to the casing body 21, so that the central axis l of the suction port 22 and The positional relationship (inclination angle ⁇ ) with the rotation axis m of the impeller 3 is adjusted.
  • the inclination angle ⁇ can be formed without difficulty in design as compared with a configuration in which only one of the central axis l of the suction port 22 and the rotation axis m of the impeller 3 is inclined with respect to the casing body 21.
  • a step is provided in a part of the connection portion between the outer periphery of the bell mouth shape of the suction port 22 and the wall surface of the casing main body 21, and the bell mouth shape of the suction port 22 is formed in the casing by this step. It is comprised so that it may incline with respect to the wall surface of the main body 21 (refer FIG. 2). Further, the drive motor 4 is attached to the casing body 21 while its rotating shaft is inclined with respect to the wall surface of the casing body 21. An impeller 3 is attached to the drive motor 4. Thus, both the central axis l of the suction port 22 and the rotation axis m of the impeller 3 are arranged to be inclined with respect to the casing body 21.
  • the present invention is not limited to this, and only the central axis l of the suction port 22 or only the rotation axis m of the impeller 3 is arranged to be inclined with respect to the casing body 21, thereby The positional relationship with the rotation axis m of the impeller 3 may be adjusted (see FIGS. 9 and 10).
  • the multiblade blower according to the present invention is useful in that noise performance or air blowing performance can be improved.
  • 1 multiblade blower 2 casing, 21 casing body, 22 inlet, 23 outlet, 3 impeller, 31 blade, 32 main plate, 33 annular member, 4 drive motor

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

A multi-blade fan having improved noise performance and air delivery performance.  A multi-blade fan (1) is provided with a scroll type casing (2) having a bell-mouth-shaped suction opening (22), and also with a blade wheel (3) equipped with annularly arranged blades (31) and housed in the casing (2) with the rotation axis (m) of the blade wheel directed to the suction opening (22) of the casing (2).  In the multi-blade fan (1), the center axis (l) of the suction opening (22) and the rotation axis (m) of the blade wheel (3) have a positional relationship in which the axes cross each other at a tilt angle φ or a positional relationship in which the axes are twisted relative to each other, and this results in a gap L between the suction opening (22) and the blade wheel (3) increasing from the rotation axis (m) of the blade wheel (3) toward the vicinity of a discharge opening (23) of the casing (2).

Description

多翼送風機Multi-blade blower
 この発明は、多翼送風機に関し、さらに詳しくは、騒音性能あるいは送風性能を向上できる多翼送風機に関する。 The present invention relates to a multiblade fan, and more particularly to a multiblade fan that can improve noise performance or air blowing performance.
 一般的な多翼送風機は、ベルマウス形状の吸込口を有するスクロール型のケーシングと、このケーシングに収容される羽根車とを備えている。羽根車は、複数の翼を環状に配列して成る多翼羽根車(シロッコファン)であり、その回転軸をケーシングの吸込口に向けつつケーシングに収容されている。 A general multi-blade fan includes a scroll casing having a bell mouth-shaped suction port and an impeller accommodated in the casing. The impeller is a multi-blade impeller (sirocco fan) formed by arranging a plurality of blades in an annular shape, and is housed in the casing with its rotating shaft directed toward the suction port of the casing.
 ここで、吸込口の中心軸と羽根車の回転軸とが同軸上にある構成では、吸込口から羽根車に流入した空気に慣性力が作用する。このため、羽根車内では、空気が主板(翼を支持する板)寄りに偏って流れる傾向がある。すると、羽根車の翼間(翼と翼の隙間)を通過する空気の速度分布(翼間から吹き出す空気の速度分布)が、羽根車の軸方向にて不均一となる。すると、流速変動が生じ易くなるため、空気の圧力変動や乱れが大きくなり、騒音悪化や送風性能の低下などが生じるおそれがある。 Here, in the configuration where the central axis of the suction port and the rotation shaft of the impeller are coaxial, inertial force acts on the air flowing into the impeller from the suction port. For this reason, in the impeller, air tends to flow biased toward the main plate (the plate supporting the blades). Then, the velocity distribution of air passing between the blades of the impeller (the gap between the blades) (the velocity distribution of the air blown from between the blades) becomes non-uniform in the axial direction of the impeller. As a result, fluctuations in the flow velocity are likely to occur, resulting in large fluctuations in air pressure and turbulence, which may cause noise deterioration and deterioration in blowing performance.
 また、かかる構成では、羽根車内にて、空気が翼に対して急な(鋭い)角度にて流入して翼間を通過する。すると、羽根車が十分に機能しないため、送風性能が十分に発揮されないおそれがある。 Also, in such a configuration, in the impeller, air flows at a steep (sharp) angle with respect to the blades and passes between the blades. Then, since an impeller does not fully function, there exists a possibility that ventilation performance may not fully be exhibited.
 かかる課題において、従来の多翼送風機では、吸込口を吸込流速に合わせて変形させる構成(特許文献1参照)、翼の端部側にテーパを設ける構成(特許文献2参照)などが採用されている。これらの構成では、翼の端部側にて空気が流れ易くなり、羽根車内の空気流れの速度分布が均一化される。これにより、送風機の性能が向上する。 In such a problem, the conventional multi-blade blower adopts a configuration in which the suction port is deformed in accordance with the suction flow velocity (see Patent Document 1), a configuration in which a taper is provided on the end of the blade (see Patent Document 2), and the like. Yes. In these configurations, air easily flows on the blade end portion side, and the air flow velocity distribution in the impeller is made uniform. Thereby, the performance of a fan improves.
 また、他の従来の多翼送風機では、羽根車とベルマウスとの隙間を回転方向に対して変化させる構成(特許文献3参照)が採用されている。かかる構成では、羽根車内の空気流れの速度分布が均一化して、送風機の性能が向上する。しかしながら、かかる構成では、ケーシングの形状が複雑化する或いはケーシングの型抜きが難しいため、製品コストが増加するという課題がある。 In another conventional multi-blade fan, a configuration in which the gap between the impeller and the bell mouth is changed with respect to the rotation direction (see Patent Document 3) is employed. In such a configuration, the velocity distribution of the air flow in the impeller is made uniform, and the performance of the blower is improved. However, in such a configuration, there is a problem that the cost of the product increases because the shape of the casing is complicated or it is difficult to punch out the casing.
 また、多翼送風機は、所定の拡がりをもつスクロール型のケーシングを用いて静圧回復を行っている。このため、空気の吸入位置が変化すると、羽根車内における空気流れの速度が変化して、主板側へ空気流れの偏りが変化する。このため、羽根車の翼の形状を変更する構成では、目的対象とする空気流れに対しては効果が得られるものの、それ以外の空気流れに対しては無駄が生じるため、必ずしも十分な効果が得られないという課題がある。また、このとき、翼の形状について、羽根車一回転全周における影響を考慮する必要がある。 In addition, the multiblade fan performs static pressure recovery using a scroll-type casing having a predetermined expansion. For this reason, when the air intake position changes, the speed of the air flow in the impeller changes, and the deviation of the air flow toward the main plate changes. For this reason, in the structure which changes the shape of the blade | wing of an impeller, although an effect is acquired with respect to the target air flow, since it will be wasted with respect to other air flows, it is not necessarily sufficient. There is a problem that it cannot be obtained. At this time, it is necessary to consider the influence on the entire circumference of the impeller for the shape of the blade.
特開2000-179496号公報Japanese Unexamined Patent Publication No. 2000-179596 特開2006-200525号公報JP 2006-200955 A 特開1995-228128号公報Japanese Patent Laid-Open No. 1995-228128
 この発明は、騒音性能あるいは送風性能を向上できる多翼送風機を提供することを目的とする。 An object of the present invention is to provide a multiblade fan that can improve noise performance or air blowing performance.
 上記目的を達成するため、この発明にかかる多翼送風機は、ベルマウス状の吸込口を有するスクロール型のケーシングと、複数の翼を環状に配列して成ると共に回転軸を前記吸込口に向けて前記ケーシングに収容される羽根車とを備える多翼送風機であって、前記吸込口の中心軸と前記羽根車の回転軸とが傾斜角を有しつつ相互に交差する位置関係あるいは相互にねじれの位置関係にあることにより、前記吸込口と前記羽根車との隙間が前記羽根車の回転軸から前記ケーシングの吹出口近傍に向かうに連れて拡大されることを特徴とする。 In order to achieve the above object, a multiblade blower according to the present invention comprises a scroll-type casing having a bell mouth-like suction port, a plurality of blades arranged in an annular shape, and a rotating shaft directed toward the suction port. A multi-blade blower comprising an impeller housed in the casing, wherein the central axis of the suction port and the rotational axis of the impeller intersect with each other while having an inclination angle, or are mutually twisted Due to the positional relationship, the gap between the suction port and the impeller is enlarged from the rotating shaft of the impeller toward the vicinity of the outlet of the casing.
 この発明にかかる多翼送風機では、吸込口と羽根車との隙間が羽根車の回転軸からケーシングの吹出口近傍に向かうに連れて拡大される。かかる構成では、吸込口から羽根車に流入した空気が羽根車内にて緩やかにカーブして翼間を通過できる。すると、羽根車内における吸入空気の速度分布(空気流れの偏り)や翼への流入角度が相対的に変化して、翼間を通過した空気の速度分布が羽根車の回転軸方向に均一化される。これにより、多翼送風機の騒音性能や送風性能が向上する利点がある。 In the multiblade blower according to the present invention, the gap between the suction port and the impeller is enlarged from the rotating shaft of the impeller toward the vicinity of the outlet of the casing. In such a configuration, the air flowing into the impeller from the suction port can gently curve in the impeller and pass between the blades. Then, the velocity distribution of the intake air in the impeller (air flow bias) and the inflow angle to the blades change relatively, and the velocity distribution of the air passing between the blades is made uniform in the direction of the rotation axis of the impeller. The Thereby, there exists an advantage which the noise performance and ventilation performance of a multiblade fan improve.
図1は、この実施の形態にかかる多翼送風機を示す平面断面図である。FIG. 1 is a plan sectional view showing a multiblade blower according to this embodiment. 図2は、図1に記載した多翼送風機を示すA-A視断面図である。2 is a cross-sectional view taken along line AA showing the multiblade fan shown in FIG. 図3は、図1に記載した多翼送風機の作用を示す説明図である。FIG. 3 is an explanatory view showing the operation of the multiblade fan shown in FIG. 1. 図4は、図1に記載した多翼送風機の作用を示す説明図である。FIG. 4 is an explanatory diagram showing the operation of the multiblade fan shown in FIG. 1. 図5は、吸込口と羽根車との隙間の位置に対する騒音特性を示すグラフである。FIG. 5 is a graph showing noise characteristics with respect to the position of the gap between the suction port and the impeller. 図6は、多翼送風機の性能試験の結果を示すグラフである。FIG. 6 is a graph showing the results of the performance test of the multiblade fan. 図7は、多翼送風機の性能試験の結果を示すグラフである。FIG. 7 is a graph showing the results of the performance test of the multiblade fan. 図8は、図1に記載した多翼送風機の構成を示す説明図である。FIG. 8 is an explanatory diagram showing a configuration of the multiblade fan shown in FIG. 1. 図9は、図1に記載した多翼送風機の変形例を示す説明図である。FIG. 9 is an explanatory view showing a modification of the multiblade blower described in FIG. 1. 図10は、図1に記載した多翼送風機の変形例を示す説明図である。FIG. 10 is an explanatory view showing a modification of the multiblade blower described in FIG. 1. 図11は、従来の多翼送風機を示す構成図である。FIG. 11 is a block diagram showing a conventional multiblade fan. 図12は、図11に記載した多翼送風機の作用を示す説明図である。FIG. 12 is an explanatory view showing the operation of the multiblade fan shown in FIG. 11.
 以下、この発明につき図面を参照しつつ詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。また、この実施の形態の構成要素には、発明の同一性を維持しつつ置換可能かつ置換自明なものが含まれる。また、この実施の形態に記載された複数の変形例は、当業者自明の範囲内にて任意に組み合わせが可能である。 Hereinafter, the present invention will be described in detail with reference to the drawings. Note that the present invention is not limited to the embodiments. Further, the constituent elements of this embodiment include those that can be replaced while maintaining the identity of the invention and that are obvious for replacement. In addition, a plurality of modifications described in this embodiment can be arbitrarily combined within the scope obvious to those skilled in the art.
[多翼送風機]
 この多翼送風機1は、多翼羽根車(シロッコファン)を有する送風機であり、例えば、空調設備、ダクト扇、換気扇などに適用される。また、この多翼送風機1は、片側吸込式を採用しても良いし、両側吸込式を採用しても良い。この実施の形態では、一例として、片側吸込式を採用する多翼送風機1について説明する。
[Multi-blade blower]
The multi-blade fan 1 is a blower having a multi-blade impeller (sirocco fan), and is applied to, for example, air conditioning equipment, duct fans, ventilation fans, and the like. Moreover, this multiblade fan 1 may employ | adopt a single side suction type, and may employ | adopt a both sides suction type. In this embodiment, as an example, a multiblade blower 1 that employs a one-side suction type will be described.
 多翼送風機1は、ケーシング2と、羽根車3と、駆動モータ4とを備える(図1および図2参照)。 The multiblade blower 1 includes a casing 2, an impeller 3, and a drive motor 4 (see FIGS. 1 and 2).
 ケーシング2は、例えば、スクロール型ケーシングであり、ケーシング本体21と、吸込口22と、吹出口23とを有する。ケーシング本体21は、平面視にてスクロール形状を有する。吸込口22は、ベルマウス状の吸込口であり、ケーシング本体21の一方の側面(スクロール形状の軸方向の上面)であってスクロール形状の中心に形成される。吹出口23は、ケーシング本体21の周面(スクロール形状の旋回方向の面)に形成される。なお、ケーシング2は、例えば、樹脂製であり、型抜き加工により成形される。 The casing 2 is, for example, a scroll-type casing, and includes a casing body 21, a suction port 22, and an air outlet 23. The casing body 21 has a scroll shape in plan view. The suction port 22 is a bell mouth-shaped suction port, and is formed on one side of the casing body 21 (upper surface in the axial direction of the scroll shape) and at the center of the scroll shape. The air outlet 23 is formed on the peripheral surface of the casing body 21 (a scroll-shaped surface in the turning direction). The casing 2 is made of, for example, resin and is formed by die cutting.
 羽根車3は、複数の翼31を環状に配列して成る多翼羽根車(シロッコファン)である。この羽根車3は、その回転軸mをケーシング2の吸込口22側に向けると共に、その周面をケーシング2の周方向に向けて配置される。例えば、この実施の形態では、複数の翼31が略円盤状の主板32の周縁部に沿って所定間隔を隔てつつ環状に配列されて固定されることにより、羽根車3が構成されている。これにより、複数の翼31による翼環が主板32上に形成されている。また、これらの翼31の端部(主板32に対して反対側の端部)に、補強用の環状部材33が嵌め合わされている。そして、この羽根車3が、翼31の端部をケーシング2の吸込口22に向けると共に翼環の周面をケーシング2の周方向に向けつつケーシング2内に収容されている。 The impeller 3 is a multi-blade impeller (sirocco fan) formed by arranging a plurality of blades 31 in a ring shape. The impeller 3 is arranged with its rotation axis m facing the suction port 22 side of the casing 2 and its circumferential surface facing the circumferential direction of the casing 2. For example, in this embodiment, the impeller 3 is configured by arranging and fixing a plurality of blades 31 in a ring shape with a predetermined interval along the peripheral edge of the substantially disc-shaped main plate 32. Thereby, a blade ring by a plurality of blades 31 is formed on the main plate 32. Further, a reinforcing annular member 33 is fitted into the end portions (end portions on the side opposite to the main plate 32) of the blades 31. The impeller 3 is accommodated in the casing 2 with the end of the blade 31 facing the suction port 22 of the casing 2 and the peripheral surface of the blade ring facing the circumferential direction of the casing 2.
 駆動モータ4は、羽根車3を回転駆動させるモータである。この駆動モータ4は、ケーシング2の下面側から羽根車3の主板32に連結されて配置される。なお、駆動モータ4は、例えば、外部のスイッチによりON/OFF制御される。 The drive motor 4 is a motor that drives the impeller 3 to rotate. The drive motor 4 is arranged to be connected to the main plate 32 of the impeller 3 from the lower surface side of the casing 2. The drive motor 4 is ON / OFF controlled by an external switch, for example.
 この多翼送風機1では、駆動モータ4が駆動されて羽根車3が回転すると、空気がケーシング2の吸込口22からケーシング本体21内に吸い込まれる。そして、この空気が羽根車3にて昇圧され、ケーシング2のスクロール形状により静圧回復して、ケーシング2の吹出口23から外部に吹き出される。これにより、送風が行われる。 In this multiblade blower 1, when the drive motor 4 is driven and the impeller 3 rotates, air is sucked into the casing body 21 from the suction port 22 of the casing 2. Then, the air is pressurized by the impeller 3, is restored to static pressure by the scroll shape of the casing 2, and is blown out from the air outlet 23 of the casing 2. Thereby, ventilation is performed.
[吸込口と羽根車との位置関係]
 一般に、(1)吸込口の中心軸lと羽根車の回転軸mとが同軸上にある構成では、吸込口から羽根車に流入した空気に慣性力が作用する(図11参照)。このため、羽根車内では、空気が主板寄りに偏って流れる傾向がある。すると、羽根車の翼間(翼と翼の隙間)を通過する空気の速度分布(翼間から吹き出す空気の速度分布)が、羽根車の軸方向にて不均一となる。すると、流速変動が生じ易くなるため、空気の圧力変動や乱れが大きくなり、騒音悪化や送風性能の低下などが生じるおそれがある。また、かかる構成では、(2)羽根車内にて、翼に対して急な(鋭い)角度δにて流入して翼間を通過する(図12参照)。すると、羽根車が十分に機能しないため、送風性能が十分に発揮されないおそれがある。
[Relationship between inlet and impeller]
In general, (1) In the configuration in which the central axis l of the suction port and the rotation shaft m of the impeller are coaxial, inertial force acts on the air flowing into the impeller from the suction port (see FIG. 11). For this reason, in an impeller, there exists a tendency for air to flow biased toward the main plate. Then, the velocity distribution of air passing between the blades of the impeller (the gap between the blades) (the velocity distribution of the air blown from between the blades) becomes non-uniform in the axial direction of the impeller. As a result, fluctuations in the flow velocity are likely to occur, resulting in large fluctuations in air pressure and turbulence, which may cause noise deterioration and deterioration in blowing performance. In such a configuration, (2) in the impeller, it flows at a steep (sharp) angle δ with respect to the blades and passes between the blades (see FIG. 12). Then, since an impeller does not fully function, there exists a possibility that ventilation performance may not fully be exhibited.
 そこで、この多翼送風機1では、ケーシング2の吸込口22の中心軸lと羽根車3の回転軸mとが、(a)傾斜角φを有しつつ相互に交差する位置関係、あるいは、(b)相互にねじれの位置関係にあるように配置される(図2参照)。すなわち、吸込口22の中心軸lと羽根車3の回転軸mとが同軸上にないように(一致しないように)、吸込口22と羽根車3との位置関係が設定される。なお、吸込口22の中心軸lとは、吸込口22のベルマウス形状の中心軸である。 Therefore, in the multiblade fan 1, the positional relationship in which the central axis 1 of the suction port 22 of the casing 2 and the rotational axis m of the impeller 3 intersect with each other while having an inclination angle φ, or ( b) Arranged so as to have a twisted positional relationship with each other (see FIG. 2). That is, the positional relationship between the suction port 22 and the impeller 3 is set so that the central axis l of the suction port 22 and the rotation axis m of the impeller 3 are not coaxial (not coincident). The central axis l of the suction port 22 is the bell-mouth shaped central axis of the suction port 22.
 また、かかる吸込口22と羽根車3との位置関係により、吸込口22から羽根車3の翼31までの隙間Lがケーシング2の吹出口23近傍側にて拡大されている(図1および図2参照)。例えば、この実施の形態では、吸込口22の開口面から羽根車3の翼31の端部(吸込口22側にある翼31の端部)までの隙間Lが、羽根車3の回転軸mからケーシング2の吹出口23近傍に向かうに連れて拡大されている。なお、吸込口22と羽根車3との隙間Lの大きさは、多翼送風機1の仕様などに応じて適宜選択され得る。 Further, due to the positional relationship between the suction port 22 and the impeller 3, the gap L from the suction port 22 to the blade 31 of the impeller 3 is enlarged near the air outlet 23 of the casing 2 (FIGS. 1 and 1). 2). For example, in this embodiment, the gap L from the opening surface of the suction port 22 to the end of the blade 31 of the impeller 3 (the end of the blade 31 on the suction port 22 side) is the rotational axis m of the impeller 3. It is enlarged as it goes to the blower outlet 23 vicinity of the casing 2 from. In addition, the magnitude | size of the clearance gap L between the suction inlet 22 and the impeller 3 can be suitably selected according to the specification etc. of the multiblade fan 1. FIG.
 かかる構成では、吸込口22と羽根車3との隙間Lが羽根車3の回転軸mからケーシング2の吹出口23近傍に向かうに連れて拡大されているので、吸込口22から羽根車3に流入した空気が羽根車3内にて緩やかにカーブできる(図3参照)。すると、吸込口22側にかかる翼31部分にも空気が流れ易くなるので、空気が主板寄りに偏って流れる構成(図11参照)と比較して、翼31、31間を通過する空気の速度分布が羽根車3の軸方向に均一化される。これにより、多翼送風機1の騒音性能や送風性能が向上する。 In such a configuration, the gap L between the suction port 22 and the impeller 3 is enlarged from the rotation shaft m of the impeller 3 toward the vicinity of the air outlet 23 of the casing 2. The inflowing air can gently curve in the impeller 3 (see FIG. 3). Then, since air easily flows also to the blade 31 portion on the suction port 22 side, the speed of the air passing between the blades 31 and 31 as compared with the configuration in which the air flows biased toward the main plate (see FIG. 11). The distribution is made uniform in the axial direction of the impeller 3. Thereby, the noise performance and ventilation performance of the multiblade fan 1 are improved.
 また、かかる構成では、羽根車3内にて、空気が緩やかな流入角度δにて翼31に流入する(図4参照)。したがって、翼に対して急な(鋭い)角度δにて流入して構成(図12参照)と比較して、翼31、31間を通過する空気の流速分布が均一化される。これにより、羽根車3の機能が十分に確保されて、多翼送風機1の送風性能が向上する。 In such a configuration, air flows into the blade 31 at a gentle inflow angle δ in the impeller 3 (see FIG. 4). Accordingly, the flow velocity distribution of the air passing between the blades 31 and 31 is made uniform as compared with the configuration (see FIG. 12) that flows at a steep (sharp) angle δ with respect to the blade. Thereby, the function of the impeller 3 is sufficiently ensured, and the blowing performance of the multiblade blower 1 is improved.
 また、スクロール形状のケーシング2では、ケーシング本体21内の空気通路が吹出口23近傍にて最も拡大される(図1参照)。このため、吹出口23の近傍では、空気が流れ易くなり、羽根車3の翼31を通過する空気の流速が増加することで慣性力が増し、翼31、31間を通過する空気の速度分布の主板側への偏りがさらに大きくなる。したがって、この位置にて吸込口22と羽根車3との隙間Lが吹出口23近傍側にて拡大されることにより(図2参照)、羽根車3内における吸入空気の速度分布や翼31への流入角度δを大きく変化させて、翼31、31間を通過する空気の速度分布の主板側への大きな偏りを効果的に均一化される。これにより、騒音特性が効率的に向上する。 Further, in the scroll-shaped casing 2, the air passage in the casing body 21 is expanded most in the vicinity of the air outlet 23 (see FIG. 1). For this reason, in the vicinity of the air outlet 23, the air easily flows, the inertial force is increased by increasing the flow velocity of the air passing through the blade 31 of the impeller 3, and the velocity distribution of the air passing between the blades 31, 31 is increased. The bias toward the main plate side is further increased. Therefore, at this position, the gap L between the suction port 22 and the impeller 3 is enlarged in the vicinity of the air outlet 23 (see FIG. 2), so that the velocity distribution of the intake air in the impeller 3 and the blade 31 are increased. Is greatly changed, and a large deviation of the velocity distribution of the air passing between the blades 31, 31 toward the main plate is effectively made uniform. Thereby, a noise characteristic improves efficiently.
 なお、吸込口22と羽根車3との隙間Lが最大となる位置は、ケーシング2のスクロール形状などに基づいて適宜選択されることが好ましい。例えば、羽根車3の平面視にて、羽根車3の回転軸mを通りケーシング2の吹出口23の軸方向に並行な方向を基準として、羽根車3の回転方向にかかる周方向角度θ[°]を定義する(図1参照)。そして、図2に示す構成(ケーシング2の吸込口22の中心軸lと羽根車3の回転軸mとが傾斜角φを有しつつ相互に交差する位置関係あるいは相互にねじれの位置関係にある構成)にて、好適な騒音特性を有する周方向角度θを選択しても良い。 In addition, it is preferable that the position where the gap L between the suction port 22 and the impeller 3 is maximized is appropriately selected based on the scroll shape of the casing 2 and the like. For example, in a plan view of the impeller 3, a circumferential angle θ [[θ [] applied to the rotational direction of the impeller 3 with reference to a direction parallel to the axial direction of the outlet 23 of the casing 2 through the rotational axis m of the impeller 3. °] is defined (see FIG. 1). The configuration shown in FIG. 2 (the central axis l of the suction port 22 of the casing 2 and the rotational axis m of the impeller 3 are in a positional relationship in which they intersect with each other while having an inclination angle φ, or in a positional relationship of twists. In the configuration, a circumferential angle θ having suitable noise characteristics may be selected.
 図5は、この周方向角度θと騒音特性との関係を示している。同図では、騒音特性が従来例を基準(0[dB])とする騒音差により示されている。また、従来例は、吸込口の中心軸lと羽根車の回転軸mとが同軸上(φ=0)にある構成である(図11参照)。同図に示すように、周方向角度θがθ=270[°]であるときに、騒音特性が最も向上する。この位置は、ケーシング2の吹出口23の近傍である。したがって、吸込口22と羽根車3との隙間Lがケーシング2の吹出口23の近傍にて最大となることにより、多翼送風機1の騒音特性が効率的に向上することが分かる。 FIG. 5 shows the relationship between the circumferential angle θ and the noise characteristics. In the figure, the noise characteristic is shown by a noise difference with the conventional example as a reference (0 [dB]). In the conventional example, the central axis l of the suction port and the rotation axis m of the impeller are coaxial (φ = 0) (see FIG. 11). As shown in the figure, the noise characteristics are most improved when the circumferential angle θ is θ = 270 [°]. This position is in the vicinity of the air outlet 23 of the casing 2. Therefore, it can be seen that the noise characteristic of the multiblade fan 1 is efficiently improved when the gap L between the suction port 22 and the impeller 3 is maximized in the vicinity of the air outlet 23 of the casing 2.
[性能試験]
 図6および図7は、多翼送風機の性能試験の結果を示すグラフである。この実施の形態では、(1)送風性能(静圧性能)および(2)騒音性能に関する性能試験が行われた。
[performance test]
6 and 7 are graphs showing the results of the performance test of the multiblade fan. In this embodiment, performance tests on (1) blowing performance (static pressure performance) and (2) noise performance were performed.
 この性能試験おいて、従来例の多翼送風機は、吸込口の中心軸lと羽根車の回転軸mとが同軸上(φ=0)にある構成を有する(図11参照)。また、実施例の多翼送風機1は、ケーシング2の吸込口22の中心軸lと羽根車3の回転軸mとが傾斜角φを有しつつ相互に交差する位置関係あるいは相互にねじれの位置関係にあり、且つ、吸込口22と羽根車3と隙間Lがケーシング2の吹出口23近傍(θ=270[°])にて最大となる構成を有する(図1および図2参照)。 In this performance test, the conventional multiblade fan has a configuration in which the central axis l of the suction port and the rotation axis m of the impeller are coaxial (φ = 0) (see FIG. 11). Further, in the multiblade fan 1 of the embodiment, the positional relationship in which the central axis l of the suction port 22 of the casing 2 and the rotational axis m of the impeller 3 intersect with each other while having an inclination angle φ, or the positions of twists. In addition, the suction port 22, the impeller 3, and the gap L are maximized in the vicinity of the air outlet 23 of the casing 2 (θ = 270 [°]) (see FIGS. 1 and 2).
 試験結果に示すように、実施例の多翼送風機1では、従来例の多翼送風機と比較して、送風特性および騒音特性が向上することが分かる。例えば、実施例の多翼送風機1では、風量を同一としたときに、静圧が約10[Pa]増加され、また、騒音が約1[dB]低減されている。 As shown in the test results, it can be seen that the multi-blade fan 1 of the example has improved air blowing characteristics and noise characteristics as compared to the conventional multi-blade fan. For example, in the multiblade fan 1 of the embodiment, when the air volume is the same, the static pressure is increased by about 10 [Pa], and the noise is reduced by about 1 [dB].
[効果]
 以上説明したように、この多翼送風機1では、(1)吸込口22と羽根車3との隙間Lが羽根車3の回転軸mからケーシング2の吹出口23近傍に向かうに連れて拡大される(図1および図2参照)。かかる構成では、吸込口22から羽根車3に流入した空気が羽根車3内にて緩やかにカーブして翼31、31間を通過できる(図3参照)。すると、羽根車3内における吸入空気の速度分布(空気流れの偏り)や翼31への流入角度δが相対的に変化して、翼31、31間を通過した空気の速度分布が羽根車3の回転軸方向に均一化される。これにより、多翼送風機1の騒音性能や送風性能が向上する利点がある。
[effect]
As described above, in this multiblade blower 1, (1) the gap L between the suction port 22 and the impeller 3 is enlarged from the rotation shaft m of the impeller 3 toward the vicinity of the blowout port 23 of the casing 2. (See FIGS. 1 and 2). In such a configuration, the air flowing into the impeller 3 from the suction port 22 can gently curve in the impeller 3 and pass between the blades 31 (see FIG. 3). Then, the velocity distribution (inclination of the air flow) of the intake air in the impeller 3 and the inflow angle δ to the blade 31 change relatively, and the velocity distribution of the air that has passed between the blades 31, 31 is changed to the impeller 3. It is made uniform in the rotation axis direction. Thereby, there exists an advantage which the noise performance and ventilation performance of the multiblade fan 1 improve.
 特に、吹出口23近傍では、羽根車3の翼31、31間を通過する空気の流速が増加することで慣性力が増し、翼31、31間を通過する空気の速度分布の主板側への偏りがさらに大きくなる。したがって、この位置にて吸込口22と羽根車3との隙間Lが大きく設定されることにより、羽根車3内における吸入空気の速度分布や翼31への流入角度δを大きく変化させて、翼31、31間を通過する空気の速度分布の主板側への大きな偏りを効果的に均一化される。これにより、騒音特性を効果的に向上させ得る利点がある。 In particular, in the vicinity of the air outlet 23, the inertial force is increased by increasing the flow velocity of the air passing between the blades 31 and 31 of the impeller 3, and the velocity distribution of the air passing between the blades 31 and 31 toward the main plate is increased. The bias is further increased. Therefore, by setting a large gap L between the suction port 22 and the impeller 3 at this position, the velocity distribution of the intake air in the impeller 3 and the inflow angle δ to the blade 31 are greatly changed, and the blade The large deviation of the velocity distribution of the air passing between 31 and 31 toward the main plate is effectively made uniform. Thereby, there exists an advantage which can improve a noise characteristic effectively.
 また、(2)吸込口22の中心軸lと羽根車3の回転軸mとが傾斜角φを有しつつ相互に交差する位置関係あるいは相互にねじれの位置関係にあることにより、上記の吸込口22と羽根車3との隙間Lが調整される。すなわち、吸込口22の中心軸lと羽根車3の回転軸mとの位置関係を調整することにより、吸込口22と羽根車3との隙間Lが調整される。そして、この隙間Lにより、羽根車3内における吸入空気の速度分布や翼31への流入角度δが相対的に変化して、翼31、31間を通過する空気の速度分布が均一化される。したがって、羽根車やベルマウスの寸法形状を複雑に変更する構成と比較して、簡易な構成にて、翼31、31間を通過する空気の速度分布を均一化できる利点がある。 In addition, (2) the suction axis 22 and the rotation axis m of the impeller 3 have a tilt angle φ and intersect each other, or are in a twisted relationship with each other. The gap L between the mouth 22 and the impeller 3 is adjusted. That is, the gap L between the suction port 22 and the impeller 3 is adjusted by adjusting the positional relationship between the central axis l of the suction port 22 and the rotation axis m of the impeller 3. Due to this gap L, the velocity distribution of the intake air in the impeller 3 and the inflow angle δ to the blade 31 change relatively, and the velocity distribution of the air passing between the blades 31, 31 is made uniform. . Therefore, there is an advantage that the velocity distribution of the air passing between the blades 31 and 31 can be made uniform with a simple configuration as compared with the configuration in which the dimensions and shapes of the impeller and the bell mouth are changed in a complicated manner.
[変形例]
 なお、この多翼送風機1では、吸込口22の中心軸lと羽根車3の回転軸mとの位置関係(傾斜角φを有しつつ相互に交差する位置関係あるいは相互にねじれの位置関係)の調整にあたり、以下の構成が採用され得る(図8~図10参照)。
[Modification]
In this multiblade blower 1, the positional relationship between the central axis l of the suction port 22 and the rotational axis m of the impeller 3 (a positional relationship that intersects with each other while having an inclination angle φ or a positional relationship of twists). In the adjustment, the following configuration can be adopted (see FIGS. 8 to 10).
 まず、図8の構成では、吸込口22の中心軸lおよび羽根車3の回転軸mの双方がケーシング本体21に対してそれぞれ傾斜して配置されることにより、吸込口22の中心軸lと羽根車3の回転軸mとの位置関係(傾斜角φ)が調整される。かかる構成では、吸込口22の中心軸lおよび羽根車3の回転軸mのいずれか一方のみがケーシング本体21に対して傾斜する構成と比較して、設計上の無理なく傾斜角φを形成できる利点がある。 First, in the configuration of FIG. 8, both the central axis l of the suction port 22 and the rotation axis m of the impeller 3 are arranged to be inclined with respect to the casing body 21, so that the central axis l of the suction port 22 and The positional relationship (inclination angle φ) with the rotation axis m of the impeller 3 is adjusted. In such a configuration, the inclination angle φ can be formed without difficulty in design as compared with a configuration in which only one of the central axis l of the suction port 22 and the rotation axis m of the impeller 3 is inclined with respect to the casing body 21. There are advantages.
 例えば、この実施の形態では、吸込口22のベルマウス形状の外周部とケーシング本体21の壁面との接続部の一部に段差が設けられ、この段差により、吸込口22のベルマウス形状がケーシング本体21の壁面に対して傾斜するように構成されている(図2参照)。また、駆動モータ4がその回転軸をケーシング本体21の壁面に対して傾斜させつつケーシング本体21に取り付けられている。そして、この駆動モータ4に羽根車3が取り付けられている。これらにより、吸込口22の中心軸lと羽根車3の回転軸mとの双方がケーシング本体21に対して傾斜して配置されている。 For example, in this embodiment, a step is provided in a part of the connection portion between the outer periphery of the bell mouth shape of the suction port 22 and the wall surface of the casing main body 21, and the bell mouth shape of the suction port 22 is formed in the casing by this step. It is comprised so that it may incline with respect to the wall surface of the main body 21 (refer FIG. 2). Further, the drive motor 4 is attached to the casing body 21 while its rotating shaft is inclined with respect to the wall surface of the casing body 21. An impeller 3 is attached to the drive motor 4. Thus, both the central axis l of the suction port 22 and the rotation axis m of the impeller 3 are arranged to be inclined with respect to the casing body 21.
 しかし、これに限らず、吸込口22の中心軸lのみ、あるいは、羽根車3の回転軸mのみがケーシング本体21に対して傾斜して配置されることにより、吸込口22の中心軸lと羽根車3の回転軸mとの位置関係が調整されても良い(図9および図10参照)。 However, the present invention is not limited to this, and only the central axis l of the suction port 22 or only the rotation axis m of the impeller 3 is arranged to be inclined with respect to the casing body 21, thereby The positional relationship with the rotation axis m of the impeller 3 may be adjusted (see FIGS. 9 and 10).
 例えば、図9に示す構成では、吸込口22の中心軸lのみがケーシング本体21に対して傾斜して配置されている。かかる構成では、ケーシング本体21の吸込口22を構成するパーツを単純な型抜き加工により成形して使用できる。したがって、簡易かつ安価に吸込口22の中心軸lと羽根車3の回転軸mとの位置関係を調整できる利点がある。 For example, in the configuration shown in FIG. 9, only the central axis l of the suction port 22 is arranged to be inclined with respect to the casing body 21. In such a configuration, the parts constituting the suction port 22 of the casing main body 21 can be molded and used by simple die cutting. Therefore, there is an advantage that the positional relationship between the central axis 1 of the suction port 22 and the rotation axis m of the impeller 3 can be adjusted easily and inexpensively.
 また、例えば、図10に示す構成では、羽根車3の回転軸m(駆動モータ4の回転軸)のみがケーシング本体21に対して傾斜して配置されている。かかる構成では、ケーシング本体21の外形寸法を変更することなく、簡易かつ安価に吸込口22の中心軸lと羽根車3の回転軸mとの位置関係を調整できる利点がある。 For example, in the configuration shown in FIG. 10, only the rotating shaft m of the impeller 3 (the rotating shaft of the drive motor 4) is disposed to be inclined with respect to the casing body 21. With such a configuration, there is an advantage that the positional relationship between the central axis l of the suction port 22 and the rotation axis m of the impeller 3 can be adjusted easily and inexpensively without changing the outer dimensions of the casing body 21.
 以上のように、この発明にかかる多翼送風機は、騒音性能あるいは送風性能を向上できる点で有用である。 As described above, the multiblade blower according to the present invention is useful in that noise performance or air blowing performance can be improved.
1 多翼送風機、2 ケーシング、21 ケーシング本体、22 吸込口、23 吹出口、3 羽根車、31 翼、32 主板、33 環状部材、4 駆動モータ 1 multiblade blower, 2 casing, 21 casing body, 22 inlet, 23 outlet, 3 impeller, 31 blade, 32 main plate, 33 annular member, 4 drive motor

Claims (3)

  1.  ベルマウス状の吸込口を有するスクロール型のケーシングと、複数の翼を環状に配列して成ると共に回転軸を前記吸込口に向けて前記ケーシングに収容される羽根車とを備える多翼送風機であって、
     前記吸込口の中心軸と前記羽根車の回転軸とが傾斜角を有しつつ相互に交差する位置関係あるいは相互にねじれの位置関係にあることにより、前記吸込口と前記羽根車との隙間が前記羽根車の回転軸から前記ケーシングの吹出口近傍に向かうに連れて拡大されることを特徴とする多翼送風機。
    A multi-blade blower comprising a scroll-type casing having a bell mouth-shaped suction port, and a plurality of blades arranged in an annular shape and an impeller accommodated in the casing with a rotating shaft directed toward the suction port. And
    Since the central axis of the suction port and the rotation shaft of the impeller have a tilt angle and are in a positional relationship crossing each other or in a positional relationship of twisting, a clearance between the suction port and the impeller is reduced. A multi-blade blower that is enlarged from the rotating shaft of the impeller toward the vicinity of the air outlet of the casing.
  2.  前記ケーシングのケーシング本体に対して前記吸込口の中心軸が傾斜して配置されることにより、前記吸込口の中心軸と前記羽根車の回転軸との位置関係が調整される請求項1に記載の多翼送風機。 The positional relationship between the central axis of the suction port and the rotation shaft of the impeller is adjusted by arranging the central axis of the suction port to be inclined with respect to the casing body of the casing. Multi-wing blower.
  3.  前記ケーシングのケーシング本体に対して前記羽根車の回転軸が傾斜して配置されることにより、前記吸込口の中心軸と前記羽根車の回転軸との位置関係が調整される請求項1または2に記載の多翼送風機。 The positional relationship between the center axis of the suction port and the rotation axis of the impeller is adjusted by arranging the rotation axis of the impeller to be inclined with respect to the casing body of the casing. The multiblade blower described in 1.
PCT/JP2009/059710 2009-05-27 2009-05-27 Multi-blade fan WO2010137140A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US13/201,006 US20120009059A1 (en) 2009-05-27 2009-05-27 Multiblade fan
PCT/JP2009/059710 WO2010137140A1 (en) 2009-05-27 2009-05-27 Multi-blade fan
KR1020117020925A KR20110113660A (en) 2009-05-27 2009-05-27 Multi-blade fan
CN200980156448.XA CN102317633B (en) 2009-05-27 2009-05-27 Multi-blade fan
JP2011515796A JP5230805B2 (en) 2009-05-27 2009-05-27 Multi-blade blower
TW098130902A TWI388730B (en) 2009-05-27 2009-09-14 Multi-wing blower

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/059710 WO2010137140A1 (en) 2009-05-27 2009-05-27 Multi-blade fan

Publications (1)

Publication Number Publication Date
WO2010137140A1 true WO2010137140A1 (en) 2010-12-02

Family

ID=43222281

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/059710 WO2010137140A1 (en) 2009-05-27 2009-05-27 Multi-blade fan

Country Status (6)

Country Link
US (1) US20120009059A1 (en)
JP (1) JP5230805B2 (en)
KR (1) KR20110113660A (en)
CN (1) CN102317633B (en)
TW (1) TWI388730B (en)
WO (1) WO2010137140A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016133014A1 (en) * 2015-02-19 2016-08-25 株式会社日本自動車部品総合研究所 Centrifugal blower
WO2016170580A1 (en) * 2015-04-20 2016-10-27 三菱電機株式会社 Centrifugal blower
JPWO2019082949A1 (en) * 2017-10-27 2020-11-12 三菱電機株式会社 Centrifugal blower, blower, air conditioner and refrigeration cycle device

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012221916A1 (en) * 2012-11-29 2014-06-05 BSH Bosch und Siemens Hausgeräte GmbH Housing for a radial fan and radial fan
JP6142285B2 (en) * 2013-03-21 2017-06-07 パナソニックIpマネジメント株式会社 Single suction centrifugal blower
US20160369819A1 (en) * 2014-07-31 2016-12-22 Gentherm Incorporated Air mover inlet interface and cover
JP6528112B2 (en) * 2014-09-26 2019-06-12 パナソニックIpマネジメント株式会社 Centrifugal blower
US10184477B2 (en) * 2016-12-05 2019-01-22 Asia Vital Components Co., Ltd. Series fan inclination structure
WO2018116498A1 (en) * 2016-12-20 2018-06-28 三菱電機株式会社 Multiblade fan
US11486645B2 (en) 2018-05-30 2022-11-01 Nidec Motor Corporation Mounting system for pressure switch providing both mechanical support and integrated pressure communication
JP1640689S (en) * 2019-02-04 2019-09-09
USD944966S1 (en) * 2019-02-04 2022-03-01 Mitsubishi Electric Corporation Casing for blower
USD938570S1 (en) * 2019-02-04 2021-12-14 Mitsubishi Electric Corporation Casing for blower
DE102019210077A1 (en) * 2019-07-09 2021-01-14 Ziehl-Abegg Se Fan with scroll housing and scroll housing for one fan
JP1681183S (en) * 2020-07-31 2021-03-15
CN112228359A (en) * 2020-09-29 2021-01-15 曹云标 Turbine compressor
KR102621165B1 (en) * 2021-11-08 2024-01-05 국방과학연구소 Bell mouth

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002048097A (en) * 2000-08-04 2002-02-15 Calsonic Kansei Corp Centrifugal type multiblade blower
JP2004143995A (en) * 2002-10-23 2004-05-20 Calsonic Kansei Corp Centrifugal multi-vane blower

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2773453A (en) * 1952-09-12 1956-12-11 Gemeinhardt William Rotary pumps
US5352089A (en) * 1992-02-19 1994-10-04 Nippondenso Co., Ltd. Multi-blades fan device
JPH0972296A (en) * 1995-06-29 1997-03-18 Aisin Seiki Co Ltd Fluid pump
EP1624193A4 (en) * 2003-05-01 2010-12-01 Daikin Ind Ltd Multi-vane centrifugal blower
CN100375850C (en) * 2003-07-25 2008-03-19 乐金电子(天津)电器有限公司 Belling arrangement for centrifugal fans

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002048097A (en) * 2000-08-04 2002-02-15 Calsonic Kansei Corp Centrifugal type multiblade blower
JP2004143995A (en) * 2002-10-23 2004-05-20 Calsonic Kansei Corp Centrifugal multi-vane blower

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016133014A1 (en) * 2015-02-19 2016-08-25 株式会社日本自動車部品総合研究所 Centrifugal blower
JPWO2016133014A1 (en) * 2015-02-19 2017-07-20 株式会社Soken Centrifugal blower
WO2016170580A1 (en) * 2015-04-20 2016-10-27 三菱電機株式会社 Centrifugal blower
JPWO2019082949A1 (en) * 2017-10-27 2020-11-12 三菱電機株式会社 Centrifugal blower, blower, air conditioner and refrigeration cycle device
TWI731570B (en) * 2017-10-27 2021-06-21 日商三菱電機股份有限公司 Centrifugal blower, blower, air conditioner and refrigeration cycle device
US11566635B2 (en) 2017-10-27 2023-01-31 Mitsubishi Electric Corporation Centrifugal blower, air-blowing apparatus, air-conditioning apparatus, and refrigeration cycle apparatus
US12044250B2 (en) 2017-10-27 2024-07-23 Mitsubishi Electric Corporation Centrifugal blower, air-blowing apparatus, air-conditioning apparatus, and refrigeration cycle apparatus

Also Published As

Publication number Publication date
KR20110113660A (en) 2011-10-17
US20120009059A1 (en) 2012-01-12
CN102317633B (en) 2014-03-05
TWI388730B (en) 2013-03-11
CN102317633A (en) 2012-01-11
JPWO2010137140A1 (en) 2012-11-12
JP5230805B2 (en) 2013-07-10
TW201042154A (en) 2010-12-01

Similar Documents

Publication Publication Date Title
JP5230805B2 (en) Multi-blade blower
US8075262B2 (en) Centrifugal type blower
JP5832804B2 (en) Centrifugal fan
JP5496132B2 (en) Multiblade centrifugal fan and air conditioner using the same
JP5809859B2 (en) Centrifugal fan
WO2004099625A1 (en) Centrifugal blower
AU2018201617B2 (en) Propeller fan
WO2017026143A1 (en) Blower and air-conditioning device
KR20150046181A (en) Centrifugal compressor
JP5473497B2 (en) Multiblade centrifugal fan and air conditioner using the same
JP5769960B2 (en) Centrifugal fan
JP2008232049A (en) Centrifugal impeller and centrifugal blower
JP2012072673A (en) Centrifugal fan, air conditioner including the same, and die of centrifugal fan
JP2012202362A (en) Impeller, and centrifugal fan including the same
KR20120023319A (en) A turbo fan for air conditioner
WO2019181317A1 (en) Propeller fan
KR20090115259A (en) A fan
JP6583397B2 (en) Propeller fan
JP2014058902A (en) Propeller fan
JP2012202263A (en) Impeller for sirocco fan and sirocco fan
JP6957971B2 (en) Propeller fan
JP6957972B2 (en) Propeller fan
JP6038320B2 (en) Multi-blade blower
JP6113250B2 (en) Centrifugal fan
WO2018131183A1 (en) Blower and air conditioning device

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980156448.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09845207

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2011515796

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13201006

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20117020925

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09845207

Country of ref document: EP

Kind code of ref document: A1