WO2010125935A1 - パワーモジュール - Google Patents

パワーモジュール Download PDF

Info

Publication number
WO2010125935A1
WO2010125935A1 PCT/JP2010/056872 JP2010056872W WO2010125935A1 WO 2010125935 A1 WO2010125935 A1 WO 2010125935A1 JP 2010056872 W JP2010056872 W JP 2010056872W WO 2010125935 A1 WO2010125935 A1 WO 2010125935A1
Authority
WO
WIPO (PCT)
Prior art keywords
insulating layer
wiring board
semiconductor element
power module
resin
Prior art date
Application number
PCT/JP2010/056872
Other languages
English (en)
French (fr)
Inventor
健 徳山
中津 欣也
齋藤 隆一
佐藤 俊也
秀明 石川
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Priority to EP10769634.6A priority Critical patent/EP2426715B1/en
Priority to US13/266,675 priority patent/US8675364B2/en
Priority to CN201080018856.1A priority patent/CN102414816B/zh
Publication of WO2010125935A1 publication Critical patent/WO2010125935A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/46Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids
    • H01L23/467Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids by flowing gases, e.g. air
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/36Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings
    • B60K6/365Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings with the gears having orbital motion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/445Differential gearing distribution type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/003Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to inverters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/61Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries by batteries charged by engine-driven generators, e.g. series hybrid electric vehicles
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • C25D11/06Anodisation of aluminium or alloys based thereon characterised by the electrolytes used
    • C25D11/08Anodisation of aluminium or alloys based thereon characterised by the electrolytes used containing inorganic acids
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • C25D11/06Anodisation of aluminium or alloys based thereon characterised by the electrolytes used
    • C25D11/10Anodisation of aluminium or alloys based thereon characterised by the electrolytes used containing organic acids
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • C25D11/12Anodising more than once, e.g. in different baths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/367Cooling facilitated by shape of device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/42Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
    • H01L23/433Auxiliary members in containers characterised by their shape, e.g. pistons
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/46Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids
    • H01L23/473Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids by flowing liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/33Structure, shape, material or disposition of the layer connectors after the connecting process of a plurality of layer connectors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K1/02Arrangement or mounting of electrical propulsion units comprising more than one electric motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/10Air crafts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/26Rail vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/32Waterborne vessels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/36Vehicles designed to transport cargo, e.g. trucks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/10Electrical machine types
    • B60L2220/12Induction machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/10Electrical machine types
    • B60L2220/14Synchronous machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/36Temperature of vehicle components or parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/52Drive Train control parameters related to converters
    • B60L2240/525Temperature of converter or components thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/831Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector the layer connector being supplied to the parts to be connected in the bonding apparatus
    • H01L2224/83101Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector the layer connector being supplied to the parts to be connected in the bonding apparatus as prepeg comprising a layer connector, e.g. provided in an insulating plate member
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/8384Sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/07Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00
    • H01L25/072Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • H01L2924/01327Intermediate phases, i.e. intermetallics compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/06Polymers
    • H01L2924/078Adhesive characteristics other than chemical
    • H01L2924/07802Adhesive characteristics other than chemical not being an ohmic electrical conductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/003Constructional details, e.g. physical layout, assembly, wiring or busbar connections
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors

Definitions

  • the present invention relates to a power module including an inverter circuit and a power conversion device including the power module.
  • the conventional double-sided cooling type power module includes an electric wiring, an insulating layer, and a cooler on one main surface on which electrodes of a built-in power semiconductor element are formed, and the other main surface similarly has an electric wiring and an insulating layer. And a cooler. Further, in the cooler described above, a heat dissipation base and fins are formed on the surface opposite to the surface on which the power semiconductor element is disposed, the internal space is sealed with a resin material, and the water channel in which the cooling water channel is formed A structure that improves cooling performance and productivity by inserting and immersing in the housing to bring the cooling medium into direct contact with the fins and dissipating the heat generated by the power semiconductor from both main surfaces through the cooler.
  • Patent Documents 1 to 3 disclose the above.
  • Patent Document 1 discloses a power module in which an inorganic insulating layer is formed at the interface of the vessel and the insulating performance is improved by two types of insulating materials, an insulating adhesive and an inorganic insulating layer.
  • the power semiconductor mounted on the cooler of the power module generates heat. Therefore, a structure in which a heat dissipation base and fins are provided in the cooler and the cooling medium is directly flowed through the fins to be cooled is necessary. .
  • a structure in which a heat dissipation base and fins are provided in the cooler and the cooling medium is directly flowed through the fins to be cooled is necessary.
  • the heat radiation area can be increased and the thermal resistance to the cooling medium can be reduced.
  • the brazing step is omitted by changing the insulating material from a conventionally used ceramic to an adhesive resin insulating material.
  • the resin insulation material is required to have high reliability because the insulation performance of the material itself is inferior to that of ceramic, and the adhesion to the cooler and the penetration of cooling medium and moisture from the outside influence the insulation performance. This is a problem in the automotive field.
  • each insulating layer is an organic insulating material typified by a resin material and is interposed between the electrical wiring and the cooler, and is associated with a change in the temperature of the usage environment. There is a problem of insulation deterioration due to mechanical stress and other complex stresses.
  • the problem to be solved by the present invention is to improve the insulation reliability of the power module and the power conversion device including the power module.
  • a power module a semiconductor element for converting a direct current into an alternating current by a switching operation, and electrically connected to the semiconductor element, and the semiconductor element is disposed on one main surface.
  • a metal heat dissipating member disposed on the opposite side of the first insulating layer and dissipating heat generated by the semiconductor element through the electric wiring board, the resin insulating layer, the first insulating layer, and the second insulating layer; Prepare.
  • the thickness of the second insulating layer is formed larger than the thickness of the first insulating layer.
  • the metal heat dissipating member is formed of an aluminum alloy, and the first insulating layer is inorganic to the metal heat dissipating member.
  • An acid-based alumite treatment is performed on the metal heat dissipation member, and the second insulating layer is formed on the metal heat-dissipation member by applying an organic acid-based alumite treatment to the metal heat dissipation member. It is preferable.
  • the alumite treatment applied to the second insulating layer is preferably phosphoric acid or oxalic acid alumite treatment.
  • a semiconductor element for converting a direct current into an alternating current by a switching operation, and a main electrode on one side of the semiconductor element are arranged opposite to each other.
  • Electrical wiring board or second electrical wiring Comprises a resin insulating layer, a first insulating layer, and the second through the insulating layer, and a metallic heat dissipating member for dissipating the heat the semiconductor element is generated.
  • the metal heat dissipating member is formed of an aluminum alloy
  • the first insulating layer is formed of an inorganic acid-based alumite treatment on the metal heat dissipating member.
  • the second insulating layer is preferably formed on the metal heat dissipation member by subjecting the metal heat dissipation member to an organic acid-based alumite treatment.
  • a semiconductor element for converting a direct current into an alternating current by a switching operation, and a main electrode on one side of the semiconductor element are arranged to face each other.
  • the semiconductor element, the first electric wiring board, and the second electric wiring board are sealed so that a part of the surface of the first electric wiring board and the second electric wiring board that does not face the semiconductor element is exposed.
  • the metal case is made of an aluminum alloy, and the first insulating layer is subjected to an inorganic acid-based alumite treatment on the metal case. Is formed into a metal case, The second insulating layer is preferably formed on the metal case by subjecting the metal case to an organic acid-based alumite treatment.
  • the electrical wiring board is formed of a Cu alloy, and the main surface facing the resin insulating layer is subjected to a roughening treatment or a blackening treatment. An oxidation treatment is preferably performed.
  • the first electric wiring board and the second electric wiring board are formed of a Cu alloy, and are formed on the main surface facing the resin insulating layer. Is preferably subjected to oxidation treatment such as roughening treatment or blackening treatment.
  • the first electric wiring board and the second electric wiring board are formed of a Cu alloy, and are formed on the main surface facing the resin insulating layer. Is preferably subjected to oxidation treatment such as roughening treatment or blackening treatment.
  • the present invention it is possible to improve the insulation reliability of the power module and the power conversion device including the power module.
  • FIG. 4 is an exploded perspective view illustrating the arrangement of switching elements and the flow of current in a power module 300 according to an embodiment of the present invention. It is the schematic of the upper-lower arm series circuit built in the power module 300 which concerns on embodiment of this invention.
  • FIG. 5 is a detailed cross-sectional view of the adhesion interface between the insulating sheet 333 and the inner plane 308 of the CAN-type cooler 304.
  • FIG. (A) is sectional drawing of the power module 300 which concerns on another Example
  • (b) is an exploded sectional view of the power module 300 which concerns on another Example.
  • or (d) are detailed sectional drawings of the adhesion interface of the aluminum insulation board 340 in each power module 300, each electric wiring board, and the CAN type
  • FIG. The external appearance perspective view of the power converter device 200 which concerns on embodiment of this invention is shown. It is sectional drawing of the power converter device which concerns on embodiment of this invention.
  • a double-sided cooling power module and a power conversion device using the same according to an embodiment of the present invention will be described in detail below with reference to the drawings.
  • the power conversion device according to the embodiment of the present invention can be applied to a hybrid vehicle or a pure electric vehicle.
  • FIGS. 1 and 2 a control configuration and a circuit configuration of the power conversion device when the power conversion device according to the embodiment of the present invention is applied to a hybrid vehicle will be described with reference to FIGS. 1 and 2.
  • an on-vehicle power conversion device for an on-vehicle electric system mounted on an automobile particularly an electric vehicle driving electric system
  • An example of an inverter device for driving a vehicle will be described as an example.
  • a vehicle drive inverter device is provided in a vehicle drive electrical system as a control device for controlling the drive of a vehicle drive motor, and a DC power supplied from an onboard battery or an onboard power generator constituting an onboard power source is a predetermined AC power. Then, the AC power obtained is supplied to the vehicle drive motor to control the drive of the vehicle drive motor.
  • the vehicle drive inverter device also has a function of converting AC power generated by the vehicle drive motor into DC power according to the operation mode. ing. The converted DC power is supplied to the on-vehicle battery.
  • the configuration of the present embodiment is optimal as a power converter for driving a vehicle such as an automobile or a truck, but can be applied to other power converters.
  • power converters for trains, ships, airplanes, etc. industrial power converters used as control devices for motors that drive factory equipment, or motors that drive household solar power generation systems and household appliances
  • the present invention can also be applied to a household power conversion device that is used in other control devices.
  • FIG. 1 is a diagram showing a control block of a hybrid vehicle.
  • a hybrid electric vehicle (hereinafter referred to as “HEV”) 110 is one electric vehicle and includes two vehicle drive systems. One of them is an engine system that uses an engine 120 that is an internal combustion engine as a power source. The engine system is mainly used as a drive source for HEV 110. The other is an in-vehicle electric system that uses motor generators MG1 192 and MG2 194 as power sources. The in-vehicle electric system is mainly used as a drive source for HEV 110 and a power generation source for HEV 110.
  • the motor generators MG1 192 and MG2 194 are, for example, synchronous machines or induction machines, and operate as a motor or a generator depending on the operation method.
  • a front wheel axle 114 is rotatably supported at the front part of the vehicle body.
  • a pair of front wheels 112 are provided at both ends of the front wheel axle 114.
  • a rear wheel axle (not shown) is rotatably supported on the rear portion of the vehicle body.
  • a pair of rear wheels are provided at both ends of the rear wheel axle.
  • the HEV of this embodiment employs a so-called front wheel drive system in which the main wheel driven by power is the front wheel 112 and the driven wheel to be driven is the rear wheel. You may adopt.
  • a front wheel side differential gear (hereinafter referred to as “front wheel side DEF”) 116 is provided at the center of the front wheel axle 114.
  • the front wheel axle 114 is mechanically connected to the output side of the front wheel side DEF 116.
  • the output shaft of the transmission 118 is mechanically connected to the input side of the front wheel side DEF 116.
  • the front wheel side DEF 116 is a differential power distribution mechanism that distributes the rotational driving force that is shifted and transmitted by the transmission 118 to the left and right front wheel axles 114.
  • the output side of the motor generator 192 is mechanically connected to the input side of the transmission 118.
  • the output side of the engine 120 and the output side of the motor generator 194 are mechanically connected to the input side of the motor generator 192 via the power distribution mechanism 122.
  • Motor generators 192 and 194 and power distribution mechanism 122 are housed inside the casing of transmission 118.
  • the motor generators 192 and 194 are synchronous machines having a permanent magnet on the rotor, and the AC power supplied to the armature windings of the stator is controlled by the inverter circuit units 140 and 142, whereby the motor generator 192 and The drive of 194 is controlled.
  • a battery 136 is connected to the inverter circuit units 140 and 142, and power can be exchanged between the battery 136 and the inverter circuit units 140 and 142.
  • the HEV 110 includes two motor generators 192 and an inverter circuit unit 140, and a second motor generator unit 194 and an inverter circuit unit 142. They are used accordingly. That is, in the situation where the vehicle is driven by the power from the engine 120, when assisting the driving torque of the vehicle, the second motor generator unit is operated by the power of the engine 120 as a power generation unit to generate power, and the power generation The first motor generator unit is operated as an electric unit by the electric power obtained by the above. Further, when assisting the vehicle speed in the same situation, the first motor generator unit is operated by the power of the engine 120 as a power generation unit to generate power, and the second motor generator unit is generated by the electric power obtained by the power generation. Operate as an electric unit.
  • the vehicle can be driven only by the power of the motor generator 192 by operating the first motor generator unit as an electric unit by the electric power of the battery 136.
  • the battery 136 can be charged by operating the first motor generator unit or the second motor generator unit as a power generation unit by the power of the engine 120 or the power from the wheels to generate power.
  • the battery 136 is also used as a power source for driving an auxiliary motor 195.
  • the auxiliary machine include a motor for driving a compressor of an air conditioner or a motor for driving a hydraulic pump for control.
  • the DC power supplied from the battery 136 to the power converter 200 is converted by the converter 43 for the auxiliary machine. It is converted into AC power and supplied to the motor 195.
  • the auxiliary converter 43 has the same function as that of the inverter circuit units 140 and 142, and controls the phase, frequency, and power of alternating current supplied to the motor 195.
  • the motor 195 generates torque by supplying AC power having a leading phase with respect to the rotation of the rotor of the motor 195.
  • the motor 195 acts as a generator, and the motor 195 is operated in a regenerative braking state.
  • the control function of the auxiliary converter 43 is the same as the control function of the inverter circuit units 140 and 142. Since the capacity of the motor 195 is smaller than the capacity of the motor generators 192 and 194, the maximum conversion power of the auxiliary converter 43 is smaller than the inverter circuit sections 140 and 142, but the circuit configuration of the auxiliary converter 43 is basic. Specifically, the circuit configuration of the inverter circuit units 140 and 142 is the same.
  • the inverter circuit units 140, 142, and 43 and the capacitor module 500 are in an electrical close relationship. Furthermore, there is a common point that measures against heat generation are necessary. It is also desired to make the volume of the device as small as possible. From these points, the power conversion device 200 described in detail below includes the inverter circuit portions 140, 142, and 43 and the capacitor module 500 in the casing of the power conversion device 200. With this configuration, it is possible to realize a small and highly reliable power conversion device while reducing the number of harnesses and reducing radiation noise.
  • the inverter circuit sections 140, 142, and 43 and the capacitor module 500 in one housing, it is effective in simplifying wiring and taking measures against noise.
  • the inductance of the connection circuit between the capacitor module 500 and the inverter circuit units 140, 142, and 43 can be reduced, the spike voltage can be reduced, heat generation can be reduced, and heat dissipation efficiency can be improved.
  • the power conversion device 200 includes inverter circuit units 140 and 142, an auxiliary conversion device 43, and a capacitor module 500.
  • the inverter circuit sections 140 and 142 are configured by connecting a plurality of double-sided cooling type power modules 300 to form a three-phase bridge circuit.
  • each power module has a switching-type power semiconductor element and its connection wiring and an opening as shown by 304 in FIG. (Hereinafter referred to as “CAN-type cooler”).
  • This CAN-type cooler 304 has an outer wall made of the same material that is continuously connected to both heat dissipating bases so as to cover the periphery of the opposing heat dissipating bases, and an opening is prepared in a part of the outer wall. It is a cooler which stores a power semiconductor element in an opening.
  • the auxiliary converter 43 constitutes an inverter device and a step-up / step-down circuit.
  • Each inverter circuit unit 140, 142 is driven and controlled by two driver circuits provided in the control unit.
  • the two driver circuits are collectively indicated as a driver circuit 174.
  • Each driver circuit is controlled by a control circuit 172.
  • the control circuit 172 generates a switching signal for controlling the switching timing of the switching power semiconductor element.
  • the inverter circuit unit 140 is configured by a three-phase bridge circuit, and is arranged on the positive side with respect to each of the U phase (indicated by the symbol U1), the V phase (indicated by the symbol V1), and the W phase (indicated by the symbol W1).
  • An upper arm circuit to be connected and a lower arm circuit to be connected to the negative electrode side are provided.
  • the upper arm circuit and the lower arm circuit constitute an upper and lower arm series circuit.
  • the upper arm circuit includes an upper arm IGBT 328 (insulated gate bipolar transistor), which is a power semiconductor element for switching, and an upper arm diode 156.
  • the lower arm circuit includes a lower arm IGBT 330 and a lower arm diode 166.
  • Each of the upper and lower arm series circuits is electrically connected to the capacitor module 500 and the motor generators 192 and 194 through a DC positive terminal 315, a DC negative terminal 317 and an AC terminal 706.
  • the IGBTs 328 and 330 operate in response to a drive signal output from one driver circuit 174A of the driver circuits 174, and convert DC power supplied from the battery 136 into three-phase AC power. The converted electric power is supplied to the armature winding of the motor generator 192.
  • symbol 328,330,156,166 was abbreviate
  • the power module 300 of the inverter circuit unit 142 has the same configuration as that of the inverter circuit unit 140, and the auxiliary converter 43 has the same configuration as the inverter circuit unit 142. Is omitted.
  • the upper arm IGBT 328 and the lower arm IGBT 330 are illustrated as power semiconductor elements for switching.
  • the upper arm IGBT 328 and the lower arm IGBT 330 include a collector electrode, an emitter electrode (signal emitter electrode terminal), and a gate electrode (gate electrode terminal).
  • An upper arm diode 156 and a lower arm diode 166 are electrically connected between the collector electrode and the emitter electrode of the upper arm IGBT 328 and the lower arm IGBT 330 as illustrated.
  • the upper arm diode 156 and the lower arm diode 166 include two electrodes, a cathode electrode and an anode electrode, and the cathode is arranged so that the direction from the emitter electrode to the collector electrode of the upper arm IGBT 328 and the lower arm IGBT 330 is the forward direction.
  • the electrodes are electrically connected to the collector electrodes of the upper arm IGBT 328 and the lower arm IGBT 330, and the anode electrodes are electrically connected to the emitter electrodes of the upper arm IGBT 328 and the lower arm IGBT 330, respectively.
  • a MOSFET metal oxide semiconductor field effect transistor
  • the upper arm diode 156 and the lower arm diode 166 are unnecessary.
  • the control circuit 172 generates a timing signal for controlling the switching timing of the upper arm IGBT 328 and the lower arm IGBT 330 based on input information from a control device or a sensor (for example, a current sensor 180) on the vehicle side.
  • the driver circuit 174 generates a drive signal for switching the upper arm IGBT 328 and the lower arm IGBT 330 based on the timing signal output from the control circuit 172.
  • the control circuit 172 includes a microcomputer (hereinafter referred to as “microcomputer”) for performing arithmetic processing on the switching timing of the upper arm IGBT 328 and the lower arm IGBT 330.
  • the microcomputer inputs the target torque value required for the motor generator 192, the current value supplied from the upper and lower arm series circuit to the armature winding of the motor generator 192, and the magnetic pole position of the rotor of the motor generator 192. Input as information.
  • the target torque value is based on a command signal output from a host control device (not shown).
  • the current value is detected based on the detection signal output from the current sensor 180.
  • the magnetic pole position is detected based on a detection signal output from a rotating magnetic pole sensor (not shown) provided in the motor generator 192.
  • the case where the current values of three phases are detected will be described as an example, but the current values for two phases may be detected. *
  • the microcomputer in the control circuit 172 calculates the d and q axis current command values of the motor generator 192 based on the target torque value, and the calculated d and q axis current command values and the detected d and q Based on the difference from the current value of the axis, the voltage command values for the d and q axes are calculated. Further, the microcomputer converts the calculated d and q-axis voltage command values into U-phase, V-phase, and W-phase voltage command values based on the detected magnetic pole positions.
  • the microcomputer generates a pulse-like modulated wave based on a comparison between the fundamental wave (sine wave) and the carrier wave (triangular wave) based on the voltage command values of the U phase, V phase, and W phase, and the generated modulation wave
  • the wave is output to the driver circuit 174 as a PWM (pulse width modulation) signal.
  • the driver circuit 174 When driving the lower arm, the driver circuit 174 amplifies the PWM signal and outputs it as a drive signal to the gate electrode of the corresponding lower arm IGBT 330.
  • the driver circuit 174 when driving the upper arm, the driver circuit 174 amplifies the PWM signal after shifting the level of the reference potential of the PWM signal to the level of the reference potential of the upper arm, and uses this as a drive signal. Output to the gate electrodes of the upper arm IGBT 328, respectively. As a result, the upper arm IGBT 328 and the lower arm IGBT 330 perform a switching operation based on the input drive signal.
  • control unit detects abnormalities (overcurrent, overvoltage, overtemperature, etc.) and protects the upper and lower arm series circuit. For this reason, sensing information is input to the control unit. For example, information on the current flowing through the emitter electrodes of the upper arm IGBT 328 and the lower arm IGBT 330 is input to the corresponding driver circuit 174 from the signal emitter electrode terminal of each arm. As a result, the driver circuit 174 detects overcurrent, and when the overcurrent is detected, the switching operation of the corresponding upper arm IGBT 328 and lower arm IGBT 330 is stopped, and the corresponding upper arm IGBT 328 and lower arm IGBT 330 are overcurrent. Protect from.
  • Information on the temperature of the upper and lower arm series circuit is input to the microcomputer from a temperature sensor (not shown) provided in the upper and lower arm series circuit. Further, voltage information on the DC positive side of the upper and lower arm series circuit is input to the microcomputer.
  • the microcomputer performs over-temperature detection and over-voltage detection based on such information, and when an over-temperature or over-voltage is detected, it stops the switching operation of all the upper arm IGBT 328 and lower arm IGBT 330, and the upper and lower arm series circuits are Protect from over temperature or over voltage.
  • the conduction and cut-off operations of the upper arm IGBT 328 and the lower arm IGBT 330 of the inverter circuit unit 140 are switched in a certain order, and the current generated in the stator winding of the motor generator 192 at this switching flows through a circuit including the diodes 156 and 166. .
  • one upper and lower arm series circuit is provided for each phase of the inverter circuit unit 140.
  • a power conversion device having a circuit configuration in which two upper and lower arm series circuits are connected in parallel to each phase may be used as a circuit configuration in which two upper and lower arm series circuits are connected in parallel to each phase may be used.
  • the laminated conductor plate 700 is a three-layer laminated wiring board in which an insulating sheet (not shown) is sandwiched between a positive electrode side conductor plate 702 and a negative electrode side conductor plate 704 made of a conductive plate material that is wide in the power module arrangement direction. is doing.
  • the positive electrode side conductor plate 702 and the negative electrode side conductor plate 704 of the multilayer conductor plate 700 are respectively connected to the positive electrode conductor plate 507 and the negative electrode conductor plate 505 of the multilayer wiring board 501 provided in the capacitor module 500.
  • the positive electrode conductor plate 507 and the negative electrode conductor plate 505 are also made of a conductive plate material that is wide in the power module arrangement direction, and constitute a laminated wiring board having a three-layer structure sandwiching an insulating sheet 517 (not shown).
  • Capacitor module 500 constitutes a smoothing circuit for suppressing fluctuations in DC voltage caused by switching operations of upper arm IGBT 328 and lower arm IGBT 330.
  • the multilayer wiring board 501 of the capacitor module 500 is connected to the input multilayer wiring board 230 connected to the DC connector of the power converter 200.
  • the input laminated wiring board 230 is also connected to an inverter device in the auxiliary converter 43.
  • a noise filter is provided between the input multilayer wiring board 230 and the multilayer wiring board 501.
  • the noise filter includes two capacitors (not shown) that connect the ground terminal of the housing 12 and each DC power line, and constitutes a Y capacitor for common mode noise countermeasures.
  • FIG. 3A is a cross-sectional view of the power module 300 of the present embodiment
  • FIG. 3B is a perspective view of the power module 300 of the present embodiment
  • 4A is an exploded cross-sectional view of the power module 300
  • FIG. 4B is an exploded perspective view of the power module 300
  • FIG. 4C is an exploded perspective view illustrating the arrangement of the switching elements and the current flow of the power module 300
  • FIG. 4D is a schematic diagram of a series circuit of upper and lower arms built in the power module 300.
  • the CAN-type cooler 304 is made of an aluminum alloy material such as Al, AlSi, AlSiC, Al—C, etc., and has a CAN-type shape without a seam.
  • the CAN type refers to a rectangular parallelepiped shape provided with an insertion port 306 on a predetermined surface.
  • the module primary sealing body 300A incorporates an upper and lower arm circuit, and seals the upper and lower arm circuit with a first sealing resin 350.
  • the insulating sheet 333 is inserted between the front and back surfaces of the module primary sealing body 300 ⁇ / b> A and the CAN cooler 304.
  • the direct current positive electrode terminal 315 and the direct current negative electrode terminal 317 are provided so that their main surfaces face each other, and are electrically connected to the capacitor module 500 side.
  • the signal terminal 320U transmits a signal for driving the upper arm IGBT 328.
  • the signal terminal 320L transmits a signal for driving the lower arm IGBT 330.
  • the signal terminals 320U and 320L are arranged apart according to the arrangement of the IGBT.
  • AC terminal 706 is electrically connected to motor generators 192 and 194 and is disposed between signal terminal 320U and DC positive terminal 315.
  • the DC positive terminal 315, the DC negative terminal 317, and the signal terminals 320U and 320L protrude from the CAN type cooler 304 through the insertion port 306 to the outside of the CAN type cooler 304.
  • the CAN type cooler 304 has a flange 304B.
  • An insertion port 306 is formed in the flange 304B.
  • the CAN-type cooler 304 has a structure in which no opening other than the insertion port 306 is provided. As a result, even if the CAN type cooler 304 is inserted into the flow path through which the cooling medium flows, the terminal can protrude from the opening, and the cooling medium can enter the CAN type cooler 304 with a simple configuration. Can be prevented.
  • Fins 305 are formed on the outer walls of the opposing heat dissipation base 307 provided in the CAN type cooler 304. Further, the CAN-type cooler 304 has a curved portion 304 ⁇ / b> A for connecting the opposing heat dissipation bases 307.
  • the curved portion 304 ⁇ / b> A is made of the same material that is seamless so as to be connected to the heat dissipation base 307, and is formed so as to surround the outer periphery of the heat dissipation base 307.
  • the CAN cooler 304 integrally molds the heat dissipation base 307 and the curved portion 304A.
  • the heat dissipation base 307 and the curved portion 304A may be joined by welding or adhesion by an adhesive.
  • the thickness of the curved portion 304A is smaller than the thickness of the heat dissipation base 307, and the curved portion 304A itself is easily deformed. Therefore, the production after the module primary sealing body 300A is inserted. Improves.
  • the DC positive wiring board 314 shown in FIG. 4C is fixed to the collector side of the upper arm IGBT 328 and the cathode side of the upper arm diode 156 by a metal bonding material 337.
  • the first AC wiring board 705A shown in FIG. 4C is fixed to the emitter side of the upper arm IGBT 328 and the anode side of the upper arm diode 156 by a metal bonding material 337.
  • the metal bonding material 337 is a low-temperature sintered bonding material containing a solder material, a silver sheet, and fine metal particles.
  • the DC positive electrode wiring board 314 and the first AC wiring board 705A are arranged to face each other substantially in parallel with the upper arm IGBT 328 and the upper arm diode 156 interposed therebetween.
  • the second AC wiring board 705B shown in FIG. 4C is fixed to the collector side of the lower arm IGBT 330 and the cathode side of the lower arm diode 166 by a metal bonding material 337.
  • a DC negative wiring board 316 shown in FIG. 4C is fixed to the emitter side of the lower arm IGBT 330 and the anode side of the lower arm diode 166 by a metal bonding material 337.
  • the second AC wiring board 705B and the negative electrode wiring board 316 are disposed so as to face each other substantially in parallel with the lower arm IGBT 330 and the lower arm diode 166 interposed therebetween.
  • the first AC wiring board 705A has a partial wiring board 705A1 that does not face the DC positive electrode wiring board 314 and extends toward the lower arm IGBT 330.
  • the second AC wiring board 705B has a partial wiring board 705B1 that does not face the DC negative electrode wiring board 316 and extends to the upper arm IGBT 328 side.
  • Partial wiring board 705 ⁇ / b> A ⁇ b> 1 and partial wiring board 705 ⁇ / b> B ⁇ b> 1 are configured to face each other, and are fixed with metal bonding material 337 through intermediate metal plate 370.
  • the signal electrodes provided on the upper arm IGBT 328 and the lower arm IGBT 330 are electrically connected to the signal wiring boards 320U and 320L by wire bonding (not shown).
  • the reduction in wiring inductance of the power module 300 according to the present embodiment will be described with reference to FIGS. 4C and 4D. Since transient voltage rise and large heat generation of the semiconductor chip occur during the switching operation of the upper arm or the lower arm constituting the inverter circuit, it is desirable to reduce the inductance especially during the switching operation. Since the diode recovery current 390 is generated during the transition, the inductance reduction action will be described based on the recovery current of the lower arm diode 166 as an example based on the recovery current.
  • the recovery current of the diode 166 is a current that flows through the diode 166 in spite of being reverse-biased, and is generally said to be caused by carriers filled in the diode 166 in the forward state of the diode 166.
  • Three-phase alternating current power is generated at the alternating current terminal 706 of the inverter circuit by conducting the conduction operation or the interruption operation of the upper arm or the lower arm constituting the inverter circuit in a predetermined order.
  • the upper arm IGBT 328 operating as the upper arm is switched from the conductive state to the cut-off state, the lower arm diode 166 in a direction to maintain the current of the stator windings of the motor generators 192 and 194 (see FIG. 2).
  • a reflux current flows through the.
  • This return current is a forward current of the diode 166, and the inside of the diode is filled with carriers.
  • the recovery current caused by the above-described carrier flows through the diode 166 of the lower arm.
  • one of the upper and lower arm series circuits is always in the cut-off state, and no short-circuit current flows through the upper and lower arms, but transient current, for example, the diode recovery current flows through the series circuit composed of the upper and lower arms. .
  • the DC positive electrode terminal 315 and the DC negative electrode terminal 317 are in a laminated state in which the DC positive electrode terminal 317 and the DC negative electrode terminal 317 are arranged so as to face each other.
  • a loop-shaped path is generated following the path of the reverse current and the parallel current.
  • an eddy current 392 flows in the heat dissipation base 307, and an effect of reducing the inductance in the loop-shaped path is generated by the magnetic field canceling effect by the eddy current.
  • the closer the recovery current path is to the loop shape the greater the inductance reduction effect.
  • the upper arm IGBT 328 is disposed above the intermediate metal plate 370 and the diode 166. As a result, the path of the recovery current approaches the loop shape, and the inductance reduction action can be increased.
  • the inductance can be reduced by the effect of the laminate arrangement and the effect of the eddy current by the arrangement of the circuit configuration of the power module according to the present embodiment. It is important to reduce the inductance during the switching operation, and in the power module of this embodiment, the series circuit of the upper arm and the lower arm is accommodated in the semiconductor module. For this reason, the inductance reduction effect in a transitional state is large, such as a reduction in inductance with respect to the recovery current of the diode flowing through the upper and lower arm series circuit.
  • the inductance is reduced, the induced voltage generated in the power module is reduced, so that a low-loss circuit configuration can be obtained, and the low inductance can lead to an improvement in switching speed.
  • the heat transfer surface 334 shown in FIG. 4B is opposite to the fixing surface of the DC positive electrode wiring board 314, the DC negative electrode wiring board 316, the first AC wiring board 705A, and the second AC wiring board 705B with the power semiconductor element. It is formed on the side surface.
  • the flat portion 338 of the first sealing resin shown in FIG. 4B is configured to be substantially flush with the heat transfer surface 334 described above.
  • the pressure bonding surface 339 includes a heat transfer surface 334 and a flat portion 338, and the insulating sheet 333 is bonded by thermocompression bonding.
  • the heat transfer surface 334 and the flat portion 338 are configured to be substantially the same surface, the adhesive force between the first sealing resin 350 and the insulating sheet 333 is not reduced, and the heat transfer resistance is increased. Can be suppressed.
  • the crimping surface 339 is formed on both the front surface and the back surface of the module primary sealing body 300A.
  • the DC positive wiring board 314, the DC negative wiring board 316, the first AC wiring board 705A, and the second AC wiring board 705B are collectively referred to as an electric wiring board.
  • the module primary sealing body 300 ⁇ / b> A provided with the insulating sheet 333 is arranged so that the insulating sheet 333 and the internal plane 308 of the CAN type cooler 304 face each other.
  • the inner flat surface 308 of the CAN-type cooler 304 is anodized at least on the surface facing the insulating sheet 333.
  • the insulating sheet 333 is a thin insulating sheet having adhesiveness and in which a thermally conductive filler is mixed with an epoxy resin.
  • the insulating sheet 333 may have a structure in which a plurality of insulating sheets having different filler amounts are combined.
  • the heat radiation base 307 of the CAN type cooler 304 is pressed so that the module primary sealing body 300A is sandwiched between the heat radiation bases 307 facing the CAN type cooler 304.
  • the power module 300 is placed under vacuum, and the insulating sheet 333 and the internal plane 308 are bonded by thermocompression bonding.
  • the insulating sheet 333 functions as a resin insulating layer.
  • the power semiconductor element which is a heat generation source
  • the heat dissipation base 307 only the metal bonding material 337, the DC positive electrode wiring board 314 or the DC negative electrode wiring board 316, and the insulating sheet 333 are interposed. Not through. For this reason, the heat dissipation of a power semiconductor element can be improved significantly. Therefore, a large current can be passed through the element and an increase in the size of the element can be suppressed. Therefore, size reduction of the power module 300 and the power converter can be promoted.
  • FIG. 5A to 5C are detailed cross-sectional views of the bonding interface between the insulating sheet 333 and each electric wiring board and the bonding interface between the insulating sheet 333 and the inner flat surface 308 of the CAN type cooler 304.
  • FIG. 5 (b) is a detailed cross-sectional view enlarging the B portion of FIG. 5 (a).
  • a roughening layer 600 is formed on the heat transfer surface 334 of each electric wiring board shown in FIG. For this reason, the adhesive force between the heat transfer surface 334 and the insulating sheet 333 is increased.
  • the roughening treatment layer 600 is a general roughening treatment. An oxidation treatment such as blackening treatment is appropriate.
  • the DC positive electrode wiring board 314, the DC negative electrode wiring board 316, the first AC wiring board 705A, and the second AC wiring board 705B are made of an Al alloy
  • a general roughening treatment or an inorganic acid anodizing treatment is performed.
  • An oxidation treatment with a large pore diameter is suitable.
  • the insulating sheet 333 is thermocompression bonded, the melted material of the insulating sheet 333 flows into the roughened portion of the roughening treatment layer 600, so that the electrical wiring board and the insulating sheet 333 are bonded. Power is improved.
  • the material of the insulating sheet 333 flows into the roughened portion of the roughening treatment layer 600 and a combined force of chemical bonds is generated, the bonding between each electric wiring board and the insulating sheet 333 is further performed. Power is improved.
  • the anodized layer 601 is formed on the inner plane 308 of the CAN type cooler 304. Since the alumite layer 601 and the insulating sheet 333 are joined, the adhesive force between the CAN type cooler 304 and the insulating sheet 333 is improved.
  • FIG. 5C is a detailed cross-sectional view enlarging a portion C of FIG. 5B.
  • the anodized layer 601 is formed on the side opposite to the insulating sheet 333 through the inorganic acid-based anodized layer 601A and the inorganic acid-based anodized layer 601A, which is the first insulating layer formed on the side close to the insulating sheet 333.
  • an organic acid alumite layer 601B which is a second insulating layer.
  • the inorganic acid-based anodized layer 601A has a pore diameter of about 300 to 400 mm, while the organic acid-based anodized layer 601B has a hole diameter of about 100 to 170 mm.
  • the material of the insulating sheet 333 is made of an inorganic acid-based material by thermocompression bonding at the bonding interface between the inorganic acid-based anodized layer 601A and the insulating sheet 333. It is easy to enter the hole of the alumite layer 601A. As a result, a combined force of an anchor effect and a chemical bond is generated at the bonding interface between the inorganic acid-based alumite layer 601A and the insulating sheet 333, and the bonding force can be improved.
  • the average shear bond strength at the bonding interface between the inorganic acid anodized layer 601A and the insulating sheet 333 is 20 Mpa or more.
  • the thickness of the organic acid anodized layer 601B is configured to be larger than the thickness of the inorganic acid anodized layer 601A. Thereby, the withstand voltage by the organic acid-based alumite layer 601B is improved.
  • the insulating sheet 333 and the organic acid-based anodized layer 601B form two insulating layers via the inorganic acid-based anodized layer 601A, the insulating performance is maintained even when a high voltage of the power semiconductor element is applied. Can be maintained.
  • FIG. 6 is a diagram showing actual measurement data showing the relationship between the thickness of the organic acid-based alumite layer 601B and the withstand voltage.
  • the horizontal axis indicates the thickness of the organic acid-based anodized layer 601B, and the vertical axis indicates the withstand voltage between the organic acid-based anodized layers 601B.
  • the thickness of the organic acid-based alumite layer 601B is preferably 50 um.
  • FIG. 7 is a diagram showing measured data of dielectric strength voltage from the insulating sheet 333 to the organic acid anodized layer 601B.
  • the measurement condition of this actual measurement data is that the thickness of the inorganic acid-based anodized layer 601A is about 0.5 ⁇ m, the thickness of the organic acid-based anodized layer 601B is about 50 ⁇ m, and the thickness of the insulating sheet 333 is about 120 ⁇ m. is there.
  • the insulating sheet 333 and the inorganic acid alumite layer 601A are thermocompression bonded.
  • the withstand voltage with the total insulating layer thickness of 120 ⁇ m indicates the withstand voltage range of the insulating sheet 333 having a thickness of 120 ⁇ m.
  • the white circles plotted in FIG. 7 indicate the withstand voltage when the organic acid-based alumite layer 601B having a thickness of 50 ⁇ m is added.
  • the thickness of the insulating sheet 333 can be reduced while maintaining a high withstand voltage, the thermal resistance of the insulating sheet 333 can be reduced. Therefore, since the overall thermal resistance from the power semiconductor element to the fin 305 can be kept low, heat generated in the power semiconductor element can be efficiently transferred to the fin 305. Further, by reducing the thickness of the insulating sheet 333, it is possible to improve the effect of reducing the inductance due to the eddy current.
  • FIG. 8 is a diagram for explaining a thermocompression bonding process in which the module primary sealing body 300 ⁇ / b> A provided with the insulating sheet 333 is bonded to the CAN type cooler 304.
  • two insulating sheets 333 are bonded to both surfaces of the module primary sealing body 300A by thermocompression bonding.
  • the module primary sealing body 300A is inserted into the CAN-type cooler 304 from the insertion port 306 so that the insulating sheet 333 and the anodized internal plane 308 face each other. Be placed.
  • the CAN type cooler 304 moves from the side where the fins 305 are formed to the side of the module primary sealing body 300 ⁇ / b> A inserted into the CAN type cooler 304. Pressurized. Due to this applied pressure, the curved portion 304 ⁇ / b> A is slightly deformed, and the insulating sheet 333 comes into contact with the anodized internal flat surface 308. As described above, since the CAN-type cooler 304 is placed under a high vacuum temperature, an adhesive force is generated at the contact interface between the insulating sheet 333 and the inner flat surface 308.
  • FIG. 9 is a diagram for explaining the details of the bonding process between the insulating sheet 333 and the inner flat surface 308 of the CAN type cooler 304 under high vacuum temperature shown in FIG. 8 (3).
  • the press machine 360 includes a heater 361 therein.
  • the CAN-type cooler 304 is pressurized by the press 360, and the curved portion 304A is slightly deformed so that the insulating sheet 333 and the anodized inner flat surface 308 are brought into contact with each other.
  • the heater 361 generates heat in this state, the heat generated by the heater 361 is transmitted to the insulating sheet 333 and the anodized internal flat surface 308.
  • the power module 300 stores the module primary sealing body 300A and the insulating sheet 333 in the seamless CAN-type cooler 304 made of an aluminum alloy material or a copper alloy material, so that the module primary sealing is performed.
  • the roughening treatment layer 600 and the alumite layer 601 existing at the stationary body 300A and the insulating sheet 333 and their adhesion interface can be protected from penetration of the cooling medium. As a result, it is possible to prevent insulation deterioration due to peeling of the adhesive interface or moisture permeation and to ensure insulation reliability.
  • the module primary sealing body 300A containing the upper and lower arm circuits sealed is housed, and the current capacity of the inverter devices 141 and 142 can be increased in units of the upper and lower arm circuits using a plurality of power modules 300. It is small and has the ability to expand current capacity. As a result, the current capacity can be increased in accordance with the type of hybrid vehicle, thereby improving productivity.
  • FIG. 10 is a diagram illustrating a process of assembling the power module 300 to the housing 12.
  • the housing 12 includes a cooling jacket 19A in which a flow path 19 through which a cooling medium flows is formed.
  • the cooling jacket 19A is formed with an opening facing the upper and lower portions.
  • the upper opening forms a pair of openings 400 and 402 by attaching the power module 300 to the cooling jacket 19A.
  • the lower opening is indicated by opening 404.
  • the power module 300 is inserted from the upper opening so that the portion where the fins 305 of the power module 300 are formed is accommodated in the flow path 19.
  • the sealing material 800 is sandwiched between the flange 304B and the cooling jacket 19A to improve the sealing performance of the flow path 19.
  • the opening 404 is closed by the flow path back cover 420 through a sealing material.
  • the flow path back cover 420 forms a module fitting portion 19B to be fitted with the curved portion 304A of the power module 300.
  • the module fitting portion 19B formed so as to be fitted to the curved portion 304A makes it difficult for the cooling medium flowing in the flow path 19 to flow to the module fitting portion 19B, and the cooling medium easily flows to the fin 305 side. Thereby, the cooling efficiency of the power module 300 can be improved.
  • the module primary sealing body 300A incorporates an upper arm IGBT 328, a lower arm IGBT 330, an upper arm diode 156, and a lower arm diode 166 that constitute an upper and lower arm circuit.
  • the main electrode surfaces of both of these power semiconductor elements are sandwiched between a DC positive wiring board 314, a DC negative wiring board 316, a first AC wiring board 705A, and a second AC wiring board 705B.
  • These wiring boards form a heat transfer surface 334 on the surface opposite to the side where the power semiconductor elements are arranged.
  • the heat transfer surface 334 is exposed from the first sealing resin 350. Thereby, the generated heat of the power semiconductor element can be dissipated from both main electrode surfaces of the power semiconductor element.
  • the insulating sheet 333 is affixed to the heat transfer surface 334, insulation between the heat transfer surface 334 and the CAN type cooler 304 is ensured, and the fin 305 of the CAN type cooler 304 is used as a cooling medium. Heat dissipation is possible.
  • the thermal resistance of the power module 300 is reduced, and the motor generators 192 and 194 can be driven with a power semiconductor element having a small area, so that the power module 300 is reduced in size.
  • a power converter using the power module 300 will be described with reference to FIGS.
  • 200 is a power converter
  • 10 is an upper case
  • 11 is a metal base plate
  • 12 is a housing
  • 13 is a cooling water inlet pipe
  • 14 is a cooling water outlet pipe
  • 420 is a channel back cover
  • 16 is a lower case
  • 17 is an AC terminal case
  • 18 is an AC output wiring
  • 19 is a cooling water flow path
  • 20 is a control circuit board.
  • Reference numeral 21 denotes a connector for connection to the outside
  • reference numeral 22 denotes a drive circuit board that holds a driver circuit 174.
  • the control unit is configured by the control circuit board 20, the control circuit 172, the drive circuit board 22, and the driver circuit 174.
  • Three power modules (double-sided electrode modules) 300 are provided in each inverter circuit unit.
  • One power module 300 includes an inverter circuit unit 142, and the other power module 300 includes an inverter circuit unit 140.
  • 700 is a laminated conductor plate
  • 800 is a sealing material
  • 304 is a CAN-shaped heat dissipation base
  • 314 is a DC positive wiring board
  • 316 is a DC negative wiring board
  • 500 is a capacitor module
  • 504 is a positive capacitor terminal
  • 506 is a negative capacitor terminal.
  • Reference numerals 514 denote capacitor cells, respectively.
  • FIG. 13 is an external perspective view of the power conversion device 200 according to the embodiment of the present invention.
  • the external components of the power conversion device 200 include a housing 12 having a substantially rectangular top or bottom surface, a cooling water inlet pipe 13 and a cooling water outlet pipe 14 provided on one of the outer circumferences on the short side of the housing 12, and the housing 12.
  • An upper case 10 for closing the upper opening of the housing 12 and a lower case 16 for closing the lower opening of the housing 12 are provided.
  • AC terminal case 17 used for connection with motor generators 192 and 194 is provided on the outer periphery of the long side of power conversion device 200.
  • AC output wiring 18 electrically connects power module 300 and motor generators 192 and 194.
  • the connector 21 is connected to the control circuit board 20 built in the housing 12. Various signals from the outside are transmitted to the control circuit board 20 via the connector 21.
  • the DC negative electrode side connection terminal portion 510 and the DC positive electrode side connection terminal portion 512 electrically connect the battery 136 and the capacitor module 500.
  • the connector 21 is provided on one side of the outer peripheral surface on the short side of the housing 12.
  • the DC negative electrode side connection terminal portion 510 and the DC positive electrode side connection terminal portion 512 are provided on the outer peripheral surface on the short side opposite to the surface on which the connector 21 is provided. That is, the connector 21 and the direct current negative electrode side connection terminal portion 510 are arranged apart from each other.
  • the DC connector 138 in FIG. 2 corresponds to the DC negative electrode side connection terminal portion 510 and the DC positive electrode side connection terminal portion 512.
  • FIG. 14 is a cross-sectional view of the power converter according to the embodiment of the present invention.
  • a cooling jacket 19A in which a flow path 19 is formed is provided in the middle of the housing 12, and a pair of openings 400 and 402 are formed in three rows along the flow direction at the top of the cooling jacket 19A. And constitute six openings.
  • Each power module 300 is fixed to the upper surface of the cooling jacket 19 ⁇ / b> A via a sealing material 800.
  • the fins 305 of each power module 300 are in direct contact with the cooling medium flowing in the flow path 19 of the cooling jacket 19A.
  • An opening 404 is formed along the flow path 19 on the lower surface of the cooling jacket 19A, and the opening 404 is closed with a flow path back cover 420.
  • An auxiliary converter 43 is attached to the lower surface of the cooling jacket 19A and is cooled by the cooling medium.
  • the auxiliary converter 43 is fixed to the lower surface of the flow path back cover 420 such that the heat radiating metal surface of a built-in power module or the like (not shown) faces the lower surface of the cooling jacket 19A.
  • the sealing material is a liquid seal, but a resin material, a rubber O-ring, packing, or the like may be used instead of the liquid seal. Especially when the liquid seal is used, the power converter 200 Assemblability can be improved.
  • a lower case 16 is provided below the cooling jacket 19A, and a capacitor module 500 is provided in the lower case 16.
  • Capacitor module 500 is fixed to the inner surface of the bottom plate of lower case 16 such that the heat dissipation surface of the metal case is in contact with the inner surface of the bottom plate of lower case 16.
  • the casing 12 provided with the cooling jacket 19A is cooled, whereby the lower case 16 provided at the lower portion of the casing 12 is cooled.
  • the heat of the capacitor module 500 is thermally conducted to the cooling water through the lower case 16 and the housing 12, and the capacitor module 500 is cooled.
  • a laminated conductor plate 700 for electrically connecting the power module 300 and the capacitor module 500 is disposed above the power module 300.
  • the laminated conductor plate 700 connects the power modules 300 in parallel across the input terminals 315 and 317 of the power modules 300.
  • the laminated conductor plate 700 includes a positive electrode side conductor plate 702 connected to the positive electrode conductor plate 507 of the capacitor module 500, a negative electrode side conductor plate 704 connected to the negative electrode conductor plate 505 of the capacitor module 500, a conductor plate 702, It is comprised by the insulating sheet 7000 arrange
  • FIG. Since the conductor plates 505 and 507 are arranged so as to penetrate the water channel partition formed by meandering the flow path 19 of the cooling jacket 19A, the wiring length can be shortened. The parasitic inductance up to the capacitor module 500 can be reduced.
  • the control circuit board 20 and the drive circuit board 22 are arranged above the laminated conductor plate 700.
  • a driver circuit 174 shown in FIG. 2 is mounted on the drive circuit board 22, and a control circuit 172 having a CPU shown in FIG. 2 is mounted on the control circuit board 20.
  • a metal base plate 11 is disposed between the drive circuit board 22 and the control circuit board 20. The metal base plate 11 functions as an electromagnetic shield for a circuit group mounted on both the boards 22 and 20 and also has an action of releasing and cooling heat generated in the drive circuit board 22 and the control circuit board 20. Yes.
  • the cooling jacket 19A is provided in the central portion of the housing 12, the power generator 300 for driving the motor generators 192 and 194 is disposed on one side thereof, and the inverter device (power module for auxiliary equipment) is disposed on the other side. ) 43 can be efficiently cooled in a small space, and the entire power conversion device can be downsized.
  • the cooling jacket 19A integrally with the housing 12 by aluminum casting, the cooling jacket 19A has an effect of increasing the mechanical strength in addition to the cooling effect. Further, since the casing 12 and the cooling jacket 19A are integrally formed by aluminum casting, heat conduction is improved, and cooling efficiency for the drive circuit board 22, the control circuit board 20 and the capacitor module 500 located far from the cooling jacket 19A is improved. improves.
  • the driving circuit board 22 and the control circuit board 20 are provided with flexible wirings 23 that pass through the metal base plate 11 and connect the circuit groups of the circuit boards 20 and 22.
  • the flexible wiring 23 includes a structure laminated in advance in a wiring board, a structure fixed to a wiring pattern on the wiring board with a bonding material such as solder, and a flexible wiring 23 in a through hole provided in advance in the wiring board.
  • the switching timing signal of the inverter circuit is transmitted from the control circuit board 20 to the drive circuit board 22 via the flexible wiring 23, and the drive circuit board 22 is gate driven. A signal is generated and applied to each gate electrode of the power module.
  • the control circuit board 20 is connected to a connector 21 for electrical connection with the outside.
  • the connector 21 is used to transmit a signal to and from the in-vehicle battery 136 provided outside the power converter, that is, a lithium battery module. A signal representing the state of the battery and a signal such as the state of charge of the lithium battery are sent from the lithium battery module to the control circuit board 20.
  • Openings are formed in the upper end and lower end of the housing 12. These openings are closed by fixing the upper case 10 and the lower case 16 to the housing 12 with fastening parts such as screws and bolts, for example.
  • a cooling jacket 19 ⁇ / b> A in which a flow path 19 is provided is formed substantially at the center in the height direction of the housing 12.
  • the upper surface opening of the cooling jacket 19A is covered with each power module 300, and the lower surface opening is covered with the flow passage back cover 420, whereby the flow passage 19 is formed inside the cooling jacket 19A.
  • a water leak test of the flow path 19 is performed during assembly.
  • casing 12 will be performed.
  • the cooling jacket 19A is arranged in the center of the housing 12, and then a structure that allows the necessary parts to be fixed from the openings at the upper and lower ends of the housing 12 is adopted, thereby improving productivity. To do. Moreover, it becomes possible to complete the flow path 19 first and attach other parts after the water leak test, which improves both productivity and reliability.
  • FIG. 15 is a cross-sectional perspective view in which the cooling water inlet pipe and the outlet pipe are attached to the aluminum casting of the housing 12 having the cooling jacket 19A.
  • the cooling water that has flowed into the flow path 19 from the cooling water inlet pipe 13 flows in two along the long side of the rectangle that is the direction of the arrow 418, and the side of the other side of the short side of the rectangle Folded as indicated by an arrow 421a at the corner 19C near the front, again divided into two in the direction of the arrow 422 along the long side of the rectangle, and further folded as indicated by the flow arrow 421b along the long side of the rectangle.
  • a pair of openings 400 and 402 are formed in three rows on the upper surface of the cooling jacket 19A, and six openings are provided.
  • Each power module 300 protrudes from the respective opening into the flow of the cooling medium, and the branching point of the flow path through which the cooling water flows is smoothed by the curved portion 304A and the diversion boundary portion 19B provided in the CAN type cooler 304. Since it is formed, pressure loss can be reduced.
  • the cooling medium can be divided into two parts to reduce the pressure loss. Therefore, even if the flow path is meandered, the increase in pressure loss can be reduced and the cooling efficiency can be improved. Can improve.
  • FIG. 11A is a cross-sectional view of a power module 300 according to another embodiment
  • FIG. 11B is an exploded cross-sectional view of the power module 300 according to another embodiment. Different parts from the first embodiment will be described below, but the configuration with the same reference numerals as in the first embodiment has the same function.
  • an aluminum insulating plate 340 is provided instead of the insulating sheet 333 according to the first example.
  • an adhesive thin resin insulating layer 342 is formed on both main surfaces of the aluminum insulating plate 340.
  • the anodized plate 341 is sandwiched between two resin insulation layers 342, and is entirely anodized to form an anodized layer 601 on the front and back surfaces.
  • the anodized plate 341 and the two resin insulation layers 342 are bonded by thermocompression bonding.
  • the module primary sealing body 300A and the aluminum insulating plate 340 are firmly bonded by the resin insulating layer 342 formed on the aluminum insulating plate 340.
  • the anodized inner flat surface 308 of the CAN type cooler 304 and the aluminum insulating plate 340 are firmly bonded by the resin insulating layer 342 formed on the aluminum insulating plate 340.
  • FIGS. 12A to 12D show an aluminum insulating plate 340 and electric wiring boards (DC positive wiring board 314, DC negative wiring board 316, first AC wiring board 705A1, and second AC wiring board 705B) in the power module 300. ) And a detailed cross-sectional view of an adhesion interface with the CAN-type cooler 304. 12B is an enlarged detailed sectional view of the portion B in FIG. 12A, and FIG. 12C is an enlarged sectional view of the portion C in FIG. 12B. ) Is a detailed cross-sectional view enlarging a portion D of FIG.
  • anodized layers 601 and 602 are formed on both main surfaces of the anodized plate 341.
  • both the inorganic acid-based anodized layer 601A and the organic acid-based anodized layer 601B are formed on the anodized layer 601 on the side close to the power semiconductor element of the anodized plate 341.
  • the inorganic acid alumite layer 601A is formed on the side close to the resin insulating layer 342.
  • the thin resin insulating layer 342 enters the holes of the inorganic acid-based anodized layer 601A by thermocompression bonding, so that the combined effect of the anchor effect and the chemical bond is obtained. Generated and firmly bonded.
  • the thickness of the organic acid-based anodized layer 601B provided under the inorganic acid-based anodized layer 601A is larger than the thickness of the inorganic acid-based anodized layer 601A, so that the withstand voltage is excellent.
  • an insulating layer is formed by two layers of the resin insulating layer 342 and the organic acid anodized layer 601B, and the two insulating layers are formed on both surfaces of the aluminum insulating plate 340.
  • the aluminum insulating plate 340 is provided with two organic acid-based anodized layers 601B, so that the withstand voltage can be significantly improved.
  • the resin insulating layer 342 can be thinned by an amount equivalent to the withstand voltage improved by the organic acid-based alumite layer 601B, the thermal resistance can be greatly reduced while maintaining the insulation reliability.
  • FIG. 16A is a cross-sectional view of a power module 300 according to another embodiment
  • FIG. 16B is a cross-sectional view when the power module 300 according to another embodiment is assembled. Different parts from the first embodiment will be described below, but the configuration with the same reference numerals as in the first embodiment has the same function.
  • flow path forming bodies 380A and 380B having a flow path 381 formed therein are used instead of the CAN type coolers 304 according to the first and second examples. As shown in FIG. 16B, the flow path forming bodies 380A and 380B are subjected to the alumite treatment described in the first embodiment on the surfaces 382A and 382B in contact with the insulating sheet 333.
  • the organic acid-based alumite layer 601B is not necessary to form the organic acid-based alumite layer 601B on the inner plane 308 of the CAN-type cooler 304 shown in the first embodiment. That is, since the organic acid-based alumite layer 601B can be formed in the flow path forming bodies 380A and 380B that are separate from the CAN-type cooler 304, the productivity is greatly improved without reducing the cooling performance. be able to.
  • FIG. 17A is a cross-sectional view of a power module 300 according to another embodiment
  • FIG. 17B is a cross-sectional view when the power module 300 according to another embodiment is assembled.
  • the aluminum insulating plate 340 described in the second example is used instead of the insulating sheet 333 according to the third example.
  • the aluminum insulating plate 340 is provided with two organic acid alumite layers. Only formed. Thereby, since it is only necessary to form the organic acid alumite layer on the aluminum insulating plate 340, the productivity can be greatly improved.

Abstract

 本発明に係るパワーモジュールは、スイッチング動作によって直流電流を交流電流に変換させるための半導体素子と、半導体素子と電気的接続され、一方の主面に半導体素子が配置される電気配線板と、電気配線板の他方の主面側に配置される樹脂絶縁層と、樹脂絶縁層を介して電気配線板とは反対側に配置され、樹脂絶縁層と接合する第1の絶縁層と、第1の絶縁層を介して樹脂絶縁層とは反対側に配置され、半導体素子の電気的な絶縁を確保する第2の絶縁層と、第2の絶縁層を介して第1の絶縁層とは反対側に配置され、半導体素子が発生する熱を電気配線板、樹脂絶縁層、第1の絶縁層および第2の絶縁層を介して放散する金属製放熱部材とを備える。

Description

[規則37.2に基づきISAが決定した発明の名称] パワーモジュール
 本発明は、インバータ回路を内蔵するパワーモジュールと、これを備えた電力変換装置に関するものである。
 従来の両面冷却型パワーモジュールは、内蔵するパワー半導体素子の電極が形成されている一方の主面に電気配線と絶縁層と冷却器を備え、他方の主面にも同様に電気配線と絶縁層と冷却器を備える。また、前述の冷却器には、パワー半導体素子の配置面とは反対側の面に放熱ベースとフィンが形成され、内部空間は樹脂材料にて封止されており、冷却水路が形成された水路筺体に挿入及び浸漬して当該フィンに冷却媒体を直接接触させ、パワー半導体の発生熱を、前述の両主面から冷却器を介して放熱させることで冷却性能と生産性を向上させた構造が特許文献1から3に開示されている。
 パワー半導体の一方の主面に電気配線と絶縁層と冷却器を備えて片面から放熱する片面冷却型パワーモジュールにおいて、電気配線と冷却器を絶縁性接着剤で接着し、絶縁性接着剤と冷却器の界面には無機絶縁層を形成し、絶縁性接着剤と無機絶縁層の2種の絶縁材料によって絶縁性能を向上したパワーモジュールが特許文献1に開示されている。
 従来の電力変換装置では、パワーモジュールの冷却器上部に実装されるパワー半導体が発熱するため、冷却器に放熱ベース及びフィン部を設け直接冷却媒体をフィン部に流し冷却する構造が必要であった。しかし、電気自動車などの普及には更なる高出力化と電力変換装置の小形化が必要である。高出力化と小形化を実現するには冷却性能の向上が必要であり、大きなパワー半導体を用いることで冷却面を拡大し熱抵抗を下げる必要がある。パワー半導体を大型化することで放熱面積を増大させ冷却媒体に対する熱抵抗を低減できるが、パワー半導体の大型化に伴い電力変換装置が大型化し、同時に生産性も悪化させていた。生産性を向上させる手段として、絶縁材料を、従来から使用されているセラミックから接着性の樹脂絶縁材料に変更することでろう付け工程を省略する方式がある。しかし、樹脂絶縁材料は、素材自体の絶縁性能がセラミックに比べて劣ること、冷却器との接着性や外界からの冷却媒体や水分の浸透が絶縁性能に影響するため、高い信頼性を要求される車載分野では課題である。
 特許文献1乃至3に開示されている構造では、各絶縁層が樹脂材料に代表される有機系の絶縁材料で電気配線と冷却器の間に介在する構造であり、使用環境の温度変化に伴う機械的ストレスとその他複合的なストレスによる絶縁劣化の課題がある。
 特許文献4に開示されている構造では、パワー半導体の放熱面が片方のみであり冷却性能が低いという課題がある。また、冷却媒体に対する内部電子部品のシールの記載が無い。冷却媒体が浸透すると、絶縁性接着剤の接着力や絶縁性接着剤及び無機絶縁層自体の絶縁性能が劣化し、結果的に絶縁基板の絶縁性能が維持できなくなる。これは、高い信頼性を要求される車載分野では課題である。特に絶縁性接着剤が樹脂に代表される有機材料に対して重要である。
特開2005-57212号公報 特開2007-53295号公報 特開2008-193867号公報 特開2005-159048号公報
 本発明が解決しようとする課題は、パワーモジュール及びこれを備えた電力変換装置の絶縁信頼性を向上させることである。
 本発明の第1の態様によると、パワーモジュールであって、スイッチング動作によって直流電流を交流電流に変換させるための半導体素子と、半導体素子と電気的接続され、一方の主面に半導体素子が配置される電気配線板と、電気配線板の他方の主面側に配置される樹脂絶縁層と、樹脂絶縁層を介して電気配線板とは反対側に配置され、樹脂絶縁層と接合する第1の絶縁層と、第1の絶縁層を介して樹脂絶縁層とは反対側に配置され、半導体素子の電気的な絶縁を確保する第2の絶縁層と、第2の絶縁層を介して第1の絶縁層とは反対側に配置され、半導体素子が発生する熱を電気配線板、樹脂絶縁層、第1の絶縁層及び前記第2の絶縁層を介して放散する金属製放熱部材とを備える。
 本発明の第2の態様によると、第1の態様のパワーモジュールにおいて、第2の絶縁層の膜厚は、第1の絶縁層の膜厚よりも大きく形成されることが好ましい。
 本発明の第3の態様によると、第1の態様または第2の態様のパワーモジュールにおいて、金属製放熱部材はアルミ合金から形成されており、第1の絶縁層は、金属製放熱部材に無機酸系のアルマイト処理が施されることによって金属製放熱部材に形成され、第2の絶縁層は、金属製放熱部材に有機酸系のアルマイト処理が施されることによって金属製放熱部材に形成されることが好ましい。
 本発明の第4の態様によると、第2の態様または第3の態様のパワーモジュールにおいて、第2の絶縁層に施されたアルマイト処理は、リン酸又はシュウ酸アルマイト処理であることが好ましい。
 本発明の第5の態様によると、パワーモジュールであって、スイッチング動作によって直流電流を交流電流に変換させるための半導体素子と、半導体素子の一方の側にある主電極と対向して配置され、半導体素子と電気的接続される第1の電気配線板と、半導体素子の他方の側にある主電極と対向して配置され、半導体素子と電気的接続される第2の電気配線板とを備え、半導体素子の両側にそれぞれ、第1の電気配線板または第2の電気配線板を介して配置される樹脂絶縁層と、樹脂絶縁層を介して、樹脂絶縁層と接合するためのアルマイト処理が施された第1の絶縁層と、第1の絶縁層を介して、半導体素子の電気的な絶縁を確保するための第2の絶縁層とを備え、半導体素子の両側にそれぞれ、第1の電気配線板または第2の電気配線板、樹脂絶縁層、第1の絶縁層、および第2の絶縁層を介して、半導体素子が発生する熱を放散するための金属製放熱部材とを備える。
 本発明の第6の態様によると、第5の態様のパワーモジュールにおいて、金属製放熱部材はアルミ合金から形成されており、第1の絶縁層は、金属製放熱部材に無機酸系のアルマイト処理が施されることによって金属製放熱部材に形成され、第2の絶縁層は、金属製放熱部材に有機酸系のアルマイト処理が施されることによって金属製放熱部材に形成されることが好ましい。
 本発明の第7の態様によると、パワーモジュールであって、スイッチング動作によって直流電流を交流電流に変換させるための半導体素子と、半導体素子の一方の側にある主電極と対向して配置され、前期半導体素子と電気的接続される第1の電気配線板と、半導体素子の他方の側にある主電極と対向して配置され、前記半導体素子と電気的接続される第2の電気配線板と、第1の電気配線板および第2の電気配線板の半導体素子とは対向しない面の一部を露出するように、半導体素子と第1の電気配線板と第2の電気配線板とを封止するための樹脂封止材と、樹脂封止材により封止された半導体素子と第1の電気配線板と前記第2の電気配線板とを挿入するための開口を有する金属製ケースと、第1の電気配線板および第2の電気配線板の露出面と前記金属製ケースの内壁との間に挿入される絶縁シートとを備え、金属製ケースは、絶縁シートとこの金属製ケースとの対向面に、絶縁シートと接合するための第1の絶縁層が形成されるとともに、第1の絶縁層を介して絶縁シートとは反対側に第2の絶縁層が形成される。
 本発明の第8の態様によると、第7の態様のパワーモジュールにおいて、金属製ケースはアルミ合金から形成されており、第1の絶縁層は、金属製ケースに無機酸系のアルマイト処理が施されることにより金属製ケースに形成され、
 第2の絶縁層は、金属製ケースに有機酸系のアルマイト処理が施されることによって金属製ケースに形成されることが好ましい。
 本発明の第9の態様によると、第1の態様のパワーモジュールにおいて、電気配線板はCu合金から形成されており、樹脂絶縁層と対向する主面には粗化処理または黒化処理等の酸化処理が施されることが好ましい。
 本発明の第10の態様によると、第5の態様のパワーモジュールにおいて、第1の電気配線板および第2の電気配線板はCu合金から形成されており、樹脂絶縁層と対向する主面には粗化処理または黒化処理等の酸化処理が施されることが好ましい。
 本発明の第11の態様によると、第7の態様のパワーモジュールにおいて、第1の電気配線板および第2の電気配線板はCu合金から形成されており、樹脂絶縁層と対向する主面には粗化処理または黒化処理等の酸化処理が施されることが好ましい。
 本発明により、パワーモジュール及びこれを備えた電力変換装置の絶縁信頼性を向上させることができる。
ハイブリッド自動車の制御ブロックを示す図である。 電力変換装置200の回路構成を説明する図である。 (a)は本発明の実施形態に係るパワーモジュール300の断面図であり、(b)は本発明の実施形態に係るパワーモジュール300の外観斜視図である。 本発明の実施形態に係るパワーモジュール300の分解断面図である。 本発明の実施形態に係るパワーモジュール300の分解斜視図である。 本発明の実施形態に係るパワーモジュール300のスイッチング素子の配置及び電流の流れを説明した分解斜視図である。 本発明の実施形態に係るパワーモジュール300に内蔵される上下アーム直列回路の概略図である。 (a)は本発明の実施形態に係るパワーモジュール300の分解断面図であり、(b)は(a)の部分Bの拡大図で、絶縁シート333と各電気配線板との接着界面、及び絶縁シート333とCAN型冷却器304の内部平面308との接着界面とを含む詳細断面図であり、(c)は(b)の部分Cの拡大図で、絶縁シート333と各電気配線板との接着界面、及び絶縁シート333とCAN型冷却器304の内部平面308との接着界面の詳細断面図である。 有機酸系アルマイト層601Bの厚みと絶縁耐圧の関係を示す実測データを示す図である。 絶縁シート333から有機酸系アルマイト層601Bまでの絶縁耐圧の実測データを示す図である。 絶縁シート333を備えたモジュール一次封止体300AをCAN型冷却器304に接着する熱圧着工程を説明する図である。 図8(3)に示された、真空高温下における絶縁シート333とCAN型冷却器304の内部平面308との接着工程の詳細を説明した図である。 パワーモジュール300を筺体12へ組み付る工程を説明した図である。 (a)は、他の実施例に係るパワーモジュール300の断面図であり、(b)は、他の実施例に係るパワーモジュール300の分解断面図である。 (a)乃至(d)は、パワーモジュール300におけるアルミ絶縁板340と各電気配線板及びCAN型冷却器304との接着界面の詳細断面図である。 本発明の実施形態に係る電力変換装置200の外観斜視図を示す。 本発明の実施形態に係る電力変換装置の断面図である。 冷却ジャケット19Aを有する筐体12のアルミ鋳造品に冷却水入口配管と出口配管を取り付けた断面斜視図である。 (a)は、他の実施例に係るパワーモジュール300の断面図であり、(b)は、他の実施例に係るパワーモジュール300の組立時の断面図である。 (a)は、他の実施例に係るパワーモジュール300の断面図であり、(b)は、他の実施例に係るパワーモジュール300の組立時の断面図である。
 本発明の実施形態に係る両面冷却型パワーモジュールとこれを用いた電力変換装置について、図面を参照しながら以下詳細に説明する。本発明の実施形態に係る電力変換装置は、ハイブリッド用の自動車や純粋な電気自動車に適用可能である。
 ここでは、代表例として、本発明の実施形態に係る電力変換装置をハイブリッド自動車に適用した場合の、制御構成と電力変換装置の回路構成について、図1と図2を用いて説明する。
 本発明の実施形態に係る両面冷却型パワーモジュールとこれを用いた電力変換装置では、自動車に搭載される車載電機システムの車載用電力変換装置、特に、車両駆動用電機システムに用いられ、搭載環境や動作的環境などが大変厳しい車両駆動用インバータ装置を例に挙げて説明する。車両駆動用インバータ装置は、車両駆動用電動機の駆動を制御する制御装置として車両駆動用電機システムに備えられ、車載電源を構成する車載バッテリ或いは車載発電装置から供給された直流電力を所定の交流電力に変換し、得られた交流電力を車両駆動用電動機に供給して車両駆動用電動機の駆動を制御する。また、車両駆動用電動機は発電機としての機能も有しているので、車両駆動用インバータ装置は、運転モードに応じて車両駆動用電動機の発生する交流電力を直流電力に変換する機能も有している。変換された直流電力は車載バッテリに供給される。
 なお、本実施形態の構成は、自動車やトラックなどの車両駆動用電力変換装置として最適であるが、これら以外の電力変換装置に対しても適用可能である。例えば、電車や船舶、航空機などの電力変換装置や、工場の設備を駆動する電動機の制御装置として用いられ
る産業用電力変換装置、あるいは、家庭の太陽光発電システムや家庭の電化製品を駆動する電動機の制御装置に用いられたりする、家庭用電力変換装置に対しても適用可能である。
 図1はハイブリッド自動車の制御ブロックを示す図である。図1において、ハイブリッド電気自動車(以下、「HEV」と記述する)110は1つの電動車両であり、2つの車両駆動用システムを備えている。その1つは、内燃機関であるエンジン120を動力源としたエンジンシステムである。エンジンシステムは、主としてHEV110の駆動源として用いられる。もう1つは、モータジェネレータMG1 192、MG2 194を動力源とした車載電機システムである。車載電機システムは、主としてHEV110の駆動源およびHEV110の電力発生源として用いられる。モータジェネレータMG1 192、MG2 194は例えば同期機あるいは誘導機であり、運転方法によりモータとしても発電機としても動作するので、ここではモータジェネレータと記すこととする。
 車体のフロント部には前輪車軸114が回転可能に軸支されている。前輪車軸114の両端には一対の前輪112が設けられている。車体のリア部には後輪車軸(図示省略)が回転可能に軸支されている。後輪車軸の両端には一対の後輪が設けられている。本実施形態のHEVでは、動力によって駆動される主輪を前輪112とし、連れ回される従輪を後輪とする、いわゆる前輪駆動方式を採用しているが、この逆、すなわち後輪駆動方式を採用しても構わない。
 前輪車軸114の中央部には、前輪側デファレンシャルギア(以下、「前輪側DEF」と記述する)116が設けられている。前輪車軸114は、前輪側DEF116の出力側に機械的に接続されている。前輪側DEF116の入力側には、変速機118の出力軸が機械的に接続されている。前輪側DEF116は、変速機118によって変速されて伝達された回転駆動力を左右の前輪車軸114に分配する差動式動力分配機構である。変速機118の入力側には、モータジェネレータ192の出力側が機械的に接続されている。モータジェネレータ192の入力側には、動力分配機構122を介してエンジン120の出力側およびモータジェネレータ194の出力側が機械的に接続されている。なお、モータジェネレータ192、194および動力分配機構122は、変速機118の筐体の内部に収納されている。
 モータジェネレータ192、194は回転子に永久磁石を備えた同期機であり、固定子の電機子巻線に供給される交流電力がインバータ回路部140、142によって制御されることにより、モータジェネレータ192、194の駆動が制御される。インバータ回路部140、142にはバッテリ136が接続されており、バッテリ136とインバータ回路部140、142との間において電力の授受が可能である。
 本実施形態では、HEV110は、モータジェネレータ192およびインバータ回路部140からなる第1電動発電ユニットと、モータジェネレータ194およびインバータ回路部142からなる第2電動発電ユニットとの2つを備え、運転状態に応じてそれらを使い分けている。すなわち、エンジン120からの動力によって車両を駆動している状況において、車両の駆動トルクをアシストする場合には、第2電動発電ユニットを発電ユニットとしてエンジン120の動力によって作動させて発電させ、その発電によって得られた電力によって第1電動発電ユニットを電動ユニットとして作動させる。また、同様の状況において車両の車速をアシストする場合には、第1電動発電ユニットを発電ユニットとしてエンジン120の動力によって作動させて発電させ、その発電によって得られた電力によって第2電動発電ユニットを電動ユニットとして作動させる。
 また、本実施形態では、バッテリ136の電力によって第1電動発電ユニットを電動ユニットとして作動させることにより、モータジェネレータ192の動力のみによって車両の駆動ができる。さらに、本実施形態では、第1電動発電ユニットまたは第2電動発電ユニットを、発電ユニットとしてエンジン120の動力あるいは車輪からの動力によって作動させて発電させることにより、バッテリ136の充電ができる。
 バッテリ136は、さらに補機用のモータ195を駆動するための電源としても使用される。補機としては、たとえばエアコンディショナーのコンプレッサを駆動するモータ、あるいは制御用の油圧ポンプを駆動するモータがあり、バッテリ136から電力変換装置200に供給された直流電力は補機用の変換機43で交流の電力に変換され、モータ195に供給される。補機用の変換機43はインバータ回路部140、142と同様の機能を持ち、モータ195に供給する交流の位相や周波数、電力を制御する。たとえば、モータ195の回転子の回転に対し進み位相の交流電力を供給することにより、モータ195はトルクを発生する。一方、遅れ位相の交流電力を発生することで、モータ195は発電機として作用し、モータ195は回生制動状態の運転となる。このような補機用の変換機43の制御機能は、インバータ回路部140、142の制御機能と同様である。モータ195の容量がモータジェネレータ192、194の容量より小さいので、補機用の変換機43の最大変換電力はインバータ回路部140、142より小さいが、補機用の変換機43の回路構成は基本的にインバータ回路部140、142の回路構成と同じである。
 インバータ回路部140、142および43とコンデンサモジュール500とは、電気的に密接な関係にある。さらに発熱に対する対策が必要な点が共通している。また装置の体積をできるだけ小さく作ることが望まれている。これらの点から以下で詳述する電力変換装置200は、インバータ回路部140、142および43とコンデンサモジュール500とを電力変換装置200の筐体内に内蔵している。この構成により、ハーネスの数を低減できると共に放射ノイズなどを低減しながら小型で信頼性の高い電力変換装置が実現できる。
 また、インバータ回路部140、142および43とコンデンサモジュール500とを一つの筐体に内蔵することで、配線の簡素化やノイズ対策において効果がある。また、コンデンサモジュール500とインバータ回路部140、142および43との接続回路のインダクタンスを低減でき、スパイク電圧を低減できると共に、発熱の低減や放熱効率の向上を図ることができる。
 次に、図2を用いて電力変換装置200の回路構成について説明する。図1に示したように、電力変換装置200は、インバータ回路部140、142と、補機用の変換装置43と、コンデンサモジュール500とを備えている。
 インバータ回路部140、142は両面冷却型のパワーモジュール300を複数台接続して構成され3相ブリッジ回路を構成している。後述するように、各パワーモジュールは、スイッチング用パワー半導体素子とその接続配線や図3の304に示すような開口部を有し、開口面を除いて囲まれた缶状形状の放熱ベース304(以下、「CAN型冷却器」という)等を備えている。このCAN型冷却器304は、対向した放熱ベースの周囲を覆うように、両放熱ベースと連続して繋ぎ目の無い同一材質で構成した外壁を持ち、外壁の一部に開口部が用意され、開口部にパワー半導体素子を収納する冷却器である。また、補機用の変換機43はインバータ装置や昇圧及び降圧回路を構成している。
 各インバータ回路部140、142は、制御部に設けられた2つのドライバ回路によって、それぞれ駆動制御される。図2では、2つのドライバ回路を合わせてドライバ回路174と表示している。各ドライバ回路は制御回路172により制御される。制御回路172は、スイッチング用パワー半導体素子のスイッチングタイミングを制御するためのスイッチング信号を生成する。
 インバータ回路部140は3相ブリッジ回路により構成されており、U相(符号U1で示す)、V相(符号V1で示す)、W相(符号W1で示す)のそれぞれに対して、正極側に接続される上アーム回路と、負極側に接続される下アーム回路とを備えている。上アーム回路と下アーム回路とで上下アーム直列回路構成される。上アーム回路は、スイッチング用のパワー半導体素子である上アームIGBT328(絶縁ゲート型バイポーラトランジスタ)と上アームダイオード156とを備えている。下アーム回路は、下アームIGBT330と下アームダイオード166とを備えている。各上下アーム直列回路は、直流正極端子315と直流負極端子317と交流端子706でコンデンサモジュール500及びモータジェネレータ192、194と電気的に接続される。
 IGBT328、330は、ドライバ回路174のうち一方のドライバ回路174Aから出力された駆動信号を受けて動作し、バッテリ136から供給された直流電力を三相交流電力に変換する。この変換された電力はモータジェネレータ192の電機子巻線に供給される。なお、V相およびW相については、符号328、330、156、166の表示を省略した。インバータ回路部142のパワーモジュール300は、インバータ回路部140の場合と同様の構成であり、また、補機用の変換機43はインバータ回路部142と同様の構成を有しており、ここでは説明を省略する。
 本実施形態では、スイッチング用のパワー半導体素子として上アームIGBT328、下アームIGBT330を用いて例示している。上アームIGBT328、下アームIGBT330は、コレクタ電極、エミッタ電極(信号用エミッタ電極端子)、ゲート電極(ゲート電極端子)を備えている。上アームIGBT328、下アームIGBT330のコレクタ電極とエミッタ電極との間には上アームダイオード156、下アームダイオード166が図示するように電気的に接続されている。上アームダイオード156、下アームダイオード166は、カソード電極およびアノード電極の2つの電極を備えており、上アームIGBT328、下アームIGBT330のエミッタ電極からコレクタ電極に向かう方向が順方向となるように、カソード電極が上アームIGBT328、下アームIGBT330のコレクタ電極に、アノード電極が上アームIGBT328、下アームIGBT330のエミッタ電極にそれぞれ電気的に接続されている。パワー半導体素子としてはMOSFET(金属酸化物半導体型電界効果トランジスタ)を用いてもよい、この場合は上アームダイオード156、下アームダイオード166は不要となる。
 制御回路172は、車両側の制御装置やセンサ(例えば、電流センサ180)などからの入力情報に基づいて、上アームIGBT328、下アームIGBT330のスイッチングタイミングを制御するためのタイミング信号を生成する。ドライバ回路174は、制御回路172から出力されたタイミング信号に基づいて、上アームIGBT328、下アームIGBT330をスイッチング動作させるための駆動信号を生成する。
 制御回路172は、上アームIGBT328、下アームIGBT330のスイッチングタイミングを演算処理するためのマイクロコンピュータ(以下、「マイコン」と記述する)を備えている。マイコンには、モータジェネレータ192に対して要求される目標トルク値、上下アーム直列回路からモータジェネレータ192の電機子巻線に供給される電流値、およびモータジェネレータ192の回転子の磁極位置が、入力情報として入力される。目標トルク値は、図示していない、上位の制御装置から出力された指令信号に基づくものである。電流値は、電流センサ180から出力された検出信号に基づいて検出されたものである。磁極位置は、モータジェネレータ192に設けられた回転磁極センサ(不図示)から出力された検出信号に基づいて検出されたものである。本実施形態では3相の電流値を検出する場合を例に挙げて説明するが、2相分の電流値を検出するようにしても構わない。 
 制御回路172内のマイコンは、目標トルク値に基づいてモータジェネレータ192のd、q軸の電流指令値を演算し、この演算されたd、q軸の電流指令値と、検出されたd、q軸の電流値との差分に基づいてd、q軸の電圧指令値を演算する。さらにマイコンは、この演算されたd、q軸の電圧指令値を、検出された磁極位置に基づいてU相、V相、W相の電圧指令値に変換する。そして、マイコンは、U相、V相、W相の電圧指令値に基づく基本波(正弦波)と搬送波(三角波)との比較に基づいてパルス状の変調波を生成し、この生成された変調波をPWM(パルス幅変調)信号としてドライバ回路174に出力する。
 ドライバ回路174は、下アームを駆動する場合、PWM信号を増幅し、これをドライブ信号として、対応する下アームIGBT330のゲート電極に出力する。一方、上アームを駆動する場合には、ドライバ回路174は、PWM信号の基準電位のレベルを上アームの基準電位のレベルにシフトしてからPWM信号を増幅し、これをドライブ信号として、対応する上アームIGBT328のゲート電極にそれぞれ出力する。これにより、上アームIGBT328、下アームIGBT330は、入力されたドライブ信号に基づいてスイッチング動作する。
 また、制御部は、異常検知(過電流、過電圧、過温度など)を行い、上下アーム直列回路を保護している。このため、制御部にはセンシング情報が入力されている。たとえば、各アームの信号用エミッタ電極端子からは上アームIGBT328、下アームIGBT330のエミッタ電極に流れる電流の情報が、対応するドライバ回路174に入力されている。これにより、ドライバ回路174は過電流検知を行い、過電流が検知された場合には対応する上アームIGBT328、下アームIGBT330のスイッチング動作を停止させ、対応する上アームIGBT328、下アームIGBT330を過電流から保護する。上下アーム直列回路に設けられた温度センサ(不図示)からは上下アーム直列回路の温度の情報がマイコンに入力されている。また、マイコンには上下アーム直列回路の直流正極側の電圧情報が入力されている。マイコンは、それらの情報に基づいて過温度検知および過電圧検知を行い、過温度或いは過電圧が検知された場合には全ての上アームIGBT328、下アームIGBT330のスイッチング動作を停止させ、上下アーム直列回路を過温度或いは過電圧から保護する。
 インバータ回路部140の上アームIGBT328、下アームIGBT330の導通および遮断動作が一定の順で切り替わり、この切り替わり時にモータジェネレータ192の固定子巻線に発生する電流は、ダイオード156、166を含む回路を流れる。なお、本実施形態の電力変換装置200では、インバータ回路部140の各相に1つの上下アーム直列回路を設けたが、モータジェネレータへ出力する3相交流の各相の出力を発生する回路として、各相に2つの上下アーム直列回路を並列接続するようにした回路構成の電力変換装置であってもよい。
 各インバータ回路部140、142に設けられた直流端子315,317(図2および図3参照)は、共通の積層導体板700に接続されている。積層導体板700は、パワーモジュール配列方向に幅広な導電性板材から成る正極側導体板702と負極側導体板704とで絶縁シート(不図示)を挟持した、3層構造の積層配線板を構成している。積層導体板700の正極側導体板702および負極側導体板704は、コンデンサモジュール500に設けられた積層配線板501の正極導体板507および負極導体板505にそれぞれ接続されている。正極導体板507および負極導体板505もパワーモジュール配列方向に幅広な導電性板材から成り、絶縁シート517(不図示)を挟持した3層構造の積層配線板を構成している。
 コンデンサモジュール500には複数のコンデンサセル514が並列接続されており、コンデンサセル514の正極側が正極導体板507に接続され、負極側が負極導体板505に接続されている。コンデンサモジュール500は、上アームIGBT328、下アームIGBT330のスイッチング動作によって生じる直流電圧の変動を抑制するための平滑回路を構成している。
 コンデンサモジュール500の積層配線板501は、電力変換装置200の直流コネクタに接続された入力積層配線板230に接続されている。入力積層配線板230には、補機用の変換機43にあるインバータ装置も接続されている。入力積層配線板230と積層配線板501との間には、ノイズフィルタが設けられている。ノイズフィルタには、筐体12の接地端子と各直流電力ラインとを接続する2つのコンデンサ(不図示)を備えていて、コモンモードノイズ対策用のYコンデンサを構成している。
 図3乃至図10を用いてインバータ回路部140、142を構成するパワーモジュール300の詳細構成を説明する。
 図3(a)は、本実施形態のパワーモジュール300の断面図であり、図3(b)は、本実施形態のパワーモジュール300の斜視図である。図4(a)は、パワーモジュール300の分解断面図であり、図4(b)は、パワーモジュール300の分解斜視図である。図4(c)は、パワーモジュール300のスイッチング素子の配置及び電流の流れを説明した分解斜視図である。図4(d)は、パワーモジュール300に内蔵される上下アーム直列回路の概略図である。
 CAN型冷却器304は、アルミ合金材料例えばAl、AlSi、AlSiC、Al-C等から構成され、かつつなぎ目の無いCAN型の形状を為す。ここで、CAN型とは、所定の一面に挿入口306を備え、かつ有底の直方体形状を指す。
 図4(a)に示されるように、モジュール一次封止体300Aは、上下アーム回路を内蔵し、かつ当該上下アーム回路を第一封止樹脂350により封止する。絶縁シート333は、モジュール一次封止体300Aの表裏面とCAN型冷却器304との間に挿入される。直流正極端子315と直流負極端子317は、その主面が互いに対向するように設けられ、かつコンデンサモジュール500側に電気的に接続される。信号端子320Uは、上アームIGBT328を駆動するための信号を伝達する。信号端子320Lは、下アームIGBT330を駆動するための信号を伝達する。上アームIGBT328と下アームIGBT330はモジュール一次封止体300A内において離れて配置されているため、信号端子320U、320Lは、当該IGBTの配置に応じて離れて配置される。交流端子706は、モータジェネレータ192、194側に電気的に接続され、かつ信号端子320Uと直流正極端子315との間に配置される。直流正極端子315、直流負極端子317、信号端子320U、320Lは、CAN型冷却器304内部から挿入口306を介してCAN型冷却器304外部に突出する。CAN型冷却器304はフランジ304Bを有する。当該フランジ304Bには、挿入口306が形成される。
 CAN型冷却器304は、挿入口306以外に開口を設けない構造である。これにより、CAN型冷却器304を冷却媒体が流れる流路内に挿入しても、開口から端子を突出させることができるとともに、簡易な構成で冷却媒体がCAN型冷却器304内部に侵入することを防ぐことができる。
 CAN型冷却器304が備える対向した放熱ベース307の外壁にフィン305が形成される。また、CAN型冷却器304は、対向した放熱ベース307を繋ぐための湾曲部304Aを有する。湾曲部304Aは、放熱ベース307と連設するように繋ぎ目の無い同一材質で構成され、かつ放熱ベース307の外周を取り囲む様に形成される。例えば、生産性を向上させるために、CAN型冷却器304は、放熱ベース307と湾曲部304Aを一体成型させる。また、放熱ベース307と湾曲部304Aは、溶接による接合や接着剤による接着でもよい。なお、湾曲部304Aの厚みは、放熱ベース307の厚みに比べて小さくなっており、湾曲部304A自体が変形し易い構造となっているので、モジュール一次封止体300Aが挿入された後の生産性が向上する。
 図4(c)に示される直流正極配線板314は、上アームIGBT328のコレクタ側及び上アームダイオード156のカソード側と金属接合材料337によって固着される。図4(c)に示される第一交流配線板705Aは、上アームIGBT328のエミッタ側及び上アームダイオード156のアノード側と金属接合材料337によって固着される。なお、本実施形態においては、金属接合材料337は、はんだ材や銀シート及び微細金属粒子を含んだ低温焼結接合材が用いられる。直流正極配線板314と第一交流配線板705Aは、上アームIGBT328及び上アームダイオード156を挟んで略平行に対向して配置される。
 図4(c)に示される第二交流配線板705Bは、下アームIGBT330のコレクタ側及び下アームダイオード166のカソード側と、金属接合材料337によって固着される。図4(c)に示される直流負極配線板316は、下アームIGBT330のエミッタ側及び下アームダイオード166のアノード側と、金属接合材料337によって固着される。第二交流配線板705Bと負極配線板316は、下アームIGBT330及び下アームダイオード166を挟んで略平行に対向して配置される。
 第一交流配線板705Aは、直流正極配線板314と対向することなく、且つ下アームIGBT330側に伸びている部分配線板705A1を有する。同様に、第二交流配線板705Bは、直流負極配線板316と対向することなく、かつ上アームIGBT328側に伸びる部分配線板705B1を有する。部分配線板705A1と部分配線板705B1は、互いに対向するように構成され、かつ中間金属板370を介して金属接合材料337で固着される。上アームIGBT328及び下アームIGBT330に設けられた信号電極は、ワイヤボンディング(不図示)により信号配線板320U、320Lと電気的に接続される。
 次に、本実施形態に関するパワーモジュール300の配線インダクタンス低減化について、図4(c)及び図4(d)を用いて説明する。過渡的な電圧上昇や半導体チップの大きな発熱は、インバータ回路を構成する上アームあるいは下アームのスイッチング動作時に発生するので、特にスイッチング動作時のインダクタンスを低減することが望ましい。過渡時にダイオードのリカバリ電流390が発生するので、このリカバリ電流に基づき、一例として下アームのダイオード166のリカバリ電流を例としてインダクタンス低減の作用を説明する。
 ダイオード166のリカバリ電流とは、逆バイアスであるにもかかわらずダイオード166に流れる電流であり、ダイオード166の順方向状態でダイオード166内に満たされたキャリアに起因すると一般に言われている。インバータ回路を構成する上アームあるいは下アームの導通動作あるいは遮断動作が所定の順に行われることでインバータ回路の交流端子706には3相交流電力が発生する。今、上アームとして動作している上アームIGBT328が導通状態から遮断状態に切り替わると、モータジェネレータ192及び194(図2を参照)の固定子巻線の電流を維持する方向に下アームのダイオード166を介して還流電流が流れる。この還流電流はダイオード166の順方向電流であり、ダイオード内部はキャリアで満たされる。次に、上アームIGBT328が遮断状態から再び導通状態に切り替わると、下アームのダイオード166に上述したキャリアに起因するリカバリ電流が流れる。定常的な動作では上下アーム直列回路のどちらかが必ず遮断状態にあり、上下アームに短絡電流が流れることが無いが、過渡状態の電流例えばダイオードのリカバリ電流は上下アームで構成する直列回路を流れる。
 図4(c)及び図4(d)で上下アーム直列回路の上アームIGBT328がオフからオンに変化したとき、直流正極端子315から上アームIGBT328、ダイオード166を通って直流負極端子317にダイオード166のリカバリ電流が流れる(図に矢印で示す)。なお、このとき、下アームIGBT330は遮断状態にある。このリカバリ電流の流れをみると、図4(c)に示すように、直流正極端子315と上アームIGBT328とダイオード166から直流負極端子317に至る経路では、導体板が上下方向に並行して配置され、且つ逆向きの同一電流が流れる。そうすると、導体板の間の空間では互いの電流によって発生する磁界が打ち消し合うことになり、結果として電流経路のインダクタンスが低下することとなる。
 すなわち、直流正極端子315と直流負極端子317が接近して対向して配置されたラミネート状態にあることでインダクタンスの低減作用が生じる。
 さらに、図4(c)に示すリカバリ電流の経路をみると、逆方向且つ平行電流の経路に続いて、ループ形状の経路が生じている。このループ形状経路を電流が流れることによって、放熱ベース307には渦電流392が流れることとなり、この渦電流による磁界打ち消し効果によってループ形状経路におけるインダクタンスの低減作用が生じる。なお、リカバリ電流の経路がループ形状に近ければ近いほど、このインダクタンス低減作用が増大する。本実施形態においては、直流正極端子315と直流負極端子317がラミネート状態であるため、電流の流れの始点と終点が一致する。また、上アームIGBT328は、中間金属板370とダイオード166よりも上部に配置されている。これらによって、リカバリ電流の経路がループ形状に近づき、インダクタンス低減作用を増大させることができる。
 以上のように、本実施形態に関するパワーモジュールの回路構成の配置によって、ラミネート配置による効果と渦電流による効果によってインダクタンスを低減することができる。スイッチング動作時のインダクタンスを低減することが重要であり、本実施形態のパワーモジュールでは、上アームと下アームの直列回路を半導体モジュール内に収納している。このため上下アーム直列回路を流れるダイオードのリカバリ電流に対して低インダクタンス化が可能となるなど、過渡的な状態でのインダクタンス低減効果が大きい。
 インダクタンスが低減すれば、パワーモジュールで発生する誘起電圧は小さくなり、低損失の回路構成を得ることができ、また、インダクタンスが小さいことによってスイッチング速度の向上に繋げることができる。
 図4(b)に示される伝熱面334は、直流正極配線板314、直流負極配線板316、第一交流配線板705A及び第二交流配線板705Bのパワー半導体素子との固着面とは反対側の面に形成される。図4(b)に示される第一封止樹脂の平坦部338は、前述の伝熱面334と略同一面となるように構成される。圧着面339は、伝熱面334と平坦部338とで構成され、絶縁シート333が熱圧着により接着される。このように伝熱面334と平坦部338を略同一面となるように構成することにより、第一封止樹脂350と絶縁シート333との接着力を低下させず、かつ伝熱抵抗の増大を抑えることができる。圧着面339は、モジュール一次封止体300Aの表面と裏面の両方に形成される。
 なお、以下では、直流正極配線板314、直流負極配線板316、第一交流配線板705A及び第二交流配線板705Bを電気配線板と総称する。
 絶縁シート333を備えたモジュール一次封止体300Aは、絶縁シート333とCAN型冷却器304の内部平面308が対向するように配置される。なお、CAN型冷却器304の内部平面308は、少なくとも絶縁シート333と対向する面にアルマイト処理が施されている。ここで、絶縁シート333は、接着性を有し、エポキシ樹脂に熱伝導性のフィラーを混ぜ合わせた薄い絶縁シートである。また、絶縁シート333は、フィラー量の異なる複数の絶縁シートを組み合わせた構造のものでも良い。
 そして、モジュール一次封止体300AがCAN型冷却器304の対向した放熱ベース307によって挟まれるように、CAN型冷却器304の放熱ベース307が押圧される。絶縁シート333とアルマイト処理された内部平面308が接触した状態で、パワーモジュール300は真空下に置かれ、絶縁シート333と内部平面308が熱圧着されて接着される。これにより、絶縁シート333は樹脂絶縁層として機能する。また、発熱源であるパワー半導体素子と放熱ベース307との間は、金属接合材337、直流正極配線板314又は直流負極配線板316、絶縁シート333を介するのみであり、高熱抵抗であるグリース等を介することがない。このため、パワー半導体素子の放熱性を大幅に向上させることができる。よって、素子に大電流を流すことができるとともに、素子の大型化を抑制できる。したがって、パワーモジュール300及び電力変換装置の小型化を促進することができる。
 図5(a)乃至(c)は、絶縁シート333と各電気配線板との接着界面、及び絶縁シート333とCAN型冷却器304の内部平面308との接着界面の詳細断面図である。 
 図5(b)は、図5(a)のB部を拡大した詳細断面図である。図4(b)に示された各電気配線板の伝熱面334は粗化処理層600が形成されている。このため、伝熱面334と絶縁シート333との接着界面は接着力が増大している。なお、直流正極配線板314、直流負極配線板316、第一交流配線板705A、第二交流配線板705BがCu合金により構成される場合には、粗化処理層600は一般的な粗化処理か黒化処理等の酸化処理が適当である。
 一方、直流正極配線板314、直流負極配線板316、第一交流配線板705A、第二交流配線板705BがAl合金により構成される場合には、一般的な粗化処理又は無機酸系アルマイト処理等による孔径の大きい酸化処理が適当である。これにより、絶縁シート333を熱圧着する際に、溶け出した絶縁シート333の素材が、粗化処理層600の粗化部に流動して入り込むので、各電気配線板と絶縁シート333との接着力が向上する。また、絶縁シート333の素材が粗化処理層600の粗化部に流動して入り込むことにより、化学結合の複合力が発生することになるので、さらに各電気配線板と絶縁シート333との接着力が向上する。
 前述のように、CAN型冷却器304の内部平面308は、アルマイト層601が形成される。このアルマイト層601と絶縁シート333とが接合されているので、CAN型冷却器304と絶縁シート333との接着力が向上している。
 図5(c)は、図5(b)のC部を拡大した詳細断面図である。アルマイト層601は、絶縁シート333に近い側に形成される第1の絶縁層である無機酸系アルマイト層601Aと、この無機酸系アルマイト層601Aを介して絶縁シート333とは反対側に形成される第2の絶縁層である有機酸系アルマイト層601Bと、により構成される。また、アルマイト層601は封孔処理が為されていないので、無機酸系アルマイト層601Aの孔径が300~400Å程度であり、一方、有機酸系アルマイト層601Bの孔径が100~170Å程度である。
 無機酸系アルマイト層601Aの孔径が有機酸系アルマイト層601Bの孔径よりも大きいので、無機酸系アルマイト層601Aと絶縁シート333との接着界面では、熱圧着によって絶縁シート333の素材が無機酸系アルマイト層601Aの孔に入り込みやすい。これにより、無機酸系アルマイト層601Aと絶縁シート333との接着界面において、アンカー効果と化学結合の複合力が発生して、接着力を向上させることができる。なお、無機酸系アルマイト層601A及び有機酸系アルマイト層601Bが前述の孔径である場合には、無機酸系アルマイト層601Aと絶縁シート333との接着界面の平均せん断接着強度は、20Mpa以上となる。
 また、図5(c)に示すように、有機酸系アルマイト層601Bの厚みは、無機酸系アルマイト層601Aの厚みよりも大きく構成される。これにより、有機酸系アルマイト層601Bによる絶縁耐圧を向上させている。また、絶縁シート333と有機酸系アルマイト層601Bが、無機酸系アルマイト層601Aを介して、2層の絶縁層を形成しているので、パワー半導体素子の高電圧が印加されても絶縁性能を維持できる。
 図6は、有機酸系アルマイト層601Bの厚みと絶縁耐圧の関係を示す実測データを示す図である。横軸は有機酸系アルマイト層601Bの厚さを示し、縦軸は有機酸系アルマイト層601B間の絶縁耐圧を示す。
 図6に示されるように、有機酸系アルマイト層601Bの厚さが大きくなると、絶縁耐圧が向上する一方で、絶縁耐圧のバラツキも大きくなる。また、有機酸系アルマイト層601BをCAN型冷却器304に形成する際の処理時間も長くなってしまう。
 本実施形態に係るパワーモジュール300に印加される最大電圧を考慮すると500V以上の絶縁耐圧が必要とされる。また、本実施形態の電力変換装置のように、3相モータの交流電流を生成するために3つのパワーモジュールを設ける必要があるので、パワーモジュールの生産性を向上させる必要がある。また、絶縁耐圧の信頼性向上のために、絶縁耐圧のバラツキは小さいことが望ましい。そこで、有機酸系アルマイト層601Bの厚さは、膜厚50umが望ましい。
 図7は、絶縁シート333から有機酸系アルマイト層601Bまでの絶縁耐圧の実測データを示す図である。本実測データの測定条件が、無機酸系アルマイト層601Aの厚さは約0.5umであり、有機酸系アルマイト層601Bの厚さは約50umであり、絶縁シート333の厚さは約120umである。なお、絶縁シート333と無機酸系アルマイト層601Aとの間は、熱圧着されている。
 図7に示される、総絶縁層の厚さが120umの絶縁耐圧は、厚さが120umである絶縁シート333単体における絶縁耐圧範囲を示す。これに対して、図7にプロットされた白抜き丸は、厚さが50umである有機酸系アルマイト層601Bを追加した場合の絶縁耐圧を示す。これにより、絶縁シート333の厚さが120umであっても、絶縁耐圧範囲は約6200~7000V程度まで向上しており、絶縁シート333単体の場合よりも500V以上も向上している。
 このように、高い絶縁耐圧を維持しながら、絶縁シート333の厚さを小さくできるので、絶縁シート333分の熱抵抗を低減させることができる。よって、パワー半導体素子からフィン305までの全体の熱抵抗を低く抑えられるので、パワー半導体素子で発生する熱を効率的にフィン305まで伝達できる。また、絶縁シート333の厚さを小さくすることで、前述の渦電流による低インダクタンス化の効果を向上させることもできる。
 図8は、絶縁シート333を備えたモジュール一次封止体300AをCAN型冷却器304に接着する熱圧着工程を説明する図である。
 図8(1)に示すように、2つの絶縁シート333が、モジュール一次封止体300Aの両面にそれぞれ熱圧着によって接着される。
 次に、図8(2)に示すように、モジュール一次封止体300Aは、CAN型冷却器304に挿入口306から挿入され、絶縁シート333とアルマイト処理された内部平面308を対向するように配置される。
 次に、図8(3)に示すように、真空高温下において、CAN型冷却器304は、フィン305が形成された側からCAN型冷却器304に挿入されたモジュール一次封止体300A側に向かって加圧される。この加圧力により、湾曲部304Aが僅かに変形して、絶縁シート333とアルマイト処理された内部平面308とが接触する。上述のようにCAN型冷却器304は、真空高温下に置かれているので、絶縁シート333と内部平面308との接触界面において接着力が発生することになる。
 次に、図8(4)に示すように、CAN型冷却器304内のモジュール一次封止体300Aと絶縁シート333によって占有されなかった空間は、第二封止樹脂351により充填される。
 図9は、図8(3)に示された、真空高温下における絶縁シート333とCAN型冷却器304の内部平面308との接着工程の詳細を説明した図である。プレス機360は、内部にヒータ361が内蔵される。CAN型冷却器304は、このプレス機360により加圧され、湾曲部304Aが微小変形して、絶縁シート333とアルマイト処理された内部平面308とが接触する。この状態でヒータ361が発熱することにより、当該ヒータ361の発生熱が、絶縁シート333とアルマイト処理された内部平面308に伝達される。これにより、CAN型冷却器304の加圧工程と絶縁シート333の熱圧着工程を連続して行えるので、生産性が大幅に向上する。
 以上、本実施形態に係るパワーモジュール300は、モジュール一次封止体300Aと絶縁シート333を、アルミ合金材料又は銅合金材料からなるつなぎ目の無いCAN型冷却器304に収納することで、モジュール一次封止体300Aと絶縁シート333及びそれらの接着界面に存在する粗化処理層600とアルマイト層601を冷却媒体の浸透から守ることができる。これにより、接着界面の剥離や透湿による絶縁性の劣化を防ぎ、絶縁信頼性が確保できる。
 加えて、上下アーム回路を封止して内蔵したモジュール一次封止体300Aを収納しており、パワーモジュール300を複数個用いてインバータ装置141、142の電流容量を上下アーム回路を単位として増量可能であり、小型かつ電流容量増設性を備えている。これによりハイブリッド自動車の車種にあわせた電流容量の増設が可能となり、生産性が向上する。
 図10は、パワーモジュール300を筺体12へ組み付ける工程を説明した図である。筺体12は、冷却媒体が流れる流路19が形成される冷却ジャケット19Aを備える。冷却ジャケット19Aは、その上部と下部とに対向する開口が形成される。上部開口はパワーモジュール300の冷却ジャケット19Aへの取り付けにより、1対の開口部400および402を形成する。下部開口は開口部404で示されている。
 パワーモジュール300は、パワーモジュール300のフィン305が形成された部分が流路19に収納されるように上部開口から挿入される。シール材800は、フランジ304Bと冷却ジャケット19Aにより挟まれ、流路19のシール性を向上させている。
 また、開口404は、シール材を介して流路裏蓋420により塞がる。流路裏蓋420は、パワーモジュール300の湾曲部304Aと嵌合されるモジュール嵌合部19Bを形成する。湾曲部304Aと嵌合されるように形成されたモジュール嵌合部19Bによって、流路19内に流れる冷却媒体はモジュール嵌合部19Bに流れにくくなり、冷却媒体はフィン305側に流れやすくなる。これにより、パワーモジュール300の冷却効率を向上させることができる。
 また、モジュール一次封止体300Aは、上下アーム回路を構成する上アームIGBT328、下アームIGBT330と上アームダイオード156、下アームダイオード166を内蔵する。そして、これらパワー半導体素子の両方の主電極面は、直流正極配線板314、 直流負極配線板316、第一交流配線板705A、第二交流配線板705Bによって挟まれている。これら配線板は、そのパワー半導体素子が配置された側とは反対側の面に伝熱面334を形成する。この伝熱面334は第一封止樹脂350から露出させる。これにより、パワー半導体素子の発生熱は、パワー半導体素子の両方の主電極面から放熱させることができる。一方、伝熱面334には絶縁シート333が貼り付けられているので、伝熱面334とCAN型冷却器304との絶縁性を確保するとともに、CAN型冷却器304のフィン305から冷却媒体に放熱が可能である。
 これにより、パワーモジュール300の熱抵抗が低下して小面積のパワー半導体素子でモータジェネレータ192、194の駆動が可能となるため、パワーモジュール300が小型になる。
 図13乃至図15を用いてパワーモジュール300を用いた電力変換装置を説明する。
 図13乃至図15において、200は電力変換装置、10は上部ケース、11は金属ベース板、12は筐体、13は冷却水入口配管、14は冷却水出口配管、420は流路裏蓋、16は下部ケース、17は交流ターミナルケース、18は交流出力配線、19は冷却水流路、20は制御回路基板である。21は外部との接続のためのコネクタ、22は駆動回路基板でドライバ回路174を保持している。このように制御回路基板20、制御回路172、駆動回路基板22及びドライバ回路174から制御部は構成されている。300はパワーモジュール(両面電極モジュール)で各インバータ回路部に3個設けられており、一方のパワーモジュール300ではインバータ回路部142が構成され、他方のパワーモジュール300ではインバータ回路部140が構成されている。700は積層導体板、800はシール材、304はCAN状放熱ベース、314は直流正極配線板、316は直流負極配線板、500はコンデンサモジュール、504は正極側コンデンサ端子、506は負極側コンデンサ端子、514はコンデンサセル、をそれぞれ表す。
 図13は、本発明の実施形態に係る電力変換装置200の外観斜視図を示す。電力変換装置200の外観部品は、上面あるいは底面が略長方形の筺体12と、筺体12の短辺側の外周の1つに設けられた冷却水入口配管13および冷却水出口配管14と、筺体12の上部開口を塞ぐための上部ケース10と、前記筐体12の下部開口を塞ぐための下部ケース16とを備えている。筺体12の底面側あるいは上面側の形状を略長方形としたことで、車両への取り付けが容易となり、また製造、特に量産し易い効果がある。
 電力変換装置200の長辺側の外周には、各モータジェネレータ192、194との接続に用いる交流ターミナルケース17が設けられている。交流出力配線18は、パワーモジュール300とモータジェネレータ192、194とを電気的に接続する。
 コネクタ21は、筺体12に内蔵された制御回路基板20に接続される。外部からの各種信号は、コネクタ21を介して制御回路基板20に伝送される。直流負極側接続端子部510と直流正極側接続端子部512は、バッテリ136とコンデンサモジュール500とを電気的に接続する。ここで本実施形態では、コネクタ21は、筺体12の短辺側の外周面の一方側に設けられる。一方、直流負極側接続端子部510と直流正極側接続端子部512は、コネクタ21が設けられた面とは反対側の短辺側の外周面に設けられる。つまり、コネクタ21と直流負極側接続端子部510が離れた配置となっている。これにより、直流負極側接続端子部510および/または直流正極側接続端子部512から筺体12に侵入し、さらにコネクタ21まで伝播するノイズを低減することでき、制御回路基板20によるモータの制御性を向上させることができる。図2の直流コネクタ138が、これら直流負極側接続端子部510と直流正極側接続端子部512に対応する。
 図14は、本発明の実施形態に係る電力変換装置の断面図である。筺体12の中ほどには、内部に流路19が形成される冷却ジャケット19Aが設けられ、冷却ジャケット19Aの上部には流れの方向に並んで1対の開口部400および402が3列に形成され6個の開口部を構成する。各パワーモジュール300が冷却ジャケット19Aの上面にシール材800を介して固定されている。各パワーモジュール300のフィン305は、それぞれ冷却ジャケット19Aの流路19に流れる冷却媒体と直接接触する。
 冷却ジャケット19Aの下面には、開口部404が流路19に沿って形成されており、開口404は流路裏蓋420で塞がれている。また冷却ジャケット19Aの下面には補機用の変換機43が取り付けられ、係る冷却媒体により冷却されている。補機用の変換機43は、内蔵しているパワーモジュール等(図示なし)の放熱金属面が冷却ジャケット19Aの下面に対向するようにして、流路裏蓋420の下面に固定されている。本実施形態ではシール材を液体シールとしているが、液体シールの代わりに樹脂材、ゴム製O-リングやパッキンなどを代用しても良く、特に液体シールを用いた場合には電力変換装置200の組立性を向上させることができる。
 さらに冷却ジャケット19Aの下方には、下部ケース16が設けられ、下部ケース16にはコンデンサモジュール500が設けられている。コンデンサモジュール500は、その金属製ケースの放熱面が下部ケース16の底板内面に接するように、下部ケース16の底板内面に固定されている。この構造により、冷却ジャケット19Aの上面と下面とを利用して、パワーモジュール300および補機用の変換機43を効率良く冷却することができ、電力変換装置全体の小型化に繋がる。
 さらに冷却ジャケット19Aが設けられている筐体12が冷却されることにより、筐体12の下部に設けられた下部ケース16が冷却される。その結果、コンデンサモジュール500の熱が下部ケース16および筐体12を介して冷却水に熱的に伝導され、コンデンサモジュール500が冷却される。
 パワーモジュール300の上方には、パワーモジュール300とコンデンサモジュール500とを電気的に接続するための積層導体板700が配置される。この積層導体板700は、各パワーモジュール300の入力端子315、317に跨って、各パワーモジュール300を並列接続している。さらに、積層導体板700は、コンデンサモジュール500の正極導体板507と接続される正極側導体板702と、コンデンサモジュール500の負極導体板505と接続される負極側導体板704と、導体板702、704間に配置される絶縁シート7000によって構成される。この導体板505、507は、冷却ジャケット19Aの流路19が蛇行して作られた水路隔壁内を貫通するように配置されることにより、配線長を短くすることができることから各パワーモジュール300からコンデンサモジュール500までの寄生インダクタンスの低減を図ることができる。
 積層導体板700の上方には制御回路基板20と駆動回路基板22とが配置されている。駆動回路基板22には図2に示すドライバ回路174が搭載され、制御回路基板20には図2に示すCPUを有する制御回路172が搭載されている。また、駆動回路基板22と制御回路基板20との間には金属ベース板11が配置されている。金属ベース板11は、両基板22、20に搭載される回路群の電磁シールドの機能を奏すると共に、駆動回路基板22と制御回路基板20とに発生する熱を逃がし、冷却する作用を有している。
 このように筐体12の中央部に冷却ジャケット19Aを設け、その一方の側にモータジェネレータ192、194駆動用のパワーモジュール300を配置し、また他方の側に補機用のインバータ装置(パワーモジュール)43を配置することで、少ない空間で効率良く冷却でき、電力変換装置全体の小型化が可能となる。冷却ジャケット19Aを、筐体12と一体にアルミ鋳造で作ることにより、冷却ジャケット19Aは冷却効果に加え機械的強度を強くする効果がある。またアルミ鋳造により筐体12と冷却ジャケット19Aとを一体成形構造としたので熱伝導が良くなり、冷却ジャケット19Aから遠い位置にある駆動回路基板22、制御回路基板20およびコンデンサモジュール500に対する冷却効率が向上する。
 駆動回路基板22と制御回路基板20には、金属ベース板11を通り抜けて、各回路基板20、22の回路群の接続を行うフレキシブル配線23が設けられている。このフレキシブル配線23は、予め配線基板の中に積層された構造と配線基板の上部の配線パターンにはんだなどの接合材で固着された構造、さらには配線基板に予め設けたスルーホールにフレキシブル配線23の電極を貫通させるはんだなどの接合材で固着した構造であり、制御回路基板20からインバータ回路のスイッチングタイミング信号がフレキシブル配線23を介して駆動回路基板22に伝達され、駆動回路基板22はゲート駆動信号を発生してパワーモジュールのそれぞれのゲート電極に印加する。この様に、フレキシブル配線23を用いることで、従来使用していたコネクタのヘッドが不要となり、配線基板の実装効率の改善、部品点数の削減が可能となり、インバータの小型化が実現できる。また、制御回路基板20には外部との電気的接続を行うコネクタ21に接続される。コネクタ21を利用して、電力変換装置の外部に設けた車載バッテリ136、すなわちリチウム電池モジュールとの間で信号の伝送が行われる。リチウム電池モジュールから電池の状態を表す信号やリチウム電池の充電状態などの信号が制御回路基板20に送られてくる。
 筐体12の上端部と下端部には開口が形成されている。これら開口は、それぞれ上部ケース10と下部ケース16を、例えばネジやボルト等の締結部品で筐体12に固定することにより塞がれる。筐体12の高さ方向のほぼ中央には、内部に流路19が設けられる冷却ジャケット19Aが形成されている。冷却ジャケット19Aの上面開口を各パワーモジュール300で覆い、下面開口を流路裏蓋420で覆うことにより、冷却ジャケット19Aの内部に流路19が形成される。組み立て途中に流路19の水漏れ試験を行う。そして、水漏れ試験に合格した後に、筐体12の上部と下部の開口から基板やコンデンサモジュール500を取り付ける作業を行うことになる。このように筐体12の中央に冷却ジャケット19Aを配置し、次に筐体12の上端部と下端部の開口から必要な部品を固定する作業が行える構造を採用しており、生産性が向上する。また流路19を最初に完成させ、水漏れ試験の後その他の部品を取り付けることが可能となり、生産性と信頼性の両方が向上する。
 図15は、冷却ジャケット19Aを有する筐体12のアルミ鋳造品に冷却水入口配管と出口配管を取り付けた断面斜視図である。図15において、冷却水入口配管13から流路19に流入した冷却水は、矢印418の方向である長方形の長辺に沿って2つに分かれて流れ、長方形の短辺の他方側の側面の手前近傍のコーナー部19Cで矢印421aのように折り返し、再び長方形の長辺に沿って矢印422の方向に2つに分かれて流れ、更に長方形の長辺に沿って流れ矢印421bのように折り返し、下冷却水路蓋420に設けた出口配管に流入し折り返して出口孔から冷却水入口配管14へ流出する。
 冷却ジャケット19Aの上面には1対の開口400および402が3列に形成され6個の開口部が設けられている。各パワーモジュール300が、それぞれの開口から冷却媒体の流れの中に突出し、CAN型冷却器304に備えられた湾曲部304A及び分流境界部19Bによって、冷却水が流れる流路の分岐点が滑らかに形成されているので、圧力損失を低減できる。CAN型冷却器304の湾曲部304Aを曲面とすることで、冷却媒体を2分割し圧力損失を低減できるので、流路をS字状に蛇行させても圧力損失の増加を低減でき冷却効率を改善できる。
 図11(a)は、他の実施例に係るパワーモジュール300の断面図であり、図11(b)は、他の実施例に係るパワーモジュール300の分解断面図である。第1実施例と異なる部分について以下に説明するが、第1実施例と同一符号を付した構成は同様な機能を有する。
 本実施形態では、第1実施例に係る絶縁シート333の代わりに、アルミ絶縁板340を備える。アルミ絶縁板340の両主面には、接着性のある薄い樹脂絶縁層342が形成されている。アルマイト板341は、2つの樹脂絶縁層342によって挟まれ、かつ全体をアルマイト処理されてアルマイト層601を表裏面に形成している。アルマイト板341と2つの樹脂絶縁層342とは、熱圧着により接着されている。
 モジュール一次封止体300Aとアルミ絶縁板340は、アルミ絶縁板340に形成された樹脂絶縁層342によって強固に接着する。同様に、CAN型冷却器304のアルマイト処理された内部平面308とアルミ絶縁板340は、アルミ絶縁板340に形成された樹脂絶縁層342によって強固に接着する。
 図12(a)乃至(d)は、パワーモジュール300におけるアルミ絶縁板340、各電気配線板(直流正極配線板314、直流負極配線板316、第1交流配線板705A1、第2交流配線板705B)及びCAN型冷却器304との接着界面の詳細断面図である。図12(b)は図12(a)のB部を拡大した詳細断面図であり、図12(c)は図12(b)のC部を拡大した詳細断面図であり、図12(d)は図12(b)のD部を拡大した詳細断面図である。
 図12(b)に示すように、アルマイト板341の両主面には、アルマイト層601及び602が形成される。図12(c)に示すように、アルマイト板341のパワー半導体素子に近い側のアルマイト層601には、無機酸系アルマイト層601Aと有機酸系アルマイト層601Bの両方が形成される。無機酸系アルマイト層601Aは樹脂絶縁層342に近い側に形成される。
 一方、図12(d)に示すように、CAN型冷却器304の内部平面308には、無機酸系アルマイト層601Aのみが形成され、この無機酸系アルマイト層601Aがアルミ絶縁板340の樹脂絶縁層342と接着している。
 なお、いずれのアルマイト層601も封孔処理されていないので、接着界面では、熱圧着によって薄い樹脂絶縁層342が無機酸系アルマイト層601Aの孔に入り込むことでアンカー効果と化学結合の複合力が発生し、強固に接着されている。
 また、無機酸系アルマイト層601Aの下に設けられた有機酸系アルマイト層601Bの厚みは、無機酸系アルマイト層601Aの厚みよりも大きくので、絶縁耐圧が優れている。さらに、樹脂絶縁層342と有機酸系アルマイト層601Bの2層によって絶縁層を形成し、かつこの2層の絶縁層がアルミ絶縁板340の両面に形成されている。
 以上、本実施形態によれば、アルミ絶縁板340には、有機酸系アルマイト層601Bが2層分備えられることになるので、絶縁耐圧を大幅に向上させることができる。また、有機酸系アルマイト層601Bによって向上した絶縁耐圧分だけ、樹脂絶縁層342を薄くすることができるので、絶縁信頼性を維持しながら熱抵抗を大幅に下げることができる。また、CAN型冷却器304の内部平面308に有機酸系アルマイト層601Bを形成する必要がない。つまり、CAN型冷却器304とは別体のアルミ絶縁板340に、有機酸系アルマイト層601Bを形成させることができるので、生産性を大幅に向上させることができる。
 図16(a)は、他の実施例に係るパワーモジュール300の断面図であり、図16(b)は、他の実施例に係るパワーモジュール300の組立時の断面図である。第1実施例と異なる部分について以下に説明するが、第1実施例と同一符号を付した構成は同様な機能を有する。
 本実施形態では、第1及び第2実施例に係るCAN型冷却器304の代わりに、内部に流路381を形成した流路形成体380A及び380Bを用いる。図16(b)に示すように、流路形成体380A及び380Bは、絶縁シート333と接触する面382A及び382Bに、実施例1に説明したアルマイト処理が施される。
 これにより、第1実施例に示されたCAN型冷却器304の内部平面308に有機酸系アルマイト層601Bを形成する必要がない。つまり、CAN型冷却器304とは別体の流路形成体380A及び380Bに、有機酸系アルマイト層601Bを形成させることができるので、冷却性能を低下させることなく、生産性を大幅に向上させることができる。
 図17(a)は、他の実施例に係るパワーモジュール300の断面図であり、図17(b)は、他の実施例に係るパワーモジュール300の組立時の断面図である。
 本実施形態では、第3実施例に係る絶縁シート333の代わりに、第2実施例にて説明したアルミ絶縁板340を用いる。第2実施例にて説明したように、アルミ絶縁板340には有機酸系アルマイト層が2層設けられているので、流路形成体380A側の面382A及び382Bには、無機酸系アルマイト層のみが形成される。これにより、有機酸系アルマイト層をアルミ絶縁板340に形成するのみで良いので、生産性を大幅に向上させることができる。
 上記では、種々の実施の形態および変形例を説明したが、本発明はこれらの内容に限定されるものではない。本発明の技術的思想の範囲内で考えられるその他の態様も本発明の範囲内に含まれる。
 次の優先権基礎出願の開示内容は引用文としてここに組み込まれる。
 日本国特許出願2009年第108653号(2009年4月28日出願)。

Claims (11)

  1.  スイッチング動作によって直流電流を交流電流に変換させるための半導体素子と、
     前記半導体素子と電気的接続され、一方の主面に前記半導体素子が配置される電気配線板と、
     前記電気配線板の他方の主面側に配置される樹脂絶縁層と、
     前記樹脂絶縁層を介して前記電気配線板とは反対側に配置され、前記樹脂絶縁層と接合する第1の絶縁層と、
     前記第1の絶縁層を介して前記樹脂絶縁層とは反対側に配置され、前記半導体素子の電気的な絶縁を確保する第2の絶縁層と、
     前記第2の絶縁層を介して前記第1の絶縁層とは反対側に配置され、前記半導体素子が発生する熱を前記電気配線板、前記樹脂絶縁層、前記第1の絶縁層及び前記第2の絶縁層を介して放散する金属製放熱部材とを備えるパワーモジュール。
  2.  請求項1に記載のパワーモジュールにおいて、
     前記第2の絶縁層の膜厚は、前記第1の絶縁層の膜厚よりも大きく形成されるパワーモジュール。
  3.  請求項1または2に記載のパワーモジュールにおいて、
     前記金属製放熱部材はアルミ合金から形成されており、
     前記第1の絶縁層は、前記金属製放熱部材に無機酸系のアルマイト処理が施されることによって前記金属製放熱部材に形成され、
     前記第2の絶縁層は、前記金属製放熱部材に有機酸系のアルマイト処理が施されることによって前記金属製放熱部材に形成されるパワーモジュール。
  4.  請求項2または3に記載のパワーモジュールにおいて、
     前記第2の絶縁層に施されたアルマイト処理は、リン酸又はシュウ酸アルマイト処理であるパワーモジュール。
  5.  スイッチング動作によって直流電流を交流電流に変換させるための半導体素子と、
     前記半導体素子の一方の側にある主電極と対向して配置され、前記半導体素子と電気的接続される第1の電気配線板と、
     前記半導体素子の他方の側にある主電極と対向して配置され、前記半導体素子と電気的接続される第2の電気配線板とを備え、
     前記半導体素子の両側にそれぞれ、前記第1の電気配線板または前記第2の電気配線板を介して配置される樹脂絶縁層と、
     前記樹脂絶縁層を介して、前記樹脂絶縁層と接合するためのアルマイト処理が施された第1の絶縁層と、
     前記第1の絶縁層を介して、前記半導体素子の電気的な絶縁を確保するための第2の絶縁層とを備え、
     前記半導体素子の両側にそれぞれ、前記第1の電気配線板または前記第2の電気配線板、前記樹脂絶縁層、前記第1の絶縁層、および前記第2の絶縁層を介して、前記半導体素子が発生する熱を放散するための金属製放熱部材とを備えるパワーモジュール。
  6.  請求項5に記載のパワーモジュールにおいて、
     前記金属製放熱部材はアルミ合金から形成されており、
     前記第1の絶縁層は、前記金属製放熱部材に無機酸系のアルマイト処理が施されることによって前記金属製放熱部材に形成され、
     前記第2の絶縁層は、前記金属製放熱部材に有機酸系のアルマイト処理が施されることによって前記金属製放熱部材に形成されるパワーモジュール。
  7.  スイッチング動作によって直流電流を交流電流に変換させるための半導体素子と、
     前記半導体素子の一方の側にある主電極と対向して配置され、前記当該半導体素子と電気的接続される第1の電気配線板と、
     前記半導体素子の他方の側にある主電極と対向して配置され、前期半導体素子と電気的接続される第2の電気配線板と、
     前記第1の電気配線板および前記第2の電気配線板の前記半導体素子とは対向しない面の一部を露出するように、前記半導体素子と前記第1の電気配線板と前記第2の電気配線板とを封止するための樹脂封止材と、
     前記樹脂封止材により封止された前記半導体素子と前記第1の電気配線板と前記第2の電気配線板とを挿入するための開口を有する金属製ケースと、
     前記第1の電気配線板及び前記第2の電気配線板の露出面と前記金属製ケースの内壁との間に挿入される絶縁シートとを備え、
     前記金属製ケースは、前記絶縁シートと前記金属製ケースとの対向面に、前記絶縁シートと接合するための第1の絶縁層が形成されるとともに、前記第1の絶縁層を介して前記絶縁シートとは反対側に第2の絶縁層が形成されるパワーモジュール。
  8.  請求項7に記載のパワーモジュールにおいて、
     前記金属製ケースはアルミ合金から形成されており、
     前記第1の絶縁層は、前記金属製ケースに無機酸系のアルマイト処理が施されることにより前記金属製ケースに形成され、
     前記第2の絶縁層は、前記金属製ケースに有機酸系のアルマイト処理が施されることによって前記金属製ケースに形成されるパワーモジュール。
  9.  請求項1に記載のパワーモジュールにおいて、
     前記電気配線板はCu合金から形成されており、前記樹脂絶縁層と対向する主面には粗化処理または黒化処理等の酸化処理が施されるパワーモジュール。
  10.  請求項5に記載のパワーモジュールにおいて、
     前記第1の電気配線板および前記第2の電気配線板はCu合金から形成されており、前記樹脂絶縁層と対向する主面には粗化処理または黒化処理等の酸化処理が施されるパワーモジュール。
  11.  請求項7に記載のパワーモジュールにおいて、
     前記第1の電気配線板および前記第2の電気配線板はCu合金から形成されており、前記樹脂絶縁層と対向する主面には粗化処理または黒化処理等の酸化処理が施されるパワーモジュール。
     
     
PCT/JP2010/056872 2009-04-28 2010-04-16 パワーモジュール WO2010125935A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP10769634.6A EP2426715B1 (en) 2009-04-28 2010-04-16 Power module
US13/266,675 US8675364B2 (en) 2009-04-28 2010-04-16 Power module and power conversion device
CN201080018856.1A CN102414816B (zh) 2009-04-28 2010-04-16 功率模块及电力转换装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009108653A JP5492447B2 (ja) 2009-04-28 2009-04-28 パワーモジュール
JP2009-108653 2009-04-28

Publications (1)

Publication Number Publication Date
WO2010125935A1 true WO2010125935A1 (ja) 2010-11-04

Family

ID=43032089

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/056872 WO2010125935A1 (ja) 2009-04-28 2010-04-16 パワーモジュール

Country Status (5)

Country Link
US (1) US8675364B2 (ja)
EP (1) EP2426715B1 (ja)
JP (1) JP5492447B2 (ja)
CN (1) CN102414816B (ja)
WO (1) WO2010125935A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103597729A (zh) * 2011-06-08 2014-02-19 日立汽车系统株式会社 功率模块和使用它的电力转换装置
CN103765577A (zh) * 2011-09-26 2014-04-30 日立汽车系统株式会社 功率模块
CN103999211A (zh) * 2011-12-15 2014-08-20 日立汽车系统株式会社 功率半导体模块及功率模块
EP2682985A4 (en) * 2011-03-04 2015-04-29 Hitachi Automotive Systems Ltd SEMICONDUCTOR MODULE AND METHOD FOR PRODUCING A SEMICONDUCTOR MODULE
EP2725699A4 (en) * 2011-06-24 2015-11-25 Hitachi Automotive Systems Ltd ELECTRIC SEMICONDUCTOR MODULE AND CURRENT TRANSFORMER THEREWITH

Families Citing this family (62)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5557585B2 (ja) * 2010-04-26 2014-07-23 日立オートモティブシステムズ株式会社 パワーモジュール
JP5542646B2 (ja) * 2010-12-24 2014-07-09 日立オートモティブシステムズ株式会社 パワーモジュールの製造方法、パワーモジュールの設計方法
JP5588895B2 (ja) * 2011-02-28 2014-09-10 日立オートモティブシステムズ株式会社 パワー半導体モジュール,パワー半導体モジュールの製造方法及び電力変換装置
US8637981B2 (en) 2011-03-30 2014-01-28 International Rectifier Corporation Dual compartment semiconductor package with temperature sensor
JP5568511B2 (ja) * 2011-06-06 2014-08-06 日立オートモティブシステムズ株式会社 電力用変換装置
JP5506749B2 (ja) 2011-07-25 2014-05-28 日立オートモティブシステムズ株式会社 電力変換装置
US9030822B2 (en) 2011-08-15 2015-05-12 Lear Corporation Power module cooling system
FR2983360B1 (fr) * 2011-11-25 2014-01-10 Renault Sa Dispositif de protection pour connecteur electrique d'un module d'electronique de puissance
US9076593B2 (en) 2011-12-29 2015-07-07 Lear Corporation Heat conductor for use with an inverter in an electric vehicle (EV) or a hybrid-electric vehicle (HEV)
US9312211B2 (en) 2012-03-07 2016-04-12 Toyota Jidosha Kabushiki Kaisha Semiconductor device and manufacturing method thereof
US8971041B2 (en) * 2012-03-29 2015-03-03 Lear Corporation Coldplate for use with an inverter in an electric vehicle (EV) or a hybrid-electric vehicle (HEV)
JP5948106B2 (ja) * 2012-03-30 2016-07-06 日立オートモティブシステムズ株式会社 パワー半導体モジュール及びそれを用いた電力変換装置
US8971038B2 (en) 2012-05-22 2015-03-03 Lear Corporation Coldplate for use in an electric vehicle (EV) or a hybrid-electric vehicle (HEV)
US8902582B2 (en) 2012-05-22 2014-12-02 Lear Corporation Coldplate for use with a transformer in an electric vehicle (EV) or a hybrid-electric vehicle (HEV)
JP5941787B2 (ja) * 2012-08-09 2016-06-29 日立オートモティブシステムズ株式会社 パワーモジュールおよびパワーモジュールの製造方法
JP5975789B2 (ja) * 2012-08-20 2016-08-23 日立オートモティブシステムズ株式会社 パワー半導体モジュール
JP5926654B2 (ja) * 2012-08-29 2016-05-25 日立オートモティブシステムズ株式会社 パワー半導体モジュールおよびパワー半導体モジュールの製造方法
JP2014082274A (ja) * 2012-10-15 2014-05-08 Toyota Industries Corp 半導体装置
JP6039356B2 (ja) * 2012-10-22 2016-12-07 日立オートモティブシステムズ株式会社 電力変換装置
FI126026B (fi) * 2012-12-13 2016-05-31 Vacon Oy Tehoelektroniikkalaite ja sen jäähdytysjärjestely
JP5978151B2 (ja) * 2013-02-27 2016-08-24 日立オートモティブシステムズ株式会社 電力変換装置
JP5879292B2 (ja) * 2013-03-28 2016-03-08 日立オートモティブシステムズ株式会社 電力変換装置
JP5932704B2 (ja) * 2013-04-04 2016-06-08 株式会社日本自動車部品総合研究所 電力変換装置
US9457743B2 (en) * 2013-09-06 2016-10-04 Johnson Controls Technology Company Battery terminal post system and method of manufacture
US20150138734A1 (en) * 2013-11-18 2015-05-21 Magna Electronics Inc. 360 degree direct cooled power module
WO2015111211A1 (ja) * 2014-01-27 2015-07-30 株式会社日立製作所 パワーモジュール及びその製造方法
JP5687786B2 (ja) * 2014-03-18 2015-03-18 日立オートモティブシステムズ株式会社 電力変換装置
US9362040B2 (en) 2014-05-15 2016-06-07 Lear Corporation Coldplate with integrated electrical components for cooling thereof
US9615490B2 (en) 2014-05-15 2017-04-04 Lear Corporation Coldplate with integrated DC link capacitor for cooling thereof
JP2016046497A (ja) * 2014-08-27 2016-04-04 株式会社日立製作所 パワー半導体装置及びパワー半導体装置の製造方法
JP6179490B2 (ja) * 2014-09-05 2017-08-16 トヨタ自動車株式会社 パワーモジュール
CN107078106B (zh) * 2014-10-29 2019-12-24 新电元工业株式会社 散热结构
US9420724B2 (en) * 2014-11-04 2016-08-16 Ge Aviation Systems Llc Power converter assembly
JP6397795B2 (ja) 2015-05-19 2018-09-26 株式会社日立製作所 電力変換装置
US10037977B2 (en) 2015-08-19 2018-07-31 Ford Global Technologies, Llc Power electronics system
JPWO2017119286A1 (ja) * 2016-01-04 2018-09-27 日立オートモティブシステムズ株式会社 パワー半導体モジュール
CN109076717A (zh) * 2016-02-18 2018-12-21 法拉第未来公司 使用液体冷却的充电连接器
US9620440B1 (en) * 2016-02-25 2017-04-11 Texas Instruments Incorporated Power module packaging with dual side cooling
JP6719252B2 (ja) * 2016-03-30 2020-07-08 日立オートモティブシステムズ株式会社 半導体装置
WO2017195283A1 (ja) * 2016-05-11 2017-11-16 日立オートモティブシステムズ株式会社 パワー半導体モジュール、それを用いた電力変換装置及び電力変換装置の製造方法
JP6103122B1 (ja) * 2016-08-17 2017-03-29 富士電機株式会社 パワー半導体モジュール用信号中継基板
KR101956996B1 (ko) * 2016-12-15 2019-06-24 현대자동차주식회사 양면냉각형 파워모듈
JP6784197B2 (ja) * 2017-03-09 2020-11-11 株式会社デンソー 電力変換装置
JP6846961B2 (ja) * 2017-03-15 2021-03-24 日本電産サンキョー株式会社 モータ
KR102325110B1 (ko) * 2017-05-31 2021-11-11 한온시스템 주식회사 전기소자 냉각용 열교환기
JP6801605B2 (ja) * 2017-08-11 2020-12-16 株式会社デンソー 電力変換装置
JP6654609B2 (ja) * 2017-10-10 2020-02-26 本田技研工業株式会社 電力変換装置
JP6899784B2 (ja) * 2018-01-17 2021-07-07 日立Astemo株式会社 パワー半導体装置
WO2019221242A1 (ja) * 2018-05-17 2019-11-21 京セラ株式会社 パワー半導体モジュール
JP7159620B2 (ja) * 2018-05-30 2022-10-25 富士電機株式会社 半導体装置、冷却モジュール、電力変換装置及び電動車両
WO2020013348A1 (ko) * 2018-07-09 2020-01-16 엘지전자 주식회사 냉각 장치
DE112019003699T5 (de) * 2018-07-25 2021-04-08 Denso Corporation Leistungsmodul und elektrische Leistungsumwandlungsvorrichtung
KR102574378B1 (ko) 2018-10-04 2023-09-04 현대자동차주식회사 파워모듈
JP7153544B2 (ja) * 2018-11-28 2022-10-14 株式会社マキタ 電動作業機
CN111315182B (zh) * 2018-12-12 2022-02-08 台达电子工业股份有限公司 整合式电子装置
CN113453944A (zh) * 2019-02-28 2021-09-28 Abb瑞士股份有限公司 抵抗电弧放电和其他故障的电动车辆供电装备连接器
MX2021013148A (es) * 2019-05-28 2021-12-10 Mitsui Chemicals Inc Dispositivo de enfriamiento y metodo para fabricar el dispositivo de enfriamiento.
JP7351209B2 (ja) 2019-12-17 2023-09-27 富士電機株式会社 半導体装置
JP2021097146A (ja) 2019-12-18 2021-06-24 富士電機株式会社 半導体装置
DE102020209483A1 (de) * 2020-07-28 2022-02-03 Siemens Mobility GmbH Straßenfahrzeug
US11224147B1 (en) * 2020-11-19 2022-01-11 GM Global Technology Operations LLC Direct cooling of inverter switches
CN113380734A (zh) * 2021-05-18 2021-09-10 华南师范大学 双面散热的igbt器件

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09102580A (ja) * 1995-08-02 1997-04-15 Matsushita Electron Corp 樹脂封止型半導体装置およびその製造方法
JP2005057212A (ja) 2003-08-07 2005-03-03 Toyota Motor Corp 浸漬式両面放熱パワーモジュール
JP2005159048A (ja) 2003-11-26 2005-06-16 Sumitomo Electric Ind Ltd パワーモジュール
JP2005310987A (ja) * 2004-04-20 2005-11-04 Denso Corp 半導体モジュール実装構造、カード状半導体モジュール及びカード状半導体モジュール密着用受熱部材
JP2006202899A (ja) * 2005-01-19 2006-08-03 Toyota Motor Corp 半導体冷却装置
JP2007053295A (ja) 2005-08-19 2007-03-01 Hitachi Ltd 半導体装置,それを用いた電力変換装置及び車載用電機システム
JP2007142067A (ja) * 2005-11-17 2007-06-07 Nissan Motor Co Ltd 半導体装置
JP2008193867A (ja) 2007-02-07 2008-08-21 Hitachi Ltd 電力変換装置
JP2009108653A (ja) 2007-10-31 2009-05-21 F One Kk ドアクローザ装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3205555A (en) * 1961-11-07 1965-09-14 Western Electric Co Methods of making printed circuit components
JPS60204897A (ja) * 1984-03-27 1985-10-16 Setsuo Tomita アルミニウムへの耐電圧皮膜の形成法
JPH032580A (ja) * 1989-05-29 1991-01-08 Murata Mfg Co Ltd センサ素子
DE69106454T2 (de) * 1990-08-16 1995-05-11 Fuji Photo Film Co Ltd Herstellungsverfahren für ein Substrat für lithographische Druckplatten, nach diesem Verfahren hergestelltes Substrat für lithographische Druckplatten und das Substrat enthaltende vorsensibilisierte Platte.
US5277788A (en) * 1990-10-01 1994-01-11 Aluminum Company Of America Twice-anodized aluminum article having an organo-phosphorus monolayer and process for making the article
EP1148547B8 (en) * 2000-04-19 2016-01-06 Denso Corporation Coolant cooled type semiconductor device
TW200500199A (en) * 2003-02-12 2005-01-01 Furukawa Circuit Foil Copper foil for fine patterned printed circuits and method of production of same
DE10361888B3 (de) * 2003-12-23 2005-09-22 Airbus Deutschland Gmbh Anodisierverfahren für Aluminiumwerkstoffe

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09102580A (ja) * 1995-08-02 1997-04-15 Matsushita Electron Corp 樹脂封止型半導体装置およびその製造方法
JP2005057212A (ja) 2003-08-07 2005-03-03 Toyota Motor Corp 浸漬式両面放熱パワーモジュール
JP2005159048A (ja) 2003-11-26 2005-06-16 Sumitomo Electric Ind Ltd パワーモジュール
JP2005310987A (ja) * 2004-04-20 2005-11-04 Denso Corp 半導体モジュール実装構造、カード状半導体モジュール及びカード状半導体モジュール密着用受熱部材
JP2006202899A (ja) * 2005-01-19 2006-08-03 Toyota Motor Corp 半導体冷却装置
JP2007053295A (ja) 2005-08-19 2007-03-01 Hitachi Ltd 半導体装置,それを用いた電力変換装置及び車載用電機システム
JP2007142067A (ja) * 2005-11-17 2007-06-07 Nissan Motor Co Ltd 半導体装置
JP2008193867A (ja) 2007-02-07 2008-08-21 Hitachi Ltd 電力変換装置
JP2009108653A (ja) 2007-10-31 2009-05-21 F One Kk ドアクローザ装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2682985A4 (en) * 2011-03-04 2015-04-29 Hitachi Automotive Systems Ltd SEMICONDUCTOR MODULE AND METHOD FOR PRODUCING A SEMICONDUCTOR MODULE
CN103597729A (zh) * 2011-06-08 2014-02-19 日立汽车系统株式会社 功率模块和使用它的电力转换装置
EP2725699A4 (en) * 2011-06-24 2015-11-25 Hitachi Automotive Systems Ltd ELECTRIC SEMICONDUCTOR MODULE AND CURRENT TRANSFORMER THEREWITH
CN103765577A (zh) * 2011-09-26 2014-04-30 日立汽车系统株式会社 功率模块
CN103999211A (zh) * 2011-12-15 2014-08-20 日立汽车系统株式会社 功率半导体模块及功率模块

Also Published As

Publication number Publication date
US8675364B2 (en) 2014-03-18
JP5492447B2 (ja) 2014-05-14
EP2426715A1 (en) 2012-03-07
US20120087095A1 (en) 2012-04-12
JP2010258315A (ja) 2010-11-11
EP2426715A4 (en) 2016-05-04
EP2426715B1 (en) 2020-12-09
CN102414816A (zh) 2012-04-11
CN102414816B (zh) 2016-01-20

Similar Documents

Publication Publication Date Title
JP5492447B2 (ja) パワーモジュール
US10966355B2 (en) Electric power conversion apparatus
JP5557441B2 (ja) 電力変換装置および電動車両
JP5481148B2 (ja) 半導体装置、およびパワー半導体モジュール、およびパワー半導体モジュールを備えた電力変換装置
JP4934712B2 (ja) 電力変換装置
JP5591396B2 (ja) 半導体モジュール、および半導体モジュールの製造方法
JP5879238B2 (ja) パワー半導体モジュール
JP5486990B2 (ja) パワーモジュール及びそれを用いた電力変換装置
JP6228888B2 (ja) パワー半導体モジュール
JP6147893B2 (ja) 電力変換装置
JP6782748B2 (ja) パワーモジュール及び電力変換装置
JP5941944B2 (ja) 電力変換装置の製造方法
JP6430584B2 (ja) 電力変換装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080018856.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10769634

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010769634

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13266675

Country of ref document: US