WO2010127543A1 - 一种拥塞处理时选择终端的方法及装置 - Google Patents
一种拥塞处理时选择终端的方法及装置 Download PDFInfo
- Publication number
- WO2010127543A1 WO2010127543A1 PCT/CN2009/075517 CN2009075517W WO2010127543A1 WO 2010127543 A1 WO2010127543 A1 WO 2010127543A1 CN 2009075517 W CN2009075517 W CN 2009075517W WO 2010127543 A1 WO2010127543 A1 WO 2010127543A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- terminal
- priority
- bandwidth
- congestion
- minimum reserved
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W28/00—Network traffic management; Network resource management
- H04W28/16—Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
- H04W28/18—Negotiating wireless communication parameters
- H04W28/20—Negotiating bandwidth
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W28/00—Network traffic management; Network resource management
- H04W28/02—Traffic management, e.g. flow control or congestion control
Definitions
- the present invention relates to the field of congestion processing in wireless communication, and more particularly to a method and apparatus for selecting a terminal during congestion processing. Background technique
- a congestion processing method that is more common in a communication system is:
- the base station triggers a handover procedure on a terminal that has already been accessed, so that the terminal switches to an adjacent base station whose resources are relatively idle, thereby achieving congestion control processing without affecting The QoS experience of the end user has been accessed.
- the usual method is to specify that the terminal with the smallest reserved bandwidth is requested, and the priority of the congestion processing is higher.
- the priority of the terminal is determined based on the minimum reserved bandwidth. Slightly not necessarily reliable.
- a terminal In a communication system with a shared resource of 2M, there are two terminals A and B that each occupy 1M of resources. When congestion occurs, a terminal is switched out or released, and its resources are given to the rest. Terminal use. If the difference between the minimum reserved bandwidth requested by the terminal A and the terminal B is small, but the bandwidth usage rate of the MRP used by the terminal A and the terminal B is different, for example, the bandwidth usage rate of the terminal A is n, and the terminal The bandwidth usage of B is 2n. Then, if terminal A is left, then the total throughput of the communication system is 2nM; if terminal B is left, the total throughput of the communication system is 4nM.
- the present invention discloses a method for selecting a terminal during congestion processing, including: acquiring minimum reserved bandwidth and bandwidth usage rate of each terminal that has accessed the network, and setting a threshold; when congestion occurs, the base station determines the terminal.
- the initial priority of the congestion processing obtaining the second priority of the terminal congestion processing according to the size difference between the minimum reserved bandwidth of each two adjacent terminals and the set threshold, and the bandwidth usage rate; Sub-prioritization, and select one or more terminals to perform congestion processing.
- the obtaining the minimum reserved bandwidth and the bandwidth usage rate of the terminal that has accessed the network includes: calculating a minimum reserved bandwidth and a bandwidth usage rate of each terminal that has accessed the network; wherein the minimum reservation The bandwidth is: the ratio of the sum of the minimum reserved rates of all connections of the terminal to the bandwidth usage of the terminal; the bandwidth usage rate is: for the terminal that is accessed for the first time, the bandwidth is The usage rate is the product of the modulation coding rate of the terminal and (1- «), where the mediation control sub-layer and physical layer overhead rate; for non-first-access terminals, the bandwidth usage rate is the terminal The ratio of the amount of data transmitted per unit time to the number of slots allocated per unit of time.
- the obtaining the minimum reserved bandwidth and the bandwidth usage rate of each terminal that has accessed the network further includes: recording the calculated minimum reserved bandwidth and bandwidth usage rate, and updating the minimum pre-predetermined terminal of each accessed network Retaining the bandwidth and the bandwidth usage rate; wherein, the minimum reserved bandwidth and the bandwidth usage rate of the terminal that is connected to the network are updated: the minimum reserved bandwidth is updated according to the change of the data service connection parameter and the bandwidth usage rate of the terminal; The bandwidth usage rate is updated according to the resource allocation of the terminal, the change of the terminal modulation and coding rate, the service connection parameter, the amount of data transmitted, and the change of the wireless network environment.
- the base station determines that the initial priority of the congestion processing is: sorting the terminals that have accessed the network according to the minimum reserved bandwidth from large to small, and using the ranking as a preliminary priority for performing congestion processing on the terminal that has accessed the network. And record the initial priority in the terminal list.
- the obtaining the second priority of the congestion processing includes:
- the method further includes: determining, according to the obtained second priority of the terminal congestion processing, the terminal corresponding to the second priority in the terminal list, before determining whether to traverse all the terminals that have accessed the network. Sort to update. Performing a second priority on the terminal that has not been traversed The judgment of the level is: selecting the terminal with the lowest secondary priority and the terminal adjacent thereto to traverse the object; determining the percentage difference of the minimum reserved bandwidth of the traversal object and setting The size between the thresholds; where the minimum reserved bandwidth difference between the two adjacent terminals is: the difference between the minimum reserved bandwidth requested by two adjacent terminals and the higher initial priority among the two adjacent terminals The percentage of the terminal's minimum reserved bandwidth.
- the performing the congestion processing is: disconnecting the network connection of the selected terminal or switching the selected terminal to the neighboring base station; wherein, the congestion processing mode of the terminal to be switched to the neighboring base station is: trigger is selected
- the terminal scans the neighboring base station signal, and when scanning to the neighboring base station signal, switches the selected terminal to the neighboring base station.
- the present invention provides an apparatus for selecting a terminal during congestion processing, including: an obtaining unit, a terminal selecting unit, where the acquiring unit is configured to acquire minimum reserved bandwidth and bandwidth usage of each terminal that has accessed the network. Rate, and report the obtained minimum reserved bandwidth and bandwidth usage rate to the terminal selection unit; the terminal selection unit is configured to determine the initial priority and the secondary priority of the terminal, and sort according to the second priority of the terminal congestion processing , Select one or more terminals for congestion processing.
- the acquiring unit is specifically configured to calculate, record, and update a minimum reserved bandwidth and a bandwidth usage rate of each terminal that has accessed the network.
- the device further includes: a resource allocation unit, a traffic statistics unit, and a congestion monitoring unit.
- the resource allocation unit is configured to allocate a resource for transmitting data to each terminal or connection, and send the data volume transmitted by the terminal and the resource information allocated for the terminal to the traffic statistics unit, the acquiring unit, and the congestion monitoring.
- a unit; a traffic statistics unit configured to perform periodic statistics on the amount of data transmitted on each terminal or connection, and report the statistics to the terminal selection unit when congestion occurs;
- the congestion monitoring unit is configured to monitor the base station Whether congestion occurs, and when congestion occurs, the congestion status is reported to the terminal selection unit.
- the terminal selection unit includes: a preliminary priority determination subunit, a threshold determination subunit, a secondary priority determination subunit, and a terminal selection subunit; wherein, the initial priority a level determining subunit, configured to determine a preliminary priority of the congestion processing; a threshold determining subunit, configured to determine whether a minimum reserved bandwidth difference percentage of each two adjacent terminals in the terminal list is less than a set threshold, and send the judgment result a second priority determining subunit, wherein the second priority determining subunit is configured to compare the two neighboring terminals whose minimum reserved bandwidth difference percentage determined by the threshold determining subunit is less than a set threshold Selecting a secondary usage priority of the congestion processing of the neighboring terminal to obtain a secondary priority of the congestion processing; and selecting, by the terminal, a sub-unit, configured to determine, according to the secondary priority, the secondary priority determined by the secondary unit, and selecting one or more terminals Congestion processing.
- the preliminary priority determining sub-unit is further configured to receive the congestion status reported by the congestion monitoring unit, obtain a minimum reserved bandwidth from the acquiring unit, and generate a terminal list that records the preliminary priority;
- the second priority determining subunit is further configured to obtain a bandwidth usage rate from the acquiring unit, and select a terminal with a low bandwidth usage rate as a terminal with a second highest priority, and according to the obtained secondary priority, corresponding to The order of the terminals in the terminal list is updated.
- the method and device for selecting a terminal during the congestion processing of the present invention can select a suitable congestion processing terminal when the communication system is congested, thereby improving the performance and effectiveness of the congestion processing.
- the priority of the congestion processing is higher by first sorting the terminals according to the size of the respective minimum reserved bandwidths, and determining the initial priority, that is, the terminal with the smallest reserved bandwidth is larger; In the terminal that has determined the initial priority, if the percentage of the minimum reserved bandwidth requested by the two adjacent terminals is less than the threshold k, the second priority is determined according to the bandwidth usage of the terminal, and the bandwidth is used. The lower the usage rate, the higher the priority of terminal congestion processing.
- the terminal can be effectively and reasonably selected to perform congestion processing, thereby avoiding switching between terminals with high bandwidth usage among two terminals with little difference in minimum reserved bandwidth.
- Congestion processing operations such as disconnection may be interrupted, so that the performance and effectiveness of the congestion processing can be improved, and resources can be fully utilized, thereby improving resource utilization efficiency.
- the obtained data is stored so that when the communication system is congested, the priority of congestion processing on the terminal can be quickly determined.
- the present invention fully considers the characteristics of the terminal in terms of resource occupancy and bandwidth usage, and performs secondary ordering on the priority of the terminal, thereby enabling the terminal to perform congestion processing reasonably, efficiently, and quickly, thereby improving the congestion.
- the performance and effectiveness of congestion processing while at the same time achieving the full use of resources.
- FIG. 1 is a schematic diagram of an implementation process of establishing a connection between a terminal and a network and performing data transmission according to the present invention
- FIG. 2 is a schematic flowchart showing a method for selecting a terminal during congestion processing according to the present invention
- FIG. 3 is a schematic structural diagram of an apparatus for selecting a terminal during a congestion processing according to the present invention.
- the basic idea of the present invention is: when a communication system is congested, the terminals are first sorted according to the size of the respective minimum reserved bandwidth, and the initial priority is determined, that is, the terminal with the smallest reserved bandwidth is larger. The higher the priority of congestion processing. If the percentage of the minimum reserved bandwidth requested by the two neighboring terminals that have been initially determined to be the priority is less than the threshold k, the second priority is determined according to the bandwidth usage of the terminal, and the bandwidth usage is lower. The higher the priority of terminal congestion processing.
- the priority of the congestion processing performed by the terminal in the present invention includes a preliminary priority and a secondary priority.
- the base station calculates and records the resource occupancy of the terminal, and performs an admission decision on the connection request of the terminal.
- the resource occupancy of the terminal includes: a minimum reserved bandwidth, a maximum reserved bandwidth, and the like.
- a terminal can establish multiple connections, so the terminal The request to establish a connection with the network may be that the terminal accesses for the first time, or the terminal that has accessed the network establishes a new connection on the basis of the original connection.
- the minimum reserved bandwidth is: a ratio of a sum of minimum reservation rates of all connections of the terminal to a bandwidth usage rate of the terminal.
- the specific calculation process of the minimum reserved bandwidth is as follows:
- the base station calculates the minimum reserved bandwidth requested by the terminal or the connection when the terminal first requests access or establishes a new connection.
- the calculation method of the minimum reserved bandwidth is as shown in formula (1):
- R represents the minimum reservation rate of the jth connection of terminal i, where i, j, and N are natural numbers, and j is taken The value is 1, 2 N; indicates the bandwidth usage efficiency of the terminal i, that is, the bandwidth usage rate of the terminal i; ⁇ 3 ⁇ 4 indicates the minimum reserved bandwidth of the terminal i, that is, the priority of the congestion processing after the first selection.
- the base station when the terminal establishes or modifies the service flow, stores related information of the terminal, and the related information of the terminal includes: MPR, service connection parameters, and the like.
- the service connection parameter includes R, R_, etc., and 3 ⁇ 4i represents the maximum reservation rate of the jth connection of the terminal i.
- the terminal accesses for the first time, it is approximated by the MPR taken by the terminal, and different MPRs are adopted due to different signal strengths received or transmitted by the terminal, and the base station uses the strength of the signal received or transmitted by the terminal.
- the terminal allocates MPR, and the efficiency of the amount of data that can be carried by terminals adopting different MPRs is also different.
- the terminal accesses for the first time its bandwidth usage is estimated as shown in equation (2):
- MPR is the modulation coding rate adopted by the terminal
- ⁇ represents the overhead rate of the medium access control (MAC) sublayer and the physical layer ( ⁇ ).
- the value ranges from 0 to 100 (unit: %).
- the connection control decision is made to the connection requested by the terminal, that is, if the minimum reserved bandwidth requested by the terminal is greater than the idle resource of the communication system, the terminal is not allowed to access or establish a connection. On the other hand, if the minimum reserved bandwidth of the request is greater than the resources idle by the communication system, the terminal is allowed to access or establish a connection, and normal data transmission is performed.
- the admission control algorithm may be modified according to a specific selected admission control strategy.
- the common admission control decision algorithm is expressed as equation (3):
- the coefficient ⁇ represents the proportion of idle resources in the communication system to the total available resources of the communication system, The value ranges from 0% to 100%.
- the total available resources of the communication system ⁇ represents the idle resources of the communication system.
- the specific value of ⁇ depends on the idle resources reserved by the communication system. The larger the value of ⁇ , the larger the idle resources of the communication system.
- formula (3) means: when the idle resource of the communication system is greater than or equal to the resource requested by the terminal, the terminal is allowed to access the network or establish a requested connection with the network.
- the admission control algorithm used is: Total available resources of the communication system ⁇ > Minimum reserved bandwidth of the connection request that the terminal has accessed + The minimum reserved bandwidth of the new request by the terminal, then, when the idle resource of the communication system is greater than or equal to the minimum reserved bandwidth requested by the terminal, that is, the minimum reserved bandwidth greater than or equal to the connection request that the terminal has accessed + the new request of the terminal.
- the bandwidth is reserved minimum, the terminal is allowed to access the network or establish the requested connection with the network.
- the admission control strategy can also be changed, that is, the "resource" on the right side of the inequality in equation (3) adopts the maximum reserved bandwidth.
- the adopted admission control algorithm becomes:
- the total available resources of the communication system ⁇ > The maximum connection request that the terminal has accessed Reserved bandwidth + the maximum reserved bandwidth of the new request by the terminal.
- the calculation method of the maximum reserved bandwidth is the same as that expressed by the formula (1), except that the minimum reserved rate R in the formula (1) is replaced with the maximum reserved rate R_, and the maximum reserved bandwidth fcvfc is calculated.
- the process is shown in equation (4):
- ⁇ represents the maximum reservation rate of the jth connection of the terminal i, where ij N is a natural number and the value of j is 1 2 N; Bandwidth usage of terminal i; R Rsc represents the maximum reserved bandwidth of terminal i, that is, the priority of congestion processing after the first screening.
- the bandwidth usage rate is: For the terminal that is first accessed, the bandwidth usage rate is the product of the modulation coding rate of the terminal and (1- «).
- the base station After the terminal accesses or establishes a new connection for the first time, the base station detects the usage of the air interface resources of each terminal or connection, that is, the amount of data transmitted by the base station according to each terminal or connection, and the allocated bandwidth during a statistical period. Such information, periodic statistics on the bandwidth usage of each terminal.
- the bandwidth usage rate ⁇ of the terminal can be estimated by the formula (2), and for the bandwidth usage rate of the terminal i that is not the first access, the calculation method as shown in the formula (5) is adopted:
- Num slot in formula ( 5 ) indicates the bandwidth usage efficiency of terminal i in a statistical period
- Num training represents the amount of data transmitted by each terminal per unit time, the unit of N m For the bit.
- the base station counts the number of service data units (SDUs) scheduled by the terminal i, thereby calculating the amount of data transmitted by each terminal per unit time.
- m SDU The number of SDUs is equivalent to the amount of data actually transmitted, and does not include the overhead of the MAC sublayer and the physical layer.
- Num slot represents the number of time slots (slots) allocated per unit time.
- the base station will use the service connection parameters, ie, QoS parameters, current data volume, and MPR of the terminal, for the terminal.
- the corresponding time slot is allocated, and the base station counts the number of slots allocated to the terminal i in the statistical time, and then calculates the number of slots N m sfci allocated in the unit time.
- the statistical time and the period of the statistics are generally set according to the performance of the communication system and the experience accumulated in the actual communication process.
- the base station may combine the change of the terminal MPR, the service connection parameter, etc. in the subsequent process, such as the operation of transmitting data, and combines the formula (1), ( 5) Update the minimum reserved bandwidth requested by the terminal or connection as appropriate.
- the bandwidth usage rate is updated according to the resource allocation of the terminal, the change of the MPR, the service connection parameter, the amount of data transmitted, and the change of the wireless network environment, and combined with the formula (5).
- the minimum reserved bandwidth and the bandwidth usage rate are updated in time because the minimum unit of bandwidth allocation is a slot, and the amount of data that each slot can carry with the change of the wireless network environment and the MPR varies greatly. That is to say, the efficiency of the amount of data that can be carried by terminals adopting different MPRs is different.
- the MPR is QPSK-1/2
- each slot can carry 48 bits
- the MPR is 64QAM-5/6
- each slot can carry 240 bits, which is better than QPSK- 1/2. It was nearly four times higher.
- the base station After performing the above calculation or update on each terminal, the base station records the obtained data of the minimum reserved bandwidth and the bandwidth usage rate, so that the communication system can quickly determine the priority of congestion processing for each terminal when congestion occurs. .
- the minimum reserved bandwidth is used to represent the resource occupation.
- the specific steps are as follows:
- Step 101 The terminal requests to access the network or request to establish a new connection.
- Step 102 The base station calculates, according to formula (1), a minimum reserved bandwidth requested by the terminal.
- the minimum reserved bandwidth of the request is calculated, which is actually used to satisfy the requirement of step 103, and the minimum reserved bandwidth is used as an admission control decision strategy.
- Step 103 The base station performs an admission decision according to the admission algorithm formula (3), determines whether the terminal is allowed to access the network or establishes a new connection with the network; if allowed, proceeds to step 104; if not, ends the current process.
- Step 104 The terminal accesses the network or establishes a new connection with the network.
- Step 105 Perform data transmission between the terminal and the network.
- Step 106 During the process of transmitting data, the base station updates the minimum reserved bandwidth and bandwidth usage of the terminal in a timely manner.
- the base station In the process of transmitting data, the base station according to the amount of data transmitted and the allocated bandwidth, the minimum reserved bandwidth and bandwidth usage required by the terminal are updated according to formulas (1) and (5).
- the above description is the preparation work for the congestion processing of the present invention, which calculates, updates and records the minimum reserved bandwidth and bandwidth usage, so that the priority of the terminal can be quickly determined when the communication system is congested.
- the implementation process of determining the terminal congestion processing priority by the base station is described below. Referring to FIG. 2, the method for implementing the terminal selection process during the congestion processing of the present invention is shown, which mainly includes the following steps:
- Step 201 Obtain a minimum reserved bandwidth and a bandwidth usage rate of each terminal.
- the operations of obtaining the minimum reserved bandwidth and the bandwidth usage rate of each terminal that has accessed the network include: calculating, recording, and updating the minimum reserved bandwidth and the bandwidth usage rate of the terminals of each accessed network.
- the method for calculating, recording, and timely updating the minimum reserved bandwidth and the bandwidth usage rate of the terminal that has accessed the network refer to the foregoing description of calculating, recording, and updating the minimum reserved bandwidth and the bandwidth usage rate, where No longer.
- the timely update refers to: when the terminal changes in the wireless network environment and the MPR, the base station updates the minimum reserved bandwidth and the bandwidth usage rate of the corresponding terminal.
- Step 202 When the communication system is congested, the base station determines to perform the terminal that has accessed the network. a preliminary priority of the congestion processing, and generating a terminal list recording the initial priority; when monitoring the communication system congestion, the base station determines the preliminary priority according to the minimum reserved bandwidth requested by the terminal that has accessed the network, and determines The preliminary priority rule is: In the calculated minimum reserved bandwidth, the terminal with the smallest reserved bandwidth has a higher initial priority of the congestion processing, and the initial priority of the congestion processing of the terminal is obtained.
- the base station sorts the terminals that have access to the network from large to small, and the terminal with the smallest reserved bandwidth has a higher initial priority of congestion processing. Moreover, the base station generates a terminal list according to the sorting result of the preliminary priority, that is, records the initial priority of the terminal that has accessed the network through the terminal list.
- the initial prioritization of each terminal that has accessed the network is mainly for the case where it is necessary to select two or more terminals for congestion processing. In fact, when congestion processing is selected for a terminal, in order to save processing time and improve the efficiency of congestion processing, it is not necessary to perform initial priority ordering for each terminal that has accessed the network.
- the base station can select the terminal with the smallest and the smallest reserved bandwidth among the calculated minimum reserved bandwidths for the subsequent comparison of the minimum reserved bandwidth difference.
- the terminal list may have only the terminal with the smallest minimum reserved bandwidth in the first place and the second smallest reserved bandwidth in the second place.
- the initial priority order of the terminal is recorded.
- the initial priority order of the terminals recorded in the terminal list is set, from high to low, and the terminal is in the terminal list in this embodiment.
- the arrangement number in the middle is the code of each terminal, that is, the initial priority of the terminal 1 located at the first place is higher than the preliminary priority of the terminal 2 located at the second place.
- the base station monitors and determines whether the communication system is congested by adopting a specific congestion decision algorithm.
- the base station monitors and determines whether the communication system is congested by obtaining the original resource allocation information, for example: how many times the terminal requests the resource in a unit time, how many times the number of times is satisfied, and how many times cannot be satisfied; or, the total requested resource amount, How much is satisfied, how much is rejected, etc., whether the resources in the communication system are tight, and the degree of resource tension, etc.
- the congestion decision algorithm is combined with the adopted congestion decision algorithm to determine whether congestion occurs in the communication system.
- the present embodiment does not limit the method for determining whether the communication system is congested. This is because the embodiment focuses on how to select the terminal for congestion processing after congestion occurs.
- Step 203 determining that the minimum reserved bandwidth difference between two adjacent terminals in the terminal list is less than a set threshold, if it is less than the set threshold, step 204 is performed; if not less than the set threshold, step 205 is performed;
- each terminal is arranged according to its initial priority from high to low, so when the two adjacent terminals are arranged, the minimum reserved bandwidth is not much different, that is, the adjacent two terminals
- the percentage of the minimum reserved bandwidth is less than the set threshold, the characteristics of the terminal itself, such as the bandwidth usage rate, need to be fully considered, and the second priority is determined according to the bandwidth usage rate, and the terminal with low bandwidth usage rate is selected.
- Congestion processing At this time, the lower the bandwidth usage rate, the higher the secondary priority of terminal congestion processing.
- the threshold is a proportion of the bandwidth usage rate when the base station calculates the secondary priority of the terminal. Therefore, the threshold may be set in advance according to the proportion of the bandwidth usage rate when calculating the secondary priority. That is to say, when the minimum reserved bandwidth of the two adjacent terminals is not much different, the larger the set threshold is, the more the bandwidth usage rate is considered when calculating the secondary priority of the terminal.
- the minimum reserved bandwidth of two adjacent terminals When the minimum reserved bandwidth of two adjacent terminals is numerically different, that is, the difference between the minimum reserved bandwidths of two adjacent terminals is not less than the set threshold, the characteristics of the terminal itself are ignored, and the priority is selected.
- the terminal with the smallest reserved bandwidth performs congestion processing.
- the secondary priorities of the congestion processing of the two adjacent terminals are the same as their initial priorities, and it is not necessary to update the arrangement position and the sequence number, and the minimum pre-transfer of the two adjacent terminals of the next group is transferred.
- the judgment of the percentage difference of the remaining bandwidth The percentage difference of the minimum reserved bandwidth of the two adjacent terminals is: a difference between a minimum reserved bandwidth requested by two adjacent terminals and a minimum reserved bandwidth of a terminal with a higher initial priority among two adjacent terminals. Percentage.
- the two adjacent terminals of the next group are: The terminal with the lowest priority in the terminal list and the terminal arranged after the terminal and adjacent to the terminal.
- the base station may select the terminal with the largest initial priority and the second largest to determine the secondary priority of the two, and does not need to be the terminal in the terminal list. Perform a second priority sorting.
- the two adjacent terminals take the terminal i and the terminal (i+1) as an example, and the base station determines the minimum reserved bandwidth difference Zto(, + l) between the adjacent terminal i and the terminal (i+1) in the terminal list.
- the condition is satisfied: deltaii, i + l) ⁇ RsvRsc ⁇ *k
- step 204 is performed; if the condition is not met, step 205 is performed.
- the percentage of the minimum reserved bandwidth difference is: the difference between the minimum reserved bandwidth requested by the terminal i 3 ⁇ 4 3 ⁇ 44 n and the minimum reserved bandwidth requested by the terminal (i+1 ), Zto(, + l) and the percentage of R 3 ⁇ 44 n .
- the calculation method of the minimum reserved bandwidth difference + between terminal i and terminal (i+1) is as shown in equation (6):
- k is the threshold set by the base station, which is a parameter used by the base station for congestion processing.
- the value range of k is 0 ⁇ 100%, which is applicable to all terminals and connections.
- the k value indicates the angle that the communication system tends to consider when considering the terminal congestion processing priority, that is, whether it is biased toward the minimum reserved bandwidth or the bandwidth usage rate.
- the larger the value of k the more emphasis is placed on the bandwidth usage rate when determining the priority of the terminal congestion processing, and the k value can also be regarded as:
- Bandwidth usage is calculated The proportion of the priority of terminal congestion processing. Therefore, the setting of k should be reasonable. If the value of threshold k is too large, the bandwidth usage will affect the priority of congestion processing on the terminal too much. If the value of k is too small, the bandwidth cannot be fully considered. The impact of usage on terminal congestion handling priority.
- k is an empirical value, and the base station should generally control the k value when configuring the k value.
- Step 204 The base station compares the bandwidth usage rates of the two adjacent terminals in the terminal list, and obtains the second priority of the congestion processing by the two terminals according to the comparison result, and correspondingly according to the obtained second priority.
- the terminal is updated in the order in the terminal list, and then step 205 is performed;
- the level is higher than the second priority of the terminal i.
- the terminal (i+1) exchanges the sequence number in the terminal list with the terminal i, and the terminal (i+1) is updated before the terminal i in the sorted position in the terminal list. For example, after the terminal 1 in the terminal list is compared with the terminal 2, the second priority of the terminal 2 is higher than the second priority of the terminal 1. Therefore, the terminal 2 exchanges the arrangement position with the terminal 1 in the terminal list.
- the sequence number is arranged, and the first bit in the terminal list is updated, that is, the original terminal 2 is updated to the terminal 1 after the comparison, and the original terminal 1 is updated to the terminal 2 after the comparison.
- the corresponding terminals are sorted according to the obtained secondary priority.
- the second priority of the congestion processing is performed on the terminal according to the obtained second priority.
- Step 205 The base station determines whether all the terminals that have accessed the network are traversed. If the terminals that have accessed the network are not traversed, the process returns to step 203, and the terminal that has not traversed is judged by the second priority; Step traversing all the terminals that have accessed the network, and performing step 206; the process of determining the second priority of the terminal that has not traversed includes: the terminal having the lowest secondary priority in the current terminal list has a terminal that is not traversed Did not traverse all a terminal that has accessed the network; selecting the terminal with the lowest secondary priority, the terminal that is behind the terminal with the lowest secondary priority, and the terminal adjacent to the terminal with the lowest secondary priority is the object of the traversal; The size of the minimum reserved bandwidth difference between the traversal object and the set threshold is determined, that is, the operation of step 203 is performed on the selected traversal object.
- the terminal to be compared is the updated terminal 2 and terminal 3, that is, the original terminal 1 and the terminal 3.
- Step 206 The base station selects one or more terminals to perform congestion processing according to the determined second priority of the terminal congestion processing, and ends the selection process of the current terminal, and transits to the congestion processing process.
- the base station may formulate a specific selection policy and select one or more terminals for congestion processing. If the number of selected terminals accounts for a percentage of the total number of terminals, the first % of the terminals are selected from the second highest priority terminal according to the second priority order of the terminal congestion processing; or, the base station directly sets one When the number n of terminals is selected, the first n terminals in the second priority order are selected.
- the performing the congestion processing is specifically: disconnecting the network connection of the selected terminal or switching the selected terminal to the neighboring base station; where, the congestion processing mode of switching the selected terminal to the neighboring base station is : triggering the selected terminal to scan the neighboring base station signal, and scanning the selected terminal to the neighboring base station when scanning to the neighboring base station signal.
- the method of selecting a plurality of terminals for congestion processing is because: when the congestion processing method of switching the selected terminal to the neighboring base station is adopted, the handover is not successful because of the failure or the terminal rejection in the handover process, so the congestion processing is performed.
- Multiple terminals can be selected to initiate a handover process for the selected terminal at the same time; Or, when the current congestion degree is relatively serious, the congestion processing is performed by selecting multiple terminals at the same time, so that the congestion processing can be increased to achieve the purpose of solving the congestion faster.
- the present invention also provides an apparatus for selecting a terminal during congestion processing.
- the apparatus 300 includes: an obtaining unit 301, and a terminal selecting unit 305. among them:
- the obtaining unit 301 is configured to obtain a minimum reserved bandwidth and a bandwidth usage rate of each terminal that has accessed the network, where the method is: calculating and recording a minimum reserved bandwidth and a bandwidth usage rate of each terminal that has accessed the network, and updating Recording the minimum reserved bandwidth and bandwidth usage rate, and reporting the obtained minimum reserved bandwidth and bandwidth usage rate to the terminal selection unit 305;
- the terminal selecting unit 305 is configured to determine the initial priority and the secondary priority of the terminal in combination with the data reported by the obtaining unit 301, and select one or more terminals to perform congestion processing according to the second priority ordering of the terminal congestion processing.
- the apparatus 300 further includes: a resource allocation unit 302, a traffic statistics unit 303, and a congestion monitoring unit 304. among them:
- the resource allocation unit 302 is configured to allocate a resource for transmitting data to each terminal or connection, and send the data volume transmitted by the terminal and the resource information allocated to the terminal to the acquiring unit 301, the traffic statistics unit 303, and the congestion monitoring unit. 304. At the same time, the resource allocation information is reported to the terminal selection unit 305;
- the traffic statistics unit 303 is configured to perform periodic statistics on the amount of data transmitted on each terminal or connection, and report the statistics to the terminal selection unit 305 when congestion occurs;
- the congestion monitoring unit 304 is configured to monitor whether the base station is congested, and report the congestion status to the terminal selection unit 305 when congestion occurs.
- the terminal selecting unit 305 further includes: a preliminary priority determining sub-list The element 3051, the threshold judgment subunit 3052, the second priority judgment subunit 3053, and the terminal selection subunit 3054. among them:
- the preliminary priority determining sub-unit 3051 is configured to determine a preliminary priority of the congestion processing;
- the threshold determining sub-unit 3052 is configured to determine whether a percentage difference of the minimum reserved bandwidth of each two adjacent terminals in the terminal list is less than a set threshold, and Sending the judgment result to the second priority judgment subunit 3053;
- a second priority determining sub-unit 3053 configured to acquire, by the obtaining unit 301, a bandwidth usage rate of two adjacent terminals whose minimum reserved bandwidth difference percentage is less than a threshold determined by the threshold determining sub-unit 3052, and compare the The bandwidth usage of two adjacent terminals to obtain the second priority of congestion processing.
- the percentage difference of the minimum reserved bandwidth of the two adjacent terminals is: a difference between a minimum reserved bandwidth requested by two adjacent terminals and a minimum reserved bandwidth of a terminal with a higher initial priority among two adjacent terminals. Percentage. When the minimum reserved bandwidth difference percentage is less than the set threshold, the second priority of the terminal congestion processing with a small bandwidth usage is high.
- the preliminary priority determining sub-unit 3051 is further configured to receive the congestion status reported by the congestion monitoring unit, obtain the minimum reserved bandwidth from the obtaining unit 301, and generate a record to select the minimum reserved bandwidth, and select the minimum.
- the terminal with a large reserved bandwidth is a terminal with a high initial priority, and the determined initial priority order is recorded in the terminal list.
- the second priority determining sub-unit 3053 is further configured to obtain a bandwidth usage rate from the acquiring unit 301, and select a terminal with a low bandwidth usage rate as a terminal with a second highest priority, and according to the obtained second Priority, the order of the corresponding terminal in the terminal list is updated.
- the terminal selection subunit 3054 is configured to select one or more terminals to perform congestion processing according to the second priority determined by the secondary priority determination subunit 3053.
Landscapes
- Engineering & Computer Science (AREA)
- Quality & Reliability (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
- Data Exchanges In Wide-Area Networks (AREA)
- Communication Control (AREA)
Description
一种拥塞处理时选择终端的方法及装置 技术领域
本发明涉及无线通信中的拥塞处理领域, 特别是涉及一种拥塞处理时 选择终端的方法及装置。 背景技术
传统的无线通信系统, 当发生拥塞或预测将要发生拥塞时, 一般采取 拒绝新用户或新连接接入、 或者释放当前已接入的用户或连接。 而对于引 入了自动调制编码(AMC, Adaptive Modulation Coding )和功率控制技术 的通信系统, 如全球微波接入互操作性( WiMAX, World Interoperability for Microwave Access )系统, 由于用户或终端可以根据当前的信号质量和功控 策略, 改变所使用的调制编码率 (MPR, Modulation Order Product Code Rate ), 即采用不同的 MPR对数据承载的效率不同, 所以导致整个空口的容 量随着 MPR的不同而呈现巨大的波动。 因此, 拒绝新用户或新连接接入、 以及释放当前用户或连接的方法会严重影响用户的服务质量(QoS )体验, 并不是拥塞控制的最佳处理方式, 一般不建议采用。
目前, 通信系统中较为常见的一种拥塞处理方法是: 基站对已经接入 的终端触发切换流程, 使终端切换到相邻的资源比较空闲的基站, 这样既 实现了拥塞控制处理, 又不影响已经接入终端用户的 QoS体验。在确定通信 系统中各个终端的拥塞处理优先级时, 通常的方法是规定: 请求的最小预 留带宽越大的终端, 拥塞处理的优先级越高。 但是, 当已经接入终端请求 的最小预留带宽之间的差别不是很大时, 特别是当终端由于接收或发射的 信号强度不同, 采取不同的 MPR时, 以及不同终端传输的数据量有明显差 别时, 这种仅根据最小预留带宽的多少来确定终端的拥塞处理优先级的策
略并不一定可靠。
例如: 在一个共有资源量为 2M的通信系统中,存在两个各占用 1M资源 量的终端 A和终端 B, 当发生拥塞时将某个终端切换出去或释放掉, 其资源 都给剩下的终端使用。 如果终端 A和终端 B请求的最小预留带宽之间的差别 很小, 但终端 A和终端 B采取的 MRP对带宽使用率又差别很大时, 如终端 A 的带宽使用率是 n, 而终端 B的带宽使用率是 2n, 那么, 若留下的是终端 A, 则此时通信系统总的吞吐量是 2nM; 若留下的是终端 B, 则此时通信系统总 的吞吐量是 4nM。
可见, 仅仅根据最小预留带宽的多少来确定终端的拥塞处理优先级并 不一定能够取得预期的效果, 甚至有时会对通信系统的性能或资源使用效 率造成严重影响。 发明内容
有鉴于此, 本发明的主要目的在于提供一种拥塞处理时选择终端的方 法及装置, 能够在通信系统发生拥塞时, 有效、 快速、 合理地确定当前各 个终端的拥塞处理优先级。
为达到上述目的, 本发明公开了一种拥塞处理时选择终端的方法, 包 括: 获取各个已接入网络的终端的最小预留带宽和带宽使用率, 并设置门 限; 发生拥塞时, 基站确定终端拥塞处理的初步优先级, 根据每两个相邻 终端的最小预留带宽相差百分比与所设定门限的大小关系、 以及带宽使用 率, 获得终端拥塞处理的二次优先级; 对所获得的二次优先级排序, 并从 中选择一个或一个以上终端进行拥塞处理。
上述方法中, 所述获取各个已接入网络的终端的最小预留带宽和带宽 使用率包括: 计算各个已接入网络的终端的最小预留带宽和带宽使用率; 其中, 所述最小预留带宽为: 终端所有连接的最小预留速率之和与该终端 带宽使用率的比值; 所述带宽使用率为: 对于首次接入的终端, 其带宽使
用率为终端的调制编码率与 (1-« )之积, 其中, 该《为媒体接入控制子层 和物理层的开销率; 对于非首次接入的终端, 其带宽使用率为终端在单位 时间内所传输的数据量与单位时间内所分配的时隙数的比值。
其中, 所述获取各个已接入网络的终端的最小预留带宽和带宽使用率 还包括: 记录所计算得到的最小预留带宽和带宽使用率, 及更新各个已接 入网络的终端的最小预留带宽和带宽使用率; 其中, 更新各个已接入网络 的终端的最小预留带宽和带宽使用率为: 根据终端的数据业务连接参数、 带宽使用率的变化, 更新所述最小预留带宽; 根据终端的资源分配、 终端 调制编码率的变化、 业务连接参数、 传输的数据量及无线网络环境的变化, 更新所述带宽使用率。 所述基站确定拥塞处理的初步优先级为: 按最小预 留带宽从大到小对已接入网络的终端进行排序, 并将该排序作为对已接入 网络的终端进行拥塞处理的初步优先级, 并将该初步优先级记录到终端列 表中。
上述方法中, 所述获得拥塞处理的二次优先级包括:
al. 判断终端列表中两个相邻终端的最小预留带宽相差百分比是否小 于设定门限, 如果小于设定门限, 则比较所述两个相邻终端的带宽使用率 的高低, 选取带宽使用率低的终端作为二次优先级高的终端, 执行步骤 a2; 如果不小于设定门限, 则所述两个相邻终端拥塞处理的二次优先级与初步 优先级相同, 执行步骤 a2;
a2. 判断是否遍历完所有已接入网络的终端, 如果未遍历完, 则对未遍 历完的终端进行二次优先级的判断; 如果已遍历完, 则确定终端拥塞处理 的二次优先级, 选择一个或一个以上终端进行拥塞处理。
其中, 所述判断是否遍历完所有已接入网络的终端之前, 该方法还包 括: 根据获得的终端拥塞处理的二次优先级, 对与所述二次优先级对应的 终端在终端列表中的排序进行更新。 所述对未遍历完的终端进行二次优先
级的判断为: 选取所述二次优先级最低的终端、 以及排在其后的、 与其相 邻的终端为本次遍历对象; 判断本次遍历对象的最小预留带宽相差百分比 与所设定门限之间的大小; 这里, 所述两个相邻终端的最小预留带宽相差 百分比为: 两个相邻终端请求的最小预留带宽之差与两个相邻终端中初步 优先级较高的终端的最小预留带宽的百分比。 所述进行拥塞处理为: 断开 被选择终端的网络连接或者将被选择的终端切换至邻区基站; 其中, 所述 将被选择的终端切换至邻区基站的拥塞处理方式为: 触发被选择的终端扫 描邻区基站信号, 扫描到邻区基站信号时, 则将该被选择的终端切换至该 邻区基站。
为实现上述方法, 本发明提供一种拥塞处理时选择终端的装置, 包括: 获取单元、 终端选择单元; 其中, 获取单元, 用于获取各个已接入网络的 终端的最小预留带宽和带宽使用率, 并将获取到的最小预留带宽和带宽使 用率上报给终端选择单元; 终端选择单元, 用于确定终端的初步优先级和 二次优先级, 并根据终端拥塞处理的二次优先级排序, 选择一个或一个以 上终端进行拥塞处理。
上述装置中, 所述获取单元, 具体用于计算、 记录及更新各个已接入 网络的终端的最小预留带宽和带宽使用率; 该装置还包括: 资源分配单元、 流量统计单元和拥塞监测单元; 其中, 资源分配单元, 用于为每个终端或 连接分配传输数据的资源, 并将终端传输的数据量和为终端分配的资源信 息发送给流量统计单元、 所述获取单元和所述拥塞监测单元; 流量统计单 元, 用于对每个终端或连接上传输的数据量进行周期性的统计, 并在发生 拥塞时, 将统计数据上报给所述终端选择单元; 拥塞监测单元, 用于监测 基站是否发生拥塞, 并在发生拥塞时, 将拥塞状态上报给终端选择单元。
上述装置中, 所述终端选择单元包括: 初步优先级判断子单元、 门限 判断子单元、 二次优先级判断子单元、 终端选取子单元; 其中, 初步优先
级判断子单元, 用于确定拥塞处理的初步优先级; 门限判断子单元, 用于 判断终端列表中每两个相邻终端的最小预留带宽相差百分比是否小于设定 门限, 并将判断结果发送给二次优先级判断子单元; 二次优先级判断子单 元, 用于对所述门限判断子单元确定的最小预留带宽相差百分比小于设定 门限的两个相邻终端, 进行比较该两个相邻终端的带宽使用率的大小, 来 获得拥塞处理的二次优先级; 终端选取子单元, 用于根据所述二次优先级 判断子单元确定的二次优先级, 选择一个或一个以上终端进行拥塞处理。
其中, 所述初步优先级判断子单元, 还用于接收所述拥塞监测单元上 报拥塞状态, 并从所述获取单元获取最小预留带宽, 以及生成记录所述初 步优先级的终端列表; 所述二次优先级判断子单元, 还用于从所述获取单 元获取带宽使用率, 并选取带宽使用率低的终端为二次优先级高的终端, 以及根据获得的二次优先级, 将对应的终端在终端列表中的排序进行更新。
由以上技术方案可以看出, 本发明的拥塞处理时选择终端的方法及装 置, 在通信系统发生拥塞时, 能够选取合适的拥塞处理终端, 进而提高拥 塞处理的性能和有效性。 具体来讲, 通过先将终端按各自的最小预留带宽 的大小, 从大到小排序并确定初步优先级, 即最小预留带宽越大的终端, 进行拥塞处理的优先级越高; 然后, 在已确定初步优先级的终端中, 如果 相邻的两个终端请求的最小预留带宽相差百分比小于门限 k时, 则根据终端 对带宽使用率的高低进行二次优先级的确定, 此时带宽使用率越低的终端 拥塞处理的优先级越高。 如此, 通过进一步确定终端拥塞处理的二次优先 级, 能够有效、 合理选取终端来进行拥塞处理, 避免了对最小预留带宽相 差不大的两个终端中、 带宽使用率较高的终端进行切换或中断连接等拥塞 处理操作, 如此, 能够提高拥塞处理的性能和有效性, 同时也能够充分利 用资源, 提高了资源的使用效率。
另外, 基站计算或更新各个终端的最小预留带宽和带宽使用率后, 会
将得到的数据进行存储, 以便通信系统发生拥塞时, 能够快速确定对终端 进行拥塞处理的优先级。
可见, 本发明从资源占用量和带宽使用率两方面, 充分考虑终端的特 性, 通过对终端的优先级进行二次排序, 进而能够合理、 有效、 快速地选 择出终端进行拥塞处理, 既提高了拥塞处理的性能和有效性, 同时又实现 了资源的充分利用。 附图说明
图 1为本发明终端与网络建立连接及进行数据传输的实现流程示意图; 图 2为本发明拥塞处理时选择终端的方法实现流程示意图;
图 3为本发明拥塞处理时选择终端的装置实施例的组成示意图。 具体实施方式 本发明的基本思想在于: 通信系统发生拥塞时, 先将终端按各自的最 小预留带宽的大小, 从大到小排序并确定初步优先级, 即最小预留带宽越 大的终端, 进行拥塞处理的优先级越高。 如果已初步确定优先级的两个相 邻终端所请求的最小预留带宽相差百分比小于门限 k, 则根据终端对带宽使 用率的高低进行二次优先级的确定, 此时带宽使用率越低的终端拥塞处理 的优先级越高。
需要说明的是, 本发明对终端进行拥塞处理的优先级包括初步优先级 和二次优先级。
为使本发明上述目的、 特征和优点能够更加明显易懂, 下面结合附图 和具体实施例对本发明作进一步详细的说明。
终端请求与网络建立连接时, 基站会计算并记录终端的资源占用量, 并对终端的连接请求进行接纳判决。 这里, 所述终端的资源占用量包括: 最小预留带宽和最大预留带宽等。 一个终端可以建立多条连接, 因此终端
请求与网络建立连接可以是终端首次接入, 也可以是已接入网络的终端在 原有连接的基础上又建立新的连接。
其中, 所述最小预留带宽为: 终端所有连接的最小预留速率之和与该 终端带宽使用率的比值。 所述最小预留带宽的具体计算过程如下:
基站在终端首次请求接入或新的连接建立时,计算终端或连接所请求的 最小预留带宽, 该最小预留带宽 的计算方法如公式(1 )所示:
,N
RsvRsc^ =^ ~~ min "' ~ ( 1 ) 在公式(1 ) 中, R 表示终端 i的第 j个连接的最小预留速率, 其中, i、 j、 N均为自然数, 且 j的取值为 1、 2 N; 表示终端 i对带宽的使用效 率, 即终端 i的带宽使用率; ^^¾ 表示终端 i的最小预留带宽, 即经过第 一次 选后进行拥塞处理的优先级。
需要说明的是, 终端在建立或修改业务流时,基站会存储终端的相关信 息, 这些终端的相关信息包括: MPR、 业务连接参数等。 其中, 该业务连 接参数包括 R 、 R_等, ¾i表示终端 i的第 j个连接的最大预留速率。
这里, 当终端首次接入时, 通过终端所采取的 MPR来近似地估算 其 中, 由于终端接收或发射的信号强度不同而采取不同的 MPR, 基站根据该 终端接收或发射的信号的强度来为该终端分配 MPR, 而采取不同 MPR的终 端所能承载的数据量的效率也是不同的。终端首次接入时,其带宽使用率 的估算方法如公式(2 )所示:
ηί = MPR "? (\ - a) ( 2 ) 在公式(2 ) 中, MPR是终端采取的调制编码率, α表示媒体接入控制 ( MAC )子层和物理层(ΡΗΥ )的开销率,取值范围为 0 ~ 100 (单位: %)。 这里, 《是根据经验或一般的规律来确定的, 例如: 根据实际中最多采用的 连接类型、 传输数据包的类型, 能够确定 MAC子层和物理层的开销。 另外,
«可以作为基站的一个配置参数,也可以是一个固定的值,直接写在程序中。 计算出终端的最小预留带宽后, 对该终端所请求的连接进行接纳控制 判决, 即: 如果终端请求的最小预留带宽大于通信系统空闲的资源时, 则 不允许终端接入或建立连接。 反之, 如果请求的最小预留带宽大于通信系 统空闲的资源时, 则允许终端接入或建立连接, 并进行正常的数据传输。
在具体实现中, 可以根据具体选择的接纳控制策略, 修改接纳控制算 法。 一般, 常见的接纳控制判决算法表示为公式(3 ) :
总的可用资源 Χβ >已接入连接请求的资源 +新请求的资源 ( 3 ) 在公式(3 ) 中, 系数 β表示通信系统中的空闲资源占通信系统总的可 用资源的比重, β的取值范围为 0%~100%之间, 通信系统总的可用资源 χβ 表示通信系统的空闲资源, β的具体取值根据通信系统需要预留的空闲资源 而定。 β取值越大, 通信系统的空闲资源就越大。
而已接入连接请求的资源 +新请求的资源表示终端所请求的资源, 其 中, 不等式右侧的 "资源" 代表资源占有量, 即最小预留带宽或最大预留 带宽。 因此, 公式(3 ) 即表示: 当通信系统的空闲资源大于或等于终端所 请求的资源时, 则允许终端接入网络或与网络建立所请求的连接。
例如: 当公式(3 ) 中不等式右侧的 "资源" 取最小预留带宽时, 则采 用的接纳控制算法为: 通信系统总的可用资源 χβ >终端已接入的连接请求 的最小预留带宽+终端新请求的最小预留带宽, 那么, 当通信系统的空闲资 源大于或等于终端请求的最小预留带宽, 即大于或等于终端已接入的连接 请求的最小预留带宽 +终端新请求的最小预留带宽时, 允许终端接入网络或 与网络建立所请求的连接。
此处, 还可以改变接纳控制策略, 即公式(3 )中不等式右侧的 "资源" 采用最大预留带宽。 此时, 通过适当修改公式(3 ) 即可得到采用的接纳控 制算法则变为: 通信系统总的可用资源 χβ >终端已接入的连接请求的最大
预留带宽 +终端新请求的最大预留带宽。 其中, 该最大预留带宽的计算方法 与公式( 1 )所体现的原理相同, 只是将的公式( 1 ) 中的最小预留速率 R 替换为最大预留速率 R_ ,具体计算最大预留带宽 fcvfc 的过程如公式 ( 4 ) 所示:
RsvRsc^ = ^≡ ≡ - 4 ) 在公式(4 ) 中, ^表示终端 i的第 j个连接的最大预留速率, 其中, i j N均为自然数,且 j的取值为 1 2 N; 表示终端 i的带宽使用率; R Rsc 表示终端 i的最大预留带宽, 即经过第一次筛选后进行拥塞处理的优先级。
这里, 需要说明的是带宽使用率的计算方法, 主要计算过程如下: 所述带宽使用率为: 对于首次接入的终端, 其带宽使用率为终端的调 制编码率与 (1-« )之积, 其中, 该《为媒体接入控制子层和物理层的开销 率; 对于非首次接入的终端, 其带宽使用率为终端在单位时间内所传输的 数据量与单位时间内所分配的时隙数的比值。 具体说明如下:
在终端首次接入或建立新的连接后, 基站会检测各个终端或连接对空 口资源的使用情况, 即在一段统计时间内, 基站根据每个终端或连接传输 的数据量、 所分配到的带宽等信息, 对各个终端的带宽使用率进行周期性 统计。 对于首次接入的终端 i, 通过公式(2 )能够估算出该终端的带宽使用 率 η 而对于不是首次接入的终端 i的带宽使用率 , 则采取如公式(5 )所 示的计算方法:
η = NumSDU ( 5 ) 1 Numslot 在公式( 5 )中, 表示终端 i在一段统计时间内的带宽使用效率, Num訓 表示单位时间内每个终端所传输的数据量, 该 N m 的单位为 bit。 在一段 统计时间内, 如 1秒, 基站统计为终端 i调度的服务数据单元(SDU, Service Data Unit ) 的数量, 从而计算得到单位时间内每个终端所传输的数据量
mSDU 。 其中, SDU的数量相当于真正传输的数据量, 不包括 MAC子层和 物理层的开销。 在公式( 5 ) 中, Numslot表示单位时间内分配的时隙 ( Slot ) 数, 此处, 基站会根据业务连接参数即 QoS参数、 当前传输的数据量、 终端 的 MPR等信息, 为该终端分配对应的时隙, 基站在统计时间内, 统计为终 端 i分配的 Slot数, 然后计算得到单位时间内分配的时隙数 N msfci。 这里, 所 述统计时间以及统计的周期一般根据通信系统的性能、 以及实际通信过程 中所积累的经验进行设定。
并且, 如果允许终端接入网络或与网络成功建立连接, 则基站会在随 后的过程如传输数据的操作中, 根据终端 MPR的变化、 业务连接参数等的 变化, 并结合公式( 1 ) 、 ( 5 )适时更新终端或连接所请求最小预留带宽。 根据终端的资源分配、 MPR的变化、 业务连接参数、 传输的数据量及无线 网络环境的变化, 并结合公式(5 ) 更新所述带宽使用率。
这里, 对最小预留带宽及带宽使用率进行适时更新, 是由于带宽分配 的最小单位是 slot, 而每个 slot随着无线网络环境和 MPR的变化, 所能承载 的数据量也相差很大, 也就是说, 采取不同 MPR的终端所能承载的数据量 的效率是不同的。 例如: 以下行为例, 采用的 MPR为 QPSK-1/2时, 每个 slot 可以承载 48bit, 而采用的 MPR为 64QAM-5/6时, 每个 slot可以承载 240bit, 比采用 QPSK- 1/2时高出了近 4倍。
此外, 基站对各个终端进行上述计算或更新后, 会将得到的最小预留 带宽和带宽使用率的数据进行记录, 以便通信系统在发生拥塞时, 能够快 速确定对各个终端进行拥塞处理的优先级。
下面结合图 1 , 说明本发明终端与网络连接并进行数据传输的实现流 程, 本实施例用最小预留带宽来表示资源占有量, 具体步骤如下:
步骤 101 , 终端请求接入网络或请求建立新的连接;
步骤 102, 基站根据公式( 1 )计算终端请求的最小预留带宽;
本步骤中, 计算请求的最小预留带宽, 实际上是为了满足步骤 103的需 要, 将该最小预留带宽作为接纳控制判决策略。
步骤 103 , 基站根据接纳算法公式(3 )进行接纳判决, 判断是否允许 终端接入网络或与网络建立新的连接; 如果允许, 则进入步骤 104; 如果不 允许, 则结束当前流程。
步骤 104, 终端接入网络或与网络建立新的连接;
步骤 105 , 终端与网络之间进行数据传输;
步骤 106, 在传输数据的过程中, 基站对终端的最小预留带宽和带宽使 用率进行适时更新。
在传输数据的过程中, 基站根据传输的数据量及分配的带宽, 对终端 需要的最小预留带宽和带宽使用率依据公式( 1 ) 、 (5 )进行相应的更新。
以上所述为本发明为拥塞处理所做的准备工作, 计算、 更新并记录最 小预留带宽和带宽使用率, 以便在通信系统发生拥塞时, 能够快速地确定 终端的优先级。 下面来说明基站确定终端拥塞处理优先级的实现过程, 参 照图 2, 示出了本发明拥塞处理时选择终端的方法实现流程, 主要包括以下 步骤:
步骤 201 , 获取各个终端的最小预留带宽和带宽使用率;
本步骤中, 获取各个已接入网络的终端的最小预留带宽和带宽使用率 的操作包括: 计算、 记录及更新各个已接入网络的终端的最小预留带宽和 带宽使用率。 这里, 对已接入网络的终端的最小预留带宽和带宽使用率进 行计算、 记录并适时更新的方法, 参照上述的计算、 记录及更新最小预留 带宽和带宽使用率的相关说明, 此处不再赘述。
这里, 所述适时更新是指: 终端在无线网络环境和 MPR等发生变化时, 基站更新对应终端的最小预留带宽和带宽使用率。
步骤 202, 通信系统发生拥塞时, 基站确定对已经接入网络的终端进行
拥塞处理的初步优先级, 并生成记录该初步优先级的终端列表; 当监测到通信系统发生拥塞时, 基站根据已接入网络的终端所请求的 最小预留带宽确定所述初步优先级, 确定所述初步优先级的规则为: 在计 算得到的最小预留带宽中, 最小预留带宽越大的终端, 拥塞处理的初步优 先级就越高, 进而得到对终端进行拥塞处理的初步优先级。
具体来讲, 基站按照计算出来的最小预留带宽, 对各个已经接入网络 的终端进行从大到小排序, 最小预留带宽越大的终端, 拥塞处理的初步优 先级就越高。 并且, 基站依据初步优先级的排序结果生成终端列表, 即通 过终端列表来记录已经接入网络的终端的初步优先级。 这里, 对各个已经 接入网络的终端进行初步优先级排序, 主要是针对于需要选取两个以上的 终端进行拥塞处理时的情况。 实际上, 对于选取一个终端进行拥塞处理时, 为节省处理时间、 提高拥塞处理的效率, 也可不必将对各个已经接入网络 的终端进行初步优先级的排序。 也就是说, 基站可以在计算出来的最小预 留带宽中选取最小预留带宽最大和次大的终端, 以进行后续的最小预留带 宽差的比较。 这种情况下, 终端列表中可以就只有处在第一位的最小预留 带宽最大和处在第二位的最小预留带宽次大的终端。
需要说明的是, 终端列表中记录着终端的初步优先级次序, 本实施例 设定该终端列表中记录的终端的初步优先级次序, 由高到低排列, 且本实 施例以终端在终端列表中的排列序号为各终端的代号, 即位于第一位的终 端 1的初步优先级高于位于第二位的终端 2的初步优先级。
另外, 基站通过采取具体的拥塞判决算法来监测、 及判断通信系统是 否发生拥塞。 这里, 基站通过获得原始的资源分配信息来监测、 及判断通 信系统是否发生拥塞, 例如: 单位时间内终端请求资源多少次, 满足了多 少次, 不能满足多少次; 或者, 总的请求资源量, 其中满足了多少, 拒绝 了多少等, 对通信系统中的资源是否紧张、 以及资源的紧张程度等进行判
断, 进而结合所采取的拥塞判决算法来判断通信系统中是否发生拥塞。 实 际上, 对于如何判断通信系统是否发生拥塞, 本实施例并不对此进行限定, 这是因为, 本实施例着重于拥塞发生后, 如何选取终端进行拥塞处理。
步骤 203 , 判断终端列表中相邻两个终端的最小预留带宽相差百分比是 否小于设定门限, 如果小于设定门限, 则执行步骤 204; 如果不小于设定门 限, 则执行步骤 205;
在已确定初步优先级的终端中, 各个终端按照其初步优先级从高到低 进行排列, 所以当排列相邻的两个终端的最小预留带宽相差不大, 即该相 邻的两个终端的最小预留带宽相差百分比小于设定门限时, 则需要充分考 虑终端本身的特性如带宽使用率, 并根据所述带宽使用率进行二次优先级 的确定, 从中选取带宽使用率低的终端进行拥塞处理; 此时, 带宽使用率 越低的终端拥塞处理的二次优先级越高。
其中, 所述门限为基站在计算终端二次优先级时, 带宽使用率所占的 一个比重, 因此, 所述门限可预先根据带宽使用率在计算二次优先级时所 占比重进行设置。 也就是说, 当相邻的两个终端的最小预留带宽相差不大 时, 所设定门限越大, 表示在计算终端二次优先级时就越多地考虑了带宽 使用率。
当相邻的两个终端的最小预留带宽在数值上差别 艮大时, 即相邻的两 个终端的最小预留带宽相差百分比不小于设定门限时, 则忽略终端本身的 特性, 优先选择最小预留带宽大的终端进行拥塞处理。 此时, 这两个相邻 终端拥塞处理的二次优先级与它们的初步优先级是相同的, 不必进行排列 位置和排列序号的更新, 转入下一组的两个相邻终端的最小预留带宽相差 百分比的判断。 其中, 所述两个相邻终端的最小预留带宽相差百分比为: 两个相邻终端请求的最小预留带宽之差与两个相邻终端中初步优先级较高 的终端的最小预留带宽的百分比。 这里, 所述下一组的两个相邻终端为:
在终端列表中二次优先级最低的终端和排列在该终端后并与该终端相邻的 终端。
需要说明的是, 对于只需选取一个终端进行拥塞处理的情况, 基站可 选取初步优先级最大和次大的终端, 来确定二者的二次优先级即可, 不必 对终端列表中的各个终端进行二次优先级的排序。
例如: 相邻的两个终端以终端 i和终端(i+1 )为例, 基站判断终端列表 中相邻的终端 i和终端 (i+1 ) 的最小预留带宽差 Zto(, + l)是否满足条件: deltaii, i + l)< RsvRsc^ *k , 如果满足该条件, 则执行步骤 204; 如果不满足该 条件, 则执行步骤 205。 其中, 所述最小预留带宽相差百分比为: 终端 i请求 的最小预留带宽 ¾ ¾4n和终端 (i+1 )请求的最小预留带宽 之差 Zto(, + l)与 R ¾4n的百分比。 终端 i和终端 (i+1 ) 的最小预留带宽差 + 的计算方法如公式(6)所示:
delta(i, + 1) = RsvRsc^ - RsvRsc^ ( 6 ) 在公式(6) 中, Zto(, + l)表示终端 i和终端(i+1 )的最小预留带宽差, ¾ ¾4n为终端 i请求的最小预留带宽, 为终端( i+1 )请求的最小预 留带宽。 当
deltaii, j) < RsvRscm' l *k ( 7 ) 时, 则表示终端 i和终端(i+1 )的最小预留带宽相差并不是很大, 因此, 需 要进一步根据终端 i和终端(i+1 )的带宽使用率来确定这两个相邻终端拥塞 处理的二次优先级。
在公式(7) 中, k为基站所设置的门限, 是基站进行拥塞处理时所使 用的一个参数, k的取值范围 0~ 100%, 适用于所有终端和连接。 k值表示通 信系统考虑终端拥塞处理优先级时所倾向的角度, 即是偏重于最小预留带 宽, 还是偏重于带宽使用率。 这里, k值越大, 表示确定终端拥塞处理的优 先级时就越多地偏重于带宽使用率, 也可以将 k值看成: 带宽使用率在计算
终端拥塞处理的优先级时所占的比重。 因此, k的设置要合理, 如果门限 k 的取值过大, 则会导致带宽使用率过多地影响对终端进行拥塞处理的优先 级; 如果 k的取值过小, 则又不能充分考虑带宽使用率对终端拥塞处理优先 级的影响。 通常, k是个经验值, 且基站在配置 k值时, 一般应将 k值控制在
30%以内。
步骤 204, 基站比较终端列表中相邻两个终端的带宽使用率的大小, 并 根据比较结果来获得这两个终端进行拥塞处理的二次优先级, 并根据得到 的二次优先级, 将对应的终端在终端列表中的排序进行更新, 然后执行步 骤 205;
其中, 带宽使用率越低的终端拥塞处理的二次优先级越高, 即: 如果 终端 (i+1 ) 的带宽使用率 小于终端 i的带宽使用率 则终端 (i+1 ) 的 二次优先级高于终端 i的二次优先级。 此时, 终端 (i+1 ) 与终端 i交换在终 端列表中的排列序号, 且终端(i+1 )在终端列表中的排序位置更新到终端 i 之前。 例如: 终端列表中的终端 1与终端 2进行比较后, 终端 2的二次优先级 高于终端 1的二次优先级, 于是, 终端 2会与终端 1会交换在终端列表中的排 列位置与排列序号, 而排在终端列表中的第一位上, 即原终端 2更新为此次 比较后的终端 1 , 原终端 1更新为此次比较后的终端 2。 如此, 按照所获得的 二次优先级将对应的终端排序。 每次比较之后, 便根据获得的二次优先级, 对终端进行拥塞处理的二次优先级。
步骤 205, 基站判断是否遍历完所有已接入网络的终端, 如果没有遍历 完所有已接入网络的终端, 则返回步骤 203 , 并对没有遍历完的终端进行二 次优先级的判断; 如果已经遍历所有已接入网络的终端, 则执行步骤 206; 所述对没有遍历完的终端进行二次优先级的判断过程包括: 当前终端 列表中二次优先级最低的终端后面存在没有遍历的终端为没有遍历完所有
已接入网络的终端; 选取该二次优先级最低的终端、 排在该二次优先级最 低的终端后面、 且与该二次优先级最低的终端相邻的终端为本次遍历的对 象; 判断本次遍历对象的最小预留带宽相差百分比与所设定门限之间的大 小, 即对所选取的遍历对象执行步骤 203的操作。
如果本次进行比较带宽使用率的两个相邻终端是终端 i与终端 (i+1 ) , 那么, 进入步骤 203的下一组终端为更新后的终端 (i+1 )和终端 (i+2 ) , 例如: 原终端 2由于其自身的二次优先级高于原终端 1的二次优先级, 原终 端 2会与原终端 1会交换在终端列表中的排列位置与排列序号, 那么, 继续 进行比较和确定拥塞处理的二次优先级时, 进行比较的终端为更新后的终 端 2与终端 3 , 也就是原终端 1与终端 3。
步骤 206, 基站根据确定的终端拥塞处理的二次优先级, 选择一个或一 个以上终端进行拥塞处理, 并结束本次终端的选取流程, 转入拥塞处理流 程。
通过上述终端选取流程确定进行拥塞处理的二次优先级后, 基站可以 制定具体的选择策略, 选择一个或多个终端进行拥塞处理。 如设定选择出 的终端数占终端总数的百分比 %,则根据终端拥塞处理的二次优先级顺序, 从二次优先级高的终端开始选取前 %的终端; 又或者, 基站直接设定一个 选取终端的数量 n, 则选取二次优先级排序中的前 n个终端。
另外, 所述进行拥塞处理具体为: 断开被选择终端的网络连接或者将 被选择的终端切换至邻区基站; 此处, 所述将被选择的终端切换至邻区基 站的拥塞处理方式为: 触发被选择的终端扫描邻区基站信号, 扫描到邻区 基站信号时, 则将该被选择的终端切换至该邻区基站。 其中, 选择多个终 端进行拥塞处理是因为: 当采用将选择的终端切换到邻区基站的拥塞处理 措施时, 由于切换过程中存在失败或终端拒绝的情况, 切换不一定成功, 所以在拥塞处理时可以选择多个终端, 对所选择的终端同时发起切换流程;
又或者, 当前拥塞程度比较严重时, 通过选择多个终端同时进行拥塞处理, 如此, 能够增加拥塞处理的力度, 以达到更快解决拥塞的目的。
对于上述的各实施例, 为了筒单描述, 故将其都表述为一系列的动作 组合, 但是本领域技术人员应该知悉, 本发明并不受所描述的动作顺序的 限制, 因为依据本发明, 某些步骤可以采用其他顺序或者同时进行。
为实现上述方法, 本发明还提供一种拥塞处理时选择终端的装置, 参 照图 3 , 该装置 300包括: 获取单元 301、 终端选择单元 305。 其中:
获取单元 301 , 用于获取各个已接入网络的终端的最小预留带宽和带宽 使用率, 具体用于: 计算、 记录各个已接入网络的终端的最小预留带宽和 带宽使用率, 并更新记录的最小预留带宽和带宽使用率, 并将所获得最小 预留带宽和带宽使用率上报给终端选择单元 305;
终端选择单元 305 , 用于结合获取单元 301上报的数据来确定终端的初 步优先级和二次优先级, 并根据终端拥塞处理的二次优先级排序, 选择一 个或一个以上的终端进行拥塞处理。
该装置 300还包括: 资源分配单元 302、 流量统计单元 303和拥塞监测单 元 304。 其中:
资源分配单元 302 , 用于为每个终端或连接分配传输数据的资源, 并将 终端传输的数据量和为该终端分配的资源信息发送给所述获取单元 301、 流 量统计单元 303和拥塞监测单元 304。 同时, 将资源的分配信息上报给终端 选择单元 305;
流量统计单元 303 , 用于对每个终端或连接上传输的数据量进行周期性 的统计, 并在发生拥塞时, 将统计数据上报给终端选择单元 305;
拥塞监测单元 304, 用于监测基站是否发生拥塞, 并在发生拥塞时, 将 拥塞状态上报给终端选择单元 305。
上述装置中, 所述终端选择单元 305进一步包括: 初步优先级判断子单
元 3051、 门限判断子单元 3052、 二次优先级判断子单元 3053、 终端选取子 单元 3054。 其中:
初步优先级判断子单元 3051 , 用于确定拥塞处理的初步优先级; 门限判断子单元 3052 , 用于判断终端列表中每两个相邻终端的最小预 留带宽相差百分比是否小于设定门限, 并将判断结果发送给二次优先级判 断子单元 3053 ;
二次优先级判断子单元 3053 , 用于从所述获取单元 301获取由门限判断 子单元 3052确定的、 最小预留带宽相差百分比小于门限的两个相邻终端的 带宽使用率, 并通过比较该两个相邻终端的带宽使用率的大小, 来获得拥 塞处理的二次优先级。
其中, 所述两个相邻终端的最小预留带宽相差百分比为: 两个相邻终 端请求的最小预留带宽之差与两个相邻终端中初步优先级较高的终端的最 小预留带宽的百分比。 当最小预留带宽相差百分比小于设定门限时, 带宽 使用率小的终端拥塞处理的二次优先级高。
其中, 所述初步优先级判断子单元 3051 , 还用于接收所述拥塞监测单 元上报拥塞状态, 并从获取单元 301获取最小预留带宽, 以及生成记录所述 取最小预留带宽后, 选择最小预留带宽大的终端为初步优先级高的终端, 并将所确定的初步优先级顺序记录在终端列表中。
其中, 所述二次优先级判断子单元 3053 , 还用于从所述获取单元 301获 取带宽使用率, 并选取带宽使用率低的终端为二次优先级高的终端, 以及 根据获得的二次优先级, 将对应的终端在终端列表中的排序进行更新。
其中,终端选取子单元 3054,用于根据所述二次优先级判断子单元 3053 确定的二次优先级, 选择一个或一个以上终端进行拥塞处理。
在上述实施例中, 对各个实施例的描述都各有侧重, 某个实施例中没
有详述的部分, 可以参见其他实施例的相关描述即可。 以上所述, 仅为本 发明的较佳实施例而已, 只是用来说明和解释本发明, 并非用于限定本发 明的保护范围。 在本发明的精神和权利要求保护范围之内, 对本发明所作 的任何修改、 等同替换, 都落入本发明的保护范围。
Claims
1、 一种拥塞处理时选择终端的方法, 其特征在于, 包括:
获取各个已接入网络的终端的最小预留带宽和带宽使用率, 并设置门 限;
发生拥塞时, 基站确定终端拥塞处理的初步优先级, 根据每两个相邻 终端的最小预留带宽相差百分比与所设定门限的大小关系、 以及带宽使用 率, 获得终端拥塞处理的二次优先级;
对所获得的二次优先级排序, 并从中选择一个或一个以上终端进行拥 塞处理。
2、 根据权利要求 1所述的拥塞处理时选择终端的方法, 其特征在于, 所述获取各个已接入网络的终端的最小预留带宽和带宽使用率包括:
计算各个已接入网络的终端的最小预留带宽和带宽使用率;
其中, 所述最小预留带宽为: 终端所有连接的最小预留速率之和与该 终端带宽使用率的比值;
所述带宽使用率为: 对于首次接入的终端, 其带宽使用率为终端的调 制编码率与 (1-« )之积, 所述《为媒体接入控制子层和物理层的开销率; 对于非首次接入的终端, 其带宽使用率为终端在单位时间内所传输的数据 量与单位时间内所分配的时隙数的比值。
3、 根据权利要求 2所述的拥塞处理时选择终端的方法, 其特征在于, 所述获取各个已接入网络的终端的最小预留带宽和带宽使用率还包括: 记录计算得到的最小预留带宽和带宽使用率, 并更新各个已接入网络 的终端的最小预留带宽和带宽使用率;
其中, 所述更新各个已接入网络的终端的最小预留带宽和带宽使用率 为: 根据终端的数据业务连接参数、 带宽使用率的变化, 更新所述最小预 留带宽;
根据终端的资源分配、 终端调制编码率的变化、 业务连接参数、 传输 的数据量及无线网络环境的变化, 更新所述带宽使用率。
4、 根据权利要求 1所述的拥塞处理时选择终端的方法, 其特征在于, 所述基站确定拥塞处理的初步优先级为:
按最小预留带宽从大到小对已接入网络的终端进行排序, 并将所述排 序作为对已接入网络的终端进行拥塞处理的初步优先级, 并将所述初步优 先级记录到终端列表中。
5、 根据权利要求 1至 4任一项所述的拥塞处理时选择终端的方法, 其特 征在于, 所述获得终端拥塞处理的二次优先级包括:
al. 判断终端列表中两个相邻终端的最小预留带宽相差百分比是否小 于设定门限, 如果小于设定门限, 则比较所述两个相邻终端的带宽使用率 的高低, 选取带宽使用率低的终端作为二次优先级高的终端, 执行步骤 a2; 如果不小于设定门限, 则所述两个相邻终端拥塞处理的二次优先级与 初步优先级相同, 执行步骤 a2;
a2. 判断是否遍历完所有已接入网络的终端, 如果未遍历完, 则对未遍 历完的终端进行二次优先级的判断; 如果已遍历完, 则确定终端拥塞处理 的二次优先级。
6、 根据权利要求 5所述的拥塞处理时选择终端的方法, 其特征在于, 所述判断是否遍历完所有已接入网络的终端之前, 该方法还包括:
根据获得的终端拥塞处理的二次优先级, 将与所述二次优先级对应的 终端在终端列表中的排序进行更新。
7、 根据权利要求 6所述的拥塞处理时选择终端的方法, 其特征在于, 所述对未遍历完的终端进行二次优先级的判断为:
选取所述二次优先级最低的终端、 以及排在其后的、 与其相邻的终端 为本次遍历对象;
判断本次遍历对象的最小预留带宽相差百分比与所设定门限之间的大 小;
其中, 所述两个相邻终端的最小预留带宽相差百分比为: 两个相邻终 端请求的最小预留带宽之差与两个相邻终端中初步优先级较高的终端的最 小预留带宽的百分比。
8、 根据权利要求 7所述的拥塞处理时选择终端的方法, 其特征在于, 所述进行拥塞处理为:
断开被选择终端的网络连接或者将被选择的终端切换至邻区基站; 其中, 所述将被选择的终端切换至邻区基站的拥塞处理方式为: 触发被选择的终端扫描邻区基站信号, 扫描到邻区基站信号时, 则将 所述被选择的终端切换至所述邻区基站。
9、 一种拥塞处理时选择终端的装置, 其特征在于, 包括: 获取单元、 终端选择单元; 其中,
获取单元, 用于获取各个已接入网络的终端的最小预留带宽和带宽使 用率, 并将获取到的最小预留带宽和带宽使用率上报给终端选择单元; 终端选择单元, 用于确定终端的初步优先级和二次优先级, 并根据终 端拥塞处理的二次优先级排序, 选择一个或一个以上终端进行拥塞处理。
10、 根据权利要求 9所述的拥塞处理时选择终端的装置, 其特征在于, 所述获取单元, 具体用于计算、 记录及更新各个已接入网络的终端的最小 预留带宽和带宽使用率;
该装置还包括: 资源分配单元、 流量统计单元和拥塞监测单元; 其中, 资源分配单元, 用于为每个终端或连接分配传输数据的资源, 并将终 端传输的数据量和为终端分配的资源信息发送给流量统计单元、 所述获取 单元和所述拥塞监测单元;
流量统计单元, 用于对每个终端或连接上传输的数据量进行周期性的
统计, 并在发生拥塞时, 将统计数据上报给所述终端选择单元; 拥塞监测单元, 用于监测基站是否发生拥塞, 并在发生拥塞时, 将拥 塞状态上报给终端选择单元。
11、 根据权利要求 9或 10所述的拥塞处理时选择终端的装置, 其特征在 于, 所述终端选择单元包括: 初步优先级判断子单元、 门限判断子单元、 二次优先级判断子单元、 终端选取子单元; 其中,
初步优先级判断子单元, 用于确定拥塞处理的初步优先级;
门限判断子单元, 用于判断终端列表中每两个相邻终端的最小预留带 宽相差百分比是否小于设定门限, 并将判断结果发送给二次优先级判断子 单元;
二次优先级判断子单元, 用于对所述门限判断子单元确定的最小预留 带宽相差百分比小于设定门限的两个相邻终端, 进行比较该两个相邻终端 的带宽使用率的大小, 来获得拥塞处理的二次优先级;
终端选取子单元, 用于根据所述二次优先级判断子单元确定的二次优 先级, 选择一个或一个以上终端进行拥塞处理。
12、 根据权利要求 11所述的拥塞处理时选择终端的装置, 其特征在于, 所述初步优先级判断子单元, 还用于接收所述拥塞监测单元上报拥塞状态, 并从所述获取单元获取最小预留带宽, 以及生成记录所述初步优先级的终 端列表;
所述二次优先级判断子单元, 还用于从所述获取单元获取带宽使用率, 并选取带宽使用率低的终端为二次优先级高的终端, 以及根据获得的二次 优先级, 将对应的终端在终端列表中的排序进行更新。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012508881A JP5214822B2 (ja) | 2009-05-04 | 2009-12-11 | 輻輳処理時端末を選択する方法及び装置 |
EP09844295.7A EP2429232B1 (en) | 2009-05-04 | 2009-12-11 | Method and equipment for selecting terminal during congestion process |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200910083357.X | 2009-05-04 | ||
CN200910083357XA CN101883380B (zh) | 2009-05-04 | 2009-05-04 | 一种拥塞处理时选择终端的方法及装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2010127543A1 true WO2010127543A1 (zh) | 2010-11-11 |
WO2010127543A8 WO2010127543A8 (zh) | 2011-02-17 |
Family
ID=43049944
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2009/075517 WO2010127543A1 (zh) | 2009-05-04 | 2009-12-11 | 一种拥塞处理时选择终端的方法及装置 |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP2429232B1 (zh) |
JP (1) | JP5214822B2 (zh) |
CN (1) | CN101883380B (zh) |
WO (1) | WO2010127543A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110868357A (zh) * | 2018-08-27 | 2020-03-06 | 中兴通讯股份有限公司 | 网络流量控制方法、vtep设备和存储介质 |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102469018B (zh) * | 2010-11-18 | 2016-01-20 | 中兴通讯股份有限公司 | 虚拟路由器冗余协议备份组中设备优先级实现方法及装置 |
CN102291813B (zh) * | 2011-08-04 | 2017-07-11 | 中兴通讯股份有限公司 | 一种功率控制方法和基站 |
CN102300264B (zh) * | 2011-08-22 | 2013-12-04 | 中国电信股份有限公司 | 无线网络的流量控制方法和系统 |
CN103294494B (zh) * | 2012-02-29 | 2018-07-03 | 中兴通讯股份有限公司 | 一种虚拟系统自动化部署的方法和系统 |
CN103379571B (zh) * | 2012-04-26 | 2016-06-08 | 京信通信系统(中国)有限公司 | 切换控制方法、装置及系统 |
JP6213084B2 (ja) * | 2013-09-17 | 2017-10-18 | 富士通株式会社 | 無線通信装置および無線帯域制御方法 |
CN105359568B (zh) | 2014-05-15 | 2019-11-12 | 华为技术有限公司 | 检测装置以及确定业务消耗的空口资源的方法 |
CN104168601B (zh) * | 2014-07-25 | 2018-07-10 | 京信通信系统(中国)有限公司 | 无线网络拥塞控制方法及装置 |
CN106060837B (zh) * | 2016-06-23 | 2019-08-06 | 宁波福尔智能科技有限公司 | 一种高密度wi-fi覆盖方法 |
CN107979476B (zh) * | 2016-10-21 | 2020-11-27 | 中国电信股份有限公司 | 带宽分配方法和装置 |
CN107257570B (zh) * | 2017-03-30 | 2020-06-30 | 中国科学院自动化研究所 | 基于用户优先级的网络接入选择方法和带宽分配方法 |
CN110830964B (zh) * | 2018-08-08 | 2023-03-21 | 中国电信股份有限公司 | 信息调度方法、物联网平台和计算机可读存储介质 |
JP7308079B2 (ja) | 2019-05-28 | 2023-07-13 | 三菱電機株式会社 | 照明システム、照明制御装置、制御方法及びプログラム |
CN117915129B (zh) * | 2024-03-20 | 2024-05-17 | 天津师范大学 | 基于跨层网络信息的流媒体传输方法、装置和存储介质 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101132360A (zh) * | 2007-09-21 | 2008-02-27 | 中兴通讯股份有限公司 | 一种全球微波接入互通系统中实现拥塞控制处理的方法 |
US20080159128A1 (en) * | 2006-12-28 | 2008-07-03 | Cisco Technology, Inc. | Method and System for Providing Congestion Management within a Virtual Talk Group |
JP2008300908A (ja) * | 2007-05-29 | 2008-12-11 | Technical Research & Development Institute Ministry Of Defence | 衛星通信システム、通信統制局、統合ゲートウェイ装置及びそれらに用いる優先制御方法 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1317151A1 (en) * | 2001-11-30 | 2003-06-04 | BRITISH TELECOMMUNICATIONS public limited company | Congestion control in a wireless network |
US20050107107A1 (en) * | 2003-11-19 | 2005-05-19 | Reza Shahidi | Dynamic voice over data prioritization for wireless communication networks |
CN100508641C (zh) * | 2003-12-09 | 2009-07-01 | 艾利森电话股份有限公司 | 用于管理通信系统中不同运营商共享的资源的方法及装置 |
EP2122936B1 (en) * | 2007-03-12 | 2012-11-14 | Citrix Systems, Inc. | Systems and methods for providing quality of service precedence in tcp congestion control |
ATE479256T1 (de) * | 2007-05-29 | 2010-09-15 | Ericsson Telefon Ab L M | Prioritätsflussabwicklung in zustandslosen domänen |
MX2009013434A (es) * | 2007-07-06 | 2010-01-15 | Ericsson Telefon Ab L M | Control de congestion en un nodo de transmision. |
-
2009
- 2009-05-04 CN CN200910083357XA patent/CN101883380B/zh active Active
- 2009-12-11 JP JP2012508881A patent/JP5214822B2/ja active Active
- 2009-12-11 WO PCT/CN2009/075517 patent/WO2010127543A1/zh active Application Filing
- 2009-12-11 EP EP09844295.7A patent/EP2429232B1/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080159128A1 (en) * | 2006-12-28 | 2008-07-03 | Cisco Technology, Inc. | Method and System for Providing Congestion Management within a Virtual Talk Group |
JP2008300908A (ja) * | 2007-05-29 | 2008-12-11 | Technical Research & Development Institute Ministry Of Defence | 衛星通信システム、通信統制局、統合ゲートウェイ装置及びそれらに用いる優先制御方法 |
CN101132360A (zh) * | 2007-09-21 | 2008-02-27 | 中兴通讯股份有限公司 | 一种全球微波接入互通系统中实现拥塞控制处理的方法 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110868357A (zh) * | 2018-08-27 | 2020-03-06 | 中兴通讯股份有限公司 | 网络流量控制方法、vtep设备和存储介质 |
Also Published As
Publication number | Publication date |
---|---|
JP5214822B2 (ja) | 2013-06-19 |
WO2010127543A8 (zh) | 2011-02-17 |
EP2429232B1 (en) | 2020-02-12 |
EP2429232A4 (en) | 2016-07-20 |
EP2429232A1 (en) | 2012-03-14 |
CN101883380A (zh) | 2010-11-10 |
CN101883380B (zh) | 2012-11-28 |
JP2012526422A (ja) | 2012-10-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2010127543A1 (zh) | 一种拥塞处理时选择终端的方法及装置 | |
DK3122011T3 (en) | Managing overload of a communication network using an allocation and retention priority | |
JP4141106B2 (ja) | 帯域制御装置 | |
RU2316127C2 (ru) | Спектрально-ограниченная контролирующая пакетная передача для управления перегрузкой и установления вызова в сетях, основанных на пакетах | |
JP4847541B2 (ja) | データパケットトラフィック輻輳を解決する方法及び装置 | |
US20080075003A1 (en) | Method and system for admission and congestion control of network communication traffic | |
CN109451534B (zh) | 一种用于5G系统会话管理中QoS流的动态控制方法和装置 | |
US20080081628A1 (en) | Systems and methods for determining granularity level of information about buffer status | |
CN113098789B (zh) | 一种基于sdn的数据中心网络多路径动态负载均衡方法 | |
RU2005131960A (ru) | Управление разрешением на доступ и распределение ресурсов в системе связи с поддержкой потоков приложений с наличием требований к качеству обслуживания | |
KR20050039376A (ko) | 이동통신 시스템의 패킷 스케줄링 시스템 및 방법 | |
JP2006506845A (ja) | ルータにおけるパケットに対し論理リンクを選択する方法 | |
CN104092625A (zh) | 一种用于dcn中的自适应请求分批调度方法 | |
CN100574505C (zh) | 高速下行分组接入系统的用户接入方法及应用的通信设备 | |
CN100512231C (zh) | 一种路由方法 | |
JP4729413B2 (ja) | パケット通信装置 | |
KR20200015303A (ko) | 패킷 보고 방법과 시스템 | |
US8605749B2 (en) | Frame-merging apparatus and method | |
Bonald et al. | Scheduling network traffic | |
JP2009212632A (ja) | 通信装置および通信方法 | |
Radics et al. | Insight based dynamic QoE management in LTE | |
KR100523996B1 (ko) | 이동통신 시스템의 패킷 스케줄링 시스템 및 방법 | |
Mansouri et al. | New scheduling algorithm for wireless mesh networks | |
JP4104756B2 (ja) | 電気通信網においてデータパケットをスケジューリングする方法およびシステム | |
JP2006522499A (ja) | データ伝送制御方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09844295 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2009844295 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012508881 Country of ref document: JP |