WO2010128966A2 - Gasification systems and associated processes - Google Patents

Gasification systems and associated processes Download PDF

Info

Publication number
WO2010128966A2
WO2010128966A2 PCT/US2009/043044 US2009043044W WO2010128966A2 WO 2010128966 A2 WO2010128966 A2 WO 2010128966A2 US 2009043044 W US2009043044 W US 2009043044W WO 2010128966 A2 WO2010128966 A2 WO 2010128966A2
Authority
WO
WIPO (PCT)
Prior art keywords
liquid volume
steam
iron
gasifier
carbonaceous material
Prior art date
Application number
PCT/US2009/043044
Other languages
French (fr)
Other versions
WO2010128966A3 (en
Inventor
Jerry Dale Stephenson
Steven W. Schenk
Tom Weyand
Dale Nickels
Original Assignee
Diversified Energy Corp.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Diversified Energy Corp. filed Critical Diversified Energy Corp.
Priority to PCT/US2009/043044 priority Critical patent/WO2010128966A2/en
Publication of WO2010128966A2 publication Critical patent/WO2010128966A2/en
Publication of WO2010128966A3 publication Critical patent/WO2010128966A3/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/348Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents by direct contact with heat accumulating liquids, e.g. molten metals, molten salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/57Gasification using molten salts or metals
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/72Other features
    • C10J3/726Start-up
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0211Processes for making hydrogen or synthesis gas containing a reforming step containing a non-catalytic reforming step
    • C01B2203/0216Processes for making hydrogen or synthesis gas containing a reforming step containing a non-catalytic reforming step containing a non-catalytic steam reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0455Purification by non-catalytic desulfurisation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/0485Composition of the impurity the impurity being a sulfur compound
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/0495Composition of the impurity the impurity being water
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0872Methods of cooling
    • C01B2203/0883Methods of cooling by indirect heat exchange
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1235Hydrocarbons
    • C01B2203/1252Cyclic or aromatic hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0903Feed preparation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0913Carbonaceous raw material
    • C10J2300/093Coal
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0953Gasifying agents
    • C10J2300/0959Oxygen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0953Gasifying agents
    • C10J2300/0973Water
    • C10J2300/0976Water as steam
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0983Additives

Definitions

  • the present disclosure is directed generally to gasification systems and associated processes.
  • Gasification processes generally include reacting a carbonaceous feed material (e.g., coal, petroleum, or biomass) with oxygen and/or steam to produce carbon monoxide and hydrogen.
  • a carbonaceous feed material e.g., coal, petroleum, or biomass
  • oxygen and/or steam to produce carbon monoxide and hydrogen.
  • the resulting carbon monoxide and hydrogen mixture is commonly called “synthesis gas” or “syngas.”
  • Syngas can have many industrial applications. For example, syngas may be burned directly in internal combustion engines for generating electricity or driving machinery. In another example, syngas may be used to produce methanol and hydrogen, which in turn may be converted into other useful industrial compounds. Syngas may also be converted into liquid synthetic fuels (e.g., diesel, gasoline, etc.) via the Fischer-Tropsch process and/or other syngas-to-liquid processes.
  • liquid synthetic fuels e.g., diesel, gasoline, etc.
  • Conventional gasification systems include fixed-bed gasifiers, fluidized-bed gasifiers, or entrained-flow gasifiers.
  • the feed material forms a fixed bed through which a gasification agent (e.g., steam, oxygen, and/or air) flows in either a counter-current or co-current flow configuration.
  • a gasification agent e.g., steam, oxygen, and/or air
  • the feed material does not form a fixed bed but instead is fluidized in steam, oxygen, and/or air.
  • entrained-flow gasifiers the carbonaceous feed material is first pulverized and then gasified with oxygen or air in a co-current flow configuration.
  • gasifiers suffer from certain operational drawbacks.
  • fixed-bed gasifiers typically require the carbonaceous feed material to have high mechanical strength and be noncaking in order to form a permeable bed.
  • certain feed materials may not be processed in fixed-bed gasifiers.
  • the conversion efficiencies of fluidized-bed gasifiers may be low due to elutriation of the carbonaceous feed material.
  • entrained-flow gasifiers typically may not be economically operated at small scales and may require an increased amount of oxygen compared to other types of gasifiers. The increased requirement for oxygen can increase the energy consumption of the overall entrained-flow gasification process, resulting in a lower energy efficiency. Accordingly, certain improvements in gasification systems and processes are needed.
  • Figure 1 is a schematic diagram of a gasification system in accordance with embodiments of the disclosure.
  • Figure 2 is a flow diagram of a continuous gasification process suitable for the gasification system of Figure 1 in accordance with embodiments of the disclosure.
  • carbonaceous feed material generally refers to coal, coke, petroleum, biomass, and/or any material that contains carbon in elemental or combined form.
  • the carbonaceous feed material can include a gasifiable portion and a nongasifiable portion.
  • the gasifiable portion may be converted into carbon monoxide (CO), hydrogen (H 2 ), carbon dioxide (CO 2 ), and/or other gases.
  • the nongasifiable portion is generally referred to as "slag" in the present disclosure.
  • the slag can have a composition that is generally similar to the ash composition of the carbonaceous feed material.
  • the slag may include at least one of calcium oxide (CaO), aluminum oxide (AI 2 O 3 ), and silicon oxide (SiO 2 ), and other organic and/or inorganic compounds.
  • the slag may also have other compounds in addition to or in lieu of the ash composition of the carbonaceous feed material.
  • a person skilled in the relevant art will also understand that the disclosure may have additional embodiments and that the disclosure may be practiced without several of the details of the embodiments described below with reference to Figures 1 and 2. [0009]
  • Figure 1 is a schematic diagram of a gasification system 100 in accordance with embodiments of the disclosure.
  • the gasification system 100 can include a gasifier 102 proximate to an optional heater 104 and a plurality of feed lines 114 (identified individually as a steam line 114a, an oxygen line 114b, and a fuel line 114c) coupled to corresponding supply storages (not shown) and the gasifier 102.
  • the optional heater 104 can include an electric furnace, a microwave radiator, and/or other suitable types of heater for supplying thermal energy to the gasifier 102.
  • the optional heater 104 is shown as at least partially enclosing the gasifier 102.
  • the optional heater 104 may be spaced apart from the gasifier 102.
  • the optional heater 104 may be integrated with the gasifier 102.
  • the optional heater 104 may be omitted, and thermal energy may be supplied to the gasifier 102 by flowing an oxygen-containing gas (e.g., air) via the oxygen line 114b to the gasifier 102 or may be provided via other suitable means.
  • an oxygen-containing gas e.g., air
  • the gasifier 102 can include a top portion 102a engaged with a body portion 102b.
  • the gasifier 102 includes an inlet 106 and an outlet 108 at the top portion 102a.
  • the gasifier 102 also includes an optional purge port 110 at the body portion 102b.
  • the top portion 102a of the gasifier 102 can be constructed from stainless steel, carbon steel, and/or other suitable material with sufficient mechanical strength.
  • the body portion 102b of the gasifier 102 can be constructed from crystallized aluminum oxide (AI 2 O 3 ), quartz, nickel-chromium alloys (e.g., lnconel 600), and/or other suitable corrosion- resistant materials.
  • the inlet 106, the outlet 108, and the optional purge port 110 are shown in Figure 1 at particular locations on the gasifier 102, in other embodiments, at least one of the inlet 106, the outlet 108, and the optional purge port 110 can be located in other suitable locations on the gasifier 102.
  • the inlet 106 and/or the optional purge port 110 may be located on a sidewall of the body portion 102b.
  • the gasifier 102 can also include a feed tube 112 extending through the inlet 106, past a headspace 105 containing a syngas, and into a liquid volume 103 containing a molten slag in the body portion 102b of the gasifier 102.
  • the feed tube 112 includes a generally cylindrical tube constructed from stainless steel, nickel- chromium alloys (e.g., lnconel 600), or other suitable material.
  • the feed tube 112 can include multiple concentric channels (not shown) for carrying different flow streams, and each flow stream can comprise one or more of the same or different materials.
  • the gasifier 102 may include two, three, or any number of desired feed tubes for individually carrying different flow streams.
  • the feed tube 112 may extend into the liquid volume 103 of the gasifier 102 via the sidewall, the bottom, and/or other suitable portions of the gasifier 102.
  • the gasification system 100 includes a mixer 116 coupled to a supply of carrier gas, fuel, and additive.
  • the mixer 116 can include an aspirator, a jet, a static mixer, and/or other suitable types of mixer for mixing the fuel and/or the additive with the carrier gas.
  • the mixer 116 may be coupled to only one of the fuel and the additive.
  • the mixer 116 may be omitted, and the fuel and the additive can be individually supplied to the gasifier 102 with corresponding feed lines (not shown).
  • the fuel can include a low sulfur coal that has been pulverized and/or otherwise reduced in particle size.
  • the fuel can include a high sulfur coal, coke, biomass, petroleum, and/or other suitable carbonaceous material in desired particle sizes or in liquid form.
  • the carrier gas can include nitrogen, argon, and/or other suitable gases that are chemically inert with respect to the fuel and the additive.
  • the carrier gas can include a syngas (e.g., a stream of the syngas produced from the gasifier 102).
  • the additive can include iron oxides (Fe x Oy, where x and y are positive integers), iron carbides (Fe x C y , where x and y are positive integers), iron sulfides (Fe x Sy, where x and y are positive integers), and/or other suitable iron-containing compounds.
  • iron oxide (FeO) is used as the additive for illustration purposes.
  • the additive can include chromium-containing compounds, manganese-containing compounds, cobalt- containing compounds, and/or other suitable metal-containing compounds.
  • the gasification system 100 can optionally include syngas treatment components.
  • the gasification system 100 includes a heat exchanger 118 and a dryer 120 coupled in series to the outlet 108 of the gasifier 102 in series.
  • the heat exchanger 118 can include a tube-and-shell heat exchanger, a plate-and-frame heat exchanger, and/or other types of suitable heat exchanger.
  • the drier 120 can include a desiccant (e.g., calcium sulfate, calcium chloride, and silica gel) and/or other suitable hygroscopic substances.
  • the gasification system 100 can also include particulate filters, sulfur extraction components, pressure-swing driers, distillation columns, and/or other suitable treatment devices for refining or otherwise treating the syngas from the gasifier 102. In further embodiments, these syngas treatment components may be omitted.
  • FIG 2 is a flow diagram of a continuous gasification process 200 suitable for the gasification system 100 of Figure 1 in accordance with embodiments of the disclosure. Even though the gasification process 200 is described below in the context of the gasification system 100, one skilled in the art will recognize that the gasification process 200 can also be practiced in other gasification systems with different and/or additional process components.
  • an initial stage of the gasification process 200 can include starting up the gasifier 102 to achieve at least partially a steady state (block 201).
  • starting up the gasifier 102 can include supplying heat from the optional heater 104 to the gasifier 102 to melt a slag from a previous process.
  • starting up the gasifier 102 can include disposing an initial charge containing at least one of calcium oxide (CaO), aluminum oxide (AI 2 O 3 ), and silicon oxide (SiO 2 ) and a desired amount of the additive (e.g., iron oxide) in the body portion 102b of the gasifier 102.
  • the optional heater 104 can then supply heat to melt the initial charge for forming the liquid volume 103.
  • starting up the gasifier 102 can include disposing an initial charge containing the fuel and a desired amount of the additive in the body portion 102b of the gasifier 102.
  • the optional heater 104 can then supply heat to melt the initial charge of fuel and the additive for forming the liquid volume 103.
  • the optional heater 104 may be omitted, and instead, a combustible gas (e.g., natural gas) may be fed into the gasifier 102 and ignited to supply the heat.
  • the gasifier 102 may be started up with other suitable techniques.
  • the gasification process 200 can include continuously supplying the fuel and steam to the gasifier 102 (block 202).
  • supplying the fuel and steam includes feeding at least one of the fuel and steam through the feed tube 112 into the liquid volume 103, which is believed to improve the mass and/or thermal homogeneity of the liquid volume 103.
  • the fuel and steam may also be bottom fed or supplied via other suitable techniques.
  • the fuel and steam can be supplied at the stoichiometric ratio for the following gasification reaction:
  • the fuel and steam may be supplied with steam in excess of the stoichiometric ratio.
  • the additive and/or oxygen may also be supplied to the gasifier 102, as described in more detail below.
  • the gasification process 200 can also include continuously reacting the supplied fuel and steam in the liquid volume 103 of the gasifier 102 to produce a syngas containing at least carbon monoxide (CO) and hydrogen (hfe) (block 204).
  • the liquid volume 103 includes a mixture of a molten slag and the additive (e.g., iron oxide) with an additive concentration of about 10%, 20%, 30%, 40%, 50%, or 60% by weight.
  • the slag has a composition that is generally similar to the ash composition of the carbonaceous fuel.
  • the slag may include at least one of calcium oxide (CaO), aluminum oxide (AI 2 O 3 X and silicon oxide (SiOa), and other organic and/or inorganic compounds.
  • the liquid volume 103 may include the molten slag containing other suitable compositions at a desired concentration.
  • the liquid volume 103 may be at a temperature of about 1300 0 C or at other temperatures at which the slag can exist in a molten state. Without being bound by theory, it is believed that the gasification reaction of Equation I is generally endothermic. As a result, to maintain the liquid volume 103 at the desired temperature, in several embodiments, oxygen may be supplied to the liquid volume to react with the fuel and/or other components of the liquid volume as follows:
  • Equations I IA-I I D are generally exothermic and, as a result, can supply sufficient energy to maintain the temperature of the liquid volume 103 at a desired level.
  • the temperature in the liquid volume 103 may be maintained by supplying heat from the optional heater 104 and/or using other suitable techniques.
  • iron oxide in the molten slag can catalyze or otherwise facilitate the gasification reaction of Equation I under the foregoing operating conditions as follows:
  • Equation III and Equation IV the reactions shown in Equation III and Equation IV would occur simultaneously.
  • elemental iron in the molten slag is not expected.
  • elemental iron may exist in the molten slag locally due to a lack of mixing, a temperature imbalance in the liquid volume 103, and/or other process conditions.
  • a high concentration of iron oxide e.g., about 40% by weight
  • Equation I the concentration of Equation I toward the production of hydrogen.
  • the gasification process 200 can also include purging the slag from the gasifier 102 (block 206) and maintaining a desired additive concentration in the molten slag (block 208).
  • purging the slag includes purging the slag from the liquid volume 103 in a continuous fashion.
  • an amount of the additive f ad ⁇ tlve ) may be continuously supplied to compensate for the loss of the additive in the purged stream ( f purge ) as follows:
  • purging the slag can include periodically purging the slag from the liquid volume 103.
  • the liquid volume 103 may be sampled after purging the slag, and a suitable amount of the additive may be supplied to bring the iron oxide concentration in the slag to a desired level.
  • purging the slag may be omitted, and the gasification system 100 may be operated in a batch mode.
  • the produced syngas can include carbon monoxide (CO), hydrogen (H 2 ), carbon dioxide (CO 2 ), and water vapor (H 2 O) at a combined concentration of about 98.5% to about 99.6%.
  • the syngas can also include trace amounts of hydrogen sulfide (H 2 S), methane (CH 4 ), and/or other impurities.
  • the gasification process 200 may also include outputting the produced syngas from the gasifier 102 (block 210) and optionally treating the produced syngas for removing impurities.
  • the gasifier 102 supplies the produced syngas to the heat exchanger 118 to be cooled by a coolant (e.g., cooling water) before the dryer 120 removes any residual water vapor (H 2 O) from the syngas.
  • a coolant e.g., cooling water
  • the gasification process 200 may also include removing hydrogen sulfide (H 2 S) from the syngas in a scrubber and/or other suitable device.
  • the gasification process 200 can include determining whether the process should be continued (block 212). If a determination is made to continue, the process reverts to block 202. If a determination is made to terminate (e.g., when an operator indicates to terminate the process or the process has encountered a serious fault), then the process ends.
  • Embodiments of the gasification system 100 and the gasification process 200 may be more tolerant to process upset conditions. For example, the fuel supplied to the gasifier 102 may contain more moisture than anticipated, and so the gasification reaction becomes more endothermic. Such a process change may upset the delicate control balance of conventional gasification systems (e.g., entrained-flow gasifiers).
  • Embodiments of the gasification system 100 can be more tolerant to such a process change because the liquid volume 103 in the gasifier 102 has a large thermal inertia to buffer such a process change.
  • Embodiments of the gasification system 100 can require less initial capital to construct than conventional systems because the gasifier 102 has a simpler structure than conventional gasifiers. For example, certain embodiments of the gasifier 102 do not require a large number of feed ports, seals, and other support components at precise locations on the gasifier. As a result, embodiments of the gasifier 102 may have lower cost to construct when compared to conventional gasifiers.
  • Embodiments of the gasification system 100 can operate efficiently at small scales to produce high quality syngas.
  • Conventional gasifiers typically operate at relatively low temperatures at small scales, and may insufficiently crack hydrocarbons in a feed material to produce "dirty" syngas (e.g., with appreciable tart and/or oil content).
  • certain embodiments of the gasification system 100 can operate at relatively high temperatures (e.g., 1300 0 C) even at small scales to produce a "clean" syngas (with low or no appreciable tar and/or oil content).
  • the gasification system 100 may include additional and/or different process components.
  • the gasification system 100 can also include control valves, flow meters, temperature sensors, pressure sensors, programmable logic controllers, and/or other suitable process components for facilitating the operation of the gasification system 100.
  • the gasifier 102 may not include the feed tube 112 but instead may include a mixer in the liquid volume 103.
  • Experiments to gasify a carbonaceous feed were performed in a gasification system generally similar in function and in structure to that shown in Figure 1. During the experiments, it was observed that the gasification system gasified the carbonaceous feed to produce a syngas containing carbon monoxide (CO) and hydrogen (H2).
  • CO carbon monoxide
  • H2 hydrogen

Abstract

Gasification systems and associated processes are disclosed herein. In one embodiment, a gasification process includes simultaneously supplying a carbonaceous material and steam to a gasifier, the gasifier containing a liquid volume containing at least about 10% by weight of iron oxide (FexOy, where x and y are positive integers). The gasification process also includes performing a gasification reaction between the carbonaceous material and steam in the liquid volume, facilitating the gasification reaction with the iron oxide in the liquid volume, and producing a gas from the gasification reaction, the gas containing carbon monoxide (CO) and hydrogen (H2).

Description

GASIFICATION SYSTEMS AND ASSOCIATED PROCESSES
TECHNICAL FIELD
[0001] The present disclosure is directed generally to gasification systems and associated processes.
BACKGROUND
[0002] Gasification processes generally include reacting a carbonaceous feed material (e.g., coal, petroleum, or biomass) with oxygen and/or steam to produce carbon monoxide and hydrogen. The resulting carbon monoxide and hydrogen mixture is commonly called "synthesis gas" or "syngas."
[0003] Syngas can have many industrial applications. For example, syngas may be burned directly in internal combustion engines for generating electricity or driving machinery. In another example, syngas may be used to produce methanol and hydrogen, which in turn may be converted into other useful industrial compounds. Syngas may also be converted into liquid synthetic fuels (e.g., diesel, gasoline, etc.) via the Fischer-Tropsch process and/or other syngas-to-liquid processes.
[0004] Conventional gasification systems include fixed-bed gasifiers, fluidized-bed gasifiers, or entrained-flow gasifiers. In fixed-bed gasifiers, the feed material forms a fixed bed through which a gasification agent (e.g., steam, oxygen, and/or air) flows in either a counter-current or co-current flow configuration. In fluidized-bed gasifiers, the feed material does not form a fixed bed but instead is fluidized in steam, oxygen, and/or air. In entrained-flow gasifiers, the carbonaceous feed material is first pulverized and then gasified with oxygen or air in a co-current flow configuration.
[0005] The foregoing types of gasifiers suffer from certain operational drawbacks. For example, fixed-bed gasifiers typically require the carbonaceous feed material to have high mechanical strength and be noncaking in order to form a permeable bed. As a result, certain feed materials may not be processed in fixed-bed gasifiers. The conversion efficiencies of fluidized-bed gasifiers may be low due to elutriation of the carbonaceous feed material. Further, entrained-flow gasifiers typically may not be economically operated at small scales and may require an increased amount of oxygen compared to other types of gasifiers. The increased requirement for oxygen can increase the energy consumption of the overall entrained-flow gasification process, resulting in a lower energy efficiency. Accordingly, certain improvements in gasification systems and processes are needed.
BRIEF DESCRIPTION OF THE DRAWINGS
[0006] Figure 1 is a schematic diagram of a gasification system in accordance with embodiments of the disclosure.
[0007] Figure 2 is a flow diagram of a continuous gasification process suitable for the gasification system of Figure 1 in accordance with embodiments of the disclosure.
DETAILED DESCRIPTION
[0008] Various embodiments of gasification systems and associated processes are described below. The term "carbonaceous feed material" generally refers to coal, coke, petroleum, biomass, and/or any material that contains carbon in elemental or combined form. The carbonaceous feed material can include a gasifiable portion and a nongasifiable portion. The gasifiable portion may be converted into carbon monoxide (CO), hydrogen (H2), carbon dioxide (CO2), and/or other gases. The nongasifiable portion is generally referred to as "slag" in the present disclosure. In certain embodiments, the slag can have a composition that is generally similar to the ash composition of the carbonaceous feed material. For example, the slag may include at least one of calcium oxide (CaO), aluminum oxide (AI2O3), and silicon oxide (SiO2), and other organic and/or inorganic compounds. In other embodiments, the slag may also have other compounds in addition to or in lieu of the ash composition of the carbonaceous feed material. A person skilled in the relevant art will also understand that the disclosure may have additional embodiments and that the disclosure may be practiced without several of the details of the embodiments described below with reference to Figures 1 and 2. [0009] Figure 1 is a schematic diagram of a gasification system 100 in accordance with embodiments of the disclosure. The gasification system 100 can include a gasifier 102 proximate to an optional heater 104 and a plurality of feed lines 114 (identified individually as a steam line 114a, an oxygen line 114b, and a fuel line 114c) coupled to corresponding supply storages (not shown) and the gasifier 102. The optional heater 104 can include an electric furnace, a microwave radiator, and/or other suitable types of heater for supplying thermal energy to the gasifier 102. In the illustrated embodiment, the optional heater 104 is shown as at least partially enclosing the gasifier 102. In other embodiments, the optional heater 104 may be spaced apart from the gasifier 102. In further embodiments, the optional heater 104 may be integrated with the gasifier 102. In yet further embodiments, the optional heater 104 may be omitted, and thermal energy may be supplied to the gasifier 102 by flowing an oxygen-containing gas (e.g., air) via the oxygen line 114b to the gasifier 102 or may be provided via other suitable means.
[0010] As shown in Figure 1 , the gasifier 102 can include a top portion 102a engaged with a body portion 102b. The gasifier 102 includes an inlet 106 and an outlet 108 at the top portion 102a. The gasifier 102 also includes an optional purge port 110 at the body portion 102b. The top portion 102a of the gasifier 102 can be constructed from stainless steel, carbon steel, and/or other suitable material with sufficient mechanical strength. The body portion 102b of the gasifier 102 can be constructed from crystallized aluminum oxide (AI2O3), quartz, nickel-chromium alloys (e.g., lnconel 600), and/or other suitable corrosion- resistant materials. Even though the inlet 106, the outlet 108, and the optional purge port 110 are shown in Figure 1 at particular locations on the gasifier 102, in other embodiments, at least one of the inlet 106, the outlet 108, and the optional purge port 110 can be located in other suitable locations on the gasifier 102. For example, the inlet 106 and/or the optional purge port 110 may be located on a sidewall of the body portion 102b.
[0011] The gasifier 102 can also include a feed tube 112 extending through the inlet 106, past a headspace 105 containing a syngas, and into a liquid volume 103 containing a molten slag in the body portion 102b of the gasifier 102. In one embodiment, the feed tube 112 includes a generally cylindrical tube constructed from stainless steel, nickel- chromium alloys (e.g., lnconel 600), or other suitable material. In other embodiments, the feed tube 112 can include multiple concentric channels (not shown) for carrying different flow streams, and each flow stream can comprise one or more of the same or different materials. Even though only one feed tube 112 is shown in Figure 1 , in further embodiments, the gasifier 102 may include two, three, or any number of desired feed tubes for individually carrying different flow streams. In yet further embodiments, the feed tube 112 may extend into the liquid volume 103 of the gasifier 102 via the sidewall, the bottom, and/or other suitable portions of the gasifier 102.
[0012] In the illustrated embodiment, the gasification system 100 includes a mixer 116 coupled to a supply of carrier gas, fuel, and additive. The mixer 116 can include an aspirator, a jet, a static mixer, and/or other suitable types of mixer for mixing the fuel and/or the additive with the carrier gas. In other embodiments, the mixer 116 may be coupled to only one of the fuel and the additive. In further embodiments, the mixer 116 may be omitted, and the fuel and the additive can be individually supplied to the gasifier 102 with corresponding feed lines (not shown).
[0013] In a particular embodiment, the fuel can include a low sulfur coal that has been pulverized and/or otherwise reduced in particle size. In other embodiments, the fuel can include a high sulfur coal, coke, biomass, petroleum, and/or other suitable carbonaceous material in desired particle sizes or in liquid form. In several embodiments, the carrier gas can include nitrogen, argon, and/or other suitable gases that are chemically inert with respect to the fuel and the additive. In other embodiments, the carrier gas can include a syngas (e.g., a stream of the syngas produced from the gasifier 102). In certain embodiments, the additive can include iron oxides (FexOy, where x and y are positive integers), iron carbides (FexCy, where x and y are positive integers), iron sulfides (FexSy, where x and y are positive integers), and/or other suitable iron-containing compounds. In the following description, iron oxide (FeO) is used as the additive for illustration purposes. However, one skilled in the art will recognize that, in other embodiments, the additive can include chromium-containing compounds, manganese-containing compounds, cobalt- containing compounds, and/or other suitable metal-containing compounds.
[0014] The gasification system 100 can optionally include syngas treatment components. For example, in the illustrated embodiment, the gasification system 100 includes a heat exchanger 118 and a dryer 120 coupled in series to the outlet 108 of the gasifier 102 in series. The heat exchanger 118 can include a tube-and-shell heat exchanger, a plate-and-frame heat exchanger, and/or other types of suitable heat exchanger. The drier 120 can include a desiccant (e.g., calcium sulfate, calcium chloride, and silica gel) and/or other suitable hygroscopic substances. In other embodiments, the gasification system 100 can also include particulate filters, sulfur extraction components, pressure-swing driers, distillation columns, and/or other suitable treatment devices for refining or otherwise treating the syngas from the gasifier 102. In further embodiments, these syngas treatment components may be omitted.
[0015] Figure 2 is a flow diagram of a continuous gasification process 200 suitable for the gasification system 100 of Figure 1 in accordance with embodiments of the disclosure. Even though the gasification process 200 is described below in the context of the gasification system 100, one skilled in the art will recognize that the gasification process 200 can also be practiced in other gasification systems with different and/or additional process components.
[0016] Referring to both Figures 1 and 2, an initial stage of the gasification process 200 can include starting up the gasifier 102 to achieve at least partially a steady state (block 201). In certain embodiments, starting up the gasifier 102 can include supplying heat from the optional heater 104 to the gasifier 102 to melt a slag from a previous process. In other embodiments, starting up the gasifier 102 can include disposing an initial charge containing at least one of calcium oxide (CaO), aluminum oxide (AI2O3), and silicon oxide (SiO2) and a desired amount of the additive (e.g., iron oxide) in the body portion 102b of the gasifier 102. The optional heater 104 can then supply heat to melt the initial charge for forming the liquid volume 103. In yet other embodiments, starting up the gasifier 102 can include disposing an initial charge containing the fuel and a desired amount of the additive in the body portion 102b of the gasifier 102. The optional heater 104 can then supply heat to melt the initial charge of fuel and the additive for forming the liquid volume 103. In any of the foregoing embodiments, the optional heater 104 may be omitted, and instead, a combustible gas (e.g., natural gas) may be fed into the gasifier 102 and ignited to supply the heat. In further embodiments, the gasifier 102 may be started up with other suitable techniques.
[0017] After the gasifier 102 is started up, the gasification process 200 can include continuously supplying the fuel and steam to the gasifier 102 (block 202). In the illustrated embodiment, supplying the fuel and steam includes feeding at least one of the fuel and steam through the feed tube 112 into the liquid volume 103, which is believed to improve the mass and/or thermal homogeneity of the liquid volume 103. In other embodiments, the fuel and steam may also be bottom fed or supplied via other suitable techniques.
[0018] In certain embodiments, the fuel and steam can be supplied at the stoichiometric ratio for the following gasification reaction:
C + H2O → CO + H2 (Equation I)
In other embodiments, the fuel and steam may be supplied with steam in excess of the stoichiometric ratio. Optionally, in further embodiments, the additive and/or oxygen may also be supplied to the gasifier 102, as described in more detail below.
[0019] The gasification process 200 can also include continuously reacting the supplied fuel and steam in the liquid volume 103 of the gasifier 102 to produce a syngas containing at least carbon monoxide (CO) and hydrogen (hfe) (block 204). In particular embodiments, the liquid volume 103 includes a mixture of a molten slag and the additive (e.g., iron oxide) with an additive concentration of about 10%, 20%, 30%, 40%, 50%, or 60% by weight. The slag has a composition that is generally similar to the ash composition of the carbonaceous fuel. For example, the slag may include at least one of calcium oxide (CaO), aluminum oxide (AI2O3X and silicon oxide (SiOa), and other organic and/or inorganic compounds. In other embodiments, the liquid volume 103 may include the molten slag containing other suitable compositions at a desired concentration.
[0020] In certain embodiments, the liquid volume 103 may be at a temperature of about 13000C or at other temperatures at which the slag can exist in a molten state. Without being bound by theory, it is believed that the gasification reaction of Equation I is generally endothermic. As a result, to maintain the liquid volume 103 at the desired temperature, in several embodiments, oxygen may be supplied to the liquid volume to react with the fuel and/or other components of the liquid volume as follows:
3C + 2O2 → 2CO + CO2 (Equation I IA)
CO + -O2 → CO2 (Equation MB)
C + -O2 → CO (Equation MC)
H2 +-O2 → H20 (Equation MD)
Without being bound by theory, it is believed that the reactions of Equations I IA-I I D are generally exothermic and, as a result, can supply sufficient energy to maintain the temperature of the liquid volume 103 at a desired level. In other embodiments, the temperature in the liquid volume 103 may be maintained by supplying heat from the optional heater 104 and/or using other suitable techniques.
[0021] Without being bound by theory, it is believed that iron oxide in the molten slag can catalyze or otherwise facilitate the gasification reaction of Equation I under the foregoing operating conditions as follows:
C + FeO → CO + Fe (Equation III)
H2O + Fe → H2 + FeO (Equation IV)
It is believed that, at least in some embodiments, the reactions shown in Equation III and Equation IV would occur simultaneously. As a result, elemental iron in the molten slag is not expected. However, in other embodiments, elemental iron may exist in the molten slag locally due to a lack of mixing, a temperature imbalance in the liquid volume 103, and/or other process conditions. Without being bound by theory, it is believed that a high concentration of iron oxide (e.g., about 40% by weight) in the molten slag may shift an equilibrium of Equation I toward the production of hydrogen.
[0022] The gasification process 200 can also include purging the slag from the gasifier 102 (block 206) and maintaining a desired additive concentration in the molten slag (block 208). In certain embodiments, purging the slag includes purging the slag from the liquid volume 103 in a continuous fashion. In these embodiments, an amount of the additive ( fadΛtlve ) may be continuously supplied to compensate for the loss of the additive in the purged stream ( fpurge ) as follows:
Uve ^T " ^ (Formula I)
where Cslag is a concentration of iron oxide in the molten slag and Cadditive is a concentration of iron oxide in the additive. In other embodiments, purging the slag can include periodically purging the slag from the liquid volume 103. In these embodiments, the liquid volume 103 may be sampled after purging the slag, and a suitable amount of the additive may be supplied to bring the iron oxide concentration in the slag to a desired level. In further embodiments, purging the slag may be omitted, and the gasification system 100 may be operated in a batch mode.
[0023] In certain embodiments, the produced syngas can include carbon monoxide (CO), hydrogen (H2), carbon dioxide (CO2), and water vapor (H2O) at a combined concentration of about 98.5% to about 99.6%. The syngas can also include trace amounts of hydrogen sulfide (H2S), methane (CH4), and/or other impurities. The gasification process 200 may also include outputting the produced syngas from the gasifier 102 (block 210) and optionally treating the produced syngas for removing impurities. For example, in the illustrated embodiment, the gasifier 102 supplies the produced syngas to the heat exchanger 118 to be cooled by a coolant (e.g., cooling water) before the dryer 120 removes any residual water vapor (H2O) from the syngas. In other embodiments, the gasification process 200 may also include removing hydrogen sulfide (H2S) from the syngas in a scrubber and/or other suitable device.
[0024] The gasification process 200 can include determining whether the process should be continued (block 212). If a determination is made to continue, the process reverts to block 202. If a determination is made to terminate (e.g., when an operator indicates to terminate the process or the process has encountered a serious fault), then the process ends. [0025] Embodiments of the gasification system 100 and the gasification process 200 may be more tolerant to process upset conditions. For example, the fuel supplied to the gasifier 102 may contain more moisture than anticipated, and so the gasification reaction becomes more endothermic. Such a process change may upset the delicate control balance of conventional gasification systems (e.g., entrained-flow gasifiers). Embodiments of the gasification system 100 can be more tolerant to such a process change because the liquid volume 103 in the gasifier 102 has a large thermal inertia to buffer such a process change.
[0026] Embodiments of the gasification system 100 can require less initial capital to construct than conventional systems because the gasifier 102 has a simpler structure than conventional gasifiers. For example, certain embodiments of the gasifier 102 do not require a large number of feed ports, seals, and other support components at precise locations on the gasifier. As a result, embodiments of the gasifier 102 may have lower cost to construct when compared to conventional gasifiers.
[0027] Embodiments of the gasification system 100 can operate efficiently at small scales to produce high quality syngas. Conventional gasifiers typically operate at relatively low temperatures at small scales, and may insufficiently crack hydrocarbons in a feed material to produce "dirty" syngas (e.g., with appreciable tart and/or oil content). In contrast, certain embodiments of the gasification system 100 can operate at relatively high temperatures (e.g., 13000C) even at small scales to produce a "clean" syngas (with low or no appreciable tar and/or oil content).
[0028] Even though only certain process components of the gasification system 100 are shown in Figure 1 , in certain embodiments, the gasification system 100 may include additional and/or different process components. For example, the gasification system 100 can also include control valves, flow meters, temperature sensors, pressure sensors, programmable logic controllers, and/or other suitable process components for facilitating the operation of the gasification system 100. In further embodiments, the gasifier 102 may not include the feed tube 112 but instead may include a mixer in the liquid volume 103. [0029] Experiments to gasify a carbonaceous feed were performed in a gasification system generally similar in function and in structure to that shown in Figure 1. During the experiments, it was observed that the gasification system gasified the carbonaceous feed to produce a syngas containing carbon monoxide (CO) and hydrogen (H2).
[0030] From the foregoing, it will be appreciated that specific embodiments of the disclosure have been described herein for purposes of illustration, but that various modifications may be made without deviating from the disclosure. For example, many of the elements of one embodiment may be combined with other embodiments in addition to or in lieu of the elements of the other embodiments. Accordingly, the disclosure is not limited except as by the appended claims.

Claims

I/We claim:
[ci] 1. A gasification process, comprising: simultaneously supplying a carbonaceous material and steam to a gasifier, the gasifier containing a liquid volume containing at least about 10% by weight of iron oxide (FexOy, where x and y are positive integers); performing a gasification reaction between the carbonaceous material and steam in the liquid volume facilitated by the iron oxide in the liquid volume; and producing a gas from the gasification reaction, the gas containing carbon monoxide (CO) and hydrogen (H2).
[c2] 2. The gasification process of claim 1 wherein simultaneously supplying a carbonaceous material and steam includes simultaneously supplying a carbonaceous material that includes a gasifiable portion and a nongasifiable portion, and wherein performing a gasification reaction includes performing a gasification reaction between the carbonaceous material and steam in the liquid volume, with the liquid volume containing at least about 40% by weight of iron oxide.
[c3] 3. The gasification process of claim 1 wherein simultaneously supplying a carbonaceous material and steam includes simultaneously supplying a carbonaceous material and steam at a stoichiometric ratio for the following reaction:
C + H2O → CO + H2
[c4] 4. The gasification process of claim 1 wherein simultaneously supplying a carbonaceous material and steam includes simultaneously feeding the carbonaceous material and steam in the liquid volume of the gasifier. [c5] 5. The gasification process of claim 1 wherein performing a gasification reaction includes simultaneously carrying out the following reactions:
C + FeO → CO + Fe
H2O + Fe → H2 + FeO
[c6] 6. The gasification process of claim 1 wherein performing a gasification reaction includes simultaneously carrying out the following reactions:
C + FeO → CO + Fe
H2O + Fe → H2 + FeO wherein producing a gas includes shifting an equilibrium of the foregoing reactions toward production of hydrogen (H2).
[c7] 7. A gasification process, comprising: simultaneously supplying a carbonaceous material and steam to a gasifier, the gasifier containing a liquid volume having an iron-containing compound; reacting the carbonaceous material and steam in the liquid volume facilitated by the iron-containing compound; purging a portion of the liquid volume from the gasifier; maintaining a concentration of the iron-containing compound in the remaining liquid volume; and producing a gas from the gasification reaction, the gas containing carbon monoxide (CO) and hydrogen (H2).
[c8] 8. The gasification process of claim 7 wherein purging a portion of the liquid volume includes continuously purging a portion of the liquid volume from the gasifier.
[c9] 9. The gasification process of claim 7 wherein purging a portion of the liquid volume includes continuously purging a portion of the liquid volume from the gasifier, and wherein maintaining a concentration of the iron-containing compound includes continuously supplying the iron-containing compound to the gasifier with the carbonaceous material and steam.
[do] 10. The gasification process of claim 7 wherein purging a portion of the liquid volume includes continuously purging a portion of the liquid volume from the gasifier, and wherein maintaining a concentration of the iron-containing compound includes continuously supplying an additive having the iron-containing compound to the gasifier with the carbonaceous material and steam according to the following formula:
pur
Λ additive A ge slag c ^additive
where faddιaw is a flow rate of the additive supplied to the gasifier, fpurge is a flow rate of the purged liquid volume, Cslag is a concentration of iron oxide in the molten slag, and CadΛtιve is a concentration of iron-containing compound in the additive.
[cii] 11. The gasification process of claim 7 wherein purging a portion of the liquid volume includes periodically purging a portion of the liquid volume from the gasifier.
[ci2] 12. The gasification process of claim 7 wherein purging a portion of the liquid volume includes periodically purging a portion of the liquid volume from the gasifier, and wherein maintaining a concentration of the iron-containing compound includes: taking a sample of the remaining liquid volume in the gasifier; analyzing the sample to determine the concentration of the iron-containing compound in the liquid volume; supplying an amount of the iron-containing compound to the gasifier based on the determined concentration; and achieving a desired level of the concentration of the iron-containing compound in the liquid volume.
[ci3] 13. The gasification process of claim 7 wherein purging a portion of the liquid volume includes periodically purging a portion of the liquid volume from the gasifier, and wherein maintaining a concentration of the iron-containing compound includes: taking a sample of the liquid volume in the gasifier; analyzing the sample to determine the concentration of the iron-containing compound in the liquid volume; supplying an amount of the iron-containing compound to the gasifier based on the determined concentration; and achieving a desired level of the concentration of the iron-containing compound in the liquid volume, the desired level being at least about 10% by weight.
[ci4] 14. A gasification process, comprising: supplying a carbonaceous material and steam to a gasifier; continuously reacting the carbonaceous material and steam in the gasifier in a liquid volume, the liquid volume containing a metal-containing compound; facilitating the reaction between the carbonaceous material and steam with the metal-containing compound in the liquid volume; and producing a gas containing carbon monoxide (CO) and hydrogen (H2).
[ci5] 15. The gasification process of claim 14 wherein continuously reacting the carbonaceous material and steam includes continuously reacting the carbonaceous material and steam in a liquid volume containing at least one of iron oxides (FexOy, where x and y are positive integers), iron carbides (FexCy, where x and y are positive integers), and iron sulfides (FexSy, where x and y are positive integers).
[ci6] 16. The gasification process of claim 14 wherein continuously reacting the carbonaceous material and steam includes continuously reacting the carbonaceous material and steam in a liquid volume that includes at least one of calcium oxide (CaO), aluminum oxide (AI2O3), and silicon oxide (Siθ2), the liquid volume also containing at least one of iron oxides (FexOy, where x and y are positive integers), iron carbides (FexCy, where x and y are positive integers), and iron sulfides (FexSy, where x and y are positive integers).
[ci7] 17. The gasification process of claim 14 wherein continuously reacting the carbonaceous material and steam includes continuously reacting the carbonaceous material and steam in a liquid volume that includes at least one of calcium oxide (CaO), aluminum oxide (AI2O3), and silicon oxide (SiO2), the liquid volume also containing at least one of iron oxides (FexOy, where x and y are positive integers), iron carbides (FexCy, where x and y are positive integers), and iron sulfides (FexSy, where x and y are positive integers), and wherein facilitating the reaction between the carbonaceous material and steam includes catalyzing the following reaction:
C + H2O → CO + H2
[ci8] 18. The gasification process of claim 14 wherein continuously reacting the carbonaceous material and steam includes continuously reacting the carbonaceous material and steam in a liquid volume that includes at least one of calcium oxide (CaO), aluminum oxide (AI2O3), and silicon oxide (SiO2), the liquid volume also containing iron oxide (FeO), and wherein facilitating the reaction between the carbonaceous material and steam includes catalyzing the following reaction:
C + H2O → CO + H2 as follows:
C + FeO → CO + Fe
H2O + Fe → H2 + FeO
[ci9] 19. The gasification process of claim 14 wherein continuously reacting the carbonaceous material and steam includes continuously reacting the carbonaceous material and steam in a liquid volume that includes at least one of calcium oxide (CaO), aluminum oxide (AI2O3), and silicon oxide (SiO2), the liquid volume also containing iron oxide (FeO), and wherein facilitating the reaction between the carbonaceous material and steam includes catalyzing the following reaction:
C + H2O → CO + H2
as follows:
C + FeO → CO + Fe H2O + Fe → H2 + FeO
and wherein the process further includes supplying oxygen to the gasifier and reacting the supplied oxygen with the carbonaceous material according to at least one of the following reactions:
3C + 2O2 → 2CO + CO2
CO + -O2 → CO2
2 2 2
C + -O2 → CO
2
H2 +^O2 → H2O
PCT/US2009/043044 2009-05-06 2009-05-06 Gasification systems and associated processes WO2010128966A2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/US2009/043044 WO2010128966A2 (en) 2009-05-06 2009-05-06 Gasification systems and associated processes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US2009/043044 WO2010128966A2 (en) 2009-05-06 2009-05-06 Gasification systems and associated processes

Publications (2)

Publication Number Publication Date
WO2010128966A2 true WO2010128966A2 (en) 2010-11-11
WO2010128966A3 WO2010128966A3 (en) 2012-05-18

Family

ID=43050666

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2009/043044 WO2010128966A2 (en) 2009-05-06 2009-05-06 Gasification systems and associated processes

Country Status (1)

Country Link
WO (1) WO2010128966A2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5645615A (en) * 1992-08-13 1997-07-08 Ashland Inc. Molten decomposition apparatus and process
US5984985A (en) * 1990-06-21 1999-11-16 Marathon Ashland Petroleum Llc Multiple vessel molten metal gasifier
US6685754B2 (en) * 2001-03-06 2004-02-03 Alchemix Corporation Method for the production of hydrogen-containing gaseous mixtures
US20070256361A1 (en) * 2006-05-08 2007-11-08 Alchemix Corporation Method for the gasification of hydrocarbon feedstocks
US20080166291A1 (en) * 2007-01-08 2008-07-10 Available Energy Corporation Reactor and process for the continuous production of hydrogen based on steam oxidation of molten iron

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5984985A (en) * 1990-06-21 1999-11-16 Marathon Ashland Petroleum Llc Multiple vessel molten metal gasifier
US5645615A (en) * 1992-08-13 1997-07-08 Ashland Inc. Molten decomposition apparatus and process
US6685754B2 (en) * 2001-03-06 2004-02-03 Alchemix Corporation Method for the production of hydrogen-containing gaseous mixtures
US20070256361A1 (en) * 2006-05-08 2007-11-08 Alchemix Corporation Method for the gasification of hydrocarbon feedstocks
US20080166291A1 (en) * 2007-01-08 2008-07-10 Available Energy Corporation Reactor and process for the continuous production of hydrogen based on steam oxidation of molten iron

Also Published As

Publication number Publication date
WO2010128966A3 (en) 2012-05-18

Similar Documents

Publication Publication Date Title
Fuchs et al. Dual fluidized bed gasification of biomass with selective carbon dioxide removal and limestone as bed material: A review
Marcantonio et al. Evaluation of sorbents for high temperature removal of tars, hydrogen sulphide, hydrogen chloride and ammonia from biomass-derived syngas by using Aspen Plus
Condori et al. Biomass chemical looping gasification for syngas production using ilmenite as oxygen carrier in a 1.5 kWth unit
JP5919393B2 (en) Method and apparatus for converting carbon dioxide to carbon monoxide
TWI635183B (en) Blast furnace for metal production and nethod for processing metal ore
US10287643B2 (en) Blast furnace and method for operating a blast furnace
JP6371809B2 (en) Two-stage gasification with double quenching
JP5532207B2 (en) Circulating fluidized bed gasification reactor
TW201504421A (en) Chemical looping processes for partial oxidation of carbonaceous fuels
US8765017B2 (en) Gasification systems and associated processes
CA1309589C (en) Method of producing a clean gas containing carbon monoxide and hydrogen
CA2330302A1 (en) Method and apparatus for the production of synthesis gas
CN102741156A (en) Producing low methane syngas from a two-stage gasifier
Wang et al. Study on multi-cycle reaction performance of Fe/Al compound oxygen carriers in chemical-looping pyrolysis of coal tar
KR20210096210A (en) Gasification of disulfide oil to produce hydrogen and carbon monoxide (syngas)
JP5391522B2 (en) Ammonia synthesis method
CN1303910A (en) Gasification process for reducing CO2 to prepare CO
JPH05523B2 (en)
WO2010128966A2 (en) Gasification systems and associated processes
KR101571259B1 (en) Integrated process for the gasification of whole crude oil in a membrane wall gasifier and power generation
US20230357005A1 (en) Redox looping systems and methods for production of oxidized products
Mendiara et al. Chemical looping reforming of generator gas
JPS62158789A (en) Production of high-calory gas from coke oven gas
JPS63258986A (en) Method and apparatus for improving quality of synthetic fuel gas from coal

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09844448

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase in:

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09844448

Country of ref document: EP

Kind code of ref document: A2