WO2010126127A1 - Medical manipulator - Google Patents

Medical manipulator Download PDF

Info

Publication number
WO2010126127A1
WO2010126127A1 PCT/JP2010/057670 JP2010057670W WO2010126127A1 WO 2010126127 A1 WO2010126127 A1 WO 2010126127A1 JP 2010057670 W JP2010057670 W JP 2010057670W WO 2010126127 A1 WO2010126127 A1 WO 2010126127A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
medical manipulator
drive
shaft
driven
Prior art date
Application number
PCT/JP2010/057670
Other languages
French (fr)
Japanese (ja)
Inventor
神野誠
上之原秀一
勝木亮平
須永耕平
阪田哲次
Original Assignee
テルモ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by テルモ株式会社 filed Critical テルモ株式会社
Priority to JP2011511466A priority Critical patent/JP5624536B2/en
Publication of WO2010126127A1 publication Critical patent/WO2010126127A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/70Manipulators specially adapted for use in surgery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00367Details of actuation of instruments, e.g. relations between pushing buttons, or the like, and activation of the tool, working tip, or the like
    • A61B2017/00398Details of actuation of instruments, e.g. relations between pushing buttons, or the like, and activation of the tool, working tip, or the like using powered actuators, e.g. stepper motors, solenoids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/0046Surgical instruments, devices or methods, e.g. tourniquets with a releasable handle; with handle and operating part separable
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/28Surgical forceps
    • A61B17/29Forceps for use in minimally invasive surgery
    • A61B17/2909Handles
    • A61B2017/2911Handles rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/28Surgical forceps
    • A61B17/29Forceps for use in minimally invasive surgery
    • A61B17/2909Handles
    • A61B2017/2925Pistol grips

Definitions

  • the present invention relates to a medical manipulator that includes a drive unit and a working unit including a distal end working unit that is operated by the drive unit, and the drive unit and the work unit are configured to be detachable.
  • manipulators used in laparoscopic surgery are desired to be capable of quick and appropriate procedures depending on the position and size of the affected area, and various techniques such as excision of the affected area, suturing and ligation are required. Done.
  • a manipulator that has a high degree of freedom in operation and can be easily operated (see, for example, Japanese Patent Application Laid-Open No. 2008-104854).
  • a manipulator described in Japanese Patent Application Laid-Open No. 2008-104854 is configured such that a working unit having a tip operating unit and a driving unit having a motor and a handle are detachable.
  • a manipulator having various tip operation portions corresponding to the procedure can be easily configured by appropriately replacing the working portion provided with various tip operation portions such as scissors and grippers with respect to the drive portion.
  • the drive unit and the working unit are mounted, the cruciform projections and recesses formed at the tips of the drive shaft and the driven shaft are engaged with each other, whereby the rotational driving force of the motor is transmitted to the drive unit. Can be transmitted to the working unit to operate the tip working unit.
  • this manipulator is provided with a lock member that can fix the rotational position of the motor.
  • the motor is returned to the original position in advance so that the motor is always kept at the predetermined original position. Therefore, the control can be easily started from the origin position at the next mounting.
  • the present invention has been made in connection with such a conventional technique, and a drive unit having a drive shaft and a working unit having a driven shaft and a tip operation unit can be more quickly and easily attached and detached.
  • An object is to provide a medical manipulator.
  • a medical manipulator includes a drive unit having a drive shaft rotated by an actuator, a driven shaft driven to rotate by the drive shaft, a tip operating unit operated by rotation of the driven shaft, and the tip And a working portion detachably attached to the drive portion, the drive shaft having a drive side joint surface inclined with respect to the axial direction, and the driven shaft being The drive side joint surface is inclined with respect to the axial direction and engageable with the drive side joint surface, and the drive unit and the working unit are mounted on the drive side joint surface and the driven side joint surface. The rotation of the drive shaft can be transmitted to the driven shaft.
  • the drive side joint surface is provided on the drive shaft on the drive unit side, and the driven side joint surface is engageable with the drive side joint surface on the driven shaft on the working unit side that is detachable from the drive unit.
  • the drive side joint surface and the driven side joint surface are smoothly engaged regardless of the initial phase when the drive shaft and the driven shaft are connected. be able to. Therefore, the drive unit and the working unit can be quickly and easily attached and detached without special consideration of the initial phases of the drive side joint surface and the driven side joint surface.
  • phase detection means for detecting the phase of the driven shaft it is possible to accurately set the origin of the working unit (driven shaft).
  • the phase detection means may include a detected member that operates as the driven shaft rotates and a detection sensor that detects the operation of the detected member.
  • the detected member and the detection sensor are provided in the driving unit, and the peripheral surface of the driven shaft is provided with a cam surface whose axial position in the circumferential direction is changed, and the detected member is
  • the front end of the driving unit and the working unit are in contact with the cam surface, and the driving unit and the working unit are configured to be capable of moving forward and backward with a change in the axial position of the cam surface due to rotation of the driven shaft. In this case, the phase of the driven shaft can be easily detected.
  • the detected member is provided in the working unit and is rotatable with the rotation of the driven shaft, and the detection sensor is provided in the driving unit, and the driving unit and the working unit are mounted. It is good also as a structure arrange
  • the phase detection means rotates the driven shaft by contacting the contact member provided along the radial direction of the driven shaft and the corresponding contact member when the contact member rotates together with the driven shaft. It is good also as a structure which has the control part which prescribes
  • an origin search unit that performs an origin search operation for setting the origin by rotating the driven shaft based on the detection of the phase detection unit, Accurate origin detection is possible.
  • the drive unit may be provided with a drive shaft phase sensor that detects the rotational position of the drive shaft.
  • a controller connected to the drive unit is provided, and the working unit has a contact member provided along a radial direction of the driven shaft, and the contact member rotates together with the driven shaft.
  • the safety attaching / detaching operation is performed when the working unit is detached from the driving unit, when the controller is connected to the driving unit, and when a master switch provided in the driving unit is turned off. It may be executed at least at any timing.
  • the working unit includes a contact member provided along a radial direction of the driven shaft, and a contact member that contacts the corresponding contact member when the contact member rotates together with the driven shaft. And a regulating part that regulates the rotation range from the origin in a forward rotation direction and a reverse rotation direction within a range of less than 180 °, and when removing the working part from the driving part, or the working part from the driving part In a removable state, the driven shaft is moved to a safe area where the driven shaft can be prevented from being forcedly rotated beyond the regulation by the regulating portion when the drive unit and the working unit are mounted next time. Even with the configuration having the safety area guiding means for guiding, it is possible to effectively avoid the occurrence of an excessive load on the driven shaft or the like.
  • the safety area guiding means may include a buffer member provided on an end surface with which the abutting member of the restricting portion abuts, or an advancing / retreating member that advances / retreats from the end surface.
  • the working unit has a contact member provided along a radial direction of the driven shaft, and the driven shaft comes into contact with the corresponding contact member when the contact member rotates together with the driven shaft.
  • a regulating portion that regulates the rotation range from the origin in a range of less than 180 ° in the forward rotation direction and the reverse rotation direction, respectively, and when the drive unit and the working unit are mounted, the driven shaft is forcibly It is good also as a structure which has a safe area
  • the safety area guiding means is provided in the drive unit, and moves when the drive unit and the working unit are mounted to advance between the regulating unit and the contact member. It can also be set as the structure containing a member.
  • a plurality of projecting portions projecting in the radial direction are provided at equal intervals in the circumferential direction on the drive-side joint surface or the driven-side joint surface having the tapered shape, and the tapered tapered follower is provided.
  • a plurality of grooves corresponding to the protrusions may be provided on the side joint surface or the drive side joint surface.
  • the driving side joining surface and the driven side joining surface may be tooth surfaces that mesh with each other.
  • an attachment / detachment sensor for detecting the attachment / detachment state of the drive unit and the working unit because the attachment / detachment state can be reliably detected.
  • FIG. 6 is a partially omitted perspective view of an operation unit. It is a partially-omission perspective view of a working part.
  • FIG. 5 is a partially omitted perspective view of a composite input unit and its peripheral part. It is a front view of a composite input part. It is a partially omitted exploded side view of the operation unit and the working unit.
  • FIG. 5 is a partially omitted perspective view of the drive unit and its peripheral part in a state where the operation unit and the working unit are mounted.
  • FIG. 6 is a partially omitted plan view of the drive unit and its peripheral part in a state where the operation unit and the working unit are mounted.
  • FIG. 3 is a partially omitted cross-sectional side view of a drive unit and its peripheral part.
  • FIG. 4 is a partially omitted cross-sectional front view of a drive unit and its peripheral part. It is a partially omitted plan view of a working unit.
  • FIG. 12 is a partially omitted cross-sectional side view taken along line XII-XII in FIG. 11. It is a cross-sectional perspective view of a pulley box.
  • 14A is a partially omitted bottom view for explaining the allowable rotation range of the pulley
  • FIG. 14B is a partially omitted bottom view showing a state in which the pulley is rotated from the state shown in FIG. 14A.
  • FIG. 13 is a cross-sectional view taken along line XV-XV in FIG. It is a partially omitted cross-sectional perspective view of the trigger lever.
  • FIG. 17A is a partially omitted cross-sectional side view of the trigger lever
  • FIG. 17B is a partially omitted cross-sectional side view in a state where the release lever is operated from the state shown in FIG. 17A.
  • It is a partial omission cross-sectional side view of a trigger lever attaching part and its peripheral part.
  • It is a partially omitted side view for explaining the imaging direction of the barcode by the camera.
  • 20A is a partially omitted bottom view of the operation unit
  • FIG. 20B is a partially omitted plan view of the working unit.
  • FIG. 10 is a partially omitted plan view showing a modified example of a structure for restricting an allowable rotation range of a pulley.
  • FIG. 22A is a partially omitted perspective view showing a state before engagement of the engaging convex portion and the engaging concave portion
  • FIG. 22B is a partially omitted view showing a state where the engaging convex portion and the engaging concave portion are engaged. It is a perspective view.
  • FIG. 23A is an explanatory diagram showing a state in which the initial phases of the engaging convex portion and the engaging concave portion are shifted during engagement
  • FIG. 23B is an explanatory diagram showing a state in which the engaging convex portion and the engaging concave portion are engaged.
  • FIG. 24A is an explanatory diagram showing a state before engagement in which the engaging concave portion is at a predetermined origin and the phase of the engaging convex portion is slightly in the forward rotation direction
  • FIG. 24B is related to the state shown in FIG. 24A. It is explanatory drawing which shows the state by which the joint convex part and the engagement recessed part were engaged.
  • FIG. 25A is an explanatory view showing a state before engagement in which the engagement convex portion is at a predetermined origin and the phase of the engagement concave portion is slightly in the reverse rotation direction
  • FIG. 25B is engaged from the state shown in FIG. 25A. It is explanatory drawing which shows the state by which the convex part and the engagement recessed part were engaged.
  • FIG. 29A is an explanatory diagram illustrating the structure on the operation unit 14 side for carrying out the first modification of the origin search operation
  • FIG. 29B is a diagram on the working unit 16 side corresponding to the operation unit 14 shown in FIG. 29A. It is explanatory drawing which illustrated the structure.
  • FIG. 30A is an explanatory side view of the engagement structure of the engagement convex portion and the engagement concave portion shown in FIGS. 29A and 29B.
  • FIG. 30B shows the engagement convex portion and the engagement concave portion from the state shown in FIG. 30A. It is side surface explanatory drawing in the state which engaged.
  • FIG. 31A is an explanatory view showing a state in which the engaging convex portion and the engaging concave portion are in an initial phase in the method according to the second modification of the origin search operation, and FIG. It is explanatory drawing which shows the state which rotated and contact
  • FIG. 31A is an explanatory side view of the engagement structure of the engagement convex portion and the engagement concave portion shown in FIGS. 29A and 29B.
  • FIG. 30B shows the engagement convex portion and the engagement
  • FIG. 31D is an explanatory diagram showing a state in which the motor is set as the origin from the state shown in FIG. 31C.
  • FIG. 32A is an explanatory diagram for explaining the first safety attaching / detaching operation
  • FIG. 32B is an explanatory diagram showing a state in which the engaging convex portion and the engaging concave portion are engaged from the state shown in FIG. 32A.
  • FIG. 33A is an explanatory view for explaining the first safety attaching / detaching operation
  • FIG. 33B is an explanatory view showing a state in which the engaging convex portion and the engaging concave portion are engaged from the state shown in FIG. 33A. .
  • FIG. 34A is an explanatory diagram for explaining the first safety attaching / detaching operation
  • FIG. 34B is an explanatory diagram showing a state in which the engaging convex portion and the engaging concave portion are engaged from the state shown in FIG. 34A.
  • FIG. 35A is an explanatory diagram for explaining the first safety attaching / detaching operation
  • FIG. 35B is an explanatory diagram showing a state in which the engaging convex portion and the engaging concave portion are about to be engaged from the state shown in FIG. 35A. It is. It is explanatory drawing which shows the safe area
  • FIG. 38A is an explanatory diagram for explaining the second safety attaching / detaching operation
  • FIG. 38B is an explanatory diagram showing a state in which the motor is rotated from the state shown in FIG. 38A to bring the contact portion into contact with the rubber member
  • FIG. 38C is an explanatory view showing a state in which the engaging convex portion and the engaging concave portion are removed from the state shown in FIG. 38B and the contact portion is rotated into the safety region by the repulsive action of the rubber member. It is.
  • FIG. 38A is an explanatory diagram for explaining the second safety attaching / detaching operation
  • FIG. 38B is an explanatory diagram showing a state in which the motor is rotated from the state shown in FIG. 38A to bring the contact portion into contact with the rubber member.
  • FIG. 38C is an explanatory view showing a state in which the engaging convex portion and the engaging concave portion are removed from the state shown in FIG. 38B and the contact portion is rotated into the
  • FIG. 39A is an explanatory diagram for explaining a modified example of the second safety attaching / detaching operation
  • FIG. 39B shows a state in which the motor is rotated from the state shown in FIG.
  • FIG. 39C is an explanatory view showing a state in which the engagement convex portion and the engagement concave portion are removed from the state shown in FIG. 39B and the contact portion is rotated into the safety region by the advance / retreat member. is there.
  • FIG. 40A is an explanatory side view for explaining the third safety attaching / detaching operation
  • FIG. 40B shows a state in which the moving member is advanced between the contact portion and the stopper from the state shown in FIG. 40A. It is explanatory drawing.
  • FIG. 40A is an explanatory side view for explaining the third safety attaching / detaching operation
  • FIG. 40B shows a state in which the moving member is advanced between the contact portion and the stopper from the state shown in FIG. 40A. It is explanatory drawing.
  • FIG. 41A is an explanatory view for explaining the third safety attaching / detaching operation shown in FIG. 40A
  • FIG. 41B is a state where the moving member is moved between the contact portion and the stopper from the state shown in FIG. 41A.
  • FIG. 3 is a schematic perspective view of a surgical robot system in which a base part to which a working part can be attached and detached is connected to a tip of a robot arm.
  • the manipulator (medical manipulator) 10 grips a predetermined part of a living body or a curved needle or the like on a distal end working unit 12 provided at the distal end of a connecting shaft 18. It is a medical instrument for performing treatment, and is usually called a grasping forceps or a needle driver (needle holder).
  • the width direction in FIG. 1 is defined as the X direction
  • the height direction is defined as the Y direction
  • the extending direction of the connecting shaft 18 is defined as the Z direction.
  • the right side is defined as the X1 direction, the left side as the X2 direction, the upward direction as the Y1 direction, the downward direction as the Y2 direction, the forward direction as the Z1 direction, and the backward direction as the Z2 direction.
  • the description of these directions is based on the case where the manipulator 10 is in a neutral posture. These directions are for convenience of explanation, and it is needless to say that the manipulator 10 can be used in any direction (for example, upside down).
  • the manipulator 10 includes an operation unit (base unit) 14 that is manually held and operated, and a work unit 16 that is detachable from the operation unit 14, and a controller 514 that is detachable from the operation unit 14 via a connector 520. It is comprised as a manipulator system which has.
  • the operation unit 14 is provided with a drive unit (actuator unit) 30 that electrically drives the working unit 16 side.
  • the separated operation unit 14 is shown in FIG. 2, and the separated operation unit 16 is shown in FIG.
  • the controller 514 is a control unit that comprehensively controls the manipulator 10, and is connected to the cable 61 extending from the lower end of the grip handle (handle) 26 via the connector 520. A part or all of the functions of the controller 514 can be integrally mounted on the operation unit 14, for example.
  • the controller 514 includes, for example, a first port 515a, a second port 515b, and a third port 515c, and can control three manipulators 10 independently at the same time.
  • Reference numeral 516 in FIG. 1 is a power switch of the controller 514.
  • the controller 514 can be connected to a host computer 502 which is a usage history management unit via a communication unit such as a LAN.
  • the host computer 502 records a usage history table in an internal recording means (not shown), and transmits / receives usage history data corresponding to the requested individual number to the controller 514 or a plurality of controllers connected by the LAN. And manage.
  • the host computer 502 is not limited to a configuration independent of the controller 514, and the function may be provided in the controller 514.
  • Such a manipulator 10 and a system including the manipulator 10 can selectively adopt various configurations.
  • the working unit 16 applies various end effectors such as a gripper and scissors as the distal end working unit 12 to obtain a desired configuration. The action can be performed.
  • the operation unit 14 is configured in a substantially L shape extending in the Z1 direction and the Y2 direction, and a pair of upper covers 25a and 25b (substantially divided in the Z direction).
  • the drive unit 30 and the camera 224 (see FIG. 6) and the like are housed in the housing, and the portion extending in the Y2 direction on the base end side is also referred to as the “upper cover 25”.
  • the grip handle 26 is configured to be gripped by a hand.
  • the upper cover 25 may be formed of a resinous material, for example, and may have an integral configuration that cannot be divided.
  • the grip handle 26 has a length suitable for being manually gripped, and has the composite input portion 24 on the upper inclined surface 26a.
  • the grip handle 26 extends in an approximately Y2 direction from an inclined surface 26a formed in a bent portion of the upper cover 25.
  • the grip handle 26 has an angle of about 75 ° (degrees) with respect to the axis of the connecting shaft 18. It extends to. By making such an angle, it has been confirmed that the operability when moving the entire manipulator 10 is enhanced and the operability of the composite input unit 24 is enhanced.
  • a master switch (main switch) 34 is provided in the vicinity of the top of the operation unit 14 in the Y1 direction so as to be exposed from the upper cover 25. Is provided.
  • the working unit 16 includes a distal end working unit 12 for performing work, a long and hollow connecting shaft (shaft) 18 provided with the distal end working unit 12 at the tip, and a lower bracket to which the proximal end side of the connecting shaft 18 is fixed. 32 and a trigger lever 36 pivotally supported at the end of the lower bracket 32 in the Z2 direction.
  • the working unit 16 has a pair of lower covers 37a and 37b (hereinafter, collectively referred to as “lower cover 37”) divided substantially symmetrically in the Z direction as a housing, and houses the lower bracket 32 therein. .
  • the lower cover 37 may be formed of a resinous material, for example, and may have an integral configuration that cannot be divided.
  • Such a working unit 16 is fixed to the operation unit 14 by a pair of left and right attachment / detachment levers 400 and 400 provided in the operation unit 14 (drive unit 30), and from the operation unit 14 by an opening operation of the attachment / detachment lever 400. It is separable and can be easily replaced at the surgical site without using a special instrument.
  • the upper surface (Y1 surface) of the lower bracket 32 is provided with a cleaning liquid injection port 39 used for cleaning the internal space in order to reuse the lower bracket 32.
  • the distal end working unit 12 and the connecting shaft 18 are configured to have a small diameter, and can be inserted into a body cavity 22 from a cylindrical trocar 20 provided in a patient's abdomen or the like.
  • a body cavity 22 By operating the (base part side input part) 24 and the trigger lever (working part side input part) 36, various procedures such as excision of the affected part, grasping, suturing and ligation can be performed in the body cavity 22.
  • the tip operation unit 12 that operates based on the operation of the composite input unit 24 and the trigger lever 36 can be operated in three axes. That is, a yaw axis operation that tilts with respect to the Y axis, a roll axis operation that rotates with respect to an axis pointing at the tip (Z axis in the neutral posture), and a gripper axis operation that can be opened and closed.
  • the yaw axis and the roll axis are electrically driven based on the operation of the composite input unit 24, and the gripper axis is mechanically driven based on the operation of the trigger lever 36.
  • mechanical is a method of driving through wires, chains, timing belts, links, rods, gears, etc., and is mainly a method of driving through solid mechanical parts that are inelastic in the power transmission direction. is there.
  • Wires, chains, and the like may have some inevitable elongation due to tension, but these are inelastic solid mechanical parts.
  • a load limiter 212 (see FIG. 18), which will be described later, has almost no elastic deformation during normal operation and is substantially an inelastic part.
  • the driving unit 30 converts two motors (actuators) 100 and 102, an upper bracket 104 that supports the motors 100 and 102, and a rotation direction of the motors 100 and 102. And a gear mechanism unit 106 that transmits to the working unit 16 side.
  • the motors 100 and 102 and the gear mechanism 106 are supported by the upper bracket 104 fixed to the inner surface of one upper cover 25b with two screws 103 and 103 (see FIG. 6).
  • the motors 100 and 102 have a cylindrical shape with a diameter: length of about 1: 4, and are decelerated by the speed reducers 100a and 102a provided on the Z1 direction side, and the speed reducers 100a and 102a.
  • the motors 100 and 102 are, for example, DC motors.
  • the reduction gears 100a and 102a are, for example, planetary gear types, and the reduction ratio is about 1: 100 to 1: 300.
  • a rotary encoder is used as the angle sensors 100 c and 102 c, and the detected angle signal is supplied to the controller 514.
  • the motor 100 and the motor 102 or the speed reducer 100a and the speed reducer 102a are not necessarily the same, and may be selected as appropriate.
  • the motor 100 and the motor 102 are arranged symmetrically in the X direction with almost no gap.
  • the Z2 direction ends of the motors 100 and 102 are substantially equal to the Z1 direction end of the grip handle 26 (see FIG. 6).
  • the cables 100 d and 102 d (including the connection lines of the angle sensors 100 c and 102 c) of the motors 100 and 102 respectively extend from the Z2 direction end side and are pulled into the grip handle 26. Yes.
  • the upper bracket 104 includes a first plate 108 that is an XY plane to which the motors 100 and 102 are fixed, a second plate 110 and a third plate 112 that extend in the Z1 direction from the upper and lower ends of the first plate 108, and a first plate. 108, and a fourth plate 114 that partitions the space surrounded by the second plate 110 and the third plate 112 into the X1 side and the X2 side, and is formed by cutting or welding molding.
  • a block-shaped sensor support portion 109 protruding in the Y1 direction is formed.
  • an O-ring 105 is fitted in a groove that makes a round (see FIG. 7). ).
  • the first plate 108 has a height of about 1.5 times the outer diameter of the motors 100 and 102.
  • the motors 100 and 102 are supported on the first plate 108 in parallel with the X direction by a plurality of screws 111 in directions extending in the Z2 direction, and the output shafts 100b and 102b pass through the holes 113 and are Z1. Projects to the direction side.
  • the second plate 110 protrudes from the upper end of the first plate 108 in the Z1 direction.
  • the third plate 112 slightly protrudes in parallel with the second plate 110 and at the end in the Z1 direction, and the sensor support 109 is provided on the protruding portion.
  • Three sides of the fourth plate 114 are connected to the first plate 108, the second plate 110, and the third plate 112, and form a YZ plane at the central portion in the X direction.
  • the fourth plate 114 acts as a reinforcing plate, and the first plate 108, the second plate 110, and the third plate 112 are stabilized.
  • the corners of the fourth plate 114 in the Z1 direction and the Y1 direction are formed to project to the Z1 side, and one of the screws 103 for fixing the upper bracket 104 to the inner surface of the upper cover 25b is disposed here (FIG. 6). And FIG. 9).
  • the sensor support 109 includes a pair of holes 300 and 302 on the extension line (Z direction) of the motors 100 and 102, and a hole 304 located therebetween. A total of three through holes in the Y direction are arranged in the X direction.
  • Detection shafts (detection shafts) 310 and 312 that function as sensor dogs (detected members) of the working unit origin sensors (detection sensors) 306 and 308 are inserted into the holes 300 and 302, respectively.
  • a detection shaft (detection shaft) 316 that functions as a sensor dog of the attachment / detachment sensor 314 is inserted through the hole 304.
  • the working unit origin sensors 306, 308 and the attachment / detachment sensor 314 are substantially U-shaped in a plan view (see FIG. 8) opened in the Y direction, and can detect the detection shafts 310, 312, 316 inside the U-shape. .
  • the working unit origin sensors 306 and 308 and the attachment / detachment sensor 314 are provided on a sensor substrate 317 fixed to the Z1 surface of the sensor support unit 109 along the XY plane (see FIGS. 6, 8, and 9).
  • the detection shaft 316 of the attachment / detachment sensor 314 is a stepped rod-like member that extends in the Y direction and has a narrow Y1 side.
  • the detection shaft 316 is urged toward the Y2 direction (downward) by a coil spring 318 externally fitted to the small diameter portion at the center in the height direction, and the E ring 320 is fitted near the end in the Y1 direction. Therefore, the hole 304 is prevented from coming off.
  • the upper part of the coil spring 318 is seated on a flange 304a having a reduced diameter formed at the end of the hole 304 in the Y1 direction, and the lower part is seated and held on a flange 316a formed substantially at the center of the detection shaft 316.
  • the flange 316a constitutes one side wall of an annular groove into which the O-ring 320 is fitted.
  • the detection shafts 310 and 312 of the working unit origin sensors 306 and 308 are also rod-like members with a step extending in the Y direction and having a thin Y1 side.
  • the detection shafts 310 and 312 are urged toward the Y2 direction (downward) by coil springs 322 and 324 that are externally fitted to the narrow diameter portion on the Y1 side.
  • the detection shafts 310 and 312 are formed by the E-rings 327 and 329 fitted near the Y1 direction end (upper end), and the support members 340 and 342 fixed to the Y2 direction end (lower end).
  • the stopper 302 is prevented from coming off.
  • the support members 340 and 342 are members that support small-diameter detection pins 344 and 346 extending in the Y direction on the Z2 side (see FIG. 9).
  • the detection pins 344 and 346 are arranged on the Z2 side so as to be parallel to the detection shafts 310 and 312, and the upper ends of the detection pins 344 and 346 are formed on the Z side of the holes 300 and 302. Is supported by insertion. These detection pins 344 and 346 are slid with their front spherical surfaces 344a and 346a seated on cam surfaces 175 and 175 (see FIG. 22A) formed on the outer peripheral surfaces of the engagement recesses 176a and 176b on the working unit 16 side. It is possible to contact.
  • the detection pins 344 and 346 advance and retreat in the Y direction in accordance with the change in the axial position (Y direction position) due to the rotation of the cam surface 175, and can advance and retract the detection shafts 310 and 312 in the Y direction.
  • the upper portions of the coil springs 322 and 324 are seated on flanges 300a and 302a formed with reduced diameters at the ends of the holes 300 and 302 in the Y1 direction, and the flanges 310a and 312a formed slightly below the center of the detection shafts 310 and 312.
  • the lower part is seated and held.
  • the flanges 310a and 312a constitute one side wall of an annular groove into which the O-rings 326 and 328 are fitted.
  • Detection heads 310c and 312c corresponding to the working unit origin sensors 306 and 308 are provided at the ends (upper ends) of the detection shafts 310 and 312 in the Y1 direction.
  • the gear mechanism unit 106 is a space surrounded by the first plate 108, the second plate 110, and the third plate 112, and the X direction with respect to the fourth plate 114.
  • the gear mechanism unit 106 includes two drive shafts (drive shafts) 115 and 116, two drive bevel gears 117 and 118, and two driven bevel gears 119 and 120.
  • the second plate 110 and the third plate 112 constituting the upper bracket 104 have shaft holes 126 and 128 corresponding to the drive shafts 115 and 116, respectively, in which bearings 122 and 124 are arranged.
  • a pair is provided.
  • the bearings 122 and 124 are positioned by a part of the outer ring abutting against the end surfaces of the second plate 110 and the third plate 112.
  • a stop plate 130 for stopping the outer ring of the bearing 122 is fixed to the upper surface of the second plate 110 by a plurality of screws 129 (see FIGS. 7 and 8).
  • the stop plate 130 is provided with a pair of holes 130a and 130a (see FIG. 9) through which the Y1 direction ends (upper ends) of the drive shafts 115 and 116 are inserted.
  • the output shaft 100b (102b) of the motor 100 (102) extends through the hole 113 to the vicinity of the drive shaft 115 (116) in the Z direction, and the drive bevel gear 117 (118). Is fixed by a push screw 134.
  • a driven bevel gear 119 (120) is fixed to the drive shaft 115 (116) by a push screw 136 (see FIG. 9).
  • the drive bevel gear 117 (118) and the driven bevel gear 119 (120) mesh with each other, and the rotation of the output shaft 100b (102b) can be converted by 90 ° and transmitted to the drive shaft 115 (116).
  • the upper end side (Y1 side) of the drive shaft 115 (116) passes through the bearing 122 and protrudes from the hole 130a of the stop plate 130 by a predetermined amount.
  • a detection piece 333 (334) having a plurality of protruding pieces 333a (334a) protruding radially from the axis center at an equal phase in plan view (see FIG. 8). ) Is fixed.
  • the detection piece 333 (334) rotates with the drive shaft 115 (116), and functions as a sensor dog of a substantially U-shaped motor phase sensor (drive shaft phase sensor) 331 (332) in a side view (see FIG. 9).
  • the motor phase sensors 331 and 332 are provided on the Z1 side surface of the sensor substrate 335 erected on the upper surface of the second plate 110 constituting the upper bracket 104.
  • the lower end side (Y2 side) of the drive shaft 115 (116) has a stepped shape below the portion pivotally supported by the bearing 124, and the O-ring 131 is sequentially fitted on the lower side.
  • An engagement convex portion 137 (138) having a tapered shape is provided (see also FIG. 22A).
  • the engagement convex portions 137 and 138 are linear portions 137a and 138a that are linear in the Y direction on the proximal end side, and taper portions 137b and 138b that are continuous from the distal end side of the linear portions 137a and 138a and have a tapered shape. It consists of and.
  • the upper end of the central portion 115d (116d) is in contact with the inner ring of the bearing 122, and the upper end of the flange 115a (116b) continuous to the lower portion of the central portion 115d (116d) is the inner ring of the bearing 124. It is positioned by abutting (see FIG. 9).
  • the drive shafts 115 and 116 are disposed on an extension line (Z direction) of the motors 100 and 102 in a plan view (see FIG. 8).
  • the motors 100 and 102 have a larger diameter than the connection shaft 18.
  • parallel arrangement becomes possible and the degree of freedom of motor arrangement increases.
  • the motor 100 and the motor 102 and the drive shaft 115 and the drive shaft 116 are provided at symmetrical positions with respect to the Y direction with respect to the connecting shaft 18, and thus have a good balance.
  • the second plate 110 and the third plate 112 act as pivot support members that pivotally support the drive shafts 115 and 116 with the driven bevel gears 119 and 120 interposed therebetween, and the first plate 108 serves as the motors 100 and 102.
  • the second plate 110 and the third plate 112 are connected to each other, and high rigidity is obtained while being simple, and the motors 100 and 102 and the drive shafts 115 and 116 can be stably provided. Can be held. Further, by providing the fourth plate 114 connecting the first plate 108, the second plate 110, and the third plate 112 between the drive shafts 115, 116, higher rigidity can be obtained.
  • the lower bracket 32 is formed in a substantially rectangular shape (see FIG. 6) in side view extending in the Z direction, and the Z1 side constitutes a pulley box 32a having a box structure.
  • the trigger lever attaching part 32b which consists of a pair of plate structure with which Z2 side of the box 32a was parallel is comprised.
  • the pulley box 32a is detachably connected to the gear mechanism unit 106 of the drive unit 30 so that the rotation of the drive shafts 115 and 116 is transferred from the coupling shaft 18 to the distal end working unit 12.
  • the trigger lever 36 is pivotally supported by the trigger lever mounting portion 32b, and the operation of the trigger lever 36 is relayed from the connecting shaft 18 to the distal end working portion 12.
  • 3 has a function of maintaining an airtight state in the connecting shaft 18.
  • the pulley box 32a includes a hollow portion 152 that is open on both sides in the X direction, a shaft support portion 154 on the Z1 side of the hollow portion 152, a rod hole 156a on the Z2 side of the hollow portion 152, 156b, pulleys (driven shafts) 158a and 158b and wire guide portions 160a and 160b housed in the cavity 152.
  • a pair of pin holes 161 and 161 symmetrical with respect to the Z direction are formed in the vicinity of the connecting portion between the pulley box 32a and the trigger lever mounting portion 32b.
  • a pair of guide pins 163 and 163 projecting from the upper bracket 104 in the Y1 direction are inserted into the pin holes 161 and 161 when the working unit 16 and the operation unit 14 are attached and detached (see FIGS. 2 and 6).
  • the hollow portion 152 is a hole that communicates both sides of the pulley box 32a in the X direction, and is provided slightly closer to the Z2 direction of the pulley box 32a in a side view (see FIG. 12), and both ends in the Z direction are semicircular. ing.
  • O-rings 164 and 164 surrounding the cavity 152 are provided on both sides in the X direction of the pulley box 32a (see FIGS. 6 and 13), and the O-ring 164 is formed by lower covers 37a and 37b attached from the outer surface. It is compressed moderately.
  • the shaft support portion 154 is a hole that communicates from the cavity portion 152 to the end surface in the Z1 direction of the pulley box 32a, and supports the proximal end side of the connecting shaft 18 that extends in the Z direction.
  • a cylindrical coupler 165 is provided at the end of the connecting shaft 18 in the Z2 direction (see FIGS. 12 and 13), and the shaft support portion 154 supports the connecting shaft 18 via the coupler 165.
  • Two O-rings 166 and 166 are provided between the coupler 165 and the connecting shaft 18, and an O-ring 168 is provided between the coupler 165 and the shaft support portion 154.
  • the connecting shaft 18 is fixed by fastening a clamp member 170 from the Y1 side to a notch formed at the upper end of the pulley box 32a in the Z1 direction (see FIGS. 11 and 12).
  • the hollow portion 152 has two pairs of coaxial holes 172a, 172a (Y1 side) and 172b, 172b (Y2 side) aligned in the Y direction, bearings 174a, 174a and 174b, respectively.
  • 174, and pulleys 158a and 158b are pivotally supported by the bearings 174a and 174b.
  • the pulleys 158a and 158b are coaxial with the drive shafts 115 and 116 (see FIGS. 6 and 7). Engagement projections 137 and 138 (see FIGS. 9 and 10) provided at the Y2 direction ends of the drive shafts 115 and 116 are engaged with the Y1 direction ends of the pulleys 158a and 158b protruding upward from the coaxial hole 172a. Engaging recesses 176a and 176b are provided (see FIGS. 11 and 12).
  • the engagement recesses 176 a and 176 b are upper ends as recesses each having a hexagonal cross-sectional shape and a tapered shape with which the engagement protrusions 137 and 138 are engaged (fitted).
  • a linear portion 171 linear in the Y direction and a tapered portion 173 continuous from the lower end of the linear portion 171 are provided.
  • the engagement convex portions 137 and 138 and the engagement concave portions 176a and 176b are, as will be described later, the pulleys 158a and 158b being driven and forcibly rotated, Engagement is possible even in the phase (see FIGS. 23A and 23B, etc.). By engaging these, the rotational driving force from the drive shafts 115 and 116 that are drive shafts is transmitted to the pulleys 158a and 158b that are driven shafts.
  • an annular cam surface whose axial direction position (Y-direction position) in the circumferential direction is changed on the outer periphery of the engagement recesses 176a and 176b. 175, that is, the pulleys 158a and 158b also have a function as a camshaft.
  • the cam surface 175 has a Y2 side low surface 175a having a low Y-direction position around the axis, a Y1-side high surface 175b having a high Y-direction position, and a slant that smoothly connects the low surface 175a and the high surface 175b. It is comprised from the surface 175c and the wall part 175d used as the boundary of the low surface 175a and the high surface 175b.
  • the cam surface 175 is a surface on which the detection pins 344 and 346 on the drive unit 30 side are seated when the operation unit 14 and the working unit 16 are mounted.
  • the distance between the axes of the pulley 158a and the pulley 158b is equal to the distance between the drive shaft 115 and the drive shaft 116 (see FIGS. 7 and 10), and the clearance between the pulley 158a and the pulley 158b is determined by the diameter of the connecting shaft 18. Is also large (see FIG. 13).
  • the pulleys 158a and 158b are hermetically sealed with an O-ring 178a so as to be rotatable with respect to the coaxial hole 172a, and are sealed with an O-ring 178b so as to be rotatable with respect to the coaxial hole 172b.
  • the pulleys 158a and 158b are prevented from coming off by E-rings 180 at the ends in the Y2 direction.
  • a diameter adjusting member 182 is interposed at the center of the pulleys 158a and 158b, and by appropriately selecting the diameter adjusting member 182, the winding diameter of the wires 1052 and 1054 described later can be adjusted. (See FIGS. 12 and 13).
  • the pulleys 158a and 158b may be integrated with the diameter adjusting member.
  • Engagement recesses 176a, 176b and cam surfaces 175, 175 provided at the upper ends of the pulleys 158a, 158b have a larger diameter than a portion located in the cavity 152, and are formed on the upper surface (Y1 direction surface) of the pulley box 32a.
  • circular arc cut portions 177 and 177 are formed by cutting a predetermined angle (for example, 270 °) of the outer periphery in the diameter reducing direction (center direction) (see FIG. 12). .
  • Stoppers (regulators) 179a and 179a are inserted and arranged in the respective arc notches 177 and 177 (see FIGS. 11 and 12).
  • the stopper 179a is a plate-like protrusion formed on the Z2 side of the stopper plate 179 that prevents the wire guide portions 160a and 160b from coming off at the ends in the Y1 direction.
  • the rotation range of the pulleys 158a and 158b is set so that the Z1 direction in the state shown in FIG. 177a and 177b are restricted to the range of normal rotation and reverse rotation until they contact the both side surfaces of the stopper 179a. That is, as shown in FIG. 14A, the rotation range of one pulley 158a is clockwise (less than 180 °) in the clockwise direction (below FIG. 14A is a bottom view). As indicated by an arrow + ⁇ (for example, 90 °) and a counterclockwise rotation (in FIG. 14A, because it is a bottom view, clockwise) (less than 180 °) range (indicated by an arrow ⁇ in FIG.
  • the rotation range of the other pulley 158b also includes a clockwise forward rotation range (indicated by arrow + ⁇ in FIG. 14A, for example, 135 °) and a counterclockwise reverse rotation range (arrow ⁇ in FIG. 14A). For example, 135 °).
  • the rotation range of the pulleys 158a and 158b may be restricted by other structures.
  • the pulleys 158a and 158b engaging recesses 176a and 176b protrude in the outer diameter direction.
  • the abutting portion (abutting member) 177c is provided, and abuts on the upper surface (Y1-direction surface) of the lower bracket 32 when the abutting portion 177c performs predetermined forward rotation and reverse rotation, and further rotates.
  • a stopper 179b for regulating may be provided.
  • These contact portions 177c and stoppers 179b are arc-shaped notches 177 (see FIGS. 12 and 14A) formed in the lower portions of the engagement recesses 176a and 176b as in the structure of the contact portions 177a and 177b and the stopper 179a. ).
  • the wire guide portion 160 a (160 b) includes an insertion shaft 184, two layers of cylindrical idlers 186 and 188 that are supported adjacent to the insertion shaft 184, and these cylindrical idlers 186. And positioning cylinders 190a and 190b for positioning 188.
  • the insertion shaft 184 extends in the Y direction, passes through the Y1 side through hole 194a with respect to the pulley box 32a, and is inserted into the bottomed hole 194b on the Y2 side, and the end of the through hole 194a in the Y1 direction is stopped. It is blocked by a plate 179.
  • the insertion shaft 184 is sealed in the vicinity of the stop plate 179 by an O-ring 193.
  • the insertion shaft 184 is provided with a positioning cylinder 190a, a cylindrical idler 186, a cylindrical idler 188, and a positioning cylinder 190b in this order from the Y1 side to the Y2 side. Cylindrical idlers 186 and 188 are independently rotatable pulleys.
  • the gap S1 between the two cylindrical idlers 186 and 186 constituting the wire guide portions 160a and 160b is narrower than the inner diameter of the connecting shaft 18. , About 1/2 of the inner diameter.
  • the cylindrical idlers 186 and 188 are rotatable, and grooves 186a and 188a in which the wires 1054 (1052) are disposed are provided on the peripheral surfaces thereof.
  • the cylindrical idlers 186 and 188 do not necessarily have to be rotatable as long as appropriate lubricity is ensured.
  • the connecting shaft 18 is sufficiently thin without depending on the diameters of the motors 100 and 102 and the distance S2 between the pulleys 158a and 158b (see FIG. 13). For example, it can be set to about 5 mm to 10 mm suitable for insertion into the trocar 20. Moreover, the freedom degree of arrangement
  • two rods 192a and 192b which are rod-shaped or linear transmission members, are arranged in the Y direction and penetrate in the Z direction. Yes.
  • the rods 192a and 192b are, for example, sufficiently strong and thin stainless steel pipes or solid rods, and the Z1 direction extends through the hollow portion 152 into the connecting shaft 18, and the Z2 direction passes through the rod holes 156a and 156b. Then, it extends to the trigger lever mounting portion 32b.
  • a rectangular plate-shaped rubber sheet 194 surrounding the periphery of the rod holes 156a and 156b, and a support plate 196 for closely supporting the rubber sheet 191 are provided on the opening side (Z2 side) of the rod holes 156a and 156b.
  • the rods 192a and 192b are inserted through a pair of through holes provided in the rubber sheet 194 and the support plate 196, respectively, and the sliding contact surfaces penetrating the rubber sheet 194 are sealed. That is, the rubber sheet 194 comes into contact with the rods 192a and 192b without a gap, and hermetically seals the cavity 152 and the connecting shaft 18 so as to be movable back and forth in the Z direction.
  • the hollow portion 152 constituting the pulley box 32a is sealed with the rubber sheet 194 with respect to the rods 192a and 192b (see FIG. 12), and with the O-rings 178a and 178b with respect to the pulleys 158a and 158b.
  • the wire guide portions 160a and 160b (insertion shaft 184) are sealed with an O-ring 193 (see FIG. 12)
  • the connecting shaft 18 is sealed with O-rings 166 and 168 (see FIG. 12).
  • the lower covers 37a and 37b are sealed by an O-ring 164 (see FIGS. 6 and 13), thereby being kept airtight.
  • the outer peripheral surface of the connecting shaft 18 is airtightly supported by a trocar 20 (see FIG. 1).
  • the gas supplied to the body cavity 22 does not leak out from the connection shaft 18 via the pulley box 32a. Furthermore, it is possible to suppress, as much as possible, a situation in which liquid such as blood enters the connecting shaft 18 and the pulley box 32a from the gap of the distal end working unit 12 due to the sealed air.
  • the pulley box 32a and the operation unit 14 can be easily cleaned. In addition, it is good also as a structure which provides a partition part etc. in the inside of the connection shaft 18, and maintains an airtight state.
  • the clamp member 170 at the upper end in the Z1 direction of the pulley box 32a is provided with an electrode rod 197 standing in the Y1 direction.
  • the electrode rod 197 is inserted into a Y-direction through hole 198 formed in the upper cover 25b, and an electrode plug 199 (see FIG. 1) is attached, so that a high voltage when using the manipulator 10 as an electric knife is increased. Applied.
  • the electrode rod 197 is electrically connected to the one wire guide portion 160b by the conductive plate 195 (see FIG. 11), and thus, the wire rod 1052 that contacts the wire guide portion 160b moves toward the distal end working portion 12 side. High voltage can be transmitted.
  • the rods 192a and 192b are arranged in parallel in the Y direction inside the coupler 165 and the connecting shaft 18, and the reciprocating lines of the wires 1052 and 1054 are arranged close to each other in the Y direction.
  • the wire 1052 and the wire 1054 are arranged in parallel in the X direction and are arranged in a well-balanced manner.
  • the trigger lever mounting portion 32 b has a trigger shaft 35 extending between a pair of support plates 201, 201 extending in parallel with the Z2 direction from the end surface of the pulley box 32 a in the Z2 direction.
  • the trigger lever 36 is pivotally supported.
  • the trigger lever 36 includes an arm part 200 that is pivotally supported by the trigger shaft 35, a ring part 202 provided on the Y ⁇ b> 2 side of the arm part 200, and Y ⁇ b> 2 of the ring part 202.
  • the ring part 202 is mainly suitable for inserting an index finger (or middle finger), and the finger hooking protrusions 204a and 204b are mainly suitable for hanging the middle finger (or ring finger).
  • the ratchet claw 206 is supported by the swing shaft 207 on the Z1 side, and a claw portion 206a formed by a recess 206b and directed upward is provided on the Z2 side. Is biased in the Y2 direction by the coil spring 209. As a result, the claw portion 206a is urged upward, and the recess 206b abuts against the stopper pin (stopper member) 211 across the internal space 203 in the X direction, thereby further swinging upward. It is regulated.
  • the claw portion 206a of the ratchet claw 206 is engaged in a substantially U shape in plan view protruding from the grip handle 26 in the Z1 direction. It contacts the mating ring (engagement portion) 27 (see FIGS. 2, 6, and 16).
  • the engaging ring 27 is slidably contacted with the Z2 side inclined surface of the claw 206a, and the claw 206a is slightly swung downward against the urging force of the coil spring 209.
  • the ratchet claw 206 is returned to a position where it comes into contact with the stopper pin 211 by the urging force of the coil spring 209, and at the same time, the engagement ring 27 is moved to the claw 206a ( Engages with the recess 206b) (see FIG. 17A).
  • the position of the trigger lever 36 can be held, and the end effector 1300 (see FIG. 1) can be locked in the closed state.
  • the engagement ring 27 may be provided in multiple stages, for example, and in this case, the lock position or gripping force of the trigger lever 36 can be adjusted according to the gripping target.
  • the lever 208 is a substantially L-shaped member partially exposed from the internal space 203 in the Z1 direction (see FIG. 16).
  • the lever 208 is supported at one end in the internal space 203 by the swing shaft 213 and is normally pressed by the Z1 direction end of the ratchet pawl 206 urged in the Y2 direction by the coil spring 209, as shown in FIG. 17A. It is held in such an initial posture.
  • an inclined surface 203a that is inclined upward is formed in the upper portion of the internal space 203 of the trigger lever 36, and a concave portion 203b that is dug deeper than other portions is formed. ing. Thereby, the engagement ring 27 on the grip handle 26 side can be smoothly engaged with the ratchet pawl 206 from the recess 203b.
  • the ratchet pawl 206 is swung upward by the stopper pin 211. Since the inclined surface 203a and the recessed portion 203b act as escape portions for the engagement ring 27, the engagement ring 27 can be easily moved along the inclined surface 203a as shown by the broken arrow in FIG. 17A. Can be removed. For this reason, the engagement state between the engagement ring 27 and the ratchet pawl 206 is firmly maintained, and it is possible to effectively avoid the generation of an excessive force on the engagement ring 27 and the trigger lever 36.
  • an engagement ring having a structure corresponding to the engagement ring 27 is provided on the ratchet claw 206 side instead of the claw portion 206a and the concave portion 206b, while a structure corresponding to the claw portion 206a (and the concave portion 206b).
  • the trigger lever mounting portion 32b extends from the Z2 direction end surface of the pulley box 32a and supports a pair of support plates 201 and 201 that pivotally support the trigger lever 36 near the end of the Z2 direction.
  • a load limiter 212 and a trigger wire 214 provided between the plates 201 and 201 are provided.
  • the center between the support plates 201 and 201 is substantially coaxial with the connecting shaft 18.
  • the support plate 201 may be, for example, a cylindrical shape other than a pair of parallel plate members, and may be any shape that can support the trigger shaft 35, the load limiter 212, and the like.
  • the load limiter 212 has a cylindrical shape and includes an outer cylinder 212a, an inner rod 212b, and a coil spring 212c.
  • the inner rod 212b at the end in the Z1 direction is pivotally supported by the end of the rod 192a, and the end at the end in the Z2 direction.
  • An outer cylinder 212 a is pivotally supported on a shaft 200 a in the arm portion 200.
  • a shaft 205 that pivotally connects the inner rod 212b and the rod 192a is supported in a slidable manner in an elongated hole 215 provided in the support plate 201 (see FIG. 19). Thereby, irrespective of the angle of the rod 192a and the inner rod 212b, the rod 192a can be moved straight in the Z direction.
  • the coil spring 212c is moderately hard and is interposed between the outer cylinder 212a and the inner rod 212b in a preloaded state. Therefore, the load limiter 212 normally connects the rod 192a and the trigger lever 36 as a substantial rigid body, but when an excessively large load is applied, that is, the end effector 1300 pinches something or the like. When a load greater than the preload is applied, the coil spring 212c is further compressed and the inner rod 212b extends. Thus, even if the trigger lever 36 is pulled too strongly, the force is limited by the load limiter 212, and the end effector 1300 (see FIG. 1) and its drive mechanism or gripping object can be protected. .
  • the maximum load of the load limiter 212 is set so that the driving mechanism such as the trigger wire 214 is less than the allowable strength even when the trigger lever 36 is pulled most forward when the end effector 1300 is fully opened. It is desirable that
  • the trigger wire 214 is connected (for example, crimped) to the end of the rod 192b at the end in the Z1 direction, and the end in the Z2 direction is pivotally supported by the shaft 200b in the arm unit 200 via the pin 214a.
  • the trigger wire 214 is guided by a pulley 216, and a portion closer to the Z1 side than the pulley 216 is substantially coaxial with the rod 192b.
  • the shaft 200a is disposed on the Y2 side of the trigger shaft 35
  • the shaft 200b is disposed on the Y1 side of the trigger shaft 35
  • the shafts 200a and 200b are substantially equidistant from the trigger shaft 35. Therefore, by operating the trigger lever 36, the shaft 200a and the shaft 200b are displaced in the opposite directions by substantially the same distance, and accordingly, the rod 192a and the rod 192b are moved in the opposite directions (Z1 direction and Z2 direction). Displace.
  • the trigger shaft 35, the rods 192a and 192b, the shafts 200a and 200b, the load limiter 212, the trigger wire 214, and the like serve as an operation transmission unit that mechanically transmits the input operation to the trigger lever 36 to the distal end operation unit 12. It is composed.
  • the operation transmission unit may include other components or any of the components may be omitted. In short, a configuration in which the transmission member such as the rods 192a and 192b can be advanced and retracted by an input operation to the trigger lever 36. If it is.
  • both the support plates 201 are located near the pulley box 32 a.
  • a barcode plate 220 is fixed, and a barcode 222 is provided on the surface thereof.
  • the barcode 222 is, for example, a substantially square matrix shape, and is a two-dimensional barcode printed with white and black according to the grid, and the camera 224 provided on the operation unit 14 side passes through the mirror 226 and the photographing window 227. (See FIGS. 6 and 19).
  • the barcode 222 is attached to the upper surface (Y1 direction surface) of the barcode plate 220 constituting the XZ plane, and is formed on the mating surface of the lower covers 37a and 37b. It is exposed to the upper part by the notch 230.
  • the barcode 222 includes individual information, specifications, time stamp (manufacturing date, etc.), serial number, usage amount (usage count) upper limit, etc. of the working unit 16. The individual information held by the barcode 222 is given a different value so that it can be identified for each working unit. Further, since the barcode 222 is photographed through the mirror 226, it is a mirror image.
  • the barcode 222 is not limited to a single sheet, and may be composed of a plurality of sheets. When the barcode 222 is composed of two pieces, one piece shows individual information such as individual information, production date, serial number, etc., and the other piece shows common information for each type such as specifications and upper limit of usage amount. You may do it.
  • the barcode 222 is not limited to two-dimensional data, and may be a one-dimensional shape.
  • the color of the grid in the barcode 222 is not limited to white and black, but may be an infrared absorption color and an infrared reflection color, or information may be indicated by distinguishing three or more colors.
  • the camera 224 is disposed below the motors 100 and 102 constituting the operation unit 14, and is fixed to the inner surface of one upper cover 25b.
  • a pair of LEDs 224a and 224a are provided on both sides in the X direction of the camera 224 (see also FIG. 7).
  • the camera 224 is a camera for imaging the barcode 222, for example, having a CCD format or a CMOS format.
  • the camera 224 is set in a direction (substantially Z1 direction) in which the imaging direction is bent by the mirror 226 that is a reflecting mirror and the barcode 222 can be imaged, that is, the bending direction (orthogonal direction).
  • the bar code 222 that is the subject located at () can be imaged via the mirror 226.
  • the LED 224a is set in a direction (approximately Z1 direction) in which the optical axis is bent by the mirror 226 and the barcode 222 is illuminated.
  • the LED 224a allows the camera 224 to recognize the barcode 222 more reliably.
  • the LEDs 224a are provided at symmetrical positions with the camera 224 in between, and can illuminate the barcode 222 with good balance.
  • the LEDs 224a may be provided above and below the camera 224, or three or more LEDs may be provided at equal intervals. If the LED 224a has a sufficient amount of light, it may be one.
  • a photographing window 227 that allows the upper cover 25 to pass through is provided in the Y2 direction of the mirror 226 (see FIG. 19). That is, in the operation unit 14, the camera 224, the LED 224a, and the mirror 226 are stored in the upper cover 25. (See FIGS. 2 and 6). Further, in a state where the working unit 16 is mounted on the operation unit 14, the barcode 222 is also disposed in the substantially closed space by the upper cover 25 and the lower cover 37, so that the barcode 222 and the camera are used when the manipulator 10 is used.
  • the 224 can be prevented from being contaminated with blood or the like, and unnecessary disturbance light can be shielded to enable stable imaging with the LED 224a.
  • the relative position and orientation of the barcode 222 and the camera 224 are fixed, it is not necessary to specify the position and orientation of the barcode 222 on the camera 224 side, and a code for specifying them. Therefore, the amount of information that can be recorded on the barcode 222 is increased, or a space-saving arrangement is possible.
  • the operation unit 14 and the controller 514 can recognize individual information of the working unit 16 using the camera 224, and the motor 100 constituting the manipulator 10, 102 and the like can be appropriately and accurately driven and controlled so as to correspond to the type of the working unit 16 (for example, gripper, scissors, electric knife).
  • the type of the working unit 16 for example, gripper, scissors, electric knife.
  • the attachment of the working unit 16 to the operation unit 14 can be quickly detected by the detachable sensor 314 and the detection shaft 316 (see FIG. 7 and the like). Therefore, in the controller 514, the detection of the attachment of the working unit 16 by the attachment / detachment sensor 314 can be used as a trigger signal for acquiring the individual signal from the barcode 222 by controlling the activation of the camera 224 and the LED 224a.
  • the controller 514 obtains an individual signal from the barcode 222 by drivingly controlling the camera 224 and the LED 224a substantially simultaneously with the operation unit 16 being mounted on the operation unit 14.
  • the controller 514 it is only necessary to acquire the individual signal at least when the working unit 16 is attached to the operation unit 14, and the operation of the camera 224 and the LED 224a can be stopped at other times, thereby reducing the processing load.
  • power saving can be achieved.
  • the bar code 222 does not need to be directly energized, the operation unit 14 and the work unit 16 have no electrical contacts, and there is no power storage unit such as a battery, so that the power consumption is further reduced. It is possible to more easily perform cleaning, sterilization, and the like of the working unit 16 removed from the apparatus.
  • the master switch 34 (see FIGS. 1 and 6) is an input means for setting whether the operation state of the manipulator 10 is valid or invalid, and its operation is detected by an input detection unit (such as a toggle switch or a tact switch) 350. The detected signal is supplied to the controller 514.
  • the LED 29 is an indicator that indicates the control state of the manipulator 10, has a size that can be easily recognized by the operator, and is sufficiently small and light enough that there is no hindrance to the operation.
  • the LED 29 is provided at a position with good visibility at a substantially central portion on the top surface (Y1 direction surface) of the upper cover 25, and is arranged side by side with the master switch 34.
  • the LED 29 is turned on in synchronization with the ON operation by the master switch 34, the operator can surely recognize the input state by the LED 29 while operating the master switch 34.
  • the LED 29 can emit, for example, green and red, and can be turned on and off for each color.
  • the master switch 34 is disposed on a substrate 354 fixed to the inner surface of one upper cover 25 b via a support member 352, and a portion in the upper cover 25 is formed by the switch cover 356. Sealed from the outside.
  • the controller 514 (see FIG. 1) reads the input state of the master switch 34, and when it is turned on, performs an origin search operation described later to drive-control the manipulator 10 to a predetermined usable state. Thereby, the operation command of the operation unit 14 becomes valid, and a desired operation can be given to the distal end operation unit 12.
  • the composite input unit 24 has a symmetrical structure in the X1 direction and the X2 direction around the Z axis (Y axis), and is in the roll direction (axial rotation direction) with respect to the distal end working unit 12. ) And a yaw direction (left-right direction) rotation command.
  • the upper surface of the grip handle 26 is an inclined surface 26a that rises in the Y1 direction toward the Z1 direction, and the composite input unit 24 is provided on the inclined surface 26a.
  • the inclination angle of the inclined surface 26a is an angle at which the composite input unit 24 can be easily operated with the thumb or index finger when the grip handle 26 is gripped by hand, and is preferably about 20 ° to 35 ° with respect to the Z direction.
  • the composite input unit 24 is supported by the sensor holder 52 disposed on the inclined surface 26a, and is provided on the Z1 side (Y1 side) of the inclined surface 26a and on the Z2 side (Y2 side) thereof.
  • the tilt operation unit 56 includes three switch operators 58a, 58b, and 58c disposed on the lower side surface of the tilt operation unit 56, respectively.
  • a switch substrate 62 is provided in the sensor holder 52, and the switch substrate 62 is tilted with an input detection unit (tact switch) 66 a that detects an input operation to the rotation operation unit 54.
  • An input detection unit (tact switch) 66b for detecting an input operation to the operation unit 56 and input detection units (tact switches) 66c to 66e for detecting an input operation to the switch operators 58a to 58c are provided.
  • the composite input unit 24 drives the motors 100 and 102, the drive shafts 115 and 116, and the pulleys 158a and 158b, and moves the tip operation unit 12 in the roll direction and yaw through the wires 1052 and 1054 which are flexible members. Can be operated in the direction.
  • the switch operator 58b switches between valid / invalid of the rotation operation unit 54 and the tilt operation unit 56 and returns the yaw axis mechanism (pivot axis mechanism) to a predetermined initial position (once it is pressed once, it automatically moves to the initial position). , Stop) or move in the initial posture direction (moves in the initial posture direction only when pressed, and automatically stops when the initial posture is reached).
  • the switch operators 58a and 58c are preferably used as switches for returning the roll rotation mechanism to a predetermined initial posture or moving it in the initial posture direction.
  • the switch operators 58a and 58c are arranged on the left and right as switches having exactly the same function, so that the operator can perform the same operation without any problem regardless of whether the operator grips the operation unit 14 with the right hand or the left hand. be able to. Specifically, the same operation with the thumb, for example, is possible in both the right-hand operation and the left-hand operation.
  • the roll rotation mechanism can be returned to a predetermined initial posture or moved in the initial posture direction without being aware of the current position of the roll rotation mechanism (positive region or negative region).
  • the rotation operation unit 54 is configured to be rotatable about an axis (not shown) along the YZ direction, and a lever 72a extending in the X1 direction and the X2 direction, and both levers 72a. , 72a, and a manipulator 72c provided with notches 72b in three directions that swell appropriately in the X, Y, and Z directions.
  • the left and right ends of the lever 72a have a semicircular shape with a number of anti-slip lines on the surface.
  • the operation element 72c forms a continuous surface (a flat surface or a curved surface) with the upper covers 25a and 25b in the initial position (see FIG. 4), and has no useless protrusions or steps, which is preferable in appearance. In addition, the shape is easy to operate.
  • the rotation operation unit 54 has a function of rotating the notch 72b of the operation element 72c in the circumferential direction with a finger and operating the roll rotation mechanism. As described above, according to the rotation operation unit 54 having the finger rest on the outer peripheral surface, the rotation operation is performed around the axis along the YZ direction, and an intuitive operability of the roll rotation mechanism is obtained. It is done. In addition, since the finger-hanging portion is provided on the outer diameter side of the end portion of the tilt operation portion 56, it is easy to use the finger hook portion with the tilt operation portion 56.
  • the tilting operation unit 56 is provided with a tilting plate 76 that can tilt around an axis 74 along the YZ direction.
  • the shaft 74 is the center of the composite input unit 24 in the X direction.
  • the tilt operation unit 56 has a function of operating a yaw shaft mechanism (pivot shaft mechanism) by performing a tilt operation by pushing the tilt plate 76 with a finger.
  • the rotation operation unit 54 is rotated in the circumferential direction, and the tilt operation unit 56 is tilted by being pushed.
  • the correspondence between the mechanism and the yaw (pivot) shaft mechanism is easily understood, and a more intuitive operation is possible.
  • the sensor holder 52 also has a function of tightly contacting the upper cover 25 and sealing the periphery of the composite input unit 24, and prevents liquid or the like from entering the upper cover 25 from the periphery of the composite input unit 24. ing.
  • a seal member separate from the sensor holder 52 may be provided.
  • the periphery of the composite input unit 24 is sealed by the sensor holder 52 (see FIGS. 4 and 6), and the periphery of the master switch 34 is sealed by the switch cover 356 (FIG. 6).
  • the camera 224 and mirror 226 and the barcode 222 is sealed by the photographing window 227 (see FIGS. 6 and 19), and the bottom surface of the upper bracket 104 is surrounded by O-rings 105, 131, 320, 326, and 328. Sealed (see FIGS. 6, 9 and 10) and sealed by this. Accordingly, it is possible to prevent blood, a cleaning solution, and the like from entering the upper cover 25, and the operation unit 14 can be easily cleaned and sterilized even when separated from the working unit 16.
  • the drive unit 30 is housed in the upper cover 25, and the gear from the lower surface side (Y2 direction) of the upper cover 25 in a state where the operation unit 14 and the working unit 16 are separated.
  • the bottom surface of the upper bracket 104 that supports the mechanism unit 106 and the like is exposed.
  • the two guide pins 163 and 163 are provided at both ends in the X direction of the bottom Z2 direction end of the upper bracket 104 at positions opposed to the two pin holes 161 and 161 of the lower bracket 32 (FIG. 6, FIG. 20A and FIG. 20B).
  • the two attachment / detachment levers 400 and 400 are provided symmetrically on the left and right side surfaces (X1 and X2 side surfaces) of the upper cover 25 that covers the driving unit 30, and are rotated along the Z direction.
  • the claw portion 400c formed on the inner side of the Y2 direction end is elastically biased in the direction toward the inner side of the upper cover 25.
  • the upper surface (Y1 side) of the detachable lever 400 is slightly depressed, and constitutes an operation surface 400d that is pressed by a finger to open the detachable lever 400 against the urging force of the elastic member 400b.
  • two guide pins 163 provided in parallel are fitted into the two pin holes 161 on the working unit 16 side, so that the drive unit 30 (the operating unit 14) is the working unit. 16 is reliably positioned and stably held.
  • the guide pin 163 can receive a moment acting in the XZ plane, and can reduce the force applied to the engaging portion, the pulley, the drive shaft, and the like.
  • the lower cover when mounting, the lower cover is positioned against the positioning recess 406 formed near the base of the grip handle 26 on the bottom surface side (Y2 side) of the upper cover 25.
  • the positioning convex part 408 formed at the Z2 direction end of 37 is engaged.
  • the engaging convex portion 137 (138) provided at the distal end (Y2 direction end) of the drive shaft 115 (116) is the linear portion 137a (138a) on the proximal end side.
  • a plurality of (six) projecting portions 402 projecting radially from the axial center at an equal phase are formed in a serrated shape on the outer peripheral surfaces of the linear portion 137a (138a) and the tapered portion 137b (138b).
  • the protruding portion 402 is substantially semi-cylindrical, and extends in the Y direction at a portion corresponding to the straight portion 137a (137a), and extends in a direction inclined by a predetermined angle from the Y direction at a portion corresponding to the tapered portion 137b (138b). ing.
  • the engaging recess 176a (176b) provided at the tip (end in the Y1 direction) of the pulley 158a (158b) is the same as the engaging protrusion 137 (138). It corresponds to the shape, and is composed of a linear portion 171 on the upper end opening side and a tapered portion 173 having a tapered shape on the back side.
  • the protrusions 402 can be inserted into the inner peripheral surfaces of the linear portion 171 and the taper portion 173, and a plurality of concave (six) groove portions 404 that are recessed in the same phase radially from the axis center are formed in a serration shape. Has been.
  • the engaging convex portions 137 and 138 and the engaging concave portions 176a and 176b are engaged with each other by fitting the protruding portions 402 into the groove portions 404 in a state where the operation portion 14 and the working portion 16 are mounted. (See FIGS. 22B and 23B). Thereby, the rotational driving force of the motors 100 and 102 can be reliably transmitted from the drive shafts 115 and 116 to the pulleys 158a and 158. At this time, the engaging convex portion 137 (138) and the engaging concave portion 176a (176b) are engaged with each other by the linear portion 137a (138a) and the linear portion 171.
  • the rotational driving force of the drive shaft 115 (116) can be transmitted to the pulley 158a (158b) more reliably and stably.
  • the rotational driving force can be sufficiently transmitted.
  • an engagement recess may be provided on the drive shaft 115 (116) side, and an engagement protrusion may be provided on the pulley 158a (158b) side.
  • an engagement operation (coupling operation) between the engagement convex portion 137 (138) and the engagement concave portion 176a (176b) and an origin search operation performed following this engagement operation
  • the engagement operation and the origin search operation of one engagement convex portion 137 and the engagement recess portion 176a are substantially the same as the engagement operation and the origin search operation of the other engagement projection portion 138 and the engagement recess portion 176b. is there.
  • the engagement operation and the origin search operation of one of the engagement protrusions 137 and the engagement recesses 176a will be representatively described.
  • 24A and 24B are explanatory diagrams of the coupling operation in a state where the engagement concave portion 176a is at a predetermined origin (motor origin M0) and the phase of the engagement convex portion 137 is slightly in the forward rotation direction.
  • 25A and 25B are explanatory diagrams of the coupling operation in a state where the engaging convex portion 137 is at a predetermined origin (motor origin M0) and the phase of the engaging concave portion 176a is slightly in the reverse direction.
  • the engaging convex portion 137 and the engaging concave portion 176a are expanded 360 ° in the circumferential direction (rotating direction), respectively, and the protruding portion 402 and the groove portion 404 are angled teeth facing each other. It is explanatory drawing typically shown in figure.
  • the contact portion 177a (177b) that rotates together with the engagement recess 176a is illustrated as a contact member protruding in the Y2 direction, and the rotation is performed.
  • the stopper (pulley operation limit) 179a to be controlled is illustrated by a straight line with hatching.
  • the rotation range is controlled by the contact between the contact portion 177c and the stopper 179b shown in the modification of FIG. This is illustrated as a similar structure, and the same applies to FIG. 25A and the like.
  • the engaging convex portion 137 and the engaging concave portion 176a are finally engaged in a state where the phases of the protruding portion 402 and the groove portion 404 coincide with each other (see FIG. 24B).
  • the engaging convex portion 137 and the engaging concave portion 176a are rotated by rotating the engaging concave portion 176a on the rotatable side while maintaining the phase of the engaging convex portion 137 on the non-rotatable side. Engagement is possible regardless of the initial phase of each other, and the same applies to the examples shown in FIGS. 25A and 25B.
  • the claw portion 400c of the detachable lever 400 is engaged with the locking unit 401a (see FIGS. 1 to 3), and the mounting of the operating unit 14 and the working unit 16 is completed. Then, when the attachment / detachment sensor 314 detects that the detection shaft 316 is seated on the stop plate 179, the controller 514 also recognizes it. At the same time, the engaging convex portion 137 (138) and the engaging concave portion 176a (176b) engage smoothly and quickly regardless of the initial phase of each other.
  • the operating shaft 14 (116) and the pulley 158a are mounted at the same time that the operating portion 14 and the working portion 16 are mounted regardless of the state in which the operating portion 14 and the working portion 16 are attached or detached. (158b) can be linked.
  • the engaging convex portion 137 (138) and the engaging concave portion 176a (176b) have a structure other than the engaging structure in which the protruding portion and the groove portion are fitted with a corrugated cross section and a tapered shape.
  • the drive shaft 115 (116) and the pulley 158a (158b) can be detachably attached to each other, and any structure can be used as long as the rotational drive force can be transmitted.
  • FIG. 26 is a perspective view showing a modification of the engagement structure between the drive shaft 115 (116) and the pulley 158a (158b).
  • an engagement convex portion 600 having a tapered shape and a tapered shape is provided at the tip (end in the Y2 direction) of the drive shaft 115, and the engagement convex portion 600 is provided at the upper end (end in the Y1 direction) of the pulley 158a.
  • a corresponding pyramid shape is formed by providing an engaging recess 602 having a taper shape which is narrow.
  • FIG. 27 is a perspective explanatory view showing another modified example of the engagement structure between the drive shaft 115 (116) and the pulley 158a (158b).
  • an engagement convex portion 604 made of chevron-shaped annular teeth is provided at the front end (Y2 direction end) of the drive shaft 115, and a chevron-shaped annular shape facing the engagement convex portion 604 at the upper end (Y1 direction end) of the pulley 158a.
  • An engagement recess 606 made of teeth is provided. Also in this case, both can be quickly and smoothly engaged regardless of the initial phase at the time of engagement of the engaging convex portion 604 and the engaging concave portion 606.
  • the drive shaft 115 (116) and the pulley 158a (158b) may be any one that can be attached to and detached from each other and can transmit the rotational driving force. That is, a joint surface (drive-side joint surface) that is inclined with respect to the axial direction of the drive shaft is provided at the tip of the drive shaft 115 that is the drive shaft, such as the engagement convex portions 137, 600, and 604. At the tip of a certain pulley 158a, a joint surface (driven side joint) that is inclined with respect to the axial direction of the driven shaft and can be engaged (joined) with the drive side joint surface, such as engagement recesses 176a, 602, and 606.
  • the (surface) it is possible to easily configure a structure in which both shafts can be attached and detached and the rotational driving force can be transmitted.
  • the controller 514 controls the distal end working unit 12 accurately and accurately, so that the distal end working unit 12 has a predetermined origin posture (see FIGS. 1, 46 and 48).
  • the origin search operation for setting the rotation phases of the pulleys 158a and 158b and the drive shafts 115 and 116 for reciprocating the wires 1052 and 1054 and the motors 100 and 102 to the origin in order to set the motors 100 and 102 to a predetermined origin phase. Must be implemented.
  • the origin search operation is driven and controlled under the control of the controller 514, that is, the controller 514 functions as an origin search unit.
  • the detection pin 344 (346) connected via the support member 340 (342) to the detection shaft 310 (312) of the working unit origin sensor 306 (308) is in the Y2 direction by the coil spring 322 (324). Due to the urging force (see FIGS. 9, 10 and 22A), it is seated at any position on the cam surface 175 on the pulley 158a (158b) side (see FIG. 22).
  • FIG. 28 is an explanatory diagram showing the cam surface 175 developed 360 ° in the circumferential direction (rotation direction) and showing the position in the Y direction on the upper surface (side surface of Y2), and the relationship between the engaging convex portion 137 and the engaging concave portion 176a.
  • a state in which the detection pin 344 is seated at a predetermined position (positions P1 and P2) of the cam surface 175 with the combined operation is shown.
  • the cam surface 175 is set to point in the Z1 direction with the intermediate point of the inclined surface 175c as the origin (motor origin M0) on the working unit 16 side.
  • the motor 100 is driven under the control of the controller 514, the pulley 158a is rotated via the drive shaft 115, and the pulley 158a is set to the motor origin M0, whereby the motor 100, the drive shaft 115, and the pulley 158a are set. Etc. are set to the origin phase, and the distal end working unit 12 assumes the origin posture.
  • the engaging convex portion 137 and the engaging concave portion 176a are engaged, the detection shaft 316 is pushed, and the attachment / detachment sensor 314 recognizes that the operation portion 14 and the working portion 16 are mounted.
  • the detection pin 344 is seated at the position P1 in FIG. 28, the detection pin 344 is seated on the lower surface 175a, so the output signal of the working unit origin sensor 306 does not change.
  • the detachment sensor 314 since it can be recognized that the detachment sensor 314 is seated, it is recognized that the pulley 158a is located in the minus region with respect to the origin. Therefore, when the motor 100 is driven to rotate the pulley 158a in the forward rotation direction in FIG.
  • the detection pin 344 has its tip spherical surface 344a slidably contacted on the cam surface 175 under the elastic bias of the coil spring 322, Eventually, the position P0 is reached.
  • the working unit origin sensor 306 detects that the detection pin 344 has reached the position P0, that is, the pulley 158a has been set to the origin phase.
  • the distal end working unit 12 can also be set to a predetermined origin posture.
  • the detection pin 344 when the detection pin 344 is seated at the position P2 in FIG. 28, the detection shaft 316 is pushed, and the attachment / detachment sensor 314 recognizes that the operation unit 14 and the working unit 16 are mounted. At this time, since the detection pin 344 is seated on the high surface 175b, the output signal of the working unit origin sensor 306 changes and it is recognized that the pulley 158a is located in the plus region with respect to the origin. Therefore, when the motor 100 is driven to rotate the pulley 158a in the reverse rotation direction in FIG. 28, the detection pin 344 has its tip spherical surface 344a slidably contacted on the cam surface 175 under the elastic force of the coil spring 324, and eventually. The position P0 is reached. Thus, by setting the drive shaft 115 and the pulley 158a to a predetermined origin phase, the distal end working unit 12 can also be set to a predetermined origin posture.
  • the working part origin sensor 306, the detection pin 344, the cam surface 175, and the like function as phase detection means for detecting the phase of the pulley 158a that is the driven shaft, thereby enabling quick origin search. It has become.
  • the origin search operation can be performed by other methods (structures) besides the method based on the detection (phase detection) of the cam surface 175 by the working unit origin sensor 306 (308) as described above. It is.
  • FIG. 29A to FIG. 30B are explanatory views illustrating a structure for carrying out a first modification of the origin search operation.
  • phase detection means for detecting the phase (origin) of the pulley 158a (158b) instead of the working unit origin sensor 306, the detection pin 344 (346), the cam surface 175, etc., on the drive unit 30 side, A working part origin sensor 610 projecting from the bottom surface of the upper bracket 104 is provided (see FIG. 29A), and a sensing ring (to be detected) is formed on the working part 16 side, which is formed of an annular wall surface that surrounds a substantially half circumference of the engaging recess 176a (176b). Member) 612 is provided (see FIG. 29B).
  • the detection ring 612 is connected to the engagement recess 176a (176b) by, for example, three bridges 614 and rotates together with the pulley 158a (158b).
  • the detection ring 612 is arranged so that the end of the arc corresponds to the origin of the pulley 158a (158b), and the detection ring 612 is set so that the detection ring 612 exists only in a half-circle region of the operation region.
  • the controller 514 can recognize whether the working unit 16 is in the plus region or the minus region with respect to the origin. Accordingly, by rotating in the reverse direction when in the plus region and rotating in the forward direction when in the minus region, the point at which the detection ring 612 is switched can be detected as the origin.
  • the working unit origin sensor 610 is substantially U-shaped in a side view substantially similar to the working unit origin sensor 306 and the like, and a detection ring 612 inside the U-shape. Can be detected.
  • the detection ring 612 is also rotated accordingly, and each end portion is rotated. The origin can be detected as the point at which the output is switched when 612a passes the working unit origin sensor 610.
  • the controller 514 recognizes the origin by the above-described method, returns the engagement convex portion 137 and the engagement concave portion 176a to the motor origin M0, and stops it.
  • the drive shaft 115 and the pulley 158a can be set to a predetermined origin phase, and the distal end working unit 12 can also be set to a predetermined origin posture.
  • the origin is calculated by detecting only the end 612a on one rotation side (forward rotation side or reverse rotation side), and the motor 100 is operated. Although it is possible to return to the origin position, it is desirable to perform detection in both rotation directions in order to perform a more accurate origin search.
  • the coil spring 322, the detection pin 344, the support member 340, the cam surface 175, etc. can be omitted, so that the number of parts can be reduced and the configuration of the manipulator 10 can be reduced. It can be further simplified.
  • 31A to 31D are explanatory diagrams of a method according to a second modification of the origin search operation.
  • 31A to 31D in order to clarify the rotation range of the engagement recess 176a (pulley 158a), the contact portion 177a (177b) on the engagement recess 176a side is set to the outer diameter in substantially the same manner as in FIG. 24A and the like.
  • a stopper (pulley operation limit) 179a that restricts the rotation is illustrated as a straight line with hatching, and the contact portion 177c and the stopper shown in the modification of FIG. It is illustrated as a structure similar to the restriction of the rotation range by contact with 179b.
  • the origin search operation is started by rotating the engaging convex portion 137 and the engaging concave portion 176a in the normal rotation direction in the engaged state.
  • the motor rotation speed is greater than a predetermined set speed (speed threshold), and the motor current value is smaller than the predetermined current value (current threshold).
  • the engagement convex portion 137 and the engagement concave portion 176a pass through the motor origin M0 and are further rotated in the forward rotation direction to come into contact with one stopper 179a serving as the forward rotation side operation end.
  • the part 177a comes into contact (see FIG. 31B), the motor rotation speed becomes smaller than the speed threshold value, and the motor current value becomes larger than the current threshold value. That is, by detecting the current value and rotation speed of the motor 100 by the controller (detection unit) 514, first, in the forward rotation side region (normal region) of the engagement convex portion 137 and the engagement concave portion 176a.
  • the operation limit can be detected, and the current phase can also be detected.
  • the mechanism is a symmetric system, it is possible to calculate the reverse side region (negative region), and the motor 100 can be returned to the origin position. However, in this example, more accurately and more reliably. In order to perform the origin search, detection in the reverse direction is performed.
  • the motor 100 is rotated in the reverse direction (at the time of this rotation, the motor rotation speed is larger than the speed threshold value and the motor current value is smaller than the current threshold value). Then, the abutting portion 177a abuts against the other stopper 179a serving as the reverse operation end (see FIG. 31C), the motor rotation speed becomes smaller than the speed threshold value, and the motor current value becomes larger than the current threshold value.
  • the controller 514 can detect the operation limit in the reverse rotation side region (negative region) of the motor 100, and obtain the average value of the detected operation limit in the positive region and the operation limit in the negative region.
  • the origin search is complete. Therefore, as shown in FIG. 31D, the engagement convex portion 137 and the engagement concave portion 176a are returned to the motor origin M0 and stopped, whereby the drive shaft 115 and the pulley 158a are set to a predetermined origin phase, and the tip operation portion 12 can also be set to a predetermined origin posture.
  • the manipulator 10 can reduce the number of parts by omitting the working unit origin sensor 306, the detection shaft 310, the coil spring 322, the detection pin 344, the support member 340, and the like. This configuration can be further simplified.
  • the engagement convex portions 137, 138, 600, 604 and the engagement concave portions 176a, 176b, 602, 606 are engaged quickly and smoothly regardless of the initial phase at the time of engagement.
  • one (engagement recess) is forcibly rotated and the pulley 158a (158b) is rotated unless the initial phases coincide with each other.
  • the initial phase of the pulley 158a (158b) is in the vicinity of the operation limit (the limit point of the allowable rotation range), the forcing force that causes the pulley 158a (158b) to rotate beyond the operation limit when engaged.
  • pulleys 158a (158b) and the abutting portions 177a, 177b and the stopper 179a that restrict the rotation of the pulleys 158a, 158b, and the stopper 179a may be overloaded, causing damage or malfunction.
  • FIGS. 32A to 37 are explanatory views of the engaging operation of the engaging convex portion 137 on the driving side and the engaging concave portion 176a on the driven side when the operation portion 14 and the working portion 16 are mounted. The operation is illustrated similarly to FIG. 24A and the like. In this case, in FIGS.
  • FIG. 37 is an explanatory diagram illustrating the operation in the state where the operation range of the engagement recess 176a is restricted to 210 °.
  • the driving-side engaging convex portion 137 coincides with the phase M1, which is the phase of the forward rotation side operation limit (forward rotation side stopper 179a), and is driven.
  • the engagement recess 176a on the side is in the forward rotation side operation limit (or its vicinity), as shown in FIGS. 32B and 33B, the engagement recess 176a (pulley 158a) rotates beyond the operation limit. Smooth engagement is possible without receiving a forcing force.
  • the engaging convex portion 137 is in the phase M2 on the reverse side of 30 ° (the half phase of the engaging convex portion 137 having a 60 ° phase shape) from the forward rotation side operation limit, and the engaging concave portion 176a is Even in the forward rotation side operation limit, as shown in FIG. 34B, the engagement recess 176a (pulley 158a) is smoothly engaged without receiving the forcing force that rotates beyond the operation limit.
  • the region Rs where the phase of the engagement convex portion 137 is between the phases M1 and M2 is a safe region (engagement convex portion indicated by a solid line) that can be safely attached and detached. 137), and the region Rd between the phases M1 and M3 is a danger region (see the engagement convex portion 137 indicated by a broken line) that may not be safely attached and detached, and these are the engagement convex portions 137.
  • the region Rs where the phase of the engagement convex portion 137 is between the phases M1 and M2 is a safe region (engagement convex portion indicated by a solid line) that can be safely attached and detached. 137)
  • the region Rd between the phases M1 and M3 is a danger region (see the engagement convex portion 137 indicated by a broken line) that may not be safely attached and detached, and these are the engagement convex portions 137.
  • a region Rs in which the phase of the engagement convex portion 137 is between the phases M4 and M5 is a safe region (engagement convex portion indicated by a solid line) that can be safely attached and detached. 137), and the region Rd between the phases M5 and M6 is a danger region (see the engagement convex portion 137 indicated by a broken line) that may not be safely attached and detached, and these are the engagement convex portions 137.
  • a safe region engagement convex portion indicated by a solid line
  • the region Rd between the phases M5 and M6 is a danger region (see the engagement convex portion 137 indicated by a broken line) that may not be safely attached and detached, and these are the engagement convex portions 137.
  • the safety region Rs and the dangerous region Rd on the forward operation limit side and the reverse operation limit side are completely in opposite phases.
  • the portion 137 is set to the safety region Rs on the forward rotation limit side, if the phase of the engagement recess 176a is on the reverse rotation limit side, there is a possibility that safe attachment / detachment cannot be performed. That is, with respect to the engaging convex portion 137 having a 60 ° phase shape, the operating range of the engaging concave portion 176a is defined to be 240 ° that is an integral multiple (four times) thereof. Since the region Rd has a completely opposite phase, it is difficult to always perform safe attachment / detachment only by the phase control on the engagement convex portion 137 side.
  • the operating range of the engaging concave portion 176a is defined as an angle obtained by adding the half phase (30 °) to 180 ° which is an integral multiple (three times) thereof.
  • the safety region Rs and the dangerous region Rd are completely in phase, so that the engaging projection 137 is phase-controlled and set to the safety region Rs, so that safe attachment and detachment is always performed. It is possible.
  • the first safety attaching / detaching operation executed by controlling the driving-side engaging convex portion 137, the engaging phase shape of the engaging convex portion 137 and the engaging concave portion 176a, and the operation of the engaging concave portion 176a.
  • the safety region Rs on the forward rotation operation limit side and the reverse rotation operation limit side match or substantially match, and the engagement convex portion 137 is set to the safety region Rs when engaged, Safe attachment and detachment can always be performed.
  • the engagement phase is m ° phase and the operation range of the engagement recess 176a is ⁇ m ⁇ n ⁇ ° (n is a natural number), for example, when the engagement phase is 60 ° phase
  • the safety region Rs and the dangerous region Rd on the forward rotation operation limit side and the reverse rotation operation limit side are in opposite phases, There is a possibility that the engaging convex portion 137 cannot always be set in the safety region Rs on both the forward rotation side and the reverse rotation side, and cannot be safely detached.
  • the engagement phase is m ° phase and the operation range of the engagement recess 176a is ⁇ m ⁇ n + m / 2 ⁇ ° (n is a natural number), for example, when the engagement phase is 60 ° phase
  • the operating range of the engaging recess 176a is 90 °, 150 °, 210 °, 270 °, 330 °, etc.
  • the safety region Rs and the danger region Rd on the forward rotation limit side and the reverse rotation limit side are in phase.
  • the engaging convex portion 137 can always be set in the safety region Rs on both the forward rotation side and the reverse rotation side, and can always be safely attached and detached.
  • This first safe attachment / detachment operation is performed under the control of the controller 514, for example, when the work unit 16 is detached from the operation unit 14, when the controller 514 is connected to the operation unit 14, and when the master switch 34 is turned off.
  • the motor 100 (102) may be driven and controlled at at least one timing to set the engaging convex portion 137 to the safety region Rs, and the other engaging convex portions 138 and the like are substantially the same. is there.
  • the phase control of the motor 100 (102) may be performed by detecting the protruding piece 333a (334a) of the detection piece 333 (334) by the motor phase sensor 331 (332).
  • the protruding piece 333a when the protruding piece 333a is arranged in a phase shape (60 ° phase) corresponding to the engaging phase of the engaging convex portion 137, the protruding piece 333a passes through the motor phase sensor 331 and the output is switched.
  • the phase of the motor 100 can be detected by the controller 514. Therefore, the phase shape of the protruding piece 333a can be changed as appropriate in accordance with the phase shape of the engaging convex portion 137.
  • FIGS. a safe attachment / detachment operation (second safety attachment / detachment operation) in which the driven-side engagement recess 176a (176b, 602, 606) is set between the phases M2 and M2 ′ as the safety region is shown in FIGS.
  • 38A to 38C show the engaging convex portion 137 and the engaging concave portion 176a in the same manner as in FIG. 31A and the like.
  • a rubber member (as a buffer member) is provided inside the stopper 179a that defines the forward and reverse operating range of the engaging recess 176a (pulley 158a) on the driven side.
  • Elastic member) 620 is arranged.
  • the rubber member 620 is made of a material that can be deformed (contracted) by a predetermined amount by contact with the contact portion 177a by the rotational torque of the motor 100.
  • the rubber member 620 is deformed to the operation limit of the operation range by being pressed by the contact portion 177a rotated by the motor 100 (see FIG. 38B). That is, the motor 100 crushes the rubber member 620 with the contact portion 177a until the operation limit of the operation range shown in FIG. 38A is reached without receiving a load that hinders the motor rated torque. (See FIG. 38B).
  • the engagement recess 176a (pulley 158a) is returned to the safe region by the repulsion (restoration) action of the elastic member 620. That is, the rubber member 620 functions as a safety region guiding means that always guides the driven-side engaging recess 176a into the safety region.
  • a buffer member such as a coil spring or urethane resin is used. Can be applied.
  • the phase of the driven side engaging concave portion 176a is independent of the phase of the driving side engaging convex portion 137.
  • the safety region between the forward rotation side operation limit and the half-phase reverse rotation side and the reverse rotation side operation limit by the half-phase forward rotation side (between phases M2 and M2 'in FIG. 34B) must be present. Since it is set, safe attachment and detachment can always be performed.
  • FIG. 39A to FIG. 39C are explanatory views showing a modified example of the second safety attaching / detaching operation described above.
  • the operation unit 14 and the working unit 16 protrude from the stopper 179a when being removed or in a removable state.
  • An advancing / retracting member 622 is provided for guiding the engaging recess 176a in the vicinity of the operating limit of the operating range into the safety region. Accordingly, in this case as well, regardless of the phase of the engagement convex portion 137 on the driving side, the phase of the engagement concave portion 176a on the driven side is reversed from the phase on the reverse side by the half phase from the normal rotation side operation limit. It is always set in a safety region between the side operation limit and the half-phase forward rotation phase (between phases M2 and M2 ′ in FIG. 34B), and safe attachment / detachment can always be performed.
  • 40A to 41B show a safety attaching / detaching operation in which a safety region guiding means for guiding the engaging recess 176a (pulley 158a) to the safety region when the operation unit 14 and the working unit 16 are mounted is provided on the drive unit 30 side (third It is explanatory drawing of safe attachment / detachment operation
  • the elements related to the safe attaching / detaching operation such as the motor phase sensor 331 are omitted, and the configuration of the manipulator 10 is simplified. It is also possible to plan.
  • step S1 of FIG. 42 in order to start the system including the manipulator 10, first, the operator turns on the power switch 516 (see FIG. 1) of the controller 514 to start the controller 514 and the peripheral system (step S2). ).
  • step S3 the operation unit 14 is attached to the controller 514.
  • the connector 520 at the tip of the cable 61 extending from the lower end of the grip handle 26 of the operation unit 14 is connected to the first port 515a of the controller 514 (see FIG. 1).
  • the phase control of the motors 100 and 102 by the first safety attaching / detaching operation described above can also be executed under the control of the controller 514 (see FIG. 37 and the like).
  • step S4 the working unit 16 including the predetermined tip operating unit 12 is attached to the operation unit 14 connected to the controller 514.
  • the mounting operation is performed so that the two guide pins 163 and 163 protruding from the operation unit 14 are fitted in the pin holes 161 and 161 of the working unit 16 and the operation unit 14 is positioned.
  • the operation portion 14 and the working portion 16 are pressed and brought into close contact with each other (see FIGS. 6, 20A, and 20B).
  • the claw portion 400c of the detachable lever 400 engages with the locking portion 401a (see FIGS.
  • the engaging convex portion 137 (138) ) And the engagement recess 176a (176b) are also completed.
  • the completion of the mounting of the operation unit 14 and the working unit 16 is based on the fact that the attachment / detachment sensor 314 detects that the detection shaft 316 is seated on the stop plate 179 (see FIGS. 7, 23A and 23B). 514.
  • the seating position of the detection pin 344 (346) on the cam surface 175 is the working portion origin sensor 306 (308). ) (See FIG. 28), it is recognized by the controller 514.
  • the safety attaching / detaching operation is performed.
  • step S5 the controller 514 captures an image of the barcode 222 by controlling the driving of the camera 224 and the LED 224a based on the detection of the attachment / detachment sensor 314 in step S4 or based on other switch input (not shown) ( As shown in FIG. 19, the specification (the type of the distal end working unit 12), the number of times of use, the usage limit (upper limit), and the like are acquired from the barcode 222 as the individual information of the working unit 16. Further, the controller 514 can acquire individual information of the working unit 16 and appropriately control the motors 100 and 102 and the like according to the type of the working unit 16 according to the individual information.
  • step S6 by turning on the master switch 34 (see FIG. 1) of the manipulator 10 to which the operation unit 14 and the work unit 16 are mounted, in step S7, it is built under the control of the controller 514 or in the operation unit 14.
  • the above-described origin search operation is performed under the control of a control unit (not shown).
  • the drive shaft 115 (116) and the pulley 158a (158b) are set to a predetermined origin phase
  • the tip operating unit 12 is also set to a predetermined origin posture
  • preparation for use of the manipulator 10 is completed (step S8).
  • the origin position can be easily detected, and the operation start after the operation unit 14 and the working unit 16 are mounted can be more smoothly performed.
  • the LED 29 (see FIG. 1) arranged in parallel with the master switch 34 is controlled to blink in green, for example. Then, the operator can easily recognize that the origin search operation is being performed. Further, after the preparation for use is completed in step S8, the LED 29 is controlled so as to be lit in green, for example, to clearly indicate to the operator that the manipulator 10 is normally activated and is in a predetermined usable state. be able to. The LED 29 is not lit until the above steps S1 to S6. Of course, the LED 29 may be controlled to be turned on or blinking according to the processing state.
  • step S8 After the preparation for use is completed in step S8, that is, after the manipulator 10 is ready for use, the operator holds the grip handle 26 and operates the composite input unit 24 and the trigger lever 36 to operate the manipulator 10. Can be operated in accordance with a predetermined procedure.
  • step S9 when the master switch 34 is turned off, for example, due to a temporary interruption of the procedure (step S9), the LED 29 is turned off and the usable state of the manipulator 10 is stopped.
  • the phase control of the motors 100 and 102 by the first safety attaching / detaching operation can also be executed under the control of the controller 514 (see FIG. 37 and the like).
  • step S10 when performing the procedure without removing the working unit 16 or the like, by turning on the master switch 34 again (step S10), the process returns to step S8, and the manipulator 10 becomes usable again.
  • An operator can initiate or continue a predetermined procedure.
  • the step S7 is performed.
  • the origin positions of the motors 100 and 102 and the distal end working unit 12 set in step S5 are not shifted, and after step S10, the process can quickly move to step S8.
  • step S8 for example, when the work unit 16 and the operation unit 14 are removed in order to change the work unit 16 in response to another procedure (step S11 and step S12), step S4 and step S4, respectively.
  • step S3 the control flow described above is performed thereafter.
  • the phase control of the motors 100 and 102 by the first safety attaching / detaching operation described above can also be executed under the control of the controller 514 (see FIG. 37 and the like).
  • the safety attachment / detachment operation is performed.
  • Error E1 (abnormal barcode reading) occurs when the barcode 222 reading abnormality occurs in step S5, for example, when the barcode 222 cannot be accurately captured by the camera 224 or when the barcode 222 is This is the case other than the work unit 16 or the like to be controlled by the controller 514.
  • a work unit removal request for controlling the LED 29 to blink in red for example, is performed.
  • the work unit removal request displays an error E1 on the display unit (display) 517 (see FIG. 1) of the controller 514 and generates a warning sound or the like through a speaker (not shown). May be.
  • Error E2 (use amount limit over) is a case where the attached work unit 16 has exceeded the use frequency limit due to the reading operation of the barcode 222 in step S5. This is because, for example, when the usage amount limit of the predetermined working unit 16 is 10 times, the working unit 16 is mounted even though the usage amount is already 10 times, or the cumulative usage time limit is 300. In terms of time, when the working unit 16 is mounted even though it has already been used for more than 300 hours, or the bending or rotating operation of the manipulator tip is used beyond the cumulative use angle limit. This is an error that is notified in the event of a failure.
  • a work unit removal request for controlling the LED 29 to blink in red for example, is performed in step S13.
  • an error E2 may be displayed on the display unit 517 of the controller 514, and the warning sound or the like may be generated.
  • Error E3 imaging module system abnormality
  • step S14 an operation unit removal request for controlling the LED 29 to blink in red, for example, is performed.
  • the error E3 may be displayed on the display unit 517 of the controller 514, and the warning sound or the like may be generated.
  • an error shown by E4 in FIG. 42 may occur.
  • Error E4 operation system abnormality
  • Error E4 occurs when an abnormality occurs during the origin search operation in step S7, for example, when an abnormality of the motors 100 and 102 is detected by the controller 514, or when the origin search is not completed within a predetermined time. Etc.
  • an operation unit removal request for controlling the LED 29 to blink in red for example, is performed.
  • the error E3 may be displayed on the display unit 517 of the controller 514, and the warning sound or the like may be generated.
  • each state including steps S1 to S14 for example, when the power switch 516 of the controller 514 or another main power switch (not shown) is turned off, or from a power plug (not shown) connected to the controller 514 or the like.
  • the manipulator 10 operates after a predetermined termination process (the LED 29 is controlled to flash, for example, red). End.
  • the operation unit 14 including the drive unit 30 and the working unit 16 are detachable from each other, and the drive shafts 115 and 116 that are drive shafts are in the axial direction.
  • the drive side joint surface is inclined with respect to the engagement convex portion 137 and the like, and the pulleys 158a and 158b which are driven shafts are inclined with respect to the axial direction and can be engaged with the engagement convex portion 137 and the like.
  • An engaging recess 176a or the like is provided as a driven surface joining surface.
  • one of the drive shaft 115 as a drive shaft and the pulley 158a as a driven shaft (in this embodiment, the drive shaft 115) is not rotatable, and the other (in this embodiment, the pulley 158a) is freely rotatable.
  • the other in the free state is forcibly rotated by one. For this reason, engagement convex part 137, engagement concave part 176a, etc. can be engaged more smoothly irrespective of the mutual initial phase.
  • phase detection means for detecting the phases of the pulleys 158a and 158b which are driven shafts
  • detected members detection pins 344 and 346, detection shafts 310 and 312, detection rings 612) and detection sensors (working part origin sensors 306 and 308, 610) and the configuration for detecting the motor rotation speed and motor current value of the motor 100 (102) can be used to smoothly set the origin on the working unit 16 side, and the distal end working unit 12 This makes it possible to perform accurate drive control.
  • the pulleys 158a (158b) are engaged when the engaging convex portions 137, 138, 600, 604 and the engaging concave portions 176a, 176b, 602, 606 are engaged. ),
  • the pulley 158a (158b) receives a forcing force that rotates beyond the operation limit, and the pulley 158a (158b) and the contact that regulates the rotation thereof. It is possible to effectively avoid the occurrence of an excessive load on the portions 177a and 177b and the stopper 179a to cause damage or malfunction.
  • the trigger lever 36 which is a mechanism for mechanically driving the distal end working unit 12, the trigger lever mounting portion 32 b, and rods 192 a and 192 b which are rod-shaped or linear transmission members are all on the working unit 16 side.
  • the drive unit 30 which is a mechanism unit for electrically driving the distal end working unit 12, the pulleys 158a, 158b, the wires 1052, 1054, etc. are provided so as to be separated from each other on the operation unit 14 side and the working unit 16 side. It has been.
  • the rotational driving force of the motors 100 and 102 constituting the electric drive unit can be separated relatively easily by the coupling structure between the engagement convex part 137 (138) and the engagement concave part 176a (176b).
  • the mechanical drive unit that directly transmits the operation of the trigger lever 36 by the rod 192a or the like constitutes a separation structure, the structure tends to be somewhat complicated. Therefore, in the manipulator 10, the trigger lever 36, the rod 192a, and the like constituting the mechanical drive unit are collectively arranged on the working unit 16 side, so that the detachable structure between the operation unit 14 and the working unit 16 is further simplified. Has been.
  • the rods 192a and 192b are configured to transmit the input to the trigger lever 36 by advancing and retreating operations in the Z direction, that is, as rod-shaped or linear transmission members, so that they are not separated.
  • the attachment / detachment structure is further simplified.
  • the claw portion 206a and the engagement ring 27 constituting the latch mechanism of the trigger lever 36 may be on the working portion 16 side (or the operating portion 14 side) and the operating portion 14 side (or the working portion 16 side), respectively. ).
  • the latch mechanism which fixes the position to the trigger lever 36 it can be set as the structure which can attach or detach the operation part 14 and the operation
  • distal end working unit 12 applied to the manipulator 10 configured as described above will be described by exemplifying a structure that employs an end effector 1300 that is a gripper.
  • a structure other than a gripper such as scissors or an electric knife, can be applied as the distal end working unit 12, and it can be easily attached to and detached from the operation unit 14 by configuring as the working unit 16 including the distal end working unit 12. Can be exchanged.
  • the distal end working unit 12 includes a first end effector driving mechanism 1320a including a rod 192a, a passive wire 1252a, an idle pulley 1140a, a guide pulley 1142a, a passive pulley 1156a, and a second end corresponding thereto.
  • An effector driving mechanism 1320b is provided.
  • the first end effector drive mechanism 1320a and the second end effector drive mechanism 1320b have a basic configuration for opening and closing the end effector (gripper) 1300.
  • the components in the first end effector drive mechanism 1320a are identified by a and the components in the second end effector drive mechanism 1320b are identified by b.
  • the components of the first end effector drive mechanism 1320a and the components of the second end effector drive mechanism 1320b that have the same function may be described typically only with respect to the first end effector drive mechanism 1320a so as not to become complicated. is there.
  • the pulleys are arranged in parallel in the axial direction (that is, the Y direction) of each pulley, and idle pulleys (columnar members, transmission members) 1140a and 1140b and guide pulleys (columnar members, transmission members) 1142a and 1142b.
  • the rotation axes may be arranged on the same axis. That is, the idle pulleys 1140a and 1140b can be pivotally supported on the shaft 1110 (see FIG. 45), and the guide pulleys 1142a and 1142b can be pivotally supported on the shaft 1112.
  • the distal end working unit 12 includes a wire passive unit 1100, a composite mechanism unit 1102, and an end effector 1300, which are centered on the first rotation axis Oy in the Y direction.
  • the mechanism has a total of three degrees of freedom having a third degree of freedom for opening and closing 1300.
  • the first rotation axis Oy which is a mechanism with a first degree of freedom, may be set so as to be rotatable in a non-parallel manner with an axis extending from the proximal end side to the distal end side of the connecting shaft 18.
  • the second rotation axis Or which is a mechanism with a second degree of freedom, is a mechanism that can rotate around the axis in the extending direction of the distal end portion (that is, the end effector 1300) in the distal end working unit 12, and the distal end portion is set to be rotatable. Good.
  • the mechanism with the first degree of freedom is, for example, a tilting mechanism (or bending mechanism) having an operating range of ⁇ 90 ° or more.
  • the mechanism of the second degree of freedom is a rotating mechanism having an operating range of ⁇ 180 ° or more, for example.
  • the mechanism of the third degree of freedom is an opening / closing mechanism that can be opened, for example, 40 ° or more.
  • the end effector 1300 is a part that performs an actual work in the operation, and the first rotation axis Oy and the second rotation axis Or constitute a posture changing mechanism for changing the posture of the end effector 1300 so that the work can be easily performed. It is a posture axis.
  • a mechanism unit related to the third degree of freedom for opening and closing the end effector 1300 is also called a gripper (or a gripper shaft), and a mechanism unit related to the first degree of freedom rotating in the yaw direction is also called a yaw axis.
  • the mechanism part according to the second degree of freedom that rotates in the direction is also called a roll shaft.
  • the wire passive portion 1100 is provided between the pair of tongue pieces 1058, and is a portion that converts the reciprocating motions of the wires 1052 and 1054 into rotational motions and transmits them to the composite mechanism portion 1102.
  • the wire passive portion 1100 includes a shaft 1110 inserted into the shaft holes 1060a and 1060a and a shaft 1112 inserted into the shaft holes 1060b and 1060b.
  • the shafts 1110 and 1112 are fixed to the shaft holes 1060a and 1060b, for example, by press fitting or welding.
  • shaft 1112 is arrange
  • the gear body 1126 includes a cylindrical body 1132 and a gear 1134 provided concentrically on the top of the cylindrical body 1132.
  • the pulley 1130 has substantially the same diameter and the same shape as the cylindrical body 1132.
  • the gear 1134 meshes with a face gear 1165 of a gear body 1146 described later.
  • a part of the wires 1052 and 1054 is fixed and wound around the cylindrical body 1132 and the pulley 1130 by a predetermined fixing means.
  • the angle at which the wires 1052 and 1054 are wound is, for example, 1.5 rotations (540 °).
  • the pulley 1130 is integrally provided on the base end side of the main shaft member 1144.
  • the main shaft member 1144 is supported by the shaft 1112 so as to be rotatable (tilted) about the first rotation axis Oy (yaw axis). Has been.
  • the mechanism of the distal end working unit 12 is not limited to the type in which the wire 1052 drives the face gear 1165 via the gear 1134 while the wire 1054 directly drives the main shaft member 1144 to rotate.
  • a differential mechanism corresponding to the configuration shown in FIG. 23 in Japanese Patent Laid-Open No. 2008-253463 may be used.
  • An idle pulley (cylindrical member, transmission member) 1140a is rotatably supported at a substantially central portion of the shaft 1110, and a guide pulley (cylindrical member, transmission member) 1142a is rotatable at a substantially central portion of the shaft 1112. It is pivotally supported.
  • the idle pulley 1140a is provided to keep the winding angle of the passive wire (flexible member, transmission member) 1252a wound around the guide pulley 1142a constant at all times (approximately 180 ° on both sides).
  • the guide pulley 1142a may have one or more turns of the passive wire 1252a.
  • the idle pulley 1140a and the guide pulley 1142a may be made of a material with a smooth surface or less friction in order to reduce slippage on the passive wire 1252a (see FIG. 51) and wear due to friction.
  • the guide pulley 1142a is provided on the yaw axis Oy in the posture changing mechanism.
  • a main shaft member 1144 having a pulley 1130 is rotatably supported between the gear body 1126 and the guide pulley 1142a in the shaft 1112.
  • the main shaft member 1144 has a cylindrical portion that protrudes toward the composite mechanism portion 1102.
  • a square hole 1144 a is provided in the axial center portion of the main shaft member 1144.
  • two auxiliary plates 1144b that hold the upper surface in the Y direction of the guide pulley 1142a and the lower surface in the Y direction of the guide pulley 1142b and have a hole through which the shaft 1112 passes are provided.
  • the auxiliary plate 1144b has a mountain shape that becomes wider in the Z1 direction and prevents intrusion of foreign matter such as yarn.
  • the composite mechanism unit 1102 is a composite mechanism unit including an opening / closing operation mechanism of the end effector 1300 and a posture changing mechanism that changes the posture of the end effector 1300.
  • the compound mechanism portion 1102 includes a gear body 1146 that is rotatably inserted into the circumferential surface of the cylindrical portion of the main shaft member 1144, a nut body 1148 provided at the tip of the main shaft member 1144, and an end portion in the Z2 direction in the hole 1144a.
  • a square-shaped transmission member 1152 to be inserted a passive pulley (cylindrical member, transmission member) 1156a rotatably supported by a pin 1154 with respect to the Z2 direction end of the transmission member 1152, and a passive plate (transmission member) ) 1158 and a cylindrical cover 1160.
  • a resin-made thrust bearing member 1144c is provided at a portion of the main shaft member 1144 that comes into contact with the gear body 1146.
  • a thrust bearing member 1148a made of resin is provided on a portion of the nut body 1148 that contacts the gear body 1146.
  • the thrust bearing members 1144c and 1148a are low-friction materials, and reduce the friction and torque of the contact portion and prevent the load from being directly applied to the face gear 1165.
  • the thrust bearing members 1144c and 1148a are so-called sliding bearings, but may be provided with rolling bearings. Thereby, even when the end effector 1300 is strongly closed or opened, that is, even when the gear body 1146 strongly contacts the main shaft member 1144, the roll shaft operation can be performed smoothly.
  • the gear body 1146 has a stepped cylindrical shape, and includes a large diameter portion 1162 in the Z2 direction, a small diameter portion 1164 in the Z1 direction, and a face gear 1165 provided on the end surface of the large diameter portion 1162 in the Z2 direction. Face gear 1165 meshes with gear 1134.
  • the gear body 1146 prevents the nut body 1148 from coming off from the main shaft member 1144.
  • a screw is provided on the outer periphery of the large diameter portion 1162.
  • the passive plate 1158 has a concave portion 1166 in the Z2 direction, an engaging portion 1168 provided on the bottom surface of the concave portion 1166, axial ribs 1170 provided on both sides in the Y direction, and link holes 1172, respectively.
  • the engaging portion 1168 has a shape that engages with a mushroom-like protrusion 1174 provided at the tip of the transmission member 1152. By this engagement, the passive plate 1158 and the transmission member 1152 can rotate relative to each other.
  • the width of the passive plate 1158 is substantially equal to the inner diameter of the cover 1160.
  • the cover 1160 is sized to cover substantially the entire composite mechanism section 1102 and prevents foreign matter (biological tissue, medicine, thread, etc.) from entering the composite mechanism section 1102 and the end effector 1300.
  • Two axial grooves 1175 in which the two ribs 1170 of the passive plate 1158 are fitted are provided on the inner surface of the cover 1160 so as to face each other.
  • the passive plate 1158 is guided in the axial direction by fitting the rib 1170 into the groove 1175. Since the protrusion 1174 engages with the engaging portion 1168 of the passive plate 1158, the passive pulley 1156 a can advance and retreat in the axial direction together with the passive plate 1158 and the transmission member 1152 in the hole 1144 a, and the transmission member 1152 can be used as a reference. As a result, roll rotation is possible.
  • the cover 1160 is fixed to the large diameter portion 1162 of the gear body 1146 by means such as screwing or press fitting.
  • the cover 1160 is coupled to the gear body 1146 on the base side (screwing, press-fitting, welding, etc.), and the cover 1160 and the end effector 1300 perform a roll axis operation as the gear body 1146 rotates.
  • the lever portion 1310 and the passive plate 1158 are connected by a gripper link 1220. That is, the pin 1222 is inserted into the hole 1220 a at one end of each gripper link 1220 together with the hole 1218, and the pin 1224 is inserted into the hole 1220 b at the other end together with the link hole 1172 of the passive plate 1158.
  • the idle pulley 1140a includes two coaxially arranged first layer idle pulleys (first layer idle cylinders) 1232 and second layer idle pulleys (second layer idle cylinders) 1234 arranged in parallel.
  • the guide pulley 1142a is composed of a coaxial first layer guide pulley (first layer guide column) 1236 and a second layer guide pulley (second layer guide column) 1238 arranged in parallel. It is configured.
  • the end of the rod 192a in the Z1 direction is connected to both ends of a passive wire (flexible member) 1252a by a wire engaging portion 1250a.
  • a roller 1416 is provided at a tip portion 1414 of a rod 192a, and a passive wire 1252a is wound around the roller 1416.
  • the roller 1416 is supported by a pin 1418 and is rotatable.
  • the passive wire 1252a is appropriately advanced and retracted while being wound around the roller 1416, and when the rod 192a is pulled in the Z2 direction, the passive wire 1252a is pulled with a good balance in the X direction even when the yaw axis is not bent. be able to.
  • the tip portion 1414 is screwed to the rod 192a.
  • the pair of tensions in the Y direction of the passive wire 1252a are uniform, and it is possible to extend the life of the passive wire 1252a, and it is possible to achieve a parallel pair of both the upper and lower Y directions.
  • the passive wire 1252a is an annular flexible member partially connected to the wire engaging portion 1250a, and a rope, a resin wire, a piano wire, a chain, or the like is used in addition to the wire. be able to.
  • the term “annular” is used in a broad sense, and the flexible member does not necessarily have to be applied over the entire length.
  • the flexible member may be at least a portion that is wound around each pulley, and the straight portion is connected by a rigid body. Of course, it may be done.
  • the passive wire 1252a passes from the rod 192a of the driving member through the X1 direction (first side) of the idle pulley 1140a, toward the X2 direction (second side), and through the surface of the guide pulley 1142a in the X2 direction. It reaches the X2 direction surface of the passive pulley 1156a.
  • the passive wire 1252a is further wound halfway around the Z1 direction surface of the passive pulley 1156a to reach the X1 direction surface, passes through the X1 direction surface of the guide pulley 1142a, passes through the X2 direction, and passes through the X2 direction of the idle pulley 1140a. It is arrange
  • the passive wire 1252a constitutes a circuit that has the wire engaging portion 1250a as a base point and an end point, passes through both sides of the idle pulley 1140a, is wound around the passive pulley 1156a, and the idle pulley 1140a and the guide pulley 1142a It intersects between the two to form an approximately 8-character shape.
  • the wire engaging portion 1250a and the passive wire 1252a are mechanically connected to the trigger lever 36 via the rod 192a.
  • the idle pulley 1140a, the guide pulley 1142a, and the passive pulley 1156a have substantially the same diameter, and have an appropriately large diameter within a possible range in the layout so that the passive wire 1252a is not bent so much.
  • the wire engaging portion 1250a is provided at a position moderately separated from the idle pulley 1140a so that the passive wire 1252a does not bend excessively, and both ends of the passive wire 1252a have an acute angle with the wire engaging portion 1250a as the top. Is forming.
  • the gap between the idle pulley 1140a and the guide pulley 1142a is narrow, and for example, a gap substantially equal to the width of the passive wire 1252a is formed.
  • the idle pulley 1140a, the guide pulley 1142a, and the passive pulley 1156a may be provided with small flanges on the upper surface and the lower surface to prevent the passive wire 1252a from coming off, or the side surfaces may be concave.
  • the passive wire 1252a, the idle pulley 1140a, the guide pulley 1142a, and the passive pulley 1156a are arranged along the center line from the base end side to the tip end side. ing.
  • the end effector 1300 is coupled to the passive pulley 1156a via the transmission member 1152 and the like.
  • the first layer idle pulley 1232 and the second layer guide pulley 1238 are counterclockwise in plan view.
  • the second layer idle pulley 1234 and the first layer guide pulley 1236 rotate clockwise.
  • the idle pulley 1140a and the guide pulley 1142a are configured such that two pulleys are coaxially arranged in parallel, and thus can rotate in the reverse direction according to the movement of the passive wire 1252a that comes into contact, and the operation is smooth. is there.
  • the end effector 1300 is a so-called double-open type in which a pair of grippers 1302 operate.
  • the end effector 1300 includes a gripper base 1304 that is integrally formed with the cover 1160, a pair of end effector members 1308 that operate based on pins 1196 provided on the gripper base 1304, and a pair of gripper links 1220. .
  • Each end effector member 1308 is L-shaped and has a gripper 1302 extending in the Z1 direction and a lever portion 1310 extending at approximately 35 ° with respect to the gripper 1302.
  • a hole 1216 is provided in the L-shaped bent portion, and a hole 1218 is provided in the vicinity of the end of the lever portion 1310.
  • Each end effector member 1308 is connected to the pin 1224 of the passive plate 1158 by one side gripper link 1220.
  • two link holes 1172 are provided at symmetrical positions in the Y direction of FIG. 47, and the pair of gripper links 1220 are arranged so as to intersect in a side view.
  • the second end effector driving mechanism 1320b basically has a folding pulley (columnar member, transmission member) 1350 with respect to the first end effector driving mechanism 1320a (see FIG. 51). Is added.
  • the passive pulley 1156a and the passive pulley 1156b have a coaxial configuration.
  • the main shaft member 1144 is provided with a radial shaft hole 1354 into which the pin 1352 is inserted and fixed.
  • the shaft hole 1354 passes through the cylindrical portion of the main shaft member 1144 via the hole 1144a.
  • the transmission member 1152 is provided with a long hole 1356 extending in the axial direction with a width through which the pin 1352 can be inserted.
  • the transmission member 1152 is provided at a position slightly offset in the Y1 direction from the axis of the working unit 16, but only the protrusion 1174 at the tip may be disposed at the axis (see FIG. 51). Of course, the transmission member 1152 may be arranged at the center.
  • the pin 1154 passes through the transmission member 1152 and protrudes in the Y2 direction to pivotally support the passive pulley 1156b.
  • the passive pulley 1156b has a width that allows the passive wire 1252b to be wound twice.
  • the hole 1144a of the main shaft member 1144 has a height at which the passive pulleys 1156a and 1156b and the transmission member 1152 can be inserted (see FIGS. 46 and 49). Passive pulleys 1156a and 1156b are axially supported by pins 1154 in the hole 1144a and are independently rotatable.
  • the pin 1352 is inserted into the long hole 1356 and the center hole of the folding pulley 1350 from the Y1 direction toward the Y2 direction in the hole 1144a, and the transmission member 1152 and the passive pulley 1156a and 1156b can advance and retract in the axial direction.
  • the folding pulley 1350 is pivotally supported by a pin 1352 and is rotatable, and its position is fixed.
  • the folding pulley 1350 has a width that allows the passive wire 1252b to be wound twice.
  • the folding pulley 1350 can be rotated in the opposite direction during the opening / closing operation, and friction between the passive wire 1252b and the pulley can be reduced.
  • a folding pulley 1350 is provided on the tip side of the passive pulley 1156b, and the passive wire 1252b includes the passive pulley 1156b and the folding pulley 1350. It is wrapped around. That is, the passive wire 1252b passes through the X1 direction of the idle pulley 1140b, the X2 direction, and the X2 direction of the guide pulley 1142b from the wire engaging portion 1250b (see FIGS. 43 to 45) of the rod 192b of the driving member. It reaches the X2 direction surface of the passive pulley 1156b.
  • the passive wire 1252b extends in the Z1 direction as it is, reaches the surface in the X2 direction of the folding pulley 1350, is wound around the Z1 direction surface of the folding pulley 1350, and is folded in the Z2 direction.
  • the passive wire 1252b is wound around the Z2 direction surface of the passive pulley 1156b by half rotation, passes through the X2 side, reaches the folding pulley 1350 again, and is again wound around the Z1 direction surface of the folding pulley 1350 by half rotation and is folded back in the Z2 direction. . Thereafter, the passive wire 1252b extends from the X1 direction of the guide pulley 1142b to the X2 direction of the idle pulley 1140b and is connected to the wire engaging portion 1250b of the rod 192b.
  • the wire engaging portion 1250a and the passive wire 1252b are mechanically connected to the trigger lever 36 via the rod 192b.
  • FIG. 12 In order to facilitate understanding of the structure of the distal end working unit 12, a schematic diagram thereof is shown in FIG.
  • the rod 192a pulls the passive wire 1252a, and the passive pulley 1156a and the transmission member 1152 are moved in the Z2 direction.
  • the end effector 1300 can be closed from the movement. That is, the end effector 1300 is closed by pulling transmission members such as the rod 192a, the passive wire 1252a, and the passive pulley 1156a.
  • the rod 192b is disposed so as to be pushed out, and therefore does not hinder the operation of the transmission member 1152.
  • the transmission member 1152 and the passive pulley 1156a can move in the Z1 direction toward the tip side to open the end effector 1300.
  • the end effector 1300 is mechanically directly transmitted by the second end effector drive mechanism 1320b to push the trigger lever 36 manually, so that the end effector 1300 can be opened with an arbitrary strong force instead of a predetermined force such as an elastic body. it can. Therefore, it can be suitably used for a procedure in which the biological tissue is peeled off using the outer side surface of the end effector 1300 or the hole is expanded.
  • the passive wire 1252b, the rod 192b, and the trigger lever 36 do not move further in the Z1 direction, and the operator can move the outer surface of the end effector 1300 to the object.
  • the contact and the hardness of the object can be perceived with the fingertip.
  • the tip motion unit 12 is capable of yaw axis operation and roll axis operation.
  • the composite mechanism unit 1102 and the end at the tip of the guide pulley 1142a and the guide pulley 1142b are centered on the shaft 1112 (see FIG. 45).
  • the effector 1300 swings in the yaw direction. Since the distal end working unit 12 is a non-interference mechanism, the opening degree of the end effector 1300 does not change even if the yaw axis operation is performed. Conversely, even if the opening degree of the end effector 1300 is changed, the yaw axis does not change. It will not work. The same applies to the relationship between the end effector 1300 and the roll shaft.
  • the distal end working unit 12a is common to the distal end working unit 12 (see FIG. 44) in that it has a first end effector drive mechanism 1320a.
  • the drive mechanism 1320b is omitted.
  • the same components as those of the distal end working unit 12 are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the tip operating portion 12a is provided with a single-open type end effector 1300a instead of the double-open type end effector 1300.
  • the end effector 1300a includes a fixed gripper 1202, a gripper 1212 that opens and closes around a pin 1196, and a spring 1305 that elastically biases the transmission member 1152 in the Z1 direction.
  • the gripper 1212 is driven to open and close via the gripper link 1220 as the transmission member 1152 advances and retreats. That is, when the trigger lever 36 is pulled in the Z2 direction, the transmission member 1152 is also displaced in the Z2 direction by the first end effector drive mechanism 1320a, and the gripper 1212 rotates counterclockwise in FIG. To do. On the other hand, when the trigger lever 36 is opened, the transmission member 1152 is displaced in the Z1 direction by the bias of the spring 1305, and the end effector 1300 returns to the open state. The trigger lever 36 returns in the Z1 direction.
  • the present invention may be applied to a surgical robot system 700 as shown in FIG. 58, for example.
  • the surgical robot system 700 includes an articulated robot arm 702 and a console 704, and the same mechanism as the manipulator 10 is provided at the tip of the robot arm 702.
  • a base 14 a that houses the drive unit 30 is fixed to the distal end 708 of the robot arm 702, and the working unit 16 is detachably attached to the base 14 a.
  • the robot arm 702 may be any means that moves the working unit 16, and is not limited to a stationary type, but may be an autonomous moving type, for example.
  • the console 704 can take a configuration such as a table type or a control panel type.
  • the position and orientation of the working unit 16 can be arbitrarily set.
  • a base portion 14 a constituting the manipulator 10 at the distal end is integrated with the distal end portion 708 of the robot arm 702.
  • the manipulator 10 has an electric operation mechanism by a motor (actuator interlocked with an input unit operated manually) instead of the mechanical operation mechanism by the trigger lever 36, and the motor has two rods. 192a and 192b are driven.
  • the robot arm 702 may operate under the action of the console 704, and may be configured to perform automatic operation according to a program, operation following a joystick 706 provided on the console 704, and a combination of these operations.
  • the console 704 includes the functions of the controller.
  • the working unit 16 is provided with the distal end working unit 12.
  • the console 704 is provided with two joysticks 706 as operation command units and a monitor 710. Although not shown, two robot arms 702 can be individually operated by two joysticks 706.
  • the two joysticks 706 are provided at positions that can be easily operated with both hands.
  • On the monitor 710 information such as an image by a flexible endoscope is displayed.
  • the joystick 706 can move up and down, move left and right, twist, and tilt, and can move the robot arm 702 according to these operations.
  • the joystick 706 may be a master arm.
  • the communication means between the robot arm 702 and the console 704 may be wired, wireless, network, or a combination thereof.
  • the joystick 706 is provided with a trigger lever 36, and the motor can be driven by operating the trigger lever 36.

Abstract

A manipulator (10) used as a medical manipulator comprises: a drive section (30) which has drive shafts (115, 116) driven by motors (100, 102); and a working section (16) which is provided with pulleys (158a, 158b) driven and rotated by the drive shafts (115, 116) and also with a tip operation section (12) operated by the rotation of the pulleys (158a, 158b), the working section (16) being capable of being mounted to and removed from the drive section (30). The drive shafts (115, 116) have engaging protrusions (137, 138) tilted relative to the axis direction. The pulleys (158a, 158b) have engaging recesses (176a, 176b) which are tilted relative to the axis direction and are engageable with the engaging protrusions (137, 138). The engaging protrusions (137, 138) and the engaging recesses (176a, 176b) are engaged with each other with the drive section (30) and the working section (16) mounted to each other and transmits the rotation of the drive shafts (115, 116) to the pulleys (158a, 158b).

Description

医療用マニピュレータMedical manipulator
 本発明は、駆動部と、該駆動部によって動作される先端動作部を備えた作業部とを備え、これら駆動部と作業部とを着脱可能に構成した医療用マニピュレータに関する。 The present invention relates to a medical manipulator that includes a drive unit and a working unit including a distal end working unit that is operated by the drive unit, and the drive unit and the work unit are configured to be detachable.
 腹腔鏡下手術においては、患者の腹部等に小さな孔をいくつかあけて内視鏡、マニピュレータ(又は鉗子)等を挿入し、術者が内視鏡の映像をモニタで見ながら手術を行っている。このような腹腔鏡下手術は、開腹を必要としないため患者への負担が少なく、術後の回復や退院までの日数が大幅に低減されることから、適用分野の拡大が期待されている。 In laparoscopic surgery, a small hole is made in the patient's abdomen, etc., and an endoscope, manipulator (or forceps), etc. are inserted, and the surgeon performs the operation while viewing the endoscope image on the monitor. Yes. Since such laparoscopic surgery does not require laparotomy, the burden on the patient is small, and the number of days until postoperative recovery and discharge is greatly reduced, and therefore, the application field is expected to expand.
 一方、腹腔鏡下手術で用いるマニピュレータには、患部の位置及び大きさに応じて迅速且つ適切な手技が可能であることが望まれており、しかも患部切除、縫合及び結紮等の様々な手技が行われる。これに関連して、操作の自由度が高くしかも簡便に操作することのできるマニピュレータの提案がなされている(例えば、日本国特開2008-104854号公報参照)。 On the other hand, manipulators used in laparoscopic surgery are desired to be capable of quick and appropriate procedures depending on the position and size of the affected area, and various techniques such as excision of the affected area, suturing and ligation are required. Done. In relation to this, there has been proposed a manipulator that has a high degree of freedom in operation and can be easily operated (see, for example, Japanese Patent Application Laid-Open No. 2008-104854).
 日本国特開2008-104854号公報記載のマニピュレータは、先端動作部を有する作業部と、モータやハンドルを有する駆動部とを着脱可能に構成している。これにより、はさみやグリッパ等の各種の先端動作部を設けた作業部を適宜駆動部に対して交換することにより、手技に応じた各種の先端動作部を持つマニピュレータを容易に構成することができる。このマニピュレータでは、駆動部と作業部との装着時、駆動軸と従動軸の先端にそれぞれ形成された十字状の凸部と凹部とが係合し、これにより、モータの回転駆動力を駆動部から作業部へと伝達し、先端動作部を動作させることができる。さらに、このマニピュレータでは、モータの回転位置を固定可能なロック部材を設けており、駆動部と作業部との着脱時、予め原点位置にモータを戻しておくことで、常に所定の原点位置に保持しておくことができ、次回の装着時に容易に原点位置から制御を開始することができる。 A manipulator described in Japanese Patent Application Laid-Open No. 2008-104854 is configured such that a working unit having a tip operating unit and a driving unit having a motor and a handle are detachable. As a result, a manipulator having various tip operation portions corresponding to the procedure can be easily configured by appropriately replacing the working portion provided with various tip operation portions such as scissors and grippers with respect to the drive portion. . In this manipulator, when the drive unit and the working unit are mounted, the cruciform projections and recesses formed at the tips of the drive shaft and the driven shaft are engaged with each other, whereby the rotational driving force of the motor is transmitted to the drive unit. Can be transmitted to the working unit to operate the tip working unit. In addition, this manipulator is provided with a lock member that can fix the rotational position of the motor. When the drive unit and the working unit are attached and detached, the motor is returned to the original position in advance so that the motor is always kept at the predetermined original position. Therefore, the control can be easily started from the origin position at the next mounting.
 上記従来構成に係るマニピュレータでは、着脱に際しては常にモータを原点位置に戻す必要があり、そうしないと駆動部と作業部とを着脱できない構造となっている。ところが、例えば、手術中に作業部を交換する場合等には、作業部と駆動部の現在位相に係わらず、一層迅速に且つ一層簡単に駆動部と作業部とを着脱できる構成も望まれている。 In the manipulator according to the above-described conventional configuration, it is necessary to always return the motor to the origin position when attaching and detaching, otherwise the drive unit and the working unit cannot be attached and detached. However, for example, when exchanging the working unit during surgery, a configuration in which the driving unit and the working unit can be attached and detached more quickly and more easily regardless of the current phase of the working unit and the driving unit is desired. Yes.
 本発明はこのような従来技術に関連してなされたものであり、駆動軸を有する駆動部と、従動軸や先端動作部を有する作業部とを、一層迅速に且つ簡単に着脱することができる医療用マニピュレータを提供することを目的とする。 The present invention has been made in connection with such a conventional technique, and a drive unit having a drive shaft and a working unit having a driven shaft and a tip operation unit can be more quickly and easily attached and detached. An object is to provide a medical manipulator.
 本発明に係る医療用マニピュレータは、アクチュエータによって回転される駆動軸を有する駆動部と、前記駆動軸によって従動回転される従動軸、該従動軸の回転によって動作される先端動作部、及び、該先端動作部を先端に設けたシャフトを有し、前記駆動部に対して着脱可能な作業部とを備え、前記駆動軸は軸線方向に対して傾斜した駆動側接合面を有し、前記従動軸は軸線方向に対して傾斜すると共に、前記駆動側接合面と係合可能な従動側接合面を有し、前記駆動側接合面及び前記従動側接合面は、前記駆動部及び前記作業部が装着された状態で互いに係合して、前記駆動軸の回転を前記従動軸に伝達可能であることを特徴とする。 A medical manipulator according to the present invention includes a drive unit having a drive shaft rotated by an actuator, a driven shaft driven to rotate by the drive shaft, a tip operating unit operated by rotation of the driven shaft, and the tip And a working portion detachably attached to the drive portion, the drive shaft having a drive side joint surface inclined with respect to the axial direction, and the driven shaft being The drive side joint surface is inclined with respect to the axial direction and engageable with the drive side joint surface, and the drive unit and the working unit are mounted on the drive side joint surface and the driven side joint surface. The rotation of the drive shaft can be transmitted to the driven shaft.
 このような構成によれば、駆動部側の駆動軸に前記駆動側接合面を設け、駆動部と着脱可能な作業部側の従動軸に前記駆動側接合面と係合可能な従動側接合面を設け、これらを各軸に対して傾斜させたことにより、駆動軸と従動軸とを連結する際の互いの初期位相に係わらず駆動側接合面と従動側接合面とを円滑に係合させることができる。従って、駆動側接合面と従動側接合面の初期位相を特別に考慮することなく、駆動部と作業部とを迅速に且つ簡単に着脱することができる。 According to such a configuration, the drive side joint surface is provided on the drive shaft on the drive unit side, and the driven side joint surface is engageable with the drive side joint surface on the driven shaft on the working unit side that is detachable from the drive unit. And the drive side joint surface and the driven side joint surface are smoothly engaged regardless of the initial phase when the drive shaft and the driven shaft are connected. be able to. Therefore, the drive unit and the working unit can be quickly and easily attached and detached without special consideration of the initial phases of the drive side joint surface and the driven side joint surface.
 この場合、前記駆動側接合面と前記従動側接合面との係合時、前記駆動軸及び前記従動軸の一方が他方によって強制的に回転可能であると、互いの初期位相がずれている場合であっても一層円滑に駆動側接合面と従動側接合面とを係合させることが可能となる。 In this case, when the drive-side joint surface and the driven-side joint surface are engaged, if one of the drive shaft and the driven shaft can be forcibly rotated by the other, the initial phase of each other is shifted Even so, it becomes possible to more smoothly engage the driving side joining surface and the driven side joining surface.
 また、前記従動軸の位相を検出する位相検出手段を備えると、作業部(従動軸)の原点設定等を正確に行うことが可能となる。 In addition, when the phase detection means for detecting the phase of the driven shaft is provided, it is possible to accurately set the origin of the working unit (driven shaft).
 この場合、前記位相検出手段は、前記従動軸の回転に伴って動作する被検出部材と、前記被検出部材の動作を検出する検出センサとを有する構成とすることができる。 In this case, the phase detection means may include a detected member that operates as the driven shaft rotates and a detection sensor that detects the operation of the detected member.
 また、前記被検出部材及び前記検出センサが前記駆動部に設けられる一方、前記従動軸の周面には、その周方向での軸線方向位置が変化したカム面が設けられ、前記被検出部材は、前記駆動部及び前記作業部が装着された状態でその先端が前記カム面に当接して、前記従動軸の回転による前記カム面の前記軸線方向位置の変化に伴って進退可能に構成されていると、従動軸の位相を容易に検出することが可能となる。 In addition, the detected member and the detection sensor are provided in the driving unit, and the peripheral surface of the driven shaft is provided with a cam surface whose axial position in the circumferential direction is changed, and the detected member is The front end of the driving unit and the working unit are in contact with the cam surface, and the driving unit and the working unit are configured to be capable of moving forward and backward with a change in the axial position of the cam surface due to rotation of the driven shaft. In this case, the phase of the driven shaft can be easily detected.
 前記被検出部材は、前記作業部に設けられると共に、前記従動軸の回転に伴って回転可能であり、前記検出センサは、前記駆動部に設けられると共に、前記駆動部及び前記作業部が装着された状態で前記被検出部材を検出可能に配置されている構成としてもよい。 The detected member is provided in the working unit and is rotatable with the rotation of the driven shaft, and the detection sensor is provided in the driving unit, and the driving unit and the working unit are mounted. It is good also as a structure arrange | positioned so that the said to-be-detected member can be detected in the state.
 前記位相検出手段は、前記従動軸の径方向に沿って設けられた当接部材と、前記当接部材が前記従動軸と共に回転した際に、該当接部材と当接することで前記従動軸の回転範囲を原点から正転方向及び逆転方向にそれぞれ180°未満の範囲で規定する規制部と、前記当接部材と前記規制部との当接を検出する検出部とを有した構成としてもよい。 The phase detection means rotates the driven shaft by contacting the contact member provided along the radial direction of the driven shaft and the corresponding contact member when the contact member rotates together with the driven shaft. It is good also as a structure which has the control part which prescribes | regulates a range in the normal rotation direction and the reverse rotation direction from the origin in each less than 180 degrees, and the detection part which detects contact | abutting with the said contact member and the said control part.
 さらに、前記駆動部及び前記作業部が装着された後、前記位相検出手段の検出に基づき、前記従動軸を回転させて原点に設定する原点サーチ動作を実行する原点サーチ部を備えると、迅速且つ正確な原点検出が可能となる。 Furthermore, after the drive unit and the working unit are mounted, an origin search unit that performs an origin search operation for setting the origin by rotating the driven shaft based on the detection of the phase detection unit, Accurate origin detection is possible.
 前記駆動部に、前記駆動軸の回転位置を検出する駆動軸位相センサを設けて構成することもできる。 The drive unit may be provided with a drive shaft phase sensor that detects the rotational position of the drive shaft.
 この場合、前記駆動部に接続されるコントローラを備え、前記作業部は、前記従動軸の径方向に沿って設けられた当接部材と、前記当接部材が前記従動軸と共に回転した際に、該当接部材と当接することで前記従動軸の回転範囲を原点から正転方向及び逆転方向にそれぞれ180°未満の範囲で規定する規制部とを有し、前記コントローラは、前記駆動側接合面と前記従動側接合面とが係合される際に、前記従動軸が強制的に前記規制部による規制を越えて回転されることを回避可能な安全領域へと、前記駆動軸を前記駆動軸位相センサの検出に基づいて予め回転させておく安全着脱動作を実行することにより、従動軸が規制部を超えて回転される強制力を受けて、該従動軸等に過度の負荷が生じることを有効に回避することができる。 In this case, a controller connected to the drive unit is provided, and the working unit has a contact member provided along a radial direction of the driven shaft, and the contact member rotates together with the driven shaft. A regulating portion that regulates the rotation range of the driven shaft in a range of less than 180 degrees in the forward rotation direction and the reverse rotation direction from the origin by contacting with the contact member, and the controller includes the drive side joint surface When the driven-side joint surface is engaged, the drive shaft is moved to the safety region where the driven shaft can be prevented from forcibly rotating beyond the restriction by the restriction portion. Effective execution of an excessive load on the driven shaft or the like by receiving a forcible force that rotates the driven shaft beyond the restricting portion by executing a safety attaching / detaching operation that is rotated in advance based on the detection of the sensor. Can be avoided.
 前記安全着脱動作は、前記作業部が前記駆動部から取り外された際、前記駆動部に前記コントローラを接続した際、及び、前記駆動部に設けられたマスタスイッチがオフにされた際のうち、少なくともいずれかのタイミングで実行されるとよい。 The safety attaching / detaching operation is performed when the working unit is detached from the driving unit, when the controller is connected to the driving unit, and when a master switch provided in the driving unit is turned off. It may be executed at least at any timing.
 また、前記作業部は、前記従動軸の径方向に沿って設けられた当接部材と、前記当接部材が前記従動軸と共に回転した際に、該当接部材と当接することで前記従動軸の回転範囲を原点から正転方向及び逆転方向にそれぞれ180°未満の範囲で規定する規制部とを有し、前記駆動部から前記作業部を取り外すときに、又は、前記駆動部から前記作業部を取り外し可能な状態のときに、次回の駆動部と作業部との装着時に前記従動軸が強制的に前記規制部による規制を越えて回転されることを回避できる安全領域へと、前記従動軸を誘導する安全領域誘導手段を有する構成としても、従動軸等に過度の負荷が生じることを有効に回避することができる。 In addition, the working unit includes a contact member provided along a radial direction of the driven shaft, and a contact member that contacts the corresponding contact member when the contact member rotates together with the driven shaft. And a regulating part that regulates the rotation range from the origin in a forward rotation direction and a reverse rotation direction within a range of less than 180 °, and when removing the working part from the driving part, or the working part from the driving part In a removable state, the driven shaft is moved to a safe area where the driven shaft can be prevented from being forcedly rotated beyond the regulation by the regulating portion when the drive unit and the working unit are mounted next time. Even with the configuration having the safety area guiding means for guiding, it is possible to effectively avoid the occurrence of an excessive load on the driven shaft or the like.
 さらに、前記安全領域誘導手段は、前記規制部の前記当接部材が当接する端面に設けられた緩衝部材、又は、前記端面から進退する進退部材を含む構成としてもよい。 Furthermore, the safety area guiding means may include a buffer member provided on an end surface with which the abutting member of the restricting portion abuts, or an advancing / retreating member that advances / retreats from the end surface.
 さらにまた、前記作業部は、前記従動軸の径方向に沿って設けられた当接部材と、前記当接部材が前記従動軸と共に回転した際に、該当接部材と当接することで前記従動軸の回転範囲を原点から正転方向及び逆転方向にそれぞれ180°未満の範囲で規定する規制部とを有し、前記駆動部と前記作業部とを装着するときに、前記従動軸が強制的に前記規制部による規制を越えて回転されることを回避できる安全領域へと、前記従動軸を誘導する安全領域誘導手段を有する構成としてもよい。 Still further, the working unit has a contact member provided along a radial direction of the driven shaft, and the driven shaft comes into contact with the corresponding contact member when the contact member rotates together with the driven shaft. And a regulating portion that regulates the rotation range from the origin in a range of less than 180 ° in the forward rotation direction and the reverse rotation direction, respectively, and when the drive unit and the working unit are mounted, the driven shaft is forcibly It is good also as a structure which has a safe area | region guidance means which guide | induces the said driven shaft to the safe area | region which can avoid rotating exceeding the regulation by the said control part.
 この場合、前記安全領域誘導手段は、前記駆動部に設けられることにより、前記駆動部と前記作業部とが装着される際に、前記規制部と前記当接部材との間に進動する移動部材を含む構成とすることもできる。 In this case, the safety area guiding means is provided in the drive unit, and moves when the drive unit and the working unit are mounted to advance between the regulating unit and the contact member. It can also be set as the structure containing a member.
 なお、前記駆動側接合面及び前記従動側接合面は、一方が先細りのテーパ形状であり、他方が前記先細りのテーパ形状に対応した奥細りのテーパ形状であると、両接合面の係合を一層円滑に行うことができる。 In addition, when one of the driving side joining surface and the driven side joining surface has a tapered taper shape and the other has a tapered shape corresponding to the tapered taper shape, the engagement of both the joining surfaces is achieved. It can be performed more smoothly.
 この場合、前記先細りのテーパ形状の前記駆動側接合面又は前記従動側接合面には、径方向に突出する突出部が周方向で等間隔に複数設けられ、前記奥細りのテーパ形状の前記従動側接合面又は前記駆動側接合面には、前記突出部に対応する複数の溝部が設けられていてもよい。 In this case, a plurality of projecting portions projecting in the radial direction are provided at equal intervals in the circumferential direction on the drive-side joint surface or the driven-side joint surface having the tapered shape, and the tapered tapered follower is provided. A plurality of grooves corresponding to the protrusions may be provided on the side joint surface or the drive side joint surface.
 また、前記駆動側接合面及び前記従動側接合面は、互いに噛み合う歯面形状とすることもできる。 Also, the driving side joining surface and the driven side joining surface may be tooth surfaces that mesh with each other.
 さらに、前記駆動部及び前記作業部の着脱状態を検出する着脱センサを備えると、当該着脱状態を確実に検出することが可能となるため好ましい。 Furthermore, it is preferable to provide an attachment / detachment sensor for detecting the attachment / detachment state of the drive unit and the working unit because the attachment / detachment state can be reliably detected.
本実施形態に係るマニピュレータの斜視図である。It is a perspective view of the manipulator concerning this embodiment. 操作部の一部省略斜視図である。FIG. 6 is a partially omitted perspective view of an operation unit. 作業部の一部省略斜視図である。It is a partially-omission perspective view of a working part. 複合入力部及びその周辺部の一部省略斜視図である。FIG. 5 is a partially omitted perspective view of a composite input unit and its peripheral part. 複合入力部の正面図である。It is a front view of a composite input part. 操作部及び作業部の一部省略分解側面図である。It is a partially omitted exploded side view of the operation unit and the working unit. 操作部及び作業部が装着された状態での駆動部及びその周辺部の一部省略斜視図である。FIG. 5 is a partially omitted perspective view of the drive unit and its peripheral part in a state where the operation unit and the working unit are mounted. 操作部及び作業部が装着された状態での駆動部及びその周辺部の一部省略平面図である。FIG. 6 is a partially omitted plan view of the drive unit and its peripheral part in a state where the operation unit and the working unit are mounted. 駆動部及びその周辺部の一部省略断面側面図である。FIG. 3 is a partially omitted cross-sectional side view of a drive unit and its peripheral part. 駆動部及びその周辺部の一部省略断面正面図である。FIG. 4 is a partially omitted cross-sectional front view of a drive unit and its peripheral part. 作業部の一部省略平面図である。It is a partially omitted plan view of a working unit. 図11中のXII-XII線に沿う一部省略断面側面図である。FIG. 12 is a partially omitted cross-sectional side view taken along line XII-XII in FIG. 11. プーリボックスの断面斜視図である。It is a cross-sectional perspective view of a pulley box. 図14Aは、プーリの許容回転範囲を説明するための一部省略底面図であり、図14Bは、図14Aに示す状態からプーリを回転させた状態を示す一部省略底面図である。14A is a partially omitted bottom view for explaining the allowable rotation range of the pulley, and FIG. 14B is a partially omitted bottom view showing a state in which the pulley is rotated from the state shown in FIG. 14A. 図12中のXV-XV線に沿う断面図である。FIG. 13 is a cross-sectional view taken along line XV-XV in FIG. トリガレバーの一部省略断面斜視図である。It is a partially omitted cross-sectional perspective view of the trigger lever. 図17Aは、トリガレバーの一部省略断面側面図であり、図17Bは、図17Aに示す状態からリリースレバーを操作した状態での一部省略断面側面図である。FIG. 17A is a partially omitted cross-sectional side view of the trigger lever, and FIG. 17B is a partially omitted cross-sectional side view in a state where the release lever is operated from the state shown in FIG. 17A. トリガレバー取付部及びその周辺部の一部省略断面側面図である。It is a partial omission cross-sectional side view of a trigger lever attaching part and its peripheral part. カメラによるバーコードの撮像方向を説明するための一部省略側面図である。It is a partially omitted side view for explaining the imaging direction of the barcode by the camera. 図20Aは、操作部の一部省略底面図であり、図20Bは、作業部の一部省略平面図である。20A is a partially omitted bottom view of the operation unit, and FIG. 20B is a partially omitted plan view of the working unit. プーリの許容回転範囲を規制する構造の変形例を示す一部省略平面図である。FIG. 10 is a partially omitted plan view showing a modified example of a structure for restricting an allowable rotation range of a pulley. 図22Aは、係合凸部と係合凹部の係合前の状態を示す一部省略斜視図であり、図22Bは、係合凸部と係合凹部が係合した状態を示す一部省略斜視図である。FIG. 22A is a partially omitted perspective view showing a state before engagement of the engaging convex portion and the engaging concave portion, and FIG. 22B is a partially omitted view showing a state where the engaging convex portion and the engaging concave portion are engaged. It is a perspective view. 図23Aは、係合時に係合凸部及び係合凹部の初期位相がずれている状態を示す説明図であり、図23Bは、係合凸部及び係合凹部が係合した状態を示す説明図である。FIG. 23A is an explanatory diagram showing a state in which the initial phases of the engaging convex portion and the engaging concave portion are shifted during engagement, and FIG. 23B is an explanatory diagram showing a state in which the engaging convex portion and the engaging concave portion are engaged. FIG. 図24Aは、係合凹部が所定の原点にあり、係合凸部の位相が多少正転方向にある係合前の状態を示す説明図であり、図24Bは、図24Aに示す状態から係合凸部と係合凹部が係合された状態を示す説明図である。FIG. 24A is an explanatory diagram showing a state before engagement in which the engaging concave portion is at a predetermined origin and the phase of the engaging convex portion is slightly in the forward rotation direction, and FIG. 24B is related to the state shown in FIG. 24A. It is explanatory drawing which shows the state by which the joint convex part and the engagement recessed part were engaged. 図25Aは、係合凸部が所定の原点にあり、係合凹部の位相が多少逆転方向にある係合前の状態を示す説明図であり、図25Bは、図25Aに示す状態から係合凸部と係合凹部が係合された状態を示す説明図である。FIG. 25A is an explanatory view showing a state before engagement in which the engagement convex portion is at a predetermined origin and the phase of the engagement concave portion is slightly in the reverse rotation direction, and FIG. 25B is engaged from the state shown in FIG. 25A. It is explanatory drawing which shows the state by which the convex part and the engagement recessed part were engaged. 駆動シャフトとプーリとの係合構造の変形例を示す斜視図である。It is a perspective view which shows the modification of the engagement structure of a drive shaft and a pulley. 駆動シャフトとプーリとの係合構造の他の変形例を示す斜視図である。It is a perspective view which shows the other modification of the engagement structure of a drive shaft and a pulley. カム面を周方向で360°展開し、その上面のY方向位置を示した説明図である。It is explanatory drawing which expanded the cam surface 360 degree | times in the circumferential direction, and showed the Y direction position of the upper surface. 図29Aは、原点サーチ動作の第1変形例を実施するための操作部14側の構造を例示した説明図であり、図29Bは、図29Aに示す操作部14に対応する作業部16側の構造を例示した説明図である。FIG. 29A is an explanatory diagram illustrating the structure on the operation unit 14 side for carrying out the first modification of the origin search operation, and FIG. 29B is a diagram on the working unit 16 side corresponding to the operation unit 14 shown in FIG. 29A. It is explanatory drawing which illustrated the structure. 図30Aは、図29A及び図29Bに示す係合凸部と係合凹部との係合構造の側面説明図であり、図30Bは、図30Aに示す状態から係合凸部と係合凹部とを係合した状態での側面説明図である。FIG. 30A is an explanatory side view of the engagement structure of the engagement convex portion and the engagement concave portion shown in FIGS. 29A and 29B. FIG. 30B shows the engagement convex portion and the engagement concave portion from the state shown in FIG. 30A. It is side surface explanatory drawing in the state which engaged. 図31Aは、原点サーチ動作の第2変形例に係る方法における係合凸部と係合凹部が初期位相での状態を示す説明図であり、図31Bは、図31Aに示す状態からモータを正回転させて当接部を一方のストッパに当接させた状態を示す説明図であり、図31Cは、図31Bに示す状態からモータを逆回転させて当接部を他方のストッパに当接させた状態を示す説明図であり、図31Dは、図31Cに示す状態からモータを原点に設定した状態を示す説明図である。FIG. 31A is an explanatory view showing a state in which the engaging convex portion and the engaging concave portion are in an initial phase in the method according to the second modification of the origin search operation, and FIG. It is explanatory drawing which shows the state which rotated and contact | abutted the contact part to one stopper, FIG. 31C makes a contact part contact the other stopper by rotating a motor reversely from the state shown to FIG. 31B. FIG. 31D is an explanatory diagram showing a state in which the motor is set as the origin from the state shown in FIG. 31C. 図32Aは、第1の安全着脱動作を説明するための説明図であり、図32Bは、図32Aに示す状態から係合凸部と係合凹部とを係合した状態を示す説明図である。FIG. 32A is an explanatory diagram for explaining the first safety attaching / detaching operation, and FIG. 32B is an explanatory diagram showing a state in which the engaging convex portion and the engaging concave portion are engaged from the state shown in FIG. 32A. . 図33Aは、第1の安全着脱動作を説明するための説明図であり、図33Bは、図33Aに示す状態から係合凸部と係合凹部とを係合した状態を示す説明図である。FIG. 33A is an explanatory view for explaining the first safety attaching / detaching operation, and FIG. 33B is an explanatory view showing a state in which the engaging convex portion and the engaging concave portion are engaged from the state shown in FIG. 33A. . 図34Aは、第1の安全着脱動作を説明するための説明図であり、図34Bは、図34Aに示す状態から係合凸部と係合凹部とを係合した状態を示す説明図である。FIG. 34A is an explanatory diagram for explaining the first safety attaching / detaching operation, and FIG. 34B is an explanatory diagram showing a state in which the engaging convex portion and the engaging concave portion are engaged from the state shown in FIG. 34A. . 図35Aは、第1の安全着脱動作を説明するための説明図であり、図35Bは、図35Aに示す状態から係合凸部と係合凹部とを係合しようとした状態を示す説明図である。FIG. 35A is an explanatory diagram for explaining the first safety attaching / detaching operation, and FIG. 35B is an explanatory diagram showing a state in which the engaging convex portion and the engaging concave portion are about to be engaged from the state shown in FIG. 35A. It is. 係合凹部の動作範囲が240°の状態での安全領域及び危険領域を示す説明図である。It is explanatory drawing which shows the safe area | region and danger area | region in the state whose operation range of an engagement recessed part is 240 degrees. 係合凹部の動作範囲が210°の状態での安全領域及び危険領域を示す説明図である。It is explanatory drawing which shows the safe area | region and danger area | region in the state whose operation range of an engagement recessed part is 210 degrees. 図38Aは、第2の安全着脱動作を説明するための説明図であり、図38Bは、図38Aに示す状態からモータを回転させて当接部をゴム部材に当接させた状態を示す説明図であり、図38Cは、図38Bに示す状態から係合凸部と係合凹部とが取り外されてゴム部材の反発作用によって当接部が安全領域内へと回転された状態を示す説明図である。FIG. 38A is an explanatory diagram for explaining the second safety attaching / detaching operation, and FIG. 38B is an explanatory diagram showing a state in which the motor is rotated from the state shown in FIG. 38A to bring the contact portion into contact with the rubber member. FIG. 38C is an explanatory view showing a state in which the engaging convex portion and the engaging concave portion are removed from the state shown in FIG. 38B and the contact portion is rotated into the safety region by the repulsive action of the rubber member. It is. 図39Aは、第2の安全着脱動作の変形例を説明するための説明図であり、図39Bは、図39Aに示す状態からモータを回転させて当接部をストッパに当接させた状態を示す説明図であり、図39Cは、図39Bに示す状態から係合凸部と係合凹部とが取り外されて進退部材によって当接部が安全領域内へと回転された状態を示す説明図である。FIG. 39A is an explanatory diagram for explaining a modified example of the second safety attaching / detaching operation, and FIG. 39B shows a state in which the motor is rotated from the state shown in FIG. FIG. 39C is an explanatory view showing a state in which the engagement convex portion and the engagement concave portion are removed from the state shown in FIG. 39B and the contact portion is rotated into the safety region by the advance / retreat member. is there. 図40Aは、第3の安全着脱動作を説明するための側面説明図であり、図40Bは、図40Aに示す状態から移動部材を当接部とストッパとの間に進動させた状態を示す説明図である。FIG. 40A is an explanatory side view for explaining the third safety attaching / detaching operation, and FIG. 40B shows a state in which the moving member is advanced between the contact portion and the stopper from the state shown in FIG. 40A. It is explanatory drawing. 図41Aは、図40Aに示す第3の安全着脱動作を説明するための説明図であり、図41Bは、図41Aに示す状態から移動部材を当接部とストッパとの間に進動させた状態を示す説明図である。FIG. 41A is an explanatory view for explaining the third safety attaching / detaching operation shown in FIG. 40A, and FIG. 41B is a state where the moving member is moved between the contact portion and the stopper from the state shown in FIG. 41A. It is explanatory drawing which shows a state. 本実施形態に係るマニピュレータの動作の一例を示すフローチャートである。It is a flowchart which shows an example of operation | movement of the manipulator which concerns on this embodiment. トリガレバーを十分に引いたときの、先端動作部の模式側面図である。It is a model side view of a front-end | tip operation | movement part when fully pulling a trigger lever. トリガレバーを押し出したときの、先端動作部の模式側面図である。It is a model side view of a front-end | tip operation | movement part when a trigger lever is pushed out. 先端動作部の模式構造図である。It is a schematic structure figure of a tip operation part. 先端動作部の断面側面図である。It is a section side view of a tip operation part. 先端動作部の断面平面図である。It is a section top view of a tip operation part. 先端動作部で、グリッパを閉じた状態の断面側面図である。It is a section side view in the state where the gripper was closed in the tip operation part. 先端動作部の分解斜視図である。It is a disassembled perspective view of a front-end | tip operation | movement part. エンドエフェクタ駆動機構の一部を示す模式構造図である。It is a schematic structure figure which shows a part of end effector drive mechanism. トリガレバーを操作しないときの、エンドエフェクタ駆動機構の模式側面図である。It is a model side view of an end effector drive mechanism when not operating a trigger lever. 受動ワイヤの端部の接続箇所の模式断面平面図である。It is a schematic cross-sectional top view of the connection location of the edge part of a passive wire. 受動ワイヤの端部の接続箇所の模式断面側面図である。It is a schematic cross section side view of the connection location of the edge part of a passive wire. トリガレバーを押し出したときの、第2エンドエフェクタ駆動機構の一部断面平面図である。It is a partial cross section top view of the 2nd end effector drive mechanism when a trigger lever is pushed out. トリガレバーを十分に引いたとき、第2エンドエフェクタ駆動機構の一部断面平面図である。When a trigger lever is fully pulled, it is a partial cross section top view of a 2nd end effector drive mechanism. トリガレバーを押し出したときの、第2エンドエフェクタ駆動機構の一部断面側面図である。It is a partial cross section side view of the 2nd end effector drive mechanism when a trigger lever is pushed out. 変形例に係る先端動作部の模式構造図である。It is a schematic structure figure of the tip operation part concerning a modification. 作業部が着脱可能な基部をロボットアームの先端に接続した手術用ロボットシステムの概略斜視図である。FIG. 3 is a schematic perspective view of a surgical robot system in which a base part to which a working part can be attached and detached is connected to a tip of a robot arm.
 以下、本発明に係る医療用マニピュレータについて好適な実施の形態を挙げ、添付の図面を参照して詳細に説明する。 Hereinafter, preferred embodiments of the medical manipulator according to the present invention will be described in detail with reference to the accompanying drawings.
 図1に示すように、本実施の形態に係るマニピュレータ(医療用マニピュレータ)10は、連結シャフト18の先端に設けられた先端動作部12に生体の一部又は湾曲針等を把持して所定の処置を行うための医療用の器具であり、通常、把持鉗子やニードルドライバ(持針器)等とも呼ばれる。 As shown in FIG. 1, the manipulator (medical manipulator) 10 according to the present embodiment grips a predetermined part of a living body or a curved needle or the like on a distal end working unit 12 provided at the distal end of a connecting shaft 18. It is a medical instrument for performing treatment, and is usually called a grasping forceps or a needle driver (needle holder).
 以下の説明では、図1における幅方向をX方向、高さ方向をY方向、連結シャフト18の延在方向をZ方向と規定する。また、先端側から見て右方をX1方向、左方をX2方向、上方向をY1方向、下方向をY2方向、前方をZ1方向、後方をZ2方向と規定する。さらに、特に断りのない限り、これらの方向の記載はマニピュレータ10が中立姿勢である場合を基準として表すものとする。これらの方向は説明の便宜上のものであり、マニピュレータ10は任意の向きで(例えば、上下を反転させて)使用可能であることはもちろんである。 In the following description, the width direction in FIG. 1 is defined as the X direction, the height direction is defined as the Y direction, and the extending direction of the connecting shaft 18 is defined as the Z direction. Further, when viewed from the front end side, the right side is defined as the X1 direction, the left side as the X2 direction, the upward direction as the Y1 direction, the downward direction as the Y2 direction, the forward direction as the Z1 direction, and the backward direction as the Z2 direction. Further, unless otherwise specified, the description of these directions is based on the case where the manipulator 10 is in a neutral posture. These directions are for convenience of explanation, and it is needless to say that the manipulator 10 can be used in any direction (for example, upside down).
 マニピュレータ10は、人手によって把持及び操作される操作部(基部)14と、該操作部14に対して着脱自在な作業部16とを備え、コネクタ520を介して操作部14に着脱自在なコントローラ514を有するマニピュレータシステムとして構成されている。操作部14には、作業部16側を電動的に駆動する駆動部(アクチュエータ部)30が設けられている。なお、分離した状態の操作部14は図2に、分離した状態の作業部16は図3に示されている。 The manipulator 10 includes an operation unit (base unit) 14 that is manually held and operated, and a work unit 16 that is detachable from the operation unit 14, and a controller 514 that is detachable from the operation unit 14 via a connector 520. It is comprised as a manipulator system which has. The operation unit 14 is provided with a drive unit (actuator unit) 30 that electrically drives the working unit 16 side. The separated operation unit 14 is shown in FIG. 2, and the separated operation unit 16 is shown in FIG.
 コントローラ514は、マニピュレータ10を総合的に制御する制御部であって、グリップハンドル(ハンドル)26の下端部から延在するケーブル61と前記コネクタ520を介して接続される。コントローラ514の機能の一部又は全部は、例えば操作部14に一体的に搭載することもできる。 The controller 514 is a control unit that comprehensively controls the manipulator 10, and is connected to the cable 61 extending from the lower end of the grip handle (handle) 26 via the connector 520. A part or all of the functions of the controller 514 can be integrally mounted on the operation unit 14, for example.
 コントローラ514は、例えば、第1ポート515a、第2ポート515b及び第3ポート515cを備えており、マニピュレータ10を独立的に3台同時に制御することができる。図1中の参照符号516は、コントローラ514の電源スイッチである。 The controller 514 includes, for example, a first port 515a, a second port 515b, and a third port 515c, and can control three manipulators 10 independently at the same time. Reference numeral 516 in FIG. 1 is a power switch of the controller 514.
 コントローラ514には、LAN等の通信手段を介して使用履歴管理手段であるホストコンピュータ502を接続することができる。ホストコンピュータ502は、内部の図示しない記録手段に使用履歴テーブルを記録しており、コントローラ514又は前記LANにより接続された複数台のコントローラに対して要求された個体番号に応じた使用履歴データを送受信し、管理する。ホストコンピュータ502は、コントローラ514から独立的な構成に限らず、コントローラ514内にその機能を設けてもよい。 The controller 514 can be connected to a host computer 502 which is a usage history management unit via a communication unit such as a LAN. The host computer 502 records a usage history table in an internal recording means (not shown), and transmits / receives usage history data corresponding to the requested individual number to the controller 514 or a plurality of controllers connected by the LAN. And manage. The host computer 502 is not limited to a configuration independent of the controller 514, and the function may be provided in the controller 514.
 このようなマニピュレータ10及びこれを含むシステムは、選択的に種々の構成を採用可能であり、例えば、作業部16は先端動作部12としてグリッパやはさみ等、各種のエンドエフェクタを適用し、所望の動作を行うことができる。 Such a manipulator 10 and a system including the manipulator 10 can selectively adopt various configurations. For example, the working unit 16 applies various end effectors such as a gripper and scissors as the distal end working unit 12 to obtain a desired configuration. The action can be performed.
 図1及び図2に示すように、操作部14は、Z1方向及びY2方向に延びた略L字状に構成されると共に、Z方向に略対称に分割された一対の上部カバー25a、25b(以下、まとめて「上部カバー25」ともいう)を筐体として、その内部に、駆動部30やカメラ224(図6参照)等が収納されると共に、基端側でY2方向に延びた部分が人手によって把持されるグリップハンドル26として構成されている。上部カバー25は、例えば樹脂性材料によって形成され、分割できない一体構成としてもよい。 As shown in FIGS. 1 and 2, the operation unit 14 is configured in a substantially L shape extending in the Z1 direction and the Y2 direction, and a pair of upper covers 25a and 25b (substantially divided in the Z direction). Hereinafter, the drive unit 30 and the camera 224 (see FIG. 6) and the like are housed in the housing, and the portion extending in the Y2 direction on the base end side is also referred to as the “upper cover 25”. The grip handle 26 is configured to be gripped by a hand. The upper cover 25 may be formed of a resinous material, for example, and may have an integral configuration that cannot be divided.
 グリップハンドル26は、人手によって把持されるのに適した長さであり、上部の傾斜面26aに複合入力部24を有する。グリップハンドル26は、上部カバー25の屈曲部に形成された傾斜面26aから略Y2方向に向かって延在しており、詳細には連結シャフト18の軸を基準として75°(度)程度の角度に延在している。このような角度にすることにより、マニピュレータ10の全体を動かす際の操作性が高まるとともに、複合入力部24の操作性が高まることが確かめられている。 The grip handle 26 has a length suitable for being manually gripped, and has the composite input portion 24 on the upper inclined surface 26a. The grip handle 26 extends in an approximately Y2 direction from an inclined surface 26a formed in a bent portion of the upper cover 25. Specifically, the grip handle 26 has an angle of about 75 ° (degrees) with respect to the axis of the connecting shaft 18. It extends to. By making such an angle, it has been confirmed that the operability when moving the entire manipulator 10 is enhanced and the operability of the composite input unit 24 is enhanced.
 図1に示すように、操作部14のY1方向頂部近傍には、上部カバー25から露出してマスタスイッチ(メインスイッチ)34が設けられ、マスタスイッチ34のZ1方向で視認しやすい箇所にLED29が設けられている。 As shown in FIG. 1, a master switch (main switch) 34 is provided in the vicinity of the top of the operation unit 14 in the Y1 direction so as to be exposed from the upper cover 25. Is provided.
 作業部16は、作業を行う先端動作部12と、該先端動作部12を先端に設けた長尺で中空の連結シャフト(シャフト)18と、該連結シャフト18の基端側が固定される下部ブラケット32と、下部ブラケット32のZ2方向端に軸支されたトリガレバー36とを有する。作業部16は、Z方向で略対称に分割された一対の下部カバー37a、37b(以下、まとめて「下部カバー37」ともいう)を筐体として、その内部に下部ブラケット32を収納している。下部カバー37は、例えば樹脂性材料によって形成され、分割できない一体構成としてもよい。 The working unit 16 includes a distal end working unit 12 for performing work, a long and hollow connecting shaft (shaft) 18 provided with the distal end working unit 12 at the tip, and a lower bracket to which the proximal end side of the connecting shaft 18 is fixed. 32 and a trigger lever 36 pivotally supported at the end of the lower bracket 32 in the Z2 direction. The working unit 16 has a pair of lower covers 37a and 37b (hereinafter, collectively referred to as “lower cover 37”) divided substantially symmetrically in the Z direction as a housing, and houses the lower bracket 32 therein. . The lower cover 37 may be formed of a resinous material, for example, and may have an integral configuration that cannot be divided.
 このような作業部16は、操作部14(駆動部30)に設けられた左右一対の着脱レバー400、400によって当該操作部14に固定されると共に、着脱レバー400の開放操作によって操作部14から分離可能であり、特別な器具を用いることなく、手術現場で容易に交換作業等を行うことができる。下部ブラケット32の上面(Y1面)には、該下部ブラケット32を再使用するために、その内部空間を洗浄する際に使用する洗浄液注入ポート39が設けられている。 Such a working unit 16 is fixed to the operation unit 14 by a pair of left and right attachment / detachment levers 400 and 400 provided in the operation unit 14 (drive unit 30), and from the operation unit 14 by an opening operation of the attachment / detachment lever 400. It is separable and can be easily replaced at the surgical site without using a special instrument. The upper surface (Y1 surface) of the lower bracket 32 is provided with a cleaning liquid injection port 39 used for cleaning the internal space in order to reuse the lower bracket 32.
 図1に示すように、先端動作部12及び連結シャフト18は細径に構成されており、患者の腹部等に設けられた円筒形状のトラカール20から体腔22内に挿入可能であり、複合入力部(基部部側入力部)24及びトリガレバー(作業部側入力部)36の操作により体腔22内において患部切除、把持、縫合及び結紮等の様々な手技を行うことができる。 As shown in FIG. 1, the distal end working unit 12 and the connecting shaft 18 are configured to have a small diameter, and can be inserted into a body cavity 22 from a cylindrical trocar 20 provided in a patient's abdomen or the like. By operating the (base part side input part) 24 and the trigger lever (working part side input part) 36, various procedures such as excision of the affected part, grasping, suturing and ligation can be performed in the body cavity 22.
 複合入力部24及びトリガレバー36の操作に基づいて動作する先端動作部12は、3軸の動作が可能である。すなわち、Y軸を基準に傾動するヨー軸動作、先端を指向する軸(中立姿勢時にはZ軸)を基準に回転するロール軸動作、及び、開閉可能なグリッパ軸動作である。本実施形態の場合、ヨー軸及びロール軸は、複合入力部24の操作に基づいて電気的に駆動され、グリッパ軸はトリガレバー36の操作に基づいて機械的に駆動される。ここで機械的とは、ワイヤ、チェーン、タイミングベルト、リンク、ロッド、ギア等を介して駆動する方式であり、主に、動力伝達方向に非弾性な固体の機械部品を介して駆動する方式である。ワイヤやチェーン等は、張力により不可避的な多少の伸びが発生する場合があるが、これらは非弾性な固体の機械部品とする。後述する荷重リミッタ212(図18参照)は、通常操作時にはほとんど弾性変形がなく、実質的に非弾性部品である。 The tip operation unit 12 that operates based on the operation of the composite input unit 24 and the trigger lever 36 can be operated in three axes. That is, a yaw axis operation that tilts with respect to the Y axis, a roll axis operation that rotates with respect to an axis pointing at the tip (Z axis in the neutral posture), and a gripper axis operation that can be opened and closed. In the case of this embodiment, the yaw axis and the roll axis are electrically driven based on the operation of the composite input unit 24, and the gripper axis is mechanically driven based on the operation of the trigger lever 36. Here, mechanical is a method of driving through wires, chains, timing belts, links, rods, gears, etc., and is mainly a method of driving through solid mechanical parts that are inelastic in the power transmission direction. is there. Wires, chains, and the like may have some inevitable elongation due to tension, but these are inelastic solid mechanical parts. A load limiter 212 (see FIG. 18), which will be described later, has almost no elastic deformation during normal operation and is substantially an inelastic part.
 以下、上記のような基本構成からなるマニピュレータ10の各部分について、順に説明する。 Hereinafter, each part of the manipulator 10 having the basic configuration as described above will be described in order.
 先ず、操作部14を構成する駆動部30について、上部カバー25等を外した(もしくは透視した)状態の図6~図10を用いて説明する。 First, the drive unit 30 constituting the operation unit 14 will be described with reference to FIGS. 6 to 10 with the upper cover 25 and the like removed (or seen through).
 図6~図10に示すように、駆動部30は、2つのモータ(アクチュエータ)100、102と、該モータ100、102を支持する上部ブラケット104と、モータ100、102の回転方向を変換して作業部16側に伝達するギア機構部106とを有する。モータ100、102及びギア機構部106は、一方の上部カバー25bの内面に2本のビス103、103(図6参照)で固定された前記上部ブラケット104によって支持されている。 As shown in FIGS. 6 to 10, the driving unit 30 converts two motors (actuators) 100 and 102, an upper bracket 104 that supports the motors 100 and 102, and a rotation direction of the motors 100 and 102. And a gear mechanism unit 106 that transmits to the working unit 16 side. The motors 100 and 102 and the gear mechanism 106 are supported by the upper bracket 104 fixed to the inner surface of one upper cover 25b with two screws 103 and 103 (see FIG. 6).
 図8に示すように、モータ100、102は、径:長さが1:4程度の円柱形状であり、Z1方向側に設けられた減速機100a、102aと、該減速機100a、102aによって減速される出力軸100b、102b(図9参照)と、Z2方向側に設けられた角度センサ100c、102cとを含む。モータ100、102は、例えばDCモータである。減速機100a、102aは、例えば遊星歯車式であり、減速比は1:100~1:300程度である。角度センサ100c、102cとしては、例えばロータリエンコーダが用いられ、検出した角度信号はコントローラ514に供給される。モータ100とモータ102や、減速機100aと減速機102aは、同一である必要はなく、適宜選定すればよい。 As shown in FIG. 8, the motors 100 and 102 have a cylindrical shape with a diameter: length of about 1: 4, and are decelerated by the speed reducers 100a and 102a provided on the Z1 direction side, and the speed reducers 100a and 102a. Output shafts 100b and 102b (see FIG. 9) and angle sensors 100c and 102c provided on the Z2 direction side. The motors 100 and 102 are, for example, DC motors. The reduction gears 100a and 102a are, for example, planetary gear types, and the reduction ratio is about 1: 100 to 1: 300. For example, a rotary encoder is used as the angle sensors 100 c and 102 c, and the detected angle signal is supplied to the controller 514. The motor 100 and the motor 102 or the speed reducer 100a and the speed reducer 102a are not necessarily the same, and may be selected as appropriate.
 図8に示すように、モータ100とモータ102は、X方向に対称位置で且つほとんど隙間なく配置されている。モータ100、102のZ2方向端は、グリップハンドル26のZ1方向端と略等しい位置である(図6参照)。図6に示すように、モータ100、102のケーブル100d、102d(角度センサ100c、102cの接続線を含む)は、それぞれZ2方向端側から延在し、グリップハンドル26の中へと引き込まれている。 As shown in FIG. 8, the motor 100 and the motor 102 are arranged symmetrically in the X direction with almost no gap. The Z2 direction ends of the motors 100 and 102 are substantially equal to the Z1 direction end of the grip handle 26 (see FIG. 6). As shown in FIG. 6, the cables 100 d and 102 d (including the connection lines of the angle sensors 100 c and 102 c) of the motors 100 and 102 respectively extend from the Z2 direction end side and are pulled into the grip handle 26. Yes.
 上部ブラケット104は、モータ100、102が固定されるXY平面である第1プレート108と、第1プレート108の上下端からZ1方向に延びた第2プレート110及び第3プレート112と、第1プレート108、第2プレート110及び第3プレート112で囲まれた空間内をX1側及びX2側に仕切る第4プレート114とを有し、切削加工又は溶接加工成型等によって形成されている。第3プレート112のZ1側端には、Y1方向に突出したブロック状のセンサ支持部109が形成されている。平面視(図8参照)で上部ブラケット104の外形を構成する第1プレート108及び第3プレート112の外周面には、これを一周する溝部にOリング105が嵌合されている(図7参照)。 The upper bracket 104 includes a first plate 108 that is an XY plane to which the motors 100 and 102 are fixed, a second plate 110 and a third plate 112 that extend in the Z1 direction from the upper and lower ends of the first plate 108, and a first plate. 108, and a fourth plate 114 that partitions the space surrounded by the second plate 110 and the third plate 112 into the X1 side and the X2 side, and is formed by cutting or welding molding. At the Z1 side end of the third plate 112, a block-shaped sensor support portion 109 protruding in the Y1 direction is formed. On the outer peripheral surfaces of the first plate 108 and the third plate 112 constituting the outer shape of the upper bracket 104 in a plan view (see FIG. 8), an O-ring 105 is fitted in a groove that makes a round (see FIG. 7). ).
 図9に示すように、第1プレート108は、モータ100、102の外径の1.5倍程度の高さとなっている。第1プレート108には、モータ100、102がそれぞれZ2方向に延在する向きで複数のビス111でX方向に平行して支持されており、その出力軸100b、102bが孔113を通ってZ1方向側へと突出している。 As shown in FIG. 9, the first plate 108 has a height of about 1.5 times the outer diameter of the motors 100 and 102. The motors 100 and 102 are supported on the first plate 108 in parallel with the X direction by a plurality of screws 111 in directions extending in the Z2 direction, and the output shafts 100b and 102b pass through the holes 113 and are Z1. Projects to the direction side.
 図7及び図9に示すように、第2プレート110は、第1プレート108の上端からZ1方向に向かって突出している。第3プレート112は、第2プレート110と平行且つZ1方向端の位置が多少突出しており、その突出部分に前記センサ支持部109が設けられている。第4プレート114は、三方が第1プレート108、第2プレート110及び第3プレート112に接続され、X方向に関する中央部分でYZ平面を形成している。この第4プレート114は補強板として作用し、第1プレート108、第2プレート110及び第3プレート112が安定する。第4プレート114のZ1方向且つY1方向の角部はZ1側に突出形成されており、ここに上部ブラケット104を上部カバー25bの内面に固定する前記ビス103の1つが配設される(図6及び図9参照)。 7 and 9, the second plate 110 protrudes from the upper end of the first plate 108 in the Z1 direction. The third plate 112 slightly protrudes in parallel with the second plate 110 and at the end in the Z1 direction, and the sensor support 109 is provided on the protruding portion. Three sides of the fourth plate 114 are connected to the first plate 108, the second plate 110, and the third plate 112, and form a YZ plane at the central portion in the X direction. The fourth plate 114 acts as a reinforcing plate, and the first plate 108, the second plate 110, and the third plate 112 are stabilized. The corners of the fourth plate 114 in the Z1 direction and the Y1 direction are formed to project to the Z1 side, and one of the screws 103 for fixing the upper bracket 104 to the inner surface of the upper cover 25b is disposed here (FIG. 6). And FIG. 9).
 図10に示すように、センサ支持部109には、各モータ100、102の軸線の延長線上(Z方向)にある一対の孔部300、302と、これらの間にある孔部304とからなる合計3つのY方向の貫通孔がX方向に並んでいる。 As shown in FIG. 10, the sensor support 109 includes a pair of holes 300 and 302 on the extension line (Z direction) of the motors 100 and 102, and a hole 304 located therebetween. A total of three through holes in the Y direction are arranged in the X direction.
 孔部300、302には、それぞれ作業部原点センサ(検出センサ)306、308のセンサドグ(被検出部材)として機能する検出シャフト(検出軸)310、312が挿通配置されている。孔部304には、着脱センサ314のセンサドグとして機能する検出シャフト(検出軸)316が挿通配置されている。作業部原点センサ306、308及び着脱センサ314は、Y方向が開口した平面視(図8参照)で略U字状であり、U字の内側で検出シャフト310、312、316を検出可能である。作業部原点センサ306、308及び着脱センサ314は、センサ支持部109のZ1面にXY平面に沿って固定されたセンサ基板317に設けられている(図6、図8及び図9参照)。 Detection shafts (detection shafts) 310 and 312 that function as sensor dogs (detected members) of the working unit origin sensors (detection sensors) 306 and 308 are inserted into the holes 300 and 302, respectively. A detection shaft (detection shaft) 316 that functions as a sensor dog of the attachment / detachment sensor 314 is inserted through the hole 304. The working unit origin sensors 306, 308 and the attachment / detachment sensor 314 are substantially U-shaped in a plan view (see FIG. 8) opened in the Y direction, and can detect the detection shafts 310, 312, 316 inside the U-shape. . The working unit origin sensors 306 and 308 and the attachment / detachment sensor 314 are provided on a sensor substrate 317 fixed to the Z1 surface of the sensor support unit 109 along the XY plane (see FIGS. 6, 8, and 9).
 図10に示すように、着脱センサ314の検出シャフト316は、Y方向に延びてY1側が細い段付きの棒状部材である。検出シャフト316は、高さ方向で略中央の細径部に外嵌されたコイルばね318によってY2方向(下方)に向かって付勢されると共に、Y1方向端近傍に嵌合されたEリング320によって孔部304に対して抜け止めされている。 As shown in FIG. 10, the detection shaft 316 of the attachment / detachment sensor 314 is a stepped rod-like member that extends in the Y direction and has a narrow Y1 side. The detection shaft 316 is urged toward the Y2 direction (downward) by a coil spring 318 externally fitted to the small diameter portion at the center in the height direction, and the E ring 320 is fitted near the end in the Y1 direction. Therefore, the hole 304 is prevented from coming off.
 コイルばね318は、孔部304のY1方向端に縮径形成されたフランジ304aに上部が着座し、検出シャフト316の略中央に形成されたフランジ316aに下部が着座して保持されている。フランジ316aは、Oリング320が嵌められる環状溝の一側壁を構成している。 The upper part of the coil spring 318 is seated on a flange 304a having a reduced diameter formed at the end of the hole 304 in the Y1 direction, and the lower part is seated and held on a flange 316a formed substantially at the center of the detection shaft 316. The flange 316a constitutes one side wall of an annular groove into which the O-ring 320 is fitted.
 同様に、作業部原点センサ306、308の検出シャフト310、312もY方向に延びてY1側が細い段付きの棒状部材である。検出シャフト310、312は、Y1側の細径部に外嵌されたコイルばね322、324によってY2方向(下方)に向かって付勢されている。検出シャフト310、312は、そのY1方向端(上端)近傍に嵌合されたEリング327、329と、そのY2方向端(下端)に固定された支持部材340、342とによって、孔部300、302に対して抜け止めされている。支持部材340、342は、そのZ2側でY方向に延びた小径の検出ピン344、346を支持する部材である(図9参照)。 Similarly, the detection shafts 310 and 312 of the working unit origin sensors 306 and 308 are also rod-like members with a step extending in the Y direction and having a thin Y1 side. The detection shafts 310 and 312 are urged toward the Y2 direction (downward) by coil springs 322 and 324 that are externally fitted to the narrow diameter portion on the Y1 side. The detection shafts 310 and 312 are formed by the E-rings 327 and 329 fitted near the Y1 direction end (upper end), and the support members 340 and 342 fixed to the Y2 direction end (lower end). The stopper 302 is prevented from coming off. The support members 340 and 342 are members that support small-diameter detection pins 344 and 346 extending in the Y direction on the Z2 side (see FIG. 9).
 図9に示すように、検出ピン344、346は、検出シャフト310、312と平行するようにZ2側に配置され、その上端側が孔部300、302のZ側に形成された孔部347、348に挿通支持されている。これら検出ピン344、346は、作業部16側の係合凹部176a、176bの外周面に形成されたカム面175、175(図22A参照)に対し、その先端球面344a、346aが着座して摺接可能である。検出ピン344、346は、カム面175の回転による軸線方向位置(Y方向位置)の変化に伴ってY方向に進退し、検出シャフト310、312をY方向に進退させることができる。 As shown in FIG. 9, the detection pins 344 and 346 are arranged on the Z2 side so as to be parallel to the detection shafts 310 and 312, and the upper ends of the detection pins 344 and 346 are formed on the Z side of the holes 300 and 302. Is supported by insertion. These detection pins 344 and 346 are slid with their front spherical surfaces 344a and 346a seated on cam surfaces 175 and 175 (see FIG. 22A) formed on the outer peripheral surfaces of the engagement recesses 176a and 176b on the working unit 16 side. It is possible to contact. The detection pins 344 and 346 advance and retreat in the Y direction in accordance with the change in the axial position (Y direction position) due to the rotation of the cam surface 175, and can advance and retract the detection shafts 310 and 312 in the Y direction.
 コイルばね322、324は、孔部300、302のY1方向端に縮径形成されたフランジ300a、302aに上部が着座し、検出シャフト310、312の中央やや下方に形成されたフランジ310a、312aに下部が着座して保持されている。フランジ310a、312aは、Oリング326、328が嵌められる環状溝の一側壁を構成している。検出シャフト310、312のY1方向端(上端)には、作業部原点センサ306、308に対応する検出頭部310c、312cが設けられている。 The upper portions of the coil springs 322 and 324 are seated on flanges 300a and 302a formed with reduced diameters at the ends of the holes 300 and 302 in the Y1 direction, and the flanges 310a and 312a formed slightly below the center of the detection shafts 310 and 312. The lower part is seated and held. The flanges 310a and 312a constitute one side wall of an annular groove into which the O- rings 326 and 328 are fitted. Detection heads 310c and 312c corresponding to the working unit origin sensors 306 and 308 are provided at the ends (upper ends) of the detection shafts 310 and 312 in the Y1 direction.
 図7、図9及び図10に示すように、ギア機構部106は、第1プレート108、第2プレート110及び第3プレート112で囲まれた空間で、第4プレート114を基準にしてX方向に対称構成として設けられている。ギア機構部106は、2本の駆動シャフト(駆動軸)115、116と、2つの駆動傘歯車117、118と、2つの従動傘歯車119、120とを有する。 As shown in FIGS. 7, 9, and 10, the gear mechanism unit 106 is a space surrounded by the first plate 108, the second plate 110, and the third plate 112, and the X direction with respect to the fourth plate 114. Are provided as symmetrical configurations. The gear mechanism unit 106 includes two drive shafts (drive shafts) 115 and 116, two drive bevel gears 117 and 118, and two driven bevel gears 119 and 120.
 図9に示すように、上部ブラケット104を構成する第2プレート110及び第3プレート112には、各駆動シャフト115、116にそれぞれ対応し、ベアリング122、124が配置される軸孔126、128が一対ずつ設けられている。ベアリング122、124は、外輪の一部が第2プレート110及び第3プレート112の端面に当接することにより位置決めされている。第2プレート110の上面には、ベアリング122の外輪を止める止板130が複数のビス129(図7及び図8参照)によって固定されている。止板130には、駆動シャフト115、116のY1方向端(上端)が挿通する一対の孔130a、130a(図9参照)が設けられている。 As shown in FIG. 9, the second plate 110 and the third plate 112 constituting the upper bracket 104 have shaft holes 126 and 128 corresponding to the drive shafts 115 and 116, respectively, in which bearings 122 and 124 are arranged. A pair is provided. The bearings 122 and 124 are positioned by a part of the outer ring abutting against the end surfaces of the second plate 110 and the third plate 112. A stop plate 130 for stopping the outer ring of the bearing 122 is fixed to the upper surface of the second plate 110 by a plurality of screws 129 (see FIGS. 7 and 8). The stop plate 130 is provided with a pair of holes 130a and 130a (see FIG. 9) through which the Y1 direction ends (upper ends) of the drive shafts 115 and 116 are inserted.
 図9に示すように、モータ100(102)の出力軸100b(102b)は、孔113を貫通して駆動シャフト115(116)の近傍までZ方向に延在し、駆動傘歯車117(118)が押しねじ134によって固定されている。一方、駆動シャフト115(116)には、従動傘歯車119(120)が押しねじ136によって固定されている(図9参照)。駆動傘歯車117(118)と従動傘歯車119(120)とは互いに噛合し、出力軸100b(102b)の回転を90°変換して駆動シャフト115(116)に伝達することができる。 As shown in FIG. 9, the output shaft 100b (102b) of the motor 100 (102) extends through the hole 113 to the vicinity of the drive shaft 115 (116) in the Z direction, and the drive bevel gear 117 (118). Is fixed by a push screw 134. On the other hand, a driven bevel gear 119 (120) is fixed to the drive shaft 115 (116) by a push screw 136 (see FIG. 9). The drive bevel gear 117 (118) and the driven bevel gear 119 (120) mesh with each other, and the rotation of the output shaft 100b (102b) can be converted by 90 ° and transmitted to the drive shaft 115 (116).
 図7~図10に示すように、駆動シャフト115(116)の上端側(Y1側)はベアリング122を貫通し、止板130の孔130aから所定量突出している。止板130から突出した駆動シャフト115(116)の先端には、平面視(図8参照)で軸中心から等位相で放射状に突出した複数の突出片333a(334a)を有する検出片333(334)が固定されている。検出片333(334)は、駆動シャフト115(116)と共に回転し、側面視(図9参照)で略U字状のモータ位相センサ(駆動軸位相センサ)331(332)のセンサドグとして機能する。モータ位相センサ331、332は、上部ブラケット104を構成する第2プレート110の上面に立設されたセンサ基板335のZ1側面に設けられている。 7 to 10, the upper end side (Y1 side) of the drive shaft 115 (116) passes through the bearing 122 and protrudes from the hole 130a of the stop plate 130 by a predetermined amount. At the tip of the drive shaft 115 (116) protruding from the stop plate 130, a detection piece 333 (334) having a plurality of protruding pieces 333a (334a) protruding radially from the axis center at an equal phase in plan view (see FIG. 8). ) Is fixed. The detection piece 333 (334) rotates with the drive shaft 115 (116), and functions as a sensor dog of a substantially U-shaped motor phase sensor (drive shaft phase sensor) 331 (332) in a side view (see FIG. 9). The motor phase sensors 331 and 332 are provided on the Z1 side surface of the sensor substrate 335 erected on the upper surface of the second plate 110 constituting the upper bracket 104.
 図9に示すように、駆動シャフト115(116)の下端側(Y2側)はベアリング124に軸支された部分より下部が段付き形状となっており、順に、Oリング131が外嵌されるフランジ115a(116a)と、該フランジ115a(116a)より大径で断面波形六角形状の波形部115b(116b)と、該波形部115b(116b)の先端に設けられ、断面波形六角形状で先細りのテーパ形状からなる係合凸部137(138)とが設けられている(図22Aも参照)。係合凸部137、138は、基端側でY方向に直線状の直線部137a、138aと、該直線部137a、138aの先端側から連続し、先細りのテーパ形状からなるテーパ部137b、138bとから構成されている。 As shown in FIG. 9, the lower end side (Y2 side) of the drive shaft 115 (116) has a stepped shape below the portion pivotally supported by the bearing 124, and the O-ring 131 is sequentially fitted on the lower side. A flange 115a (116a), a corrugated portion 115b (116b) having a larger diameter than the flange 115a (116a) and having a corrugated cross section, and a tip of the corrugated portion 115b (116b). An engagement convex portion 137 (138) having a tapered shape is provided (see also FIG. 22A). The engagement convex portions 137 and 138 are linear portions 137a and 138a that are linear in the Y direction on the proximal end side, and taper portions 137b and 138b that are continuous from the distal end side of the linear portions 137a and 138a and have a tapered shape. It consists of and.
 駆動シャフト115(116)は、中央部115d(116d)の上端がベアリング122の内輪に当接し、該中央部115d(116d)の下部に連続するフランジ115a(116b)の上端がベアリング124の内輪に当接することで位置決めされている(図9参照)。駆動シャフト115、116は、平面視(図8参照)で、モータ100、102の軸方向の延長線上(Z方向)に配置されている。 In the drive shaft 115 (116), the upper end of the central portion 115d (116d) is in contact with the inner ring of the bearing 122, and the upper end of the flange 115a (116b) continuous to the lower portion of the central portion 115d (116d) is the inner ring of the bearing 124. It is positioned by abutting (see FIG. 9). The drive shafts 115 and 116 are disposed on an extension line (Z direction) of the motors 100 and 102 in a plan view (see FIG. 8).
 このような駆動傘歯車117、118、従動傘歯車119、120、及び、駆動シャフト115、116を含むギア機構部106によれば、モータ100、102が連結シャフト18と比較して大径であっても並列配置が可能になると共に、モータ配置の自由度が高まる。また、モータ100及びモータ102と、駆動シャフト115及び駆動シャフト116とは、連結シャフト18を基準としてY方向を基準とした対称位置に設けられており、バランスがよい。 According to the gear mechanism portion 106 including the drive bevel gears 117 and 118, the driven bevel gears 119 and 120, and the drive shafts 115 and 116, the motors 100 and 102 have a larger diameter than the connection shaft 18. However, parallel arrangement becomes possible and the degree of freedom of motor arrangement increases. Further, the motor 100 and the motor 102 and the drive shaft 115 and the drive shaft 116 are provided at symmetrical positions with respect to the Y direction with respect to the connecting shaft 18, and thus have a good balance.
 ギア機構部106では、第2プレート110及び第3プレート112が従動傘歯車119、120を挟んで駆動シャフト115、116を軸支する軸支部材として作用し、第1プレート108がモータ100、102を固定するモータ板として作用すると共に、第2プレート110と第3プレート112とを接続しており、簡便でありながら高い剛性が得られ、モータ100、102及び駆動シャフト115、116を安定して保持することができる。また、駆動シャフト115、116間に、第1プレート108、第2プレート110及び第3プレート112を接続する第4プレート114を設けたことにより、一層高い剛性を得ることができる。 In the gear mechanism unit 106, the second plate 110 and the third plate 112 act as pivot support members that pivotally support the drive shafts 115 and 116 with the driven bevel gears 119 and 120 interposed therebetween, and the first plate 108 serves as the motors 100 and 102. The second plate 110 and the third plate 112 are connected to each other, and high rigidity is obtained while being simple, and the motors 100 and 102 and the drive shafts 115 and 116 can be stably provided. Can be held. Further, by providing the fourth plate 114 connecting the first plate 108, the second plate 110, and the third plate 112 between the drive shafts 115, 116, higher rigidity can be obtained.
 次に、作業部16を構成する下部ブラケット32について説明する。 Next, the lower bracket 32 constituting the working unit 16 will be described.
 図6及び図11に示すように、下部ブラケット32は、Z方向に延びた側面視略矩形(図6参照)に形成されており、Z1側がボックス構造からなるプーリボックス32aを構成し、該プーリボックス32aのZ2側が平行した一対のプレート構造からなるトリガレバー取付部32bを構成している。この下部ブラケット32は、第1に、プーリボックス32aが駆動部30のギア機構部106に着脱可能に接続されることで、駆動シャフト115、116の回転を連結シャフト18から先端動作部12へと中継する機能を有し、第2に、トリガレバー取付部32bでトリガレバー36を軸支すると共に、トリガレバー36の操作を連結シャフト18から先端動作部12へと中継する機能を有し、第3に、連結シャフト18内の気密状態を維持する機能を有する。 As shown in FIGS. 6 and 11, the lower bracket 32 is formed in a substantially rectangular shape (see FIG. 6) in side view extending in the Z direction, and the Z1 side constitutes a pulley box 32a having a box structure. The trigger lever attaching part 32b which consists of a pair of plate structure with which Z2 side of the box 32a was parallel is comprised. In the lower bracket 32, first, the pulley box 32a is detachably connected to the gear mechanism unit 106 of the drive unit 30 so that the rotation of the drive shafts 115 and 116 is transferred from the coupling shaft 18 to the distal end working unit 12. Secondly, the trigger lever 36 is pivotally supported by the trigger lever mounting portion 32b, and the operation of the trigger lever 36 is relayed from the connecting shaft 18 to the distal end working portion 12. 3 has a function of maintaining an airtight state in the connecting shaft 18.
 先ず、プーリボックス32aについて説明する。 First, the pulley box 32a will be described.
 図11~図13に示すように、プーリボックス32aは、X方向両側が開口した空洞部152と、空洞部152のZ1側のシャフト支持部154と、空洞部152のZ2側のロッド孔156a、156bと、空洞部152に収納されたプーリ(従動軸)158a、158b及びワイヤガイド部160a、160bとを有する。プーリボックス32aとトリガレバー取付部32bとの接続部近傍には、Z方向を基準として対称な一対のピン穴161、161が形成されている。各ピン穴161、161には、作業部16と操作部14との着脱時、上部ブラケット104からY1方向に突出した一対のガイドピン163、163が挿入される(図2及び図6参照)。 As shown in FIGS. 11 to 13, the pulley box 32a includes a hollow portion 152 that is open on both sides in the X direction, a shaft support portion 154 on the Z1 side of the hollow portion 152, a rod hole 156a on the Z2 side of the hollow portion 152, 156b, pulleys (driven shafts) 158a and 158b and wire guide portions 160a and 160b housed in the cavity 152. A pair of pin holes 161 and 161 symmetrical with respect to the Z direction are formed in the vicinity of the connecting portion between the pulley box 32a and the trigger lever mounting portion 32b. A pair of guide pins 163 and 163 projecting from the upper bracket 104 in the Y1 direction are inserted into the pin holes 161 and 161 when the working unit 16 and the operation unit 14 are attached and detached (see FIGS. 2 and 6).
 空洞部152は、プーリボックス32aのX方向両面を連通する孔であって、側面視(図12参照)で、プーリボックス32aのややZ2方向寄りに設けられ、Z方向両端が半円形状となっている。プーリボックス32aのX方向両面には、空洞部152を囲うOリング164、164が設けられており(図6及び図13参照)、その外面から装着される下部カバー37a、37bによってOリング164が適度に圧縮される。 The hollow portion 152 is a hole that communicates both sides of the pulley box 32a in the X direction, and is provided slightly closer to the Z2 direction of the pulley box 32a in a side view (see FIG. 12), and both ends in the Z direction are semicircular. ing. O- rings 164 and 164 surrounding the cavity 152 are provided on both sides in the X direction of the pulley box 32a (see FIGS. 6 and 13), and the O-ring 164 is formed by lower covers 37a and 37b attached from the outer surface. It is compressed moderately.
 シャフト支持部154は、空洞部152からプーリボックス32aのZ1方向端面に連通する孔であり、Z方向に延びる連結シャフト18の基端側を支持している。連結シャフト18のZ2方向端には、筒状のカプラ165が設けられており(図12及び図13参照)、シャフト支持部154はカプラ165を介して連結シャフト18を支持している。カプラ165と連結シャフト18との間には2つのOリング166、166が設けられ、カプラ165とシャフト支持部154との間にはOリング168が設けられている。連結シャフト18は、プーリボックス32aのZ1方向上端に形成された切欠部にクランプ部材170がY1側から締結されることによって固定されている(図11及び図12参照)。 The shaft support portion 154 is a hole that communicates from the cavity portion 152 to the end surface in the Z1 direction of the pulley box 32a, and supports the proximal end side of the connecting shaft 18 that extends in the Z direction. A cylindrical coupler 165 is provided at the end of the connecting shaft 18 in the Z2 direction (see FIGS. 12 and 13), and the shaft support portion 154 supports the connecting shaft 18 via the coupler 165. Two O- rings 166 and 166 are provided between the coupler 165 and the connecting shaft 18, and an O-ring 168 is provided between the coupler 165 and the shaft support portion 154. The connecting shaft 18 is fixed by fastening a clamp member 170 from the Y1 side to a notch formed at the upper end of the pulley box 32a in the Z1 direction (see FIGS. 11 and 12).
 図12及び図13に示すように、空洞部152には、Y方向に並んだ2対の同軸孔172a、172a(Y1側)及び172b、172b(Y2側)に、それぞれベアリング174a、174a及び174b、174が設けられており、該ベアリング174a、174bによってプーリ158a、158bが軸支されている。 As shown in FIGS. 12 and 13, the hollow portion 152 has two pairs of coaxial holes 172a, 172a (Y1 side) and 172b, 172b (Y2 side) aligned in the Y direction, bearings 174a, 174a and 174b, respectively. 174, and pulleys 158a and 158b are pivotally supported by the bearings 174a and 174b.
 プーリ158a、158bは、駆動シャフト115、116に対して同軸である(図6及び図7参照)。前記同軸孔172aから上方に突出したプーリ158a、158bのY1方向端には、駆動シャフト115、116のY2方向端に設けられた係合凸部137、138(図9及び図10参照)と係合可能な係合凹部176a、176bが設けられている(図11及び図12参照)。 The pulleys 158a and 158b are coaxial with the drive shafts 115 and 116 (see FIGS. 6 and 7). Engagement projections 137 and 138 (see FIGS. 9 and 10) provided at the Y2 direction ends of the drive shafts 115 and 116 are engaged with the Y1 direction ends of the pulleys 158a and 158b protruding upward from the coaxial hole 172a. Engaging recesses 176a and 176b are provided (see FIGS. 11 and 12).
 図3及び図12に示すように、係合凹部176a、176bは、前記係合凸部137、138が係合(嵌合)する断面波形六角形状で奥細りのテーパ形状からなる凹部として、上端側でY方向に直線状の直線部171と、該直線部171の下端から連続したテーパ部173とを有する。係合凸部137、138と係合凹部176a、176bとは、後述するように、その係合時にプーリ158a、158bが従動的に且つ強制的に回転されることで、原則として互いにどのような位相であっても係合可能である(図23A及び図23B等参照)。これらが係合することにより、駆動軸である駆動シャフト115、116からの回転駆動力が、従動軸であるプーリ158a、158bへと伝達される。 As shown in FIGS. 3 and 12, the engagement recesses 176 a and 176 b are upper ends as recesses each having a hexagonal cross-sectional shape and a tapered shape with which the engagement protrusions 137 and 138 are engaged (fitted). On the side, a linear portion 171 linear in the Y direction and a tapered portion 173 continuous from the lower end of the linear portion 171 are provided. As will be described later, the engagement convex portions 137 and 138 and the engagement concave portions 176a and 176b are, as will be described later, the pulleys 158a and 158b being driven and forcibly rotated, Engagement is possible even in the phase (see FIGS. 23A and 23B, etc.). By engaging these, the rotational driving force from the drive shafts 115 and 116 that are drive shafts is transmitted to the pulleys 158a and 158b that are driven shafts.
 図20B及び図22Aに示すように、プーリ158a、158bの上端近傍において、係合凹部176a、176bの外周には、その周方向での軸線方向位置(Y方向位置)が変化した環状のカム面175が設けられており、つまりプーリ158a、158bはカム軸としての機能も有する。 As shown in FIGS. 20B and 22A, in the vicinity of the upper ends of the pulleys 158a and 158b, an annular cam surface whose axial direction position (Y-direction position) in the circumferential direction is changed on the outer periphery of the engagement recesses 176a and 176b. 175, that is, the pulleys 158a and 158b also have a function as a camshaft.
 カム面175は、軸回りでのY方向位置が低いY2側の低面175aと、Y方向位置が高いY1側の高面175bと、低面175a及び高面175bの間を滑らかに接続する傾斜面175cと、低面175a及び高面175bの境界となる壁部175dとから構成されている。カム面175は、操作部14と作業部16が装着された際、駆動部30側の検出ピン344、346が着座する面である。 The cam surface 175 has a Y2 side low surface 175a having a low Y-direction position around the axis, a Y1-side high surface 175b having a high Y-direction position, and a slant that smoothly connects the low surface 175a and the high surface 175b. It is comprised from the surface 175c and the wall part 175d used as the boundary of the low surface 175a and the high surface 175b. The cam surface 175 is a surface on which the detection pins 344 and 346 on the drive unit 30 side are seated when the operation unit 14 and the working unit 16 are mounted.
 プーリ158aとプーリ158bとの軸間距離は、駆動シャフト115と駆動シャフト116との軸間距離と等しく(図7及び図10参照)、プーリ158aとプーリ158bとの隙間は連結シャフト18の径よりも大きい(図13参照)。 The distance between the axes of the pulley 158a and the pulley 158b is equal to the distance between the drive shaft 115 and the drive shaft 116 (see FIGS. 7 and 10), and the clearance between the pulley 158a and the pulley 158b is determined by the diameter of the connecting shaft 18. Is also large (see FIG. 13).
 図12に示すように、プーリ158a、158bは、同軸孔172aに対してOリング178aで回転可能に気密シールされ、同軸孔172bに対してOリング178bで回転可能にシールされている。プーリ158a、158bは、Y2方向端がEリング180によって抜け止めされている。また、プーリ158a、158bの中央部には、径調整部材182が介装されており、該径調整部材182を適宜選定することにより、後述するワイヤ1052、1054の巻き付け径を調整可能となっている(図12及び図13参照)。なお、プーリ158a、158bはそれぞれ径調整部材と一体のものとしてもよい。 As shown in FIG. 12, the pulleys 158a and 158b are hermetically sealed with an O-ring 178a so as to be rotatable with respect to the coaxial hole 172a, and are sealed with an O-ring 178b so as to be rotatable with respect to the coaxial hole 172b. The pulleys 158a and 158b are prevented from coming off by E-rings 180 at the ends in the Y2 direction. In addition, a diameter adjusting member 182 is interposed at the center of the pulleys 158a and 158b, and by appropriately selecting the diameter adjusting member 182, the winding diameter of the wires 1052 and 1054 described later can be adjusted. (See FIGS. 12 and 13). The pulleys 158a and 158b may be integrated with the diameter adjusting member.
 プーリ158a、158bの上端に設けられた係合凹部176a、176b及びカム面175、175は、空洞部152に位置した部位よりも大径であって、プーリボックス32aの上面(Y1方向面)に面するカム面175の下面には、その外周の所定角度分(例えば、270°)を縮径方向(中心方向)に切欠いた円弧切欠部177、177がそれぞれ形成されている(図12参照)。各円弧切欠部177、177には、それぞれストッパ(規制部)179a、179aが挿入配置されている(図11及び12参照)。ストッパ179aは、ワイヤガイド部160a、160bのY1方向端の抜け止めをする止板179のZ2側に突出形成されたプレート状の突起である。 Engagement recesses 176a, 176b and cam surfaces 175, 175 provided at the upper ends of the pulleys 158a, 158b have a larger diameter than a portion located in the cavity 152, and are formed on the upper surface (Y1 direction surface) of the pulley box 32a. On the lower surface of the facing cam surface 175, circular arc cut portions 177 and 177 are formed by cutting a predetermined angle (for example, 270 °) of the outer periphery in the diameter reducing direction (center direction) (see FIG. 12). . Stoppers (regulators) 179a and 179a are inserted and arranged in the respective arc notches 177 and 177 (see FIGS. 11 and 12). The stopper 179a is a plate-like protrusion formed on the Z2 side of the stopper plate 179 that prevents the wire guide portions 160a and 160b from coming off at the ends in the Y1 direction.
 従って、図14A及び図14Bに示すように、プーリ158a、158bの回転範囲は、図14Aに示す状態でのZ1方向を原点として、円弧切欠部177の両終端の当接部(当接部材)177a、177bが、前記ストッパ179aの両側面に当接するまでの正転及び逆転の範囲に規制されている。すなわち、図14Aに示すように、一方のプーリ158aの回転範囲は、前記原点から時計回り(図14Aは下面図のため、反時計回り)の正転(180°未満)の範囲(図14Aに矢印+θで示し、例えば90°)と、反時計回り(図14Aは下面図のため、時計回り)の逆転(180°未満)の範囲(図14Aに矢印-θで示し、例えば90°)とに規制されている。同様に、他方のプーリ158bの回転範囲も、原点から時計回りの正転の範囲(図14Aに矢印+θで示し、例えば135°)と、反時計回りの逆転の範囲(図14Aに矢印-θで示し、例えば135°)とに規制されている。これにより、プーリ158a等が過剰に回転し、ワイヤ1052等によって駆動される先端動作部12が過度な動作を生じたり、ワイヤ1052等に過度の引張等の負荷が生じたりすることを確実に回避することができる。 Therefore, as shown in FIGS. 14A and 14B, the rotation range of the pulleys 158a and 158b is set so that the Z1 direction in the state shown in FIG. 177a and 177b are restricted to the range of normal rotation and reverse rotation until they contact the both side surfaces of the stopper 179a. That is, as shown in FIG. 14A, the rotation range of one pulley 158a is clockwise (less than 180 °) in the clockwise direction (below FIG. 14A is a bottom view). As indicated by an arrow + θ (for example, 90 °) and a counterclockwise rotation (in FIG. 14A, because it is a bottom view, clockwise) (less than 180 °) range (indicated by an arrow −θ in FIG. Is regulated. Similarly, the rotation range of the other pulley 158b also includes a clockwise forward rotation range (indicated by arrow + θ in FIG. 14A, for example, 135 °) and a counterclockwise reverse rotation range (arrow −θ in FIG. 14A). For example, 135 °). This reliably prevents the pulley 158a and the like from excessively rotating, causing the tip operating unit 12 driven by the wire 1052 and the like to excessively move and causing an excessive load such as tension on the wire 1052 and the like. can do.
 なお、プーリ158a、158bの回転範囲は、他の構造によって規制してもよく、例えば、図21に示すように、プーリ158a、158b(係合凹部176a、176b)に、その外径方向に突出した当接部(当接部材)177cを設け、下部ブラケット32の上面(Y1方向面)に、前記当接部177cが所定の正転及び逆転を行った際に当接し、それ以上の回転を規制するストッパ179bを設けてもよい。これらの当接部177c及びストッパ179bは、上記の当接部177a、177b及びストッパ179aの構造のように、係合凹部176a、176bの下部に形成した円弧切欠部177(図12及び図14A参照)内に配置されるように構成してもよい。 The rotation range of the pulleys 158a and 158b may be restricted by other structures. For example, as shown in FIG. 21, the pulleys 158a and 158b (engaging recesses 176a and 176b) protrude in the outer diameter direction. The abutting portion (abutting member) 177c is provided, and abuts on the upper surface (Y1-direction surface) of the lower bracket 32 when the abutting portion 177c performs predetermined forward rotation and reverse rotation, and further rotates. A stopper 179b for regulating may be provided. These contact portions 177c and stoppers 179b are arc-shaped notches 177 (see FIGS. 12 and 14A) formed in the lower portions of the engagement recesses 176a and 176b as in the structure of the contact portions 177a and 177b and the stopper 179a. ).
 図12及び図13に示すように、ワイヤガイド部160a(160b)は、挿入軸184と、該挿入軸184に隣接して軸支された2層の円筒アイドラ186、188と、これら円筒アイドラ186、188の位置決めをする位置決め筒190a、190bとを有する。 As shown in FIGS. 12 and 13, the wire guide portion 160 a (160 b) includes an insertion shaft 184, two layers of cylindrical idlers 186 and 188 that are supported adjacent to the insertion shaft 184, and these cylindrical idlers 186. And positioning cylinders 190a and 190b for positioning 188.
 挿入軸184はY方向に延在し、プーリボックス32aに対してY1側の貫通孔194aを通り、Y2側の有底の穴194bに挿入されており、貫通孔194aのY1方向端が前記止板179によって閉塞されている。挿入軸184は、止板179の近傍がOリング193によってシールされている。挿入軸184は、空洞部152において、Y1側からY2側に向かって順に位置決め筒190a、円筒アイドラ186、円筒アイドラ188及び位置決め筒190bが設けられている。円筒アイドラ186、188は、独立に回転可能なプーリである。 The insertion shaft 184 extends in the Y direction, passes through the Y1 side through hole 194a with respect to the pulley box 32a, and is inserted into the bottomed hole 194b on the Y2 side, and the end of the through hole 194a in the Y1 direction is stopped. It is blocked by a plate 179. The insertion shaft 184 is sealed in the vicinity of the stop plate 179 by an O-ring 193. In the hollow portion 152, the insertion shaft 184 is provided with a positioning cylinder 190a, a cylindrical idler 186, a cylindrical idler 188, and a positioning cylinder 190b in this order from the Y1 side to the Y2 side. Cylindrical idlers 186 and 188 are independently rotatable pulleys.
 図13に示すように、各ワイヤガイド部160a、160bを構成する2つの円筒アイドラ186、186間の隙間S1(円筒アイドラ188、188間の隙間も同様)は、連結シャフト18の内径よりも狭く、該内径の1/2程度に設定されている。円筒アイドラ186、188は、回転自在であって、その周面にはワイヤ1054(1052)が配置される溝186a、188aが設けられている。円筒アイドラ186、188は、適度な潤滑性が確保されていれば必ずしも回転可能な構成でなくてもよい。 As shown in FIG. 13, the gap S1 between the two cylindrical idlers 186 and 186 constituting the wire guide portions 160a and 160b (the same applies to the gap between the cylindrical idlers 188 and 188) is narrower than the inner diameter of the connecting shaft 18. , About 1/2 of the inner diameter. The cylindrical idlers 186 and 188 are rotatable, and grooves 186a and 188a in which the wires 1054 (1052) are disposed are provided on the peripheral surfaces thereof. The cylindrical idlers 186 and 188 do not necessarily have to be rotatable as long as appropriate lubricity is ensured.
 このようなワイヤガイド部160a、160bを用いることにより、連結シャフト18は、モータ100、102の径やプーリ158aとプーリ158bとの軸間距離S2(図13参照)に依存することなく十分に細くでき、例えば、トラカール20に挿入するのに適した5mm~10mm程度に設定することができる。また、ギア機構部106を介したモータ100、102の配置の自由度が高まる。ワイヤ1054(1052)の往路線及び復路線は逆方向に動くが、2層の円筒アイドラ186、188は、これに対応しており、各線が摩擦のない動作が可能である。 By using such wire guide portions 160a and 160b, the connecting shaft 18 is sufficiently thin without depending on the diameters of the motors 100 and 102 and the distance S2 between the pulleys 158a and 158b (see FIG. 13). For example, it can be set to about 5 mm to 10 mm suitable for insertion into the trocar 20. Moreover, the freedom degree of arrangement | positioning of the motors 100 and 102 via the gear mechanism part 106 increases. The forward line and the return line of the wire 1054 (1052) move in opposite directions, but the two-layer cylindrical idlers 186 and 188 correspond to this, and each line can operate without friction.
 図12に示すように、プーリボックス32aを構成する空洞部152には、さらに、棒状又は線状の伝達部材である2本のロッド192a、192bがY方向に並んで、Z方向に貫通している。ロッド192a、192bは、例えば、十分に強く且つ細いステンレスパイプ又は中実ロッドであり、Z1方向は空洞部152を貫通して連結シャフト18内へと延び、Z2方向はロッド孔156a、156bを貫通してトリガレバー取付部32bへと延びている。 As shown in FIG. 12, in the hollow portion 152 constituting the pulley box 32a, two rods 192a and 192b, which are rod-shaped or linear transmission members, are arranged in the Y direction and penetrate in the Z direction. Yes. The rods 192a and 192b are, for example, sufficiently strong and thin stainless steel pipes or solid rods, and the Z1 direction extends through the hollow portion 152 into the connecting shaft 18, and the Z2 direction passes through the rod holes 156a and 156b. Then, it extends to the trigger lever mounting portion 32b.
 ロッド孔156a、156bの開口側(Z2側)には、これらロッド孔156a、156bの周囲を囲繞する矩形プレート状のゴムシート194と、該ゴムシート191を密着支持する支持プレート196とが設けられている(図12参照)。ロッド192a、192bは、ゴムシート194及び支持プレート196に設けられた一対の貫通孔にそれぞれ挿通されると共に、ゴムシート194によりその貫通した摺接面がシールされている。すなわち、ゴムシート194は、ロッド192a、192bに対して隙間なく接触し、空洞部152及び連結シャフト18をZ方向に進退自在に気密シールする。 On the opening side (Z2 side) of the rod holes 156a and 156b, a rectangular plate-shaped rubber sheet 194 surrounding the periphery of the rod holes 156a and 156b, and a support plate 196 for closely supporting the rubber sheet 191 are provided. (See FIG. 12). The rods 192a and 192b are inserted through a pair of through holes provided in the rubber sheet 194 and the support plate 196, respectively, and the sliding contact surfaces penetrating the rubber sheet 194 are sealed. That is, the rubber sheet 194 comes into contact with the rods 192a and 192b without a gap, and hermetically seals the cavity 152 and the connecting shaft 18 so as to be movable back and forth in the Z direction.
 このように、プーリボックス32aを構成する空洞部152は、ロッド192a、192bに対してはゴムシート194でシールされ(図12参照)、プーリ158a、158bに対してはOリング178a、178bでシールされ(図12参照)、ワイヤガイド部160a、160b(挿入軸184)に対してはOリング193でシールされ(図12参照)、連結シャフト18に対してはOリング166、168でシールされ(図12参照)、下部カバー37a、37bに対してはOリング164によってシールされ(図6及び図13参照)、これにより気密に維持されている。一方、連結シャフト18の外周面はトラカール20(図1参照)によって気密に支持される。 Thus, the hollow portion 152 constituting the pulley box 32a is sealed with the rubber sheet 194 with respect to the rods 192a and 192b (see FIG. 12), and with the O-rings 178a and 178b with respect to the pulleys 158a and 158b. 12 (see FIG. 12), the wire guide portions 160a and 160b (insertion shaft 184) are sealed with an O-ring 193 (see FIG. 12), and the connecting shaft 18 is sealed with O-rings 166 and 168 (see FIG. 12). 12), the lower covers 37a and 37b are sealed by an O-ring 164 (see FIGS. 6 and 13), thereby being kept airtight. On the other hand, the outer peripheral surface of the connecting shaft 18 is airtightly supported by a trocar 20 (see FIG. 1).
 従って、体腔22に供給された気体が連結シャフト18からプーリボックス32aを介して外部に漏出することがない。さらに、密封状態となった空気により、血液等の液体が先端動作部12の隙間から連結シャフト18及びプーリボックス32aへと浸入すること事態を可及的に抑制することができ、連結シャフト18やプーリボックス32a、さらには操作部14等の洗浄が容易となる。なお、連結シャフト18の内部に仕切り部等を設けて、気密状態を保つ構成としてもよい。 Therefore, the gas supplied to the body cavity 22 does not leak out from the connection shaft 18 via the pulley box 32a. Furthermore, it is possible to suppress, as much as possible, a situation in which liquid such as blood enters the connecting shaft 18 and the pulley box 32a from the gap of the distal end working unit 12 due to the sealed air. The pulley box 32a and the operation unit 14 can be easily cleaned. In addition, it is good also as a structure which provides a partition part etc. in the inside of the connection shaft 18, and maintains an airtight state.
 図11及び図12に示すように、プーリボックス32aのZ1方向上端のクランプ部材170には、Y1方向に立設された電極棒197が設けられている。電極棒197は、上部カバー25bに形成されたY方向の貫通孔198に挿通され、電極プラグ199(図1参照)が取り付けられることにより、当該マニピュレータ10を電気メスとして使用する際の高電圧が印加される。電極棒197は導電板195によって一方のワイヤガイド部160bに電気的に接続されており(図11参照)、これにより、ワイヤガイド部160bに接触するワイヤ1052を介して先端動作部12側へと高電圧を伝えることができる。 11 and 12, the clamp member 170 at the upper end in the Z1 direction of the pulley box 32a is provided with an electrode rod 197 standing in the Y1 direction. The electrode rod 197 is inserted into a Y-direction through hole 198 formed in the upper cover 25b, and an electrode plug 199 (see FIG. 1) is attached, so that a high voltage when using the manipulator 10 as an electric knife is increased. Applied. The electrode rod 197 is electrically connected to the one wire guide portion 160b by the conductive plate 195 (see FIG. 11), and thus, the wire rod 1052 that contacts the wire guide portion 160b moves toward the distal end working portion 12 side. High voltage can be transmitted.
 図15に示すように、シャフト支持部154では、カプラ165及び連結シャフト18の内側で、Y方向にロッド192a及び192bが並列し、ワイヤ1052及び1054の各往復線はY方向に近接して並び、ワイヤ1052とワイヤ1054はX方向に並列しており、バランスよく配列されている。 As shown in FIG. 15, in the shaft support portion 154, the rods 192a and 192b are arranged in parallel in the Y direction inside the coupler 165 and the connecting shaft 18, and the reciprocating lines of the wires 1052 and 1054 are arranged close to each other in the Y direction. The wire 1052 and the wire 1054 are arranged in parallel in the X direction and are arranged in a well-balanced manner.
 次に、下部ブラケット32を構成するトリガレバー取付部32bと、該トリガレバー取付部32bに軸支されるトリガレバー36とについて説明する。 Next, the trigger lever mounting portion 32b constituting the lower bracket 32 and the trigger lever 36 pivotally supported by the trigger lever mounting portion 32b will be described.
 図1、図6及び図18に示すように、トリガレバー取付部32bは、プーリボックス32aのZ2方向端面からZ2方向に平行に延びた一対の支持プレート201、201の間に渡ったトリガ軸35により、トリガレバー36を回動可能に軸支している。 As shown in FIGS. 1, 6 and 18, the trigger lever mounting portion 32 b has a trigger shaft 35 extending between a pair of support plates 201, 201 extending in parallel with the Z2 direction from the end surface of the pulley box 32 a in the Z2 direction. Thus, the trigger lever 36 is pivotally supported.
 先ず、トリガレバー36について説明する。 First, the trigger lever 36 will be described.
 図16及び図18に示すように、トリガレバー36は、トリガ軸35に軸支されるアーム部200と、該アーム部200のY2側に設けられた指輪部202と、該指輪部202のY2側に設けられた略円弧状の指掛け突起204a、204bと、指輪部202から指掛け突起204a、204bに渡って形成された内部空間203に収納されたラチェット爪206と、該ラチェット爪206を揺動させるレバー208とを有する。指輪部202は、主に人差し指(又は中指)を挿入し、指掛け突起204a、204bは、主に中指(又は薬指)を掛けるのに適している。 As shown in FIGS. 16 and 18, the trigger lever 36 includes an arm part 200 that is pivotally supported by the trigger shaft 35, a ring part 202 provided on the Y <b> 2 side of the arm part 200, and Y <b> 2 of the ring part 202. A substantially arcuate finger hooking protrusion 204a, 204b provided on the side, a ratchet pawl 206 housed in an internal space 203 formed from the ring portion 202 to the finger hooking protrusion 204a, 204b, and swinging the ratchet pawl 206 And a lever 208 to be operated. The ring part 202 is mainly suitable for inserting an index finger (or middle finger), and the finger hooking protrusions 204a and 204b are mainly suitable for hanging the middle finger (or ring finger).
 ラチェット爪206は、Z1側が揺動軸207に軸支されると共に、Z2側には、凹部206bによって形成されて上方を指向した爪部206aが設けられ、揺動軸207よりZ1側の端部がコイルばね209によってY2方向へと付勢されている。これにより、爪部206aが上方に向けて付勢されると共に、凹部206bが内部空間203をX方向に渡るストッパピン(ストッパ部材)211に当接することで、それ以上の上方への揺動が規制されている。 The ratchet claw 206 is supported by the swing shaft 207 on the Z1 side, and a claw portion 206a formed by a recess 206b and directed upward is provided on the Z2 side. Is biased in the Y2 direction by the coil spring 209. As a result, the claw portion 206a is urged upward, and the recess 206b abuts against the stopper pin (stopper member) 211 across the internal space 203 in the X direction, thereby further swinging upward. It is regulated.
 そこで、トリガ軸35を支点としてトリガレバー36をZ2方向に大きく変位(回動)させると、ラチェット爪206の爪部206aは、グリップハンドル26からZ1方向に突出した平面視略U字状の係合リング(係合部)27に当接する(図2、図6及び図16参照)。次いで、爪部206aのZ2側傾斜面に係合リング27が摺接しつつ、爪部206aがコイルばね209の付勢力に抗して多少下方に揺動される。そして、係合リング27が爪部206aを完全に乗り越えると、ラチェット爪206は、コイルばね209の付勢力によってストッパピン211に当接する位置まで戻され、同時に、係合リング27が爪部206a(凹部206b)に係合する(図17A参照)。その結果、トリガレバー36の位置を保持することができ、エンドエフェクタ1300(図1参照)を閉状態にロックすることができる。係合リング27は、例えば多段に設けてもよく、そうするとトリガレバー36のロック位置又は把持力を把持対象に合わせて調整可能にすることもできる。 Therefore, when the trigger lever 36 is largely displaced (turned) in the Z2 direction with the trigger shaft 35 as a fulcrum, the claw portion 206a of the ratchet claw 206 is engaged in a substantially U shape in plan view protruding from the grip handle 26 in the Z1 direction. It contacts the mating ring (engagement portion) 27 (see FIGS. 2, 6, and 16). Next, the engaging ring 27 is slidably contacted with the Z2 side inclined surface of the claw 206a, and the claw 206a is slightly swung downward against the urging force of the coil spring 209. When the engagement ring 27 completely gets over the claw 206a, the ratchet claw 206 is returned to a position where it comes into contact with the stopper pin 211 by the urging force of the coil spring 209, and at the same time, the engagement ring 27 is moved to the claw 206a ( Engages with the recess 206b) (see FIG. 17A). As a result, the position of the trigger lever 36 can be held, and the end effector 1300 (see FIG. 1) can be locked in the closed state. The engagement ring 27 may be provided in multiple stages, for example, and in this case, the lock position or gripping force of the trigger lever 36 can be adjusted according to the gripping target.
 レバー208は、一部が内部空間203からZ1方向に露出した略L字状の部材である(図16参照)。レバー208は、内部空間203内の一端側が揺動軸213に軸支されており、通常、コイルばね209によってY2方向に付勢されたラチェット爪206のZ1方向端によって押圧され、図17Aに示すような初期姿勢で保持されている。 The lever 208 is a substantially L-shaped member partially exposed from the internal space 203 in the Z1 direction (see FIG. 16). The lever 208 is supported at one end in the internal space 203 by the swing shaft 213 and is normally pressed by the Z1 direction end of the ratchet pawl 206 urged in the Y2 direction by the coil spring 209, as shown in FIG. 17A. It is held in such an initial posture.
 そこで、図17Bに示すように、レバー208の外部に露出した操作端208bをY2方向に押し下げると、該レバー208が揺動軸213を支点として揺動し、内部空間203内の一端側に形成された押圧面208aがラチェット爪206をコイルばね209の弾性力に抗して揺動させ、図17Bに示すように該ラチェット爪206を固定することができる。これにより、図17Bに示すように爪部206a(凹部206b)と係合リング27との係合が発生しない状態で使用することができる。また、爪部206aと係合リング27との係合を発生させながら使用した際に該係合を解除する場合、指輪部202の下部に部分的に突出しているラチェット爪206の中央凹部(解除部)206cを指で下側に押し下げることによって解除することができる(図17Aの一点鎖線で示すラチェット爪206参照)。 Therefore, as shown in FIG. 17B, when the operation end 208b exposed to the outside of the lever 208 is pushed down in the Y2 direction, the lever 208 swings around the swing shaft 213 and is formed on one end side in the internal space 203. The pressed surface 208a swings the ratchet pawl 206 against the elastic force of the coil spring 209, and the ratchet pawl 206 can be fixed as shown in FIG. 17B. As a result, as shown in FIG. 17B, the claw portion 206a (recessed portion 206b) and the engagement ring 27 can be used without being engaged. In addition, when the engagement is released while the engagement between the claw portion 206a and the engagement ring 27 is generated, when the engagement is released, the central recess (release) of the ratchet claw 206 partially protruding below the ring portion 202 is provided. Part) 206c can be released by pushing it downward with a finger (see ratchet claw 206 shown by a one-dot chain line in FIG. 17A).
 図16に示すように、トリガレバー36の内部空間203のZ2側上部には、上方に向けて傾斜した傾斜面203aが形成されると共に、他の部分よりも深く掘り下げられた凹部203bが形成されている。これにより、グリップハンドル26側の係合リング27を凹部203bから円滑にラチェット爪206に対して係合させることができる。 As shown in FIG. 16, an inclined surface 203a that is inclined upward is formed in the upper portion of the internal space 203 of the trigger lever 36, and a concave portion 203b that is dug deeper than other portions is formed. ing. Thereby, the engagement ring 27 on the grip handle 26 side can be smoothly engaged with the ratchet pawl 206 from the recess 203b.
 さらに、ラチェット爪206が係合リング27に係合した状態のまま、仮に操作部14と作業部16とを分離させた場合であっても、ストッパピン211によってラチェット爪206の上方への揺動が規制されており、しかも傾斜面203a及び凹部203bが係合リング27の逃げ部として作用するため、図17A中の破線矢印で示すように、係合リング27を傾斜面203aに沿って容易に抜くことができる。このため、係合リング27とラチェット爪206との係合状態が強固に維持されて、係合リング27やトリガレバー36に無理な力が生じることを有効に回避することができる。 Further, even when the operation portion 14 and the working portion 16 are separated while the ratchet pawl 206 is engaged with the engagement ring 27, the ratchet pawl 206 is swung upward by the stopper pin 211. Since the inclined surface 203a and the recessed portion 203b act as escape portions for the engagement ring 27, the engagement ring 27 can be easily moved along the inclined surface 203a as shown by the broken arrow in FIG. 17A. Can be removed. For this reason, the engagement state between the engagement ring 27 and the ratchet pawl 206 is firmly maintained, and it is possible to effectively avoid the generation of an excessive force on the engagement ring 27 and the trigger lever 36.
 なお、図示はしないが、係合リング27に相当する構造の係合リングを爪部206a及び凹部206bに代えてラチェット爪206側に設ける一方、爪部206a(及び凹部206b)に相当する構造の爪部をグリップハンドル26側に設けてもよい。この場合にも、ラチェット爪206側の前記係合リングに対し、グリップハンドル26側の前記爪部をY1側からY2側に向かって係合する構成とすることにより、上記と略同様な作用効果を得ることができる。 Although not shown, an engagement ring having a structure corresponding to the engagement ring 27 is provided on the ratchet claw 206 side instead of the claw portion 206a and the concave portion 206b, while a structure corresponding to the claw portion 206a (and the concave portion 206b). You may provide a nail | claw part in the grip handle 26 side. Also in this case, the same effect as described above is obtained by engaging the claw portion on the grip handle 26 side from the Y1 side to the Y2 side with the engagement ring on the ratchet claw 206 side. Can be obtained.
 次に、トリガレバー取付部32bについて説明する。 Next, the trigger lever mounting portion 32b will be described.
 図11及び図18に示すように、トリガレバー取付部32bは、プーリボックス32aのZ2方向端面から延び、そのZ2方向端近傍でトリガレバー36を軸支する一対の支持プレート201、201と、支持プレート201、201間に設けられた荷重リミッタ212及びトリガワイヤ214とを有する。支持プレート201、201間の中心は連結シャフト18と略同軸構成となっている。支持プレート201は平行な一対のプレート部材以外、例えば円筒形状等でもよく、トリガ軸35や荷重リミッタ212等を支持できる形状であればよい。 As shown in FIGS. 11 and 18, the trigger lever mounting portion 32b extends from the Z2 direction end surface of the pulley box 32a and supports a pair of support plates 201 and 201 that pivotally support the trigger lever 36 near the end of the Z2 direction. A load limiter 212 and a trigger wire 214 provided between the plates 201 and 201 are provided. The center between the support plates 201 and 201 is substantially coaxial with the connecting shaft 18. The support plate 201 may be, for example, a cylindrical shape other than a pair of parallel plate members, and may be any shape that can support the trigger shaft 35, the load limiter 212, and the like.
 荷重リミッタ212は円筒形状であって、外筒212aと、内ロッド212bと、コイルばね212cとを有し、Z1方向端の内ロッド212bがロッド192aの端部に軸支され、Z2方向端の外筒212aがアーム部200における軸200aに軸支されている。内ロッド212bとロッド192aを枢動可能に接続する軸205は、支持プレート201に設けられた長丸穴215にスライド自在な状態で支持されている(図19参照)。これにより、ロッド192aと内ロッド212bの角度に係わらず、ロッド192aをZ方向へ真っ直ぐに動かすことができる。コイルばね212cは適度に硬く、プリロードをかけた状態で外筒212aと内ロッド212bとの間に介在している。従って、荷重リミッタ212は、通常は、実質的な剛体としてロッド192aとトリガレバー36とを接続しているが、過度に大きい荷重がかかったとき、すなわち、エンドエフェクタ1300が何かを挟持するなどしてプリロード以上の荷重がかかったときには、コイルばね212cがさらに圧縮されて内ロッド212bが延出する。これにより、トリガレバー36を過度に強く引いても、その力は荷重リミッタ212によって制限されることになり、エンドエフェクタ1300(図1参照)及びその駆動機構あるいは把持対象物を保護することができる。 The load limiter 212 has a cylindrical shape and includes an outer cylinder 212a, an inner rod 212b, and a coil spring 212c. The inner rod 212b at the end in the Z1 direction is pivotally supported by the end of the rod 192a, and the end at the end in the Z2 direction. An outer cylinder 212 a is pivotally supported on a shaft 200 a in the arm portion 200. A shaft 205 that pivotally connects the inner rod 212b and the rod 192a is supported in a slidable manner in an elongated hole 215 provided in the support plate 201 (see FIG. 19). Thereby, irrespective of the angle of the rod 192a and the inner rod 212b, the rod 192a can be moved straight in the Z direction. The coil spring 212c is moderately hard and is interposed between the outer cylinder 212a and the inner rod 212b in a preloaded state. Therefore, the load limiter 212 normally connects the rod 192a and the trigger lever 36 as a substantial rigid body, but when an excessively large load is applied, that is, the end effector 1300 pinches something or the like. When a load greater than the preload is applied, the coil spring 212c is further compressed and the inner rod 212b extends. Thus, even if the trigger lever 36 is pulled too strongly, the force is limited by the load limiter 212, and the end effector 1300 (see FIG. 1) and its drive mechanism or gripping object can be protected. .
 なお、荷重リミッタ212の最大荷重は、エンドエフェクタ1300が最大に開いたときにトリガレバー36を最も手前に引いた場合であっても、トリガワイヤ214等の駆動機構が許容強度以下となるように設定されることが望ましい。 Note that the maximum load of the load limiter 212 is set so that the driving mechanism such as the trigger wire 214 is less than the allowable strength even when the trigger lever 36 is pulled most forward when the end effector 1300 is fully opened. It is desirable that
 図18に示すように、トリガワイヤ214は、Z1方向端がロッド192bの端部に接続(例えば、圧着)され、Z2方向端がピン214aを介してアーム部200における軸200bに軸支されている。トリガワイヤ214は、プーリ216に案内されており、該プーリ216よりもZ1側の部分は、ロッド192bと略同軸状となっている。 As shown in FIG. 18, the trigger wire 214 is connected (for example, crimped) to the end of the rod 192b at the end in the Z1 direction, and the end in the Z2 direction is pivotally supported by the shaft 200b in the arm unit 200 via the pin 214a. . The trigger wire 214 is guided by a pulley 216, and a portion closer to the Z1 side than the pulley 216 is substantially coaxial with the rod 192b.
 軸200aはトリガ軸35よりもY2側、軸200bはトリガ軸35よりもY1側に配置されており、軸200a、200bは、トリガ軸35から略等距離にある。従って、トリガレバー36を操作することにより、軸200aと軸200bは反対方向に略等距離変位し、これに伴って、ロッド192aとロッド192bが反対方向(Z1方向とZ2方向)に略等距離変位する。このように、トリガ軸35、ロッド192a、192b、軸200a、200b、荷重リミッタ212及びトリガワイヤ214等は、トリガレバー36への入力操作を先端動作部12へと機械的に伝達する操作伝達部を構成している。勿論、該操作伝達部は、他の構成要素を含み又はいずれかの構成要素を省略してもよく、要は、トリガレバー36への入力操作によってロッド192a、192b等の伝達部材を進退できる構成であればよい。 The shaft 200a is disposed on the Y2 side of the trigger shaft 35, the shaft 200b is disposed on the Y1 side of the trigger shaft 35, and the shafts 200a and 200b are substantially equidistant from the trigger shaft 35. Therefore, by operating the trigger lever 36, the shaft 200a and the shaft 200b are displaced in the opposite directions by substantially the same distance, and accordingly, the rod 192a and the rod 192b are moved in the opposite directions (Z1 direction and Z2 direction). Displace. As described above, the trigger shaft 35, the rods 192a and 192b, the shafts 200a and 200b, the load limiter 212, the trigger wire 214, and the like serve as an operation transmission unit that mechanically transmits the input operation to the trigger lever 36 to the distal end operation unit 12. It is composed. Of course, the operation transmission unit may include other components or any of the components may be omitted. In short, a configuration in which the transmission member such as the rods 192a and 192b can be advanced and retracted by an input operation to the trigger lever 36. If it is.
 図3、図11及び図20Bに示すように、トリガレバー取付部32bを構成する一対の支持プレート201、201の上面(Y1方向面)において、プーリボックス32a寄りの位置には、両支持プレート201、201に渡ってバーコードプレート220が固定され、その表面にバーコード222が設けられている。 As shown in FIGS. 3, 11, and 20 </ b> B, on the upper surface (Y1 direction surface) of the pair of support plates 201, 201 constituting the trigger lever mounting portion 32 b, both the support plates 201 are located near the pulley box 32 a. 201, a barcode plate 220 is fixed, and a barcode 222 is provided on the surface thereof.
 バーコード222は、例えば略正方形のマトリックス形状であり、桝目に従って白及び黒が印刷された二次元バーコードであり、操作部14側に設けられたカメラ224により、ミラー226及び撮影窓227を介して撮像される(図6及び図19参照)。 The barcode 222 is, for example, a substantially square matrix shape, and is a two-dimensional barcode printed with white and black according to the grid, and the camera 224 provided on the operation unit 14 side passes through the mirror 226 and the photographing window 227. (See FIGS. 6 and 19).
 そこで、次に、バーコード222及びそれを撮像するカメラ224について説明する。 Therefore, next, the barcode 222 and the camera 224 that images the barcode 222 will be described.
 図3、図11及び図20Bに示すように、バーコード222は、XZ平面を構成するバーコードプレート220の上面(Y1方向面)に貼り付けられ、下部カバー37a、37bの合わせ面に形成される切欠230によって上部に露出している。バーコード222には、作業部16の個体情報、仕様、タイムスタンプ(製造日等)やシリアルナンバー、使用量(使用回数)上限等の情報が含まれている。バーコード222が保持している個体情報は、作業部毎に識別が可能なように異なる値が付与されている。また、バーコード222はミラー226を介して撮影されるため、鏡像となっている。 As shown in FIGS. 3, 11, and 20B, the barcode 222 is attached to the upper surface (Y1 direction surface) of the barcode plate 220 constituting the XZ plane, and is formed on the mating surface of the lower covers 37a and 37b. It is exposed to the upper part by the notch 230. The barcode 222 includes individual information, specifications, time stamp (manufacturing date, etc.), serial number, usage amount (usage count) upper limit, etc. of the working unit 16. The individual information held by the barcode 222 is given a different value so that it can be identified for each working unit. Further, since the barcode 222 is photographed through the mirror 226, it is a mirror image.
 バーコード222は1枚に限らず、複数枚からなる構成であってもよい。バーコード222が2枚からなる場合、一枚は個体情報、製造日、シリアルナンバー等の個体特有の情報を示し、もう一枚は仕様、使用量上限等の型式毎に共通的な情報を示すようにしてもよい。バーコード222は二次元データに限らず、一次元形状であってもよい。バーコード222における枡目の色は白及び黒に限らず、赤外線吸収色及び赤外線反射色であってもよく、又は3色以上の色の区別により情報を示すようにしてもよい。 The barcode 222 is not limited to a single sheet, and may be composed of a plurality of sheets. When the barcode 222 is composed of two pieces, one piece shows individual information such as individual information, production date, serial number, etc., and the other piece shows common information for each type such as specifications and upper limit of usage amount. You may do it. The barcode 222 is not limited to two-dimensional data, and may be a one-dimensional shape. The color of the grid in the barcode 222 is not limited to white and black, but may be an infrared absorption color and an infrared reflection color, or information may be indicated by distinguishing three or more colors.
 図6及び図19に示すように、カメラ224は、操作部14を構成するモータ100、102の下部に配置され、一方の上部カバー25bの内面に固定されている。カメラ224のX方向両側部には、一対のLED224a、224aが設けられている(図7も参照)。カメラ224は、例えばCCD形式又はCMOS形式からなり、バーコード222を撮像するためのカメラである。 6 and 19, the camera 224 is disposed below the motors 100 and 102 constituting the operation unit 14, and is fixed to the inner surface of one upper cover 25b. A pair of LEDs 224a and 224a are provided on both sides in the X direction of the camera 224 (see also FIG. 7). The camera 224 is a camera for imaging the barcode 222, for example, having a CCD format or a CMOS format.
 図19に示すように、カメラ224は、撮像方向が反射鏡であるミラー226で屈曲されてバーコード222を撮像可能な向き(略Z1方向)に設定されており、つまり、屈曲方向(直交方向)に位置した被写体であるバーコード222をミラー226を介して撮像可能である。同様に、LED224aは、光軸がミラー226で屈曲されてバーコード222を照明する向き(略Z1方向)に設定されている。LED224aにより、カメラ224はバーコード222を一層確実に認識することができる。LED224aは、カメラ224を挟んで左右対称位置に設けられており、バーコード222をバランスよく照明することができる。LED224aは、カメラ224を挟んで上下に設けられていてもよく、等間隔に3以上設けられていてもよい。LED224aが十分な光量を有する場合には1つでもよい。 As shown in FIG. 19, the camera 224 is set in a direction (substantially Z1 direction) in which the imaging direction is bent by the mirror 226 that is a reflecting mirror and the barcode 222 can be imaged, that is, the bending direction (orthogonal direction). The bar code 222 that is the subject located at () can be imaged via the mirror 226. Similarly, the LED 224a is set in a direction (approximately Z1 direction) in which the optical axis is bent by the mirror 226 and the barcode 222 is illuminated. The LED 224a allows the camera 224 to recognize the barcode 222 more reliably. The LEDs 224a are provided at symmetrical positions with the camera 224 in between, and can illuminate the barcode 222 with good balance. The LEDs 224a may be provided above and below the camera 224, or three or more LEDs may be provided at equal intervals. If the LED 224a has a sufficient amount of light, it may be one.
 ミラー226のY2方向には、上部カバー25を透過させる撮影窓227が設けられており(図19参照)、すなわち、操作部14において、カメラ224、LED224a及びミラー226は、上部カバー25内に収納されている(図2及び図6参照)。さらに、操作部14に作業部16が装着された状態では、上部カバー25及び下部カバー37によってバーコード222も略閉空間内に配置されるため、当該マニピュレータ10の使用時に、バーコード222及びカメラ224が血液等で汚れることを防止可能であると共に、不要な外乱光を遮蔽してLED224aによる安定した撮像が可能となる。また、バーコード222とカメラ224との相対的な位置及び向きが固定的であることから、カメラ224側では、バーコード222の位置及び向きを特定する必要がなく、これらを特定するためのコードが不要か又は少量で足り、その分、バーコード222における記録可能な情報量が多くなる、あるいは省スペースでの配置が可能となる。 A photographing window 227 that allows the upper cover 25 to pass through is provided in the Y2 direction of the mirror 226 (see FIG. 19). That is, in the operation unit 14, the camera 224, the LED 224a, and the mirror 226 are stored in the upper cover 25. (See FIGS. 2 and 6). Further, in a state where the working unit 16 is mounted on the operation unit 14, the barcode 222 is also disposed in the substantially closed space by the upper cover 25 and the lower cover 37, so that the barcode 222 and the camera are used when the manipulator 10 is used. The 224 can be prevented from being contaminated with blood or the like, and unnecessary disturbance light can be shielded to enable stable imaging with the LED 224a. In addition, since the relative position and orientation of the barcode 222 and the camera 224 are fixed, it is not necessary to specify the position and orientation of the barcode 222 on the camera 224 side, and a code for specifying them. Therefore, the amount of information that can be recorded on the barcode 222 is increased, or a space-saving arrangement is possible.
 このようなバーコード222を作業部16に設けたことにより、操作部14及びコントローラ514では、カメラ224を用いて作業部16の個体情報を認識することができ、マニピュレータ10を構成するモータ100、102等を当該作業部16の種類(例えば、グリッパやはさみ、電気メス)に対応するように適切に且つ正確に駆動制御することができる。 By providing such a barcode 222 in the working unit 16, the operation unit 14 and the controller 514 can recognize individual information of the working unit 16 using the camera 224, and the motor 100 constituting the manipulator 10, 102 and the like can be appropriately and accurately driven and controlled so as to correspond to the type of the working unit 16 (for example, gripper, scissors, electric knife).
 ここで、作業部16が操作部14に装着されたことは、着脱センサ314及び検出シャフト316(図7等参照)によって迅速に検出することができる。そこで、コントローラ514では、着脱センサ314による作業部16の装着の検出を、カメラ224及びLED224aを起動制御してバーコード222から個体信号を取得するためのトリガ信号とすることもできる。 Here, the attachment of the working unit 16 to the operation unit 14 can be quickly detected by the detachable sensor 314 and the detection shaft 316 (see FIG. 7 and the like). Therefore, in the controller 514, the detection of the attachment of the working unit 16 by the attachment / detachment sensor 314 can be used as a trigger signal for acquiring the individual signal from the barcode 222 by controlling the activation of the camera 224 and the LED 224a.
 すなわち、コントローラ514は、作業部16が操作部14に装着されたと略同時に、カメラ224及びLED224aを駆動制御してバーコード222から個体信号を取得する。コントローラ514では、少なくとも作業部16が操作部14に装着されたときに個体信号を取得すれば足り、それ以外のときにはカメラ224及びLED224aの動作を停止しておくことができ、処理負荷が低減すると共に省電力化を図ることができる。さらに、バーコード222は直接的な通電の必要がなく操作部14及び作業部16には電気的接点が存在せず、しかもバッテリ等の蓄電体もないため一層省電力であると共に、操作部14から取り外した作業部16の洗浄や滅菌等を一層容易に行うことができる。 That is, the controller 514 obtains an individual signal from the barcode 222 by drivingly controlling the camera 224 and the LED 224a substantially simultaneously with the operation unit 16 being mounted on the operation unit 14. In the controller 514, it is only necessary to acquire the individual signal at least when the working unit 16 is attached to the operation unit 14, and the operation of the camera 224 and the LED 224a can be stopped at other times, thereby reducing the processing load. In addition, power saving can be achieved. Further, the bar code 222 does not need to be directly energized, the operation unit 14 and the work unit 16 have no electrical contacts, and there is no power storage unit such as a battery, so that the power consumption is further reduced. It is possible to more easily perform cleaning, sterilization, and the like of the working unit 16 removed from the apparatus.
 次に、操作部14側のマスタスイッチ34及び複合入力部24について説明する。 Next, the master switch 34 and the composite input unit 24 on the operation unit 14 side will be described.
 マスタスイッチ34(図1及び図6参照)は、マニピュレータ10の動作状態の有効又は無効を設定するための入力手段であり、その操作は入力検出部(トグルスイッチ又はタクトスイッチ等)350によって検出され、検出された信号がコントローラ514に供給される。LED29は、マニピュレータ10の制御状態を示すインジケータであり、操作者が容易に認識可能な大きさであり、且つ操作に支障がない程度に十分に小型軽量である。LED29は、上部カバー25の頂面(Y1方向面)における略中央部で、視認性のよい位置に設けられており、マスタスイッチ34と並んで配置されている。LED29は、例えば、マスタスイッチ34によるON操作に同期して点灯等をするため、操作者はマスタスイッチ34の操作をしながらその入力状態をLED29により確実に認識することができる。LED29は、例えば、緑色及び赤色をそれぞれ発光可能であり、さらに各色につき点灯及び点滅が可能である。 The master switch 34 (see FIGS. 1 and 6) is an input means for setting whether the operation state of the manipulator 10 is valid or invalid, and its operation is detected by an input detection unit (such as a toggle switch or a tact switch) 350. The detected signal is supplied to the controller 514. The LED 29 is an indicator that indicates the control state of the manipulator 10, has a size that can be easily recognized by the operator, and is sufficiently small and light enough that there is no hindrance to the operation. The LED 29 is provided at a position with good visibility at a substantially central portion on the top surface (Y1 direction surface) of the upper cover 25, and is arranged side by side with the master switch 34. For example, since the LED 29 is turned on in synchronization with the ON operation by the master switch 34, the operator can surely recognize the input state by the LED 29 while operating the master switch 34. The LED 29 can emit, for example, green and red, and can be turned on and off for each color.
 図6及び図7に示すように、マスタスイッチ34は、一方の上部カバー25bの内面に支持部材352を介して固定された基板354上に配置され、上部カバー25内の部分がスイッチカバー356によって外部から密封されている。 As shown in FIGS. 6 and 7, the master switch 34 is disposed on a substrate 354 fixed to the inner surface of one upper cover 25 b via a support member 352, and a portion in the upper cover 25 is formed by the switch cover 356. Sealed from the outside.
 コントローラ514(図1参照)では、マスタスイッチ34の入力状態を読み込み、オンされた際に後述する原点サーチ動作を行ってマニピュレータ10を所定の使用可能状態に駆動制御する。これにより、操作部14の操作指令が有効となり、先端動作部12に所望の動作を付与することが可能となる。 The controller 514 (see FIG. 1) reads the input state of the master switch 34, and when it is turned on, performs an origin search operation described later to drive-control the manipulator 10 to a predetermined usable state. Thereby, the operation command of the operation unit 14 becomes valid, and a desired operation can be given to the distal end operation unit 12.
 図4及び図5に示すように、複合入力部24は、Z軸(Y軸)を中心としてX1方向及びX2方向に対称な構造であり、先端動作部12に対してロール方向(軸回転方向)及びヨー方向(左右方向)の回転指令を与える複合的な入力部である。グリップハンドル26の上面は、Z1方向に向けてY1方向に上がる傾斜面26aとなっており、複合入力部24はこの傾斜面26aに設けられている。傾斜面26aの傾斜角は、グリップハンドル26を人手で把持したときに複合入力部24が親指又は人差し指で操作し易い角度であり、Z方向を基準として20°~35°程度が好適である。 As shown in FIGS. 4 and 5, the composite input unit 24 has a symmetrical structure in the X1 direction and the X2 direction around the Z axis (Y axis), and is in the roll direction (axial rotation direction) with respect to the distal end working unit 12. ) And a yaw direction (left-right direction) rotation command. The upper surface of the grip handle 26 is an inclined surface 26a that rises in the Y1 direction toward the Z1 direction, and the composite input unit 24 is provided on the inclined surface 26a. The inclination angle of the inclined surface 26a is an angle at which the composite input unit 24 can be easily operated with the thumb or index finger when the grip handle 26 is gripped by hand, and is preferably about 20 ° to 35 ° with respect to the Z direction.
 複合入力部24は、傾斜面26aに配置されたセンサホルダ52によって支持されており、傾斜面26aのZ1側(Y1側)の回転操作部54と、そのZ2側(Y2側)に設けられた傾動操作部56と、傾動操作部56の下部側面にそれぞれ配設された3つのスイッチ操作子58a、58b、58cとを有する。 The composite input unit 24 is supported by the sensor holder 52 disposed on the inclined surface 26a, and is provided on the Z1 side (Y1 side) of the inclined surface 26a and on the Z2 side (Y2 side) thereof. The tilt operation unit 56 includes three switch operators 58a, 58b, and 58c disposed on the lower side surface of the tilt operation unit 56, respectively.
 図5に示すように、センサホルダ52内には、スイッチ基板62が設けられ、該スイッチ基板62には、回転操作部54への入力操作を検出する入力検出部(タクトスイッチ)66aと、傾動操作部56への入力操作を検出する入力検出部(タクトスイッチ)66bと、スイッチ操作子58a~58cへの入力操作を検出する入力検出部(タクトスイッチ)66c~66eとが設けられる。このような複合入力部24により、モータ100、102、駆動シャフト115、116及びプーリ158a、158bが駆動され、可撓性部材であるワイヤ1052、1054を介して先端動作部12をロール方向及びヨー方向に動作させることができる。 As shown in FIG. 5, a switch substrate 62 is provided in the sensor holder 52, and the switch substrate 62 is tilted with an input detection unit (tact switch) 66 a that detects an input operation to the rotation operation unit 54. An input detection unit (tact switch) 66b for detecting an input operation to the operation unit 56 and input detection units (tact switches) 66c to 66e for detecting an input operation to the switch operators 58a to 58c are provided. The composite input unit 24 drives the motors 100 and 102, the drive shafts 115 and 116, and the pulleys 158a and 158b, and moves the tip operation unit 12 in the roll direction and yaw through the wires 1052 and 1054 which are flexible members. Can be operated in the direction.
 スイッチ操作子58bは、回転操作部54及び傾動操作部56の有効及び無効の切換や、ヨー軸機構(ピボット軸機構)を所定の初期姿勢に戻す(一度押すと初期姿勢まで自動的に移動し、停止する)、又は初期姿勢方向に移動させる(押しているときだけ初期姿勢方向に移動し、初期姿勢になったら自動的に停止する)ためのスイッチとして用いるとよい。 The switch operator 58b switches between valid / invalid of the rotation operation unit 54 and the tilt operation unit 56 and returns the yaw axis mechanism (pivot axis mechanism) to a predetermined initial position (once it is pressed once, it automatically moves to the initial position). , Stop) or move in the initial posture direction (moves in the initial posture direction only when pressed, and automatically stops when the initial posture is reached).
 スイッチ操作子58a及び58cは、ロール回転機構を所定の初期姿勢に戻す、又は初期姿勢方向に移動させるためのスイッチとして用いるとよい。スイッチ操作子58a及び58cは、全く同一の機能を有するスイッチとして左右に配置することで、操作者が操作部14を右手で把持した場合でも左手で把持した場合でも問題なく、同様の操作をすることができる。具体的には、右手操作の場合及び左手操作のいずれの場合にも、例えば親指による同様の操作が可能である。また、現在のロール回転機構の位置(正領域か負領域か)を意識せずにロール回転機構を所定の初期姿勢まで戻し、又は初期姿勢方向に移動させることができる。 The switch operators 58a and 58c are preferably used as switches for returning the roll rotation mechanism to a predetermined initial posture or moving it in the initial posture direction. The switch operators 58a and 58c are arranged on the left and right as switches having exactly the same function, so that the operator can perform the same operation without any problem regardless of whether the operator grips the operation unit 14 with the right hand or the left hand. be able to. Specifically, the same operation with the thumb, for example, is possible in both the right-hand operation and the left-hand operation. Also, the roll rotation mechanism can be returned to a predetermined initial posture or moved in the initial posture direction without being aware of the current position of the roll rotation mechanism (positive region or negative region).
 図5に示すように、回転操作部54は、YZ方向に沿う軸(図示せず)を中心として回動可能な構成であり、X1方向及びX2方向にそれぞれ伸びたレバー72aと、両レバー72a、72aの間でX、Y、Z方向に適度に膨出して3方に切欠72bを設けた操作子72cとを有する。レバー72aの左右両端は、表面に滑り止め用の多数の筋が設けられた半円形状となっている。操作子72cは、初期位置の状態で上部カバー25a、25bと連続的な面(平面又は曲面)を構成しており(図4参照)、無駄な突起や段差等がなく、外観上で好適であるとともに、操作もし易い形状とされている。 As shown in FIG. 5, the rotation operation unit 54 is configured to be rotatable about an axis (not shown) along the YZ direction, and a lever 72a extending in the X1 direction and the X2 direction, and both levers 72a. , 72a, and a manipulator 72c provided with notches 72b in three directions that swell appropriately in the X, Y, and Z directions. The left and right ends of the lever 72a have a semicircular shape with a number of anti-slip lines on the surface. The operation element 72c forms a continuous surface (a flat surface or a curved surface) with the upper covers 25a and 25b in the initial position (see FIG. 4), and has no useless protrusions or steps, which is preferable in appearance. In addition, the shape is easy to operate.
 回転操作部54は、操作子72cの切欠72bを指で周方向に向かう回動操作がなされ、ロール回動機構を動作させる機能を有する。このように外周面に指掛け部が設けられている回転操作部54によれば、前記YZ方向に沿う軸を中心とした回動操作がなされ、ロール回動機構についての直感的な操作性が得られる。また、指掛け部が傾動操作部56の端部よりも外径側に設けられていることにより、該傾動操作部56との使い分けが容易である。 The rotation operation unit 54 has a function of rotating the notch 72b of the operation element 72c in the circumferential direction with a finger and operating the roll rotation mechanism. As described above, according to the rotation operation unit 54 having the finger rest on the outer peripheral surface, the rotation operation is performed around the axis along the YZ direction, and an intuitive operability of the roll rotation mechanism is obtained. It is done. In addition, since the finger-hanging portion is provided on the outer diameter side of the end portion of the tilt operation portion 56, it is easy to use the finger hook portion with the tilt operation portion 56.
 図5に示すように、傾動操作部56は、YZ方向に沿う軸74を中心として傾動可能な傾動板76を設けた構成である。軸74はX方向に関して複合入力部24の中心となっている。傾動操作部56は、傾動板76を指で押し込むことによる傾動操作がなされ、ヨー軸機構(ピボット軸機構)を動作させる機能を有する。 As shown in FIG. 5, the tilting operation unit 56 is provided with a tilting plate 76 that can tilt around an axis 74 along the YZ direction. The shaft 74 is the center of the composite input unit 24 in the X direction. The tilt operation unit 56 has a function of operating a yaw shaft mechanism (pivot shaft mechanism) by performing a tilt operation by pushing the tilt plate 76 with a finger.
 このように、複合入力部24において、回転操作部54は周方向に向かう回動操作がなされ、傾動操作部56は押し込むことによる傾動操作がなされ、このような操作方法の違いにより、ロール回動機構とヨー(ピボット)軸機構との対応付けが容易に理解され、より直感的な操作が可能となる。 As described above, in the composite input unit 24, the rotation operation unit 54 is rotated in the circumferential direction, and the tilt operation unit 56 is tilted by being pushed. The correspondence between the mechanism and the yaw (pivot) shaft mechanism is easily understood, and a more intuitive operation is possible.
 また、センサホルダ52は、上部カバー25と密着して当該複合入力部24の周囲をシールする機能も有し、複合入力部24の周辺から液体等が上部カバー25内に浸入することを防止している。勿論、センサホルダ52と別体のシール部材を配設してもよい。 The sensor holder 52 also has a function of tightly contacting the upper cover 25 and sealing the periphery of the composite input unit 24, and prevents liquid or the like from entering the upper cover 25 from the periphery of the composite input unit 24. ing. Of course, a seal member separate from the sensor holder 52 may be provided.
 以上より、操作部14において上部カバー25内は、複合入力部24の周辺がセンサホルダ52によりシールされ(図4及び図6参照)、マスタスイッチ34の周辺がスイッチカバー356によりシールされ(図6参照)、カメラ224及びミラー226とバーコード222との間が撮影窓227によりシールされ(図6及び図19参照)、上部ブラケット104の底面周辺がOリング105、131、320、326、328によりシールされ(図6、図9及び図10参照)、これにより密封されている。従って、血液や洗浄液等が上部カバー25内に浸入することを防止でき、作業部16と分離した状態であっても操作部14の洗浄や滅菌等が容易となる。 As described above, in the upper cover 25 of the operation unit 14, the periphery of the composite input unit 24 is sealed by the sensor holder 52 (see FIGS. 4 and 6), and the periphery of the master switch 34 is sealed by the switch cover 356 (FIG. 6). Between the camera 224 and mirror 226 and the barcode 222 is sealed by the photographing window 227 (see FIGS. 6 and 19), and the bottom surface of the upper bracket 104 is surrounded by O- rings 105, 131, 320, 326, and 328. Sealed (see FIGS. 6, 9 and 10) and sealed by this. Accordingly, it is possible to prevent blood, a cleaning solution, and the like from entering the upper cover 25, and the operation unit 14 can be easily cleaned and sterilized even when separated from the working unit 16.
 次に、操作部14(駆動部30)と作業部16との着脱の構成について説明する。 Next, a configuration for attaching and detaching the operation unit 14 (drive unit 30) and the working unit 16 will be described.
 図2及び図6に示すように、駆動部30は上部カバー25内に収納されており、操作部14及び作業部16が分離された状態において、上部カバー25の下面側(Y2方向)からギア機構部106等を支持する上部ブラケット104の底面が露呈する。 As shown in FIGS. 2 and 6, the drive unit 30 is housed in the upper cover 25, and the gear from the lower surface side (Y2 direction) of the upper cover 25 in a state where the operation unit 14 and the working unit 16 are separated. The bottom surface of the upper bracket 104 that supports the mechanism unit 106 and the like is exposed.
 図2及び図20Aに示すように、上部カバー25から露出している上部ブラケット104の底面からは、駆動シャフト115、116の先端に設けられた係合凸部137、138と、各作業部原点センサ306、308にそれぞれ対応する検出シャフト310、312の先端に固定された支持部材340、342及び検出ピン344、346と、着脱センサ314の検出シャフト316とがY2方向に突出している。さらに、上部ブラケット104の底面からは、一対のガイドピン163、163がY2方向に突出している。各ガイドピン163近傍の上部カバー25aのX1方向面及び上部カバー25bのX2方向面に形成された凹部399、399内には、下端側が上部カバー25からY2方向に突出した着脱レバー400、400がそれぞれ設けられている。 As shown in FIGS. 2 and 20A, from the bottom surface of the upper bracket 104 exposed from the upper cover 25, the engagement convex portions 137 and 138 provided at the tips of the drive shafts 115 and 116, and the respective working portion origins. Support members 340 and 342 and detection pins 344 and 346 fixed to the tips of detection shafts 310 and 312 corresponding to the sensors 306 and 308, respectively, and a detection shaft 316 of the detachable sensor 314 protrude in the Y2 direction. Further, a pair of guide pins 163 and 163 protrude in the Y2 direction from the bottom surface of the upper bracket 104. In the recesses 399 and 399 formed in the X1 direction surface of the upper cover 25a and the X2 direction surface of the upper cover 25b in the vicinity of each guide pin 163, the detachable levers 400 and 400 whose lower ends protrude from the upper cover 25 in the Y2 direction are provided. Each is provided.
 2本のガイドピン163、163は、下部ブラケット32の2つのピン穴161、161に対向する位置で、上部ブラケット104の底面Z2方向端のX方向両端にそれぞれ設けられている(図6、図20A及び図20B参照)。 The two guide pins 163 and 163 are provided at both ends in the X direction of the bottom Z2 direction end of the upper bracket 104 at positions opposed to the two pin holes 161 and 161 of the lower bracket 32 (FIG. 6, FIG. 20A and FIG. 20B).
 図1及び図2に示すように、2つの着脱レバー400、400は、駆動部30を覆う上部カバー25の左右側面(X1及びX2側面)に対称に設けられており、Z方向に沿った回動軸400aの上部(Y1側)に設けられた一対の弾性部材400b、400bにより、Y2方向端の内側に形成された爪部400cが上部カバー25の内側に向かう方向で弾性的に付勢されている。着脱レバー400の上部表面(Y1側)はやや窪んでおり、弾性部材400bの付勢力に抗して当該着脱レバー400を開放させるために指で押圧する操作面400dを構成している。 As shown in FIGS. 1 and 2, the two attachment / detachment levers 400 and 400 are provided symmetrically on the left and right side surfaces (X1 and X2 side surfaces) of the upper cover 25 that covers the driving unit 30, and are rotated along the Z direction. By a pair of elastic members 400b and 400b provided on the upper portion (Y1 side) of the moving shaft 400a, the claw portion 400c formed on the inner side of the Y2 direction end is elastically biased in the direction toward the inner side of the upper cover 25. ing. The upper surface (Y1 side) of the detachable lever 400 is slightly depressed, and constitutes an operation surface 400d that is pressed by a finger to open the detachable lever 400 against the urging force of the elastic member 400b.
 このような着脱レバー400によれば、操作部14が作業部16に装着される際には、爪部400cが、下部カバー37のX方向両側面に形成された凹部401内に固定された係止部401aに係合する。これにより、操作部14と作業部16とを確実に連結し固定することができる。一方、操作部14及び作業部16が装着された状態で、2つの操作面400d、400dを略同時に内側へと押圧することにより、爪部400cと係止部401aとの係合状態が解除され、操作部14と作業部16とを分離させることができる。 According to such a detachable lever 400, when the operation unit 14 is attached to the working unit 16, the claw portions 400 c are fixed in the recesses 401 formed on both side surfaces in the X direction of the lower cover 37. Engage with the stop 401a. Thereby, the operation part 14 and the working part 16 can be reliably connected and fixed. On the other hand, by pressing the two operation surfaces 400d and 400d inwardly at the same time with the operation unit 14 and the working unit 16 mounted, the engagement state between the claw portion 400c and the locking portion 401a is released. The operation unit 14 and the working unit 16 can be separated.
 操作部14及び作業部16の装着時には、2本並列して設けられたガイドピン163が作業部16側の2つのピン穴161に嵌挿されるため、駆動部30(操作部14)は作業部16に対して確実に位置決めされ、安定して保持される。勿論、ガイドピンは3本以上としてもよい。ガイドピン163は、X-Z平面内に作用するモーメントを受けることができ、係合部やプーリ、駆動シャフト等に加わる力を低減することができる。 When the operating unit 14 and the working unit 16 are mounted, two guide pins 163 provided in parallel are fitted into the two pin holes 161 on the working unit 16 side, so that the drive unit 30 (the operating unit 14) is the working unit. 16 is reliably positioned and stably held. Of course, three or more guide pins may be used. The guide pin 163 can receive a moment acting in the XZ plane, and can reduce the force applied to the engaging portion, the pulley, the drive shaft, and the like.
 さらに、図2、図3及び図6に示すように、このような装着時には、上部カバー25の底面側(Y2側)でグリップハンドル26の根元近傍に形成された位置決め凹部406に対し、下部カバー37のZ2方向端に形成された位置決め凸部408が係合する。これにより、操作部14と作業部16とを一層確実に位置決めすることができ、しかも装着後における操作部14と作業部16との間でのねじり方向等での剛性を高めることができる。 Further, as shown in FIGS. 2, 3 and 6, when mounting, the lower cover is positioned against the positioning recess 406 formed near the base of the grip handle 26 on the bottom surface side (Y2 side) of the upper cover 25. The positioning convex part 408 formed at the Z2 direction end of 37 is engaged. Thereby, the operation part 14 and the working part 16 can be positioned more reliably, and the rigidity in the torsional direction and the like between the operation part 14 and the working part 16 after mounting can be increased.
 図2、図20A及び図22Aに示すように、駆動シャフト115(116)の先端(Y2方向端)に設けられた係合凸部137(138)は、基端側の直線部137a(138a)と、先端側で先細りのテーパ形状のテーパ部137b(138b)とから構成されている。これら直線部137a(138a)及びテーパ部137b(138b)の外周面には、軸中心から放射状に等位相で突出した複数(6つ)の突出部402がセレーション状に形成されている。突出部402は略半円柱状であり、直線部137a(137a)に対応した部位ではY方向に延びており、テーパ部137b(138b)に対応した部位ではY方向から所定角度傾斜した方向に延びている。 As shown in FIG. 2, FIG. 20A and FIG. 22A, the engaging convex portion 137 (138) provided at the distal end (Y2 direction end) of the drive shaft 115 (116) is the linear portion 137a (138a) on the proximal end side. And a tapered portion 137b (138b) having a tapered shape which is tapered on the distal end side. A plurality of (six) projecting portions 402 projecting radially from the axial center at an equal phase are formed in a serrated shape on the outer peripheral surfaces of the linear portion 137a (138a) and the tapered portion 137b (138b). The protruding portion 402 is substantially semi-cylindrical, and extends in the Y direction at a portion corresponding to the straight portion 137a (137a), and extends in a direction inclined by a predetermined angle from the Y direction at a portion corresponding to the tapered portion 137b (138b). ing.
 一方、図3、図20B及び図22Aに示すように、プーリ158a(158b)の先端(Y1方向端)に設けられた係合凹部176a(176b)は、前記係合凸部137(138)の形状に対応しており、上端開口側の直線部171と、奥側で奥細りのテーパ形状のテーパ部173とから構成されている。これら直線部171及びテーパ部173の内周面には、前記突出部402を挿入可能であり、軸中心から放射状に等位相で窪んだ凹状の複数(6つ)の溝部404がセレーション状に形成されている。 On the other hand, as shown in FIGS. 3, 20B and 22A, the engaging recess 176a (176b) provided at the tip (end in the Y1 direction) of the pulley 158a (158b) is the same as the engaging protrusion 137 (138). It corresponds to the shape, and is composed of a linear portion 171 on the upper end opening side and a tapered portion 173 having a tapered shape on the back side. The protrusions 402 can be inserted into the inner peripheral surfaces of the linear portion 171 and the taper portion 173, and a plurality of concave (six) groove portions 404 that are recessed in the same phase radially from the axis center are formed in a serration shape. Has been.
 係合凸部137、138と係合凹部176a、176bとは、操作部14と作業部16とが装着された状態で、各突出部402が各溝部404に嵌合することにより互いに係合する(図22B及び図23B参照)。これにより、モータ100、102の回転駆動力を、駆動シャフト115、116からプーリ158a、158へと確実に伝達することができる。この際、係合凸部137(138)と係合凹部176a(176b)とは、互いに直線部137a(138a)と直線部171とが噛合うことから、全ての係合部位がテーパ部のみで形成されている場合に比べ、駆動シャフト115(116)の回転駆動力を一層確実に安定してプーリ158a(158b)へと伝達することができる。勿論、直線部137a、138a、171を省略してテーパ部137b、138b、173のみが噛合う構成であっても回転駆動力の伝達は十分可能である。また、駆動シャフト115(116)側に係合凹部を設け、プーリ158a(158b)側に係合凸部を設けるようにしてもよい。 The engaging convex portions 137 and 138 and the engaging concave portions 176a and 176b are engaged with each other by fitting the protruding portions 402 into the groove portions 404 in a state where the operation portion 14 and the working portion 16 are mounted. (See FIGS. 22B and 23B). Thereby, the rotational driving force of the motors 100 and 102 can be reliably transmitted from the drive shafts 115 and 116 to the pulleys 158a and 158. At this time, the engaging convex portion 137 (138) and the engaging concave portion 176a (176b) are engaged with each other by the linear portion 137a (138a) and the linear portion 171. Compared with the case where it is formed, the rotational driving force of the drive shaft 115 (116) can be transmitted to the pulley 158a (158b) more reliably and stably. Of course, even if the straight portions 137a, 138a, and 171 are omitted and only the tapered portions 137b, 138b, and 173 are engaged, the rotational driving force can be sufficiently transmitted. Further, an engagement recess may be provided on the drive shaft 115 (116) side, and an engagement protrusion may be provided on the pulley 158a (158b) side.
 次に、係合凸部137(138)と係合凹部176a(176b)との係合動作(カップリング動作)及びこの係合動作に続けて実施される原点サーチ動作について説明する。この場合、一方の係合凸部137及び係合凹部176aの係合動作及び原点サーチ動作と、他方の係合凸部138及び係合凹部176bの係合動作及び原点サーチ動作とは略同様である。このため、以下では一方の係合凸部137及び係合凹部176aの係合動作及び原点サーチ動作について代表的に説明する。 Next, an engagement operation (coupling operation) between the engagement convex portion 137 (138) and the engagement concave portion 176a (176b) and an origin search operation performed following this engagement operation will be described. In this case, the engagement operation and the origin search operation of one engagement convex portion 137 and the engagement recess portion 176a are substantially the same as the engagement operation and the origin search operation of the other engagement projection portion 138 and the engagement recess portion 176b. is there. For this reason, below, the engagement operation and the origin search operation of one of the engagement protrusions 137 and the engagement recesses 176a will be representatively described.
 先ず、係合動作について説明する。 First, the engagement operation will be described.
 図20A及び図20Bから諒解されるように、係合凸部137と係合凹部176aが係合される際に互いの初期位相が一致している場合、つまり各突出部402と各溝部404の係合時の位相が一致している場合には、互いに干渉等を生じることなく係合凸部137と係合凹部176aとが円滑に係合する(図22B及び図23B参照)。 As can be understood from FIGS. 20A and 20B, when the engaging convex portion 137 and the engaging concave portion 176a are engaged with each other, the initial phases of the engaging convex portion 137 and the engaging concave portion 176a are matched. When the phases at the time of engagement are the same, the engagement convex portion 137 and the engagement concave portion 176a smoothly engage without causing interference or the like (see FIGS. 22B and 23B).
 一方、図23Aに示すように、係合凸部137と係合凹部176aが係合される際に互いの初期位相がずれている場合、つまり各突出部402と各溝部404の係合時の位相がずれている場合には、各突出部402と各溝部404とが互いに干渉する。そこで、係合時、駆動シャフト115及びプーリ158aのうち、いずれか一方が回転不能であり、他方が回転自在(フリー)な状態にあることにより、他方が一方によって強制的に回転されるため、係合凸部137及び係合凹部176aは、互いの初期位相に係わらず係合可能である。本実施形態では、駆動シャフト115が回転不能であり、プーリ158aが回転自在に構成されている。 On the other hand, as shown in FIG. 23A, when the engaging convex portion 137 and the engaging concave portion 176a are engaged with each other, the initial phases are shifted, that is, when the protruding portions 402 and the groove portions 404 are engaged. When the phase is shifted, each protrusion 402 and each groove 404 interfere with each other. Therefore, at the time of engagement, one of the drive shaft 115 and the pulley 158a is not rotatable, and the other is in a freely rotatable state, so that the other is forcibly rotated by one, The engaging convex portion 137 and the engaging concave portion 176a can be engaged regardless of the initial phase of each other. In the present embodiment, the drive shaft 115 is not rotatable and the pulley 158a is configured to be rotatable.
 すなわち、図23Aに示すように、互いの突出部402と溝部404の初期位相がずれた状態で、操作部14と作業部16の装着動作に伴う係合動作が行われた場合には、先ず、係合凸部137先端のテーパ部137bが、係合凹部176a上端の直線部171に挿入される。続いて、係合凸部137がY2方向で所定位置まで係合凹部176a内に進入すると、各突出部402が各溝部404間の凸部に当接及び摺接しつつ、フリーな状態にある係合凹部176aを強制的に回転させる。これにより、最終的には係合凹部176aの位相が係合凸部137の位相に強制的に一致され、互いに係合することができる(図23B参照)。 That is, as shown in FIG. 23A, when the engaging operation accompanying the mounting operation of the operation unit 14 and the working unit 16 is performed in a state where the initial phases of the protrusions 402 and the grooves 404 are shifted from each other, The tapered portion 137b at the distal end of the engaging convex portion 137 is inserted into the linear portion 171 at the upper end of the engaging concave portion 176a. Subsequently, when the engaging convex portion 137 enters the engaging concave portion 176a to a predetermined position in the Y2 direction, each protruding portion 402 is in a free state while contacting and slidingly contacting the convex portion between the groove portions 404. The joint recess 176a is forcibly rotated. Thereby, finally, the phase of the engaging recess 176a is forcibly matched with the phase of the engaging protrusion 137, and can be engaged with each other (see FIG. 23B).
 このような係合動作について、図24~図25Bを参照してより具体的に説明する。 Such engagement operation will be described more specifically with reference to FIGS. 24 to 25B.
 図24A及び図24Bは、係合凹部176aが所定の原点(モータ原点M0)にあり、係合凸部137の位相が多少正転方向にある状態でのカップリング動作の説明図である。図25A及び図25Bは、係合凸部137が所定の原点(モータ原点M0)にあり、係合凹部176aの位相が多少逆転方向にある状態でのカップリング動作の説明図である。図24A及び図24Bは、理解の容易のため、係合凸部137及び係合凹部176aをそれぞれ周方向(回転方向)で360°展開し、突出部402及び溝部404を互いに対向する山形歯状に模式的に図示した説明図である。また、係合凹部176a(プーリ158a)の回転範囲を明確にするため、係合凹部176aと共に回転する当接部177a(177b)をY2方向に突出した当接部材として図示すると共に、その回転を規制するストッパ(プーリ動作限)179aを、ハッチングを付与した直線で図示しており、換言すれば、図21の変形例に示す当接部177cとストッパ179bとの当接による回転範囲の規制に類似した構造として図示しており、図25A等についても同様である。 24A and 24B are explanatory diagrams of the coupling operation in a state where the engagement concave portion 176a is at a predetermined origin (motor origin M0) and the phase of the engagement convex portion 137 is slightly in the forward rotation direction. 25A and 25B are explanatory diagrams of the coupling operation in a state where the engaging convex portion 137 is at a predetermined origin (motor origin M0) and the phase of the engaging concave portion 176a is slightly in the reverse direction. 24A and 24B, for easy understanding, the engaging convex portion 137 and the engaging concave portion 176a are expanded 360 ° in the circumferential direction (rotating direction), respectively, and the protruding portion 402 and the groove portion 404 are angled teeth facing each other. It is explanatory drawing typically shown in figure. In addition, in order to clarify the rotation range of the engagement recess 176a (pulley 158a), the contact portion 177a (177b) that rotates together with the engagement recess 176a is illustrated as a contact member protruding in the Y2 direction, and the rotation is performed. The stopper (pulley operation limit) 179a to be controlled is illustrated by a straight line with hatching. In other words, the rotation range is controlled by the contact between the contact portion 177c and the stopper 179b shown in the modification of FIG. This is illustrated as a similar structure, and the same applies to FIG. 25A and the like.
 先ず、図24Aに示すように、係合凸部137と係合凹部176aの初期位相がずれた状態で係合凸部137がY2方向に進動されると、各突出部402の先端頂部が各溝部404の斜面中腹に当接する。そこで、突出部402がさらにY2方向に進動されると、突出部402の斜面と溝部404の斜面とが互いに摺接しつつ、フリーな状態にある係合凹部176aが突出部402の斜面によって強制的に回転される(図24B中の左向き矢印参照)。従って、係合凸部137と係合凹部176aとは、最終的に互いの突出部402と溝部404の位相が一致した状態で係合する(図24B参照)。このように、回転不能側である係合凸部137の位相が維持されたまま、回転自在側である係合凹部176aが回転されることで係合凸部137と係合凹部176aとは、互いの初期位相に係わらず係合可能であり、図25A及び図25Bに示す例でも同様である。 First, as shown in FIG. 24A, when the engaging convex portion 137 is advanced in the Y2 direction with the initial phases of the engaging convex portion 137 and the engaging concave portion 176a being shifted, the tip top portions of the respective protruding portions 402 are moved. The groove 404 abuts against the middle of the slope. Therefore, when the protrusion 402 is further moved in the Y2 direction, the slope of the protrusion 402 and the slope of the groove 404 are in sliding contact with each other, and the engaging recess 176a in a free state is forced by the slope of the protrusion 402. (See the left arrow in FIG. 24B). Therefore, the engaging convex portion 137 and the engaging concave portion 176a are finally engaged in a state where the phases of the protruding portion 402 and the groove portion 404 coincide with each other (see FIG. 24B). As described above, the engaging convex portion 137 and the engaging concave portion 176a are rotated by rotating the engaging concave portion 176a on the rotatable side while maintaining the phase of the engaging convex portion 137 on the non-rotatable side. Engagement is possible regardless of the initial phase of each other, and the same applies to the examples shown in FIGS. 25A and 25B.
 従って、操作部14と作業部16の装着時には、着脱レバー400の爪部400cが係止部401aに係合し(図1~図3参照)、操作部14と作業部16との装着が完了すると、検出シャフト316が止板179に着座したことが着脱センサ314に検出されることによりコントローラ514でも認識される。同時に、係合凸部137(138)と係合凹部176a(176b)とは、互いの初期位相に関係なく、円滑に且つ迅速に係合する。すなわち、当該医療用マニピュレータ10では、操作部14と作業部16とをどのような状態で着脱しても、操作部14と作業部16とを装着すると同時に、駆動シャフト115(116)とプーリ158a(158b)とを連結することができる。 Therefore, when the operating unit 14 and the working unit 16 are mounted, the claw portion 400c of the detachable lever 400 is engaged with the locking unit 401a (see FIGS. 1 to 3), and the mounting of the operating unit 14 and the working unit 16 is completed. Then, when the attachment / detachment sensor 314 detects that the detection shaft 316 is seated on the stop plate 179, the controller 514 also recognizes it. At the same time, the engaging convex portion 137 (138) and the engaging concave portion 176a (176b) engage smoothly and quickly regardless of the initial phase of each other. That is, in the medical manipulator 10, the operating shaft 14 (116) and the pulley 158a are mounted at the same time that the operating portion 14 and the working portion 16 are mounted regardless of the state in which the operating portion 14 and the working portion 16 are attached or detached. (158b) can be linked.
 なお、係合凸部137(138)及び係合凹部176a(176b)は、上記のように、断面波形形状且つテーパ形状からなり突出部と溝部とを嵌合する係合構造以外の構造であっても勿論よく、要は、駆動シャフト115(116)とプーリ158a(158b)とが互いに着脱可能であり、回転駆動力を伝達可能な構造であればよい。 As described above, the engaging convex portion 137 (138) and the engaging concave portion 176a (176b) have a structure other than the engaging structure in which the protruding portion and the groove portion are fitted with a corrugated cross section and a tapered shape. Of course, the drive shaft 115 (116) and the pulley 158a (158b) can be detachably attached to each other, and any structure can be used as long as the rotational drive force can be transmitted.
 図26は、駆動シャフト115(116)とプーリ158a(158b)との係合構造の変形例を示す斜視図である。この係合構造では、駆動シャフト115の先端(Y2方向端)に角錐形状で先細りのテーパ形状からなる係合凸部600を設け、プーリ158aの上端(Y1方向端)に係合凸部600に対応する角錐形状で奥細りのテーパ形状からなる係合凹部602を設けて構成されている。これにより、係合凸部600と係合凹部602の係合時の初期位相に関係なく、両者を迅速に且つ円滑に係合することができる。 FIG. 26 is a perspective view showing a modification of the engagement structure between the drive shaft 115 (116) and the pulley 158a (158b). In this engagement structure, an engagement convex portion 600 having a tapered shape and a tapered shape is provided at the tip (end in the Y2 direction) of the drive shaft 115, and the engagement convex portion 600 is provided at the upper end (end in the Y1 direction) of the pulley 158a. A corresponding pyramid shape is formed by providing an engaging recess 602 having a taper shape which is narrow. Thereby, regardless of the initial phase at the time of engagement of the engaging convex part 600 and the engaging concave part 602, both can be engaged quickly and smoothly.
 図27は、駆動シャフト115(116)とプーリ158a(158b)との係合構造の他の変形例を示す斜視説明図である。この係合構造では、駆動シャフト115の先端(Y2方向端)に山形環状歯からなる係合凸部604を設け、プーリ158aの上端(Y1方向端)に係合凸部604に対向する山形環状歯からなる係合凹部606を設けて構成されている。この場合にも、係合凸部604と係合凹部606の係合時の初期位相に関係なく、両者を迅速に且つ円滑に係合することができる。 FIG. 27 is a perspective explanatory view showing another modified example of the engagement structure between the drive shaft 115 (116) and the pulley 158a (158b). In this engagement structure, an engagement convex portion 604 made of chevron-shaped annular teeth is provided at the front end (Y2 direction end) of the drive shaft 115, and a chevron-shaped annular shape facing the engagement convex portion 604 at the upper end (Y1 direction end) of the pulley 158a. An engagement recess 606 made of teeth is provided. Also in this case, both can be quickly and smoothly engaged regardless of the initial phase at the time of engagement of the engaging convex portion 604 and the engaging concave portion 606.
 このように、駆動シャフト115(116)とプーリ158a(158b)とは、互いに着脱可能且つ回転駆動力を伝達可能なものであればよい。すなわち、駆動軸である駆動シャフト115の先端に、係合凸部137、600、604のように該駆動軸の軸線方向に対して傾斜した接合面(駆動側接合面)を設け、従動軸であるプーリ158aの先端に、係合凹部176a、602、606のように該従動軸の軸線方向に対して傾斜すると共に、前記駆動側接合面と係合(接合)可能な接合面(従動側接合面)を設けることにより、両軸間を着脱可能に且つ回転駆動力を伝達可能な構造に容易に構成することができる。 Thus, the drive shaft 115 (116) and the pulley 158a (158b) may be any one that can be attached to and detached from each other and can transmit the rotational driving force. That is, a joint surface (drive-side joint surface) that is inclined with respect to the axial direction of the drive shaft is provided at the tip of the drive shaft 115 that is the drive shaft, such as the engagement convex portions 137, 600, and 604. At the tip of a certain pulley 158a, a joint surface (driven side joint) that is inclined with respect to the axial direction of the driven shaft and can be engaged (joined) with the drive side joint surface, such as engagement recesses 176a, 602, and 606. By providing the (surface), it is possible to easily configure a structure in which both shafts can be attached and detached and the rotational driving force can be transmitted.
 以上のような係合動作の終了後には、コントローラ514が先端動作部12を正確に且つ精度よく駆動制御するため、先端動作部12を所定の原点姿勢(図1、図46及び図48参照)とし、モータ100、102を所定の原点位相とすべく、ワイヤ1052、1054を往復駆動するプーリ158a、158b及び駆動シャフト115、116と、モータ100、102の回転位相を原点に設定する原点サーチ動作を実施する必要がある。 After the end of the engaging operation as described above, the controller 514 controls the distal end working unit 12 accurately and accurately, so that the distal end working unit 12 has a predetermined origin posture (see FIGS. 1, 46 and 48). The origin search operation for setting the rotation phases of the pulleys 158a and 158b and the drive shafts 115 and 116 for reciprocating the wires 1052 and 1054 and the motors 100 and 102 to the origin in order to set the motors 100 and 102 to a predetermined origin phase. Must be implemented.
 そこで、次に、上記の係合動作に続いて実施される原点サーチ動作について説明する。本実施形態では、コントローラ514の制御下に該原点サーチ動作が駆動制御され、つまりコントローラ514が原点サーチ部としての機能を有する。 Then, next, the origin search operation performed following the above engagement operation will be described. In the present embodiment, the origin search operation is driven and controlled under the control of the controller 514, that is, the controller 514 functions as an origin search unit.
 上記したように、操作部14と作業部16とが装着されると、係合凸部137(138)と係合凹部176a(176b)とが係合する。この際、作業部原点センサ306(308)の検出シャフト310(312)に対し、支持部材340(342)を介して連結された検出ピン344(346)は、コイルばね322(324)によるY2方向への付勢力により(図9、図10及び図22A参照)、プーリ158a(158b)側のカム面175のいずれかの位置に着座する(図22参照)。 As described above, when the operation unit 14 and the working unit 16 are mounted, the engaging convex portion 137 (138) and the engaging concave portion 176a (176b) are engaged. At this time, the detection pin 344 (346) connected via the support member 340 (342) to the detection shaft 310 (312) of the working unit origin sensor 306 (308) is in the Y2 direction by the coil spring 322 (324). Due to the urging force (see FIGS. 9, 10 and 22A), it is seated at any position on the cam surface 175 on the pulley 158a (158b) side (see FIG. 22).
 図28は、カム面175を周方向(回転方向)で360°展開し、その上面(Y2側面)のY方向位置を示した説明図であり、係合凸部137と係合凹部176aの係合動作に伴い、カム面175の所定位置(位置P1、P2)に検出ピン344が着座した状態を示している。本実施形態の場合、カム面175のうち、傾斜面175cの中間点を作業部16側の原点(モータ原点M0)として、Z1方向を指向するように設定している。 FIG. 28 is an explanatory diagram showing the cam surface 175 developed 360 ° in the circumferential direction (rotation direction) and showing the position in the Y direction on the upper surface (side surface of Y2), and the relationship between the engaging convex portion 137 and the engaging concave portion 176a. A state in which the detection pin 344 is seated at a predetermined position (positions P1 and P2) of the cam surface 175 with the combined operation is shown. In the case of the present embodiment, the cam surface 175 is set to point in the Z1 direction with the intermediate point of the inclined surface 175c as the origin (motor origin M0) on the working unit 16 side.
 この場合、コントローラ514の制御下にモータ100を駆動して、駆動シャフト115を介してプーリ158aを回転させ、該プーリ158aをモータ原点M0に設定することにより、モータ100、駆動シャフト115及びプーリ158a等が原点位相に設定され、先端動作部12が原点姿勢となる。 In this case, the motor 100 is driven under the control of the controller 514, the pulley 158a is rotated via the drive shaft 115, and the pulley 158a is set to the motor origin M0, whereby the motor 100, the drive shaft 115, and the pulley 158a are set. Etc. are set to the origin phase, and the distal end working unit 12 assumes the origin posture.
 先ず、係合凸部137と係合凹部176aが係合されると共に、検出シャフト316が押され、着脱センサ314により、操作部14と作業部16が装着されたことを認識する。このとき、検出ピン344が図28中の位置P1に着座した場合、検出ピン344は低い低面175aに着座するため、作業部原点センサ306の出力信号は変化しない。しかし、着脱センサ314により着座されたこと自体は認識できていることから、プーリ158aが原点に対してマイナス領域に位置することが認識される。そこで、モータ100を駆動してプーリ158aを図28中の正転方向に回転させると、検出ピン344は、コイルばね322の弾性付勢下にその先端球面344aがカム面175上を摺接し、やがて位置P0に到達する。検出ピン344が位置P0に到達したこと、つまりプーリ158aが原点位相に設定されたことは、作業部原点センサ306によって検出される。このように、駆動シャフト115及びプーリ158aを所定の原点位相に設定することで、先端動作部12も所定の原点姿勢に設定することができる。 First, the engaging convex portion 137 and the engaging concave portion 176a are engaged, the detection shaft 316 is pushed, and the attachment / detachment sensor 314 recognizes that the operation portion 14 and the working portion 16 are mounted. At this time, when the detection pin 344 is seated at the position P1 in FIG. 28, the detection pin 344 is seated on the lower surface 175a, so the output signal of the working unit origin sensor 306 does not change. However, since it can be recognized that the detachment sensor 314 is seated, it is recognized that the pulley 158a is located in the minus region with respect to the origin. Therefore, when the motor 100 is driven to rotate the pulley 158a in the forward rotation direction in FIG. 28, the detection pin 344 has its tip spherical surface 344a slidably contacted on the cam surface 175 under the elastic bias of the coil spring 322, Eventually, the position P0 is reached. The working unit origin sensor 306 detects that the detection pin 344 has reached the position P0, that is, the pulley 158a has been set to the origin phase. Thus, by setting the drive shaft 115 and the pulley 158a to a predetermined origin phase, the distal end working unit 12 can also be set to a predetermined origin posture.
 同様に、検出ピン344が図28中の位置P2に着座した場合には、検出シャフト316が押され、着脱センサ314により、操作部14と作業部16が装着されたことを認識する。このとき、検出ピン344は高面175bに着座するため、作業部原点センサ306の出力信号が変化し、プーリ158aが原点に対しプラス領域に位置することが認識される。そこで、モータ100を駆動してプーリ158aを図28中の逆転方向に回転させると、検出ピン344は、コイルばね324の弾性付勢下にその先端球面344aがカム面175上を摺接し、やがて位置P0に到達する。このように、駆動シャフト115及びプーリ158aを所定の原点位相に設定することで、先端動作部12も所定の原点姿勢に設定することができる。 Similarly, when the detection pin 344 is seated at the position P2 in FIG. 28, the detection shaft 316 is pushed, and the attachment / detachment sensor 314 recognizes that the operation unit 14 and the working unit 16 are mounted. At this time, since the detection pin 344 is seated on the high surface 175b, the output signal of the working unit origin sensor 306 changes and it is recognized that the pulley 158a is located in the plus region with respect to the origin. Therefore, when the motor 100 is driven to rotate the pulley 158a in the reverse rotation direction in FIG. 28, the detection pin 344 has its tip spherical surface 344a slidably contacted on the cam surface 175 under the elastic force of the coil spring 324, and eventually. The position P0 is reached. Thus, by setting the drive shaft 115 and the pulley 158a to a predetermined origin phase, the distal end working unit 12 can also be set to a predetermined origin posture.
 このような原点サーチ動作では、作業部原点センサ306、検出ピン344及びカム面175等が、従動軸であるプーリ158aの位相を検出する位相検出手段として機能し、これにより迅速な原点サーチが可能となっている。なお、原点サーチ動作としては、上記のように、作業部原点センサ306(308)によるカム面175の検出(位相検出)に基づく方法以外に、他の方法(構造)で実施することも勿論可能である。 In such an origin search operation, the working part origin sensor 306, the detection pin 344, the cam surface 175, and the like function as phase detection means for detecting the phase of the pulley 158a that is the driven shaft, thereby enabling quick origin search. It has become. As described above, the origin search operation can be performed by other methods (structures) besides the method based on the detection (phase detection) of the cam surface 175 by the working unit origin sensor 306 (308) as described above. It is.
 そこで、次に、原点サーチ動作の変形例について説明する。 Therefore, next, a modified example of the origin search operation will be described.
 図29A~図30Bは、原点サーチ動作の第1変形例を実施するための構造を例示した説明図である。 FIG. 29A to FIG. 30B are explanatory views illustrating a structure for carrying out a first modification of the origin search operation.
 この場合、プーリ158a(158b)の位相(原点)を検出する位相検出手段として、上記の作業部原点センサ306や検出ピン344(346)、カム面175等に代えて、駆動部30側に、上部ブラケット104の底面から突出した作業部原点センサ610を設け(図29A参照)、作業部16側に、係合凹部176a(176b)の略半周を囲繞する環状の壁面からなる検出リング(被検出部材)612を設けている(図29B参照)。検出リング612は、例えば、3箇所のブリッジ614によって係合凹部176a(176b)に連結されており、プーリ158a(158b)と共に回転する。検出リング612は、円弧の端部がプーリ158a(158b)の原点に対応するように配置されており、動作領域の半周分の領域にのみに検出リング612が存在するように設定されている。これにより、検出リング612の有無を検出すれば、コントローラ514は、作業部16が原点に対してプラス領域にあるか、マイナス領域にあるかを認識することができる。これに応じて、プラス領域にある場合は逆転方向に回転させ、マイナス領域にある場合は正転方向に回転させることによって、検出リング612の有無が切り替わる点を原点として検出することができる。 In this case, as phase detection means for detecting the phase (origin) of the pulley 158a (158b), instead of the working unit origin sensor 306, the detection pin 344 (346), the cam surface 175, etc., on the drive unit 30 side, A working part origin sensor 610 projecting from the bottom surface of the upper bracket 104 is provided (see FIG. 29A), and a sensing ring (to be detected) is formed on the working part 16 side, which is formed of an annular wall surface that surrounds a substantially half circumference of the engaging recess 176a (176b). Member) 612 is provided (see FIG. 29B). The detection ring 612 is connected to the engagement recess 176a (176b) by, for example, three bridges 614 and rotates together with the pulley 158a (158b). The detection ring 612 is arranged so that the end of the arc corresponds to the origin of the pulley 158a (158b), and the detection ring 612 is set so that the detection ring 612 exists only in a half-circle region of the operation region. Thus, if the presence or absence of the detection ring 612 is detected, the controller 514 can recognize whether the working unit 16 is in the plus region or the minus region with respect to the origin. Accordingly, by rotating in the reverse direction when in the plus region and rotating in the forward direction when in the minus region, the point at which the detection ring 612 is switched can be detected as the origin.
 具体的には、図30A及び図30Bに示すように、作業部原点センサ610は、作業部原点センサ306等と略同様に側面視で略U字状であり、U字の内側で検出リング612を跨いで検出可能である。そこで、係合凸部137と係合凹部176aとが係合した状態で(図30B参照)、モータ100によってプーリ158aが回転されると、これに伴って検出リング612も回転し、各端部612aが作業部原点センサ610を通過することにより、その出力が切り替わる点として原点を検出することができる。 Specifically, as shown in FIGS. 30A and 30B, the working unit origin sensor 610 is substantially U-shaped in a side view substantially similar to the working unit origin sensor 306 and the like, and a detection ring 612 inside the U-shape. Can be detected. Thus, when the pulley 158a is rotated by the motor 100 in a state where the engagement convex portion 137 and the engagement concave portion 176a are engaged (see FIG. 30B), the detection ring 612 is also rotated accordingly, and each end portion is rotated. The origin can be detected as the point at which the output is switched when 612a passes the working unit origin sensor 610.
 すなわち、コントローラ514は、上述した方法により原点を認識し、係合凸部137及び係合凹部176aをモータ原点M0に戻して停止させる。これにより、駆動シャフト115及びプーリ158aを所定の原点位相に設定し、先端動作部12も所定の原点姿勢に設定することができる。なお、当該機構は正転方向及び逆転方向に対称構造であることから、一方の回転側(正転側又は逆転側)の端部612aのみを検出することにより、原点を演算してモータ100を原点位置へと戻すことができるが、より正確な原点サーチを行うためには、両回転方向での検出を行うことが望ましい。 That is, the controller 514 recognizes the origin by the above-described method, returns the engagement convex portion 137 and the engagement concave portion 176a to the motor origin M0, and stops it. Thereby, the drive shaft 115 and the pulley 158a can be set to a predetermined origin phase, and the distal end working unit 12 can also be set to a predetermined origin posture. Since the mechanism has a symmetric structure in the forward rotation direction and the reverse rotation direction, the origin is calculated by detecting only the end 612a on one rotation side (forward rotation side or reverse rotation side), and the motor 100 is operated. Although it is possible to return to the origin position, it is desirable to perform detection in both rotation directions in order to perform a more accurate origin search.
 このような原点サーチ動作及びその構造によれば、コイルばね322や検出ピン344、支持部材340、カム面175等を省略することができるため部品点数の削減が可能であり、マニピュレータ10の構成を一層簡素化することができる。 According to such an origin search operation and its structure, the coil spring 322, the detection pin 344, the support member 340, the cam surface 175, etc. can be omitted, so that the number of parts can be reduced and the configuration of the manipulator 10 can be reduced. It can be further simplified.
 図31A~図31Dは、原点サーチ動作の第2変形例に係る方法の説明図である。なお、図31A~図31Dでは、係合凹部176a(プーリ158a)の回転範囲を明確にするため、図24A等と略同様に、係合凹部176a側の当接部177a(177b)を外径方向に突出した当接部材として図示すると共に、その回転を規制するストッパ(プーリ動作限)179aを、ハッチングを付与した直線で図示しており、図21の変形例に示す当接部177cとストッパ179bとの当接による回転範囲の規制に類似した構造として図示している。 31A to 31D are explanatory diagrams of a method according to a second modification of the origin search operation. 31A to 31D, in order to clarify the rotation range of the engagement recess 176a (pulley 158a), the contact portion 177a (177b) on the engagement recess 176a side is set to the outer diameter in substantially the same manner as in FIG. 24A and the like. A stopper (pulley operation limit) 179a that restricts the rotation is illustrated as a straight line with hatching, and the contact portion 177c and the stopper shown in the modification of FIG. It is illustrated as a structure similar to the restriction of the rotation range by contact with 179b.
 先ず、図31A中に実線矢印で示すように、係合凸部137と係合凹部176aとが係合した状態で、これを正転方向へと回転させることにより原点サーチ動作が開始される。この際、モータ100(102)について、モータ回転速度は所定の設定速度(速度閾値)より大きく、モータ電流値は所定の電流値(電流閾値)より小さいものとする。 First, as shown by a solid arrow in FIG. 31A, the origin search operation is started by rotating the engaging convex portion 137 and the engaging concave portion 176a in the normal rotation direction in the engaged state. At this time, for the motor 100 (102), the motor rotation speed is greater than a predetermined set speed (speed threshold), and the motor current value is smaller than the predetermined current value (current threshold).
 当該原点サーチ動作が開始されると、係合凸部137及び係合凹部176aはモータ原点M0を通過すると共にさらに正転方向に回転され、正転側動作端となる一方のストッパ179aに当接部177aが当接し(図31B参照)、前記モータ回転速度が速度閾値より小さくなり、モータ電流値が電流閾値より大きくなる。すなわち、コントローラ(検出部)514により、モータ100の電流値と回転速度とを検知しておくことで、先ず、係合凸部137及び係合凹部176aの正転側領域(正領域)での動作限を検出することができ、現在位相も検出することができる。 When the origin search operation is started, the engagement convex portion 137 and the engagement concave portion 176a pass through the motor origin M0 and are further rotated in the forward rotation direction to come into contact with one stopper 179a serving as the forward rotation side operation end. The part 177a comes into contact (see FIG. 31B), the motor rotation speed becomes smaller than the speed threshold value, and the motor current value becomes larger than the current threshold value. That is, by detecting the current value and rotation speed of the motor 100 by the controller (detection unit) 514, first, in the forward rotation side region (normal region) of the engagement convex portion 137 and the engagement concave portion 176a. The operation limit can be detected, and the current phase can also be detected.
 従って、当該機構は対称系であることから、逆転側領域(負領域)についても演算可能であり、モータ100を原点位置へと戻すことができるが、本例では、より正確に且つより確実に原点サーチを行うため、逆転方向での検出を行うものとする。 Therefore, since the mechanism is a symmetric system, it is possible to calculate the reverse side region (negative region), and the motor 100 can be returned to the origin position. However, in this example, more accurately and more reliably. In order to perform the origin search, detection in the reverse direction is performed.
 すなわち、図31C中の矢印に示すように、今度は逆転方向にモータ100を回転させ(この回転時には、前記モータ回転速度が速度閾値より大きく、モータ電流値が電流閾値より小さくなる)、最終的に逆転側動作端となる他方のストッパ179aに当接部177aが当接し(図31C参照)、前記モータ回転速度が速度閾値より小さくなり、モータ電流値が電流閾値より大きくなる。 That is, as indicated by the arrow in FIG. 31C, this time, the motor 100 is rotated in the reverse direction (at the time of this rotation, the motor rotation speed is larger than the speed threshold value and the motor current value is smaller than the current threshold value). Then, the abutting portion 177a abuts against the other stopper 179a serving as the reverse operation end (see FIG. 31C), the motor rotation speed becomes smaller than the speed threshold value, and the motor current value becomes larger than the current threshold value.
 従って、コントローラ514では、モータ100の逆転側領域(負領域)での動作限を検出することができ、検出した正領域での動作限と負領域での動作限との平均値を得ることにより原点サーチが完了する。従って、図31Dに示すように、係合凸部137及び係合凹部176aをモータ原点M0に戻して停止させ、これにより、駆動シャフト115及びプーリ158aが所定の原点位相に設定し、先端動作部12も所定の原点姿勢に設定することができる。 Therefore, the controller 514 can detect the operation limit in the reverse rotation side region (negative region) of the motor 100, and obtain the average value of the detected operation limit in the positive region and the operation limit in the negative region. The origin search is complete. Therefore, as shown in FIG. 31D, the engagement convex portion 137 and the engagement concave portion 176a are returned to the motor origin M0 and stopped, whereby the drive shaft 115 and the pulley 158a are set to a predetermined origin phase, and the tip operation portion 12 can also be set to a predetermined origin posture.
 このような原点サーチ動作及びその構造についても、作業部原点センサ306、検出シャフト310、コイルばね322、検出ピン344及び支持部材340等を省略して部品点数の削減が可能となるため、マニピュレータ10の構成を一層簡素化することができる。 With respect to such an origin search operation and its structure, the manipulator 10 can reduce the number of parts by omitting the working unit origin sensor 306, the detection shaft 310, the coil spring 322, the detection pin 344, the support member 340, and the like. This configuration can be further simplified.
 ところで、当該マニピュレータ10において、係合凸部137、138、600、604と係合凹部176a、176b、602、606とは、その係合時の初期位相に関係なく、迅速に且つ円滑に係合可能に構成されているが、その係合時、互いの初期位相が一致していない限り、一方(係合凹部)が強制的に回転され、プーリ158a(158b)が回転される。この際、プーリ158a(158b)の初期位相がその動作限(回転許容範囲の限界点)近傍にある場合には、係合時、プーリ158a(158b)が動作限を超えて回転される強制力を受ける可能性があり、プーリ158a(158b)及びその回転を規制する当接部177a、177bやストッパ179aに過度の負荷が生じ、破損や誤動作等を惹起する可能性がある。 By the way, in the manipulator 10, the engagement convex portions 137, 138, 600, 604 and the engagement concave portions 176a, 176b, 602, 606 are engaged quickly and smoothly regardless of the initial phase at the time of engagement. Although it is configured to be able to be engaged, one (engagement recess) is forcibly rotated and the pulley 158a (158b) is rotated unless the initial phases coincide with each other. At this time, if the initial phase of the pulley 158a (158b) is in the vicinity of the operation limit (the limit point of the allowable rotation range), the forcing force that causes the pulley 158a (158b) to rotate beyond the operation limit when engaged. And the pulleys 158a (158b) and the abutting portions 177a, 177b and the stopper 179a that restrict the rotation of the pulleys 158a, 158b, and the stopper 179a may be overloaded, causing damage or malfunction.
 そこで、次に、係合凸部と係合凹部との係合時、プーリがその動作限を超えて強制的に回転されることを防止するための動作(安全着脱動作)について説明する。 Therefore, next, an operation (safety detachment operation) for preventing the pulley from forcibly rotating beyond its operation limit when the engagement convex portion and the engagement concave portion are engaged will be described.
 先ず、駆動側の係合凸部137(138、600、604)を適宜駆動制御して実行する安全着脱動作(第1の安全着脱動作)について、図32A~図37を参照し、係合凸部137と係合凹部176aとの係合動作(カップリング動作)を例示しながら説明する。図32A~図37は、操作部14と作業部16を装着する際の駆動側である係合凸部137と従動側である係合凹部176aの係合動作の説明図であり、該係合動作を図24A等と同様に図示したものである。この場合、図32A~図36は、係合凸部137と係合凹部176aの係合位相が60°位相であり、係合凹部176aの動作範囲が240°に規制された状態での係合動作を例示した説明図であり、図37は、係合凹部176aの動作範囲が210°に規制された状態での係合動作を例示した説明図である。 First, regarding a safety attaching / detaching operation (first safety attaching / detaching operation) performed by appropriately driving and controlling the driving-side engaging protrusion 137 (138, 600, 604), referring to FIGS. 32A to 37, the engaging protrusion The engaging operation (coupling operation) between the portion 137 and the engaging recess 176a will be described as an example. FIGS. 32A to 37 are explanatory views of the engaging operation of the engaging convex portion 137 on the driving side and the engaging concave portion 176a on the driven side when the operation portion 14 and the working portion 16 are mounted. The operation is illustrated similarly to FIG. 24A and the like. In this case, in FIGS. 32A to 36, the engagement phase between the engagement convex portion 137 and the engagement concave portion 176a is a 60 ° phase, and the engagement is performed when the operation range of the engagement concave portion 176a is regulated to 240 °. FIG. 37 is an explanatory diagram illustrating the operation in the state where the operation range of the engagement recess 176a is restricted to 210 °.
 図32A及び図33Aに示すように、駆動側の係合凸部137(突出部402)が正転側動作限(正転側のストッパ179a)の位相である位相M1と一致しており、従動側の係合凹部176aが正転側動作限(又はその付近)にある場合には、図32B及び図33Bにそれぞれ示すように、係合凹部176a(プーリ158a)が動作限を超えて回転する強制力を受けることがなく、円滑な係合が可能である。 As shown in FIGS. 32A and 33A, the driving-side engaging convex portion 137 (projecting portion 402) coincides with the phase M1, which is the phase of the forward rotation side operation limit (forward rotation side stopper 179a), and is driven. When the engagement recess 176a on the side is in the forward rotation side operation limit (or its vicinity), as shown in FIGS. 32B and 33B, the engagement recess 176a (pulley 158a) rotates beyond the operation limit. Smooth engagement is possible without receiving a forcing force.
 図34Aに示すように、係合凸部137が正転側動作限から30°(60°位相形状の係合凸部137の半位相分)逆転側の位相M2にあり、係合凹部176aが正転側動作限にある場合にも、図34Bに示すように、係合凹部176a(プーリ158a)が動作限を超えて回転する強制力を受けることがなく、円滑に係合する。 As shown in FIG. 34A, the engaging convex portion 137 is in the phase M2 on the reverse side of 30 ° (the half phase of the engaging convex portion 137 having a 60 ° phase shape) from the forward rotation side operation limit, and the engaging concave portion 176a is Even in the forward rotation side operation limit, as shown in FIG. 34B, the engagement recess 176a (pulley 158a) is smoothly engaged without receiving the forcing force that rotates beyond the operation limit.
 一方、図35Aに示すように、係合凸部137が正転側動作限を超えた位相M3にあり、係合凹部176aが正転側動作限にある場合には、図35Bに示すように、係合凹部176a(プーリ158a)が動作限を超えて回転する強制力を受けることになる。このため、プーリ158aや当接部177a、ストッパ179a等に過度の負荷が生じ、破損や誤動作等を惹起する可能性がある。 On the other hand, as shown in FIG. 35A, when the engaging convex portion 137 is in the phase M3 exceeding the normal rotation side operation limit and the engaging concave portion 176a is in the normal rotation side operation limit as shown in FIG. The engaging recess 176a (pulley 158a) receives a forcing force that rotates beyond the operating limit. For this reason, an excessive load is generated on the pulley 158a, the contact portion 177a, the stopper 179a, and the like, which may cause damage or malfunction.
 従って、図36に正転動作限側として示すように、係合凸部137の位相が位相M1、M2間にある領域Rsは、安全な着脱が可能な安全領域(実線で示す係合凸部137参照)であり、位相M1、M3間にある領域Rdは、安全な着脱ができない可能性がある危険領域(破線で示す係合凸部137参照)であり、これらは、係合凸部137の係合位相(60°)の半位相(30°)からなる間隔で存在している。同様に、図36に逆転動作限側として示すように、係合凸部137の位相が位相M4、M5間にある領域Rsは、安全な着脱が可能な安全領域(実線で示す係合凸部137参照)であり、位相M5、M6間にある領域Rdは、安全な着脱ができない可能性がある危険領域(破線で示す係合凸部137参照)であり、これらは、係合凸部137の係合位相(60°)の半位相(30°)からなる間隔で存在している。 Therefore, as shown in FIG. 36 as the forward rotation operation limit side, the region Rs where the phase of the engagement convex portion 137 is between the phases M1 and M2 is a safe region (engagement convex portion indicated by a solid line) that can be safely attached and detached. 137), and the region Rd between the phases M1 and M3 is a danger region (see the engagement convex portion 137 indicated by a broken line) that may not be safely attached and detached, and these are the engagement convex portions 137. Are present at intervals of half phase (30 °) of the engagement phase (60 °). Similarly, as shown as the reverse operation limit side in FIG. 36, a region Rs in which the phase of the engagement convex portion 137 is between the phases M4 and M5 is a safe region (engagement convex portion indicated by a solid line) that can be safely attached and detached. 137), and the region Rd between the phases M5 and M6 is a danger region (see the engagement convex portion 137 indicated by a broken line) that may not be safely attached and detached, and these are the engagement convex portions 137. Are present at intervals of half phase (30 °) of the engagement phase (60 °).
 ところが、図36から諒解されるように、この場合には、正転動作限側と逆転動作限側の安全領域Rsと危険領域Rdが完全に逆位相になっているため、例えば、係合凸部137が正転動作限側の安全領域Rsに設定された場合であっても、係合凹部176aの位相が逆転動作限側にある場合には、安全な着脱ができない可能性がある。つまり、60°位相形状の係合凸部137に対して、係合凹部176aの動作範囲がその整数倍(4倍)の240°に規定されており、この場合には、安全領域Rsと危険領域Rdとが完全に逆位相になるため、係合凸部137側の位相制御だけでは常に安全な着脱を行うことは困難である。 However, as can be understood from FIG. 36, in this case, the safety region Rs and the dangerous region Rd on the forward operation limit side and the reverse operation limit side are completely in opposite phases. Even when the portion 137 is set to the safety region Rs on the forward rotation limit side, if the phase of the engagement recess 176a is on the reverse rotation limit side, there is a possibility that safe attachment / detachment cannot be performed. That is, with respect to the engaging convex portion 137 having a 60 ° phase shape, the operating range of the engaging concave portion 176a is defined to be 240 ° that is an integral multiple (four times) thereof. Since the region Rd has a completely opposite phase, it is difficult to always perform safe attachment / detachment only by the phase control on the engagement convex portion 137 side.
 一方、図37に示すように、係合凸部137の係合位相が60°のままで、係合凹部176aの動作範囲を210°に設定した場合には、正転動作限側と逆転動作限側の安全領域Rsと危険領域Rdが完全に同位相となる。そうすると、係合凸部137が正転動作限側の安全領域Rsに設定された場合には、係合凹部176aの位相が正転動作限側及び逆転動作限側のどちらにあっても安全な着脱が可能となり、その逆も同様に成立する。つまり、60°位相の係合凸部137に対して、係合凹部176aの動作範囲がその整数倍(3倍)の180°に、その半位相分(30°)を加算した角度に規定されており、この場合には、安全領域Rsと危険領域Rdとが完全に同位相になるため、係合凸部137を位相制御して安全領域Rsに設定することで、常に安全な着脱を行うことは可能である。 On the other hand, as shown in FIG. 37, when the engagement phase of the engagement convex portion 137 remains 60 ° and the operation range of the engagement concave portion 176a is set to 210 °, the forward operation limit side and the reverse operation The limited-side safety region Rs and the dangerous region Rd are completely in phase. Then, when the engagement convex portion 137 is set to the safety region Rs on the forward operation limit side, it is safe whether the phase of the engagement recess 176a is on either the forward operation limit side or the reverse operation limit side. Detachment is possible, and vice versa. That is, with respect to the engaging convex portion 137 having a 60 ° phase, the operating range of the engaging concave portion 176a is defined as an angle obtained by adding the half phase (30 °) to 180 ° which is an integral multiple (three times) thereof. In this case, the safety region Rs and the dangerous region Rd are completely in phase, so that the engaging projection 137 is phase-controlled and set to the safety region Rs, so that safe attachment and detachment is always performed. It is possible.
 以上より、駆動側の係合凸部137を駆動制御して実行する当該第1の安全着脱動作では、係合凸部137と係合凹部176aの係合位相形状と、係合凹部176aの動作範囲との関係において、正転動作限側及び逆転動作限側の安全領域Rsが一致又は略一致しており、且つ、係合時に係合凸部137が安全領域Rsに設定されることにより、常に安全な着脱を行うことができる。 As described above, in the first safety attaching / detaching operation executed by controlling the driving-side engaging convex portion 137, the engaging phase shape of the engaging convex portion 137 and the engaging concave portion 176a, and the operation of the engaging concave portion 176a. In relation to the range, the safety region Rs on the forward rotation operation limit side and the reverse rotation operation limit side match or substantially match, and the engagement convex portion 137 is set to the safety region Rs when engaged, Safe attachment and detachment can always be performed.
 換言すれば、係合位相がm°位相の場合に、係合凹部176aの動作範囲を{m・n}°(nは自然数)とした場合、例えば、係合位相が60°位相の場合に、係合凹部176aの動作範囲が120°、180°、240°、300°等の場合には、正転動作限側と逆転動作限側の安全領域Rsと危険領域Rdが逆位相になり、係合凸部137を正転側及び逆転側の両側で常に安全領域Rsに設定することができず、安全に着脱できない可能性がある。 In other words, when the engagement phase is m ° phase and the operation range of the engagement recess 176a is {m · n} ° (n is a natural number), for example, when the engagement phase is 60 ° phase When the operating range of the engaging recess 176a is 120 °, 180 °, 240 °, 300 °, etc., the safety region Rs and the dangerous region Rd on the forward rotation operation limit side and the reverse rotation operation limit side are in opposite phases, There is a possibility that the engaging convex portion 137 cannot always be set in the safety region Rs on both the forward rotation side and the reverse rotation side, and cannot be safely detached.
 一方、係合位相がm°位相の場合に、係合凹部176aの動作範囲を{m・n+m/2}°(nは自然数)とした場合、例えば、係合位相が60°位相の場合に、係合凹部176aの動作範囲が90°、150°、210°、270°、330°等の場合には、正転動作限側と逆転動作限側の安全領域Rsと危険領域Rdが同位相になり、係合凸部137を正転側及び逆転側の両側で常に安全領域Rsに設定することができ、常に安全に着脱することができる。 On the other hand, when the engagement phase is m ° phase and the operation range of the engagement recess 176a is {m · n + m / 2} ° (n is a natural number), for example, when the engagement phase is 60 ° phase When the operating range of the engaging recess 176a is 90 °, 150 °, 210 °, 270 °, 330 °, etc., the safety region Rs and the danger region Rd on the forward rotation limit side and the reverse rotation limit side are in phase. Thus, the engaging convex portion 137 can always be set in the safety region Rs on both the forward rotation side and the reverse rotation side, and can always be safely attached and detached.
 この第1の安全着脱動作は、コントローラ514の制御下に、例えば、作業部16が操作部14から取り外されたとき、操作部14にコントローラ514を接続したとき、及び、マスタスイッチ34がオフ操作されたときのうち、少なくともいずれかのタイミングでモータ100(102)を駆動制御して、係合凸部137を前記安全領域Rsに設定するとよく、他の係合凸部138等でも略同様である。この際、モータ100(102)の位相制御は、モータ位相センサ331(332)による検出片333(334)の突出片333a(334a)の検出によって実施すればよい。すなわち、突出片333aが係合凸部137の係合位相に対応した位相形状(60°位相)に配置されていることにより、該突出片333aがモータ位相センサ331を通過して出力が切り替わる点として、モータ100の位相をコントローラ514により検出することができる。従って、突出片333aの位相形状は、係合凸部137の位相形状に対応して適宜変更可能である。 This first safe attachment / detachment operation is performed under the control of the controller 514, for example, when the work unit 16 is detached from the operation unit 14, when the controller 514 is connected to the operation unit 14, and when the master switch 34 is turned off. At this time, the motor 100 (102) may be driven and controlled at at least one timing to set the engaging convex portion 137 to the safety region Rs, and the other engaging convex portions 138 and the like are substantially the same. is there. At this time, the phase control of the motor 100 (102) may be performed by detecting the protruding piece 333a (334a) of the detection piece 333 (334) by the motor phase sensor 331 (332). That is, when the protruding piece 333a is arranged in a phase shape (60 ° phase) corresponding to the engaging phase of the engaging convex portion 137, the protruding piece 333a passes through the motor phase sensor 331 and the output is switched. The phase of the motor 100 can be detected by the controller 514. Therefore, the phase shape of the protruding piece 333a can be changed as appropriate in accordance with the phase shape of the engaging convex portion 137.
 なお、図34Bから諒解されるように、係合凹部176aが正転側動作限及び逆転側動作限からそれぞれ係合位相の半位相分離間した位置にある場合、すなわち、従動側の係合凹部176aが正転側動作限から半位相分逆転側の位相(位相M2)と、逆転側動作限から半位相分正転側の位相(位相M2´)との間(M2・M2´間)にある場合には、駆動側の係合凸部137の位相に係わらず安全に着脱することが可能である。係合凹部176aが半位相分強制的に回転されたとしても、その動作限であるストッパ179aを超えることがないからである。 As can be seen from FIG. 34B, when the engagement recess 176a is located at a position between the forward rotation side operation limit and the reverse rotation side operation limit at a half phase separation of the engagement phase, that is, the driven side engagement recess. 176a is between the phase on the reverse rotation side from the normal rotation side operation limit (phase M2) and the phase on the normal rotation side from the reverse rotation side operation limit (phase M2 ') (between M2 and M2'). In some cases, it can be safely attached and detached regardless of the phase of the engaging convex portion 137 on the drive side. This is because even if the engaging recess 176a is forcibly rotated by a half phase, it does not exceed the stopper 179a which is the operation limit.
 そこで、次に、従動側の係合凹部176a(176b、602、606)を安全領域である位相M2・M2´間に設定する安全着脱動作(第2の安全着脱動作)について、図38A~図38Cを参照して説明する。図38A~図38Cは、係合凸部137及び係合凹部176aを図31A等と同様に図示したものである。 Therefore, next, a safe attachment / detachment operation (second safety attachment / detachment operation) in which the driven-side engagement recess 176a (176b, 602, 606) is set between the phases M2 and M2 ′ as the safety region is shown in FIGS. This will be described with reference to 38C. 38A to 38C show the engaging convex portion 137 and the engaging concave portion 176a in the same manner as in FIG. 31A and the like.
 図38Aに示すように、この第2の安全着脱動作では、従動側である係合凹部176a(プーリ158a)の正転及び逆転の動作範囲を規定するストッパ179aの内側に緩衝部材としてゴム部材(弾性部材)620を配置している。ゴム部材620は、モータ100の回転トルクによる当接部177aとの当接によって所定量変形(収縮)可能な材質からなる。 As shown in FIG. 38A, in the second safe attaching / detaching operation, a rubber member (as a buffer member) is provided inside the stopper 179a that defines the forward and reverse operating range of the engaging recess 176a (pulley 158a) on the driven side. Elastic member) 620 is arranged. The rubber member 620 is made of a material that can be deformed (contracted) by a predetermined amount by contact with the contact portion 177a by the rotational torque of the motor 100.
 この場合、ゴム部材620は、モータ100によって回転された当接部177aに押圧されることで、動作範囲の動作限まで変形する(図38B参照)。すなわち、モータ100は、そのモータ定格トルクに対して支障のある負荷を受けることなく係合凹部176a(プーリ158a)を図38Aに示す動作範囲の動作限まで当接部177aによってゴム部材620を潰しつつ回転させることができる(図38B参照)。 In this case, the rubber member 620 is deformed to the operation limit of the operation range by being pressed by the contact portion 177a rotated by the motor 100 (see FIG. 38B). That is, the motor 100 crushes the rubber member 620 with the contact portion 177a until the operation limit of the operation range shown in FIG. 38A is reached without receiving a load that hinders the motor rated torque. (See FIG. 38B).
 一方、図38Bに示すように、当接部177aがゴム部材620を圧縮して動作限付近に回転された状態で、係合凹部176aから係合凸部137が取り外された場合には、係合凹部176aがフリーな状態になる。従って、図38Cに示すように、弾性部材620の反発(復元)作用により、係合凹部176a(プーリ158a)は安全領域まで戻されることになる。つまり、ゴム部材620は、従動側の係合凹部176aを常に安全領域内へと誘導する安全領域誘導手段として機能するものであり、ゴム以外にも、例えば、コイルばねやウレタン樹脂等の緩衝部材を適用することができる。 On the other hand, as shown in FIG. 38B, when the engagement protrusion 137 is removed from the engagement recess 176a in a state where the contact portion 177a compresses the rubber member 620 and is rotated near the operation limit, The joint recess 176a is free. Therefore, as shown in FIG. 38C, the engagement recess 176a (pulley 158a) is returned to the safe region by the repulsion (restoration) action of the elastic member 620. That is, the rubber member 620 functions as a safety region guiding means that always guides the driven-side engaging recess 176a into the safety region. Besides the rubber, for example, a buffer member such as a coil spring or urethane resin is used. Can be applied.
 以上より、当該第2の安全着脱動作では、操作部14と作業部16との取り外し時において、駆動側の係合凸部137の位相に係わらず、従動側の係合凹部176aの位相が、上記した正転側動作限から半位相分逆転側の位相と、逆転側動作限から半位相分正転側の位相との間(図34Bでは位相M2・M2´間)である安全領域に必ず設定されるため、常に安全な着脱を行うことができる。 As described above, in the second safety attaching / detaching operation, when the operation unit 14 and the working unit 16 are detached, the phase of the driven side engaging concave portion 176a is independent of the phase of the driving side engaging convex portion 137. The safety region between the forward rotation side operation limit and the half-phase reverse rotation side and the reverse rotation side operation limit by the half-phase forward rotation side (between phases M2 and M2 'in FIG. 34B) must be present. Since it is set, safe attachment and detachment can always be performed.
 図39A~図39Cは、上記した第2の安全着脱動作の変形例を示す説明図である。 FIG. 39A to FIG. 39C are explanatory views showing a modified example of the second safety attaching / detaching operation described above.
 図39Aに示すように、この変形例では、上記した緩衝部材であるゴム部材620に代えて、操作部14と作業部16の取り外し時に、又は取り外し可能な状態のときにストッパ179aから突出して、動作範囲の動作限付近にある係合凹部176aを安全領域内へと誘導する進退部材622を設けている。従って、この場合にも、駆動側の係合凸部137の位相に係わらず、従動側の係合凹部176aの位相が、上記した正転側動作限から半位相分逆転側の位相と、逆転側動作限から半位相分正転側の位相との間(図34Bでは位相M2・M2´間)である安全領域に必ず設定され、常に安全な着脱を行うことができる。 As shown in FIG. 39A, in this modified example, instead of the rubber member 620 which is the buffer member described above, the operation unit 14 and the working unit 16 protrude from the stopper 179a when being removed or in a removable state. An advancing / retracting member 622 is provided for guiding the engaging recess 176a in the vicinity of the operating limit of the operating range into the safety region. Accordingly, in this case as well, regardless of the phase of the engagement convex portion 137 on the driving side, the phase of the engagement concave portion 176a on the driven side is reversed from the phase on the reverse side by the half phase from the normal rotation side operation limit. It is always set in a safety region between the side operation limit and the half-phase forward rotation phase (between phases M2 and M2 ′ in FIG. 34B), and safe attachment / detachment can always be performed.
 図40A~図41Bは、操作部14と作業部16の装着時に係合凹部176a(プーリ158a)を安全領域に誘導する安全領域誘導手段を駆動部30側に設けた安全着脱動作(第3の安全着脱動作)の説明図である。 40A to 41B show a safety attaching / detaching operation in which a safety region guiding means for guiding the engaging recess 176a (pulley 158a) to the safety region when the operation unit 14 and the working unit 16 are mounted is provided on the drive unit 30 side (third It is explanatory drawing of safe attachment / detachment operation | movement.
 図40Aに示すように、この第3の安全着脱動作では、操作部14と作業部16との装着時、係合凸部137と係合凹部176aとの係合に先立ってストッパ179aの内側に進動する楔状の移動部材624が、駆動部30から下方に突出している。 As shown in FIG. 40A, in the third safety attaching / detaching operation, when the operating portion 14 and the working portion 16 are mounted, the engaging convex portion 137 and the engaging concave portion 176a are moved to the inside of the stopper 179a prior to the engagement. A moving wedge-shaped moving member 624 protrudes downward from the drive unit 30.
 従って、図40A及び図41Aに示すように、操作部14と作業部16との装着時に係合凹部176aが安全領域外の動作限付近に位置している場合であっても、係合凸部137と係合凹部176aとが係合するより前に移動部材624がストッパ179aと当接部177aとの間に進動し、図40B及び図41Bに示すように、係合凹部176aを安全領域へと誘導する。このため、駆動側の係合凸部137の位相に係わらず、従動側の係合凹部176aの位相が、上記した正転側動作限から半位相分逆転側の位相と、逆転側動作限から半位相分正転側の位相との間(図34Bでは位相M2・M2´間)の安全領域に必ず設定され、常に安全な着脱を行うことができる。 Therefore, as shown in FIGS. 40A and 41A, even when the engaging recess 176a is located near the operation limit outside the safety region when the operating portion 14 and the working portion 16 are mounted, the engaging protrusion Before the 137 and the engagement recess 176a engage with each other, the moving member 624 moves between the stopper 179a and the contact portion 177a, and as shown in FIGS. 40B and 41B, the engagement recess 176a is moved to the safety region. Guide to. Therefore, regardless of the phase of the driving-side engaging convex portion 137, the phase of the driven-side engaging concave portion 176a is from the above-described forward rotation side operation limit to the half-phase reverse rotation side phase and the reverse rotation side operation limit. It is always set in a safe region between the half phase and the phase on the forward rotation side (between phases M2 and M2 'in FIG. 34B), and safe attachment and detachment can always be performed.
 なお、上記した第1~第3の安全着脱動作は、少なくともいずれか1つを実行すると、係合凸部と係合凹部との円滑な係合動作を行うことができるため好ましいが、先端動作部12の種類や当該マニピュレータ10の用途等によっては省略することもでき、この場合には、モータ位相センサ331等の安全着脱動作に係る各要素を省略し、当該マニピュレータ10の構成の簡素化を図ることも可能である。 Note that it is preferable to perform at least one of the first to third safety attaching / detaching operations because a smooth engaging operation between the engaging convex portion and the engaging concave portion can be performed. Depending on the type of the part 12 and the use of the manipulator 10, etc., in this case, the elements related to the safe attaching / detaching operation such as the motor phase sensor 331 are omitted, and the configuration of the manipulator 10 is simplified. It is also possible to plan.
 次に、基本的には以上のように構成されるマニピュレータ10における起動動作(使用準備動作)及び該起動動作に関連した操作部14及び作業部16の装着動作について、図42のフローチャートを参照して説明する。以下、係合凸部137(138)及び係合凹部176a(176b)を用いた構成を例示して説明するが、上記した係合凸部600等についても略同様に制御及び動作可能である。 Next, with reference to the flowchart of FIG. 42, regarding the starting operation (use preparation operation) in the manipulator 10 basically configured as described above and the mounting operation of the operation unit 14 and the working unit 16 related to the starting operation. I will explain. Hereinafter, the configuration using the engaging convex portion 137 (138) and the engaging concave portion 176a (176b) will be described as an example, but the above-described engaging convex portion 600 and the like can be controlled and operated in substantially the same manner.
 図42のステップS1において、マニピュレータ10を含むシステムを起動するために、先ず、操作者はコントローラ514の電源スイッチ516(図1参照)をオンし、コントローラ514及び周辺システム等を起動する(ステップS2)。 In step S1 of FIG. 42, in order to start the system including the manipulator 10, first, the operator turns on the power switch 516 (see FIG. 1) of the controller 514 to start the controller 514 and the peripheral system (step S2). ).
 次に、ステップS3において、操作部14をコントローラ514に対して装着する。例えば、操作部14のグリップハンドル26下端から延びたケーブル61先端のコネクタ520をコントローラ514の第1ポート515aに接続する(図1参照)。なお、このタイミングで、コントローラ514の制御下に、上記した第1の安全着脱動作によるモータ100、102の位相制御を実行することもできる(図37等参照)。 Next, in step S3, the operation unit 14 is attached to the controller 514. For example, the connector 520 at the tip of the cable 61 extending from the lower end of the grip handle 26 of the operation unit 14 is connected to the first port 515a of the controller 514 (see FIG. 1). At this timing, the phase control of the motors 100 and 102 by the first safety attaching / detaching operation described above can also be executed under the control of the controller 514 (see FIG. 37 and the like).
 ステップS4では、コントローラ514に接続された操作部14に対し、所定の先端動作部12を備えた作業部16を装着する。この装着動作は、上記したように、操作部14から突出している2本のガイドピン163、163がそれぞれ作業部16のピン穴161、161に嵌合するように、且つ、操作部14の位置決め凹部406が作業部16の位置決め凸部408に係合するように位置合わせを行いつつ、操作部14と作業部16とを互いに押圧して密着させる(図6、図20A及び図20B参照)。これにより、着脱レバー400の爪部400cが係止部401aに係合し(図1~図3参照)、操作部14と作業部16との装着が完了すると同時に、係合凸部137(138)と係合凹部176a(176b)の係合も完了する。操作部14と作業部16との装着が完了したことは、検出シャフト316が止板179に着座したことが着脱センサ314に検出されることにより(図7、図23A及び図23B参照)、コントローラ514に認識される。同様に、係合凸部137(138)と係合凹部176a(176b)の係合時の位相についても、検出ピン344(346)のカム面175への着座位置が作業部原点センサ306(308)によって検出されることにより(図28参照)、コントローラ514に認識される。ここで、上記した第3の安全着脱動作を実行する構造を適用している場合には、該安全着脱動作が行われる。 In step S4, the working unit 16 including the predetermined tip operating unit 12 is attached to the operation unit 14 connected to the controller 514. As described above, the mounting operation is performed so that the two guide pins 163 and 163 protruding from the operation unit 14 are fitted in the pin holes 161 and 161 of the working unit 16 and the operation unit 14 is positioned. While positioning so that the concave portion 406 engages with the positioning convex portion 408 of the working portion 16, the operation portion 14 and the working portion 16 are pressed and brought into close contact with each other (see FIGS. 6, 20A, and 20B). As a result, the claw portion 400c of the detachable lever 400 engages with the locking portion 401a (see FIGS. 1 to 3), and at the same time the mounting of the operation portion 14 and the working portion 16 is completed, the engaging convex portion 137 (138) ) And the engagement recess 176a (176b) are also completed. The completion of the mounting of the operation unit 14 and the working unit 16 is based on the fact that the attachment / detachment sensor 314 detects that the detection shaft 316 is seated on the stop plate 179 (see FIGS. 7, 23A and 23B). 514. Similarly, regarding the phase when the engaging convex portion 137 (138) and the engaging concave portion 176a (176b) are engaged, the seating position of the detection pin 344 (346) on the cam surface 175 is the working portion origin sensor 306 (308). ) (See FIG. 28), it is recognized by the controller 514. Here, when the structure for executing the third safety attaching / detaching operation is applied, the safety attaching / detaching operation is performed.
 そこで、ステップS5において、コントローラ514は、ステップS4での着脱センサ314の検出をトリガとして、又は他の図示しないスイッチ入力等に基づき、カメラ224及びLED224aを駆動制御してバーコード222を撮像し(図19参照)、バーコード222から作業部16の個体情報として、仕様(先端動作部12の種類)、使用回数及び使用量制限(上限)等を取得する。また、コントローラ514では、作業部16の個体情報を取得し、該個体情報に応じて作業部16の種類に応じてモータ100、102等を適切に制御することができる。 Therefore, in step S5, the controller 514 captures an image of the barcode 222 by controlling the driving of the camera 224 and the LED 224a based on the detection of the attachment / detachment sensor 314 in step S4 or based on other switch input (not shown) ( As shown in FIG. 19, the specification (the type of the distal end working unit 12), the number of times of use, the usage limit (upper limit), and the like are acquired from the barcode 222 as the individual information of the working unit 16. Further, the controller 514 can acquire individual information of the working unit 16 and appropriately control the motors 100 and 102 and the like according to the type of the working unit 16 according to the individual information.
 ステップS6では、操作部14と作業部16とが装着されたマニピュレータ10のマスタスイッチ34(図1参照)をオンすることにより、ステップS7において、コントローラ514の制御下に、又は操作部14に内蔵される図示しない制御部の制御下に、上記した原点サーチ動作が実施される。これにより、駆動シャフト115(116)及びプーリ158a(158b)が所定の原点位相に設定され、先端動作部12も所定の原点姿勢に設定されて、マニピュレータ10の使用準備が完了する(ステップS8)。このように、原点サーチ動作が実行されることにより、原点位置の検出を容易に行うことができると共に、操作部14と作業部16の装着後の動作開始を一層円滑に実行することができる。 In step S6, by turning on the master switch 34 (see FIG. 1) of the manipulator 10 to which the operation unit 14 and the work unit 16 are mounted, in step S7, it is built under the control of the controller 514 or in the operation unit 14. The above-described origin search operation is performed under the control of a control unit (not shown). As a result, the drive shaft 115 (116) and the pulley 158a (158b) are set to a predetermined origin phase, the tip operating unit 12 is also set to a predetermined origin posture, and preparation for use of the manipulator 10 is completed (step S8). . As described above, by performing the origin search operation, the origin position can be easily detected, and the operation start after the operation unit 14 and the working unit 16 are mounted can be more smoothly performed.
 上記ステップS7による原点サーチ動作中には、マスタスイッチ34と並設されたLED29(図1参照)を、例えば緑色で点滅させるように制御する。そうすると、操作者は原点サーチ動作が実施されていることを容易に認識することができる。また、ステップS8により使用準備が完了した後は、LED29を、例えば緑色で点灯させるように制御することにより、マニピュレータ10が正常に起動されて所定の使用可能状態にあることを操作者に明示することができる。なお、LED29は、上記ステップS1~S6までは消灯されているが、その処理状態に応じた点灯や点滅等をするように制御してもよいことは勿論である。 During the origin search operation in step S7, the LED 29 (see FIG. 1) arranged in parallel with the master switch 34 is controlled to blink in green, for example. Then, the operator can easily recognize that the origin search operation is being performed. Further, after the preparation for use is completed in step S8, the LED 29 is controlled so as to be lit in green, for example, to clearly indicate to the operator that the manipulator 10 is normally activated and is in a predetermined usable state. be able to. The LED 29 is not lit until the above steps S1 to S6. Of course, the LED 29 may be controlled to be turned on or blinking according to the processing state.
 ステップS8により使用準備が完了された後、つまりマニピュレータ10が使用可能状態となった後、操作者は、グリップハンドル26を把持すると共に、複合入力部24及びトリガレバー36を操作して、マニピュレータ10を所定の手技に対応して動作させることができる。 After the preparation for use is completed in step S8, that is, after the manipulator 10 is ready for use, the operator holds the grip handle 26 and operates the composite input unit 24 and the trigger lever 36 to operate the manipulator 10. Can be operated in accordance with a predetermined procedure.
 この状態で、例えば手技の一時中断等により、マスタスイッチ34がオフされた場合には(ステップS9)、LED29が消灯されてマニピュレータ10の使用可能状態が停止される。なお、このタイミングで、コントローラ514の制御下に、上記した第1の安全着脱動作によるモータ100、102の位相制御を実行することもできる(図37等参照)。 In this state, when the master switch 34 is turned off, for example, due to a temporary interruption of the procedure (step S9), the LED 29 is turned off and the usable state of the manipulator 10 is stopped. At this timing, the phase control of the motors 100 and 102 by the first safety attaching / detaching operation can also be executed under the control of the controller 514 (see FIG. 37 and the like).
 その後、作業部16を取り外す等することなく、続けて手技を行う場合には、再びマスタスイッチ34をオンすることにより(ステップS10)、ステップS8へと戻り、マニピュレータ10は再び使用可能状態となり、操作者は所定の手技を開始し又は継続することができる。この際、ステップS9からステップS10までの間、つまりマスタスイッチ34がオフされた後、オンされるまでの間に、作業部16の操作部14からの取り外し等が行われない限りは、ステップS7で設定されたモータ100、102や先端動作部12の原点位置がずれることはなく、ステップS10の後は迅速にステップS8に移行することができる。 After that, when performing the procedure without removing the working unit 16 or the like, by turning on the master switch 34 again (step S10), the process returns to step S8, and the manipulator 10 becomes usable again. An operator can initiate or continue a predetermined procedure. At this time, unless the detachment of the working unit 16 from the operation unit 14 or the like is performed from step S9 to step S10, that is, after the master switch 34 is turned off, the step S7 is performed. The origin positions of the motors 100 and 102 and the distal end working unit 12 set in step S5 are not shifted, and after step S10, the process can quickly move to step S8.
 一方、ステップS8の後、例えば他の手技に対応して作業部16を変更するために、作業部16と操作部14とを取り外した場合には(ステップS11及びステップS12)、それぞれステップS4及びステップS3へと戻り、その後は上記した制御フローが実施される。なお、このタイミングで、コントローラ514の制御下に、上記した第1の安全着脱動作によるモータ100、102の位相制御を実行することもできる(図37等参照)。一方、第2及びその変形例に係る安全着脱動作を実行する構造を適用している場合には、該安全着脱動作が行われる。 On the other hand, after step S8, for example, when the work unit 16 and the operation unit 14 are removed in order to change the work unit 16 in response to another procedure (step S11 and step S12), step S4 and step S4, respectively. Returning to step S3, the control flow described above is performed thereafter. At this timing, the phase control of the motors 100 and 102 by the first safety attaching / detaching operation described above can also be executed under the control of the controller 514 (see FIG. 37 and the like). On the other hand, when the structure for executing the safety attachment / detachment operation according to the second and the modified examples is applied, the safety attachment / detachment operation is performed.
 ところで、上記ステップS5に示すバーコード222の読取動作では、例えば、図42中にE1~E3で示すようなエラーを生じることがある。マニピュレータ10で発生するエラーは、次のエラーE1~E3及びエラーE4以外の状態に係るものも当然発生する可能性があるが、以下ではエラーE1~E4を例示して説明する。 By the way, in the reading operation of the barcode 222 shown in step S5, for example, errors as indicated by E1 to E3 in FIG. 42 may occur. Although errors that occur in the manipulator 10 may naturally occur in relation to states other than the following errors E1 to E3 and error E4, errors E1 to E4 will be described below as examples.
 エラーE1(バーコード読取異常)は、ステップS5におけるバーコード222の読取動作によって、バーコード222の読取異常が生じた場合、例えばカメラ224でバーコード222を正確に撮像できない場合やバーコード222がコントローラ514の制御対象の作業部16等以外のものの場合等である。この場合には、ステップS13において、LED29を、例えば赤色で点滅させるように制御する作業部取り外し要請が実施される。該作業部取り外し要請は、LED29の表示以外にも、コントローラ514の表示部(ディスプレイ)517(図1参照)にエラーE1の表示を行い、また図示しないスピーカ等により警告音等を発生するようにしてもよい。この作業部取り外し要請に応じて、操作者が作業部16を操作部14から取り外した場合には、LED29による前記赤色の点滅が消灯され、上記ステップS4に戻る。そこで、操作者は作業部16の再確認やバーコード222の汚れ等の確認等を行うことになる。 Error E1 (abnormal barcode reading) occurs when the barcode 222 reading abnormality occurs in step S5, for example, when the barcode 222 cannot be accurately captured by the camera 224 or when the barcode 222 is This is the case other than the work unit 16 or the like to be controlled by the controller 514. In this case, in step S13, a work unit removal request for controlling the LED 29 to blink in red, for example, is performed. In addition to the LED 29 display, the work unit removal request displays an error E1 on the display unit (display) 517 (see FIG. 1) of the controller 514 and generates a warning sound or the like through a speaker (not shown). May be. When the operator removes the work unit 16 from the operation unit 14 in response to the work unit removal request, the red flashing by the LED 29 is turned off, and the process returns to step S4. Therefore, the operator reconfirms the working unit 16 and confirms the stain of the barcode 222 and the like.
 エラーE2(使用量制限オーバー)は、ステップS5におけるバーコード222の読取動作によって、装着された作業部16が使用回数制限オーバーとなっている場合である。これは、例えば所定の作業部16の使用量制限が10回であるところ、既に10回の使用がなされているにもかかわらず当該作業部16が装着された場合や、累積使用時間制限が300時間であるところ、既に300時間を越える使用がなされているにもかかわらず当該作業部16が装着された場合や、又はマニピュレータ先端部の屈曲動作や回転動作が累積使用角度制限を越えて使用された場合等に報知されるエラーである。この場合には、上記エラーE1の場合と略同様に、ステップS13において、LED29を、例えば赤色で点滅させるように制御する作業部取り外し要請が実施される。勿論、この場合の作業部取り外し要請についても、コントローラ514の表示部517にエラーE2の表示を行い、また前記警告音等を発生するようにしてもよい。この作業部取り外し要請に応じて、操作者が作業部16を操作部14から取り外した場合には、LED29による前記赤色の点滅が消灯され、上記ステップS4に戻る。そこで、操作者は作業部16を新たな作業部16に交換する等の作業を行うことになる。 Error E2 (use amount limit over) is a case where the attached work unit 16 has exceeded the use frequency limit due to the reading operation of the barcode 222 in step S5. This is because, for example, when the usage amount limit of the predetermined working unit 16 is 10 times, the working unit 16 is mounted even though the usage amount is already 10 times, or the cumulative usage time limit is 300. In terms of time, when the working unit 16 is mounted even though it has already been used for more than 300 hours, or the bending or rotating operation of the manipulator tip is used beyond the cumulative use angle limit. This is an error that is notified in the event of a failure. In this case, in substantially the same manner as in the case of the error E1, a work unit removal request for controlling the LED 29 to blink in red, for example, is performed in step S13. Of course, regarding the work unit removal request in this case, an error E2 may be displayed on the display unit 517 of the controller 514, and the warning sound or the like may be generated. When the operator removes the work unit 16 from the operation unit 14 in response to the work unit removal request, the red flashing by the LED 29 is turned off, and the process returns to step S4. Therefore, the operator performs work such as replacing the work unit 16 with a new work unit 16.
 エラーE3(撮影モジュール系異常)は、ステップS5におけるバーコード222の読取動作において、カメラ224が正常に機能しなかった場合等である。この場合には、ステップS14において、LED29を、例えば赤色で点滅させるように制御する操作部取り外し要請が実施される。この場合にも、コントローラ514の表示部517にエラーE3の表示を行い、また前記警告音等を発生するようにしてもよい。この操作部取り外し要請に応じて、操作者が操作部14を作業部16から取り外した場合には、LED29による前記赤色の点滅が消灯され、上記ステップS3に戻る。そこで、操作者は操作部14の確認や交換等の作業を行うことになる。 Error E3 (imaging module system abnormality) is a case where the camera 224 does not function normally in the reading operation of the barcode 222 in step S5. In this case, in step S14, an operation unit removal request for controlling the LED 29 to blink in red, for example, is performed. Also in this case, the error E3 may be displayed on the display unit 517 of the controller 514, and the warning sound or the like may be generated. When the operator removes the operation unit 14 from the work unit 16 in response to the operation unit removal request, the red blinking by the LED 29 is turned off, and the process returns to step S3. Therefore, the operator performs operations such as confirmation and replacement of the operation unit 14.
 同様に、上記ステップS7に示す原点サーチ動作では、例えば、図42中にE4で示すようなエラーを生じることがある。エラーE4(操作部系異常)は、ステップS7における原点サーチ動作中に異常が生じた場合、例えばコントローラ514によりモータ100、102の異常が検知された場合や原点サーチが所定時間内に完了しない場合等である。この場合には、上記エラーE3の場合と略同様に、ステップS14において、LED29を、例えば赤色で点滅させるように制御する操作部取り外し要請が実施される。この場合にも、コントローラ514の表示部517にエラーE3の表示を行い、また前記警告音等を発生するようにしてもよい。この操作部取り外し要請に応じて、操作者が操作部14を作業部16から取り外した場合には、LED29による前記赤色の点滅が消灯され、上記ステップS3に戻る。そこで、操作者は操作部14の確認や交換等の作業を行うことになる。 Similarly, in the origin search operation shown in step S7, for example, an error shown by E4 in FIG. 42 may occur. Error E4 (operation system abnormality) occurs when an abnormality occurs during the origin search operation in step S7, for example, when an abnormality of the motors 100 and 102 is detected by the controller 514, or when the origin search is not completed within a predetermined time. Etc. In this case, in the same manner as in the case of the error E3, in step S14, an operation unit removal request for controlling the LED 29 to blink in red, for example, is performed. Also in this case, the error E3 may be displayed on the display unit 517 of the controller 514, and the warning sound or the like may be generated. When the operator removes the operation unit 14 from the work unit 16 in response to the operation unit removal request, the red blinking by the LED 29 is turned off, and the process returns to step S3. Therefore, the operator performs operations such as confirmation and replacement of the operation unit 14.
 なお、各ステップS1~S14を含む各状態において、例えば、コントローラ514の電源スイッチ516や図示しない別の主電源スイッチ等がオフされた場合や、コントローラ514に接続された図示しない電源プラグ等からの電源コードが抜ける等した場合、さらにはコントローラ514で各種の故障や異常等が発生した場合には、マニピュレータ10では所定の終了処理(LED29は、例えば赤色の点滅に制御される)の後、操作終了となる。 In each state including steps S1 to S14, for example, when the power switch 516 of the controller 514 or another main power switch (not shown) is turned off, or from a power plug (not shown) connected to the controller 514 or the like. When the power cord is disconnected, or when various failures or abnormalities occur in the controller 514, the manipulator 10 operates after a predetermined termination process (the LED 29 is controlled to flash, for example, red). End.
 以上のように、本実施形態に係るマニピュレータ10によれば、駆動部30を含む操作部14と作業部16とが互いに着脱可能であり、駆動軸である駆動シャフト115、116が、その軸線方向に対して傾斜した駆動側接合面として係合凸部137等を有し、従動軸であるプーリ158a、158bが、その軸線方向に対して傾斜すると共に、係合凸部137等と係合可能な従動側接合面として係合凹部176a等を有する。従って、係合凸部137や係合凹部176a等の係合時の初期位相に係わらず両者を円滑に係合することができ、操作部14(駆動部30)と作業部16とを一層迅速に且つ簡単に着脱することができる。 As described above, according to the manipulator 10 according to the present embodiment, the operation unit 14 including the drive unit 30 and the working unit 16 are detachable from each other, and the drive shafts 115 and 116 that are drive shafts are in the axial direction. The drive side joint surface is inclined with respect to the engagement convex portion 137 and the like, and the pulleys 158a and 158b which are driven shafts are inclined with respect to the axial direction and can be engaged with the engagement convex portion 137 and the like. An engaging recess 176a or the like is provided as a driven surface joining surface. Therefore, regardless of the initial phase at the time of engagement of the engagement convex portion 137, the engagement concave portion 176a, etc., both can be smoothly engaged, and the operation portion 14 (drive portion 30) and the working portion 16 can be more quickly engaged. And can be attached and detached easily.
 この場合、駆動軸である駆動シャフト115及び従動軸であるプーリ158aのうち、いずれか一方(本実施形態では駆動シャフト115)が回転不能であり、他方(本実施形態ではプーリ158a)が回転自在(フリー)な状態にあることにより、フリーな状態にある他方が一方によって強制的に回転される。このため、係合凸部137や係合凹部176a等を、互いの初期位相に係わらず一層円滑に係合させることができる。 In this case, one of the drive shaft 115 as a drive shaft and the pulley 158a as a driven shaft (in this embodiment, the drive shaft 115) is not rotatable, and the other (in this embodiment, the pulley 158a) is freely rotatable. By being in the (free) state, the other in the free state is forcibly rotated by one. For this reason, engagement convex part 137, engagement concave part 176a, etc. can be engaged more smoothly irrespective of the mutual initial phase.
 従動軸であるプーリ158a、158bの位相を検出する位相検出手段として、被検出部材(検出ピン344、346、検出シャフト310、312、検出リング612)及び検出センサ(作業部原点センサ306、308、610)を設けた構成や、モータ100(102)のモータ回転速度やモータ電流値を検出する構成を適用することにより、作業部16側の原点を円滑に設定することができ、先端動作部12の正確な駆動制御等が可能となる。 As phase detection means for detecting the phases of the pulleys 158a and 158b which are driven shafts, detected members (detection pins 344 and 346, detection shafts 310 and 312, detection rings 612) and detection sensors (working part origin sensors 306 and 308, 610) and the configuration for detecting the motor rotation speed and motor current value of the motor 100 (102) can be used to smoothly set the origin on the working unit 16 side, and the distal end working unit 12 This makes it possible to perform accurate drive control.
 また、上記した第1~第3の安全着脱動作を実行することにより、係合凸部137、138、600、604と係合凹部176a、176b、602、606の係合時、プーリ158a(158b)の初期位相がその動作限近傍にある場合であっても、プーリ158a(158b)が動作限を超えて回転される強制力を受けて、プーリ158a(158b)及びその回転を規制する当接部177a、177bやストッパ179aに過度の負荷が生じ、破損や誤動作等を惹起することを有効に回避することができる。 Further, by performing the first to third safe attaching / detaching operations, the pulleys 158a (158b) are engaged when the engaging convex portions 137, 138, 600, 604 and the engaging concave portions 176a, 176b, 602, 606 are engaged. ), The pulley 158a (158b) receives a forcing force that rotates beyond the operation limit, and the pulley 158a (158b) and the contact that regulates the rotation thereof. It is possible to effectively avoid the occurrence of an excessive load on the portions 177a and 177b and the stopper 179a to cause damage or malfunction.
 当該マニピュレータ10では、先端動作部12を機械的に駆動する機構部であるトリガレバー36、トリガレバー取付部32b及び棒状又は線状の伝達部材であるロッド192a、192b等が全て作業部16側に設けられている。一方、先端動作部12を電気的に駆動する機構部である駆動部30等と、プーリ158a、158b及びワイヤ1052、1054等とは互いに操作部14側と作業部16側に分離するように設けられている。つまり、電気的な駆動部を構成するモータ100、102の回転駆動力は、係合凸部137(138)と係合凹部176a(176b)との間のカップリング構造によって比較的容易に分離可能な構造に構成することができるが、トリガレバー36の操作をロッド192a等によって直接的に伝達する機械的な駆動部は分離構造を構成すると、その構造がやや複雑になり易い。そこで、マニピュレータ10では、機械的な駆動部を構成するトリガレバー36やロッド192a等を作業部16側にまとめて配置したことにより、操作部14と作業部16との着脱構造が一層簡便に構成されている。特に、ロッド192a、192bはZ方向での進退動作によってトリガレバー36への入力を伝達する構造、つまり棒状又は線状の伝達部材として構成されていることから、これらを分離しない構造としたことにより、前記着脱構造が一層簡素化されている。 In the manipulator 10, the trigger lever 36, which is a mechanism for mechanically driving the distal end working unit 12, the trigger lever mounting portion 32 b, and rods 192 a and 192 b which are rod-shaped or linear transmission members are all on the working unit 16 side. Is provided. On the other hand, the drive unit 30 which is a mechanism unit for electrically driving the distal end working unit 12, the pulleys 158a, 158b, the wires 1052, 1054, etc. are provided so as to be separated from each other on the operation unit 14 side and the working unit 16 side. It has been. That is, the rotational driving force of the motors 100 and 102 constituting the electric drive unit can be separated relatively easily by the coupling structure between the engagement convex part 137 (138) and the engagement concave part 176a (176b). However, if the mechanical drive unit that directly transmits the operation of the trigger lever 36 by the rod 192a or the like constitutes a separation structure, the structure tends to be somewhat complicated. Therefore, in the manipulator 10, the trigger lever 36, the rod 192a, and the like constituting the mechanical drive unit are collectively arranged on the working unit 16 side, so that the detachable structure between the operation unit 14 and the working unit 16 is further simplified. Has been. In particular, the rods 192a and 192b are configured to transmit the input to the trigger lever 36 by advancing and retreating operations in the Z direction, that is, as rod-shaped or linear transmission members, so that they are not separated. The attachment / detachment structure is further simplified.
 この場合、トリガレバー36のラッチ機構を構成する爪部206aと係合リング27とが、それぞれ作業部16側(又は操作部14側でもよい)と操作部14側(又は作業部16側でもよい)に設けられている。これにより、トリガレバー36にその位置を固定するラッチ機構を搭載した場合であっても、操作部14と作業部16とを容易に着脱可能な構成にすることができる。 In this case, the claw portion 206a and the engagement ring 27 constituting the latch mechanism of the trigger lever 36 may be on the working portion 16 side (or the operating portion 14 side) and the operating portion 14 side (or the working portion 16 side), respectively. ). Thereby, even if it is a case where the latch mechanism which fixes the position to the trigger lever 36 is mounted, it can be set as the structure which can attach or detach the operation part 14 and the operation | work part 16 easily.
 次に、以上のように構成されるマニピュレータ10に適用される先端動作部12の具体的な構成について、グリッパであるエンドエフェクタ1300を採用した構造を例示して説明する。先端動作部12としては、グリッパ以外の構造、例えばはさみや電気メス等も勿論適用可能であり、該先端動作部12を含む作業部16として構成することにより、操作部14に対して容易に着脱し交換することができる。 Next, a specific configuration of the distal end working unit 12 applied to the manipulator 10 configured as described above will be described by exemplifying a structure that employs an end effector 1300 that is a gripper. Of course, a structure other than a gripper, such as scissors or an electric knife, can be applied as the distal end working unit 12, and it can be easily attached to and detached from the operation unit 14 by configuring as the working unit 16 including the distal end working unit 12. Can be exchanged.
 図43に示すように、先端動作部12には、ロッド192a、受動ワイヤ1252a、アイドルプーリ1140a、ガイドプーリ1142a、受動プーリ1156aを含む第1エンドエフェクタ駆動機構1320aと、これに対応した第2エンドエフェクタ駆動機構1320bが設けられている。第1エンドエフェクタ駆動機構1320a及び第2エンドエフェクタ駆動機構1320bは、エンドエフェクタ(グリッパ)1300を開閉させる基本的な構成である。 As shown in FIG. 43, the distal end working unit 12 includes a first end effector driving mechanism 1320a including a rod 192a, a passive wire 1252a, an idle pulley 1140a, a guide pulley 1142a, a passive pulley 1156a, and a second end corresponding thereto. An effector driving mechanism 1320b is provided. The first end effector drive mechanism 1320a and the second end effector drive mechanism 1320b have a basic configuration for opening and closing the end effector (gripper) 1300.
 第1エンドエフェクタ駆動機構1320aにおける構成要素には符号にaを付し、第2エンドエフェクタ駆動機構1320bにおける構成要素には符号にbを付して区別する。第1エンドエフェクタ駆動機構1320aにおける構成要素と第2エンドエフェクタ駆動機構1320bにおける構成要素で同じ機能のものについては、煩雑とならないよう、代表的に第1エンドエフェクタ駆動機構1320aについてのみ説明する場合がある。 The components in the first end effector drive mechanism 1320a are identified by a and the components in the second end effector drive mechanism 1320b are identified by b. The components of the first end effector drive mechanism 1320a and the components of the second end effector drive mechanism 1320b that have the same function may be described typically only with respect to the first end effector drive mechanism 1320a so as not to become complicated. is there.
 図43、図44においては、理解が容易となるように、第1エンドエフェクタ駆動機構1320aと第2エンドエフェクタ駆動機構1320bを紙面上で並列して示すが、実際のマニピュレータ10に適用する場合には、図45に示すように、各プーリの軸方向(つまりY方向)に並列させ、アイドルプーリ(円柱部材、伝達部材)1140a及び1140bと、ガイドプーリ(円柱部材、伝達部材)1142a及び1142bの回転軸は、それぞれ同軸上に配置するとよい。つまり、アイドルプーリ1140a及び1140bは軸1110(図45参照)に共通的に軸支することができ、ガイドプーリ1142aと1142bは軸1112に共通的に軸支することができる。ガイドプーリ1142aとガイドプーリ1142bを同軸構成とすることにより、ヨー軸動作機構が簡便になる。 43 and 44, the first end effector driving mechanism 1320a and the second end effector driving mechanism 1320b are shown side by side on the paper for easy understanding. However, in the case of application to an actual manipulator 10, As shown in FIG. 45, the pulleys are arranged in parallel in the axial direction (that is, the Y direction) of each pulley, and idle pulleys (columnar members, transmission members) 1140a and 1140b and guide pulleys (columnar members, transmission members) 1142a and 1142b. The rotation axes may be arranged on the same axis. That is, the idle pulleys 1140a and 1140b can be pivotally supported on the shaft 1110 (see FIG. 45), and the guide pulleys 1142a and 1142b can be pivotally supported on the shaft 1112. By making the guide pulley 1142a and the guide pulley 1142b coaxial, the yaw axis operation mechanism is simplified.
 図46~図49に示すように、先端動作部12は、ワイヤ受動部1100と、複合機構部1102と、エンドエフェクタ1300とを有し、Y方向の第1回転軸Oyを中心にして、それよりも先の部分がヨー方向に回動する第1自由度と、第2回転軸Orを中心にしてロール方向に回転する第2自由度と、第3回転軸Ogを中心として先端のエンドエフェクタ1300を開閉させる第3自由度とを有する合計3自由度の機構となっている。 As shown in FIGS. 46 to 49, the distal end working unit 12 includes a wire passive unit 1100, a composite mechanism unit 1102, and an end effector 1300, which are centered on the first rotation axis Oy in the Y direction. A first degree of freedom in which the portion ahead rotates in the yaw direction, a second degree of freedom in rotation in the roll direction around the second rotation axis Or, and an end effector at the tip about the third rotation axis Og The mechanism has a total of three degrees of freedom having a third degree of freedom for opening and closing 1300.
 第1自由度の機構である第1回転軸Oyは、連結シャフト18の基端側から先端側に延在する軸線と非平行に回動可能に設定するとよい。第2自由度の機構である第2回転軸Orは先端動作部12における先端部(つまりエンドエフェクタ1300)の延在方向の軸線を中心として回転可能な機構とし、先端部をロール回転可能に設定するとよい。 The first rotation axis Oy, which is a mechanism with a first degree of freedom, may be set so as to be rotatable in a non-parallel manner with an axis extending from the proximal end side to the distal end side of the connecting shaft 18. The second rotation axis Or, which is a mechanism with a second degree of freedom, is a mechanism that can rotate around the axis in the extending direction of the distal end portion (that is, the end effector 1300) in the distal end working unit 12, and the distal end portion is set to be rotatable. Good.
 第1自由度の機構(ヨー方向)は、例えば±90°又はそれ以上の稼動範囲を有する傾動機構(又は屈曲機構)である。第2自由度の機構(ロール方向)は、例えば±180°又はそれ以上の稼動範囲を有する回転機構である。第3自由度の機構(エンドエフェクタ1300)は、例えば40°又はそれ以上開くことのできる開閉機構である。 The mechanism with the first degree of freedom (yaw direction) is, for example, a tilting mechanism (or bending mechanism) having an operating range of ± 90 ° or more. The mechanism of the second degree of freedom (roll direction) is a rotating mechanism having an operating range of ± 180 ° or more, for example. The mechanism of the third degree of freedom (end effector 1300) is an opening / closing mechanism that can be opened, for example, 40 ° or more.
 エンドエフェクタ1300は、手術において実際の作業を行う部分であり、第1回転軸Oy及び第2回転軸Orは、作業を行い易いようにエンドエフェクタ1300の姿勢を変えるための姿勢変更機構を構成する姿勢軸である。一般に、エンドエフェクタ1300を開閉させる第3自由度に係る機構部はグリッパ(又はグリッパ軸)とも呼ばれ、ヨー方向に回動する第1自由度に係る機構部はヨー軸とも呼ばれ、ロール方向に回転する第2自由度に係る機構部はロール軸とも呼ばれる。 The end effector 1300 is a part that performs an actual work in the operation, and the first rotation axis Oy and the second rotation axis Or constitute a posture changing mechanism for changing the posture of the end effector 1300 so that the work can be easily performed. It is a posture axis. In general, a mechanism unit related to the third degree of freedom for opening and closing the end effector 1300 is also called a gripper (or a gripper shaft), and a mechanism unit related to the first degree of freedom rotating in the yaw direction is also called a yaw axis. The mechanism part according to the second degree of freedom that rotates in the direction is also called a roll shaft.
 ワイヤ受動部1100は、一対の舌片部1058の間に設けられており、ワイヤ1052、ワイヤ1054のそれぞれの往復動作を回転動作に変換して複合機構部1102に伝達する部分である。ワイヤ受動部1100は、軸孔1060a、1060aに挿入される軸1110と、軸孔1060b、1060bに挿入される軸1112とを有する。軸1110、1112は、軸孔1060a、1060bに対して、例えば圧入若しくは溶接により固定される。軸1112は第1回転軸Oyの軸上に配置される(図46及び図49参照)。 The wire passive portion 1100 is provided between the pair of tongue pieces 1058, and is a portion that converts the reciprocating motions of the wires 1052 and 1054 into rotational motions and transmits them to the composite mechanism portion 1102. The wire passive portion 1100 includes a shaft 1110 inserted into the shaft holes 1060a and 1060a and a shaft 1112 inserted into the shaft holes 1060b and 1060b. The shafts 1110 and 1112 are fixed to the shaft holes 1060a and 1060b, for example, by press fitting or welding. The axis | shaft 1112 is arrange | positioned on the axis | shaft of the 1st rotating shaft Oy (refer FIG.46 and FIG.49).
 軸1112のY方向両端には、Y方向に対称形状の歯車体1126及びプーリ1130が設けられている。歯車体1126は、筒体1132と、該筒体1132の上部に同心状に設けられた歯車1134とを有する。プーリ1130は、筒体1132と略同径且つ略同形状である。歯車1134は、後述するギア体1146のフェイスギア1165に噛合する。 At both ends of the shaft 1112 in the Y direction, a gear body 1126 and a pulley 1130 that are symmetrical in the Y direction are provided. The gear body 1126 includes a cylindrical body 1132 and a gear 1134 provided concentrically on the top of the cylindrical body 1132. The pulley 1130 has substantially the same diameter and the same shape as the cylindrical body 1132. The gear 1134 meshes with a face gear 1165 of a gear body 1146 described later.
 筒体1132及びプーリ1130には、ワイヤ1052及び1054が所定の固定手段によって一部が固定されて巻き掛けられている。ワイヤ1052及び1054の巻き掛けられる角度は、例えば1.5回転(540°)である。プーリ1130は、主軸部材1144の基端部側に一体的に設けられており、この主軸部材1144は、軸1112により第1回転軸Oy(ヨー軸)を中心に回動(傾動)自在に支持されている。 A part of the wires 1052 and 1054 is fixed and wound around the cylindrical body 1132 and the pulley 1130 by a predetermined fixing means. The angle at which the wires 1052 and 1054 are wound is, for example, 1.5 rotations (540 °). The pulley 1130 is integrally provided on the base end side of the main shaft member 1144. The main shaft member 1144 is supported by the shaft 1112 so as to be rotatable (tilted) about the first rotation axis Oy (yaw axis). Has been.
 ワイヤ1054を回転動作させることにより、プーリ1130と一体的に設けられた主軸部材1144が第1回転軸Oyを中心に回動し、ヨー方向動作が行われる。ワイヤ1052(図46参照)を回転動作させることにより、歯車体1126が軸1112に対して回転し、ギア体1146が第2回転軸Orを基準として回転し、ロール回転動作が行われる。歯車体1126とプーリ1130をそれぞれ回転させると、ヨー方向動作とロール回転動作の複合動作が行われる。先端動作部12の機構は、このように、ワイヤ1052が歯車1134を介してフェイスギア1165を駆動するのに対してワイヤ1054は主軸部材1144を直接的に回転駆動する形式に限らず、例えば、特開2008-253463号公報における図23に示される構成に相当するような差動機構であってもよい。 By rotating the wire 1054, the main shaft member 1144 provided integrally with the pulley 1130 rotates about the first rotation axis Oy, and the yaw operation is performed. By rotating the wire 1052 (see FIG. 46), the gear body 1126 rotates with respect to the shaft 1112 and the gear body 1146 rotates with the second rotation axis Or as a reference, and roll rotation operation is performed. When the gear body 1126 and the pulley 1130 are rotated, a combined operation of the yaw direction operation and the roll rotation operation is performed. As described above, the mechanism of the distal end working unit 12 is not limited to the type in which the wire 1052 drives the face gear 1165 via the gear 1134 while the wire 1054 directly drives the main shaft member 1144 to rotate. A differential mechanism corresponding to the configuration shown in FIG. 23 in Japanese Patent Laid-Open No. 2008-253463 may be used.
 軸1110の略中央部にはアイドルプーリ(円柱部材、伝達部材)1140aが回転自在に軸支されており、軸1112の略中央部にはガイドプーリ(円柱部材、伝達部材)1142aが回転自在に軸支されている。アイドルプーリ1140aは、ガイドプーリ1142aに巻きかける受動ワイヤ(可撓性部材、伝達部材)1252aの巻き掛け角度を常に一定(両側あわせて約180°)に保つためにある。アイドルプーリ1140aの代わりに、ガイドプーリ1142aに受動ワイヤ1252aを1巻き以上してもよい。アイドルプーリ1140a及びガイドプーリ1142aは、受動ワイヤ1252a(図51参照)に対する滑り、及び摩擦による摩耗を低減するために、表面を滑らかにし、又は摩擦の少ない材質を用いるとよい。ガイドプーリ1142aは、姿勢変更機構におけるヨー軸Oyに設けられている。 An idle pulley (cylindrical member, transmission member) 1140a is rotatably supported at a substantially central portion of the shaft 1110, and a guide pulley (cylindrical member, transmission member) 1142a is rotatable at a substantially central portion of the shaft 1112. It is pivotally supported. The idle pulley 1140a is provided to keep the winding angle of the passive wire (flexible member, transmission member) 1252a wound around the guide pulley 1142a constant at all times (approximately 180 ° on both sides). Instead of the idle pulley 1140a, the guide pulley 1142a may have one or more turns of the passive wire 1252a. The idle pulley 1140a and the guide pulley 1142a may be made of a material with a smooth surface or less friction in order to reduce slippage on the passive wire 1252a (see FIG. 51) and wear due to friction. The guide pulley 1142a is provided on the yaw axis Oy in the posture changing mechanism.
 軸1112における、歯車体1126とガイドプーリ1142aとの間にはプーリ1130を有する主軸部材1144が回転自在に軸支されている。主軸部材1144は、複合機構部1102に向けて突出する筒部を有する。主軸部材1144の軸心部には方形の孔1144aが設けられている。主軸部材1144のZ2方向端部には、ガイドプーリ1142aのY方向上面及びガイドプーリ1142bのY方向下面を保持するとともに、軸1112が挿通する孔を有する2枚の補助板1144bが設けられている。補助板1144bはZ1方向に向かって幅広となる山形であって、糸等の異物の侵入を防止する。 A main shaft member 1144 having a pulley 1130 is rotatably supported between the gear body 1126 and the guide pulley 1142a in the shaft 1112. The main shaft member 1144 has a cylindrical portion that protrudes toward the composite mechanism portion 1102. A square hole 1144 a is provided in the axial center portion of the main shaft member 1144. At the end in the Z2 direction of the main shaft member 1144, two auxiliary plates 1144b that hold the upper surface in the Y direction of the guide pulley 1142a and the lower surface in the Y direction of the guide pulley 1142b and have a hole through which the shaft 1112 passes are provided. . The auxiliary plate 1144b has a mountain shape that becomes wider in the Z1 direction and prevents intrusion of foreign matter such as yarn.
 複合機構部1102は、エンドエフェクタ1300の開閉動作機構と、該エンドエフェクタ1300の姿勢を変化させる姿勢変更機構とを含む複合的な機構部である。 The composite mechanism unit 1102 is a composite mechanism unit including an opening / closing operation mechanism of the end effector 1300 and a posture changing mechanism that changes the posture of the end effector 1300.
 複合機構部1102は、主軸部材1144の筒部周面に対して回転自在に嵌挿されたギア体1146と主軸部材1144の先端に設けられたナット体1148と、Z2方向端部が孔1144aに挿入される断面四角の伝達部材1152と、該伝達部材1152のZ2方向端部に対してピン1154により回転自在に軸支される受動プーリ(円柱部材、伝達部材)1156aと、受動板(伝達部材)1158と、円筒状のカバー1160とを有する。 The compound mechanism portion 1102 includes a gear body 1146 that is rotatably inserted into the circumferential surface of the cylindrical portion of the main shaft member 1144, a nut body 1148 provided at the tip of the main shaft member 1144, and an end portion in the Z2 direction in the hole 1144a. A square-shaped transmission member 1152 to be inserted, a passive pulley (cylindrical member, transmission member) 1156a rotatably supported by a pin 1154 with respect to the Z2 direction end of the transmission member 1152, and a passive plate (transmission member) ) 1158 and a cylindrical cover 1160.
 主軸部材1144におけるギア体1146と当接する部分には、樹脂製のスラスト軸受部材1144cが設けられている。ナット体1148におけるギア体1146と当接する部分には、樹脂製のスラスト軸受部材1148aが設けられている。スラスト軸受部材1144c及び1148aは低摩擦材であって、当接部分の摩擦及びトルクを低減するとともに、フェイスギア1165に負荷が直接的にかかることを防止する。スラスト軸受部材1144c及び1148aは、いわゆる滑り軸受であるが、転がり軸受を設けてもよい。これにより、エンドエフェクタ1300を強く閉じた場合や開いた場合、すなわちギア体1146が主軸部材1144に強く当接する場合でも、ロール軸動作をスムーズに行うことができる。 A resin-made thrust bearing member 1144c is provided at a portion of the main shaft member 1144 that comes into contact with the gear body 1146. A thrust bearing member 1148a made of resin is provided on a portion of the nut body 1148 that contacts the gear body 1146. The thrust bearing members 1144c and 1148a are low-friction materials, and reduce the friction and torque of the contact portion and prevent the load from being directly applied to the face gear 1165. The thrust bearing members 1144c and 1148a are so-called sliding bearings, but may be provided with rolling bearings. Thereby, even when the end effector 1300 is strongly closed or opened, that is, even when the gear body 1146 strongly contacts the main shaft member 1144, the roll shaft operation can be performed smoothly.
 ギア体1146は、段付き筒形状であって、Z2方向の大径部1162と、Z1方向の小径部1164と、大径部1162のZ2方向端面に設けられたフェイスギア1165とを有する。フェイスギア1165は、歯車1134に噛合する。ギア体1146は、ナット体1148が主軸部材1144に対して抜けることを防止する。大径部1162の外周には、ねじが設けてある。 The gear body 1146 has a stepped cylindrical shape, and includes a large diameter portion 1162 in the Z2 direction, a small diameter portion 1164 in the Z1 direction, and a face gear 1165 provided on the end surface of the large diameter portion 1162 in the Z2 direction. Face gear 1165 meshes with gear 1134. The gear body 1146 prevents the nut body 1148 from coming off from the main shaft member 1144. A screw is provided on the outer periphery of the large diameter portion 1162.
 受動板1158は、Z2方向の凹部1166と、該凹部1166の底面に設けられた係合部1168と、Y方向両面にそれぞれ設けられた軸方向のリブ1170と、リンク孔1172とを有する。係合部1168は、伝達部材1152の先端に設けられたきのこ状の突起1174に係合する形状である。この係合により、受動板1158と伝達部材1152は、相対的なロール軸の回転が可能になる。受動板1158の幅はカバー1160の内径に略等しい。 The passive plate 1158 has a concave portion 1166 in the Z2 direction, an engaging portion 1168 provided on the bottom surface of the concave portion 1166, axial ribs 1170 provided on both sides in the Y direction, and link holes 1172, respectively. The engaging portion 1168 has a shape that engages with a mushroom-like protrusion 1174 provided at the tip of the transmission member 1152. By this engagement, the passive plate 1158 and the transmission member 1152 can rotate relative to each other. The width of the passive plate 1158 is substantially equal to the inner diameter of the cover 1160.
 カバー1160は、複合機構部1102の略全体を覆う大きさであり、複合機構部1102及びエンドエフェクタ1300に異物(生体組織、薬剤、糸等)が入り込むことが防止される。カバー1160の内面には、受動板1158の2つのリブ1170が嵌る軸方向の2本の溝1175が対向する向きに設けられている。溝1175にリブ1170が嵌ることにより受動板1158が軸方向にガイドされる。受動板1158の係合部1168には突起1174が係合することから、受動プーリ1156aは孔1144a内において、受動板1158及び伝達部材1152とともに軸方向に進退可能であるとともに、伝達部材1152を基準としてロール回転が可能である。カバー1160は、ギア体1146の大径部1162に対して螺入、圧入等の手段により固定されている。 The cover 1160 is sized to cover substantially the entire composite mechanism section 1102 and prevents foreign matter (biological tissue, medicine, thread, etc.) from entering the composite mechanism section 1102 and the end effector 1300. Two axial grooves 1175 in which the two ribs 1170 of the passive plate 1158 are fitted are provided on the inner surface of the cover 1160 so as to face each other. The passive plate 1158 is guided in the axial direction by fitting the rib 1170 into the groove 1175. Since the protrusion 1174 engages with the engaging portion 1168 of the passive plate 1158, the passive pulley 1156 a can advance and retreat in the axial direction together with the passive plate 1158 and the transmission member 1152 in the hole 1144 a, and the transmission member 1152 can be used as a reference. As a result, roll rotation is possible. The cover 1160 is fixed to the large diameter portion 1162 of the gear body 1146 by means such as screwing or press fitting.
 カバー1160は、ギア体1146と基部側で結合(螺合、圧入、溶接等)されており、ギア体1146の回転とともにカバー1160及びエンドエフェクタ1300はロール軸動作を行う。 The cover 1160 is coupled to the gear body 1146 on the base side (screwing, press-fitting, welding, etc.), and the cover 1160 and the end effector 1300 perform a roll axis operation as the gear body 1146 rotates.
 レバー部1310と受動板1158は、グリッパリンク1220により連接されている。つまり、各グリッパリンク1220の一端の孔1220aは、孔1218とともにピン1222が挿入され、他端の孔1220bは、受動板1158のリンク孔1172とともにピン1224が挿入されて連接されている。 The lever portion 1310 and the passive plate 1158 are connected by a gripper link 1220. That is, the pin 1222 is inserted into the hole 1220 a at one end of each gripper link 1220 together with the hole 1218, and the pin 1224 is inserted into the hole 1220 b at the other end together with the link hole 1172 of the passive plate 1158.
 図50に示すように、アイドルプーリ1140aは、同軸上の第1層アイドルプーリ(第1層アイドル円柱体)1232と第2層アイドルプーリ(第2層アイドル円柱体)1234の2枚が並列して構成されており、ガイドプーリ1142aは、同軸上の第1層ガイドプーリ(第1層ガイド円柱体)1236と第2層ガイドプーリ(第2層ガイド円柱体)1238の2枚が並列して構成されている。 As shown in FIG. 50, the idle pulley 1140a includes two coaxially arranged first layer idle pulleys (first layer idle cylinders) 1232 and second layer idle pulleys (second layer idle cylinders) 1234 arranged in parallel. The guide pulley 1142a is composed of a coaxial first layer guide pulley (first layer guide column) 1236 and a second layer guide pulley (second layer guide column) 1238 arranged in parallel. It is configured.
 図51に示すように、ロッド192aのZ1方向端部は、ワイヤ係合部1250aによって受動ワイヤ(可撓性部材)1252aの両端部に接続されている。 As shown in FIG. 51, the end of the rod 192a in the Z1 direction is connected to both ends of a passive wire (flexible member) 1252a by a wire engaging portion 1250a.
 図52及び図53に示すように、ワイヤ係合部1250aは、ロッド192aの先端部1414にローラ1416が設けられ、該ローラ1416に受動ワイヤ1252aが巻き掛けられている。ローラ1416はピン1418に軸支されており回転自在である。これにより、受動ワイヤ1252aはローラ1416に巻きかけられながら適度に進退し、ロッド192aをZ2方向に引くときに、特にヨー軸が屈曲しないような状態でも、受動ワイヤ1252aをX方向のバランスよく引くことができる。先端部1414は、ロッド192aに螺設されている。この実施例では、受動ワイヤ1252aのY方向一対の張力が均一となり、長寿命化を図ることができるとともに、上下両方のY方向一対の平行化を図ることができる。 52 and 53, in the wire engaging portion 1250a, a roller 1416 is provided at a tip portion 1414 of a rod 192a, and a passive wire 1252a is wound around the roller 1416. The roller 1416 is supported by a pin 1418 and is rotatable. As a result, the passive wire 1252a is appropriately advanced and retracted while being wound around the roller 1416, and when the rod 192a is pulled in the Z2 direction, the passive wire 1252a is pulled with a good balance in the X direction even when the yaw axis is not bent. be able to. The tip portion 1414 is screwed to the rod 192a. In this embodiment, the pair of tensions in the Y direction of the passive wire 1252a are uniform, and it is possible to extend the life of the passive wire 1252a, and it is possible to achieve a parallel pair of both the upper and lower Y directions.
 図50及び図51に戻り、受動ワイヤ1252aは、一部がワイヤ係合部1250aに接続された環状の可撓性部材であり、ワイヤ以外にもロープ、樹脂線、ピアノ線及びチェーン等を用いることができる。ここで、環状とは広義であり、必ずしも全長にわたって可撓性部材が適用されている必要はなく、少なくとも各プーリに巻き掛けられる箇所が可撓性部材であればよく、直線部は剛体で接続されていてもよいことはもちろんである。 50 and 51, the passive wire 1252a is an annular flexible member partially connected to the wire engaging portion 1250a, and a rope, a resin wire, a piano wire, a chain, or the like is used in addition to the wire. be able to. Here, the term “annular” is used in a broad sense, and the flexible member does not necessarily have to be applied over the entire length. The flexible member may be at least a portion that is wound around each pulley, and the straight portion is connected by a rigid body. Of course, it may be done.
 受動ワイヤ1252aは、駆動部材のロッド192aから、アイドルプーリ1140aのX1方向(第1の側方)を通り、X2方向(第2の側方)に向かい、ガイドプーリ1142aのX2方向の面を通り受動プーリ1156aのX2方向面に至る。受動ワイヤ1252aは、さらに、受動プーリ1156aのZ1方向面に半周巻き掛けられてX1方向面に至り、ガイドプーリ1142aのX1方向の面を通り、X2方向に向かいアイドルプーリ1140aのX2方向を通りワイヤ係合部1250aに至る経路で配設されている。 The passive wire 1252a passes from the rod 192a of the driving member through the X1 direction (first side) of the idle pulley 1140a, toward the X2 direction (second side), and through the surface of the guide pulley 1142a in the X2 direction. It reaches the X2 direction surface of the passive pulley 1156a. The passive wire 1252a is further wound halfway around the Z1 direction surface of the passive pulley 1156a to reach the X1 direction surface, passes through the X1 direction surface of the guide pulley 1142a, passes through the X2 direction, and passes through the X2 direction of the idle pulley 1140a. It is arrange | positioned by the path | route which reaches the engaging part 1250a.
 つまり、受動ワイヤ1252aは、ワイヤ係合部1250aを基点及び終点とする一巡の経路を構成し、アイドルプーリ1140aの両側方を通り、受動プーリ1156aに巻き掛けられ、アイドルプーリ1140aとガイドプーリ1142aとの間で交差して、略8字形状をなす。これにより、ワイヤ係合部1250a及び受動ワイヤ1252aは、ロッド192aを介してトリガレバー36に対して機械的に接続されていることになる。 That is, the passive wire 1252a constitutes a circuit that has the wire engaging portion 1250a as a base point and an end point, passes through both sides of the idle pulley 1140a, is wound around the passive pulley 1156a, and the idle pulley 1140a and the guide pulley 1142a It intersects between the two to form an approximately 8-character shape. Thus, the wire engaging portion 1250a and the passive wire 1252a are mechanically connected to the trigger lever 36 via the rod 192a.
 アイドルプーリ1140a、ガイドプーリ1142a及び受動プーリ1156aは略同径であり、受動ワイヤ1252aがあまり屈曲しないように、レイアウト上の可能な範囲で適度に大径にしている。ワイヤ係合部1250aは、受動ワイヤ1252aが過度に屈曲しないように、アイドルプーリ1140aよりも適度に離れた位置に設けられており、受動ワイヤ1252aの両端部はワイヤ係合部1250aを頂部として鋭角を形成している。アイドルプーリ1140aとガイドプーリ1142aとの間は狭く、例えば、受動ワイヤ1252aの幅と略等しい隙間が形成されている。 The idle pulley 1140a, the guide pulley 1142a, and the passive pulley 1156a have substantially the same diameter, and have an appropriately large diameter within a possible range in the layout so that the passive wire 1252a is not bent so much. The wire engaging portion 1250a is provided at a position moderately separated from the idle pulley 1140a so that the passive wire 1252a does not bend excessively, and both ends of the passive wire 1252a have an acute angle with the wire engaging portion 1250a as the top. Is forming. The gap between the idle pulley 1140a and the guide pulley 1142a is narrow, and for example, a gap substantially equal to the width of the passive wire 1252a is formed.
 アイドルプーリ1140a、ガイドプーリ1142a及び受動プーリ1156aには、受動ワイヤ1252aの抜け止めのために、上面及び下面に小さいフランジを設け、又は側面を凹形状にしてもよい。 The idle pulley 1140a, the guide pulley 1142a, and the passive pulley 1156a may be provided with small flanges on the upper surface and the lower surface to prevent the passive wire 1252a from coming off, or the side surfaces may be concave.
 図51から明らかなように、第1エンドエフェクタ駆動機構1320aでは、基端側から先端側に向かって、受動ワイヤ1252a、アイドルプーリ1140a、ガイドプーリ1142a及び受動プーリ1156aが中心線に沿って配置されている。エンドエフェクタ1300は、伝達部材1152等を介して受動プーリ1156aに連結されている。 As is clear from FIG. 51, in the first end effector drive mechanism 1320a, the passive wire 1252a, the idle pulley 1140a, the guide pulley 1142a, and the passive pulley 1156a are arranged along the center line from the base end side to the tip end side. ing. The end effector 1300 is coupled to the passive pulley 1156a via the transmission member 1152 and the like.
 このように構成される第1エンドエフェクタ駆動機構1320aでは、ロッド192a(図51参照)をZ2方向に引き寄せると、平面視で、第1層アイドルプーリ1232及び第2層ガイドプーリ1238は反時計方向に回転し、第2層アイドルプーリ1234及び第1層ガイドプーリ1236は時計方向に回転する。このように、アイドルプーリ1140a及びガイドプーリ1142aは、それぞれ同軸上で2枚のプーリが並列する構成であることから、当接する受動ワイヤ1252aの動きに従って逆方向に回転可能であり、動作がスムーズである。 In the first end effector drive mechanism 1320a configured as described above, when the rod 192a (see FIG. 51) is pulled in the Z2 direction, the first layer idle pulley 1232 and the second layer guide pulley 1238 are counterclockwise in plan view. The second layer idle pulley 1234 and the first layer guide pulley 1236 rotate clockwise. As described above, the idle pulley 1140a and the guide pulley 1142a are configured such that two pulleys are coaxially arranged in parallel, and thus can rotate in the reverse direction according to the movement of the passive wire 1252a that comes into contact, and the operation is smooth. is there.
 図46~図49に示すように、エンドエフェクタ1300は、一対のグリッパ1302が動作をするいわゆる両開き型である。エンドエフェクタ1300は、カバー1160に対して一体構成のグリッパベース1304と、該グリッパベース1304に設けられたピン1196を基準にして動作する一対のエンドエフェクタ部材1308と、一対のグリッパリンク1220とを有する。 As shown in FIGS. 46 to 49, the end effector 1300 is a so-called double-open type in which a pair of grippers 1302 operate. The end effector 1300 includes a gripper base 1304 that is integrally formed with the cover 1160, a pair of end effector members 1308 that operate based on pins 1196 provided on the gripper base 1304, and a pair of gripper links 1220. .
 各エンドエフェクタ部材1308は、L字形状であって、Z1方向に延在するグリッパ1302と、該グリッパ1302に対して略35°に曲がって延在するレバー部1310とを有する。L字形状の屈曲部には、孔1216が設けられ、レバー部1310の端部近傍には孔1218が設けられている。孔1216にピン1196が挿入されることにより一対のエンドエフェクタ部材1308は第3回転軸Ogを中心として揺動自在となる。 Each end effector member 1308 is L-shaped and has a gripper 1302 extending in the Z1 direction and a lever portion 1310 extending at approximately 35 ° with respect to the gripper 1302. A hole 1216 is provided in the L-shaped bent portion, and a hole 1218 is provided in the vicinity of the end of the lever portion 1310. By inserting the pin 1196 into the hole 1216, the pair of end effector members 1308 can swing around the third rotation axis Og.
 各エンドエフェクタ部材1308は側方の1つのグリッパリンク1220によって、受動板1158のピン1224に連接されている。エンドエフェクタ1300の受動板1158ではリンク孔1172が図47のY方向に対称位置に2つ設けられており、一対のグリッパリンク1220は側面視で交差する配置である。 Each end effector member 1308 is connected to the pin 1224 of the passive plate 1158 by one side gripper link 1220. In the passive plate 1158 of the end effector 1300, two link holes 1172 are provided at symmetrical positions in the Y direction of FIG. 47, and the pair of gripper links 1220 are arranged so as to intersect in a side view.
 図45~図49に示すように、第2エンドエフェクタ駆動機構1320bは、第1エンドエフェクタ駆動機構1320a(図51参照)に対して、基本的には、折り返しプーリ(円柱部材、伝達部材)1350が付加された構成である。受動プーリ1156a及び受動プーリ1156bは同軸構成となっている。 As shown in FIGS. 45 to 49, the second end effector driving mechanism 1320b basically has a folding pulley (columnar member, transmission member) 1350 with respect to the first end effector driving mechanism 1320a (see FIG. 51). Is added. The passive pulley 1156a and the passive pulley 1156b have a coaxial configuration.
 主軸部材1144には、ピン1352が挿入及び固定される径方向の軸孔1354が設けられている。軸孔1354は、孔1144aを経由して主軸部材1144の筒部を貫通している。 The main shaft member 1144 is provided with a radial shaft hole 1354 into which the pin 1352 is inserted and fixed. The shaft hole 1354 passes through the cylindrical portion of the main shaft member 1144 via the hole 1144a.
 伝達部材1152には、ピン1352が挿通可能な幅で軸方向に延在する長孔1356が設けられている。伝達部材1152は、作業部16の軸心よりY1方向にややオフセットした位置に設けられるが、先端の突起1174だけは軸心に配置させるとよい(図51参照)。もちろん、伝達部材1152は中心に配置してもよい。 The transmission member 1152 is provided with a long hole 1356 extending in the axial direction with a width through which the pin 1352 can be inserted. The transmission member 1152 is provided at a position slightly offset in the Y1 direction from the axis of the working unit 16, but only the protrusion 1174 at the tip may be disposed at the axis (see FIG. 51). Of course, the transmission member 1152 may be arranged at the center.
 ピン1154は、伝達部材1152を通り抜けてY2方向に突出し受動プーリ1156bを軸支する。受動プーリ1156bは、受動ワイヤ1252bが2巻き可能な幅を有する。主軸部材1144の孔1144aは、受動プーリ1156a、1156b及び伝達部材1152が挿入可能な高さを有する(図46及び図49参照)。受動プーリ1156a及び1156bは、孔1144a内でピン1154によって同軸に軸支されており、独立的に回転自在である。 The pin 1154 passes through the transmission member 1152 and protrudes in the Y2 direction to pivotally support the passive pulley 1156b. The passive pulley 1156b has a width that allows the passive wire 1252b to be wound twice. The hole 1144a of the main shaft member 1144 has a height at which the passive pulleys 1156a and 1156b and the transmission member 1152 can be inserted (see FIGS. 46 and 49). Passive pulleys 1156a and 1156b are axially supported by pins 1154 in the hole 1144a and are independently rotatable.
 図45及び図46に示すように、ピン1352は、孔1144a内でY1方向からY2方向に向かって、長孔1356及び折り返しプーリ1350の中心孔に挿入されて、伝達部材1152と受動プーリ1156a及び1156bが軸方向に進退可能である。折り返しプーリ1350はピン1352に軸支されて回転自在であり、位置は固定である。折り返しプーリ1350は受動ワイヤ1252bが2巻き可能な幅を有する。また、折り返しプーリ1350を2層化することにより、開閉動作のときに反対方向に回転できる構成となり、受動ワイヤ1252bとプーリの摩擦を低減させることができる。 As shown in FIGS. 45 and 46, the pin 1352 is inserted into the long hole 1356 and the center hole of the folding pulley 1350 from the Y1 direction toward the Y2 direction in the hole 1144a, and the transmission member 1152 and the passive pulley 1156a and 1156b can advance and retract in the axial direction. The folding pulley 1350 is pivotally supported by a pin 1352 and is rotatable, and its position is fixed. The folding pulley 1350 has a width that allows the passive wire 1252b to be wound twice. In addition, by forming the folding pulley 1350 into two layers, the folding pulley 1350 can be rotated in the opposite direction during the opening / closing operation, and friction between the passive wire 1252b and the pulley can be reduced.
 図54、図55及び図56に示すように、第2エンドエフェクタ駆動機構1320bにおいては、受動プーリ1156bよりも先端側に折り返しプーリ1350が設けられ、受動ワイヤ1252bは、受動プーリ1156bと折り返しプーリ1350とにわたって巻き掛けられている。つまり、受動ワイヤ1252bは、駆動部材のロッド192bのワイヤ係合部1250b(図43~図45参照)から、アイドルプーリ1140bのX1方向を通り、X2方向に向かい、ガイドプーリ1142bのX2方向を通り受動プーリ1156bのX2方向面に至る。受動ワイヤ1252bはそのままZ1方向に向かって延在し、折り返しプーリ1350のX2方向の面に達し、該折り返しプーリ1350のZ1方向の面に半回転巻き付けられてZ2方向に折り返す。 As shown in FIGS. 54, 55 and 56, in the second end effector drive mechanism 1320b, a folding pulley 1350 is provided on the tip side of the passive pulley 1156b, and the passive wire 1252b includes the passive pulley 1156b and the folding pulley 1350. It is wrapped around. That is, the passive wire 1252b passes through the X1 direction of the idle pulley 1140b, the X2 direction, and the X2 direction of the guide pulley 1142b from the wire engaging portion 1250b (see FIGS. 43 to 45) of the rod 192b of the driving member. It reaches the X2 direction surface of the passive pulley 1156b. The passive wire 1252b extends in the Z1 direction as it is, reaches the surface in the X2 direction of the folding pulley 1350, is wound around the Z1 direction surface of the folding pulley 1350, and is folded in the Z2 direction.
 受動ワイヤ1252bは受動プーリ1156bのZ2方向の面に半回転巻き付けられてX2側を通って再度折り返しプーリ1350に至り、再び該折り返しプーリ1350のZ1方向の面に半回転巻き付けられてZ2方向に折り返す。この後、受動ワイヤ1252bはガイドプーリ1142bのX1方向からアイドルプーリ1140bのX2方向に至り、ロッド192bのワイヤ係合部1250bに接続される。ワイヤ係合部1250a及び受動ワイヤ1252bは、ロッド192bを介してトリガレバー36に対して機械的に接続されていることになる。 The passive wire 1252b is wound around the Z2 direction surface of the passive pulley 1156b by half rotation, passes through the X2 side, reaches the folding pulley 1350 again, and is again wound around the Z1 direction surface of the folding pulley 1350 by half rotation and is folded back in the Z2 direction. . Thereafter, the passive wire 1252b extends from the X1 direction of the guide pulley 1142b to the X2 direction of the idle pulley 1140b and is connected to the wire engaging portion 1250b of the rod 192b. The wire engaging portion 1250a and the passive wire 1252b are mechanically connected to the trigger lever 36 via the rod 192b.
 先端動作部12の構造について理解を容易にするために、その模式図を図45に示す。 In order to facilitate understanding of the structure of the distal end working unit 12, a schematic diagram thereof is shown in FIG.
 このように構成される先端動作部12では、図43に示すように、人手によりトリガレバー36を十分に引くと、ロッド192aは受動ワイヤ1252aを引き寄せ、受動プーリ1156a、伝達部材1152をZ2方向に移動させることからエンドエフェクタ1300を閉じさせることができる。つまり、ロッド192aや受動ワイヤ1252a、受動プーリ1156a等の伝達部材が牽引されることによりエンドエフェクタ1300が閉じられる。 In the distal end working unit 12 configured as described above, as shown in FIG. 43, when the trigger lever 36 is sufficiently pulled manually, the rod 192a pulls the passive wire 1252a, and the passive pulley 1156a and the transmission member 1152 are moved in the Z2 direction. The end effector 1300 can be closed from the movement. That is, the end effector 1300 is closed by pulling transmission members such as the rod 192a, the passive wire 1252a, and the passive pulley 1156a.
 この場合、第2エンドエフェクタ駆動機構1320bについては、ロッド192bは、押し出されるように配置されているため、伝達部材1152の動作を阻害しない。 In this case, with respect to the second end effector driving mechanism 1320b, the rod 192b is disposed so as to be pushed out, and therefore does not hinder the operation of the transmission member 1152.
 また、図44に示すように、人手によりトリガレバー36を十分に押し出すと、伝達部材1152及び受動プーリ1156aは先端側にZ1方向に移動してエンドエフェクタ1300を開くことができる。 Further, as shown in FIG. 44, when the trigger lever 36 is sufficiently pushed out manually, the transmission member 1152 and the passive pulley 1156a can move in the Z1 direction toward the tip side to open the end effector 1300.
 エンドエフェクタ1300には、トリガレバー36を人手によって押し出す力が第2エンドエフェクタ駆動機構1320bによって機械的に直接伝えられることから、弾性体のような所定の力ではなく任意の強い力で開くことができる。したがって、エンドエフェクタ1300の外側面を用いて生体組織を剥離させ、又は孔部を拡開させるような手技に対して好適に用いることができる。 The end effector 1300 is mechanically directly transmitted by the second end effector drive mechanism 1320b to push the trigger lever 36 manually, so that the end effector 1300 can be opened with an arbitrary strong force instead of a predetermined force such as an elastic body. it can. Therefore, it can be suitably used for a procedure in which the biological tissue is peeled off using the outer side surface of the end effector 1300 or the hole is expanded.
 また、エンドエフェクタ1300の外側面に対象物が接触した場合には、受動ワイヤ1252b、ロッド192b及びトリガレバー36もそれ以上Z1方向に動かなくなり、操作者はエンドエフェクタ1300の外側面が対象物に接触したこと、及び該対象物の硬さ等を指先で知覚することができる。 Further, when the object comes into contact with the outer surface of the end effector 1300, the passive wire 1252b, the rod 192b, and the trigger lever 36 do not move further in the Z1 direction, and the operator can move the outer surface of the end effector 1300 to the object. The contact and the hardness of the object can be perceived with the fingertip.
 先端動作部12は、ヨー軸動作及びロール軸動作が可能である。図示を省略するが、先端動作部12では、ヨー軸動作をする場合、ガイドプーリ1142a及びガイドプーリ1142bの軸1112(図45参照)を中心にして、それよりも先端の複合機構部1102及びエンドエフェクタ1300がヨー方向に揺動する。先端動作部12は、非干渉機構であることから、ヨー軸動作をしてもエンドエフェクタ1300の開度が変化することはなく、逆にエンドエフェクタ1300の開度を変化させてもヨー軸が動作することはない。エンドエフェクタ1300とロール軸の関係についても同様である。 The tip motion unit 12 is capable of yaw axis operation and roll axis operation. Although not shown in the drawings, in the tip operation unit 12, when the yaw axis operation is performed, the composite mechanism unit 1102 and the end at the tip of the guide pulley 1142a and the guide pulley 1142b are centered on the shaft 1112 (see FIG. 45). The effector 1300 swings in the yaw direction. Since the distal end working unit 12 is a non-interference mechanism, the opening degree of the end effector 1300 does not change even if the yaw axis operation is performed. Conversely, even if the opening degree of the end effector 1300 is changed, the yaw axis does not change. It will not work. The same applies to the relationship between the end effector 1300 and the roll shaft.
 次に、先端動作部12の変形例としての先端動作部12aを図57に示す。 Next, a distal end working portion 12a as a modification of the distal end working portion 12 is shown in FIG.
 図57に示すように、先端動作部12aは、前記の先端動作部12(図44参照)と比較して第1エンドエフェクタ駆動機構1320aを有している点で共通するが、第2エンドエフェクタ駆動機構1320bが省略された構成となっている。先端動作部12aについて、先端動作部12と同一の構成要素については同一の参照符号を付して、その詳細な説明を省略する。 As shown in FIG. 57, the distal end working unit 12a is common to the distal end working unit 12 (see FIG. 44) in that it has a first end effector drive mechanism 1320a. The drive mechanism 1320b is omitted. Regarding the distal end working unit 12a, the same components as those of the distal end working unit 12 are denoted by the same reference numerals, and detailed description thereof is omitted.
 先端動作部12aは、前記の両開き型のエンドエフェクタ1300に代えて片開き式のエンドエフェクタ1300aが設けられている。エンドエフェクタ1300aは、固定のグリッパ1202とピン1196を中心として軸開閉動作をするグリッパ1212と、伝達部材1152をZ1方向に弾性付勢するスプリング1305とを有している。グリッパ1212は、伝達部材1152が進退することにともなってグリッパリンク1220を介して開閉駆動される。すなわち、トリガレバー36をZ2方向に引くと第1エンドエフェクタ駆動機構1320aによって伝達部材1152もZ2方向に変位し、グリッパ1212は図57における反時計方向に回動してエンドエフェクタ1300が閉動作をする。一方、トリガレバー36を開放すると、伝達部材1152はスプリング1305の付勢によってZ1方向に変位し、エンドエフェクタ1300は開状態に復帰する。また、トリガレバー36はZ1方向に復帰する。 The tip operating portion 12a is provided with a single-open type end effector 1300a instead of the double-open type end effector 1300. The end effector 1300a includes a fixed gripper 1202, a gripper 1212 that opens and closes around a pin 1196, and a spring 1305 that elastically biases the transmission member 1152 in the Z1 direction. The gripper 1212 is driven to open and close via the gripper link 1220 as the transmission member 1152 advances and retreats. That is, when the trigger lever 36 is pulled in the Z2 direction, the transmission member 1152 is also displaced in the Z2 direction by the first end effector drive mechanism 1320a, and the gripper 1212 rotates counterclockwise in FIG. To do. On the other hand, when the trigger lever 36 is opened, the transmission member 1152 is displaced in the Z1 direction by the bias of the spring 1305, and the end effector 1300 returns to the open state. The trigger lever 36 returns in the Z1 direction.
 本発明は、例えば図58に示すような手術用ロボットシステム700に適用してもよい。 The present invention may be applied to a surgical robot system 700 as shown in FIG. 58, for example.
 手術用ロボットシステム700は、多関節型のロボットアーム702と、コンソール704とを有し、ロボットアーム702の先端には前記のマニピュレータ10と同じ機構が設けられている。ロボットアーム702の先端部708には、操作部14に代えて、内部に駆動部30を収納した基部14aが固定され、該基部14aに対して作業部16が着脱可能に取り付けられる。ロボットアーム702は、作業部16を移動させる手段であればよく、据置型に限らず、例えば自律移動型でもよい。コンソール704は、テーブル型、制御盤型等の構成を採りうる。 The surgical robot system 700 includes an articulated robot arm 702 and a console 704, and the same mechanism as the manipulator 10 is provided at the tip of the robot arm 702. Instead of the operation unit 14, a base 14 a that houses the drive unit 30 is fixed to the distal end 708 of the robot arm 702, and the working unit 16 is detachably attached to the base 14 a. The robot arm 702 may be any means that moves the working unit 16, and is not limited to a stationary type, but may be an autonomous moving type, for example. The console 704 can take a configuration such as a table type or a control panel type.
 ロボットアーム702は、独立的な6以上の関節(回転軸やスライド軸等)を有すると、作業部16の位置及び向きを任意に設定できて好適である。先端のマニピュレータ10を構成する基部14aは、ロボットアーム702の先端部708と一体化している。マニピュレータ10は、前記のトリガレバー36による機械的な動作機構の代わりに図示しないモータ(人手によって操作する入力部に連動するアクチュエータ)による電気的な動作機構を有し、該モータが2本のロッド192a及び192bを駆動する。 If the robot arm 702 has six or more independent joints (such as a rotation axis and a slide axis), the position and orientation of the working unit 16 can be arbitrarily set. A base portion 14 a constituting the manipulator 10 at the distal end is integrated with the distal end portion 708 of the robot arm 702. The manipulator 10 has an electric operation mechanism by a motor (actuator interlocked with an input unit operated manually) instead of the mechanical operation mechanism by the trigger lever 36, and the motor has two rods. 192a and 192b are driven.
 ロボットアーム702は、コンソール704の作用下に動作し、プログラムによる自動動作や、コンソール704に設けられたジョイスティック706に倣った操作、及びこれらの複合的な動作をする構成にしてもよい。コンソール704は、前記のコントローラの機能を含んでいる。作業部16には、前記の先端動作部12が設けられている。 The robot arm 702 may operate under the action of the console 704, and may be configured to perform automatic operation according to a program, operation following a joystick 706 provided on the console 704, and a combination of these operations. The console 704 includes the functions of the controller. The working unit 16 is provided with the distal end working unit 12.
 コンソール704には、操作指令部としての2つのジョイスティック706と、モニタ710が設けられている。図示を省略するが、2つのジョイスティック706により、2台のロボットアーム702を個別に操作が可能である。2つのジョイスティック706は、両手で操作し易い位置に設けられている。モニタ710には、軟性鏡による画像等の情報が表示される。 The console 704 is provided with two joysticks 706 as operation command units and a monitor 710. Although not shown, two robot arms 702 can be individually operated by two joysticks 706. The two joysticks 706 are provided at positions that can be easily operated with both hands. On the monitor 710, information such as an image by a flexible endoscope is displayed.
 ジョイスティック706は、上下動作、左右動作、捻り動作、及び傾動動作が可能であり、これらの動作に応じてロボットアーム702を動かすことができる。ジョイスティック706はマスターアームであってもよい。ロボットアーム702とコンソール704との間の通信手段は、有線、無線、ネットワーク又はこれらの組合せでよい。 The joystick 706 can move up and down, move left and right, twist, and tilt, and can move the robot arm 702 according to these operations. The joystick 706 may be a master arm. The communication means between the robot arm 702 and the console 704 may be wired, wireless, network, or a combination thereof.
 ジョイスティック706には、トリガレバー36が設けられており、該トリガレバー36を操作することにより前記モータを駆動可能である。 The joystick 706 is provided with a trigger lever 36, and the motor can be driven by operating the trigger lever 36.
 本発明は、上述の実施の形態に限らず、本発明の要旨を逸脱することなく、種々の構成乃至工程を採り得ることは勿論である。 Of course, the present invention is not limited to the above-described embodiment, and various configurations and processes can be adopted without departing from the gist of the present invention.

Claims (19)

  1.  アクチュエータ(100、102)によって回転される駆動軸(115、116)を有する駆動部(30)と、
     前記駆動軸(115、116)によって従動回転される従動軸(158a、158b)、該従動軸(158a、158b)の回転によって動作される先端動作部(12)、及び、該先端動作部(12)を先端に設けたシャフト(18)を有し、前記駆動部(30)に対して着脱可能な作業部(16)と、
     を備え、
     前記駆動軸(115、116)は軸線方向に対して傾斜した駆動側接合面(137、138)を有し、
     前記従動軸(158a、158b)は軸線方向に対して傾斜すると共に、前記駆動側接合面(137、138)と係合可能な従動側接合面(176a、176b)を有し、
     前記駆動側接合面(137、138)及び前記従動側接合面(176a、176b)は、前記駆動部(30)及び前記作業部(16)が装着された状態で互いに係合して、前記駆動軸(115、116)の回転を前記従動軸(158a、158b)に伝達可能であることを特徴とする医療用マニピュレータ。
    A drive unit (30) having a drive shaft (115, 116) rotated by an actuator (100, 102);
    The driven shafts (158a, 158b) driven to rotate by the drive shafts (115, 116), the tip operating unit (12) operated by the rotation of the driven shafts (158a, 158b), and the tip operating unit (12 A working part (16) having a shaft (18) provided at the tip, and detachable from the drive part (30);
    With
    The drive shafts (115, 116) have drive side joint surfaces (137, 138) inclined with respect to the axial direction,
    The driven shaft (158a, 158b) is inclined with respect to the axial direction and has a driven side joint surface (176a, 176b) engageable with the drive side joint surface (137, 138),
    The driving side joining surfaces (137, 138) and the driven side joining surfaces (176a, 176b) are engaged with each other in a state in which the driving unit (30) and the working unit (16) are mounted, and the driving A medical manipulator characterized in that the rotation of the shaft (115, 116) can be transmitted to the driven shaft (158a, 158b).
  2.  請求項1記載の医療用マニピュレータにおいて、
     前記駆動側接合面(137、138)と前記従動側接合面(176a、176b)との係合時、前記駆動軸(115、116)及び前記従動軸(158a、158b)の一方が他方によって強制的に回転可能であることを特徴とする医療用マニピュレータ。
    The medical manipulator according to claim 1, wherein
    When the drive side joining surface (137, 138) and the driven side joining surface (176a, 176b) are engaged, one of the drive shaft (115, 116) and the driven shaft (158a, 158b) is forced by the other. Medical manipulator characterized in that it can be rotated in a mechanical manner.
  3.  請求項1又は2記載の医療用マニピュレータにおいて、
     前記従動軸(158a、158b)の位相を検出する位相検出手段を備えることを特徴とする医療用マニピュレータ。
    The medical manipulator according to claim 1 or 2,
    A medical manipulator comprising phase detection means for detecting the phase of the driven shaft (158a, 158b).
  4.  請求項3記載の医療用マニピュレータにおいて、
     前記位相検出手段は、前記従動軸の回転に伴って動作する被検出部材(310、312、344、346、612)と、
     前記被検出部材(310、312、612)の動作を検出する検出センサ(306、308、610)と、
     を有することを特徴とする医療用マニピュレータ。
    The medical manipulator according to claim 3, wherein
    The phase detection means includes detected members (310, 312, 344, 346, 612) that operate as the driven shaft rotates.
    Detection sensors (306, 308, 610) for detecting the operation of the detected members (310, 312, 612);
    A medical manipulator characterized by comprising:
  5.  請求項4記載の医療用マニピュレータにおいて、
     前記被検出部材(310、312、344、346)及び前記検出センサ(306、308)が前記駆動部(30)に設けられる一方、前記従動軸(158a、158b)の周面には、その周方向での軸線方向位置が変化したカム面(175)が設けられ、
     前記被検出部材(344、346)は、前記駆動部(30)及び前記作業部(16)が装着された状態でその先端(344a、346a)が前記カム面(175)に当接して、前記従動軸(158a、158b)の回転による前記カム面(175)の前記軸線方向位置の変化に伴って進退可能に構成されていることを特徴とする医療用マニピュレータ。
    The medical manipulator according to claim 4, wherein
    The detected members (310, 312, 344, 346) and the detection sensors (306, 308) are provided in the drive unit (30), while the peripheral surface of the driven shaft (158a, 158b) A cam surface (175) whose axial position in the direction has changed is provided,
    The detected members (344, 346) have their tips (344a, 346a) in contact with the cam surface (175) in a state where the drive unit (30) and the working unit (16) are mounted, A medical manipulator characterized in that the medical manipulator is configured to be able to advance and retreat in accordance with a change in the axial position of the cam surface (175) due to rotation of the driven shaft (158a, 158b).
  6.  請求項4記載の医療用マニピュレータにおいて、
     前記被検出部材(612)は、前記作業部(16)に設けられると共に、前記従動軸(158a、158b)の回転に伴って回転可能であり、
     前記検出センサ(610)は、前記駆動部(30)に設けられると共に、前記駆動部(30)及び前記作業部(16)が装着された状態で前記被検出部材(612)を検出可能に配置されていることを特徴とする医療用マニピュレータ。
    The medical manipulator according to claim 4, wherein
    The detected member (612) is provided in the working unit (16), and is rotatable with the rotation of the driven shaft (158a, 158b),
    The detection sensor (610) is provided in the drive unit (30) and arranged to detect the detected member (612) in a state where the drive unit (30) and the working unit (16) are mounted. A medical manipulator characterized by being made.
  7.  請求項3記載の医療用マニピュレータにおいて、
     前記位相検出手段は、前記従動軸(158a、158b)の径方向に沿って設けられた当接部材(177a、177b)と、
     前記当接部材(177a、177b)が前記従動軸(158a、158b)と共に回転した際に、該当接部材(177a、177b)と当接することで前記従動軸(158a、158b)の回転範囲を原点から正転方向及び逆転方向にそれぞれ180°未満の範囲で規定する規制部(179a)と、
     前記当接部材(177a、177b)と前記規制部(179a)との当接を検出する検出部(514)と、
     を有することを特徴とする医療用マニピュレータ。
    The medical manipulator according to claim 3, wherein
    The phase detection means includes contact members (177a, 177b) provided along the radial direction of the driven shaft (158a, 158b);
    When the contact member (177a, 177b) rotates together with the driven shaft (158a, 158b), the rotation range of the driven shaft (158a, 158b) is set to the origin by contacting the corresponding contact member (177a, 177b). A regulating portion (179a) that regulates within a range of less than 180 ° in each of the forward direction and the reverse direction from
    A detection unit (514) for detecting contact between the contact members (177a, 177b) and the restriction unit (179a);
    A medical manipulator characterized by comprising:
  8.  請求項3又は4記載の医療用マニピュレータにおいて、
     前記駆動部(30)及び前記作業部(16)が装着された後、前記位相検出手段の検出に基づき、前記従動軸(158a、158b)を回転させて原点に設定する原点サーチ動作を実行する原点サーチ部を備えることを特徴とする医療用マニピュレータ。
    The medical manipulator according to claim 3 or 4,
    After the drive unit (30) and the working unit (16) are mounted, an origin search operation is performed in which the driven shaft (158a, 158b) is rotated to set the origin based on the detection of the phase detection means. A medical manipulator comprising an origin search unit.
  9.  請求項3又は4記載の医療用マニピュレータにおいて、
     前記駆動部(30)は、前記駆動軸(115、116)の回転位置を検出する駆動軸位相センサ(331、332)を有することを特徴とする医療用マニピュレータ。
    The medical manipulator according to claim 3 or 4,
    The medical manipulator, wherein the drive unit (30) includes drive shaft phase sensors (331, 332) for detecting a rotational position of the drive shafts (115, 116).
  10.  請求項9記載の医療用マニピュレータにおいて、
     前記駆動部(30)に接続されるコントローラ(514)を備え、
     前記作業部(16)は、前記従動軸(158a、158b)の径方向に沿って設けられた当接部材(177a、177b)と、前記当接部材(177a、177b)が前記従動軸(158a、158b)と共に回転した際に、該当接部材(177a、177b)と当接することで前記従動軸(158a、158b)の回転範囲を原点から正転方向及び逆転方向にそれぞれ180°未満の範囲で規定する規制部(179a)とを有し、
     前記コントローラ(514)は、前記駆動側接合面(137、138)と前記従動側接合面(176a、176b)とが係合される際に、前記従動軸(158a、158b)が強制的に前記規制部(179a)による規制を越えて回転されることを回避可能な安全領域へと、前記駆動軸(115、116)を前記駆動軸位相センサ(331、332)の検出に基づいて予め回転させておく安全着脱動作を実行することを特徴とする医療用マニピュレータ。
    The medical manipulator according to claim 9, wherein
    A controller (514) connected to the drive unit (30);
    The working portion (16) includes a contact member (177a, 177b) provided along a radial direction of the driven shaft (158a, 158b), and the contact member (177a, 177b) includes the driven shaft (158a). 158b), the rotation range of the driven shaft (158a, 158b) is within a range of less than 180 ° from the origin in the forward rotation direction and the reverse rotation direction by contacting the corresponding contact members (177a, 177b). A regulating part (179a) to regulate,
    The controller (514) forces the driven shaft (158a, 158b) to move when the driving side joining surfaces (137, 138) and the driven side joining surfaces (176a, 176b) are engaged. Based on the detection of the drive shaft phase sensor (331, 332), the drive shaft (115, 116) is rotated in advance to a safe region where rotation beyond the restriction by the restriction portion (179a) can be avoided. A medical manipulator characterized by performing a safe attaching / detaching operation.
  11.  請求項10記載の医療用マニピュレータにおいて、
     前記安全着脱動作は、前記作業部(16)が前記駆動部(30)から取り外された際、前記駆動部(30)に前記コントローラ(514)を接続した際、及び、前記駆動部(30)に設けられたマスタスイッチ(34)がオフにされた際のうち、少なくともいずれかのタイミングで実行されることを特徴とする医療用マニピュレータ。
    The medical manipulator according to claim 10, wherein
    The safety attaching / detaching operation is performed when the working unit (16) is detached from the driving unit (30), when the controller (514) is connected to the driving unit (30), and when the driving unit (30) is connected. A medical manipulator that is executed at least at one of the timings when the master switch (34) provided in is turned off.
  12.  請求項3又は4記載の医療用マニピュレータにおいて、
     前記作業部(16)は、前記従動軸(158a、158b)の径方向に沿って設けられた当接部材(177a、177b)と、前記当接部材(177a、177b)が前記従動軸(158a、158b)と共に回転した際に、該当接部材(177a、177b)と当接することで前記従動軸(158a、158b)の回転範囲を原点から正転方向及び逆転方向にそれぞれ180°未満の範囲で規定する規制部(179a)とを有し、
     前記駆動部(30)から前記作業部(16)を取り外すときに、又は、前記駆動部(30)から前記作業部(16)を取り外し可能な状態のときに、次回の駆動部(30)と作業部(16)との装着時に前記従動軸(158a、158b)が強制的に前記規制部(179a)による規制を越えて回転されることを回避できる安全領域へと、前記従動軸(158a、158b)を誘導する安全領域誘導手段を有することを特徴とする医療用マニピュレータ。
    The medical manipulator according to claim 3 or 4,
    The working portion (16) includes a contact member (177a, 177b) provided along a radial direction of the driven shaft (158a, 158b), and the contact member (177a, 177b) includes the driven shaft (158a). 158b), the rotation range of the driven shaft (158a, 158b) is within a range of less than 180 ° from the origin in the forward rotation direction and the reverse rotation direction by contacting the corresponding contact members (177a, 177b). A regulating part (179a) to regulate,
    When the working unit (16) is removed from the driving unit (30), or when the working unit (16) is removable from the driving unit (30), the next driving unit (30) The driven shafts (158a, 158a, 158a, 158a, 158a, 158a, 158a, 158b) A medical manipulator characterized by having a safety area guiding means for guiding 158b).
  13.  請求項12記載の医療用マニピュレータにおいて、
     前記安全領域誘導手段は、前記規制部(179a)の前記当接部材(177a、177b)が当接する端面に設けられた緩衝部材(620)、又は、前記端面から進退する進退部材(622)を含むことを特徴とする医療用マニピュレータ。
    The medical manipulator according to claim 12,
    The safety region guiding means includes a buffer member (620) provided on an end surface with which the abutting members (177a, 177b) of the restricting portion (179a) abut or an advancing / retreating member (622) advancing / retreating from the end surface. A medical manipulator comprising:
  14.  請求項3又は4記載の医療用マニピュレータにおいて、
     前記作業部(16)は、前記従動軸(158a、158b)の径方向に沿って設けられた当接部材(177a、177b)と、前記当接部材(177a、177b)が前記従動軸(158a、158b)と共に回転した際に、該当接部材(177a、177b)と当接することで前記従動軸(158a、158b)の回転範囲を原点から正転方向及び逆転方向にそれぞれ180°未満の範囲で規定する規制部(179a)とを有し、
     前記駆動部(30)と前記作業部(16)とを装着するときに、前記従動軸(158a、158b)が強制的に前記規制部(179a)による規制を越えて回転されることを回避できる安全領域へと、前記従動軸(158a、158b)を誘導する安全領域誘導手段を有することを特徴とする医療用マニピュレータ。
    The medical manipulator according to claim 3 or 4,
    The working portion (16) includes a contact member (177a, 177b) provided along a radial direction of the driven shaft (158a, 158b), and the contact member (177a, 177b) includes the driven shaft (158a). 158b), the rotation range of the driven shaft (158a, 158b) is within a range of less than 180 ° from the origin in the forward rotation direction and the reverse rotation direction by contacting the corresponding contact members (177a, 177b). A regulating part (179a) to regulate,
    When the drive unit (30) and the working unit (16) are mounted, it is possible to avoid that the driven shaft (158a, 158b) is forcibly rotated beyond the regulation by the regulation unit (179a). A medical manipulator having a safety region guiding means for guiding the driven shaft (158a, 158b) to a safety region.
  15.  請求項14記載の医療用マニピュレータにおいて、
     前記安全領域誘導手段は、前記駆動部(30)に設けられることにより、前記駆動部(30)と前記作業部(16)とが装着される際に、前記規制部(179a)と前記当接部材(177a、177b)との間に進動する移動部材(624)を含むことを特徴とする医療用マニピュレータ。
    The medical manipulator according to claim 14, wherein
    The safety area guiding means is provided in the drive unit (30), so that when the drive unit (30) and the working unit (16) are attached, the restriction unit (179a) and the contact portion are contacted. A medical manipulator comprising a moving member (624) that moves between the members (177a, 177b).
  16.  請求項1~15のいずれか1項に記載の医療用マニピュレータにおいて、
     前記駆動側接合面(137、138)及び前記従動側接合面(176a、176b)は、一方が先細りのテーパ形状であり、他方が前記先細りのテーパ形状に対応した奥細りのテーパ形状であることを特徴とする医療用マニピュレータ。
    The medical manipulator according to any one of claims 1 to 15,
    One of the driving side joining surfaces (137, 138) and the driven side joining surfaces (176a, 176b) has a tapered shape, and the other has a tapered shape corresponding to the tapered shape. A medical manipulator characterized by
  17.  請求項16記載の医療用マニピュレータにおいて、
     前記先細りのテーパ形状の前記駆動側接合面(137、138)又は前記従動側接合面(176a、176b)には、径方向に突出する突出部(402)が周方向で等間隔に複数設けられ、
     前記奥細りのテーパ形状の前記従動側接合面(176a、176b)又は前記駆動側接合面(137、138)には、前記突出部(402)に対応する複数の溝部(404)が設けられていることを特徴とする医療用マニピュレータ。
    The medical manipulator according to claim 16, wherein
    A plurality of projecting portions (402) projecting in the radial direction are provided at equal intervals in the circumferential direction on the tapered tapered driving side joining surfaces (137, 138) or the driven side joining surfaces (176a, 176b). ,
    A plurality of grooves (404) corresponding to the protrusions (402) are provided in the tapered side driven side joining surfaces (176a, 176b) or the driving side joining surfaces (137, 138). A medical manipulator characterized by comprising:
  18.  請求項1~15のいずれか1項に記載の医療用マニピュレータにおいて、
     前記駆動側接合面(137、138)及び前記従動側接合面(176a、176b)は、互いに噛み合う歯面形状であることを特徴とする医療用マニピュレータ。
    The medical manipulator according to any one of claims 1 to 15,
    The drive-side joint surfaces (137, 138) and the driven-side joint surfaces (176a, 176b) are tooth surface shapes that mesh with each other, and a medical manipulator.
  19.  請求項1~18のいずれか1項に記載の医療用マニピュレータにおいて、
     前記駆動部(30)及び前記作業部(16)の着脱状態を検出する着脱センサ(314)を備えたことを特徴とする医療用マニピュレータ。
    The medical manipulator according to any one of claims 1 to 18,
    A medical manipulator comprising an attachment / detachment sensor (314) for detecting attachment / detachment states of the drive unit (30) and the working unit (16).
PCT/JP2010/057670 2009-04-30 2010-04-30 Medical manipulator WO2010126127A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011511466A JP5624536B2 (en) 2009-04-30 2010-04-30 Medical manipulator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-111344 2009-04-30
JP2009111344 2009-04-30

Publications (1)

Publication Number Publication Date
WO2010126127A1 true WO2010126127A1 (en) 2010-11-04

Family

ID=43032270

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/057670 WO2010126127A1 (en) 2009-04-30 2010-04-30 Medical manipulator

Country Status (2)

Country Link
JP (1) JP5624536B2 (en)
WO (1) WO2010126127A1 (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012161590A (en) * 2011-02-03 2012-08-30 Terumo Corp Medical manipulator system
JP2013034859A (en) * 2011-08-04 2013-02-21 Olympus Corp Medical equipment
WO2014021122A1 (en) 2012-07-31 2014-02-06 オリンパス株式会社 Medical manipulator and treatment tool replacement method
WO2014162494A1 (en) * 2013-04-01 2014-10-09 カール シュトルツ ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディートゲゼルシャフト Medical manipulator
CN105916461A (en) * 2014-01-31 2016-08-31 柯惠Lp公司 Interfaces for surgical systems
US9477301B2 (en) 2011-08-04 2016-10-25 Olympus Corporation Operation support device and assembly method thereof
US9519341B2 (en) 2011-08-04 2016-12-13 Olympus Corporation Medical manipulator and surgical support apparatus
US9568992B2 (en) 2011-08-04 2017-02-14 Olympus Corporation Medical manipulator
US9632577B2 (en) 2011-08-04 2017-04-25 Olympus Corporation Operation support device and control method thereof
US9671860B2 (en) 2011-08-04 2017-06-06 Olympus Corporation Manipulation input device and manipulator system having the same
JP2017527392A (en) * 2014-09-12 2017-09-21 ボード オブ リージェンツ オブ ザ ユニバーシティ オブ ネブラスカ Quick release end effector and related systems and methods
US9851782B2 (en) 2011-08-04 2017-12-26 Olympus Corporation Operation support device and attachment and detachment method thereof
CN107613899A (en) * 2015-06-01 2018-01-19 奥林巴斯株式会社 Medical manipulator
US10285765B2 (en) 2014-05-05 2019-05-14 Vicarious Surgical Inc. Virtual reality surgical device
US10736219B2 (en) 2016-05-26 2020-08-04 Covidien Lp Instrument drive units
US10799308B2 (en) 2017-02-09 2020-10-13 Vicarious Surgical Inc. Virtual reality surgical tools system
US11045265B2 (en) 2016-05-26 2021-06-29 Covidien Lp Robotic surgical assemblies and instrument drive units thereof
US11272992B2 (en) 2016-06-03 2022-03-15 Covidien Lp Robotic surgical assemblies and instrument drive units thereof
US11583342B2 (en) 2017-09-14 2023-02-21 Vicarious Surgical Inc. Virtual reality surgical camera system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004532704A (en) * 2001-06-22 2004-10-28 パワー メディカル インターベンションズ,インコーポレイテッド Electromechanical surgery device
JP2008104854A (en) * 2006-10-25 2008-05-08 Terumo Corp Manipulator for medical use
JP2009045428A (en) * 2007-07-25 2009-03-05 Terumo Corp Operating mechanism, medical manipulator and surgical robot system
JP2009050288A (en) * 2007-08-23 2009-03-12 Terumo Corp Work mechanism of medical manipulator
JP2009056164A (en) * 2007-08-31 2009-03-19 Terumo Corp Medical manipulator system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004532704A (en) * 2001-06-22 2004-10-28 パワー メディカル インターベンションズ,インコーポレイテッド Electromechanical surgery device
JP2008104854A (en) * 2006-10-25 2008-05-08 Terumo Corp Manipulator for medical use
JP2009045428A (en) * 2007-07-25 2009-03-05 Terumo Corp Operating mechanism, medical manipulator and surgical robot system
JP2009050288A (en) * 2007-08-23 2009-03-12 Terumo Corp Work mechanism of medical manipulator
JP2009056164A (en) * 2007-08-31 2009-03-19 Terumo Corp Medical manipulator system

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9730717B2 (en) 2011-02-03 2017-08-15 Karl Storz Gmbh & Co. Kg Medical manipulator system
JP2012161590A (en) * 2011-02-03 2012-08-30 Terumo Corp Medical manipulator system
US9524022B2 (en) 2011-08-04 2016-12-20 Olympus Corporation Medical equipment
US9568992B2 (en) 2011-08-04 2017-02-14 Olympus Corporation Medical manipulator
JP2013034859A (en) * 2011-08-04 2013-02-21 Olympus Corp Medical equipment
US9851782B2 (en) 2011-08-04 2017-12-26 Olympus Corporation Operation support device and attachment and detachment method thereof
US9671860B2 (en) 2011-08-04 2017-06-06 Olympus Corporation Manipulation input device and manipulator system having the same
US9632577B2 (en) 2011-08-04 2017-04-25 Olympus Corporation Operation support device and control method thereof
US9477301B2 (en) 2011-08-04 2016-10-25 Olympus Corporation Operation support device and assembly method thereof
US9519341B2 (en) 2011-08-04 2016-12-13 Olympus Corporation Medical manipulator and surgical support apparatus
WO2014021122A1 (en) 2012-07-31 2014-02-06 オリンパス株式会社 Medical manipulator and treatment tool replacement method
US9585720B2 (en) 2012-07-31 2017-03-07 Olympus Corporation Medical manipulator and treatment tool replacement method
JP2014028007A (en) * 2012-07-31 2014-02-13 Olympus Corp Medical manipulator and method for exchanging treatment instrument
EP2881061A4 (en) * 2012-07-31 2016-04-20 Olympus Corp Medical manipulator and treatment tool replacement method
EP2982310A4 (en) * 2013-04-01 2016-09-14 Storz Karl Gmbh & Co Kg Medical manipulator
WO2014162494A1 (en) * 2013-04-01 2014-10-09 カール シュトルツ ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディートゲゼルシャフト Medical manipulator
US10045791B2 (en) 2013-04-01 2018-08-14 Karl Storz Se & Co. Kg Medical manipulator
US10363104B2 (en) 2014-01-31 2019-07-30 Covidien Lp Interfaces for surgical systems
CN105916461A (en) * 2014-01-31 2016-08-31 柯惠Lp公司 Interfaces for surgical systems
US11478311B2 (en) 2014-01-31 2022-10-25 Covidien Lp Interfaces for surgical systems
CN105916461B (en) * 2014-01-31 2020-02-18 柯惠Lp公司 Interface for surgical system
US10842576B2 (en) 2014-05-05 2020-11-24 Vicarious Surgical Inc. Virtual reality surgical device
US11540888B2 (en) 2014-05-05 2023-01-03 Vicarious Surgical Inc. Virtual reality surgical device
US11744660B2 (en) 2014-05-05 2023-09-05 Vicarious Surgical Inc. Virtual reality surgical device
US10285765B2 (en) 2014-05-05 2019-05-14 Vicarious Surgical Inc. Virtual reality surgical device
US11045269B2 (en) 2014-05-05 2021-06-29 Vicarious Surgical Inc. Virtual reality surgical device
JP2017527392A (en) * 2014-09-12 2017-09-21 ボード オブ リージェンツ オブ ザ ユニバーシティ オブ ネブラスカ Quick release end effector and related systems and methods
CN107613899A (en) * 2015-06-01 2018-01-19 奥林巴斯株式会社 Medical manipulator
EP3305235A4 (en) * 2015-06-01 2019-01-23 Olympus Corporation Medical manipulator
US10603125B2 (en) 2015-06-01 2020-03-31 Olympus Corporation Medical manipulator
US11045265B2 (en) 2016-05-26 2021-06-29 Covidien Lp Robotic surgical assemblies and instrument drive units thereof
US10736219B2 (en) 2016-05-26 2020-08-04 Covidien Lp Instrument drive units
US11523509B2 (en) 2016-05-26 2022-12-06 Covidien Lp Instrument drive units
US10973126B2 (en) 2016-05-26 2021-04-06 Covidien Lp Instrument drive units
US11272992B2 (en) 2016-06-03 2022-03-15 Covidien Lp Robotic surgical assemblies and instrument drive units thereof
US10799308B2 (en) 2017-02-09 2020-10-13 Vicarious Surgical Inc. Virtual reality surgical tools system
US11690692B2 (en) 2017-02-09 2023-07-04 Vicarious Surgical Inc. Virtual reality surgical tools system
US11583342B2 (en) 2017-09-14 2023-02-21 Vicarious Surgical Inc. Virtual reality surgical camera system
US11911116B2 (en) 2017-09-14 2024-02-27 Vicarious Surgical Inc. Virtual reality surgical camera system

Also Published As

Publication number Publication date
JP5624536B2 (en) 2014-11-12
JPWO2010126127A1 (en) 2012-11-01

Similar Documents

Publication Publication Date Title
JP5624536B2 (en) Medical manipulator
JP5886043B2 (en) Medical manipulator
US20210330408A1 (en) Translational instrument interface for surgical robot and surgical robot systems comprising the same
JP6956761B2 (en) System to detect unsuccessful clamping or firing
JP5431749B2 (en) Medical manipulator
JP5881384B2 (en) Medical manipulator system
JP5875973B2 (en) Medical manipulator
US9861362B2 (en) Surgical device
CN106377291B (en) Surgical instrument with retracting blade
EP3245957B1 (en) A surgical device
CA2471486C (en) A surgical device
US8154239B2 (en) Medical manipulator
JP5323578B2 (en) Medical robot system
US20100076483A1 (en) Medical manipulator
JP7423235B2 (en) Equipment for endoscopic treatment
JP5623391B2 (en) Medical manipulator
JP2010046384A (en) Medical manipulator and experimental device
JP2010227438A (en) Method of manufacturing medical instrument, and medical instrument
JP5636234B2 (en) Medical manipulator
AU2018250448A1 (en) Apparatus for endoscopic procedures
JP2010227555A (en) Medical manipulator
JP2010253205A (en) Manipulator
JP2010035875A (en) Medical manipulator
JP2011206191A (en) Medical manipulator
JP2010051497A (en) Medical manipulator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10769825

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011511466

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10769825

Country of ref document: EP

Kind code of ref document: A1