WO2010131952A1 - Method for controlling the digestive coagulation of proteins - Google Patents

Method for controlling the digestive coagulation of proteins Download PDF

Info

Publication number
WO2010131952A1
WO2010131952A1 PCT/NL2010/050241 NL2010050241W WO2010131952A1 WO 2010131952 A1 WO2010131952 A1 WO 2010131952A1 NL 2010050241 W NL2010050241 W NL 2010050241W WO 2010131952 A1 WO2010131952 A1 WO 2010131952A1
Authority
WO
WIPO (PCT)
Prior art keywords
protein
nutritional composition
coagulating
use according
composition
Prior art date
Application number
PCT/NL2010/050241
Other languages
French (fr)
Inventor
Thomas Ludwig
Claudia Catharina Maria Van Den Braak
Marianne Klebach
Zandrie Hofman
Original Assignee
N.V. Nutricia
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=41491658&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2010131952(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by N.V. Nutricia filed Critical N.V. Nutricia
Priority to CN201080018851.9A priority Critical patent/CN102413716B/en
Priority to EP10718726.2A priority patent/EP2424384B1/en
Priority to BRPI1011760A priority patent/BRPI1011760A2/en
Priority to MX2011011320A priority patent/MX2011011320A/en
Priority to RU2011148156/13A priority patent/RU2530498C2/en
Priority to US13/266,409 priority patent/US8835383B2/en
Publication of WO2010131952A1 publication Critical patent/WO2010131952A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/17Amino acids, peptides or proteins
    • A23L33/19Dairy proteins
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/17Amino acids, peptides or proteins
    • A23L33/185Vegetable proteins
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/30Dietetic or nutritional methods, e.g. for losing weight
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/40Complete food formulations for specific consumer groups or specific purposes, e.g. infant formula
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K36/00Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
    • A61K36/18Magnoliophyta (angiosperms)
    • A61K36/185Magnoliopsida (dicotyledons)
    • A61K36/48Fabaceae or Leguminosae (Pea or Legume family); Caesalpiniaceae; Mimosaceae; Papilionaceae
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/01Hydrolysed proteins; Derivatives thereof
    • A61K38/012Hydrolysed proteins; Derivatives thereof from animals
    • A61K38/018Hydrolysed proteins; Derivatives thereof from animals from milk
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/168Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/04Drugs for disorders of the alimentary tract or the digestive system for ulcers, gastritis or reflux esophagitis, e.g. antacids, inhibitors of acid secretion, mucosal protectants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/06Anti-spasmodics, e.g. drugs for colics, esophagic dyskinesia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/08Drugs for disorders of the alimentary tract or the digestive system for nausea, cinetosis or vertigo; Antiemetics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/02Nutrients, e.g. vitamins, minerals
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2002/00Food compositions, function of food ingredients or processes for food or foodstuffs

Definitions

  • This invention is in the field of protein containing nutritional compositions.
  • this invention concerns the coagulation of such compositions in the upper gastrointestinal tract, more in particular in the stomach.
  • This invention aims to control the digestive coagulation of proteins and preferably aims to reduce the digestive coagulation of proteins.
  • Coagulation of proteins in the upper gastro-intestinal tract, in particular in the stomach is hypothesized to delay gastric emptying. This can result in upper gastrointestinal complications like reflux, gastrointestinal discomfort, and aspiration pneumonia.
  • nutritional compositions mainly containing or consisting of casein and/or caseinate tend to coagulate under conditions in the stomach.
  • Controlling digestive coagulation of proteins is preferably established for those subjects wherein it is desired to prevent or reduce upper gastrointes- tinal conditions or complications such as, e.g. intestinal discomfort, reflux, aspiration pneumonia, high gastric residual volume (GRV), vomiting, nausea, bloating, and delayed gastric emptying, or to make it easily digestible in order to promote digestive comfort, reduce gastrointestinal cramping or colics.
  • GMV gastric residual volume
  • Nutritional compositions containing casein, in particular sodium caseinate and vegeta- ble proteins such as soy and/or pea protein are known.
  • enteral formulations comprising 40 - 95 weight% of caseinate and 5 - 60 weight% of a stabilizing protein, selected from the group of whey and a one or more vegetable proteins, selected from the group of soy, corn, potato, rice and pea, the most preferred vegetable protein being soy protein.
  • a stabilizing protein selected from the group of whey and a one or more vegetable proteins, selected from the group of soy, corn, potato, rice and pea, the most preferred vegetable protein being soy protein.
  • the document is concerned with the reduction of creaming in enteral formulae and is silent with respect to coagulation properties of the composition.
  • EP 1 972 346 discloses a pea-based protein mixture comprising 50 weight% caseinate, 25 weight% milk serum proteins and 25 weight% pea protein. The document is silent with respect to coagulation properties of the composition.
  • a protein composition that under normal conditions coagulates in the stomach can be made to coagulate to a far lesser extent or not at all, by including a different protein or a protein in a different form resulting in an anti- coagulating effect.
  • coagulation of a protein that under normal conditions coagulates in the stomach can be made to coagulate to a far lesser extent or not at all, by including a protein that under the same normal conditions does not coagulate in the stomach.
  • the reduction in coagulation was much more than was expected based on the amount of non-coagulating protein that was included. Hence a synergistic effect on the reduction of coagulation was observed. It is thus considered that the present invention provides an anti-coagulation effect.
  • the present invention thus concerns a method of preventing or reducing coagulation in the upper gastro-intestinal tract of a subject of coagulating protein present in a nutritional composition, said method comprising further including anti-coagulating protein in said nutritional composition.
  • the method further comprises the step of admi- nostiring said nutritional composition to said subject.
  • the reducing or preventing of coagulation is in the stomach of said subject.
  • the present method is considered not to involve a therapeutic treatment of the animal or human body, it can be recognized that a certain category of ill and/or malnourished and/or hospitalized subjects may benefit from the present invention.
  • the invention can also be worded as the use of anti-coagulating protein in the manufacture of a nutritional composition that further comprises coagulating protein, for use in preventing or reducing coagulation in the upper gastro-intestinal tract of a subject of said coagulating protein in said nutritional composition.
  • the reducing or preventing of coagulation is in the stomach of said subject.
  • coagulation means destabilization or aggregation of proteins by decreasing their electric charge to that of the isoelectric point under the influence of acid and/or enzymes so that protein precipitates are formed.
  • a protein coagulates if in a stomach digestion model starting with a 6% (w/v) solution of protein in the presence of artificial digestive juice as defined in example 1 after 100 minutes at 37 0 C at least 20 wt%, preferably at least 25 wt.%, preferably at least 30 wt.%, preferably at least 35 wt.%, preferably at least 40 wt.% of the protein is present in particles with a diameter of 1 mm or more, preferably at least 10 wt%, preferably at least 15 wt.%, preferably at least 20 wt.%, preferably at least 25 wt.%, preferably at least 30 wt.% of the protein is present in particles with a diameter of 2 mm or more, Suitably a sieve is used to fractionate a
  • Anti-coagulation means that a protein has the effect of reducing the coagulation of the coagulating protein with which it is combined.
  • the reducing effect on coagulation is preferably determined in the stomach digestion model starting with a 6% (w/v) solution of combined coagulating protein and anti-coagulating protein in the presence of artificial digestive juice as defined in example 1 after 100 minutes at 37 0 C.
  • reducing coagulation means reducing the wt% protein that is present in particles with a diameter of 1 mm or more is reduced by at least 20% compared to the wt% protein that is present in particles with a diameter of 1 mm or more in the absence of anti-coagulating protein under the same conditions.
  • non-coagulating protein is a protein that does not coagulate in the stomach of a human person under normal digestive conditions.
  • a non-coagulating protein is a protein of which no particles with a diameter 1 mm or more are formed.
  • Coagulating proteins that are suitable for nutritional compositions are known to the skilled person.
  • the coagulating protein preferably is dairy or milk protein, more preferably casein or caseinate, more preferably one or more selected from the group consisting of micellar casein, sodium caseinate, calcium caseinate, potassium caseinate and magnesium caseinate.
  • Anti-coagulating proteins are preferably selected such so as to provide an amino acid profile commensurate to the nutritional requirements of humans.
  • the anti- coagulating protein is selected to comply with the WHO amino acid profile recommendations for complete nutrition (see : WHO technical report series no. 935 - Protein and amino acid requirements in human nutrition : report of a joint FAO/WHO/UNU expert consultation, 2007).
  • Anti-coagulating proteins for example are selected from non-dairy proteins, preferably from vegetable and/or fungal proteins and combinations thereof. Suitable proteins are for example selected from plants such as from rice and wheat, legumes, including beans, lentils, pea and soy, and fungi such as mushrooms or yeast.
  • “vegetable” relates to protein from plant origin, such as, for instance originating from vegetables such as carrot, pea, chickpea, green pea, cowpea, field pea, kidney bean, lupine, rice, soy, canola, hemp, zein, maize, corn, barley, flax, linseed, and wheat.
  • Equivalent wording may be used, such as “vegetal”, “leguminous” or "plant- derived”.
  • the anti-coagulating protein is selected from pea and soy or a combination thereof.
  • hydrolysed dairy or milk protein in particular hydrolysed casein can act as an anti-coagulating protein.
  • the anti-coagulating protein is selected from hydrolysed dairy protein, hydrolysed milk protein, hydrolysed whey protein, hydrolysed casein, hydrolysed caseinate or combinations thereof.
  • pea protein preferably intact pea protein
  • pea protein is a suitable anti-coagulating, preferably non-coagulating, protein.
  • Pea protein is relatively cheap (on the average, pea protein may cost about half the price of caseinates) and as it is added to the nutritional composition it increases the protein content while keeping costs quite low.
  • Pea protein is generally tolerated well by most people, it is lactose-free and is not a common allergen.
  • Pea protein is quite high in cysteine content and can therefore compensate the inadequate amount of cysteine in casein proteins.
  • pea protein is quite high in arginine compared to casein, soy or whey protein which is required for muscle metabolism and which facilitates the intake of body mass while reducing body fat; and it is quite high in lysine, when compared to the vegetable proteins, which is needed to build protein muscle and assist in the maintenance of lean body mass.
  • pea sources are readily available to the skilled person, for example, from Roquette (Lestrem, France) which markets a pea isolate obtained from the yellow pea [Pisum sativum), and from Cosucra Groupe Warcoing (Warcoing, Belgium).
  • pea protein sources may originate from green pea, cowpea, chickpea, and field pea.
  • the pea protein is substantially in intact form or non-hydrolysed.
  • the pea protein is fermented pea protein or is pea protein hydrolysate.
  • non-hydrolysed protein is equivalent to an "intact" protein, meaning that the protein has not been subjected to an hydrolysis process. How- ever, minor amounts of hydrolysed proteins may be present in the source of non- hydrolysed proteins.
  • minor should be understood as an amount of about 10 weight% or less.
  • the term “about” should be interpreted as a deviation of plus or minus 10 % of the given value.
  • soy protein preferably intact soy protein, is a suitable anti-coagulating, preferably non-coagulating, protein.
  • Soy protein has been used since 1959 as an ingredient for its functional properties in a variety of foods such as salad dressings, soups, vegetarian foods and meat imitations. Its functional properties are emulsification and texturizing. Recently, the popularity of soy protein is increasing, mainly because of its health benefits. It has been proven that soy protein can help to prevent cardiovascular problems and many countries allow health claims for food, which are rich in soy protein. Furthermore, health claims have been made for improving heart health (cholesterol reduction), improving bone health (increased bone density) , menopausal symptom relief (reduced hot flashes), performance nutrition (faster muscle recovery) and weight management (satisfying hunger). Soy protein is a vegetable protein that contains the essential amino acids in a relatively high proportion for human health.
  • Soy protein is categorized as a high-quality, complete pro- tein. Soy proteins can be divided into different categories according to their production method. Soy protein isolate (SPI) is the most refined form of soy protein and is mainly used in meat products to improve texture and eating quality. Soy protein isolate contains about 90 percent protein. Soy protein concentrate (SPC) is basically soybean without the water soluble carbohydrates. It contains about 70 percent of protein. Textured soy protein (TSP) is made from soy protein concentrate by giving it some texture. TSP is available as dry flakes or chunks. It will keep its structure when hydrated. Hydrated textured soy protein chunks have a texture similar to ground beef. It can be used as a meat replacement or can be added to meat. Textured soy protein contains about 70 percent protein. Several soy sources are readily available to the skilled person, for example, from The Solae Company (St. Louis, MO, USA).
  • the soy protein is substantially in intact form or non-hydrolysed.
  • the soy protein is fermented soy pro- tein or is soy protein hydrolysate.
  • a “non-hydrolysed” protein is equivalent to an "intact” protein, meaning that the protein has not been subjected to an hydrolysis process. However, minor amounts of hydrolysed proteins may be present in the source of non- hydrolysed proteins.
  • “minor” should be understood as an amount of about 10 weight% or less. The term “about” should be interpreted as a deviation of plus or minus 10 % of the given value.
  • the present nutritional composition comprises coagulating protein.
  • the present nutritional composition comprises at least 25 wt.% coagulating protein based on total protein in the composition. More preferably, the present nutritional composition comprises at least 40 wt.%, preferably at least 50 wt.%, preferably at least 55 wt.%, more preferably at least 60 wt.% or at least 65 wt.% or at least 70 wt.% coagulating protein based on total protein in the composition.
  • the present nutritional composition comprises not more than 99 wt% coagulating protein based on total pro- tein in the composition.
  • the present nutritional composition comprises not more than 97 wt.%, more preferably not more than 95 wt.% or not more than 90 wt.% or not more than 85 wt.% coagulating protein based on total protein in the composition.
  • the present nutritional composition comprises anti-coagulating protein.
  • the present nutritional composition comprises at least 1 wt% anti-coagulating protein based on total protein in the composition. More preferably, the present nutritional composition comprises at least 3 wt.%, more preferably at least 5 wt.% or at least 10 wt.% or at least 15 wt.% anti-coagulating protein based on total protein in the composition.
  • the present nutritional composition comprises not more than 75 wt.% anti- coagulating protein based on total protein in the composition.
  • the present nutritional composition comprises not more than 60 wt.%, preferably not more than 50 wt.%, preferably not more than 45 wt.%, more preferably not more than 40 wt.% or not more than 35 wt.% or not more than 30 wt.% anti-coagulating protein based on total protein in the composition.
  • the mixture of coagulating and anti-coagulating protein, or in other words anti- coagulating protein mixture can be prepared by methods for preparing nutrition composition known per se, for example by mixing the protein ingredients, optionally in the presence of other ingredients normally present in nutritional compositions or such other ingredients may be added after mixing of the protein ingredients.
  • the nutritional composition comprises between 25 - 99 wt.% coagulating protein based on total weight of protein in the composition and between 1 - 75 wt.% anti-coagulating protein based on total weight of protein in the composition.
  • the nutritional composition comprises between 40 - 97 wt.%, preferably between 50 - 95 wt.%, preferably between 60 - 90 wt.%, preferably between 70 - 85 wt.% coagulating protein based on total weight of protein in the composition and between 3 - 60 wt.%, preferably between 5 - 50 wt.%, preferably between 10 - 40 wt.%, preferably between 15 - 30 wt.% anti-coagulating protein based on total weight of protein in the composition.
  • the present method is for reducing coagulation in the stomach of coagulating protein in a nutritional composition and the method involves including anti-coagulating protein in said nutritional composition.
  • coagulation is reduced if the amount of protein that is present in particles with a diameter of 1 mm or more, is reduced by at least 20% in the stomach digestion model as defined above compared to the amount of protein that is present in particles with a diameter of 1 mm or more of a coagulating protein in the absence of anti-coagulating protein in said stomach digestion model, preferably compared to the amount of protein that is present in particles with a diameter of 1 mm or more .of a composition wherein the coagulating protein is the sole protein source.
  • the amount of protein in particles with a diameter of 1 mm or more is reduced by at least 25%, more preferably by at least 30%, more preferably by at least 40% or by at least 50%, more preferably by at least 60% even more preferably by at least 70%, more preferably by at least 80%, more preferably by at least 90%.
  • Reducing coagulation in the stomach of coagulating protein is understood to mean that the addition of an anti-coagulating protein or a mix thereof to a coagulating protein or mix thereof yields a synergistic effect on reduction of coagulation beyond what is ex- pected arithmetically.
  • Tube feeding is given to provide nutrition to patients which cannot obtain nutrition by swallowing, using a device such as a nasogastric feeding tube or a naso jejunal feeding tube, or by using a percutaneous endoscopic gastrostomy (PEG) or PEG - jejuno-feeding system.
  • a device such as a nasogastric feeding tube or a naso jejunal feeding tube, or by using a percutaneous endoscopic gastrostomy (PEG) or PEG - jejuno-feeding system.
  • PEG percutaneous endoscopic gastrostomy
  • enteral feeding comprising all of the abovementioned tube feeding systems
  • enteral nutrition used in the feeding by nutritional supplements and/or a by a feeding tube
  • Use of such enteral nutrition may be temporary for the treatment of acute conditions, or lifelong in the case of chronic disabilities. In the latter case, it is primordial that the enteral nutri- tion is designed for long-term administration containing all necessary components.
  • the enteral nutrition contains a protein fraction which at least meets and preferably exceeds the WHO amino acid profile recommendations for complete nutrition.
  • enteral nutrition should be easily digestible and not lead to upper gastrointestinal conditions or complications such as, e.g. intestinal discomfort, reflux, aspiration pneumonia, high gastric residual volume (GRV), vomiting, nausea, bloating, and delayed gastric emptying. Coagulation of proteins in the stomach is hypothesized to delay gastric emptying, This will result in upper gastrointestinal complications such as, e.g. intestinal discomfort, aspiration pneumonia, high gastric residual volume (GRV), vomiting, nausea, bloating, and delayed gastric emptying, especially in vulnerable persons, such as hospitalized patients.
  • upper gastrointestinal complications such as, e.g. intestinal discomfort, aspiration pneumonia, high gastric residual volume (GRV), vomiting, nausea, bloating, and delayed gastric emptying, especially in vulnerable persons, such as hospitalized patients.
  • the present method is for providing nutrition.
  • the present method is for prevention or treatment of upper gastrointestinal complications such as, e.g. intesti- nal discomfort, aspiration pneumonia, high gastric residual volume (GRV), vomiting, nausea, bloating, and delayed gastric emptying.
  • the present method preferably involves administering the nutritional composition to humans, preferably to humans that benefit from receiving easily digestible nutrition, preferably to humans with digestive tract complications, preferably to humans with digestive problems, preferably to hospitalized patients, preferably to a person that is in a disease state, a person that is recovering from a disease state, a person that is malnourished, a baby, an infant and/or a toddler.
  • the present method preferably involves administering the nutritional composition orally, by eating or drinking, preferably enterally by tube feeding.
  • the invention concerns the use of anti-coagulating protein in the manufacture of a nutritional composition that further comprises coagulating protein, for the reduction of upper gastrointestinal conditions or complications selected from the group of reflux, aspiration pneumonia, high gastric residual volume (GRV), vomiting, nausea, bloating, and delayed gastric emptying.
  • the invention concerns the use of pea protein or soy protein or both in the manufacture of a nutritional composition that further comprises caseinate, for , use in preventing or reducing coagulation in the stomach of said caseinate.
  • the invention concerns the use of pea protein or soy protein or both in the manufacture of a nutritional composition that further comprises caseinate, for the reduction of upper gastrointestinal conditions or complications selected from the group of reflux, aspiration pneumonia, high gastric residual volume (GRV), vomiting, nausea, bloating, and delayed gastric emptying.
  • caseinate for the reduction of upper gastrointestinal conditions or complications selected from the group of reflux, aspiration pneumonia, high gastric residual volume (GRV), vomiting, nausea, bloating, and delayed gastric emptying.
  • the nutritional composition is an infant formula, a follow-on formula and/or a toddler formula.
  • the nutritional composition is in a suitable form for administration to a baby, an infant and/or a toddler.
  • the nutritional composition is to promote digestive comfort, reduce gastrointestinal cramping and/or reduce colics.
  • the nutritional composition is a drink or a sportsdrink or a spoonable composition or a solid or a bar.
  • the present method can be of benefit in weight management of a subject.
  • the nutritional composition is for use in weight management.
  • the nutritional composition is a spoonable product.
  • the nutritional composition according to the invention preferably has the form of a complete food, i.e. it can meet all nutritional needs of the user.
  • the liquid enteral nutritional composition according to the invention preferably contains 1000 to 2500 kcal per daily dosage. Depending on the condition of the patient, a daily dose is about 25 to 35 kcal/kg bodyweight/day. Therefore, a typical daily dose for a 70 kg person contains about 2000 kcal.
  • the complete food can be in the form of multiple dosage units, e.g. from 8 (250 ml/unit) to 2 units (1 I/unit) per day for an energy supply of 2000 kcal/day using a liquid enteral nutritional composition according to the invention of 1.0 kcal/ml.
  • the nutritional composition is adapted for tube feeding.
  • the liquid enteral nutritional composition is an oral food supplement
  • it can for example to be used in addition to a non-medical food or normal diet.
  • the liquid enteral nutritional composition contains per daily dosage less than 1500 kcal, in particular as a supplement, the nutritional composition contains 500 to 1000 kcal per daily dose.
  • the food supplement can be in the form of multiple dosage units, e.g. from 2 (250 ml/unit) to 10 units (50 ml/unit) per day for an energy supply of 500 kcal/day using a liquid enteral nutritional composition according to the invention of 1.0 kcal/ml.
  • the nutritional composition is packaged, stored and provided in a container such as plastic bag or a pouch or the like.
  • a container such as plastic bag or a pouch or the like.
  • a variety of such containers is known, for example 500 ml, 1000 ml, and 1500 ml containers are known in the art. It should be noted that any suitable container can be used to package, store and provide the nutritional composition according to the invention.
  • the nutritional composition is provided in a ready to use liquid form and does not require reconstitution or mixing prior to use.
  • the composition according to the invention can be tube fed or administered orally.
  • the composition according to the invention can be provided in a can, on spike, and hang bag.
  • a composition may be provided to a person in need thereof in powder form, suitable for reconstitution using an aqueous solution or water such that the composition according to the invention is produced.
  • the present composition is in the form of a powder, accompanied with instructions to dissolve or reconstitute in an aqueous composition or water to ar- rive at the liquid nutritional enteral composition according to the present invention.
  • the present liquid nutritional enteral composition may thus be obtained by dissolving or reconstituting a powder, preferably in an aqueous composition, in particular water.
  • the composition according to the invention is packaged.
  • the packaging may have any suitable form, for example a block-shaped carton, e.g. to be emptied with a straw ; a carton or plastic beaker with removable cover ; a small-sized bottle for example for the 80 ml to 200 ml range, and small cups for example for the 10 ml to 30 ml range.
  • Another suitable packaging mode is inclusion of small volumes of liquid (e.g. 10 ml to 20 ml) in edible solid or semi-solid hulls or capsules, for example gelatine-like coverings and the like.
  • Another suitable packaging mode is a powder in a container, e.g. a sachet, preferably with instructions to dissolve or reconstitute in an aqueous composition or water.
  • the figure shows the absolute wet weight of coagulates between lmm and 2 mm and bigger than 2 mm after 100 minutes of gastric digestion of different protein mixtures of sodium caseinate (Na-Cas) and pea protein (pea) or soy protein (soy).
  • Na-Cas sodium caseinate
  • pea pea protein
  • soy protein soy protein
  • stomach juice 50 mM NaCl, 15 mM KCl, 1 mM CaCkH 2 O, 15 mM NaHCO 3 , 0.014 % (w/v) pepsin (porcine stomach, sigma p7012), 0.019 % (w/v) lipase [Rhizopus oryzae, DF 15K Amano Pharmaceutical Co, Ltd Nagoya); pH 4.0) was added.
  • the stomach juice was added in two steps with different flow rates. In the first two minutes, a flow rate of 225 ml/h was used.
  • the samples were poured over metal sieves to yield fractions with particle sizes of a) bigger than 2 mm, b) below 2 mm and above 1 mm, c) below 1 mm and above 0.25 mm and d) below the limit of 0.25 mm.
  • the wet weight frac- tions were determined by weighing each individual sieve with the coagulate on it and subtracting the weight of each sieve.
  • sodium-caseinate After 100 minutes of stomach digestion, sodium-caseinate yields the highest amount of coagulate. Addition of either pea or soy diminishes this amount. As such, addition of 15% (w/w) pea protein to the sodium-caseinate diminishes coagula bigger than 2 mm by more than 60% and addition of 40% pea protein diminishes caseinate coagula by more than 90%.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Mycology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Natural Medicines & Medicinal Plants (AREA)
  • Nutrition Science (AREA)
  • Epidemiology (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Immunology (AREA)
  • Botany (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Microbiology (AREA)
  • Zoology (AREA)
  • Medical Informatics (AREA)
  • Alternative & Traditional Medicine (AREA)
  • Biotechnology (AREA)
  • Pediatric Medicine (AREA)
  • Otolaryngology (AREA)
  • Hematology (AREA)
  • Hospice & Palliative Care (AREA)
  • Obesity (AREA)
  • Diabetes (AREA)
  • Coloring Foods And Improving Nutritive Qualities (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Medicines Containing Plant Substances (AREA)

Abstract

This invention relates to the coagulation of protein containing nutritional compositions in the upper gastro-intestinal tract, more in particular in the stomach and provides a method for reducing suchcoagulation.

Description

Method for controlling the digestive coagulation of proteins
Field of the invention
This invention is in the field of protein containing nutritional compositions. In particular this invention concerns the coagulation of such compositions in the upper gastrointestinal tract, more in particular in the stomach. This invention aims to control the digestive coagulation of proteins and preferably aims to reduce the digestive coagulation of proteins.
Background of the invention
Coagulation of proteins in the upper gastro-intestinal tract, in particular in the stomach is hypothesized to delay gastric emptying. This can result in upper gastrointestinal complications like reflux, gastrointestinal discomfort, and aspiration pneumonia. In particular nutritional compositions mainly containing or consisting of casein and/or caseinate tend to coagulate under conditions in the stomach.
In cases where it is advantageous for subjects to receive easily digestible nutrition it is desired to administer such a nutrition that does not result in too much coagulation of proteins in the stomach. Controlling digestive coagulation of proteins is preferably established for those subjects wherein it is desired to prevent or reduce upper gastrointes- tinal conditions or complications such as, e.g. intestinal discomfort, reflux, aspiration pneumonia, high gastric residual volume (GRV), vomiting, nausea, bloating, and delayed gastric emptying, or to make it easily digestible in order to promote digestive comfort, reduce gastrointestinal cramping or colics.
Nutritional compositions containing casein, in particular sodium caseinate and vegeta- ble proteins such as soy and/or pea protein are known.
For example US 2003/0104033 teaches enteral formulations comprising 40 - 95 weight% of caseinate and 5 - 60 weight% of a stabilizing protein, selected from the group of whey and a one or more vegetable proteins, selected from the group of soy, corn, potato, rice and pea, the most preferred vegetable protein being soy protein. The document is concerned with the reduction of creaming in enteral formulae and is silent with respect to coagulation properties of the composition.
Another example is EP 1 972 346 which discloses a pea-based protein mixture comprising 50 weight% caseinate, 25 weight% milk serum proteins and 25 weight% pea protein. The document is silent with respect to coagulation properties of the composition.
Summary of the invention
The present inventors found that a protein composition that under normal conditions coagulates in the stomach, can be made to coagulate to a far lesser extent or not at all, by including a different protein or a protein in a different form resulting in an anti- coagulating effect. For example coagulation of a protein that under normal conditions coagulates in the stomach can be made to coagulate to a far lesser extent or not at all, by including a protein that under the same normal conditions does not coagulate in the stomach. The reduction in coagulation was much more than was expected based on the amount of non-coagulating protein that was included. Hence a synergistic effect on the reduction of coagulation was observed. It is thus considered that the present invention provides an anti-coagulation effect.
The invention will now be further elucidated by describing a number of embodiments of the present invention.
Detailed description of the invention
The present invention thus concerns a method of preventing or reducing coagulation in the upper gastro-intestinal tract of a subject of coagulating protein present in a nutritional composition, said method comprising further including anti-coagulating protein in said nutritional composition. Preferably the method further comprises the step of admi- nistering said nutritional composition to said subject. Preferably the reducing or preventing of coagulation is in the stomach of said subject.
Although the present method is considered not to involve a therapeutic treatment of the animal or human body, it can be recognized that a certain category of ill and/or malnourished and/or hospitalized subjects may benefit from the present invention. In view of this, the invention can also be worded as the use of anti-coagulating protein in the manufacture of a nutritional composition that further comprises coagulating protein, for use in preventing or reducing coagulation in the upper gastro-intestinal tract of a subject of said coagulating protein in said nutritional composition. Preferably the reducing or preventing of coagulation is in the stomach of said subject.
In general coagulation means destabilization or aggregation of proteins by decreasing their electric charge to that of the isoelectric point under the influence of acid and/or enzymes so that protein precipitates are formed. In the context of this invention a protein coagulates if in a stomach digestion model starting with a 6% (w/v) solution of protein in the presence of artificial digestive juice as defined in example 1 after 100 minutes at 370C at least 20 wt%, preferably at least 25 wt.%, preferably at least 30 wt.%, preferably at least 35 wt.%, preferably at least 40 wt.% of the protein is present in particles with a diameter of 1 mm or more, preferably at least 10 wt%, preferably at least 15 wt.%, preferably at least 20 wt.%, preferably at least 25 wt.%, preferably at least 30 wt.% of the protein is present in particles with a diameter of 2 mm or more, Suitably a sieve is used to fractionate a gastric digest with respect to particle diameter size.
Anti-coagulation means that a protein has the effect of reducing the coagulation of the coagulating protein with which it is combined. The reducing effect on coagulation is preferably determined in the stomach digestion model starting with a 6% (w/v) solution of combined coagulating protein and anti-coagulating protein in the presence of artificial digestive juice as defined in example 1 after 100 minutes at 370C. In the context of this invention reducing coagulation means reducing the wt% protein that is present in particles with a diameter of 1 mm or more is reduced by at least 20% compared to the wt% protein that is present in particles with a diameter of 1 mm or more in the absence of anti-coagulating protein under the same conditions.
A specific type of anti-coagulating protein is non-coagulating protein, which is a protein that does not coagulate in the stomach of a human person under normal digestive conditions. In the context of this invention, this means that no particles with a diameter 2 mm or more containing said protein are formed in a stomach digestion model starting with a 6% (w/v) solution of said protein in the presence of artificial digestive juice as defined in example 1 after 100 minutes at 370C. Preferably a non-coagulating protein is a protein of which no particles with a diameter 1 mm or more are formed. Coagulating proteins that are suitable for nutritional compositions are known to the skilled person. In the context of the present invention, the coagulating protein preferably is dairy or milk protein, more preferably casein or caseinate, more preferably one or more selected from the group consisting of micellar casein, sodium caseinate, calcium caseinate, potassium caseinate and magnesium caseinate..
Anti-coagulating proteins are preferably selected such so as to provide an amino acid profile commensurate to the nutritional requirements of humans. In particular the anti- coagulating protein is selected to comply with the WHO amino acid profile recommendations for complete nutrition (see : WHO technical report series no. 935 - Protein and amino acid requirements in human nutrition : report of a joint FAO/WHO/UNU expert consultation, 2007). Anti-coagulating proteins for example are selected from non-dairy proteins, preferably from vegetable and/or fungal proteins and combinations thereof. Suitable proteins are for example selected from plants such as from rice and wheat, legumes, including beans, lentils, pea and soy, and fungi such as mushrooms or yeast. In the context of this invention "vegetable" relates to protein from plant origin, such as, for instance originating from vegetables such as carrot, pea, chickpea, green pea, cowpea, field pea, kidney bean, lupine, rice, soy, canola, hemp, zein, maize, corn, barley, flax, linseed, and wheat. Equivalent wording may be used, such as "vegetal", "leguminous" or "plant- derived". Preferably the anti-coagulating protein is selected from pea and soy or a combination thereof.
It is also envisaged that hydrolysed dairy or milk protein, in particular hydrolysed casein can act as an anti-coagulating protein. Thus in one mebodiment, the anti-coagulating protein is selected from hydrolysed dairy protein, hydrolysed milk protein, hydrolysed whey protein, hydrolysed casein, hydrolysed caseinate or combinations thereof.
Pea Protein
For the purpose of the present invention , pea protein, preferably intact pea protein, is a suitable anti-coagulating, preferably non-coagulating, protein. Pea protein is relatively cheap (on the average, pea protein may cost about half the price of caseinates) and as it is added to the nutritional composition it increases the protein content while keeping costs quite low. Pea protein is generally tolerated well by most people, it is lactose-free and is not a common allergen. Pea protein is quite high in cysteine content and can therefore compensate the inadequate amount of cysteine in casein proteins. Furthermore, pea protein is quite high in arginine compared to casein, soy or whey protein which is required for muscle metabolism and which facilitates the intake of body mass while reducing body fat; and it is quite high in lysine, when compared to the vegetable proteins, which is needed to build protein muscle and assist in the maintenance of lean body mass.
Several pea sources are readily available to the skilled person, for example, from Roquette (Lestrem, France) which markets a pea isolate obtained from the yellow pea [Pisum sativum), and from Cosucra Groupe Warcoing (Warcoing, Belgium).
Other pea protein sources may originate from green pea, cowpea, chickpea, and field pea.
In one embodiment according to the invention, the pea protein is substantially in intact form or non-hydrolysed.
In another embodiment according to the invention, the pea protein is fermented pea protein or is pea protein hydrolysate.
In the context of this invention, a "non-hydrolysed" protein is equivalent to an "intact" protein, meaning that the protein has not been subjected to an hydrolysis process. How- ever, minor amounts of hydrolysed proteins may be present in the source of non- hydrolysed proteins.
In this context, "minor" should be understood as an amount of about 10 weight% or less. The term "about" should be interpreted as a deviation of plus or minus 10 % of the given value.
Soy protein
For the purpose of the present invention , soy protein, preferably intact soy protein, is a suitable anti-coagulating, preferably non-coagulating, protein.
Soy protein has been used since 1959 as an ingredient for its functional properties in a variety of foods such as salad dressings, soups, vegetarian foods and meat imitations. Its functional properties are emulsification and texturizing. Recently, the popularity of soy protein is increasing, mainly because of its health benefits. It has been proven that soy protein can help to prevent cardiovascular problems and many countries allow health claims for food, which are rich in soy protein. Furthermore, health claims have been made for improving heart health (cholesterol reduction), improving bone health (increased bone density) , menopausal symptom relief (reduced hot flashes), performance nutrition (faster muscle recovery) and weight management (satisfying hunger). Soy protein is a vegetable protein that contains the essential amino acids in a relatively high proportion for human health. Soy protein is categorized as a high-quality, complete pro- tein. Soy proteins can be divided into different categories according to their production method. Soy protein isolate (SPI) is the most refined form of soy protein and is mainly used in meat products to improve texture and eating quality. Soy protein isolate contains about 90 percent protein. Soy protein concentrate (SPC) is basically soybean without the water soluble carbohydrates. It contains about 70 percent of protein. Textured soy protein (TSP) is made from soy protein concentrate by giving it some texture. TSP is available as dry flakes or chunks. It will keep its structure when hydrated. Hydrated textured soy protein chunks have a texture similar to ground beef. It can be used as a meat replacement or can be added to meat. Textured soy protein contains about 70 percent protein. Several soy sources are readily available to the skilled person, for example, from The Solae Company (St. Louis, MO, USA).
In one embodiment according to the invention, the soy protein is substantially in intact form or non-hydrolysed.
In another embodiment according to the invention, the soy protein is fermented soy pro- tein or is soy protein hydrolysate.
In the context of this invention, a "non-hydrolysed" protein is equivalent to an "intact" protein, meaning that the protein has not been subjected to an hydrolysis process. However, minor amounts of hydrolysed proteins may be present in the source of non- hydrolysed proteins. In this context, "minor" should be understood as an amount of about 10 weight% or less. The term "about" should be interpreted as a deviation of plus or minus 10 % of the given value. Mixture of coagulating and anti-coagulating protein
The present nutritional composition comprises coagulating protein. Preferably the present nutritional composition comprises at least 25 wt.% coagulating protein based on total protein in the composition. More preferably, the present nutritional composition comprises at least 40 wt.%, preferably at least 50 wt.%, preferably at least 55 wt.%, more preferably at least 60 wt.% or at least 65 wt.% or at least 70 wt.% coagulating protein based on total protein in the composition. Advantageously, the present nutritional composition comprises not more than 99 wt% coagulating protein based on total pro- tein in the composition. More preferably the present nutritional composition comprises not more than 97 wt.%, more preferably not more than 95 wt.% or not more than 90 wt.% or not more than 85 wt.% coagulating protein based on total protein in the composition.
The present nutritional composition comprises anti-coagulating protein. Preferably the present nutritional composition comprises at least 1 wt% anti-coagulating protein based on total protein in the composition. More preferably, the present nutritional composition comprises at least 3 wt.%, more preferably at least 5 wt.% or at least 10 wt.% or at least 15 wt.% anti-coagulating protein based on total protein in the composition. Advantageously, the present nutritional composition comprises not more than 75 wt.% anti- coagulating protein based on total protein in the composition. More preferably the present nutritional composition comprises not more than 60 wt.%, preferably not more than 50 wt.%, preferably not more than 45 wt.%, more preferably not more than 40 wt.% or not more than 35 wt.% or not more than 30 wt.% anti-coagulating protein based on total protein in the composition. The mixture of coagulating and anti-coagulating protein, or in other words anti- coagulating protein mixture, can be prepared by methods for preparing nutrition composition known per se, for example by mixing the protein ingredients, optionally in the presence of other ingredients normally present in nutritional compositions or such other ingredients may be added after mixing of the protein ingredients. In one embodiment according to the present invention, the nutritional composition comprises between 25 - 99 wt.% coagulating protein based on total weight of protein in the composition and between 1 - 75 wt.% anti-coagulating protein based on total weight of protein in the composition. Preferably the nutritional composition comprises between 40 - 97 wt.%, preferably between 50 - 95 wt.%, preferably between 60 - 90 wt.%, preferably between 70 - 85 wt.% coagulating protein based on total weight of protein in the composition and between 3 - 60 wt.%, preferably between 5 - 50 wt.%, preferably between 10 - 40 wt.%, preferably between 15 - 30 wt.% anti-coagulating protein based on total weight of protein in the composition.
Reducing coagulation
The present method is for reducing coagulation in the stomach of coagulating protein in a nutritional composition and the method involves including anti-coagulating protein in said nutritional composition. In the context of this invention coagulation is reduced if the amount of protein that is present in particles with a diameter of 1 mm or more, is reduced by at least 20% in the stomach digestion model as defined above compared to the amount of protein that is present in particles with a diameter of 1 mm or more of a coagulating protein in the absence of anti-coagulating protein in said stomach digestion model, preferably compared to the amount of protein that is present in particles with a diameter of 1 mm or more .of a composition wherein the coagulating protein is the sole protein source. Preferably the amount of protein in particles with a diameter of 1 mm or more is reduced by at least 25%, more preferably by at least 30%, more preferably by at least 40% or by at least 50%, more preferably by at least 60% even more preferably by at least 70%, more preferably by at least 80%, more preferably by at least 90%.
Reducing coagulation in the stomach of coagulating protein is understood to mean that the addition of an anti-coagulating protein or a mix thereof to a coagulating protein or mix thereof yields a synergistic effect on reduction of coagulation beyond what is ex- pected arithmetically.
Applications
Due to a variety of reasons, such as diseases, medical conditions, malnutrition, medical disabilities, post-surgery, etc. patients may not be able to obtain the necessary nutrition by ingesting food through the mouth, e.g. orally, by eating or drinking. Therefore, it has been known to provide medical enteral nutrition by oral nutritional supplements or tube feeding. Tube feeding is given to provide nutrition to patients which cannot obtain nutrition by swallowing, using a device such as a nasogastric feeding tube or a naso jejunal feeding tube, or by using a percutaneous endoscopic gastrostomy (PEG) or PEG - jejuno-feeding system. In the context of this application, the state of being fed by nutri- tional supplements and/or a by a feeding tube is called enteral feeding, comprising all of the abovementioned tube feeding systems, and the nutrition used in the feeding by nutritional supplements and/or a by a feeding tube is called enteral nutrition. Use of such enteral nutrition may be temporary for the treatment of acute conditions, or lifelong in the case of chronic disabilities. In the latter case, it is primordial that the enteral nutri- tion is designed for long-term administration containing all necessary components. In particular, the enteral nutrition contains a protein fraction which at least meets and preferably exceeds the WHO amino acid profile recommendations for complete nutrition. With advances in medicine resulting in increased life expectancy and better disease treatment, a large number of patients would benefit from such enteral nutrition de- signed to provide long-term enteral nutrition. Furthermore, said enteral nutrition should be easily digestible and not lead to upper gastrointestinal conditions or complications such as, e.g. intestinal discomfort, reflux, aspiration pneumonia, high gastric residual volume (GRV), vomiting, nausea, bloating, and delayed gastric emptying. Coagulation of proteins in the stomach is hypothesized to delay gastric emptying, This will result in upper gastrointestinal complications such as, e.g. intestinal discomfort, aspiration pneumonia, high gastric residual volume (GRV), vomiting, nausea, bloating, and delayed gastric emptying, especially in vulnerable persons, such as hospitalized patients. Hence, the present method is for providing nutrition. In one embodiment, the present method is for prevention or treatment of upper gastrointestinal complications such as, e.g. intesti- nal discomfort, aspiration pneumonia, high gastric residual volume (GRV), vomiting, nausea, bloating, and delayed gastric emptying. The present method preferably involves administering the nutritional composition to humans, preferably to humans that benefit from receiving easily digestible nutrition, preferably to humans with digestive tract complications, preferably to humans with digestive problems, preferably to hospitalized patients, preferably to a person that is in a disease state, a person that is recovering from a disease state, a person that is malnourished, a baby, an infant and/or a toddler. The present method preferably involves administering the nutritional composition orally, by eating or drinking, preferably enterally by tube feeding. In one embodiment the invention concerns the use of anti-coagulating protein in the manufacture of a nutritional composition that further comprises coagulating protein, for the reduction of upper gastrointestinal conditions or complications selected from the group of reflux, aspiration pneumonia, high gastric residual volume (GRV), vomiting, nausea, bloating, and delayed gastric emptying.
In one embodiment the invention concerns the use of pea protein or soy protein or both in the manufacture of a nutritional composition that further comprises caseinate, for , use in preventing or reducing coagulation in the stomach of said caseinate.
In one embodiment the invention concerns the use of pea protein or soy protein or both in the manufacture of a nutritional composition that further comprises caseinate, for the reduction of upper gastrointestinal conditions or complications selected from the group of reflux, aspiration pneumonia, high gastric residual volume (GRV), vomiting, nausea, bloating, and delayed gastric emptying.
Another category of subjects that can benefit from the present method are infants. Thus in one embodiment according to the present invention the nutritional composition is an infant formula, a follow-on formula and/or a toddler formula. In one embodiment according to the present invention the nutritional composition is in a suitable form for administration to a baby, an infant and/or a toddler.
In one embodiment according to the present invention the nutritional composition is to promote digestive comfort, reduce gastrointestinal cramping and/or reduce colics.
Also athletes and sportsmen and sportwomen can can benefit from the present method. Thus in one embodiment according to the present invention the nutritional composition is a drink or a sportsdrink or a spoonable composition or a solid or a bar.
Also the the present method can be of benefit in weight management of a subject. In one embodiment according to the present invention the nutritional composition is for use in weight management. Preferably the the nutritional composition is a spoonable product.
Dosage unit
The nutritional composition according to the invention preferably has the form of a complete food, i.e. it can meet all nutritional needs of the user. As such, the liquid enteral nutritional composition according to the invention preferably contains 1000 to 2500 kcal per daily dosage. Depending on the condition of the patient, a daily dose is about 25 to 35 kcal/kg bodyweight/day. Therefore, a typical daily dose for a 70 kg person contains about 2000 kcal. The complete food can be in the form of multiple dosage units, e.g. from 8 (250 ml/unit) to 2 units (1 I/unit) per day for an energy supply of 2000 kcal/day using a liquid enteral nutritional composition according to the invention of 1.0 kcal/ml. Preferably, the nutritional composition is adapted for tube feeding.
In the case the liquid enteral nutritional composition is an oral food supplement, it can for example to be used in addition to a non-medical food or normal diet. Preferably, as an oral supplement, the liquid enteral nutritional composition contains per daily dosage less than 1500 kcal, in particular as a supplement, the nutritional composition contains 500 to 1000 kcal per daily dose. The food supplement can be in the form of multiple dosage units, e.g. from 2 (250 ml/unit) to 10 units (50 ml/unit) per day for an energy supply of 500 kcal/day using a liquid enteral nutritional composition according to the invention of 1.0 kcal/ml.
Preferably, the nutritional composition is packaged, stored and provided in a container such as plastic bag or a pouch or the like. A variety of such containers is known, for example 500 ml, 1000 ml, and 1500 ml containers are known in the art. It should be noted that any suitable container can be used to package, store and provide the nutritional composition according to the invention.
In one embodiment of the present invention, the nutritional composition is provided in a ready to use liquid form and does not require reconstitution or mixing prior to use. The composition according to the invention can be tube fed or administered orally. For example, the composition according to the invention can be provided in a can, on spike, and hang bag. However, a composition may be provided to a person in need thereof in powder form, suitable for reconstitution using an aqueous solution or water such that the composition according to the invention is produced. Thus in one embodiment of the present invention, the present composition is in the form of a powder, accompanied with instructions to dissolve or reconstitute in an aqueous composition or water to ar- rive at the liquid nutritional enteral composition according to the present invention. In one embodiment of the present invention, the present liquid nutritional enteral composition may thus be obtained by dissolving or reconstituting a powder, preferably in an aqueous composition, in particular water.
In one embodiment of the present invention, the composition according to the invention is packaged. The packaging may have any suitable form, for example a block-shaped carton, e.g. to be emptied with a straw ; a carton or plastic beaker with removable cover ; a small-sized bottle for example for the 80 ml to 200 ml range, and small cups for example for the 10 ml to 30 ml range. Another suitable packaging mode is inclusion of small volumes of liquid (e.g. 10 ml to 20 ml) in edible solid or semi-solid hulls or capsules, for example gelatine-like coverings and the like. Another suitable packaging mode is a powder in a container, e.g. a sachet, preferably with instructions to dissolve or reconstitute in an aqueous composition or water.
The invention will now be further elucidated by several examples, without being limited thereby.
FIGURE
The figure shows the absolute wet weight of coagulates between lmm and 2 mm and bigger than 2 mm after 100 minutes of gastric digestion of different protein mixtures of sodium caseinate (Na-Cas) and pea protein (pea) or soy protein (soy).
EXAMPLES
Example 1
Experimental Study Outline
The coagulation properties upon gastric digestion were investigated for a solution of 100% sodium caseinate and solutions of protein mixtures with representative ratios of sodium-caseinate to pea protein of 85:15, 70:30, and 60:40, and for protein mixtures with representative ratios of sodium-caseinate to soy protein of 70:30, and 50:50 with 6% protein (w/v). Gastric Digestion
Stomach digestion was mimicked over 100 minutes in a computer controlled substrate pump setup (Multifermentor fed-batch; DASGIP AG, Juelich, Germany) at 37°C upon continuous stirring.
For each experiment, 150 ml of protein solution were used as the starting volume. Per experiment, a total of 45 ml of artificial stomach juice (50 mM NaCl, 15 mM KCl, 1 mM CaCkH2O, 15 mM NaHCO3, 0.014 % (w/v) pepsin (porcine stomach, sigma p7012), 0.019 % (w/v) lipase [Rhizopus oryzae, DF 15K Amano Pharmaceutical Co, Ltd Nagoya); pH 4.0) was added. The stomach juice was added in two steps with different flow rates. In the first two minutes, a flow rate of 225 ml/h was used. For the rest of the experiment the flow rate was 23 ml/h. In addition, in the first 60 minutes of the experiment a total of 30 ml of artificial saliva (0.1 M NaCl, 30 mM KCl, 2 mM CaCl2.2H2O, 15 mM NaHCO3, 0.065 % (w/v) α-amylase (Sigma A 6211); pH 6.3) was added continuously to the solution.
The pH was decreased over 100 minutes from a pH of 6.6 at start to a final pH of 2.0 (pH at start = 6.6, pH at 8 minutes = 5.0, at 15 minutes = 4.0, at 42 minutes = 3.0, at 100 minutes = 2.0) by the addition of 1 M HCl upon continuous mixing. If necessary, acidification was automatically corrected by the addition of an alkaline solution (1 M NaHCO3, 3 M NaOH).
Determination of Coagulate
After gastric digestion, the samples were poured over metal sieves to yield fractions with particle sizes of a) bigger than 2 mm, b) below 2 mm and above 1 mm, c) below 1 mm and above 0.25 mm and d) below the limit of 0.25 mm. In short, the wet weight frac- tions were determined by weighing each individual sieve with the coagulate on it and subtracting the weight of each sieve.
Results
After 100 minutes of stomach digestion, sodium-caseinate yields the highest amount of coagulate. Addition of either pea or soy diminishes this amount. As such, addition of 15% (w/w) pea protein to the sodium-caseinate diminishes coagula bigger than 2 mm by more than 60% and addition of 40% pea protein diminishes caseinate coagula by more than 90%.
It should be understood that various changes and modifications to the presently preferred embodiments described herein will be apparent to those skilled in the art. Such changes and modifications may be made without departing from the spirit and scope of the invention and without diminishing its advantages. It is therefore intended that such changes and modifications are covered by the appended claims.

Claims

1. A method of preventing or reducing coagulation in the upper gastro-intestinal tract of a subject of coagulating protein present in a nutritional composition, said me- thod comprising further including anti-coagulating protein in said nutritional composition.
2. The method according to claim 1 further comprising administering said nutritional composition to said subject.
3. The use of anti-coagulating protein in the manufacture of a nutritional composition that further comprises coagulating protein, for use in preventing or reducing coagulation in the upper gastro-intestinal tract of a subject of said coagulating protein in said nutritional composition.
4. The method or use according to any one of the preceding claims, wherein the nutritional composition comprises at least 25 wt.% coagulating protein based on to- tal weight of protein in the composition and at least 5 wt.% anti-coagulating protein based on total weight of protein in the composition.
5. The method or use according to any one of the preceding claims, wherein the nutritional composition comprises between 25 - 95 wt.% coagulating protein based on total weight of protein in the composition and between 5 - 75 wt.% anti- coagulating protein based on total weight of protein in the composition
6. The method or use according to any one of the preceding claims, wherein the coagulating protein comprises dairy protein.
7. The method or use according to any one of the preceding claims, wherein the coagulating protein comprises caseinate.
8. The method or use according to any one of the preceding claims, wherein the anti- coagulating protein comprises pea protein or soy protein or both.
9. The method or use according to any one of the preceding claims, wherein the subject is a human, a human with digestive tract complications, a human with digestive problems, a human that benefit from receiving easily digestible nutrition, a hospitalized patient, a person that is in a disease state, a person that is recovering from a disease state, a person that is malnourished, a baby, an infant and/or a toddler.
10. The method or use according to any one of the preceding claims, wherein the nutritional composition is administered by or is for administration by tube feeding.
11. The method or use according to any one of the preceding claims, wherein the nutritional composition is in a suitable form for administration to a baby, an infant and/or a toddler.
12. The method or use according to any one of the preceding claims wherein the nutritional composition is to promote digestive comfort, reduce gastrointestinal cramp- ing and/or reduce colics.
13. The method or use according to any one of claims 1-8, wherein the nutritional composition is a drink, a sportsdrink, a spoonable composition, a solid, a bar.
14. The method or use according to any one of claims 1-8, wherein the nutritional composition is for weight management.
15. The method or use according to any one of the preceding claims, for the reduction of upper gastrointestinal conditions or complications selected from the group of reflux, aspiration pneumonia, high gastric residual volume (GRV), vomiting, nausea, bloating, and delayed gastric emptying..
* * * * * *
PCT/NL2010/050241 2009-04-27 2010-04-27 Method for controlling the digestive coagulation of proteins WO2010131952A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201080018851.9A CN102413716B (en) 2009-04-27 2010-04-27 Method for controlling the digestive coagulation of proteins
EP10718726.2A EP2424384B1 (en) 2009-04-27 2010-04-27 Method for controlling the digestive coagulation of proteins
BRPI1011760A BRPI1011760A2 (en) 2009-04-27 2010-04-27 method for preventing or reducing coagulation in the upper gastrointestinal tract of an individual, and use of anticoagulant protein.
MX2011011320A MX2011011320A (en) 2009-04-27 2010-04-27 Method for controlling the digestive coagulation of proteins.
RU2011148156/13A RU2530498C2 (en) 2009-04-27 2010-04-27 Method of controlling protein coagulation in process of digestion
US13/266,409 US8835383B2 (en) 2009-04-27 2010-04-27 Method for controlling the digestive coagulation of proteins

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
NLPCT/NL2009/050227 2009-04-27
PCT/NL2009/050227 WO2010126353A1 (en) 2009-04-27 2009-04-27 Pea-based protein mixture and use thereof in a liquid nutritional composition suitable for enteral feeding

Publications (1)

Publication Number Publication Date
WO2010131952A1 true WO2010131952A1 (en) 2010-11-18

Family

ID=41491658

Family Applications (3)

Application Number Title Priority Date Filing Date
PCT/NL2009/050227 WO2010126353A1 (en) 2009-04-27 2009-04-27 Pea-based protein mixture and use thereof in a liquid nutritional composition suitable for enteral feeding
PCT/NL2010/050236 WO2010126362A1 (en) 2009-04-27 2010-04-27 Pea-based protein mixture and use thereof in a liquid nutritional composition suitable for enteral feeding
PCT/NL2010/050241 WO2010131952A1 (en) 2009-04-27 2010-04-27 Method for controlling the digestive coagulation of proteins

Family Applications Before (2)

Application Number Title Priority Date Filing Date
PCT/NL2009/050227 WO2010126353A1 (en) 2009-04-27 2009-04-27 Pea-based protein mixture and use thereof in a liquid nutritional composition suitable for enteral feeding
PCT/NL2010/050236 WO2010126362A1 (en) 2009-04-27 2010-04-27 Pea-based protein mixture and use thereof in a liquid nutritional composition suitable for enteral feeding

Country Status (9)

Country Link
US (3) US8835383B2 (en)
EP (3) EP2424384B1 (en)
CN (3) CN102458159B (en)
BR (2) BRPI1011762B1 (en)
DK (1) DK2424386T3 (en)
MX (2) MX2011011320A (en)
PL (1) PL2424386T3 (en)
RU (2) RU2530498C2 (en)
WO (3) WO2010126353A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013148688A1 (en) * 2012-03-26 2013-10-03 Abbott Laboratories Pea protein containing nutritional compositions
WO2013148685A1 (en) * 2012-03-26 2013-10-03 Abbott Laboratories Pea protein containing nutritional compositions
WO2014011030A1 (en) 2012-07-09 2014-01-16 N.V. Nutricia Method for producing a protein comprising composition with reduced digestive coagulation
WO2014011029A1 (en) 2012-07-09 2014-01-16 N.V. Nutricia Method for producing a protein and lipid comprising composition with reduced digestive coagulation
WO2014104871A1 (en) 2012-12-24 2014-07-03 N.V. Nutricia Method for improving postprandial fat digestion
CN104159592A (en) * 2012-03-09 2014-11-19 方塔拉合作集团有限公司 Uses of casein compositions
US9682119B2 (en) 2009-04-27 2017-06-20 N.V. Nutricia Pea-based protein mixture and use thereof in a liquid nutritional composition suitable for enteral feeding
EP2897474B1 (en) 2012-09-21 2017-11-15 Roquette Frères Assembly of at least one vegetable protein and at least one dairy protein
WO2019170707A1 (en) 2018-03-07 2019-09-12 Frieslandcampina Nederland B.V. Highly digestible protein-rich nutritional compositions, uses thereof, and methods for preparing the same

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2478869T3 (en) * 2010-01-29 2014-07-23 N.V. Nutricia Liquid enteral nutritional composition suitable for tube feeding
FR2978647B1 (en) 2011-08-01 2013-08-16 Groupe Lactalis FUNCTIONAL AND STABLE PROTEIN MIXTURE FOR FOOD COMPOSITIONS INTENDED FOR PEOPLE REQUIRING IMPROVEMENT AND MAINTAINMENT OF THEIR PHYSICAL CONDITION.
CN102296100A (en) * 2011-09-09 2011-12-28 江南大学 Preparation method of casein antihypertensive peptides
MX356589B (en) 2011-09-20 2018-06-05 Abbott Lab Powdered nutritional formulations including spray-dried plant protein.
CA2868522A1 (en) 2012-03-26 2013-10-03 Pronutria, Inc. Charged nutritive proteins and methods
AU2013240184B2 (en) 2012-03-26 2017-05-25 Axcella Health Inc. Nutritive fragments, proteins and methods
CA2868477A1 (en) * 2012-03-26 2013-10-03 Pronutria, Inc. Nutritive proteins and methods
AU2013240271A1 (en) * 2012-03-26 2014-10-02 Axcella Health Inc. Nutritive fragments, proteins and methods
CN102970690B (en) * 2012-10-08 2016-01-27 贺志鹏 A kind of end side IP data and wireless signaling time unifying method
JP5659250B2 (en) * 2013-02-15 2015-01-28 花王株式会社 Solid composition
US9820504B2 (en) 2013-03-08 2017-11-21 Axiom Foods, Inc. Rice protein supplement and methods of use thereof
CA2901469A1 (en) 2013-03-08 2014-09-12 Axiom Foods, Inc. Rice protein supplements
WO2014160261A1 (en) * 2013-03-13 2014-10-02 Abbott Laboratories Liquid nutritional compositions with improved oxidative stability
EP3048904A2 (en) 2013-09-25 2016-08-03 Pronutria Biosciences, Inc. Compositions and formulations for treatment of gastrointestinal tract malabsorption diseases and inflammatory conditions and methods of production and use thereof
WO2015048646A1 (en) * 2013-09-30 2015-04-02 Abbott Laboratories Protein powder
EP3082453A1 (en) 2013-12-09 2016-10-26 Abbott Laboratories Nutritional compositions containing rice protein together with pea and/or potato proteins
EP2880996B1 (en) * 2013-12-09 2017-04-12 Abbott Laboratories Nutritional compositions containing brown rice protein
WO2016049198A1 (en) * 2014-09-24 2016-03-31 Abbott Laboratories Nutritional compositions containing dairy proteins in combination with alternative protein sources
FR3027491B1 (en) * 2014-10-22 2017-12-29 International Nutrition Res Company COMPOSITION COMPRISING VEGETABLE PROTEINS AND USE FOR THE PREVENTION OF METABOLIC AND CARDIOVASCULAR DISEASES ASSOCIATED WITH CARDIOMETABOLIC RISK, IN PARTICULAR WITH HYPERGLYCEMIA
FR3027805A1 (en) 2014-11-03 2016-05-06 Even Sante Ind ENTERAL NUTRITION COMPOSITION
WO2016199798A1 (en) * 2015-06-10 2016-12-15 味の素株式会社 Ameliorating agent for exercise-induced gastrointestinal disorders
JP7039476B2 (en) * 2016-03-07 2022-03-22 ロケット フレール Use as a protein source in nutritional formulations and formulations such as yogurt, cream, cream desserts or frozen desserts, including pea protein isolates.
MX2019002109A (en) 2016-08-25 2019-12-05 Perfect Day Inc Food products comprising milk proteins and non-animal proteins, and methods of producing the same.
JOP20190146A1 (en) 2016-12-19 2019-06-18 Axcella Health Inc Amino acid compositions and methods for the treatment of liver diseases
EP3565517A4 (en) 2017-01-09 2020-10-21 Turner, R., Scott Valve for a fluid flow assembly
CN110868870A (en) 2017-05-12 2020-03-06 艾斯姆食品公司 Rice products and systems and methods for making same
JP7266581B2 (en) 2017-08-14 2023-04-28 アクセラ・ヘルス・インコーポレイテッド Amino acid composition for treatment of liver disease
AU2018346481B2 (en) * 2017-10-04 2024-05-16 Roquette Freres Pea protein composition having improved nutritional quality
US11197917B2 (en) 2017-12-01 2021-12-14 ByHeart, Inc. Formulations for nutritional support in subjects in need thereof
US10806165B2 (en) 2018-04-24 2020-10-20 Stokely-Van Camp, Inc. Ready-to-drink plant protein beverage product and methods for making same
US20190374569A1 (en) * 2018-06-12 2019-12-12 Richard Laver Intact pea protein-based nutrient composition
US10596136B2 (en) 2018-06-20 2020-03-24 Axcella Health Inc. Compositions and methods for the treatment of fat infiltration in muscle
CN112788953A (en) * 2018-09-25 2021-05-11 罗盖特公司 Food composition containing mixture of leguminous protein and casein
CN113301812A (en) 2018-10-17 2021-08-24 完美日股份有限公司 Recombinant components and compositions for food products
JP2022507831A (en) * 2018-11-20 2022-01-18 フォンテラ コ-オペレイティブ グループ リミティド Dairy products and processes
WO2020200984A1 (en) 2019-03-29 2020-10-08 Frieslandcampina Nederland B.V. Nutritional compositions comprising bovine milk proteins, methods for preparing the same and uses thereof
CN114096159A (en) * 2019-06-07 2022-02-25 白波服务股份有限公司 Vegetable protein mixture and nutritional composition
CN111972672A (en) * 2020-08-25 2020-11-24 黑龙江省完达山乳业股份有限公司 Composition with muscle increasing function and application thereof
FR3116177A1 (en) * 2020-11-13 2022-05-20 Even Sante Industrie NUTRITIONAL COMPOSITION FOR MEDICAL USE FORMULATED FROM A PLANT PROTEIN
WO2022195025A1 (en) * 2021-03-17 2022-09-22 N.V. Nutricia Liquid nutritional composition suitable for muscle function
CN113455580A (en) * 2021-06-28 2021-10-01 临邑禹王植物蛋白有限公司 Production method of pea-soybean composite plant protein

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002098242A1 (en) * 2001-06-06 2002-12-12 Nestec S.A. Calorically dense liquid oral supplement
US20030104033A1 (en) * 2001-07-13 2003-06-05 Lai Chon-Si Enteral formulations
EP1972346A1 (en) * 2005-11-30 2008-09-24 Katry Inversiones, S.L. Protein mixture and use thereof in the preparation of a product that is intended for oral or enteral food

Family Cites Families (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK392776A (en) 1976-09-01 1977-03-02 Aarhus Oliefabrik As PROCEDURE FOR THE PREPARATION OF FEEDS CONTAINING COAGULARABLE MILK PROTEINS AND PROTEINS OF VEGETABLE OR MICROBIAL ORIGIN
DE3609985A1 (en) 1986-03-25 1987-10-01 Bayer Ag BASIC POLYCONDENSATES
US5021245A (en) 1990-05-22 1991-06-04 Abbott Laboratories Infant formula containing a soy polysaccharide fiber source
US20040142093A1 (en) * 2002-06-24 2004-07-22 Dennis Jones Confectionery product made of protein and carbohydrate materials present in a relative weight ratio higher than 1
US5486461A (en) 1991-11-08 1996-01-23 Novo Nordisk A/S Casein hydrolyzate and method for production of such casein hydrolyzate
IT1258841B (en) 1992-01-31 1996-02-29 Barilla Flli G & R COOKIE WITH HIGH CEREAL CONTENT
US5223285A (en) 1992-03-31 1993-06-29 Abbott Laboratories Nutritional product for pulmonary patients
NZ248605A (en) 1993-05-28 1994-12-22 Abbott Lab Enteral nutritional product comprising protein and fat
US5547927A (en) * 1993-05-28 1996-08-20 Abbott Laboratories Enteral nutritional product for patients undergoing radiation therapy and/or chemotherapy
US5514655A (en) * 1993-05-28 1996-05-07 Abbott Laboratories Enteral nutritional with protein system containing soy protein hydrolysate and intact protein
US5635199A (en) * 1995-10-27 1997-06-03 Nestec Ltd. Support of pediatric patients
US6004926A (en) * 1996-05-23 1999-12-21 Otsuka Pharmaceutical Co., Ltd. Body fat percent-lowering, body composition-improving food composition and a method for lowering the body fat percentage and improving the body composition
US6453459B1 (en) 1998-01-21 2002-09-17 Apple Computer, Inc. Menu authoring system and method for automatically performing low-level DVD configuration functions and thereby ease an author's job
US6475539B1 (en) * 1998-05-07 2002-11-05 Abbott Laboratories Nutritionally complete low pH enteral formula
DE19836338A1 (en) 1998-08-11 2000-02-24 Nutricia Nv Dephosphorylated protein component useful in dietetic foods for subjects with gastrointenstinal motility disorders
EP1010374B2 (en) 1998-12-15 2009-07-29 Societe Des Produits Nestle S.A. Fibre blend for enteral composition
US6241996B1 (en) * 1999-04-09 2001-06-05 Novartis Nutrition Ag Liquid soy nutritional products
FR2794615B1 (en) 1999-06-11 2001-08-10 Bongrain Sa FOOD PRODUCT HAVING FIBROUS TEXTURE OBTAINED FROM WHEY PROTEINS
US6365218B1 (en) * 2000-02-04 2002-04-02 Abbott Laboratories Pediatric formula and methods for providing nutrition and improving tolerance
US6846501B2 (en) 2000-04-12 2005-01-25 Mid-America Commercialization Corporation Traditional snacks having balanced nutritional profiles
GB0227248D0 (en) * 2002-11-22 2002-12-31 Cerestar Holding Bv Process for preparing microbial stable protein suspensions
JP2006515879A (en) * 2003-01-07 2006-06-08 エヌ.ブイ.・ヌートリシア Method for improving nutrient utilization by mammals and compositions for use therein
JP2007517026A (en) * 2003-12-24 2007-06-28 エヌ.ブイ.・ヌートリシア Composition comprising pantothenic acid or derivative thereof, and use thereof to enhance appetite
US20050152887A1 (en) 2004-01-14 2005-07-14 Doctor's Signature Sales And Marketing International Corp. [Dba Life Force International Protonic formulation
US20050220979A1 (en) * 2004-04-02 2005-10-06 Craig Baumer High soy protein nuggets and applications in food products
CN101179954A (en) 2004-11-12 2008-05-14 荷兰纽迪希亚公司 Food composition comprising a protein- and a lipid fraction for rapidly attenuating inflammatory responses
AU2006266551B2 (en) * 2005-07-05 2011-12-08 N.V. Nutricia A carbohydrate fraction and use thereof for a flat postprandial glucose response
FR2889416B1 (en) 2005-08-05 2007-10-26 Roquette Freres COMPOSITION OF PEAS PROTEINS
ES2523883T3 (en) * 2005-11-30 2014-12-02 Vegenat, S.A. Food product for enteral or oral nutrition
JP4047363B1 (en) 2006-09-13 2008-02-13 イーエヌ大塚製薬株式会社 Gel enteral nutrient
EP1911457A1 (en) * 2006-10-12 2008-04-16 N.V. Nutricia Composition to treat or prevent gastrointestinal infection
US20100088252A1 (en) 2006-10-19 2010-04-08 Le-Henand Herve Methods of providing long-term nutrition
PT2081597E (en) * 2006-10-19 2012-07-31 Nestec Sa Long-term enteral feed for maintenance
PL2120602T5 (en) 2006-12-29 2017-10-31 Nutricia Nv Process for producing slowly digestible starch
US20080206430A1 (en) 2007-02-22 2008-08-28 Rafael Avila Compositions consisting of blended vegetarian proteins
MX2010006195A (en) 2007-12-05 2010-08-11 Nutricia Nv Liquid enteral nutritional composition with a low specific protein volume.
WO2010126353A1 (en) 2009-04-27 2010-11-04 N.V. Nutricia Pea-based protein mixture and use thereof in a liquid nutritional composition suitable for enteral feeding
WO2011071365A1 (en) 2009-12-07 2011-06-16 N.V. Nutricia Balanced fat composition and use thereof in a liquid nutritional composition suitable for enteral feeding
ES2478869T3 (en) * 2010-01-29 2014-07-23 N.V. Nutricia Liquid enteral nutritional composition suitable for tube feeding

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002098242A1 (en) * 2001-06-06 2002-12-12 Nestec S.A. Calorically dense liquid oral supplement
US20030104033A1 (en) * 2001-07-13 2003-06-05 Lai Chon-Si Enteral formulations
EP1972346A1 (en) * 2005-11-30 2008-09-24 Katry Inversiones, S.L. Protein mixture and use thereof in the preparation of a product that is intended for oral or enteral food

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2622971B1 (en) 2009-04-27 2018-04-04 N.V. Nutricia Method for controlling the digestive coagulation of proteins
US9682119B2 (en) 2009-04-27 2017-06-20 N.V. Nutricia Pea-based protein mixture and use thereof in a liquid nutritional composition suitable for enteral feeding
CN104159592A (en) * 2012-03-09 2014-11-19 方塔拉合作集团有限公司 Uses of casein compositions
WO2013148685A1 (en) * 2012-03-26 2013-10-03 Abbott Laboratories Pea protein containing nutritional compositions
WO2013148688A1 (en) * 2012-03-26 2013-10-03 Abbott Laboratories Pea protein containing nutritional compositions
US9492502B2 (en) 2012-07-09 2016-11-15 N. V. Nutricia Method for producing a protein comprising composition with reduced digestive coagulation
US20150164985A1 (en) * 2012-07-09 2015-06-18 N.V. Nutricia Method for producing a protein and lipid comprising composition with reduced digestive coagulation
WO2014011039A1 (en) 2012-07-09 2014-01-16 N.V. Nutricia Method for producing a protein comprising composition with reduced digestive coagulation
WO2014011029A1 (en) 2012-07-09 2014-01-16 N.V. Nutricia Method for producing a protein and lipid comprising composition with reduced digestive coagulation
EP2869707B1 (en) 2012-07-09 2017-08-09 N.V. Nutricia Method for producing a protein and lipid comprising composition with reduced digestive coagulation
EP2869706B1 (en) 2012-07-09 2017-09-27 N.V. Nutricia Method for producing a protein comprising composition with reduced digestive coagulation
WO2014011030A1 (en) 2012-07-09 2014-01-16 N.V. Nutricia Method for producing a protein comprising composition with reduced digestive coagulation
EP2897474B1 (en) 2012-09-21 2017-11-15 Roquette Frères Assembly of at least one vegetable protein and at least one dairy protein
US11337440B2 (en) 2012-09-21 2022-05-24 Roquette Freres Assembly of at least one vegetable protein and at least one dairy protein
WO2014104871A1 (en) 2012-12-24 2014-07-03 N.V. Nutricia Method for improving postprandial fat digestion
WO2019170707A1 (en) 2018-03-07 2019-09-12 Frieslandcampina Nederland B.V. Highly digestible protein-rich nutritional compositions, uses thereof, and methods for preparing the same

Also Published As

Publication number Publication date
EP2424386B1 (en) 2013-05-29
CN102458159A (en) 2012-05-16
US9682119B2 (en) 2017-06-20
EP2622971A1 (en) 2013-08-07
PL2424386T3 (en) 2013-10-31
EP2424384B1 (en) 2013-08-14
BRPI1011762B1 (en) 2020-01-07
CN102458159B (en) 2014-07-02
WO2010126353A1 (en) 2010-11-04
MX2011011320A (en) 2012-01-20
US9066537B2 (en) 2015-06-30
CN102413716A (en) 2012-04-11
EP2424386A1 (en) 2012-03-07
EP2622971B1 (en) 2018-04-04
RU2530498C2 (en) 2014-10-10
CN102413716B (en) 2014-04-02
RU2524241C2 (en) 2014-07-27
US20120283180A1 (en) 2012-11-08
DK2424386T3 (en) 2013-08-26
US20120094901A1 (en) 2012-04-19
RU2011148127A (en) 2013-06-10
US20150250851A1 (en) 2015-09-10
MX2011011455A (en) 2012-01-20
BRPI1011760A2 (en) 2015-10-06
WO2010126362A1 (en) 2010-11-04
US8835383B2 (en) 2014-09-16
EP2424384A1 (en) 2012-03-07
CN103829241A (en) 2014-06-04
RU2011148156A (en) 2013-06-10
BRPI1011762A2 (en) 2019-01-15

Similar Documents

Publication Publication Date Title
US8835383B2 (en) Method for controlling the digestive coagulation of proteins
TWI539902B (en) Lipid metabolism-improving agent
TWI483684B (en) Muscle-strengthening agents
JP5465834B2 (en) Liver function protectant
EP2869706B1 (en) Method for producing a protein comprising composition with reduced digestive coagulation
EP2869707B1 (en) Method for producing a protein and lipid comprising composition with reduced digestive coagulation
JPWO2017026429A1 (en) Muscle synthesis promoter
TW201127391A (en) Cholecystokinin secretion promoter
WO2014104882A1 (en) Method for improving postprandial fat digestion

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080018851.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10718726

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2010718726

Country of ref document: EP

Ref document number: MX/A/2011/011320

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 8242/CHENP/2011

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 2011148156

Country of ref document: RU

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13266409

Country of ref document: US

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: PI1011760

Country of ref document: BR

ENP Entry into the national phase

Ref document number: PI1011760

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20111027