WO2010131580A1 - Coating method and organic electronic element - Google Patents

Coating method and organic electronic element Download PDF

Info

Publication number
WO2010131580A1
WO2010131580A1 PCT/JP2010/057559 JP2010057559W WO2010131580A1 WO 2010131580 A1 WO2010131580 A1 WO 2010131580A1 JP 2010057559 W JP2010057559 W JP 2010057559W WO 2010131580 A1 WO2010131580 A1 WO 2010131580A1
Authority
WO
WIPO (PCT)
Prior art keywords
coating
slit
film thickness
lip
coating liquid
Prior art date
Application number
PCT/JP2010/057559
Other languages
French (fr)
Japanese (ja)
Inventor
茂寿 川邉
喜芳 遠藤
Original Assignee
コニカミノルタホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタホールディングス株式会社 filed Critical コニカミノルタホールディングス株式会社
Priority to JP2011513307A priority Critical patent/JP5831228B2/en
Publication of WO2010131580A1 publication Critical patent/WO2010131580A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C5/00Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work
    • B05C5/02Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work the liquid or other fluent material being discharged through an outlet orifice by pressure, e.g. from an outlet device in contact or almost in contact, with the work
    • B05C5/0254Coating heads with slot-shaped outlet
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/26Processes for applying liquids or other fluent materials performed by applying the liquid or other fluent material from an outlet device in contact with, or almost in contact with, the surface
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/40Thermal treatment, e.g. annealing in the presence of a solvent vapour

Definitions

  • the present invention relates to a coating method in which a low-viscosity coating liquid is coated on a thin film using a slit type die coater and an organic electronics element formed by this coating method.
  • the following two coating methods are known as a method of applying a coating solution to a belt-like substrate that runs continuously.
  • One is a post-measurement type coating method in which an excess coating solution is discharged onto the substrate in advance, and then the excess is removed by some scraping means.
  • Known post-measuring coating methods include blade coating, air knife coating, wire bar coating, gravure coating, reverse coating, and reverse roll coating.
  • the other is a pre-weighing type coating method in which the coating liquid is ejected by an amount that forms a necessary coating liquid film and the coating liquid is applied onto the support.
  • a pre-weighing type coating method an extrusion coating method using a slit type die coater, a slide coating method using a slide coater, a curtain coating method, a coating method using an inkjet head, and the like are known.
  • the slit type die coater has higher coating accuracy, high quality, high speed, thin film, multi-layer coating suitability, etc. than other types of coating devices. Therefore, it is used for manufacturing optical films, ink jet recording paper, heat development recording materials, organic electroluminescence panels (hereinafter also referred to as organic EL panels), and the like.
  • Organic EL panels are used in the fields of display and lighting, and are generally manufactured by film formation by vapor deposition.
  • manufacturing by coating method is desired in order to improve productivity and reduce manufacturing costs. ing.
  • uniform coating film thickness to be coated on a support.
  • the thickness of the hole transport layer is 5 nm to 500 nm and the thickness of one layer forming the light emitting layer is 2 nm to 100 nm
  • the uniformity of the thickness of the organic compound layer is the performance of the organic EL panel.
  • uniform film thickness is the thickness of uniform film thickness.
  • a slit type die coater is used for thin film coating in which a coating solution having a viscosity of several mPa ⁇ s is applied at a coating speed of several tens m / min to several hundred m / min by a conventional extrusion coating method using a slit type die coater.
  • the pressure on the upstream side is reduced, the coater gap is about 3 to 10 times the wet film thickness and about 100 ⁇ m or more, and the coater gap accuracy is several percent (straightness of slit type die coater, cylindricity of backup roll, rotation
  • the accuracy of the coating film thickness distribution was suppressed to several percent by setting the accuracy from the limit of machine accuracy such as accuracy.
  • maintaining the bead portion in a pressurized state is a condition for stable coating, and if the coater gap is small, a coating film thickness distribution defect occurs, so it is desirable that the coater gap is large. If it is expanded to more than twice the wet film thickness, the bead portion becomes completely negative pressure due to entrained air accompanying the conveyance of the support, and the bead cannot be maintained and stable coating cannot be performed.
  • a method of cutting the entrained air by reducing the pressure on the upstream side of the slit type die coater is used, but the coater gap is 1.
  • the limit is about 10 times the wet film thickness.
  • a method for stably forming a thin film by applying a low-viscosity coating solution by an extrusion coating method using a slit type die coater has been studied.
  • a thin film of a low-viscosity coating solution is applied to a web continuously supported by a backup roller using a slot die (corresponding to a slit type die coater used in the present invention)
  • the die width of the slot die In order to prevent wetting spread, wetting shrinkage, and disturbance of the coating liquid at the direction end, the clearance difference between the center of the die width direction at the tip of the slot die and the both ends of the die width with respect to the backup roller is 1 ⁇ m to 10 ⁇ m.
  • a method of using a slot die with a slot die tip having a concave shape is known (for example, see Patent Document 1).
  • an extrusion coater having a slit width of 60 ⁇ m to 120 ⁇ m and a manifold diameter of 12 mm to 18 mm is known (for example, a patent) Reference 2).
  • the present invention has been made in view of the above situation, and an object of the present invention is to use a slit-type die coater and to form a thin film having a stable film thickness using a low-viscosity coating liquid and to form the coating film by this coating method.
  • An organic electronic device is provided.
  • a slit-type die coater is used on the object to be coated, the lip tip of the slit-type die coater is close to the object to be coated, and the lip tip is applied with a coating liquid supplied from the slit outlet of the lip tip.
  • a coating method in which a bead is formed between a portion and the substrate to be coated, and the coating liquid is coated.
  • the viscosity of the coating solution is 3.0 mPa ⁇ s or less,
  • the coating method is characterized in that coating is performed in a state where the pressure at the slit outlet of the bead portion is negative or zero.
  • the coating film formed on the coated body by the coating solution supplied from the lip tip is applied with a wet film thickness of 5.0 ⁇ m or less, and the gap between the lip tip and the coated body is 100 ⁇ m or more. 2.
  • the gap between the lip tip and the coated body is 50 times or more the wet film thickness of the coating film formed on the coated body by the coating liquid supplied from the lip tip.
  • Coating is started with the interval between the lip tip and the coated body being 1 to 50 times the wet film thickness of the coating film formed on the coated body by the coating liquid supplied from the lip tip. Then, after forming the bead, the coating method according to any one of 1 to 6 above, wherein the interval is increased to 100 ⁇ m or more or 50 times or more to the wet film thickness.
  • An organic electronic device having a configuration in which a plurality of organic compound layers including a light emitting layer are stacked between a first electrode and a second electrode on a substrate, wherein the organic compound layer is the one described in the items 1 to 9 above.
  • FIG.1 It is the schematic of the state which has apply
  • the present invention relates to a coating method in which a low-viscosity coating solution of 3 mPa ⁇ s or less is coated with a thin film having a wet film thickness of 5.0 ⁇ m or less using a slit die coater.
  • a method of applying a low-viscosity coating solution by an extrusion coating method using a slit type die coater is also disclosed in Patent Document 1 and Patent Document 2, but the regulation of the wetting and spreading of the coating liquid during coating and wet There was no disclosure regarding the control of the coating width and film thickness when the film thickness was 5 ⁇ m or less.
  • Patent Document 2 when a slit type die coater is used and coating is performed by the extrusion coating method, a shim is inserted into the slit in order to regulate the coating width, thereby preventing liquid from flowing out of the uncoated width portion of the slit.
  • the width regulation method is used, but with a low-viscosity coating solution of 3 mPa ⁇ s or less, it spreads through the coater gap of the support from both ends of the lip, so that the coating width cannot be regulated and the film thickness becomes thin. End up.
  • the present inventor When applying a low-viscosity coating solution of 3 mPa ⁇ s or less with a wet film thickness of 5 ⁇ m or less, the present inventor widens the coater gap to 50 times or more of the wet film thickness and sets the coating width to a desired width. A method that can regulate the film thickness to a predetermined thickness was studied, and the following was found.
  • the bead is formed by spreading the coating solution to the width of the coating by capillary action when the pressure at the slit exit of the bead portion is negative or zero. It became clear that it could be applied.
  • the coater gap may be a gap that allows the coating solution to bridge between the lip and the support, and is not affected by the coating film thickness. Therefore, even when the wet film thickness is 5 ⁇ m or less, it is possible to apply with a very wide coater gap of 100 ⁇ m or more or 50 times or more, and even with a thin film of 5.0 ⁇ m or less, it can be applied with a coater gap of 100 ⁇ m or more. It has been found.
  • the coating when a low-viscosity coating solution having a viscosity of 3 mPa ⁇ s or less is applied with a slit type die coater, the coating is performed in the following configuration. 1. Set the pressure at the exit of the bead slit to a negative or zero state. More preferably, the structure shown to the following 2 and 3 is mentioned. 2. A slit type die coater in which notches are provided at both ends of the coating width according to the coating width is used without using shims as the width regulating method. 3. The application speed is set to a speed that does not generate accompanying air.
  • the conventional slit type die coater is used, the problem that occurs when a low viscosity coating solution of 3 mPa ⁇ s or less is solved, and the machine accuracy is not affected. It was possible to provide a thin film coating method capable of coating a thin film having a film thickness distribution.
  • FIG. 1 is a schematic view of a state where coating is performed using a slit die coater.
  • FIG. 1A is a schematic cross-sectional view of a state where coating is performed using a slit type die coater which is a pre-metering type coating method.
  • FIG. 1B is a schematic perspective view of the slit type die coater shown in FIG.
  • 1 indicates a slit type die coater.
  • the slit die coater 1 has two blocks 101a, a block 101b, a side plate 101c, and a side plate 101d, and is assembled by fastening with bolts or the like.
  • Reference numeral 102 a denotes a notch provided at the end of the application width at the tip of the lip 103.
  • Reference numeral 102 b denotes a notch provided at the end of the application width at the tip of the lip 103.
  • the lip 103 has a back lip 103a and a front lip 103b.
  • 104 indicates a slit formed by a gap between the block 101a and the block 101b, and 105 is a part for temporarily storing a coating liquid called a manifold, and the coating liquid is fed into the coating liquid supply pipe 106 here.
  • the coating liquid accumulated in the coating width direction by the manifold 105 passes through the slit 104 and is supplied from the slit outlet 104a at the tip of the slit 104 between the lip 103 and the belt-like support 3 supported by being wound around the backup roll 2. .
  • the supplied coating solution forms a bead Q, is wound around a backup roll 2 and is coated on the supported belt-like support 3 to form a coating film 4.
  • the pressure at the slit outlet of the bead portion of the coating liquid supplied from the slit outlet 104a is applied on the belt-like support 3 in a negative or zero state.
  • the zero state means that the difference from the atmospheric pressure is zero.
  • the error includes a range of ⁇ 0.001 MPa.
  • the negative pressure state means a state lower than the atmospheric pressure, and if the negative pressure becomes too strong, it becomes difficult to maintain the bead, so ⁇ 0.01 MPa or more is preferable.
  • the pressure at the slit outlet of the bead portion of the coating liquid supplied from the slit outlet 104a can be obtained by the following method.
  • the pressure in the manifold 105 is measured and set to P.
  • the pressure P in the manifold can be measured by connecting a commercially available pressure sensor from the side plate 101c into the manifold 105.
  • the slit outlet 104a The pressure at the slit outlet of the bead portion of the coating liquid supplied from the above can be obtained by the following equation ⁇ P.
  • the bead Q is formed in the coater gap A.
  • X indicates a coating position where the coating liquid supplied from the slit outlet 104a is coated on the belt-like support 3.
  • the coating position X as a boundary, the belt-like support 3 side before coating is called the upstream side, and the belt-like support 3 side on which the coating film 4 is formed is called the downstream side.
  • the coating method using the slit type die coater 1 is a method which is performed without providing a decompression chamber.
  • the application using the slit type die coater 1 is a means for moving from the standby position to the application position (not shown) with the required application liquid being supplied from the slit outlet at the start of application.
  • the lip 103 (back lip 103a and front lip 103b) at the tip of the coating coater 1 is brought close to the belt-like support, and a bead Q is formed in the coater gap A between the lip and the belt-like support. Is applied to the support (with liquid).
  • the present invention is the case where the coated body is movable while the coated body is fixed, and the coated body is movable when both of the coaters are movable. Including.
  • FIG. 2 is an enlarged schematic side view and an enlarged schematic front view of the slit type die coater shown in FIG.
  • FIG. 2A is an enlarged schematic side view of the slit type die coater shown in FIG.
  • FIG. 2B is an enlarged schematic front view of the slit die coater shown in FIG.
  • Ja indicates the depth of the notch 102a from the back lip 103a.
  • Depth Ja is preferably 0.2 mm to 5.0 mm in consideration of running out of the coating liquid, crosslinkability between the lip of the coating liquid and the support, leakage of the coating liquid in the width direction of the slit die coater, and the like. Furthermore, 0.4 mm to 3.0 mm is preferable.
  • the depth of the notch 102b from the back lip 103a is preferably the same as the depth Ja.
  • the depth Jb indicates the depth of the notch 102a from the front lip 103b.
  • the depth Jb is preferably 0.2 mm to 5.0 mm in consideration of running out of the coating liquid, crosslinkability between the lip of the coating liquid and the support, leakage of the coating liquid in the width direction of the slit die coater, and the like. Furthermore, 0.4 mm to 3.0 mm is preferable.
  • the depth of the notch 102b from the front lip 103b is preferably the same as the depth Jb.
  • the width K indicates the width of the slit type die coater 1.
  • the width K can be appropriately changed according to the coating width.
  • L indicates the width of the application width of the lip 103 of the notch 102a.
  • M represents the width of the application width of the lip 103 of 102b which is a notch.
  • the width L and the width M can be appropriately set depending on the application position. Note that the width L and the width M may be the same or different.
  • the coating width N indicates the coating width.
  • the coating width N can be appropriately changed according to the coating width.
  • the slit gap O represents the slit gap of the slit 104.
  • the slit gap O is preferably 5 ⁇ m to 100 ⁇ m and more preferably 5 ⁇ m to 50 ⁇ m in consideration of the supply amount of the coating liquid, physical properties of the coating liquid, and the like.
  • Other reference numerals are the same as those in FIG.
  • FIG. 3 is an enlarged schematic plan view of a portion indicated by X in FIG. 1 (b) showing the shape of the notch.
  • this figure is an enlarged schematic plan view from the block 101a side which comprises the slit type
  • the reference numerals in the figure are the same as those in FIG.
  • the notch 102 a has a surface C parallel to the lip 103 and a groove surface B connecting the lip 103 and the surface C.
  • represents an angle at which the groove surface B and the surface C intersect.
  • the shape of the notch is not particularly limited, and typical shapes are shown in (a) to (e).
  • (A) has shown the case where the angle (theta) which the laver surface B and the surface C cross is 90 degrees.
  • B has shown the case where the angle (theta) where the surface B and the surface C cross is an obtuse angle.
  • C shows a case where the angle ⁇ between the groove surface B and the surface C is an acute angle.
  • D shows a case where the groove surface B is a convex curved surface.
  • E has shown the case where the groove surface B is a concave curved surface.
  • the viscosity of the coating solution used is 3.0 mPa ⁇ s or less, and the coater gap A (see FIG. 1) is 50 times or more the wet film thickness, or the coater gap A (see FIG. 1) is 100 ⁇ m or more.
  • the coating speed is preferably 0.1 m / min to 10.0 m / min in consideration of the influence of accompanying air, conveyance stability, and the like.
  • the minimum of the viscosity of the coating liquid used for this invention be the viscosity of the solvent used for a coating liquid.
  • the coating speed here is the relative speed between the coater and the coated body.
  • the coated body is movable with the coater fixed, the coated body is coated with the coated body when the coated body is fixed and the coated body is movable. Including the case where both are movable.
  • Viscosity indicates a value measured at a temperature of 25 ° C. using an E-type viscometer VISCONIC ED type and controller E-200 type manufactured by Toki Sangyo Co., Ltd.
  • the wet film thickness refers to the theoretical film thickness calculated by the following equation.
  • wet film thickness coating liquid supply / (coating width x coating speed)
  • the coater gap A (see FIG. 1) is preferably 100 ⁇ m or more, more preferably 100 ⁇ m or more and 2000 ⁇ m or less in consideration of the film thickness distribution in the width direction of the coating even when the wet film thickness is as extremely thin as 2 ⁇ m or less. More preferably, it is 100 ⁇ m or more and 1000 ⁇ m or less.
  • the relationship between the coater gap A (see FIG. 1) at the start of coating and after the coating solution has formed a bead and the wet film thickness takes into consideration the ease of bead formation, the time to bead formation, etc.
  • the coater gap A (see FIG. 1) starts application at 1 to 50 times the wet film thickness, and is preferably 50 times or more or 100 ⁇ m or more after bead formation, more preferably 100 ⁇ m or more and 2000 ⁇ m or less, More preferably, they are 100 micrometers or more and 1000 micrometers or less.
  • the relationship between the coater gap A (see FIG. 1) at the start of coating and after the coating liquid has formed a bead and the coating liquid supply flow rate takes into account the ease of bead formation and the time to bead formation.
  • the coater gap A (see FIG. 1) is increased by increasing the flow rate to a coating liquid supply flow rate that is 1 to 50 times the wet film thickness. After the bead formation, the coater gap A (see FIG. 1) is wet. It is preferable to reduce the wet film thickness by reducing to a predetermined coating liquid supply flow rate that is 50 times or more of the film thickness.
  • the relationship between the coater gap A (see FIG. 1) at the start of coating and after the coating solution has formed a bead and the coating speed takes into account the ease of bead formation and the time to bead formation. It is preferable to start the coating at a coating speed at which the coater gap A (see FIG. 1) is 1 to 50 times the wet film thickness, and to increase the coating speed to a predetermined coating speed of 50 times or more after bead formation.
  • the coating liquid having a viscosity of 3.0 mPa ⁇ s or less is applied, and the pressure at the slit outlet of the bead portion of the coating liquid supplied from the slit outlet of the slit type die coater is
  • the following effects can be obtained by applying under negative pressure or zero. 1. It has become possible to apply a thin film with a stable film thickness of 5 ⁇ m or less, and to meet market demands. 2. By cutting out both ends of the lip of the slit type die coater, it became possible to more stably apply a thin film with a wet film thickness of 5 ⁇ m or less.
  • the coating method of the present invention using the slit type die coater shown in FIG. 1 to FIG. 3 is used in the anti-reflection film, the optical film, and the organic EL element constituting the organic EL element. It can be applied to the production of functional layers (for example, a hole transport layer, a light emitting layer, etc.) that can be formed by a coating method, color filters used in liquid crystal displays, optical filters, and various coating films.
  • functional layers for example, a hole transport layer, a light emitting layer, etc.
  • the materials used when producing the antireflection film and the optical film by the coating method of the present invention are disclosed in JP-A-2008-296421, 2008-224003, 2008-224718, 2008-200600. It is possible to use known materials described in Japanese Patent Publication Nos. 2007-098833, 2006-293201, 2006-285217, and the like.
  • part means “part by mass”.
  • Example 1 Preparation of belt-shaped object
  • a polyethylene terephthalate film (Teijin DuPont film, hereinafter abbreviated as PET) having a thickness of 100 ⁇ m, a width of 330 mm, and a length of 500 m was prepared.
  • a commercially available dye, C.I. I. A coating solution in which 1.5 parts by mass of Acid Red 249 was dissolved was prepared, and the addition amount of polyvinyl butyrate (PVB) was adjusted so as to obtain each viscosity, and coating solutions having different viscosities as shown in Table 1 were prepared. From a to d.
  • the viscosity of the coating solution is a value measured at a temperature of 25 ° C. using an E-type viscometer VISCONIC ED type manufactured by Toki Sangyo Co., Ltd. and a controller E-200 type manufactured by the same company.
  • Slit die coater width K 400mm Depth from front lip of notch Jb 2.0mm Depth from notch back lip Ja 2.0mm Application width of lip of notch width width L 50mm Application width of lip at notch width width M 50mm Slit gap O 20 ⁇ m Application width 300mm
  • the shape of the notch was the shape shown in FIG.
  • Slit type die coater No. 2 Slit type die coater No. No cut-out portion is provided in FIG. A slit type coater having the same structure as that of the coating width of No. 1 was prepared. 2.
  • Slit die coater width K 300mm Depth from front lip of notch Jb 2.0mm Depth from notch back lip Ja 2.0mm Application width of the lip at the notch width Width L 0mm Application width of lip of notch width width M 0mm Slit gap O 20 ⁇ m Application width 300mm (Application)
  • the prepared slit die coater No. 1, slit type die coater No. No. 2 was used and the prepared coating solution No.
  • the sample was dried and sample No. 101 to 132. Note that the pressure at the slit outlet was changed by changing the flow rate. In order to keep the film thickness constant, the coating speed was changed in proportion to the flow rate.
  • the pressure at the slit exit of the bead portion of the coating liquid supplied from the slit exit is a value measured by the method described in the main text of the specification using an environment-resistant digital pressure sensor AP-10S manufactured by Keyence Corporation.
  • the wet film thickness refers to the theoretical film thickness calculated by the following equation.
  • wet film thickness coating liquid supply flow rate / (coating width x coating speed) (Application conditions) As the coating conditions, the coating width was 300 mm, the coating length was 50 m, and the coating temperature was 25 ° C. The wet film thickness is 2.0 ⁇ m, and the coater gap is 200 ⁇ m, which is 100 times the wet film thickness. The coating speed was measured with a laser Doppler velocimeter LV203 manufactured by Mitsubishi Electric Corporation.
  • Table 2 shows the results obtained by extracting samples from 101 to 132, the beginning 5 m, and the end 5 m, measuring the film thickness stability by the measurement method shown below, and evaluating according to the evaluation rank shown below.
  • Measuring method of film thickness stability Since the relationship between the concentration and the film thickness is linear, use the Konica Minolta Konica Densitometer PDM-7 to measure the concentration at 10 mm intervals in the width direction. The variation in density at 31 points was calculated as the film thickness stability by the following formula.
  • Film thickness stability (variation) ((maximum density-minimum density) / average density) x 100 Evaluation rank ⁇ : Variation is less than 1.0 ⁇ : Variation is 1.0 or more and less than 3.0 ⁇ : Variation is 3.0 or more, less than 5.0 ⁇ : Variation is 5.0 or more
  • Example 2 Coating liquid No. 1 prepared in Example 1 was used. b, slit type die coater No. No. 1 was applied under the following coating conditions while changing the wet film thickness and coater gap as shown in Table 3. 201 to 220. The wet film thickness was changed by changing the flow rate of the coating solution.
  • the coating conditions are as follows: the pressure at the slit outlet of the bead portion of the coating liquid supplied from the slit outlet is -0.005 MPa, the coating speed is 5.0 m / min, the coating width is 300 mm, the coating length is 50 m, and the temperature during coating of the coating liquid is Performed at 25 ° C.
  • the coating speed indicates a value measured by the same method as in Example 1.
  • the coating liquid has a viscosity of 3.0 mPa ⁇ s or less and the coating liquid supplied from the slit outlet has a negative or zero pressure at the slit outlet, the coating liquid is pushed out from the lip tip. It was confirmed that the film thickness stability was stable by applying a wet film thickness of 5.0 ⁇ m or less with a coater gap of 100 ⁇ m or more. The effectiveness of the present invention was confirmed.
  • Example 3 Coating liquid No. 1 prepared in Example 1 was used. b, slit type die coater No. As shown in Table 4, the coating conditions were changed as shown in Table 4 and the wet film thickness and the coater gap were changed. 301 to 320. The wet film thickness was changed by changing the flow rate of the coating solution.
  • the coating conditions are as follows: the pressure at the slit outlet of the bead portion of the coating liquid supplied from the slit outlet is -0.005 MPa, the coating speed is 5.0 m / min, the coating width is 300 mm, the coating length is 50 m, and the coating temperature is as follows: Performed at 25 ° C. The wet film thickness was changed by changing the coating liquid flow rate and the coating speed. The coating speed indicates a value measured by the same method as in Example 1.
  • the coating solution has a viscosity of 3.0 mPa ⁇ s or less and the coating solution supplied from the slit outlet is applied at a negative or zero pressure at the slit outlet, the coating supplied from the lip tip
  • the wet film thickness of the coating film formed on the coated body with the liquid is 5.0 ⁇ m or less, and the wet film thickness of the coating film formed on the coated body with the coating liquid in which the coater gap is extruded from the lip tip. It was confirmed that the film thickness stability showed a stable performance by coating at 50 times or more, or 100 ⁇ m or more. The effectiveness of the present invention was confirmed.
  • Example 4 Coating liquid No. 1 prepared in Example 1 was used. b, slit type die coater No. No. 1 was applied after changing the coating speed as shown in Table 5 under the coating conditions shown below, followed by drying and sample no. 401 to 408. The coating speed indicates a value measured by the same method as in Example 1.
  • the coating conditions were as follows: the pressure at the slit outlet of the bead portion of the coating liquid supplied from the slit outlet was ⁇ 0.005 MPa, the coating width was 300 mm, the coating length was 50 m, and the coating temperature was 25 ° C. The wet film thickness was 2.0 ⁇ m, and the coater gap was 200 ⁇ m, 100 times the wet film thickness.
  • the coating speed is 0. It was confirmed that the film thickness stability showed a stable performance when the range was from 1 m / min to 10 m / min. The effectiveness of the present invention was confirmed.
  • Example 5 Coating liquid No. 1 prepared in Example 1 was used.
  • b slit type die coater No.
  • Table 6 As shown in Table 6 under the coating conditions shown in Fig. 1, coating was started with a coater gap with respect to the wet film thickness at the start of coating, the coating gap after bead formation was expanded and coated, and then dried and sample No. . 501 to 513.
  • the coating conditions As the coating conditions, the pressure at the slit outlet of the bead portion of the coating liquid supplied from the slit outlet was ⁇ 0.005 MPa, the coating width was 300 mm, the coating length was 50 m, and the coating temperature was 25 ° C.
  • the wet film thickness was 2.0 ⁇ m, the coating speed was 5.0 m / min.
  • the coating speed indicates a value measured by the same method as in Example 1.
  • Example 6 Coating liquid No. 1 prepared in Example 1 was used. b, slit type die coater No. 1, the wet film thickness was changed by changing the flow rate of the coating solution so that the coating gap and the wet film thickness ratio changed after the start of coating and bead formation as shown in Table 7 under the coating conditions shown below. After coating, it was dried and sample No. 601 to 607.
  • the coating conditions are as follows: the pressure at the slit outlet of the bead portion of the coating liquid supplied from the slit outlet of the slit die coater is -0.005 MPa, the coating width is 300 mm, the coating length is 50 m, and the temperature at the time of coating the coating liquid is 25 ° C. I went there.
  • the wet film thickness after beat formation is 2.0 ⁇ m, the coating speed is 5.0 m / min, and the coater gap is 200 ⁇ m.
  • the coating speed indicates a value measured by the same method as in Example 1.
  • Example 7 Coating liquid No. 1 prepared in Example 1 was used. b, slit type die coater No. In the coating conditions shown in Table 1 below, as shown in Table 8, the coating speed was changed so that the coater gap was changed after the start of coating and bead formation. 701 to 707.
  • the coating conditions are as follows: the pressure at the slit outlet of the bead portion of the coating liquid supplied from the slit outlet of the slit die coater is -0.005 MPa, the coating width is 300 mm, the coating length is 50 m, and the coating liquid temperature is 25 ° C. I went there.
  • the wet film thickness after beat formation is 2.0 ⁇ m
  • the coating speed after beat formation is 5.0 m / min
  • the coater gap is 200 ⁇ m.
  • the coating speed indicates a value measured by the same method as in Example 1.
  • Example 8 The band-shaped organic EL panel structure (flexible substrate / first electrode (anode) / hole transport layer / light emitting layer / electron transport layer / second electrode (cathode) / adhesive / sealing member) is as follows: After manufacturing by the method shown, an organic EL panel was manufactured by cutting and sample No. 801. The hole injection layer, hole transport layer, light emitting layer, electron transport layer, and electron injection layer are formed by coating with a slit type die coater shown in FIG. 1, and the second electrode (cathode) is formed by vapor deposition. Formed.
  • PET polyethylene terephthalate film having a thickness of 100 ⁇ m, a width of 200 mm, and a length of 500 m was prepared.
  • the alignment mark was provided in the same position of the surface in which a 1st electrode is formed, and the opposite surface.
  • the alignment mark attached to the prepared PET is detected, and according to the position of the alignment mark, a 120 nm thick ITO (indium tin oxide) is sputtered on the PET under a vacuum environment condition of 5 ⁇ 10 ⁇ 1 Pa on the mask.
  • the film is formed into a pattern, the 12 mm ⁇ 5 mm first electrode having a take-out electrode and the 10 mm ⁇ 3 mm second electrode take-out electrode are continuously formed in 12 rows at regular intervals, and then temporarily wound and stored. did.
  • the viscosity of the coating liquid for forming a hole transport layer was 0.7 mPa ⁇ s.
  • the viscosity is a value measured at 20 ° C. using a digital viscometer LVDV-I manufactured by Brookfield.
  • the prepared slit die coater No. 1 was used, and the prepared roll-injected PET having the hole injection layer formed thereon was charged and removed, and then prepared on the entire upper surface of the PET held on the backup roll (except 10 mm at both ends).
  • the coating liquid for forming the hole transport layer was applied under the following conditions, followed by drying and heat treatment.
  • a non-contact type antistatic device was used on the first electrode formation side, and a contact type antistatic device was used on the back side.
  • a non-contact type antistatic device a flexible AC ionizing bar MODEL4100V manufactured by Hugle Electronics Co., Ltd. was used.
  • the contact type antistatic device was a conductive guide roll ME-102 manufactured by Miyako Roller Kogyo Co., Ltd.
  • a coating solution for forming a hole transport layer is applied at a coating speed of 5 m / min, a coating width of 180 mm, a wet film thickness is 2 ⁇ m, a coater gap with respect to the wet film thickness is 200 ⁇ m, and a coating liquid for forming a hole transport layer is applied.
  • the temperature was 25 ° C., a dew point temperature of ⁇ 20 ° C. or less under an N 2 gas environment at atmospheric pressure, and a cleanliness class 5 or less (JIS B 9920).
  • the wet film thickness indicates a theoretical value calculated by flow rate (supply amount) / (application width ⁇ application speed).
  • the coating speed was measured with a laser Doppler velocimeter LV203 manufactured by Mitsubishi Electric Corporation.
  • Drying and Heating treatment conditions for the coating film for forming the hole transport layer are as follows. After the coating liquid for forming the hole transport layer is applied, a drying device is used. After removing the solvent at a height of 100 mm from the outlet of the type toward the film-forming surface, an outflow air velocity of 1 m / s, a wide air velocity distribution of 5%, and a temperature of 120 ° C., the heat transfer apparatus then transfers the back surface at a temperature of 150 ° C. A heat treatment was performed to form a hole transport layer.
  • the prepared slit type die coater No. is applied to the entire upper surface of the hole transport layer (except 10 mm at both ends of the PET). . No. 1 was used, and a coating solution for forming a light emitting layer was applied under the following conditions without providing a decompression chamber. After coating, the drying part was dried and heated under the following conditions, and then wound up and stored.
  • a non-contact type antistatic device was used on the light emitting layer side, and a contact type antistatic device was used on the back side.
  • the non-contact type antistatic device and the tactile type antistatic device were the same as those used for forming the hole transport layer.
  • the coating conditions include a coating solution for forming the light emitting layer at a coating speed of 5 m / min, a coating width of 180 mm, a wet film thickness of 2 ⁇ m, a coater gap with respect to the wet film thickness of 200 ⁇ m, and a temperature at the coating of the coating solution for forming the light emitting layer is 25 ° C.
  • the test was carried out under an atmospheric pressure of N 2 gas environment having a dew point temperature of ⁇ 20 ° C. or lower and a cleanliness class 5 or lower (JIS B 9920). The coating speed was measured by the same measuring method as the coating speed of the hole transport layer.
  • Drying and heat treatment conditions for the coating film for forming the light emitting layer include applying a coating liquid for forming the light emitting layer, and then using a drying device.
  • the drying condition is a slit nozzle type outlet of the drying device. After removing the solvent at a height of 100 mm toward the film-forming surface, an outlet air velocity of 1 m / s, a wide wind velocity distribution of 5%, and a temperature of 120 ° C., a heat treatment is then performed at 150 ° C. using a heat treatment device. To form a light emitting layer.
  • the prepared slit type die coater is used on the entire upper surface of the light emitting layer (however, excluding 10 mm at both ends of the PET).
  • the prepared coating liquid for forming an electron transport layer without applying a chamber was applied under the following conditions. After coating, the drying unit is dried and heat-treated under the conditions shown below, and then the electron transport layer on the extraction electrode portion of the first electrode and the extraction electrode for the second electrode is removed to form a patterned electron transport layer. After forming PET and forming an electron transport layer, it was wound up and stored.
  • a non-contact type antistatic device was used on the electron transport layer side, and a contact type antistatic device was used on the back side.
  • the non-contact type antistatic device and the tactile type antistatic device were the same as those used for forming the hole transport layer.
  • the coating conditions are as follows: the coating liquid for forming the electron transport layer is coated at a coating speed of 5 m / min, the coating width is 180 mm, the wet film thickness is 2 ⁇ m, the coater gap is 200 ⁇ m with respect to the wet film thickness, and the temperature during coating of the coating liquid for forming the electron transport layer.
  • the coating speed was measured by the same measuring method as the coating speed of the hole transport layer.
  • Drying and heat treatment conditions for the coating film for forming the electron transport layer are as follows. After the coating liquid for forming the electron transport layer is applied, a drying apparatus is used. After removing the solvent from the outlet to the film formation surface at a height of 100 mm, outflow air velocity of 1 m / s, wide air velocity distribution of 5%, and a temperature of 120 ° C, the backside heat transfer method at a temperature of 150 ° C by a heat treatment device. The light emitting layer was formed by performing the heat treatment.
  • Alignment marks attached to the PET formed up to the second electrode are detected, and UV light is cured around the light emitting region and the light emitting region except for the ends of the first electrode and the second electrode extraction electrode according to the position of the alignment mark.
  • a liquid adhesive (epoxy resin type) of a mold was used and coated with a thickness of 30 ⁇ m.
  • the belt-like sheet sealing member shown below is stacked on the adhesive coating surface by a roll laminator method, and after pressure-bonding with a pressure of 0.1 MPa in an atmospheric pressure environment, a high-pressure mercury lamp with a wavelength of 365 nm is Irradiation intensity of 20 mW / cm 2 and distance of 15 mm were applied for 1 minute to be fixed and bonded, and a plurality of organic EL panels were continuously connected.
  • a two-layer belt-like sheet sealing member using a PET film (manufactured by Teijin DuPont) as the sealing member and using an inorganic film (SiN) as a barrier layer was prepared.
  • the thickness of PET was 100 ⁇ m
  • the thickness of the barrier layer was 200 nm.
  • the barrier layer of the PET film was formed by a sputtering method.
  • the water vapor transmission rate measured by the MOCON method mainly in accordance with the JIS K-7129B method (1992) was 0.01 g / m 2 ⁇ day.
  • the oxygen permeability measured mainly by the MOCON method by a method based on JIS K7126B method (1987) was 0.1 ml / m 2 ⁇ day ⁇ MPa.
  • Evaluation rank of leakage current characteristics A Maximum current value is less than 1 ⁇ 10 ⁇ 6 A ⁇ : Maximum current value is 1 ⁇ 10 ⁇ 6 A or more and less than 1 ⁇ 10 ⁇ 5 A ⁇ : Maximum current value is 1 ⁇ 10 ⁇ 5 A or more and less than 1 ⁇ 10 ⁇ 3 A ⁇ : The maximum current value is 1 ⁇ 10 ⁇ 3 A or more.
  • Evaluation rank of light emission unevenness (brightness unevenness) ⁇ : There is no difference in brightness ⁇ : In 6 places, the brightness in 1 place is different ⁇ : In 6 places, the brightness in 2 places or more and less than 4 places is different ⁇ : In 6 cells The brightness at four or more locations is different.

Abstract

Disclosed are a coating method for forming a thin film having stable thickness with a low-viscosity coating liquid using a slit die coater; and an organic electronic element generated by the coating method. Specifically disclosed is a coating method whereby the tip of the lip of the slit die coater is brought in close vicinity to an object to be coated, a bead is formed between the tip of the lip and the object to be coated by means of the coating liquid supplied from the slit exit at the tip of the lip, and the surface of the object is coated with the coating liquid by use of the slit die coater. The coating method is characterized in that the degree of viscosity of the coating liquid is 3.0 mPa·s or less and coating is performed while the pressure at the slit exit of the bead portion of the coating liquid at the slit exit of the slit die coater is negative pressure or zero.

Description

塗布方法、有機エレクトロニクス素子Application method, organic electronics element
 本発明は、スリット型ダイコーターを使用し、低粘度塗布液を薄膜に塗布する塗布方法及びこの塗布方法により形成する有機エレクトロニクス素子に関する。 The present invention relates to a coating method in which a low-viscosity coating liquid is coated on a thin film using a slit type die coater and an organic electronics element formed by this coating method.
 従来より連続走行する帯状基材に塗布液を塗布する方法として次の二通りの塗布方法が知られている。一つは、予め必要な塗布液膜形成量よりも余剰な塗布液を基材上に吐出させ、その後なんらかの掻き取り手段で余剰分を取り除く後計量型塗布方式である。後計量型塗布方式としては、ブレード塗布法、エアーナイフ塗布法、ワイヤーバー塗布法、グラビア塗布法、リバース塗布法、リバースロール塗布法等が知られている。 Conventionally, the following two coating methods are known as a method of applying a coating solution to a belt-like substrate that runs continuously. One is a post-measurement type coating method in which an excess coating solution is discharged onto the substrate in advance, and then the excess is removed by some scraping means. Known post-measuring coating methods include blade coating, air knife coating, wire bar coating, gravure coating, reverse coating, and reverse roll coating.
 他の一つは、必要な塗布液膜を形成する量だけ塗布液を吐出させて支持体上に塗布液を塗布する前計量型塗布方式である。前計量型塗布方式としては、スリット型ダイコーターを用いたエクストルージョン塗布法、スライドコーターを用いたスライド塗布法、カーテン塗布法、インクジェットヘッドを用いた塗布法等が知られている。前計量型塗布方式に使用する前計量型塗布装置の中でもスリット型ダイコーターは、他の方式の塗布装置と比較して、塗布精度の高さ、高品位性、高速、薄膜、多層塗布適性等の対応が可能であることから、例えば、光学用フィルム、インクジェット記録用紙、熱現像記録材料、有機エレクトロルミネッセンスパネル(以下、有機ELパネルとも言う)等の製造に使用されている。 The other is a pre-weighing type coating method in which the coating liquid is ejected by an amount that forms a necessary coating liquid film and the coating liquid is applied onto the support. As a pre-weighing type coating method, an extrusion coating method using a slit type die coater, a slide coating method using a slide coater, a curtain coating method, a coating method using an inkjet head, and the like are known. Among the pre-weighing type coating devices used in the pre-metering type coating method, the slit type die coater has higher coating accuracy, high quality, high speed, thin film, multi-layer coating suitability, etc. than other types of coating devices. Therefore, it is used for manufacturing optical films, ink jet recording paper, heat development recording materials, organic electroluminescence panels (hereinafter also referred to as organic EL panels), and the like.
 有機ELパネルはディスプレー及び照明分野等において使用されており、一般には蒸着方式による製膜で製造されているが、生産性の向上や製造コスト低減のため、近年では塗布方式での製造が望まれている。又、近年では機材の高機能化や薄層化の要求が高まり、支持体上に塗布される塗布膜の膜厚の均一化の要望が高くなっている。例えば、正孔輸送層の膜厚は5nmから500nm、発光層を形成している1層の厚さは2nmから100nmと薄膜であるため有機化合物層の膜厚の均一性が有機ELパネルの性能に影響を及ぼすため膜厚の均一化の要望が高くなっている。 Organic EL panels are used in the fields of display and lighting, and are generally manufactured by film formation by vapor deposition. However, in recent years, manufacturing by coating method is desired in order to improve productivity and reduce manufacturing costs. ing. In recent years, there has been an increasing demand for higher functionality and thinner layers of equipment, and there is a growing demand for uniform coating film thickness to be coated on a support. For example, since the thickness of the hole transport layer is 5 nm to 500 nm and the thickness of one layer forming the light emitting layer is 2 nm to 100 nm, the uniformity of the thickness of the organic compound layer is the performance of the organic EL panel. There is a growing demand for uniform film thickness.
 スリット型ダイコーターを使用した従来のエクストルージョン塗布法により、数mPa・sの粘度の塗布液を、塗布速度を数十m/分から数百m/分で塗布する薄膜塗布では、スリット型ダイコーターの上流側を減圧し、コーターギャップをウェット膜厚の3倍から10倍程度で、且つ100μm程度以上とし、コーターギャップ精度を数%(スリット型ダイコーターの真直度、バックアップロールの円筒度、回転精度等の機械精度の限界からの精度)とすることで、塗布膜厚分布を数%に抑えていた。 A slit type die coater is used for thin film coating in which a coating solution having a viscosity of several mPa · s is applied at a coating speed of several tens m / min to several hundred m / min by a conventional extrusion coating method using a slit type die coater. The pressure on the upstream side is reduced, the coater gap is about 3 to 10 times the wet film thickness and about 100 μm or more, and the coater gap accuracy is several percent (straightness of slit type die coater, cylindricity of backup roll, rotation The accuracy of the coating film thickness distribution was suppressed to several percent by setting the accuracy from the limit of machine accuracy such as accuracy.
 すなわち、従来のエクストルージョン塗布法では、ビード部を加圧状態に保つことが安定塗布の条件であり、コーターギャップが小さいと塗布膜厚分布不良が発生するためコーターギャップは大きい方が望ましいが、ウェット膜厚の2倍以上に広げると、ビード部は支持体の搬送に伴う同伴エアーにより完全な負圧となり、ビードが保つことが出来なくなり安定塗布が出来なくなる。 That is, in the conventional extrusion coating method, maintaining the bead portion in a pressurized state is a condition for stable coating, and if the coater gap is small, a coating film thickness distribution defect occurs, so it is desirable that the coater gap is large. If it is expanded to more than twice the wet film thickness, the bead portion becomes completely negative pressure due to entrained air accompanying the conveyance of the support, and the bead cannot be maintained and stable coating cannot be performed.
 ビード部の負圧状態を防止するため、スリット型ダイコーターの上流側を減圧することで同伴エアーをカットする方法がとられるが、コーターギャップは、減圧を行わない時のウェット膜厚の1.5倍から2倍に対して、減圧をした時は、ウェット膜厚の10倍程度が限度である。 In order to prevent the negative pressure state of the bead part, a method of cutting the entrained air by reducing the pressure on the upstream side of the slit type die coater is used, but the coater gap is 1. When the pressure is reduced from 5 to 2 times, the limit is about 10 times the wet film thickness.
 従って、エクストルージョン塗布法でウェット膜厚10μm以下で塗布する場合、減圧してもコーターギャップを100μmよりも狭くする必要があり、コーターギャップが小さいために膜厚分布不良が発生してしまう。 Therefore, when applying the wet coating thickness of 10 μm or less by the extrusion coating method, it is necessary to make the coater gap narrower than 100 μm even if the pressure is reduced, and the coater gap is small, resulting in poor film thickness distribution.
 スリット型ダイコーターを用いた、エクストルージョン塗布法で低粘度塗布液を塗布し、薄膜を安定に形成する方法がこれまでに検討されてきた。例えば、バックアップローラーに支持されて連続走行するウェブ上に、スロットダイ(本発明に使用するスリット型ダイコーターに該当する)を使用して低粘度塗布液を薄膜塗布する際、スロットダイのダイ幅方向端部の塗布液の濡れ広がり、濡れ縮み、及び乱れを防止するため、バックアップローラーに対するスロットダイ先端のダイ幅方向中央部とダイ幅方向両端部とのクリアランス差が1μmから10μmになる様に、スロットダイ先端を凹形状にしたスロットダイを使用する方法が知られている(例えば、特許文献1参照。)。 A method for stably forming a thin film by applying a low-viscosity coating solution by an extrusion coating method using a slit type die coater has been studied. For example, when a thin film of a low-viscosity coating solution is applied to a web continuously supported by a backup roller using a slot die (corresponding to a slit type die coater used in the present invention), the die width of the slot die In order to prevent wetting spread, wetting shrinkage, and disturbance of the coating liquid at the direction end, the clearance difference between the center of the die width direction at the tip of the slot die and the both ends of the die width with respect to the backup roller is 1 μm to 10 μm. A method of using a slot die with a slot die tip having a concave shape is known (for example, see Patent Document 1).
 粘度が1mPa・sから10mPa・sの塗布液を基板に塗布する塗布装置として、スリットの幅が60μmから120μm、マニホールドの径が、12mmから18mmのエクストルージョンコーターが知られている(例えば、特許文献2参照。)。 As an application apparatus for applying a coating solution having a viscosity of 1 mPa · s to 10 mPa · s to a substrate, an extrusion coater having a slit width of 60 μm to 120 μm and a manifold diameter of 12 mm to 18 mm is known (for example, a patent) Reference 2).
 しかしながら、特許文献1、特許文献2に記載のスリット型ダイコーターを使用しエクストルージョン塗布法で塗布した場合、塗布時の塗布液の濡れ広がりの規制が不十分であり、ウェット膜厚が5μm以下の場合、塗布幅と膜厚の制御が十分でなくなり、膜厚が不均一となることが判った。 However, when the slit type die coater described in Patent Literature 1 and Patent Literature 2 is used and coating is performed by the extrusion coating method, regulation of the wetting and spreading of the coating liquid during coating is insufficient, and the wet film thickness is 5 μm or less. In this case, it was found that the coating width and the film thickness were not sufficiently controlled, and the film thickness was not uniform.
 この様な状況から、スリット型ダイコーターを用い、低粘度の塗布液を使用し膜厚の安定した薄膜を形成する塗布方法の開発が望まれている。 Under these circumstances, it is desired to develop a coating method that uses a slit type die coater to form a thin film having a stable film thickness using a low viscosity coating solution.
特開2007-98224号公報JP 2007-98224 A 特開2006-305548号公報JP 2006-305548 A
 本発明は、上記状況に鑑みなされたものであり、その目的はスリット型ダイコーターを用い、低粘度の塗布液を使用し膜厚の安定した薄膜を形成する塗布方法及びこの塗布方法により形成する有機エレクトロニクス素子を提供することである。 The present invention has been made in view of the above situation, and an object of the present invention is to use a slit-type die coater and to form a thin film having a stable film thickness using a low-viscosity coating liquid and to form the coating film by this coating method. An organic electronic device is provided.
 本発明の上記目的は、下記の構成により達成された。 The above object of the present invention has been achieved by the following constitution.
 1.被塗布体上に、スリット型ダイコーターを使用し、前記スリット型ダイコーターのリップ先端部を前記被塗布体に近接し、前記リップ先端部のスリット出口から供給される塗布液で、前記リップ先端部と前記被塗布体との間にビードを形成させ前記塗布液を塗布する塗布方法であって、
 前記塗布液の粘度が3.0mPa・s以下であり、
 前記ビード部の前記スリット出口の圧力が負圧或いはゼロの状態で塗布することを特徴とする塗布方法。
1. A slit-type die coater is used on the object to be coated, the lip tip of the slit-type die coater is close to the object to be coated, and the lip tip is applied with a coating liquid supplied from the slit outlet of the lip tip. A coating method in which a bead is formed between a portion and the substrate to be coated, and the coating liquid is coated.
The viscosity of the coating solution is 3.0 mPa · s or less,
The coating method is characterized in that coating is performed in a state where the pressure at the slit outlet of the bead portion is negative or zero.
 2.前記リップ先端部から供給される塗布液により被塗布体上に形成される塗膜のウェット膜厚が5.0μm以下であり、リップ先端部と前記被塗布体との間隔が100μm以上で塗布することを特徴とする前記1に記載の塗布方法。 2. The coating film formed on the coated body by the coating solution supplied from the lip tip is applied with a wet film thickness of 5.0 μm or less, and the gap between the lip tip and the coated body is 100 μm or more. 2. The coating method according to 1 above, wherein
 3.前記リップ先端部と前記被塗布体との間隔が、リップ先端部から供給される塗布液により被塗布体上に形成される塗膜のウェット膜厚の50倍以上であることを特徴とする前記1に記載の塗布方法。 3. The gap between the lip tip and the coated body is 50 times or more the wet film thickness of the coating film formed on the coated body by the coating liquid supplied from the lip tip. 2. The coating method according to 1.
 4.前記被塗布体に塗布液を塗布する時の塗布速度が0.1m/分から10m/分であることを特徴とする前記1から3の何れか1項に記載の塗布方法。 4. 4. The coating method according to any one of 1 to 3, wherein a coating speed when a coating solution is applied to the coated body is 0.1 m / min to 10 m / min.
 5.前記スリット型ダイコーターは、リップ先端部の塗布幅手の両端部に切欠き部を有していることを特徴とする前記1から4の何れか1項に記載の塗布方法。 5. 5. The coating method according to any one of 1 to 4, wherein the slit type die coater has notches at both ends of the coating width at the tip of the lip.
 6.前記リップ先端部から供給される塗布液により被塗布体上に形成される塗膜のウェット膜厚が0.1μmから5.0μmであることを特徴とする前記1から5の何れか1項に記載の塗布方法。 6. Any one of 1 to 5 above, wherein the wet film thickness of the coating film formed on the substrate by the coating liquid supplied from the lip tip is 0.1 μm to 5.0 μm. The coating method as described.
 7.前記リップ先端部と前記被塗布体との間隔が、リップ先端部から供給される塗布液により被塗布体上に形成される塗膜のウェット膜厚に対して1倍から50倍で塗布を開始し、ビード形成後に、該間隔を100μm以上、又は、該ウェット膜厚に対して50倍以上に拡大することを特徴とする前記1から6の何れか1項に記載の塗布方法。 7. Coating is started with the interval between the lip tip and the coated body being 1 to 50 times the wet film thickness of the coating film formed on the coated body by the coating liquid supplied from the lip tip. Then, after forming the bead, the coating method according to any one of 1 to 6 above, wherein the interval is increased to 100 μm or more or 50 times or more to the wet film thickness.
 8.前記リップ先端部と被塗布体との間隔が、リップ先端部から供給される塗布液により被塗布体上に形成される塗膜のウェット膜厚に対して1倍から50倍で塗布を開始し、ビード形成後に、該間隔を該ウェット膜厚に対して50倍以上になる様に流量を変更することを特徴とする前記1から6の何れか1項に記載の塗布方法。 8. Application starts when the gap between the lip tip and the coated body is 1 to 50 times the wet film thickness of the coating film formed on the coated body by the coating liquid supplied from the lip tip. The coating method according to any one of 1 to 6, wherein the flow rate is changed after the bead formation so that the interval is 50 times or more the wet film thickness.
 9.前記リップ先端部と被塗布体との間隔が、リップ先端部から供給される塗布液により被塗布体上に形成される塗膜のウェット膜厚に対して1倍から50倍で塗布を開始し、ビード形成後に、該間隔を該ウェット膜厚に対して50倍以上になる様に該塗布速度を変更することを特徴とする前記1から6の何れか1項に記載の塗布方法。 9. Application starts when the gap between the lip tip and the coated body is 1 to 50 times the wet film thickness of the coating film formed on the coated body by the coating liquid supplied from the lip tip. The coating method according to any one of 1 to 6, wherein the coating speed is changed after the bead formation so that the interval is 50 times or more the wet film thickness.
 10.基板の上に、第1の電極と第2の電極との間に、発光層を含む複数からなる有機化合物層を積層した構成を有する有機エレクトロニクス素子において、前記有機化合物層が前記1から9の何れか1項に記載の塗布方法により形成されていることを特徴とする有機エレクトロニクス素子。 10. An organic electronic device having a configuration in which a plurality of organic compound layers including a light emitting layer are stacked between a first electrode and a second electrode on a substrate, wherein the organic compound layer is the one described in the items 1 to 9 above. An organic electronics element formed by the coating method according to any one of the above items.
 スリット型ダイコーターを用い、低粘度の塗布液を使用し膜厚の安定した薄膜を形成する塗布方法及びこの塗布方法により形成する有機エレクトロニクス素子を提供することが出来た。 It was possible to provide a coating method for forming a thin film having a stable film thickness using a low-viscosity coating solution using a slit type die coater, and an organic electronic device formed by this coating method.
前計量型塗布方式であるスリット型ダイコーターを使用し、塗布を行っている状態の概略図である。It is the schematic of the state which has apply | coated using the slit-type die coater which is a pre-measurement type | mold application system. 図1(b)に示すスリット型ダイコーターの概略側面図及び概略正面図である。It is the schematic side view and schematic front view of a slit-type die coater shown in FIG.1 (b). 切欠き部の形状を示す図1(b)のXで示される部分の拡大概略平面図である。It is an expansion schematic plan view of the part shown by X of FIG.1 (b) which shows the shape of a notch part.
 本発明は、スリット型ダイコーターを用い、3mPa・s以下の低粘度の塗布液をウェット膜厚5.0μm以下の薄膜で塗布する塗布方法に関するものである。スリット型ダイコーターを用い、エクストルージョン塗布法により低粘度の塗布液を塗布する方法は特許文献1、特許文献2にも開示されているが、塗布時の塗布液の濡れ広がりの規制と、ウェット膜厚が5μm以下の場合の、塗布幅と膜厚の制御に付いては開示されていなかった。 The present invention relates to a coating method in which a low-viscosity coating solution of 3 mPa · s or less is coated with a thin film having a wet film thickness of 5.0 μm or less using a slit die coater. A method of applying a low-viscosity coating solution by an extrusion coating method using a slit type die coater is also disclosed in Patent Document 1 and Patent Document 2, but the regulation of the wetting and spreading of the coating liquid during coating and wet There was no disclosure regarding the control of the coating width and film thickness when the film thickness was 5 μm or less.
 又、特許文献2ではスリット型ダイコーターを使用し、エクストルージョン塗布法で塗布する場合、塗布幅を規制するためにスリット内にシムを挿入してスリットの未塗布幅部の液流出を防止する幅規制方法を使用しているが、3mPa・s以下の低粘度の塗布液では、リップ両端から支持体のコーターギャップを伝って濡れ広がってしまい、塗布幅を規制出来ず、膜厚も薄くなってしまう。 Further, in Patent Document 2, when a slit type die coater is used and coating is performed by the extrusion coating method, a shim is inserted into the slit in order to regulate the coating width, thereby preventing liquid from flowing out of the uncoated width portion of the slit. The width regulation method is used, but with a low-viscosity coating solution of 3 mPa · s or less, it spreads through the coater gap of the support from both ends of the lip, so that the coating width cannot be regulated and the film thickness becomes thin. End up.
 本発明者は、3mPa・s以下の低粘度の塗布液をウェット膜厚が5μm以下で塗布する際に、コーターギャップをウェット膜厚の50倍以上に広げて、かつ塗布幅を所望の幅に規制して膜厚も所定の厚さとすることが出来る方法を検討し以下のことが判明した。 When applying a low-viscosity coating solution of 3 mPa · s or less with a wet film thickness of 5 μm or less, the present inventor widens the coater gap to 50 times or more of the wet film thickness and sets the coating width to a desired width. A method that can regulate the film thickness to a predetermined thickness was studied, and the following was found.
 1)塗布液粘度を3mPa・s以下の低粘度とすることで、ビード部のスリット出口の圧力が負圧或いはゼロの状態で、毛細管現象により塗布液が塗布幅手に広がってビードが形成され、塗布可能となることが判明した。 1) By setting the coating solution viscosity to a low viscosity of 3 mPa · s or less, the bead is formed by spreading the coating solution to the width of the coating by capillary action when the pressure at the slit exit of the bead portion is negative or zero. It became clear that it could be applied.
 2)1)に示す条件では、従来のスリット型ダイコーターのスリット内にシムを挿入してスリットの未塗布幅部の液流出を防止する幅規制方法では、塗布液がリップと支持体とのギャップを伝って濡れ広がってしまい、塗布幅を規制出来ず、膜厚も薄くなってしまう。これを防止する方法としてリップを塗布幅端で切り欠いたスリット型ダイコーターを使用することが有効であることが判明した。 2) Under the conditions shown in 1), in the width regulating method in which a shim is inserted into the slit of a conventional slit type die coater to prevent the liquid from flowing out of the uncoated width portion of the slit, the coating liquid is applied between the lip and the support. The wet spread spreads through the gap, the coating width cannot be regulated, and the film thickness becomes thin. As a method for preventing this, it has been proved effective to use a slit type die coater in which the lip is notched at the coating width end.
 3)ビード部のスリット出口の圧力が負圧或いはゼロの状態で形成出来るため、コーターギャップは塗布液がリップと支持体との間を架橋出来る間隙であればよく、塗布膜厚には影響されないため、ウェット膜厚が5μm以下でも100μm以上あるいは50倍以上という、膜厚に対して非常に広いコーターギャップで塗布が可能となり、5.0μm以下の薄膜においても100μm以上のコーターギップで塗布可能であることが判明した。 3) Since the pressure at the slit exit of the bead portion can be formed in a negative or zero state, the coater gap may be a gap that allows the coating solution to bridge between the lip and the support, and is not affected by the coating film thickness. Therefore, even when the wet film thickness is 5 μm or less, it is possible to apply with a very wide coater gap of 100 μm or more or 50 times or more, and even with a thin film of 5.0 μm or less, it can be applied with a coater gap of 100 μm or more. It has been found.
 そしてその結果、
 4)塗布幅手方向の膜厚分布は一般的に、機械精度/コーターギャップで近似されるため、コーターギャップを広げることで機械精度に影響されない良好な膜厚分布が得られることが判明した。
And as a result,
4) Since the film thickness distribution in the width direction of the coating is generally approximated by machine accuracy / coater gap, it has been found that by increasing the coater gap, a good film thickness distribution that is not affected by machine accuracy can be obtained.
 本発明では、スリット型ダイコーターで3mPa・s以下の低粘度の塗布液を使用し塗布する時、次に示す構成で塗布を行った。
1.ビード部のスリット出口の圧力を負圧或いはゼロの状態にする。
更に好ましくは、次の2、3に示す構成が挙げられる。
2.幅規制方法としてのシムを使用せず、塗布幅に合わせ塗布幅の両端部に切り欠き部を設けたスリット型ダイコーターを使用する。
3.塗布速度を同伴エアーが発生しない速度にする。
In the present invention, when a low-viscosity coating solution having a viscosity of 3 mPa · s or less is applied with a slit type die coater, the coating is performed in the following configuration.
1. Set the pressure at the exit of the bead slit to a negative or zero state.
More preferably, the structure shown to the following 2 and 3 is mentioned.
2. A slit type die coater in which notches are provided at both ends of the coating width according to the coating width is used without using shims as the width regulating method.
3. The application speed is set to a speed that does not generate accompanying air.
 そして、この様な構成にすることで、従来のスリット型ダイコーターを使用し、3mPa・s以下の低粘度の塗布液を使用した時に発生する問題点を解決し、機械精度に影響されない良好な膜厚分布を有する薄膜塗布が可能な薄膜塗布方法を提供することを可能にしたのである。 And by using such a configuration, the conventional slit type die coater is used, the problem that occurs when a low viscosity coating solution of 3 mPa · s or less is solved, and the machine accuracy is not affected. It was possible to provide a thin film coating method capable of coating a thin film having a film thickness distribution.
 以下、本発明を実施するための形態を図1から図3を参照しながら説明する。本発明はこれに限定されるものではない。 Hereinafter, embodiments for carrying out the present invention will be described with reference to FIGS. 1 to 3. The present invention is not limited to this.
 図1はスリット型ダイコーターを使用し、塗布を行っている状態の概略図である。図1(a)は前計量型塗布方式であるスリット型ダイコーターを使用し、塗布を行っている状態の概略断面図である。図1(b)は図1(a)に示されるスリット型ダイコーターの概略斜視図である。 FIG. 1 is a schematic view of a state where coating is performed using a slit die coater. FIG. 1A is a schematic cross-sectional view of a state where coating is performed using a slit type die coater which is a pre-metering type coating method. FIG. 1B is a schematic perspective view of the slit type die coater shown in FIG.
 図中、1はスリット型ダイコーターを示す。スリット型ダイコーター1は2つのブロック101aと、ブロック101bと、側板101cと、側板101dとを有し、ボルト等で締結することで組み立てられている。102aはリップ103の先端部の塗布幅手端部に設けた切欠き部を示す。102bはリップ103の先端部の塗布幅手端部に設けた切欠き部を示す。リップ103は、バックリップ103aとフロントリップ103bとを有している。 In the figure, 1 indicates a slit type die coater. The slit die coater 1 has two blocks 101a, a block 101b, a side plate 101c, and a side plate 101d, and is assembled by fastening with bolts or the like. Reference numeral 102 a denotes a notch provided at the end of the application width at the tip of the lip 103. Reference numeral 102 b denotes a notch provided at the end of the application width at the tip of the lip 103. The lip 103 has a back lip 103a and a front lip 103b.
 104はブロック101aと、ブロック101bとの間隙で出来たスリットを示し、105はマニホールドと呼ばれる塗布液を一旦溜めるための部分であり、ここには塗布液供給管106から塗布液が送り込まれる。 104 indicates a slit formed by a gap between the block 101a and the block 101b, and 105 is a part for temporarily storing a coating liquid called a manifold, and the coating liquid is fed into the coating liquid supply pipe 106 here.
 マニホールド105で塗布幅方向に溜められた塗布液はスリット104を通ってスリット104の先端のスリット出口104aからリップ103とバックアップロール2に巻回し支持された帯状支持体3との間に供給される。供給された塗布液はビードQを形成しバックアップロール2に巻回し支持された帯状支持体3の上に塗布され塗膜4が形成される。 The coating liquid accumulated in the coating width direction by the manifold 105 passes through the slit 104 and is supplied from the slit outlet 104a at the tip of the slit 104 between the lip 103 and the belt-like support 3 supported by being wound around the backup roll 2. . The supplied coating solution forms a bead Q, is wound around a backup roll 2 and is coated on the supported belt-like support 3 to form a coating film 4.
 スリット出口104aから供給された塗布液のビード部のスリット出口の圧力は負圧或いはゼロの状態で帯状支持体3の上に塗布される。 The pressure at the slit outlet of the bead portion of the coating liquid supplied from the slit outlet 104a is applied on the belt-like support 3 in a negative or zero state.
 本発明で、ゼロの状態とは、大気圧との差がゼロであることを言う。但し、本発明では誤差としては±0.001MPaの範囲を含める。 In the present invention, the zero state means that the difference from the atmospheric pressure is zero. However, in the present invention, the error includes a range of ± 0.001 MPa.
 負圧の状態とは、大気圧よりも低い状態を言い、負圧が強くなりすぎるとビード維持が難しくなるため、-0.01MPa以上が好ましい。スリット出口104aから供給された塗布液のビード部のスリット出口の圧力は次の方法により求めることが出来る。 The negative pressure state means a state lower than the atmospheric pressure, and if the negative pressure becomes too strong, it becomes difficult to maintain the bead, so −0.01 MPa or more is preferable. The pressure at the slit outlet of the bead portion of the coating liquid supplied from the slit outlet 104a can be obtained by the following method.
 マニホールド105内の圧力を測定しPとする。マニホールド内圧力Pは、側板101cからマニホールド105内に市販の圧力センサーを接続し、これにより測定することが出来る。 The pressure in the manifold 105 is measured and set to P. The pressure P in the manifold can be measured by connecting a commercially available pressure sensor from the side plate 101c into the manifold 105.
 塗布液を塗布時の流量にて送液し、塗布せずにスリットから供給された状態でのマニホールド内圧力PをPとし、塗布中のマニホールド内圧力PをPとすると、スリット出口104aから供給された塗布液のビード部のスリット出口の圧力は次式ΔPで求めることができる。 When the coating liquid is fed at the flow rate at the time of coating, and the pressure in the manifold P when supplied from the slit without coating is P 0 and the pressure in the manifold P during coating is P 1 , the slit outlet 104a The pressure at the slit outlet of the bead portion of the coating liquid supplied from the above can be obtained by the following equation ΔP.
   ΔP=P-P
 Aはリップ103(バックリップ103aとフロントリップ103b)とバックアップロール2に巻回し支持された帯状支持体3の間の最小の間隙(以下、コーターギャップとも言う)を示す。ビードQは、コーターギャップAに形成されている。
ΔP = P 1 -P 0
A indicates a minimum gap (hereinafter also referred to as a coater gap) between the lip 103 (back lip 103a and front lip 103b) and the belt-like support 3 that is wound around and supported by the backup roll 2. The bead Q is formed in the coater gap A.
 Xはスリット出口104aから供給された塗布液が帯状支持体3に塗布される塗布位置を示す。塗布位置Xを境にして、塗布前の帯状支持体3側を上流側、塗膜4が形成された帯状支持体3側を下流側と言う。 X indicates a coating position where the coating liquid supplied from the slit outlet 104a is coated on the belt-like support 3. With the coating position X as a boundary, the belt-like support 3 side before coating is called the upstream side, and the belt-like support 3 side on which the coating film 4 is formed is called the downstream side.
 本図に示す様にスリット型ダイコーター1を使用した塗布方法は、減圧室を配設することなく行う方法である。 As shown in the figure, the coating method using the slit type die coater 1 is a method which is performed without providing a decompression chamber.
 本図に示す様にスリット型ダイコーター1を使用した塗布は、塗布の開始に合わせ、必要とする塗布液をスリット出口から供給された状態で、待機位置から塗布位置に移動手段(不図示)により移動し、塗布コーター1の先端のリップ103(バックリップ103aとフロントリップ103b)を帯状支持体に近接させそのリップと帯状支持体との間のコーターギャップAにビードQを形成させ、塗布液を支持体に転移(液付き)させる塗布方式である。 As shown in this figure, the application using the slit type die coater 1 is a means for moving from the standby position to the application position (not shown) with the required application liquid being supplied from the slit outlet at the start of application. The lip 103 (back lip 103a and front lip 103b) at the tip of the coating coater 1 is brought close to the belt-like support, and a bead Q is formed in the coater gap A between the lip and the belt-like support. Is applied to the support (with liquid).
 ここでは、コーターを固定して被塗布体が可動の場合について述べているが、本発明は、被塗布体を固定してコーターが可動の場合、被塗布体をコーターの両方が可動の場合を含む。 Here, the case where the coated body is movable while the coater is fixed is described, but the present invention is the case where the coated body is movable while the coated body is fixed, and the coated body is movable when both of the coaters are movable. Including.
 図2は図1(b)に示すスリット型ダイコーターの拡大概略側面図及び拡大概略正面図である。図2(a)は図1(b)に示すスリット型ダイコーターの拡大概略側面図である。図2(b)は図1(b)に示すスリット型ダイコーターの拡大概略正面図である。 FIG. 2 is an enlarged schematic side view and an enlarged schematic front view of the slit type die coater shown in FIG. FIG. 2A is an enlarged schematic side view of the slit type die coater shown in FIG. FIG. 2B is an enlarged schematic front view of the slit die coater shown in FIG.
 図中、Jaは切欠き部102aのバックリップ103aからの深さを示す。深さJaは、塗布液切れ、塗布液のリップと支持体との架橋性、スリット型ダイコーターの幅方向の塗布液漏れ等を考慮し、0.2mmから5.0mmであることが好ましい。更には、0.4mmから3.0mmが好ましい。尚、切欠き部102bのバックリップ103aからの深さも深さJaと同じであることが好ましい。 In the figure, Ja indicates the depth of the notch 102a from the back lip 103a. Depth Ja is preferably 0.2 mm to 5.0 mm in consideration of running out of the coating liquid, crosslinkability between the lip of the coating liquid and the support, leakage of the coating liquid in the width direction of the slit die coater, and the like. Furthermore, 0.4 mm to 3.0 mm is preferable. The depth of the notch 102b from the back lip 103a is preferably the same as the depth Ja.
 Jbは切欠き部102aのフロントリップ103bからの深さを示す。深さJbは、塗布液切れ、塗布液のリップと支持体との架橋性、スリット型ダイコーターの幅方向の塗布液漏れ等を考慮し、0.2mmから5.0mmであることが好ましい。更には、0.4mmから3.0mmが好ましい。尚、切欠き部102bのフロントリップ103bからの深さも深さJbと同じであることが好ましい。 Jb indicates the depth of the notch 102a from the front lip 103b. The depth Jb is preferably 0.2 mm to 5.0 mm in consideration of running out of the coating liquid, crosslinkability between the lip of the coating liquid and the support, leakage of the coating liquid in the width direction of the slit die coater, and the like. Furthermore, 0.4 mm to 3.0 mm is preferable. The depth of the notch 102b from the front lip 103b is preferably the same as the depth Jb.
 Kはスリット型ダイコーター1の幅を示す。幅Kは塗布幅に合わせ適宜変更することが可能である。 K indicates the width of the slit type die coater 1. The width K can be appropriately changed according to the coating width.
 Lは切欠き部102aのリップ103の塗布幅手の幅を示す。Mは切欠き部である102bのリップ103の塗布幅手の幅を示す。幅L、幅Mは塗布する位置により適宜設定することが可能である。尚、幅Lと幅Mとは、同じであっても異なっていても構わない。 L indicates the width of the application width of the lip 103 of the notch 102a. M represents the width of the application width of the lip 103 of 102b which is a notch. The width L and the width M can be appropriately set depending on the application position. Note that the width L and the width M may be the same or different.
 Nは塗布幅を示す。塗布幅Nは塗布幅に合わせ適宜変更することが可能である。 N indicates the coating width. The coating width N can be appropriately changed according to the coating width.
 Oはスリット104のスリット間隙を示す。スリット間隙Oは、塗布液供給量、塗布液物性等を考慮し、5μmから100μmが好ましく、5μmから50μmがより好ましい。他の符号は図1と同義である。 O represents the slit gap of the slit 104. The slit gap O is preferably 5 μm to 100 μm and more preferably 5 μm to 50 μm in consideration of the supply amount of the coating liquid, physical properties of the coating liquid, and the like. Other reference numerals are the same as those in FIG.
 図3は切欠き部の形状を示す図1(b)のXで示される部分の拡大概略平面図である。尚、本図は図1に示されるスリット型ダイコーター1を構成しているブロック101a側からの拡大概略平面図である。図中の符号は図1と同義である。 FIG. 3 is an enlarged schematic plan view of a portion indicated by X in FIG. 1 (b) showing the shape of the notch. In addition, this figure is an enlarged schematic plan view from the block 101a side which comprises the slit type | mold die-coater 1 shown by FIG. The reference numerals in the figure are the same as those in FIG.
 切欠き部102aは、リップ103と平行な面Cと、リップ103と面Cとを結ぶノリ面Bとを有している。θはノリ面Bと、面Cとの交わる角度を示す。切欠き部の形状は特に限定はなく、代表的な形状を(a)から(e)に示す。
(a)はノリ面Bと、面Cとの交わる角度θが90°の場合を示している。
(b)はノリ面Bと、面Cとの交わる角度θが鈍角の場合を示している。
(c)はノリ面Bと、面Cとの交わる角度θが鋭角の場合を示している。
(d)はノリ面Bが凸曲面の場合を示している。
(e)はノリ面Bが凹曲面の場合を示している。
The notch 102 a has a surface C parallel to the lip 103 and a groove surface B connecting the lip 103 and the surface C. θ represents an angle at which the groove surface B and the surface C intersect. The shape of the notch is not particularly limited, and typical shapes are shown in (a) to (e).
(A) has shown the case where the angle (theta) which the laver surface B and the surface C cross is 90 degrees.
(B) has shown the case where the angle (theta) where the surface B and the surface C cross is an obtuse angle.
(C) shows a case where the angle θ between the groove surface B and the surface C is an acute angle.
(D) shows a case where the groove surface B is a convex curved surface.
(E) has shown the case where the groove surface B is a concave curved surface.
 尚、ノリ面Bと、面Cとの交わる箇所はR面取り加工をしても構わない。又、ノリ面Bとリップ103との交わる点はシャープエッジであることが好ましい。 In addition, you may perform R chamfering in the location where the laver surface B and the surface C intersect. Further, it is preferable that the point where the groove surface B and the lip 103 intersect is a sharp edge.
 次に図1から図3に示されるスリット型ダイコーターを使用した塗布方法に付き説明する。 Next, a coating method using the slit type die coater shown in FIGS. 1 to 3 will be described.
 塗布方法1
 使用する塗布液の粘度は、3.0mPa・s以下で、コーターギャップA(図1参照)はウェット膜厚の50倍以上又は、コーターギャップA(図1参照)を100μm以上とする。塗布速度は、同伴エアーの影響、搬送安定性等を考慮し、0.1m/分から10.0m/分が好ましい。尚、本発明に使用する塗布液の粘度の下限は塗布液に使用する溶媒の粘度とする。
Application method 1
The viscosity of the coating solution used is 3.0 mPa · s or less, and the coater gap A (see FIG. 1) is 50 times or more the wet film thickness, or the coater gap A (see FIG. 1) is 100 μm or more. The coating speed is preferably 0.1 m / min to 10.0 m / min in consideration of the influence of accompanying air, conveyance stability, and the like. In addition, let the minimum of the viscosity of the coating liquid used for this invention be the viscosity of the solvent used for a coating liquid.
 ここでいう塗布速度とは、コーターと被塗布体の相対速度であり、コーターを固定して被塗布体が可動の場合、被塗布体を固定してコーターが可動の場合、被塗布体をコーターの両方が可動の場合を含む。 The coating speed here is the relative speed between the coater and the coated body. When the coated body is movable with the coater fixed, the coated body is coated with the coated body when the coated body is fixed and the coated body is movable. Including the case where both are movable.
 粘度は、東機産業株式会社製の、E型粘度計 VISCONIC ED型及びコントローラーE-200型を使用し、温度25℃で測定した値を示す。 Viscosity indicates a value measured at a temperature of 25 ° C. using an E-type viscometer VISCONIC ED type and controller E-200 type manufactured by Toki Sangyo Co., Ltd.
 塗布液の粘度が3.0mPa・sを超える場合は、塗布液が塗れ広がり難く、ビード形成のためコーターギャップを狭くする必要があり、機械精度の影響を受け塗布性が悪くなるため好ましくない。 When the viscosity of the coating solution exceeds 3.0 mPa · s, it is difficult to spread the coating solution, and it is necessary to narrow the coater gap for bead formation.
 ウェット膜厚とは、下式で算出される理論膜厚を言う。 The wet film thickness refers to the theoretical film thickness calculated by the following equation.
 ウェット膜厚=塗布液供給量/(塗布幅×塗布速度)
 ウェット膜厚は、小さいほうが本発明の効果が大きいが、送液安定性、コーターリップと支持体との間を塗布液が架橋出来る限界の量等を考慮し、0.1μm以上が好ましい。
Wet film thickness = coating liquid supply / (coating width x coating speed)
The smaller the wet film thickness, the greater the effect of the present invention, but it is preferably 0.1 μm or more in consideration of the liquid feeding stability and the limit amount that the coating liquid can crosslink between the coater lip and the support.
 コーターギャップA(図1参照)は、ウェット膜厚が2μm以下と極めて薄い場合でも、塗布幅手方向の膜厚分布を考慮し、100μm以上とすることが好ましく、100μm以上、2000μm以下がより好ましく、更に好ましくは100μm以上、1000μm以下である。 The coater gap A (see FIG. 1) is preferably 100 μm or more, more preferably 100 μm or more and 2000 μm or less in consideration of the film thickness distribution in the width direction of the coating even when the wet film thickness is as extremely thin as 2 μm or less. More preferably, it is 100 μm or more and 1000 μm or less.
 塗布方法2
 塗布方法1において、塗布開始時と塗布液がビードを形成した後のコーターギャップA(図1参照)とウェット膜厚との関係は、ビード形成のしやすさやビード形成までの時間等考慮し、コーターギャップA(図1参照)が、ウェット膜厚の1倍から50倍で塗布を開始し、ビード形成後に、50倍以上又は100μm以上とすることが好ましく、100μm以上2000μm以下がより好ましいく、更に好ましくは100μm以上、1000μm以下である。
Application method 2
In the coating method 1, the relationship between the coater gap A (see FIG. 1) at the start of coating and after the coating solution has formed a bead and the wet film thickness takes into consideration the ease of bead formation, the time to bead formation, etc. The coater gap A (see FIG. 1) starts application at 1 to 50 times the wet film thickness, and is preferably 50 times or more or 100 μm or more after bead formation, more preferably 100 μm or more and 2000 μm or less, More preferably, they are 100 micrometers or more and 1000 micrometers or less.
 塗布方法3
 塗布方法1において、塗布開始時と塗布液がビードを形成した後のコーターギャップA(図1参照)と塗布液供給流量との関係は、ビード形成のしやすさやビード形成までの時間等考慮して、コーターギャップA(図1参照)がウェット膜厚の1倍から50倍となる塗布液供給流量に流量を増やして塗布を開始し、ビード形成後に、コーターギャップA(図1参照)がウェット膜厚の50倍以上となる所定の塗布液供給流量に減らしてウェット膜厚を低下させることが好ましい。
Application method 3
In the coating method 1, the relationship between the coater gap A (see FIG. 1) at the start of coating and after the coating liquid has formed a bead and the coating liquid supply flow rate takes into account the ease of bead formation and the time to bead formation. The coater gap A (see FIG. 1) is increased by increasing the flow rate to a coating liquid supply flow rate that is 1 to 50 times the wet film thickness. After the bead formation, the coater gap A (see FIG. 1) is wet. It is preferable to reduce the wet film thickness by reducing to a predetermined coating liquid supply flow rate that is 50 times or more of the film thickness.
 塗布方法4
 塗布方法1において、塗布開始時と塗布液がビードを形成した後のコーターギャップA(図1参照)と塗布速度との関係は、ビード形成のし易さやビード形成までの時間等考慮して、コーターギャップA(図1参照)がウェット膜厚の1倍から50倍となる塗布速度に速度を落として塗布を開始し、ビード形成後に50倍以上となる所定の塗布速度に上げることが好ましい。
Application method 4
In the coating method 1, the relationship between the coater gap A (see FIG. 1) at the start of coating and after the coating solution has formed a bead and the coating speed takes into account the ease of bead formation and the time to bead formation. It is preferable to start the coating at a coating speed at which the coater gap A (see FIG. 1) is 1 to 50 times the wet film thickness, and to increase the coating speed to a predetermined coating speed of 50 times or more after bead formation.
 図1から図3に示すスリット型ダイコーターを使用し、粘度が3.0mPa・s以下の塗布液を、スリット型ダイコーターのスリット出口から供給された塗布液のビード部のスリット出口の圧力が負圧或いはゼロの状態で塗布することで以下の効果が挙げられる。
1.膜厚が安定したウェット膜厚5μm以下の薄膜塗布が可能となり、市場の要求に合わせて対応することが可能となった。
2.スリット型ダイコーターのリップの両端を切り欠くことで、更に安定してウェット膜厚5μm以下の薄膜塗布が可能となった。
Using the slit type die coater shown in FIGS. 1 to 3, the coating liquid having a viscosity of 3.0 mPa · s or less is applied, and the pressure at the slit outlet of the bead portion of the coating liquid supplied from the slit outlet of the slit type die coater is The following effects can be obtained by applying under negative pressure or zero.
1. It has become possible to apply a thin film with a stable film thickness of 5 μm or less, and to meet market demands.
2. By cutting out both ends of the lip of the slit type die coater, it became possible to more stably apply a thin film with a wet film thickness of 5 μm or less.
 図1から図3に示すスリット型ダイコーターを使用した本発明の塗布方法は、ハードコート層、反射防止層等を有する反射防止フィルム、光学フィルム、有機EL素子を構成している各層の内で塗布方式で形成可能な機能層(例えば、正孔輸送層、発光層等)、液晶ディスプレーに用いられるカラーフィルター、光学フィルター、各種コーティングフィルムの製造に適用することが可能である。 The coating method of the present invention using the slit type die coater shown in FIG. 1 to FIG. 3 is used in the anti-reflection film, the optical film, and the organic EL element constituting the organic EL element. It can be applied to the production of functional layers (for example, a hole transport layer, a light emitting layer, etc.) that can be formed by a coating method, color filters used in liquid crystal displays, optical filters, and various coating films.
 尚、本発明の塗布方法で反射防止フィルム、光学フィルムを製造する際に使用する材料は、特開2008-296421号公報、同2008-242003号公報、同2008-224718号公報、同2008-200600号公報、同2007-098833号公報、同2006-293201号公報、同2006-285217号公報等に記載されている公知の材料を使用することが可能である。 The materials used when producing the antireflection film and the optical film by the coating method of the present invention are disclosed in JP-A-2008-296421, 2008-224003, 2008-224718, 2008-200600. It is possible to use known materials described in Japanese Patent Publication Nos. 2007-098833, 2006-293201, 2006-285217, and the like.
 又、本発明の塗布方法で有機EL素子を製造する際に使用する材料は、国際公開第06/100868号パンフレット、特開2006-294536号公報、特開2007-73332号公報等に記載されている公知の材料を使用することが可能である。 In addition, materials used when manufacturing an organic EL element by the coating method of the present invention are described in International Publication No. 06/100908, JP-A 2006-294536, JP-A 2007-73332, and the like. It is possible to use known materials.
 以下に実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。尚、下記文中「部」とは「質量部」を表す。 Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto. In the following text, “part” means “part by mass”.
 実施例1
 (帯状被塗布体の準備)
 厚さ100μm、幅330mm、長さ500mのポリエチレンテレフタレートフィルム(帝人・デュポン社製フィルム、以下、PETと略記する)を準備した。
Example 1
(Preparation of belt-shaped object)
A polyethylene terephthalate film (Teijin DuPont film, hereinafter abbreviated as PET) having a thickness of 100 μm, a width of 330 mm, and a length of 500 m was prepared.
 (塗布液の準備)
 アセトン100質量部に市販の染料、C.I.アシッドレッド249を1.5質量部を溶解した塗布液調製し、各粘度になるようにポリビニルブチレート(PVB)の添加量調整し表1に示すように粘度が異なる塗布液を準備しNo.aからdとした。塗布液の粘度は東機産業株式会社製の、E型粘度計 VISCONIC ED型及び同社製コントローラーE-200型を使用し、温度25℃で測定した値を示す。
(Preparation of coating solution)
A commercially available dye, C.I. I. A coating solution in which 1.5 parts by mass of Acid Red 249 was dissolved was prepared, and the addition amount of polyvinyl butyrate (PVB) was adjusted so as to obtain each viscosity, and coating solutions having different viscosities as shown in Table 1 were prepared. From a to d. The viscosity of the coating solution is a value measured at a temperature of 25 ° C. using an E-type viscometer VISCONIC ED type manufactured by Toki Sangyo Co., Ltd. and a controller E-200 type manufactured by the same company.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 (スリット型ダイコーターNo.1の準備)
 図1に示す切欠き部を有するスリット型ダイコーターで、以下に示す様に図2に示す各部の寸法を有するスリット型ダイコーターを準備した。
(Preparation of slit type die coater No. 1)
A slit type die coater having notches shown in FIG. 1 and the dimensions of each part shown in FIG. 2 was prepared as shown below.
   スリット型ダイコーターの幅K            400mm
   切欠き部のフロントリップからの深さJb       2.0mm
   切欠き部のバックリップからの深さJa        2.0mm
   切欠き部のリップの塗布幅手の幅L           50mm
   切欠き部のリップの塗布幅手の幅M           50mm
   スリット間隙O                    20μm
   塗布幅                       300mm
   切欠き部の形状は図3(a)に示される形状とした。
Slit die coater width K 400mm
Depth from front lip of notch Jb 2.0mm
Depth from notch back lip Ja 2.0mm
Application width of lip of notch width width L 50mm
Application width of lip at notch width width M 50mm
Slit gap O 20μm
Application width 300mm
The shape of the notch was the shape shown in FIG.
 (スリット型ダイコーターNo.2の準備)
 スリット型ダイコーターNo.1で切欠き部を設けず、塗布幅をスリット型ダイコーターNo.1の塗布巾と同じにした以外は全て同じ構成のスリット型コーターを準備し、スリット型ダイコーターNo.2とした。
(Preparation of slit type die coater No. 2)
Slit type die coater No. No cut-out portion is provided in FIG. A slit type coater having the same structure as that of the coating width of No. 1 was prepared. 2.
   スリット型ダイコーターの幅K            300mm
   切欠き部のフロントリップからの深さJb       2.0mm
   切欠き部のバックリップからの深さJa        2.0mm
   切欠き部のリップの塗布幅手の幅L            0mm
   切欠き部のリップの塗布幅手の幅M            0mm
   スリット間隙O                    20μm
   塗布幅                       300mm
 (塗布)
 準備したスリット型ダイコーターNo.1、スリット型ダイコーターNo.2を使用し、減圧室は配設せずに準備した塗布液No.aからdをスリット出口から供給された塗布液のビード部のスリット出口の圧力を変化し以下に示す条件で塗布した後、乾燥し試料No.101から132とした。尚、スリット出口の圧力の変更は、流量を変えることで行った。又、膜厚を一定にするために塗布速度を流量に比例して変更した。
Slit die coater width K 300mm
Depth from front lip of notch Jb 2.0mm
Depth from notch back lip Ja 2.0mm
Application width of the lip at the notch width Width L 0mm
Application width of lip of notch width width M 0mm
Slit gap O 20μm
Application width 300mm
(Application)
The prepared slit die coater No. 1, slit type die coater No. No. 2 was used and the prepared coating solution No. After changing the pressure at the slit outlet of the bead portion of the coating liquid supplied from the slit outlet to a through d under the conditions shown below, the sample was dried and sample No. 101 to 132. Note that the pressure at the slit outlet was changed by changing the flow rate. In order to keep the film thickness constant, the coating speed was changed in proportion to the flow rate.
 スリット出口から供給された塗布液のビード部のスリット出口の圧力は、キーエンス(株)製 耐環境デジタル圧力センサーAP-10Sを使用し、明細書本文中に記載の方法で測定した値を示す。 The pressure at the slit exit of the bead portion of the coating liquid supplied from the slit exit is a value measured by the method described in the main text of the specification using an environment-resistant digital pressure sensor AP-10S manufactured by Keyence Corporation.
 ウェット膜厚とは、下式で算出される理論膜厚を言う。 The wet film thickness refers to the theoretical film thickness calculated by the following equation.
 ウェット膜厚=塗布液供給流量/(塗布幅×塗布速度)
 (塗布条件)
 塗布条件としては、塗布幅300mm、塗布長50m、塗布液の塗布時の温度は25℃で行った。ウェット膜厚は、2.0μm、コーターギャップは、ウェット膜厚に対して100倍の200μmである。尚、塗布速度は、三菱電機(株)製 レーザドップラ速度計LV203で測定した。
Wet film thickness = coating liquid supply flow rate / (coating width x coating speed)
(Application conditions)
As the coating conditions, the coating width was 300 mm, the coating length was 50 m, and the coating temperature was 25 ° C. The wet film thickness is 2.0 μm, and the coater gap is 200 μm, which is 100 times the wet film thickness. The coating speed was measured with a laser Doppler velocimeter LV203 manufactured by Mitsubishi Electric Corporation.
 評価
 作製した各試料No.101から132付き、始め5mと、終わり5mとの箇所から試料を抜き取り、膜厚安定性を以下に示す測定方法により測定し、以下に示す評価ランクに従って評価した結果を表2に示す。
Evaluation Each sample No. Table 2 shows the results obtained by extracting samples from 101 to 132, the beginning 5 m, and the end 5 m, measuring the film thickness stability by the measurement method shown below, and evaluating according to the evaluation rank shown below.
 膜厚安定性の測定方法
 濃度と膜厚との関係が直線関係にあることから、コニカミノルタ製コニカデンシトメーターPDM-7を使用し、幅手方向に10mm間隔で濃度を測定し、試料に付き31点の濃度のバラツキを膜厚安定性として、次の式より計算で求めた。
Measuring method of film thickness stability Since the relationship between the concentration and the film thickness is linear, use the Konica Minolta Konica Densitometer PDM-7 to measure the concentration at 10 mm intervals in the width direction. The variation in density at 31 points was calculated as the film thickness stability by the following formula.
  膜厚安定性(バラツキ)=((最高濃度-最小濃度)/平均濃度)×100
 評価ランク
 ◎:バラツキが1.0未満
 ○:バラツキが1.0以上、3.0未満
 △:バラツキが3.0以上、5.0未満
 ×:バラツキが5.0以上
Film thickness stability (variation) = ((maximum density-minimum density) / average density) x 100
Evaluation rank ◎: Variation is less than 1.0 ○: Variation is 1.0 or more and less than 3.0 △: Variation is 3.0 or more, less than 5.0 ×: Variation is 5.0 or more
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 本発明の塗布方法で塗布することで膜厚安定性が優れていることを確認した。本発明の有効性が確認された。 It was confirmed that the film thickness stability was excellent by coating with the coating method of the present invention. The effectiveness of the present invention was confirmed.
 実施例2
 実施例1で調製した塗布液No.bを使用し、スリット型ダイコーターNo.1で、以下に示す塗布条件で表3に示す様にウェット膜厚とコーターギャップを変えて塗布し試料No.201から220とした。ウェット膜厚の変化は、塗布液流量を変えることで行った。
Example 2
Coating liquid No. 1 prepared in Example 1 was used. b, slit type die coater No. No. 1 was applied under the following coating conditions while changing the wet film thickness and coater gap as shown in Table 3. 201 to 220. The wet film thickness was changed by changing the flow rate of the coating solution.
 (塗布条件)
 塗布条件としては、スリット出口から供給された塗布液のビード部のスリット出口の圧力-0.005MPa、塗布速度5.0m/分、塗布幅300mm、塗布長50m、塗布液の塗布時の温度は25℃で行った。塗布速度は、実施例1と同じ方法で測定した値を示す。
(Application conditions)
The coating conditions are as follows: the pressure at the slit outlet of the bead portion of the coating liquid supplied from the slit outlet is -0.005 MPa, the coating speed is 5.0 m / min, the coating width is 300 mm, the coating length is 50 m, and the temperature during coating of the coating liquid is Performed at 25 ° C. The coating speed indicates a value measured by the same method as in Example 1.
 評価
 作製した各試料No.201から220に付き、始め5mと、終わり5mとの箇所から試料を抜き取り、膜厚安定性を実施例1と同じ測定方法により測定し、実施例1と同じ計算方法に従って評価した結果を表3に示す。
Evaluation Each sample No. Samples from 201 to 220, 5 m at the beginning and 5 m at the end, were sampled, the film thickness stability was measured by the same measurement method as in Example 1, and the results evaluated according to the same calculation method as in Example 1 are shown in Table 3. Shown in
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 塗布液の粘度が3.0mPa・s以下であり、スリット出口から供給された塗布液のビード部のスリット出口の圧力が負圧或いはゼロの状態で塗布する時、リップ先端部から押し出される塗布液で被塗布体上に形成される塗膜のウェット膜厚が5.0μm以下を、コーターギャップが100μm以上で塗布することで、膜厚安定性が安定した性能を示すことを確認した。本発明の有効性が確認された。 When the coating liquid has a viscosity of 3.0 mPa · s or less and the coating liquid supplied from the slit outlet has a negative or zero pressure at the slit outlet, the coating liquid is pushed out from the lip tip. It was confirmed that the film thickness stability was stable by applying a wet film thickness of 5.0 μm or less with a coater gap of 100 μm or more. The effectiveness of the present invention was confirmed.
 実施例3
 実施例1で調製した塗布液No.bを使用し、スリット型ダイコーターNo.1で以下に示す塗布条件で表4に示す様にウェット膜厚とコーターギャップとを変えて塗布した後、乾燥して試料No.301から320とした。ウェット膜厚の変化は、塗布液流量を変えることで行った。
Example 3
Coating liquid No. 1 prepared in Example 1 was used. b, slit type die coater No. As shown in Table 4, the coating conditions were changed as shown in Table 4 and the wet film thickness and the coater gap were changed. 301 to 320. The wet film thickness was changed by changing the flow rate of the coating solution.
 (塗布条件)
 塗布条件としては、スリット出口から供給された塗布液のビード部のスリット出口の圧力-0.005MPa、塗布速度5.0m/分、塗布幅300mm、塗布長50m、塗布液の塗布時の温度は25℃で行った。ウェット膜厚の変化は、塗布液流量と塗布速度を変えることで行った。塗布速度は、実施例1と同じ方法で測定した値を示す。
(Application conditions)
The coating conditions are as follows: the pressure at the slit outlet of the bead portion of the coating liquid supplied from the slit outlet is -0.005 MPa, the coating speed is 5.0 m / min, the coating width is 300 mm, the coating length is 50 m, and the coating temperature is as follows: Performed at 25 ° C. The wet film thickness was changed by changing the coating liquid flow rate and the coating speed. The coating speed indicates a value measured by the same method as in Example 1.
 評価
 作製した各試料No.301から320に付き、始め5mと、終わり5mとの箇所から試料を抜き取り、膜厚安定性を実施例1と同じ測定方法により測定し、実施例1と同じ計算方法に従って評価した結果を表4に示す。
Evaluation Each sample No. Samples from 301 to 320, 5 m at the beginning and 5 m from the end, were sampled, the film thickness stability was measured by the same measurement method as in Example 1, and the results evaluated according to the same calculation method as in Example 1 are shown in Table 4. Shown in
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 塗布液の粘度が3.0mPa・s以下であり、スリット出口から供給された塗布液のビード部のスリット出口の圧力が負圧或いはゼロの状態で塗布する時、リップ先端部から供給される塗布液で被塗布体上に形成される塗膜のウェット膜厚が5.0μm以下を、コーターギャップがリップ先端部から押し出される塗布液で被塗布体上に形成される塗膜のウェット膜厚の50倍以上、或いは100μm以上で塗布することで、膜厚安定性が安定した性能を示すことを確認した。本発明の有効性が確認された。 When the coating solution has a viscosity of 3.0 mPa · s or less and the coating solution supplied from the slit outlet is applied at a negative or zero pressure at the slit outlet, the coating supplied from the lip tip The wet film thickness of the coating film formed on the coated body with the liquid is 5.0 μm or less, and the wet film thickness of the coating film formed on the coated body with the coating liquid in which the coater gap is extruded from the lip tip. It was confirmed that the film thickness stability showed a stable performance by coating at 50 times or more, or 100 μm or more. The effectiveness of the present invention was confirmed.
 実施例4
 実施例1で調製した塗布液No.bを使用し、スリット型ダイコーターNo.1で、以下に示す塗布条件で表5に示す様に塗布速度を変えて塗布した後に、乾燥して試料No.401から408とした。塗布速度は、実施例1と同じ方法で測定した値を示す。
Example 4
Coating liquid No. 1 prepared in Example 1 was used. b, slit type die coater No. No. 1 was applied after changing the coating speed as shown in Table 5 under the coating conditions shown below, followed by drying and sample no. 401 to 408. The coating speed indicates a value measured by the same method as in Example 1.
 (塗布条件)
 塗布条件としては、スリット出口から供給された塗布液のビード部のスリット出口の圧力-0.005MPa、塗布幅300mm、塗布長50m、塗布液の塗布時の温度は25℃で行った。ウェット膜厚は2.0μm、コーターギャップはウェット膜厚に対して100倍の200μmとした。
(Application conditions)
The coating conditions were as follows: the pressure at the slit outlet of the bead portion of the coating liquid supplied from the slit outlet was −0.005 MPa, the coating width was 300 mm, the coating length was 50 m, and the coating temperature was 25 ° C. The wet film thickness was 2.0 μm, and the coater gap was 200 μm, 100 times the wet film thickness.
 評価
 作製した各試料No.401から408に付き、始め5mと、終わり5mとの箇所から試料を抜き取り、膜厚安定性を実施例1と同じ測定方法により測定し、実施例1と同じ計算方法に従って評価した結果を表5に示す。
Evaluation Each sample No. From 401 to 408, samples were extracted from the beginning 5 m and end 5 m, the film thickness stability was measured by the same measurement method as in Example 1, and the results evaluated according to the same calculation method as in Example 1 are shown in Table 5. Shown in
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 塗布液の粘度が3.0mPa・s以下で、スリット型ダイコーターのスリット出口から供給された塗布液のビード部のスリット出口の圧力が負圧或いはゼロの状態で塗布する時、塗布速度を0.1m/分から10m/分の範囲にすることで、膜厚安定性が安定した性能を示すことを確認した。本発明の有効性が確認された。 When the viscosity of the coating solution is 3.0 mPa · s or less and the coating solution is applied at a negative or zero pressure at the slit exit of the bead portion of the coating solution supplied from the slit exit of the slit die coater, the coating speed is 0. It was confirmed that the film thickness stability showed a stable performance when the range was from 1 m / min to 10 m / min. The effectiveness of the present invention was confirmed.
 実施例5
 実施例1で調製した塗布液No.bを使用し、スリット型ダイコーターNo.1で以下に示す塗布条件で表6に示す様に塗布開始する時のウェット膜厚に対するコーターギャップで塗布を開始し、ビード形成後のコーターギャップを拡大して塗布した後に、乾燥して試料No.501から513とした。
Example 5
Coating liquid No. 1 prepared in Example 1 was used. b, slit type die coater No. As shown in Table 6 under the coating conditions shown in Fig. 1, coating was started with a coater gap with respect to the wet film thickness at the start of coating, the coating gap after bead formation was expanded and coated, and then dried and sample No. . 501 to 513.
 (塗布条件)
 塗布条件としては、スリット出口から供給された塗布液のビード部のスリット出口の圧力-0.005MPa、塗布幅300mm、塗布長50m、塗布液の塗布時の温度は25℃で行った。
(Application conditions)
As the coating conditions, the pressure at the slit outlet of the bead portion of the coating liquid supplied from the slit outlet was −0.005 MPa, the coating width was 300 mm, the coating length was 50 m, and the coating temperature was 25 ° C.
 ウェット膜厚は、2.0μm、塗布速度、5.0m/minで行った。塗布速度は実施例1と同じ方法で測定した値を示す。 The wet film thickness was 2.0 μm, the coating speed was 5.0 m / min. The coating speed indicates a value measured by the same method as in Example 1.
 評価
 作製した各試料No.501から513に付き、始め5mと、終わり5mとの箇所から試料を抜き取り、膜厚安定性を実施例1と同じ測定方法により測定し、実施例1と同じ計算方法に従って評価した結果を表6に示す。
Evaluation Each sample No. From 501 to 513, samples were extracted from the beginning 5m and end 5m, the film thickness stability was measured by the same measurement method as in Example 1, and the results evaluated according to the same calculation method as in Example 1 are shown in Table 6. Shown in
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 塗布液の粘度が3.0mPa・s以下であり、スリット型ダイコーターのスリット出口から供給された塗布液のビード部のスリット出口の圧力が負圧或いはゼロの状態で塗布する時、塗布を開始する時のコーターギャップをウェット膜厚に対して1倍から50倍で塗布を開始し、ビード形成後に、コーターギャップをウェット膜厚に対して50倍以上になるように変えることで、膜厚安定性が更に安定した性能を示すことを確認した。本発明の有効性が確認された。 Application is started when the viscosity of the coating solution is 3.0 mPa · s or less and the pressure at the slit exit of the bead portion of the coating solution supplied from the slit exit of the slit type die coater is negative or zero. Start coating with a coater gap of 1 to 50 times the wet film thickness, and change the coater gap to more than 50 times the wet film thickness after bead formation. It was confirmed that the property shows more stable performance. The effectiveness of the present invention was confirmed.
 実施例6
 実施例1で調製した塗布液No.bを使用し、スリット型ダイコーターNo.1で以下に示す塗布条件で表7に示す様に塗布開始とビード形成後に変更したコーターギャップとウェット膜厚の倍率になるになるように塗布液の流量を変えることでウェット膜厚を変えて塗布した後、乾燥し試料No.601から607とした。
Example 6
Coating liquid No. 1 prepared in Example 1 was used. b, slit type die coater No. 1, the wet film thickness was changed by changing the flow rate of the coating solution so that the coating gap and the wet film thickness ratio changed after the start of coating and bead formation as shown in Table 7 under the coating conditions shown below. After coating, it was dried and sample No. 601 to 607.
 (塗布条件)
 塗布条件としては、スリット型ダイコーターのスリット出口から供給された塗布液のビード部のスリット出口の圧力を-0.005MPa、塗布幅300mm、塗布長50m、塗布液の塗布時の温度は25℃で行った。ビート形成後のウェット膜厚は、2.0μm、塗布速度は、5.0m/分、コーターギャップは200μmである。塗布速度は、実施例1と同じ方法で測定した値を示す。
(Application conditions)
The coating conditions are as follows: the pressure at the slit outlet of the bead portion of the coating liquid supplied from the slit outlet of the slit die coater is -0.005 MPa, the coating width is 300 mm, the coating length is 50 m, and the temperature at the time of coating the coating liquid is 25 ° C. I went there. The wet film thickness after beat formation is 2.0 μm, the coating speed is 5.0 m / min, and the coater gap is 200 μm. The coating speed indicates a value measured by the same method as in Example 1.
 評価
 作製した各試料No.601から607に付き、始め5mと、終わり5mとの箇所から試料を抜き取り、膜厚安定性を実施例1と同じ測定方法により測定し、実施例1と同じ計算方法に従って評価した結果を表7に示す。
Evaluation Each sample No. From 601 to 607, samples were extracted from the beginning 5 m and end 5 m, the film thickness stability was measured by the same measurement method as in Example 1, and the results evaluated according to the same calculation method as in Example 1 are shown in Table 7. Shown in
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 塗布液の粘度が3.0mPa・s以下であり、スリット型ダイコーターのスリット出口から供給された塗布液のビード部のスリット出口の圧力が負圧或いはゼロの状態で塗布する時、塗布を開始する時のコーターギャップをウェット膜厚に対して1倍から50倍になるように塗布液流量を変え、ビード形成後にコーターギャップをウェット膜厚に対して50倍以上になるように塗布液流量を変えすることで、膜厚安定性が安定した性能を示すことを確認した。本発明の有効性が確認された。 Application is started when the viscosity of the coating solution is 3.0 mPa · s or less and the pressure at the slit exit of the bead portion of the coating solution supplied from the slit exit of the slit type die coater is negative or zero. The coating solution flow rate is changed so that the coater gap is 1 to 50 times the wet film thickness, and the coating solution flow rate is adjusted so that the coater gap is 50 times or more the wet film thickness after the bead formation. By changing, it was confirmed that the film thickness stability showed stable performance. The effectiveness of the present invention was confirmed.
 実施例7
 実施例1で調製した塗布液No.bを使用し、スリット型ダイコーターNo.1で以下に示す塗布条件で表8に示す様に塗布開始とビード形成後に変更したコーターギャップになるように塗布速度を変えることでウェット膜厚を変えて塗布し、乾燥し試料No.701から707とした。
Example 7
Coating liquid No. 1 prepared in Example 1 was used. b, slit type die coater No. In the coating conditions shown in Table 1 below, as shown in Table 8, the coating speed was changed so that the coater gap was changed after the start of coating and bead formation. 701 to 707.
 (塗布条件)
 塗布条件としては、スリット型ダイコーターのスリット出口から供給された塗布液のビード部のスリット出口の圧力が-0.005MPa、塗布幅300mm、塗布長50m、塗布液の塗布時の温度は25℃で行った。
(Application conditions)
The coating conditions are as follows: the pressure at the slit outlet of the bead portion of the coating liquid supplied from the slit outlet of the slit die coater is -0.005 MPa, the coating width is 300 mm, the coating length is 50 m, and the coating liquid temperature is 25 ° C. I went there.
 ビート形成後のウェット膜厚は2.0μm、ビート形成後の塗布速度は5.0m/分、コーターギャップは200μmである。塗布速度は、実施例1と同じ方法で測定した値を示す。 The wet film thickness after beat formation is 2.0 μm, the coating speed after beat formation is 5.0 m / min, and the coater gap is 200 μm. The coating speed indicates a value measured by the same method as in Example 1.
 評価
 作製した各試料No.701から707に付き、始め5mと、終わり5mとの箇所から試料を抜き取り、膜厚安定性を実施例1と同じ測定方法により測定し、実施例1と同じ計算方法に従って評価した結果を表8に示す。
Evaluation Each sample No. From 701 to 707, samples were extracted from the beginning 5m and end 5m, the film thickness stability was measured by the same measurement method as in Example 1, and the results evaluated according to the same calculation method as in Example 1 are shown in Table 8. Shown in
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 塗布液の粘度が3.0mPa・s以下であり、スリット型ダイコーターのスリット出口から供給された塗布液のビード部のスリット出口の圧力が負圧或いはゼロの状態で塗布する時、塗布を開始する時のコーターギャップをウェット膜厚に対して1倍から50倍になるように塗布速度を変え、ビード形成後にコーターギャップをウェット膜厚に対して50倍以上になるように塗布速度を変えすることで、膜厚安定性が更に安定した性能を示すことを確認した。本発明の有効性が確認された。 Application is started when the viscosity of the coating solution is 3.0 mPa · s or less and the pressure at the slit exit of the bead portion of the coating solution supplied from the slit exit of the slit type die coater is negative or zero. The coating speed is changed so that the coater gap becomes 1 to 50 times the wet film thickness, and the coating speed is changed so that the coater gap becomes 50 times or more the wet film thickness after bead formation. Thus, it was confirmed that the film thickness stability showed more stable performance. The effectiveness of the present invention was confirmed.
 実施例8
 帯状の有機ELパネル構造体(可撓性基材/第1電極(陽極)/正孔輸送層/発光層/電子輸送層/第2電極(陰極)/接着剤/封止部材)を以下に示す方法で作製した後、断裁し有機ELパネルを作製し試料No.801とした。尚、正孔注入層、正孔輸送層、発光層、電子輸送層及び電子注入層は図1に示すスリット型ダイコーターで塗布し形成し、第2電極(陰極)は蒸着方式で成膜し形成した。
Example 8
The band-shaped organic EL panel structure (flexible substrate / first electrode (anode) / hole transport layer / light emitting layer / electron transport layer / second electrode (cathode) / adhesive / sealing member) is as follows: After manufacturing by the method shown, an organic EL panel was manufactured by cutting and sample No. 801. The hole injection layer, hole transport layer, light emitting layer, electron transport layer, and electron injection layer are formed by coating with a slit type die coater shown in FIG. 1, and the second electrode (cathode) is formed by vapor deposition. Formed.
 (スリット型ダイコーターの準備)
 実施例1で使用した図1に示す切欠き部を有するスリット型ダイコーターNo.1と同じスリット型ダイコーターを準備した。
(Preparation of slit type die coater)
The slit type die coater No. 1 having the notch portion shown in FIG. The same slit type die coater as 1 was prepared.
 〈帯状被塗布体の準備〉
 厚さ100μm、幅200mm、長さ500mのポリエチレンテレフタレートフィルム(帝人・デュポン社製フィルム、以下、PETと略記する)を準備した。尚、帯状被塗布体には、予め第1電極及び第2電極用取り出し電極を形成する位置を示すためにアライメントマークを第1電極が形成される面及び反対の面の同じ位置に設けた。
<Preparation of belt-shaped object>
A polyethylene terephthalate film (Teijin-DuPont film, hereinafter abbreviated as PET) having a thickness of 100 μm, a width of 200 mm, and a length of 500 m was prepared. In addition, in order to show the position which forms the extraction electrode for 1st electrodes and 2nd electrodes in the strip | belt-shaped to-be-coated body beforehand, the alignment mark was provided in the same position of the surface in which a 1st electrode is formed, and the opposite surface.
 (第1電極及び第2電極用取り出し電極の形成)
 準備したPETに付けられたアライメントマークを検出し、アライメントマークの位置に従って、PETの上に5×10-1Paの真空環境条件で厚さ120nmのITO(インジウムチンオキシド)をスパッタリング法により、マスクパターン成膜を行い、取り出し電極を有する12mm×5mmの大きさの第1電極及び10mm×3mmの大きさの第2電極用取り出し電極を一定間隔で12列連続的に形成し、一旦巻き取り保管した。
(Formation of first electrode and second electrode extraction electrode)
The alignment mark attached to the prepared PET is detected, and according to the position of the alignment mark, a 120 nm thick ITO (indium tin oxide) is sputtered on the PET under a vacuum environment condition of 5 × 10 −1 Pa on the mask. The film is formed into a pattern, the 12 mm × 5 mm first electrode having a take-out electrode and the 10 mm × 3 mm second electrode take-out electrode are continuously formed in 12 rows at regular intervals, and then temporarily wound and stored. did.
 (正孔輸送層形成用塗布液の準備)
 ポリエチレンジオキシチオフェン・ポリスチレンスルホネート(PEDOT/PSS、Bayer社製 Bytron P AI 4083)を純水で65%、メタノール5%で希釈した溶液を正孔輸送層形成用塗布液として準備した。正孔輸送層形成用塗布液の粘度は0.7mPa・sであった。粘度はブルックフィールド社製 デジタル粘度計 LVDV-Iを使用し、20℃で測定した値を示す。
(Preparation of coating solution for hole transport layer formation)
A solution prepared by diluting polyethylene dioxythiophene / polystyrene sulfonate (PEDOT / PSS, Baytron P AI 4083 manufactured by Bayer) with pure water at 65% and methanol at 5% was prepared as a coating solution for forming a hole transport layer. The viscosity of the coating liquid for forming a hole transport layer was 0.7 mPa · s. The viscosity is a value measured at 20 ° C. using a digital viscometer LVDV-I manufactured by Brookfield.
 (正孔輸送層の形成)
 準備したスリット型ダイコーターNo.1を使用し、準備された正孔注入層が形成されたロール状のPETを帯電除去処理した後、バックアップロールに保持されたPETの上全面(但し、両端の10mmは除く)に、準備した正孔輸送層形成用塗布液を以下に示す条件で塗布した後、乾燥・加熱処理を行った。
(Formation of hole transport layer)
The prepared slit die coater No. 1 was used, and the prepared roll-injected PET having the hole injection layer formed thereon was charged and removed, and then prepared on the entire upper surface of the PET held on the backup roll (except 10 mm at both ends). The coating liquid for forming the hole transport layer was applied under the following conditions, followed by drying and heat treatment.
 (帯電除去処理)
 帯電除去処理は第1電極形成側を非接触式帯電防止装置を、裏面側を接触式帯電防止装置を使用した。非接触式帯電防止装置はヒューグルエレクトロニクス(株)製フレキシブルAC式イオナイズィングバーMODEL4100Vを使用し行った。接触式帯電防止装置は都ローラー工業(株)製導電性ガイドロールME-102を使用し行った。
(Charge removal treatment)
For the charge removal treatment, a non-contact type antistatic device was used on the first electrode formation side, and a contact type antistatic device was used on the back side. As the non-contact type antistatic device, a flexible AC ionizing bar MODEL4100V manufactured by Hugle Electronics Co., Ltd. was used. The contact type antistatic device was a conductive guide roll ME-102 manufactured by Miyako Roller Kogyo Co., Ltd.
 (正孔輸送層形成用塗布液の塗布条件)
 塗布条件としては、正孔輸送層形成用塗布液を塗布速度5m/min、塗布幅180mm、ウェット膜厚は2μm、ウェット膜厚に対するコーターギャップ200μm、正孔輸送層形成用塗布液の塗布時の温度は25℃、露点温度-20℃以下のNガス環境の大気圧下で、且つ清浄度クラス5以下(JIS B 9920)で行った。
(Application conditions of the coating liquid for forming the hole transport layer)
As coating conditions, a coating solution for forming a hole transport layer is applied at a coating speed of 5 m / min, a coating width of 180 mm, a wet film thickness is 2 μm, a coater gap with respect to the wet film thickness is 200 μm, and a coating liquid for forming a hole transport layer is applied. The temperature was 25 ° C., a dew point temperature of −20 ° C. or less under an N 2 gas environment at atmospheric pressure, and a cleanliness class 5 or less (JIS B 9920).
 ウェット膜厚は、流量(供給量)/(塗布幅×塗布速度)により算出した理論値を示す。 The wet film thickness indicates a theoretical value calculated by flow rate (supply amount) / (application width × application speed).
 尚、塗布速度は、三菱電機(株)製 レーザドップラ速度計LV203で測定した。 The coating speed was measured with a laser Doppler velocimeter LV203 manufactured by Mitsubishi Electric Corporation.
 乾燥及び加熱処理条件
 正孔輸送層形成用塗膜の乾燥及び加熱処理条件としては、正孔輸送層形成用塗布液を塗布した後、乾燥装置を使用し、乾燥条件は、乾燥装置のスリットノズル形式の流出口から成膜面に向け高さ100mm、流出風速1m/s、幅手の風速分布5%、温度120℃で溶媒を除去した後、引き続き、加熱処理装置により温度150℃で裏面伝熱方式の熱処理を行い、正孔輸送層を形成した。
Drying and Heating Treatment Conditions Drying and heating treatment conditions for the coating film for forming the hole transport layer are as follows. After the coating liquid for forming the hole transport layer is applied, a drying device is used. After removing the solvent at a height of 100 mm from the outlet of the type toward the film-forming surface, an outflow air velocity of 1 m / s, a wide air velocity distribution of 5%, and a temperature of 120 ° C., the heat transfer apparatus then transfers the back surface at a temperature of 150 ° C. A heat treatment was performed to form a hole transport layer.
 (発光層形成用塗布液の調製)
 ジカルバゾール誘導体(CBP)           1.00質量%
 イリジウム錯体(Ir(ppy))         0.05質量%
 トルエン                     98.95質量%
 発光層形成用塗布液の粘度は0.59mPa・sであった。粘度はブルックフィールド社 デジタル粘度計 LVDV-Iを使用し、20℃で測定した値を示す。
(Preparation of light emitting layer forming coating solution)
Dicarbazole derivative (CBP) 1.00% by mass
Iridium complex (Ir (ppy) 3 ) 0.05% by mass
Toluene 98.95% by mass
The viscosity of the light emitting layer forming coating solution was 0.59 mPa · s. The viscosity is a value measured at 20 ° C. using a Brookfield Digital Viscometer LVDV-I.
 (発光層の形成)
 準備された正孔輸送層までが形成されたロール状のPETを帯電除去処理した後、正孔輸送層の上全面(但し、PETの両端の10mmは除く)に、準備したスリット型ダイコーターNo.1を使用し、減圧室は配設せずに準備した発光層形成用塗布液を以下に示す条件で塗布した。塗布後、乾燥部で以下に示す条件により乾燥・加熱処理を行った後、一旦巻き取り保管した。
(Formation of light emitting layer)
After the roll-shaped PET formed up to the prepared hole transport layer is charged and removed, the prepared slit type die coater No. is applied to the entire upper surface of the hole transport layer (except 10 mm at both ends of the PET). . No. 1 was used, and a coating solution for forming a light emitting layer was applied under the following conditions without providing a decompression chamber. After coating, the drying part was dried and heated under the following conditions, and then wound up and stored.
 (帯電除去処理)
 帯電除去処理は発光層側を非接触式帯電防止装置を、裏面側を接触式帯電防止装置を使用した。非接触式帯電防止装置及び触式帯電防止装置は正孔輸送層を形成する時と同じものを使用した。
(Charge removal treatment)
For the charge removal treatment, a non-contact type antistatic device was used on the light emitting layer side, and a contact type antistatic device was used on the back side. The non-contact type antistatic device and the tactile type antistatic device were the same as those used for forming the hole transport layer.
 (発光層形成用塗布液の塗布条件)
 塗布条件としては、発光層形成用塗布液を塗布速度5m/min、塗布幅180mm、ウェット膜厚は2μm、ウェット膜厚に対するコーターギャップ200μm、発光層形成用塗布液の塗布時の温度は25℃、露点温度-20℃以下のNガス環境の大気圧下で、且つ、清浄度クラス5以下(JIS B 9920)で行った。尚、塗布速度は、正孔輸送層の塗布速度と同じ測定方法で行った。
(Application conditions of the light emitting layer forming coating solution)
The coating conditions include a coating solution for forming the light emitting layer at a coating speed of 5 m / min, a coating width of 180 mm, a wet film thickness of 2 μm, a coater gap with respect to the wet film thickness of 200 μm, and a temperature at the coating of the coating solution for forming the light emitting layer is 25 ° C. The test was carried out under an atmospheric pressure of N 2 gas environment having a dew point temperature of −20 ° C. or lower and a cleanliness class 5 or lower (JIS B 9920). The coating speed was measured by the same measuring method as the coating speed of the hole transport layer.
 乾燥及び加熱処理条件
 発光層形成用塗膜の乾燥及び加熱処理条件としては、発光層形成用塗布液を塗布した後、乾燥装置を使用し、乾燥条件は、乾燥装置のスリットノズル形式の流出口から成膜面に向け高さ100mm、流出風速1m/s、幅手の風速分布5%、温度120℃で溶媒を除去した後、引き続き、加熱処理装置により温度150℃で裏面伝熱方式の熱処理を行い、発光層を形成した。
Drying and heat treatment conditions Drying and heat treatment conditions for the coating film for forming the light emitting layer include applying a coating liquid for forming the light emitting layer, and then using a drying device. The drying condition is a slit nozzle type outlet of the drying device. After removing the solvent at a height of 100 mm toward the film-forming surface, an outlet air velocity of 1 m / s, a wide wind velocity distribution of 5%, and a temperature of 120 ° C., a heat treatment is then performed at 150 ° C. using a heat treatment device. To form a light emitting layer.
 (電子輸送層形成用塗布液の準備)
 電子輸送層形成用塗布液として、0.5質量%の電子輸送材料1を含有する1-ブタノール溶液を準備した。
(Preparation of coating solution for electron transport layer formation)
As a coating solution for forming an electron transport layer, a 1-butanol solution containing 0.5% by mass of the electron transport material 1 was prepared.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 (電子輸送層の形成)
 準備された発光層までが形成されたロール状のPETを帯電除去処理した後、発光層の上全面(但し、PETの両端の10mmは除く)に、準備したスリット型ダイコーターを使用し、減圧室は配設せずに準備した電子輸送層形成用塗布液を以下に示す条件で塗布した。塗布後、乾燥部で以下に示す条件により乾燥・加熱処理を行った後、第1電極の取り出し電極部及び第2電極用取り出し電極の上の電子輸送層を除去し、パターン化した電子輸送層までを形成したPETを作製し、電子輸送層を形成した後、一旦巻き取り保管した。
(Formation of electron transport layer)
After the roll-shaped PET formed up to the prepared light emitting layer is charged and removed, the prepared slit type die coater is used on the entire upper surface of the light emitting layer (however, excluding 10 mm at both ends of the PET). The prepared coating liquid for forming an electron transport layer without applying a chamber was applied under the following conditions. After coating, the drying unit is dried and heat-treated under the conditions shown below, and then the electron transport layer on the extraction electrode portion of the first electrode and the extraction electrode for the second electrode is removed to form a patterned electron transport layer. After forming PET and forming an electron transport layer, it was wound up and stored.
 (帯電除去処理)
 帯電除去処理は電子輸送層側を非接触式帯電防止装置を、裏面側を接触式帯電防止装置を使用した。非接触式帯電防止装置及び触式帯電防止装置は正孔輸送層を形成する時と同じものを使用した。
(Charge removal treatment)
For the charge removal treatment, a non-contact type antistatic device was used on the electron transport layer side, and a contact type antistatic device was used on the back side. The non-contact type antistatic device and the tactile type antistatic device were the same as those used for forming the hole transport layer.
 (電子輸送層形成用塗布液の塗布条件)
 塗布条件としては、電子輸送層形成用塗布液を、塗布速度5m/min、塗布幅180mm、ウェット膜厚は2μm、ウェット膜厚に対するコーターギャップ200μm、電子輸送層形成用塗布液の塗布時の温度は25℃、露点温度-20℃以下のNガス環境の大気圧下で、且つ、清浄度クラス5以下(JIS B 9920)で行った。尚、塗布速度は、正孔輸送層の塗布速度と同じ測定方法で行った。
(Coating conditions for the electron transport layer forming coating solution)
The coating conditions are as follows: the coating liquid for forming the electron transport layer is coated at a coating speed of 5 m / min, the coating width is 180 mm, the wet film thickness is 2 μm, the coater gap is 200 μm with respect to the wet film thickness, and the temperature during coating of the coating liquid for forming the electron transport layer. Was conducted under atmospheric pressure in an N 2 gas environment with a dew point temperature of −20 ° C. or lower and a cleanliness class 5 or lower (JIS B 9920). The coating speed was measured by the same measuring method as the coating speed of the hole transport layer.
 乾燥及び加熱処理条件
 電子輸送層形成用塗膜の乾燥及び加熱処理条件としては、電子輸送層形成用塗布液を塗布した後、乾燥装置を使用し、乾燥条件は、乾燥装置のスリットノズル形式の流出口から成膜面に向け高さ100mm、流出風速1m/s、幅手の風速分布5%、温度120℃で溶媒を除去した後、引き続き、加熱処理装置により温度150℃で裏面伝熱方式の熱処理を行い、発光層を形成した。
Drying and heat treatment conditions The drying and heat treatment conditions for the coating film for forming the electron transport layer are as follows. After the coating liquid for forming the electron transport layer is applied, a drying apparatus is used. After removing the solvent from the outlet to the film formation surface at a height of 100 mm, outflow air velocity of 1 m / s, wide air velocity distribution of 5%, and a temperature of 120 ° C, the backside heat transfer method at a temperature of 150 ° C by a heat treatment device. The light emitting layer was formed by performing the heat treatment.
 (第2電極の形成)
 引き続き、電子注入層までが形成されたPETに付けられたアライメントマークを検出し、アライメントマークの位置に従って形成された電子注入層の上に第1電極の大きさ及び第2電極用取り出し電極に接触出来る大きさに合わせ5×10-4Paの真空下にて第2電極形成材料としてアルミニウムを使用し、第1電極の上及び第2電極用取り出し電極に接続する様に蒸着法にてマスクパターン成膜し、厚さ100nmの第2電極を積層した。
(Formation of second electrode)
Subsequently, an alignment mark attached to the PET formed up to the electron injection layer is detected, and the size of the first electrode and the second electrode take-out electrode are contacted on the electron injection layer formed according to the position of the alignment mark. Use aluminum as the second electrode forming material under a vacuum of 5 × 10 −4 Pa according to the size possible, and mask pattern by vapor deposition so as to connect to the upper electrode and the second electrode extraction electrode A second electrode having a thickness of 100 nm was stacked.
 (接着剤の塗設)
 第2電極までが形成されたPETに付けられたアライメントマークを検出し、アライメントマークの位置に従って第1電極及び第2電極用取り出し電極の端部を除いて発光領域及び発光領域の周辺に紫外線硬化型の液状接着剤(エポキシ樹脂系)を使用し、厚さ30μmで塗設した。
(Applying adhesive)
Alignment marks attached to the PET formed up to the second electrode are detected, and UV light is cured around the light emitting region and the light emitting region except for the ends of the first electrode and the second electrode extraction electrode according to the position of the alignment mark. A liquid adhesive (epoxy resin type) of a mold was used and coated with a thickness of 30 μm.
 (封止部材の貼合)
 この後、以下に示す帯状シート封止部材を接着剤塗設面にロールラミネータ法により積重し、大気圧環境化にて押圧0.1MPaでロール圧着した後、波長365nmの高圧水銀ランプを、照射強度20mW/cm、距離15mmで1分間照射し固着させ貼合し、複数の有機ELパネルが連続的に繋がった状態とした。
(Pasting of sealing member)
Thereafter, the belt-like sheet sealing member shown below is stacked on the adhesive coating surface by a roll laminator method, and after pressure-bonding with a pressure of 0.1 MPa in an atmospheric pressure environment, a high-pressure mercury lamp with a wavelength of 365 nm is Irradiation intensity of 20 mW / cm 2 and distance of 15 mm were applied for 1 minute to be fixed and bonded, and a plurality of organic EL panels were continuously connected.
 (封止部材の準備)
 封止部材として、PETフィルム(帝人・デュポン社製)を使用し、無機膜(SiN)をバリア層に使用した2層構成の帯状シート封止部材を準備した。PETの厚さ100μm、バリア層の厚さ200nmとした。尚、PETフィルムのバリア層の成膜はスパッタリング法により実施した。JIS K-7129B法(1992年)に準拠した方法で主としてMOCON法により測定した水蒸気透過度は0.01g/m・dayであった。JIS K7126B法(1987年)に準拠した方法で主としてMOCON法により測定した酸素透過度は0.1ml/m・day・MPaであった。
(Preparation of sealing member)
A two-layer belt-like sheet sealing member using a PET film (manufactured by Teijin DuPont) as the sealing member and using an inorganic film (SiN) as a barrier layer was prepared. The thickness of PET was 100 μm, and the thickness of the barrier layer was 200 nm. Incidentally, the barrier layer of the PET film was formed by a sputtering method. The water vapor transmission rate measured by the MOCON method mainly in accordance with the JIS K-7129B method (1992) was 0.01 g / m 2 · day. The oxygen permeability measured mainly by the MOCON method by a method based on JIS K7126B method (1987) was 0.1 ml / m 2 · day · MPa.
 (断裁)
 準備した複数の有機ELパネルが連続的に繋がった状態のものを個別の有機ELパネルの大きさにPETに付けられたアライメントマークを検出し、アライメントマークの位置に従って断裁し個別の有機ELパネルを作製した。
(Cutting)
In the state where a plurality of prepared organic EL panels are continuously connected, the alignment mark on the PET is detected to the size of the individual organic EL panel, and the individual organic EL panel is cut by cutting according to the position of the alignment mark. Produced.
 評価
 作製した有機ELパネルに付き、始め5mと、終わり5mとの箇所から作製した試料を抜き取り、リーク電流特性、発光ムラ(輝度ムラ)を以下に示す試験方法により試験し、以下に示す評価ランクに従って評価した結果、リーク電流特性、発光ムラ(輝度ムラ)は何れも◎であった。本発明の有効性が確認された。
Evaluation A sample prepared from 5 m at the beginning and 5 m at the end of the organic EL panel was extracted, and leakage current characteristics and light emission unevenness (luminance unevenness) were tested by the following test methods. As a result, the leakage current characteristics and the light emission unevenness (luminance unevenness) were both ◎. The effectiveness of the present invention was confirmed.
 リーク電流特性の試験方法
 定電圧電源を用いて、逆方向の電圧(逆バイアス)を5Vを5秒間印加し、その時有機EL素子に流れる電流を測定した。サンプル10枚の発光領域について測定を行い、最大電流値をリーク電流とした。
Test Method for Leakage Current Characteristics Using a constant voltage power source, a reverse voltage (reverse bias) was applied at 5 V for 5 seconds, and the current flowing through the organic EL element at that time was measured. Measurement was performed on the light emission region of 10 samples, and the maximum current value was defined as a leakage current.
 リーク電流特性の評価ランク
 ◎:最大電流値が1×10-6A未満
 ○:最大電流値が1×10-6A以上、1×10-5A未満
 △:最大電流値が1×10-5A以上、1×10-3A未満
 ×:最大電流値が1×10-3A以上。
Evaluation rank of leakage current characteristics A: Maximum current value is less than 1 × 10 −6 A ○: Maximum current value is 1 × 10 −6 A or more and less than 1 × 10 −5 A Δ: Maximum current value is 1 × 10 − 5 A or more and less than 1 × 10 −3 A ×: The maximum current value is 1 × 10 −3 A or more.
 発光ムラ(輝度ムラ)の測定方法
 定電圧電源を用いて、有機ELパネルに直流5Vを印加し、サンプル中央部の発光部6箇所の輝度差を目視で観察した。
Measuring method of light emission unevenness (brightness unevenness) Using a constant voltage power source, DC 5 V was applied to the organic EL panel, and the luminance difference of 6 light emitting portions in the center of the sample was visually observed.
 発光ムラ(輝度ムラ)の評価ランク
 ◎:輝度の差が全くない
 ○:6箇所中、1箇所の輝度が異なる
 △:6箇所中、2箇所以上4箇所未満の輝度が異なる
 ×:6セル中、4箇所以上の輝度が異なる。
Evaluation rank of light emission unevenness (brightness unevenness) ◎: There is no difference in brightness ○: In 6 places, the brightness in 1 place is different △: In 6 places, the brightness in 2 places or more and less than 4 places is different ×: In 6 cells The brightness at four or more locations is different.
 1 スリット型ダイコーター
 102a、102b 切欠き部
 103 リップ
 104 スリット
 A コーターギャップ
 B ノリ面
 C 平行な面
 Ja、Jb 深さ
 K、L、M 幅
 N 塗布幅
 O スリット間隙
 X 塗布位置
 Q ビード
DESCRIPTION OF SYMBOLS 1 Slit type die coater 102a, 102b Notch 103 Lip 104 Slit A Coater gap B Nose surface C Parallel surface Ja, Jb Depth K, L, M Width N Coating width O Slit gap X Coating position Q Bead

Claims (10)

  1.  被塗布体上に、スリット型ダイコーターを使用し、前記スリット型ダイコーターのリップ先端部を前記被塗布体に近接し、前記リップ先端部のスリット出口から供給される塗布液で、前記リップ先端部と、前記被塗布体との間にビードを形成させ前記塗布液を塗布する塗布方法であって、
     前記塗布液の粘度が3.0mPa・s以下であり、
     前記ビード部の前記スリット出口の圧力が負圧或いはゼロの状態で塗布することを特徴とする塗布方法。
    A slit-type die coater is used on the object to be coated, the lip tip of the slit-type die coater is close to the object to be coated, and the lip tip is applied with a coating liquid supplied from the slit outlet of the lip tip. A coating method in which a bead is formed between a portion and the coated body, and the coating liquid is applied.
    The viscosity of the coating solution is 3.0 mPa · s or less,
    The coating method is characterized in that coating is performed in a state where the pressure at the slit outlet of the bead portion is negative or zero.
  2.  前記リップ先端部から供給される塗布液により被塗布体上に形成される塗膜のウェット膜厚が5.0μm以下であり、リップ先端部と前記被塗布体との間隔が100μm以上で塗布することを特徴とする請求項1に記載の塗布方法。 The coating film formed on the coated body by the coating solution supplied from the lip tip is applied with a wet film thickness of 5.0 μm or less, and the gap between the lip tip and the coated body is 100 μm or more. The coating method according to claim 1.
  3.  前記リップ先端部と前記被塗布体との間隔が、リップ先端部から供給される塗布液により被塗布体上に形成される塗膜のウェット膜厚の50倍以上であることを特徴とする請求項1に記載の塗布方法。 The distance between the lip tip and the coated body is 50 times or more the wet film thickness of the coating film formed on the coated body by the coating liquid supplied from the lip tip. Item 2. The coating method according to Item 1.
  4.  前記被塗布体に塗布液を塗布する時の塗布速度が0.1m/分から10m/分であることを特徴とする請求項1から3の何れか1項に記載の塗布方法。 The coating method according to any one of claims 1 to 3, wherein a coating speed when a coating liquid is applied to the coated body is 0.1 m / min to 10 m / min.
  5.  前記スリット型ダイコーターは、リップ先端部の塗布幅手の両端部に切欠き部を有していることを特徴とする請求項1から4の何れか1項に記載の塗布方法。 The coating method according to any one of claims 1 to 4, wherein the slit type die coater has notches at both ends of the coating width at the tip of the lip.
  6.  前記リップ先端部から供給される塗布液により被塗布体上に形成される塗膜のウェット膜厚が0.1μmから5.0μmであることを特徴とする請求項1から5の何れか1項に記載の塗布方法。 6. The wet film thickness of a coating film formed on an object to be coated with a coating liquid supplied from the lip tip is 0.1 to 5.0 [mu] m. The coating method described in 1.
  7.  前記リップ先端部と前記被塗布体との間隔が、リップ先端部から供給される塗布液により被塗布体上に形成される塗膜のウェット膜厚に対して1倍から50倍で塗布を開始し、ビード形成後に、該間隔を100μm以上、又は、該ウェット膜厚に対して50倍以上に拡大することを特徴とする請求項1から6の何れか1項に記載の塗布方法。 Coating is started with the interval between the lip tip and the coated body being 1 to 50 times the wet film thickness of the coating film formed on the coated body by the coating liquid supplied from the lip tip. The coating method according to any one of claims 1 to 6, wherein after the bead is formed, the interval is increased to 100 μm or more, or 50 times or more of the wet film thickness.
  8.  前記リップ先端部と被塗布体との間隔が、リップ先端部から供給される塗布液により被塗布体上に形成される塗膜のウェット膜厚に対して1倍から50倍で塗布を開始し、ビード形成後に、該間隔を該ウェット膜厚に対して50倍以上になる様に流量を変更することを特徴とする請求項1から6の何れか1項に記載の塗布方法。 Application starts when the gap between the lip tip and the coated body is 1 to 50 times the wet film thickness of the coating film formed on the coated body by the coating liquid supplied from the lip tip. The coating method according to any one of claims 1 to 6, wherein the flow rate is changed after the bead formation so that the interval becomes 50 times or more the wet film thickness.
  9.  前記リップ先端部と被塗布体との間隔が、リップ先端部から供給される塗布液により被塗布体上に形成される塗膜のウェット膜厚に対して1倍から50倍で塗布を開始し、ビード形成後に、該間隔を該ウェット膜厚に対して50倍以上になる様に該塗布速度を変更することを特徴とする請求項1から6の何れか1項に記載の塗布方法。 Application is started with the gap between the lip tip and the coated body being 1 to 50 times the wet film thickness of the coating film formed on the coated body by the coating liquid supplied from the lip tip. The coating method according to any one of claims 1 to 6, wherein the coating speed is changed after the bead formation so that the interval is 50 times or more the wet film thickness.
  10.  基板の上に、第1の電極と第2の電極との間に、発光層を含む複数からなる有機化合物層を積層した構成を有する有機エレクトロニクス素子において、前記有機化合物層が請求項1から9の何れか1項に記載の塗布方法により形成されていることを特徴とする有機エレクトロニクス素子。 An organic electronic device having a structure in which a plurality of organic compound layers including a light emitting layer are stacked between a first electrode and a second electrode on a substrate, wherein the organic compound layer is defined in claims 1 to 9. An organic electronics element formed by the coating method according to any one of the above.
PCT/JP2010/057559 2009-05-09 2010-04-28 Coating method and organic electronic element WO2010131580A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011513307A JP5831228B2 (en) 2009-05-09 2010-04-28 Application method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-114055 2009-05-09
JP2009114055 2009-05-09

Publications (1)

Publication Number Publication Date
WO2010131580A1 true WO2010131580A1 (en) 2010-11-18

Family

ID=43084953

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/057559 WO2010131580A1 (en) 2009-05-09 2010-04-28 Coating method and organic electronic element

Country Status (2)

Country Link
JP (1) JP5831228B2 (en)
WO (1) WO2010131580A1 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012248375A (en) * 2011-05-27 2012-12-13 Konica Minolta Holdings Inc Method of manufacturing organic electroluminescent element and organic electroluminescent element
JP2013103168A (en) * 2011-11-14 2013-05-30 Toyota Motor Corp Coating method
CN104174548A (en) * 2013-05-24 2014-12-03 三星Sdi株式会社 Device and method for determining shape of slit nozzle
CN104174547A (en) * 2013-05-24 2014-12-03 三星Sdi株式会社 Slit nozzle and slit coating device using same
JP5799181B1 (en) * 2015-01-07 2015-10-21 住友化学株式会社 Method for manufacturing organic electronic device
JP6105109B1 (en) * 2016-02-19 2017-03-29 オリジン電気株式会社 Joining member manufacturing apparatus and joining member manufacturing method
WO2017141634A1 (en) * 2016-02-19 2017-08-24 オリジン電気株式会社 Joining member manufacturing device, joining member manufacturing method, and coating material-coated member manufacturing method
WO2017163381A1 (en) * 2016-03-24 2017-09-28 中外炉工業株式会社 Coating device and coating method for coating coating liquid on curved base material
JP2019115868A (en) * 2017-12-26 2019-07-18 日本ノンテックス株式会社 Coating method of adhesive to nonwoven fabric ventilation filter
JP2019202250A (en) * 2018-05-22 2019-11-28 日東電工株式会社 Coating apparatus and coated film manufacturing method
JP2019202251A (en) * 2018-05-22 2019-11-28 日東電工株式会社 Coated film forming method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06170306A (en) * 1992-12-03 1994-06-21 Konica Corp Applicator
WO2004011157A1 (en) * 2002-07-26 2004-02-05 Dai Nippon Printing Co., Ltd. Method of forming coating
JP2006247531A (en) * 2005-03-10 2006-09-21 Fuji Photo Film Co Ltd Coating method and production method of optical film
JP2007283260A (en) * 2006-04-19 2007-11-01 Fujifilm Corp Method and apparatus for coating with coating liquid
JP2008200600A (en) * 2007-02-20 2008-09-04 Konica Minolta Opto Inc Coating method, optical film and antireflection film
WO2009057464A1 (en) * 2007-11-01 2009-05-07 Konica Minolta Holdings, Inc. Coating method, and coating apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06170306A (en) * 1992-12-03 1994-06-21 Konica Corp Applicator
WO2004011157A1 (en) * 2002-07-26 2004-02-05 Dai Nippon Printing Co., Ltd. Method of forming coating
JP2006247531A (en) * 2005-03-10 2006-09-21 Fuji Photo Film Co Ltd Coating method and production method of optical film
JP2007283260A (en) * 2006-04-19 2007-11-01 Fujifilm Corp Method and apparatus for coating with coating liquid
JP2008200600A (en) * 2007-02-20 2008-09-04 Konica Minolta Opto Inc Coating method, optical film and antireflection film
WO2009057464A1 (en) * 2007-11-01 2009-05-07 Konica Minolta Holdings, Inc. Coating method, and coating apparatus

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012248375A (en) * 2011-05-27 2012-12-13 Konica Minolta Holdings Inc Method of manufacturing organic electroluminescent element and organic electroluminescent element
JP2013103168A (en) * 2011-11-14 2013-05-30 Toyota Motor Corp Coating method
CN104174548A (en) * 2013-05-24 2014-12-03 三星Sdi株式会社 Device and method for determining shape of slit nozzle
CN104174547A (en) * 2013-05-24 2014-12-03 三星Sdi株式会社 Slit nozzle and slit coating device using same
CN104174547B (en) * 2013-05-24 2018-05-11 三星Sdi株式会社 Gap nozzle and the slot coated equipment using the gap nozzle
JP5799181B1 (en) * 2015-01-07 2015-10-21 住友化学株式会社 Method for manufacturing organic electronic device
US10319909B2 (en) 2015-01-07 2019-06-11 Sumitomo Chemical Company, Limited Method for manufacturing organic electronic element
JP6257855B1 (en) * 2016-02-19 2018-01-10 オリジン電気株式会社 Joining member manufacturing apparatus, manufacturing method of joining member, and manufacturing method of coated material coated member
WO2017141634A1 (en) * 2016-02-19 2017-08-24 オリジン電気株式会社 Joining member manufacturing device, joining member manufacturing method, and coating material-coated member manufacturing method
KR101938538B1 (en) 2016-02-19 2019-01-14 오리진 일렉트릭 캄파니 리미티드 Title: Joining member manufacturing apparatus, manufacturing method of joining member, and manufacturing method of coated member
JP6105109B1 (en) * 2016-02-19 2017-03-29 オリジン電気株式会社 Joining member manufacturing apparatus and joining member manufacturing method
US11364518B2 (en) 2016-02-19 2022-06-21 Origin Company, Limited Joined member manufacturing apparatus, method for manufacturing joined member, and method for manufacturing member on which applied material has been applied
WO2017163381A1 (en) * 2016-03-24 2017-09-28 中外炉工業株式会社 Coating device and coating method for coating coating liquid on curved base material
JP6318316B2 (en) * 2016-03-24 2018-04-25 中外炉工業株式会社 Coating apparatus and coating method for coating liquid on curved substrate
JPWO2017163381A1 (en) * 2016-03-24 2018-05-24 中外炉工業株式会社 Coating apparatus and coating method for coating liquid on curved substrate
JP2019115868A (en) * 2017-12-26 2019-07-18 日本ノンテックス株式会社 Coating method of adhesive to nonwoven fabric ventilation filter
JP2019202250A (en) * 2018-05-22 2019-11-28 日東電工株式会社 Coating apparatus and coated film manufacturing method
JP2019202251A (en) * 2018-05-22 2019-11-28 日東電工株式会社 Coated film forming method
TWI799585B (en) * 2018-05-22 2023-04-21 日商日東電工股份有限公司 Coating apparatus and method for producing coating film

Also Published As

Publication number Publication date
JPWO2010131580A1 (en) 2012-11-01
JP5831228B2 (en) 2015-12-09

Similar Documents

Publication Publication Date Title
JP5831228B2 (en) Application method
JP5522170B2 (en) Application method
CN105358260B (en) Slotted die coating method, equipment and substrate
US20030194497A1 (en) Coating method, coating apparatus, and method and apparatus for manufacturing pattern members using webs on which coating films have been formed by coating method and coating apparatus
JP2011131116A (en) Coating method and organic electroluminescence element
Kim et al. Roll-to-Roll Fabrication of PEDOT: PSS Stripes Using Slot-Die Head With $\mu $-Tips for AMOLEDs
JP2023175697A (en) Coating method and coating device
US10319909B2 (en) Method for manufacturing organic electronic element
JP5700043B2 (en) Method for forming organic thin film layer, method for producing organic electroluminescence element
WO2019035424A1 (en) Method for manufacturing catalyst-forming electrolyte membrane for pefc fuel cell
US10686162B2 (en) Method for manufacturing organic EL panel
JP5821853B2 (en) Method for manufacturing organic electroluminescence element
KR102231942B1 (en) Apparatus having patterned solution shearing coater of roll to roll type for forming a thin film of organic semiconductor
JP5772826B2 (en) Method for manufacturing organic electroluminescence element
JP2004001465A (en) Method and apparatus for manufacturing pattern member
JP7200038B2 (en) Film manufacturing method and film manufacturing apparatus
JP4807380B2 (en) Functional membrane production equipment
JP2011253784A (en) Coating applicator and manufacturing method of organic electronic element
WO2007086530A2 (en) Method of applying and drying liquid
JPS6165495A (en) Method of forming insulating film of printed circuit board
JP2004081963A (en) Coating method, coating equipment, and method of producing pattern member using belt-like flexible support with coating film formed by it

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10774838

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011513307

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10774838

Country of ref document: EP

Kind code of ref document: A1