WO2010119163A1 - Uso de un material cristalino microporoso de naturaleza zeolítica con estructura rho en tratamiento de gas natural - Google Patents

Uso de un material cristalino microporoso de naturaleza zeolítica con estructura rho en tratamiento de gas natural Download PDF

Info

Publication number
WO2010119163A1
WO2010119163A1 PCT/ES2010/070236 ES2010070236W WO2010119163A1 WO 2010119163 A1 WO2010119163 A1 WO 2010119163A1 ES 2010070236 W ES2010070236 W ES 2010070236W WO 2010119163 A1 WO2010119163 A1 WO 2010119163A1
Authority
WO
WIPO (PCT)
Prior art keywords
separation
adsorbed
methane
rho
preferably adsorbed
Prior art date
Application number
PCT/ES2010/070236
Other languages
English (en)
French (fr)
Inventor
Avelino CORMA CANÓS
Miguel Palomino Roca
Fernando REY GARCÍA
Susana Valencia Valencia
Original Assignee
Universidad Politécnica De Valencia (Upv) (50%)
Consejo Superior De Investigaciones Científicas (Csic) (50%)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidad Politécnica De Valencia (Upv) (50%), Consejo Superior De Investigaciones Científicas (Csic) (50%) filed Critical Universidad Politécnica De Valencia (Upv) (50%)
Priority to JP2012505194A priority Critical patent/JP5732451B2/ja
Priority to CN201080017196.5A priority patent/CN102439123B/zh
Priority to AU2010238431A priority patent/AU2010238431B2/en
Priority to EP10764136.7A priority patent/EP2420551B1/en
Publication of WO2010119163A1 publication Critical patent/WO2010119163A1/es
Priority to US13/272,586 priority patent/US8337594B2/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/16Alumino-silicates
    • B01J20/18Synthetic zeolitic molecular sieves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/46Other types characterised by their X-ray diffraction pattern and their defined composition
    • C01B39/48Other types characterised by their X-ray diffraction pattern and their defined composition using at least one organic template directing agent
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L3/00Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
    • C10L3/06Natural gas; Synthetic natural gas obtained by processes not covered by C10G, C10K3/02 or C10K3/04
    • C10L3/10Working-up natural gas or synthetic natural gas
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L3/00Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
    • C10L3/06Natural gas; Synthetic natural gas obtained by processes not covered by C10G, C10K3/02 or C10K3/04
    • C10L3/10Working-up natural gas or synthetic natural gas
    • C10L3/101Removal of contaminants
    • C10L3/102Removal of contaminants of acid contaminants
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L3/00Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
    • C10L3/06Natural gas; Synthetic natural gas obtained by processes not covered by C10G, C10K3/02 or C10K3/04
    • C10L3/10Working-up natural gas or synthetic natural gas
    • C10L3/101Removal of contaminants
    • C10L3/102Removal of contaminants of acid contaminants
    • C10L3/104Carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/106Silica or silicates
    • B01D2253/108Zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/24Hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/10Single element gases other than halogens
    • B01D2257/102Nitrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2

Definitions

  • the present invention belongs to the technical field of microporous crystalline materials of a zeolitic nature, useful in the treatment of natural gas.
  • CO 2 is removed from the natural gas stream by chemical reaction with amines in the presence of suitable solvents.
  • This technology is the most widely used today in the purification and separation of methane from natural gas.
  • this technology suffers from numerous drawbacks.
  • the cryogenic distillation for nitrogen removal is extremely demanding from a point of energy view.
  • the elimination of CO 2 through capture with amines implies that natural gas must be decompressed, to be pressurized again and thus be transported through gas pipelines. This whole process implies a high energy consumption that has moved many companies to develop new technologies based on membranes or adsorption processes.
  • microporous materials and particularly zeolites, has been described in the selective adsorption of CO2 in methane / C ha2 mixtures.
  • microporous titanosilicates have been described as molecular doors capable of separating methane from CO2 or Nitrogen CO2 [Nature, 2001, 412, 720-723; US Pat. 6068682 (2000)] depending on the heat treatment conditions to which the adsorbent is subjected.
  • the zeolite ERS-7 has been described as an effective material in the separation of methane from gaseous mixtures containing nitrogen and CO 2 [WO2008 / 000380].
  • This zeolite has an adsorption capacity of CO 2 approximately three times larger than methane in a pressure range between 2 and 25 bar, with a maximum adsorption capacity of approximately 175 mg of CO 2 per gram of zeolite at O 0 C. It would be desirable to have microporous materials with higher adsorption capacities and that were even more selective towards the adsorption of CO2 in CO 2 / CH 4 mixtures. On the other hand, the selectivity of this zeolite ERS-7 in separation of mixtures of N 2 / CH 4 is very low, having described that the molar ratios of the maximum adsorption capacities of N 2 and CH 4 at 1 bar and 273 K They are always less than 1.5.
  • zeolites can be conveniently used in gas separation processes with technology described in the state of the art such as the so-called 'Pressure Swing Adsorption (PSA)', Thermal Swing Adsorption (TSA) 'or' Pressure Vacuum Swing Adsorption (PVSA) 'in those that alternate adsorption cycles with desorption cycles of the adsorbed gas (CO 2 in this case) by washing with a stream of a gas that is not adsorbed in the PSA process (preferably N 2 , CH 4 in the process described in this invention), by heat treatment in the TSA treatment, and by evacuation of the gas adsorbed by vacuum (PVSA).
  • PSA Pressure Swing Adsorption
  • TSA Thermal Swing Adsorption
  • PVSA Pressure Vacuum Swing Adsorption
  • the RHO zeolite which presents windows with crystallographic openings of 0.36 x 0.36 nm that give access to large 'quasi-spherical' cavities of 1.15 nm in diameter meets all these requirements, allowing access to CO2 molecules, but preventing it from methane, and therefore they can be used in processes of separation or purification of methane in natural gas streams.
  • the zeolites can be classified as oversized, large, medium or small pore zeolites according to the opening of their channels. In this way, small pore zeolites will have channels with openings formed by 8 tetrahedra, while those with a medium pore will be 10 tetrahedra, the large ones of 12 and finally, the extra large ones will have channels with openings greater than 12 tetrahedra,
  • the RHO zeolite is a small pore zeolite that has a three-way system of channels with openings of 0.36 x 0.36 nm that intersect forming an almost spherical supercavity of 1.15 nm in diameter and with a network density of 14.7 tetrahedra / nm 3 .
  • This porous system gives this zeolite a high adsorption capacity, but only molecules of small kinetic diameter such as water, nitrogen, oxygen and linear hydrocarbons, among others, can access it.
  • the present invention relates to a process of separation or purification of hydrocarbons present in a natural gas stream and its recovery, using an isostructural zeolitic material to the RHO zeolite comprising at least the following steps:
  • the RHO zeolite is characterized by very different thermodynamic equilibrium adsorption capacities for CO2 and Methane among others, which allows its application in separation and purification processes of methane and other hydrocarbons present in natural gas streams.
  • the equilibrium condition is reached when the amount of adsorbate does not increase over time at fixed conditions of adsorbate pressure and temperature.
  • the thermodynamic efficiency of an adsorbent in separation processes is determined from the value of its adsorption capacity under equilibrium conditions of the products to be separated, R A.
  • zeolites In principle, the greater the adsorption capacity of a zeolite, the lesser amount will be required to separate a given amount of methane-CO 2 mixture. Thus, in order for a certain separation process to be viable at a practical level, zeolites are required have high values of R A and high or moderate adsorption capacities.
  • the process described in the present invention can be carried out at a temperature from -100 to 200 0 C, preferably between -25 and 150 0 C, more preferably between 0 and 100 0 C and a pressure between 0.1 and
  • 30 bar preferably between 0.5 and 25 bar, more preferably between 1 and
  • CO2 is preferably adsorbed and methane is not preferentially adsorbed.
  • CO2 is preferably adsorbed and methane and nitrogen are not preferentially adsorbed.
  • the mixture of gases that have not been adsorbed, methane and nitrogen can be brought into contact, again in contact with the zeolitic material, with nitrogen being the one that is preferentially adsorbed against methane.
  • the CO2 is preferably adsorbed and a mixture of light hydrocarbons of four or less carbons as a component is preferably not adsorbed.
  • the CO2 is preferably adsorbed and a mixture of nitrogen and light hydrocarbons of four or less carbons is preferably not adsorbed.
  • the mixture of gases that have not been adsorbed, nitrogen and light hydrocarbons can be brought into contact, again in contact with the zeolitic material, with nitrogen being the one that is preferentially adsorbed against light hydrocarbons.
  • the denomination of acid gases is known to refer to the set of the following components of natural gas, CO2 and SH 2 .
  • the mixture contains acid gases as components that are preferably adsorbed and methane that is not preferably adsorbed.
  • the mixture contains acid gases as components that are preferably adsorbed and methane and nitrogen as components that are not preferably adsorbed.
  • the mixture of gases that have not been adsorbed, nitrogen and methane can be contacted again in contact with the zeolitic material with nitrogen being the one that is preferentially adsorbed against methane.
  • the mixture contains acid gases as components that are preferably adsorbed and a mixture of light hydrocarbons of four or less carbons as a component that is not preferably adsorbed.
  • the mixture contains acid gases as components that are preferably adsorbed and a mixture of nitrogen and light hydrocarbons of four or less carbons as a component that is not preferably adsorbed.
  • the mixture of gases that have not been adsorbed, nitrogen and light hydrocarbons can be brought into contact, again in contact with the zeolitic material, with nitrogen being the one that is preferentially adsorbed against light hydrocarbons.
  • the RHO zeolite has very different adsorption capacities for CO 2 and methane, with high adsorption capacities of CO 2 .
  • the zeolite RHO has an adsorption capacity of CO 2 of more than 100 mg / g to 1000 mbar and in the range of temperatures between 10 and 6O 0 C and adsorption capacity of less than 10 mg / g for methane under these same conditions. Therefore, the RHO zeolite is a very suitable adsorbent to carry out methane separation or purification processes in natural gas streams.
  • the separation process of this invention implies that a certain amount of RHO zeolite is contacted with a mixture of gases (natural gas) containing, among others, CO 2 and methane and in which preferably CO2 is adsorbed inside the RHO zeolite.
  • the mixture of CO2 and methane and the RHO zeolite is kept in contact for a certain time to enable the adsorption process to take place and, finally, the mixture of gases that have not been adsorbed is removed.
  • the gas adsorbed in the zeolite is recovered by means of techniques such as entrainment with another gas, temperature increase, evacuation or combination of the above methods.
  • This separation process can also be carried out in columns, in which case different fronts of CO2 and methane are obtained as they are more or less strongly retained by the bed of zeolite RHO.
  • the separation conditions will depend on the precise composition of the gas mixture containing methane and CO2 that is intended to be separated.
  • the lower limit of pressure and separation temperature will correspond to the conditions in which the condensation of CO 2 occurs.
  • the process of this invention can be carried out between -100 and 200 0 C, preferably between -25 and 150 0 C, more preferably between 0 and 100 0 C and a pressure between 0.1 and 30 bar, preferably between 0.5 and 25 bar, more preferably between 1 and 10 bar.
  • Example 1 Preparation of the isostructural material with the RHO zeolite. 0.98 g of crown ether 18-6 are mixed, the structure of which is shown in Figure 1, 0.705 g of Cs (OH), 0.45 g of NaOH and 6.04 g of distilled water. The mixture is stirred until complete dissolution is achieved. Then, 1.32 g of sodium aluminate (54% AI2O3, 32.8% Na 2 O, 13.2% H 2 O) are added and stirred until a homogeneous solution is obtained. Finally, 10.5 g of silica suspension (Ludox AS-40) are added and the mixture is stirred for 24 hours. The composition of the gel is:
  • the mixture obtained is introduced into an autoclave provided with an internal polytetrafluoroethylene sheath and introduced into a preheated oven at 125 ° C for 5 days with stirring.
  • the X-ray diffractogram of the solid obtained indicates that the material has been obtained.
  • the calcination at 600 0 C in air for 3 hours allows to eliminate the occluded organic species and obtain the RHO material capable of being used in adsorption and separation processes.
  • the measurement of the adsorption capacity of CO 2 of the RHO material, prepared according to example 1 at 1O 0 C and 5000 mbar corresponds to 244 mg / g. Also, the value obtained after performing 20 adsorption / desorption cycles is 235 mg / g, which shows that the material
  • the measurement of the adsorption capacity of CO 2 of the RHO material, prepared according to example 1 at 1O 0 C and 5000 mbar corresponds to 4 mg / g.
  • Example 4 Adsorption of CO 2 at 5000 mbar in the RHO material at 25 0 C.
  • the measurement of the adsorption capacity of CO 2 of the RHO material, prepared according to example 1 at 25 0 C and 5000 mbar corresponds to 234 mg / g.
  • the measurement of the CO2 adsorption capacity of the RHO material, prepared according to example 1 at 25 0 C and 5000 mbar corresponds to 5 mg / g.
  • Example 6 Adsorption of CO 2 at 5000 mbar in the RHO material at 45 0 C.
  • the measurement of the CO2 adsorption capacity of the RHO material, prepared according to example 1 at 45 0 C and 5000 mbar corresponds to 206 mg / g .
  • Example 7 Adsorption of methane at 5000 mbar RHO material 45 0 C.
  • the measurement of the CO2 adsorption capacity of the RHO material, prepared according to example 1 at 45 0 C and 5000 mbar corresponds to 6 mg / g.
  • Example 8 Adsorption of CO 2 at 5000 mbar in the RHO material at 6O 0 C.
  • the measurement of the CO2 adsorption capacity of the RHO material, prepared according to example 1 at 6O 0 C and 5000 mbar corresponds to 180 mg / g .
  • Example 9 Adsorption of methane at 5000 mbar in the RHO material at 6O 0 C.
  • the measurement of the CO2 adsorption capacity of the RHO material, prepared according to example 1 at 6O 0 C and 5000 mbar corresponds to 7 mg / g.
  • Example 10 Adsorption of methane at 1000 mbar in the RHO material at 1O 0 C.
  • the adsorption kinetics of methane on the RHO material, prepared according to example 1, indicates that in 30 minutes 0.5 mg of methane are adsorbed.
  • Example 11 Adsorption of nitrogen at 1000 mbar in the RHO material at 1O 0 C.
  • the adsorption kinetics of methane on the RHO material, prepared according to example 1, indicates that in 30 minutes 3 mg of nitrogen are adsorbed.
  • Figure 1 the structure of the organic additive used in example 1 for the synthesis of an isostructural material to the RHO zeolite is shown.
  • Figure 2 the values of the adsorption capacity in the CO2 and CH 4 equilibrium of the RHO material, prepared according to example 1, at different pressures and different temperatures are shown. It can be seen that methane isobars are indistinguishable from each other due to the low adsorption capacity of the RHO Zeolite at any temperature and / or pressure compared to those determined for CO2.
  • Figure 3 The adsorption kinetics of methane and nitrogen are shown at 1O 0 C and at 1000 mbar of gas pressure in an RHO material, prepared according to Example 1. It can be seen that nitrogen diffuses more rapidly than methane under these conditions.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Materials Engineering (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Separation Of Gases By Adsorption (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

En la presente invención se describe el empleo de zeolitas isoestructurales con la estructura zeolítica RHO en procesos de adsorción y separación de los diferentes componentes del gas natural.

Description

USO DE UN MATERIAL CRISTALINO MICROPOROSO DE NATURALEZA ZEOLÍTICA CON ESTRUCTURA RHO EN TRATAMIENTO DE GAS NATURAL.
CAMPO TÉCNICO DE LA INVENCIÓN
La presente invención pertenece al campo técnico de los materiales cristalinos microporosos de naturaleza zeolítica, útiles en el tratamiento de gas natural.
ESTADO DE LA TÉCNICA ANTERIOR A LA INVENCIÓN
La separación y purificación de gas natural involucra fundamentalmente una etapa en las que el metano debe ser separado del nitrógeno y de gases con propiedades acidas, tales como el CO2 y SH2 que Ie acompañan, [J. Phys. Chem. C 2008, 112, 5048-5056]. Los gases ácidos provocan problemas de corrosión en tanques de almacenamiento de gas natural, así como problemas de obturación de los gaseoductos empleados para su transporte. La presencia de Nitrógeno disminuye Ia cantidad de calor transportado por unidad de volumen, así como un aumento significativo de Ia presión de condensación. Por ello, estos gases deben ser eliminados de Ia corriente de gas natural antes de su transporte. Actualmente, Ia separación del nitrógeno se realiza mediante destilación criogénica del metano y N2, por Io que otros gases que condensan a baja temperatura deben ser previamente eliminados. Así, el CO2 se elimina de Ia corriente del gas natural mediante reacción química con aminas en presencia de disolventes adecuados. Esta tecnología es Ia más ampliamente utilizada hoy en día en Ia purificación y separación de metano a partir de gas natural. Sin embargo, esta tecnología adolece de numerosos inconvenientes. Por un lado, Ia destilación criogénica para Ia eliminación de nitrógeno es extremadamente demandante desde un punto de vista energético. Y por otro lado, Ia eliminación del CO2 mediante captura con aminas implica que el gas natural debe ser descomprimido, para volver a ser presurizado y poder ser de esta forma transportado a través de gaseoductos. Todo este proceso implica un elevado consumo energético que ha movido a numerosas empresas a desarrollar nuevas tecnologías basadas en membranas o en procesos de adsorción.
Se ha descrito el empleo de membranas orgánicas densas para Ia separación del metano de Ia corriente de gas natural, ya que el CO2 puede difundir a su través mientras que el metano no Io hace. Igualmente se han descrito polímeros orgánicos de alta densidad capaces de separar con elevada selectividad mezclas de N2/CH4, pero con muy baja permeabilidad al metano.
Asimismo se ha descrito el empleo de materiales microporosos, y particularmente zeolitas, en Ia adsorción selectiva de CO2 en mezclas de metano/Cθ2. Así, titanosilicatos microporosos han sido descritos como puertas moleculares capaces de separar metano de CO2 o Nitrógeno de CO2 [NATURE, 2001 , 412, 720-723; US Pat. 6068682 (2000)] dependiendo de las condiciones de tratamiento térmico al cual es sometido el adsorbente. Más recientemente, se ha descrito Ia zeolita ERS-7 como un material eficaz en Ia separación de metano de mezclas gaseosas que contengan nitrógeno y CO2 [WO2008/000380]. Esta zeolita presenta una capacidad de adsorción de CO2 aproximadamente tres veces más grande que de metano en un rango de presiones comprendido entre 2 y 25 bares, con una capacidad de adsorción máxima de aproximadamente 175 mg de CO2 por gramo de zeolita a O0C. Sería deseable disponer de materiales microporosos con capacidades de adsorción más elevadas y que fuesen aún más selectivas hacía Ia adsorción de CO2 en mezclas de CO2/CH4. Por otro lado, Ia selectividad de esta zeolita ERS-7 en separación de mezclas de N2/CH4 es muy baja, habiéndose descrito que las relaciones molares de las máximas capacidades de adsorciones de N2 y CH4 a 1 bar y 273 K son siempre inferiores a 1.5. En esta patente de invención se describe el uso de un material zeolítico isoestructural a Ia zeolita RHO para procesos de purificación y separación de metano de corrientes de gas natural o de corrientes que contengan CO2 y metano, siendo adsorbido de manera preferente y selectivamente el CO2 y quedando el metano libre en Ia corriente. Estas zeolitas pueden ser convenientemente empleadas en procesos de separación de gases con tecnología descritas en el estado del arte como las denominadas 'Pressure Swing Adsorption (PSA)', Thermal Swing Adsorption (TSA)' o 'Pressure Vacuum Swing Adsorption (PVSA)' en las que se alternan ciclos de adsorción con ciclos de desorción del gas adsorbido (CO2 en este caso) mediante lavado con una corriente de un gas que no es adsorbido en el proceso PSA (preferentemente N2, CH4 en el proceso que se describe en esta invención), mediante tratamiento térmico en el tratamiento TSA, y mediante evacuación del gas adsorbido mediante vacío (PVSA). En todos los casos, es deseable que Ia zeolita recupere su capacidad de adsorción en tiempos cortos y temperaturas o presiones Io más cercanas posible a las empleadas en los ciclos de adsorción.
La zeolita RHO, que presenta ventanas con aperturas cristalográficas de 0.36 x 0.36 nm que dan acceso a grandes cavidades 'cuasi-esféricas' de 1.15 nm de diámetro cumple con todos estos requisitos, permitiendo el acceso a moléculas de CO2, pero impidiéndoselo al metano, y por Io tanto pueden ser empleadas en procesos de separación o purificación de metano en corrientes de gas natural.
DESCRIPCIÓN DE LA INVENCIÓN
Las zeolitas se pueden clasificar como zeolitas de poro extragrande, grande, medio o pequeño según Ia apertura de sus canales. De esta forma, las zeolitas de poro pequeño tendrán canales con aperturas formadas por 8 tetraedros, mientras que las de poro medio serán de 10 tetraedros, las grandes de 12 y finalmente, las extragrandes poseerán canales con aperturas mayores de 12 tetraedros,
La zeolita RHO es una zeolita de poro pequeño que posee un sistema tridireccional de canales con aperturas de 0.36 x 0.36 nm que se cruzan formando una supercavidad casi esférica de 1.15 nm de diámetro y con una densidad de red de 14.7 tetraedros/nm3. Este sistema poroso Ie confiere a esta zeolita una elevada capacidad de adsorción, pero sólo pueden acceder a su interior moléculas de pequeño diámetro cinético tales como agua, nitrógeno, oxígeno e hidrocarburos lineales entre otras. La presente invención se refiere a un procedimiento de separación o purificación de hidrocarburos presentes en una corriente de gas natural y su recuperación, utilizando un material zeolítico isoestructural a Ia zeolita RHO que comprende al menos los siguientes pasos:
(a) poner en contacto Ia corriente de gas natural con el material zeolítico,
(b) recuperación de los componentes no adsorbidos.
La zeolita RHO se caracteriza por presentar capacidades de adsorción en el equilibrio termodinámico muy diferentes para CO2 y Metano entre otros, Io que posibilita su aplicación en procesos de separación y purificación de metano y de otros hidrocarburos presentes en corrientes de gas natural. La condición de equilibrio se alcanza cuando Ia cantidad de adsorbato no aumenta con el tiempo a unas condiciones fijas de presión de adsorbato y temperatura. La eficiencia termodinámica de un adsorbente en procesos de separación se determina a partir del valor del cociente de sus capacidades de adsorción en condiciones de equilibrio de los productos que se pretenden separar, RA.
En principio, cuanto mayor sea Ia capacidad de adsorción de una zeolita, menor cantidad se requerirá para separar una cantidad dada de mezcla de metano-CO2. Así, para que un determinado proceso de separación sea viable a nivel práctico se requiere que las zeolitas presenten altos valores de RA y capacidades de adsorción altos o moderados.
El procedimiento descrito en Ia presente invención se puede llevar a cabo a una temperatura entre -100 y 200 0C, preferentemente entre -25 y 150 0C, más preferentemente entre 0 y 1000C y a una presión entre 0,1 y
30 bar, preferentemente entre 0,5 y 25 bar, más preferentemente entre 1 y
10 bar.
Según una realización particular el CO2 se adsorbe preferentemente y el metano no se adsorbe preferentemente. Según otra realización particular el CO2 se adsorbe preferentemente y el metano y el nitrógeno no se adsorben preferentemente. Además, se puede poner en contacto Ia mezcla de gases que no han sido adsorbidos, metano y nitrógeno, de nuevo en contacto con el material zeolítico siendo el nitrógeno el que se adsorbe preferentemente frente al metano. Según otra realización particular el CO2 se adsorbe preferentemente y una mezcla de hidrocarburos ligeros de cuatro o menos carbonos como componente no se adsorbe preferentemente.
Según otra realización particular el CO2 se adsorbe preferentemente y una mezcla de nitrógeno e hidrocarburos ligeros de cuatro o menos carbonos no se adsorbe preferentemente. Además, se puede poner en contacto Ia mezcla de gases que no han sido adsorbidos, nitrógeno e hidrocarburos ligeros, de nuevo en contacto con el material zeolítico siendo el nitrógeno el que se adsorbe preferentemente frente a los hidrocarburos ligeros. Como ya se ha mencionado anteriormente, es conocida Ia denominación de gases ácidos para hacer referencia al conjunto de los siguientes componentes del gas natural, CO2 y SH2.
Según otra realización particular Ia mezcla contiene gases ácidos como componentes que se adsorben preferentemente y metano que no se adsorbe preferentemente. Según otra realización particular Ia mezcla contiene gases ácidos como componentes que se adsorben preferentemente y metano y nitrógeno como componentes que no se adsorben preferentemente. Además, se puede poner en contacto Ia mezcla de gases que no han sido adsorbidos, nitrógeno y metano, de nuevo en contacto con el material zeolítico siendo el nitrógeno el que se adsorbe preferentemente frente al metano.
Según otra realización particular Ia mezcla contiene gases ácidos como componentes que se adsorben preferentemente y una mezcla de hidrocarburos ligeros de cuatro o menos carbonos como componente que no se adsorbe preferentemente.
Según otra realización particular Ia mezcla contiene gases ácidos como componentes que se adsorben preferentemente y una mezcla de nitrógeno e hidrocarburos ligeros de cuatro o menos carbonos como componente que no se adsorbe preferentemente. Además, se puede poner en contacto Ia mezcla de gases que no han sido adsorbidos, nitrógeno e hidrocarburos ligeros, de nuevo en contacto con el material zeolítico siendo el nitrógeno el que se adsorbe preferentemente frente a los hidrocarburos ligeros. En Ia presente invención, se muestra que Ia zeolita RHO presenta capacidades de adsorción muy diferentes para CO2 y metano, con capacidades de adsorción de CO2 elevadas. Según una realización particular de Ia presente invención, Ia zeolita RHO tiene una capacidad de adsorción de CO2 superior a 100 mg/g a 1000 mbar y en el rango de temperaturas comprendido entre 10 y 6O0C y una capacidad de adsorción menor de 10 mg/g para metano en estas mismas condiciones. Por Io tanto, Ia zeolita RHO es un adsorbente muy adecuado para llevar a cabo procesos de separación o purificación de metano en corrientes de gas natural. El proceso de separación de esta invención implica que una determinada cantidad de zeolita RHO se pone en contacto con una mezcla de gases (gas natural) que contiene, entre ostros, CO2 y metano y en el que preferiblemente el CO2 se adsorbe en el interior de Ia zeolita RHO. Se mantiene en contacto Ia mezcla de CO2 y metano y Ia zeolita RHO durante un tiempo determinado para posibilitar que el proceso de adsorción tenga lugar y, finalmente, Ia mezcla de gases que no han sido adsorbidos se retira. El gas adsorbido en Ia zeolita es recuperado por medio de técnicas tales como arrastre con otro gas, aumento de temperatura, evacuación o combinación de los métodos anteriores.
Este proceso de separación también puede llevarse a cabo en columnas, en cuyo caso se obtienen distintos frentes de CO2 y metano según sean retenidos más o menos fuertemente por el lecho de zeolita RHO.
Las condiciones de separación dependerán de Ia composición precisa de Ia mezcla de gases que contenga metano y CO2 que se pretenda separar. Así, el límite inferior de presión y temperatura de separación corresponderá a las condiciones en las que se produce Ia condensación del CO2. De esta manera el proceso de esta invención puede llevarse a cabo entre -100 y 200 0C, preferentemente entre -25 y 150 0C, más preferentemente entre 0 y 1000C y a una presión entre 0,1 y 30 bar, preferentemente entre 0,5 y 25 bar, más preferentemente entre 1 y 10 bar.
A Io largo de Ia descripción y las reivindicaciones Ia palabra "comprende" y sus variantes no pretenden excluir otras características técnicas, aditivos, componentes o pasos. Para los expertos en Ia materia, otros objetos, ventajas y características de Ia invención se desprenderán en parte de Ia descripción y en parte de Ia práctica de Ia invención. Los siguientes ejemplos se proporcionan a modo de ilustración, y no se pretende que sean limitativos de Ia presente invención.
EJEMPLOS
Ejemplo 1. Preparación del material isoestructural con Ia zeolita RHO. Se mezclan 0.98 g de éter corona 18-6, cuya estructura se muestra en Ia figura 1 , 0.705 g de Cs(OH), 0.45 g de NaOH y 6.04 g de agua destilada. Se agita Ia mezcla hasta conseguir Ia completa disolución. A continuación, se añaden 1.32 g de aluminato sódico (54% AI2O3, 32.8% Na2O, 13.2% H2O) y se agita hasta obtener una disolución homogénea. Por último, se añaden 10.5 g de suspensión de sílice (Ludox AS-40) y se agita Ia mezcla durante 24 horas. La composición del gel es:
1.8 Na2O : 0.3 Cs2O : AL2O3 : 10 SiO2 : 0.5 (18-Crown-6) : 100 H2O
La mezcla obtenida se introduce en un autoclave provisto de una funda interna de politetrafluoretileno y se introduce en un horno precalentado a 125° C durante 5 días en agitación. El difractograma de rayos X del sólido obtenido indica que se ha obtenido el material. La calcinación a 6000C en aire durante 3 horas permite eliminar las especies orgánicas ocluidas y obtener el material RHO capaz de ser utilizado en procesos de adsorción y separación.
Ejemplo 2. Adsorción de CO2 a 5000 mbar en el material RHO a 1O0C.
La medida de Ia capacidad de adsorción de CO2 del material RHO, preparado según el ejemplo 1 a 1O0C y 5000 mbar corresponde a 244 mg/g. Asimismo, el valor obtenido después de realizar 20 ciclos de adsorción/desorción es de 235 mg/g, Io que demuestra que el material
RHO conserva su capacidad de adsorción.
Ejemplo 3. Adsorción de metano a 5000 mbar en el material RHO a 1O0C.
La medida de Ia capacidad de adsorción de CO2 del material RHO, preparado según el ejemplo 1 a 1O0C y 5000 mbar corresponde a 4 mg/g.
Ejemplo 4. Adsorción de CO2 a 5000 mbar en el material RHO a 250C. La medida de Ia capacidad de adsorción de CO2 del material RHO, preparado según el ejemplo 1 a 250C y 5000 mbar corresponde a 234 mg/g.
Ejemplo 5. Adsorción de metano a 5000 mbar en el material RHO a 250C.
La medida de Ia capacidad de adsorción de CO2 del material RHO, preparado según el ejemplo 1 a 250C y 5000 mbar corresponde a 5 mg/g.
Ejemplo 6. Adsorción de CO2 a 5000 mbar en el material RHO a 450C. La medida de Ia capacidad de adsorción de CO2 del material RHO, preparado según el ejemplo 1 a 450C y 5000 mbar corresponde a 206 mg/g.
Ejemplo 7. Adsorción de metano a 5000 mbar en el material RHO a 450C.
La medida de Ia capacidad de adsorción de CO2 del material RHO, preparado según el ejemplo 1 a 450C y 5000 mbar corresponde a 6 mg/g.
Ejemplo 8. Adsorción de CO2 a 5000 mbar en el material RHO a 6O0C. La medida de Ia capacidad de adsorción de CO2 del material RHO, preparado según el ejemplo 1 a 6O0C y 5000 mbar corresponde a 180 mg/g.
Ejemplo 9. Adsorción de metano a 5000 mbar en el material RHO a 6O0C.
La medida de Ia capacidad de adsorción de CO2 del material RHO, preparado según el ejemplo 1 a 6O0C y 5000 mbar corresponde a 7 mg/g.
Ejemplo 10. Adsorción de metano a 1000 mbar en el material RHO a 1O0C. La cinética de adsorción de metano sobre el material RHO, preparado según el ejemplo 1 indica que en 30 minutos se adsorben 0.5 mg de metano.
Ejemplo 11. Adsorción de nitrógeno a 1000 mbar en el material RHO a 1O0C.
La cinética de adsorción de metano sobre el material RHO, preparado según el ejemplo 1 indica que en 30 minutos se adsorben 3 mg de nitrógeno.
Breve descripción de las figuras:
Figura 1 : se muestra Ia estructura del aditivo orgánico empleado en el ejemplo 1 para Ia síntesis de un material isoestructural a Ia zeolita RHO.
Figura 2: se muestran los valores de Ia capacidad de adsorción en el equilibrio de CO2 y CH4 del material RHO, preparado según el ejemplo 1 , a distintas presiones y distintas temperaturas. Puede observarse que las isóbaras de metano son indistinguibles entre ellas debido a Ia baja capacidad de adsorción de Ia Zeolita RHO a cualquier temperatura y/o presión comparada con las determinadas para el CO2.
Figura 3: se muestra las cinéticas de adsorción de metano y nitrógeno a 1O0C y a 1000 mbar de presión de gas en un material RHO, preparado según el ejemplo 1. Puede observarse que el nitrógeno difunde más rápidamente que el metano en estas condiciones.

Claims

REIVINDICACIONES
1. Proceso de separación de separación o purificación de hidrocarburos presentes en una corriente de gas natural y recuperación utilizando un material zeolítico isoestructural a Ia zeolita RHO caracterizado porque comprende al menos los siguientes pasos:
(a) poner en contacto Ia corriente de gas natural con el material zeolítico,
(b) recuperación de los componentes no adsorbidos.
2. Proceso de separación o purificación según Ia reivindicación 1 , caracterizado porque se lleva a cabo a una temperatura entre -100 y 200 0C.
3. Proceso de separación o purificación según Ia reivindicación 1 , caracterizado porque se lleva a cabo a una presión entre 0,1 y 30 bar.
4. Proceso de separación o purificación según cualquiera de las reivindicaciones anteriores, caracterizado porque el CO2 se adsorbe preferentemente y el metano no se adsorbe preferentemente.
5. Proceso de separación o purificación según cualquiera de las reivindicaciones 1 a 3, caracterizado porque el CO2 se adsorbe preferentemente y el metano y el nitrógeno no se adsorben preferentemente.
6. Proceso de separación o purificación según cualquiera de las reivindicaciones 1 a 3, caracterizado porque el CO2 se adsorbe preferentemente y una mezcla de hidrocarburos ligeros de cuatro o menos carbonos como componente no se adsorbe preferentemente.
7. Proceso de separación o purificación según cualquiera de las reivindicaciones 1 a 3, caracterizado porque el CO2 se adsorbe preferentemente y una mezcla de nitrógeno e hidrocarburos ligeros de cuatro o menos carbonos como componentes no se adsorbe preferentemente.
8. Proceso de separación o purificación según cualquiera de las reivindicaciones 1 a 3, caracterizado porque Ia mezcla contiene gases ácidos como componentes que se adsorben preferentemente y metano no se adsorbe preferentemente.
9. Proceso de separación o purificación según cualquiera de las reivindicaciones 1 a 3, caracterizado porque Ia mezcla contiene gases ácidos como componentes que se adsorben preferentemente y metano y nitrógeno como componentes que no se adsorben preferentemente.
10. Proceso de separación o purificación según cualquiera de las reivindicaciones 1 a 3, caracterizado porque Ia mezcla contiene gases ácidos como componentes que se adsorben preferentemente y una mezcla de hidrocarburos ligeros de cuatro o menos carbonos como componente que no se adsorbe preferentemente.
11. Proceso de separación o purificación según cualquiera de las reivindicaciones 1 a 3, caracterizado porque Ia mezcla contiene gases ácidos como componentes que se adsorben preferentemente y una mezcla de nitrógeno e hidrocarburos ligeros de cuatro o menos carbonos como componente no se adsorbe preferentemente.
12. Proceso de separación o purificación según cualquiera de las reivindicaciones 5, 7, 9 y 11 , caracterizado porque el proceso comprende, además, poner en contacto Ia mezcla de gases que no se adsorben preferentemente con el material zeolítico.
13. Proceso de separación o purificación según Ia reivindicación 12, caracterizado porque el nitrógeno se adsorbe preferentemente.
PCT/ES2010/070236 2009-04-17 2010-04-19 Uso de un material cristalino microporoso de naturaleza zeolítica con estructura rho en tratamiento de gas natural WO2010119163A1 (es)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2012505194A JP5732451B2 (ja) 2009-04-17 2010-04-19 天然ガス処理における、rho構造を備えるゼオライト特性の微孔性結晶性材料の使用
CN201080017196.5A CN102439123B (zh) 2009-04-17 2010-04-19 具有rho结构的沸石性质微孔晶体材料在天然气加工过程中的应用
AU2010238431A AU2010238431B2 (en) 2009-04-17 2010-04-19 Use of a microporous crystalline material of zeolitic nature with RHO structure in natural gas processing
EP10764136.7A EP2420551B1 (en) 2009-04-17 2010-04-19 Use of a microporous crystalline material of zeolitic nature with rho structure in natural gas processing
US13/272,586 US8337594B2 (en) 2009-04-17 2011-10-13 Use of a microporous crystalline material of zeolitic nature with RHO structure in natural gas processing

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP200901136 2009-04-17
ES200901136A ES2346627B1 (es) 2009-04-17 2009-04-17 Uso de un material cristalino microporoso de naturaleza zeolitica conestructura rho en tratamiento de gas natural.

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/272,586 Continuation US8337594B2 (en) 2009-04-17 2011-10-13 Use of a microporous crystalline material of zeolitic nature with RHO structure in natural gas processing

Publications (1)

Publication Number Publication Date
WO2010119163A1 true WO2010119163A1 (es) 2010-10-21

Family

ID=42801049

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2010/070236 WO2010119163A1 (es) 2009-04-17 2010-04-19 Uso de un material cristalino microporoso de naturaleza zeolítica con estructura rho en tratamiento de gas natural

Country Status (7)

Country Link
US (1) US8337594B2 (es)
EP (1) EP2420551B1 (es)
JP (1) JP5732451B2 (es)
CN (1) CN102439123B (es)
AU (1) AU2010238431B2 (es)
ES (1) ES2346627B1 (es)
WO (1) WO2010119163A1 (es)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015020014A1 (ja) 2013-08-05 2015-02-12 三菱化学株式会社 ゼオライト及びその製造方法と用途

Families Citing this family (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5710263B2 (ja) * 2007-11-12 2015-04-30 エクソンモービル アップストリーム リサーチ カンパニー ユーティリティガスの製造及び利用方法
EP3144050B1 (en) * 2008-04-30 2018-12-05 Exxonmobil Upstream Research Company Method for removal of oil from utility gas stream
MY162263A (en) 2010-05-28 2017-05-31 Exxonmobil Upstream Res Co Integrated adsorber head and valve design and swing adsorption methods related thereto
TWI495501B (zh) 2010-11-15 2015-08-11 Exxonmobil Upstream Res Co 動力分餾器及用於氣體混合物之分餾的循環法
CA2825148C (en) 2011-03-01 2017-06-20 Exxonmobil Upstream Research Company Methods of removing contaminants from a hydrocarbon stream by swing adsorption and related apparatus and systems
BR112013018276A2 (pt) 2011-03-01 2019-09-24 Exxonmobil Upstream Res Co métodos de remover contaminantes de uma corrente de hidrocarbonetos por adsorção oscilante e aparelhos e sistemas relacionados
US9017457B2 (en) 2011-03-01 2015-04-28 Exxonmobil Upstream Research Company Apparatus and systems having a reciprocating valve head assembly and swing adsorption processes related thereto
BR112013018597A2 (pt) 2011-03-01 2019-01-08 Exxonmobil Upstream Res Co aparelho e sistemas tendo um contator adsorvente encaixado e processos de adsorção oscilante
EP2680947A4 (en) 2011-03-01 2015-04-29 Exxonmobil Upstream Res Co APPARATUS AND SYSTEMS HAVING MULTI-MODULATED ADSORPTION BEDS WITH COMPACT CONFIGURATION AND RELATED METHODS
US9352269B2 (en) 2011-03-01 2016-05-31 Exxonmobil Upstream Research Company Apparatus and systems having a rotary valve assembly and swing adsorption processes related thereto
CA2824162A1 (en) 2011-03-01 2012-09-07 Exxonmobil Upstream Research Company Apparatus and systems having a rotary valve assembly and swing adsorption processes related thereto
US9034078B2 (en) 2012-09-05 2015-05-19 Exxonmobil Upstream Research Company Apparatus and systems having an adsorbent contactor and swing adsorption processes related thereto
CN102897787A (zh) * 2012-10-22 2013-01-30 天津工业大学 一种窄粒度分布的ρ型分子筛的合成方法
US9675925B2 (en) 2014-07-25 2017-06-13 Exxonmobil Upstream Research Company Apparatus and system having a valve assembly and swing adsorption processes related thereto
EP3188827B1 (en) 2014-09-03 2019-05-15 Exxonmobil Research And Engineering Company Emm-26, a novel synthetic crystalline material, its preparation, and its use
RU2580723C1 (ru) * 2014-09-18 2016-04-10 Федеральное государственное бюджетное учреждение науки Ордена Трудового Красного Знамени Институт химии силикатов им. И.В. Гребенщикова Российской академии наук (ИХС РАН) СПОСОБ ПОЛУЧЕНИЯ СИНТЕТИЧЕСКОГО ЦЕОЛИТА СТРУКТУРНОГО ТИПА Rho
WO2016076994A1 (en) 2014-11-11 2016-05-19 Exxonmobil Upstream Research Company High capacity structures and monoliths via paste imprinting
WO2016094034A1 (en) 2014-12-10 2016-06-16 Exxonmobil Research And Engineering Company Adsorbent-incorporated polymer fibers in packed bed and fabric contactors, and methods and devices using same
RU2666849C1 (ru) 2014-12-23 2018-09-12 Эксонмобил Апстрим Рисерч Компани Структурированный слой адсорбента, способы его получения и его применение
AU2016265109B2 (en) 2015-05-15 2019-03-07 Exxonmobil Upstream Research Company Apparatus and system for swing adsorption processes related thereto comprising mid-bed purge systems
SG11201707065PA (en) 2015-05-15 2017-11-29 Exxonmobil Upstream Res Co Apparatus and system for swing adsorption processes related thereto
CA2996139C (en) 2015-09-02 2021-06-15 Exxonmobil Upstream Research Company Process and system for swing adsorption using an overhead stream of a demethanizer as purge gas
US10080992B2 (en) 2015-09-02 2018-09-25 Exxonmobil Upstream Research Company Apparatus and system for swing adsorption processes related thereto
US10040022B2 (en) 2015-10-27 2018-08-07 Exxonmobil Upstream Research Company Apparatus and system for swing adsorption processes related thereto
EP3368188A1 (en) 2015-10-27 2018-09-05 Exxonmobil Upstream Research Company Apparatus and system for swing adsorption processes related thereto having a plurality of valves
WO2017074657A1 (en) 2015-10-27 2017-05-04 Exxonmobil Upstream Research Company Apparatus and system for swing adsorption processes related thereto having actively-controlled feed poppet valves and passively controlled product valves
US10744449B2 (en) 2015-11-16 2020-08-18 Exxonmobil Upstream Research Company Adsorbent materials and methods of adsorbing carbon dioxide
US10125641B2 (en) 2015-11-17 2018-11-13 Exxonmobil Research And Engineering Company Dual integrated PSA for simultaneous power plant emission control and enhanced hydrocarbon recovery
WO2017087154A1 (en) 2015-11-17 2017-05-26 Exxonmobil Research And Engineering Company Staged pressure swing adsorption for simultaneous power plant emission control and enhanced hydrocarbon recovery
US10143960B2 (en) 2015-11-17 2018-12-04 Exxonmobil Research And Engineering Company Staged complementary PSA system for low energy fractionation of mixed fluid
US10071337B2 (en) 2015-11-17 2018-09-11 Exxonmobil Research And Engineering Company Integration of staged complementary PSA system with a power plant for CO2 capture/utilization and N2 production
WO2017087165A1 (en) 2015-11-17 2017-05-26 Exxonmobil Research And Engineering Company Hybrid high-temperature swing adsorption and fuel cell
WO2017160521A1 (en) 2016-03-18 2017-09-21 Exxonmobil Upstream Research Company Apparatus and system for swing adsorption processes related thereto
CN109219476A (zh) 2016-05-31 2019-01-15 埃克森美孚上游研究公司 用于变吸附方法的装置和系统
BR112018074420A2 (pt) 2016-05-31 2019-03-06 Exxonmobil Upstream Research Company aparelho e sistema para processos de adsorção por variação
US10434458B2 (en) 2016-08-31 2019-10-08 Exxonmobil Upstream Research Company Apparatus and system for swing adsorption processes related thereto
KR102215684B1 (ko) 2016-09-01 2021-02-19 엑손모빌 업스트림 리서치 캄파니 3a 제올라이트 구조체를 사용하는 물의 제거를 위한 스윙 흡착 방법
US10328382B2 (en) 2016-09-29 2019-06-25 Exxonmobil Upstream Research Company Apparatus and system for testing swing adsorption processes
CA3045034C (en) 2016-12-21 2021-06-29 Exxonmobil Upstream Research Company Self-supporting structures having active materials
EP3558490B1 (en) 2016-12-21 2022-06-29 ExxonMobil Upstream Research Company Self-supporting structures having foam-geometry structure and active materials
US11331620B2 (en) 2018-01-24 2022-05-17 Exxonmobil Upstream Research Company Apparatus and system for swing adsorption processes
EP3758828A1 (en) 2018-02-28 2021-01-06 ExxonMobil Upstream Research Company Apparatus and system for swing adsorption processes
US10654024B2 (en) * 2018-09-28 2020-05-19 Air Products And Chemicals, Inc. RHO zeolites and method of making the same
WO2020131496A1 (en) 2018-12-21 2020-06-25 Exxonmobil Upstream Research Company Flow modulation systems, apparatus, and methods for cyclical swing adsorption
WO2020222932A1 (en) 2019-04-30 2020-11-05 Exxonmobil Upstream Research Company Rapid cycle adsorbent bed
US11655910B2 (en) 2019-10-07 2023-05-23 ExxonMobil Technology and Engineering Company Adsorption processes and systems utilizing step lift control of hydraulically actuated poppet valves
WO2021076594A1 (en) 2019-10-16 2021-04-22 Exxonmobil Upstream Research Company Dehydration processes utilizing cationic zeolite rho
CN114749145B (zh) * 2022-04-28 2023-07-18 东北石油大学 吸附分离氮气与甲烷的分子筛及制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3904738A (en) * 1973-06-21 1975-09-09 Exxon Research Engineering Co Zeolite RHO
WO2008000380A1 (en) * 2006-06-26 2008-01-03 Eni S.P.A. Process and zeolitic materials for the separation of gases

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4960578A (en) * 1987-11-19 1990-10-02 Exxon Research And Engineering Company Zeolite ECR-10
US5557030A (en) * 1995-03-23 1996-09-17 Uop Process for rejecting heavy hydrocarbons from light hydrocarbons gases
US6251200B1 (en) * 1999-06-29 2001-06-26 Uop Llc Process and apparatus for inflating airbags and remediating toxic waste gases
FR2853904B1 (fr) * 2003-04-15 2007-11-16 Air Liquide Procede de production de liquides hydrocarbones mettant en oeuvre un procede fischer-tropsch
US7166146B2 (en) * 2003-12-24 2007-01-23 Chevron U.S.A. Inc. Mixed matrix membranes with small pore molecular sieves and methods for making and using the membranes
WO2006017557A2 (en) * 2004-08-03 2006-02-16 The Regents Of The University Of Colorado Membranes for highly selective separations
ES2275422B1 (es) * 2005-07-25 2008-06-01 Universidad Politecnica De Valencia Separacion de gases utilizando la zeolita itq-32.
EP2155608A4 (en) * 2007-05-11 2011-01-12 Univ California MULTI-COMPONENT GAS ADSORPTION GAS SEPARATION
WO2009020745A2 (en) * 2007-07-17 2009-02-12 The Regents Of The University Of California Preparation of functionalized zeolitic frameworks
JP5186410B2 (ja) * 2008-02-14 2013-04-17 公益財団法人地球環境産業技術研究機構 Co2分離剤、及びco2の選択的分離方法
US8142745B2 (en) * 2008-02-21 2012-03-27 Exxonmobil Research And Engineering Company Separation of carbon dioxide from nitrogen utilizing zeolitic imidazolate framework materials

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3904738A (en) * 1973-06-21 1975-09-09 Exxon Research Engineering Co Zeolite RHO
WO2008000380A1 (en) * 2006-06-26 2008-01-03 Eni S.P.A. Process and zeolitic materials for the separation of gases

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LI, P: "Adsorption separation of N2, 02, C02 and CH4 gases by beta-zeolite", MICROPOROUS AND MESOPOROUS MATERIALS, vol. 98, 2007, pages 94 - 101, XP005795664, DOI: doi:10.1016/j.micromeso.2006.08.016 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015020014A1 (ja) 2013-08-05 2015-02-12 三菱化学株式会社 ゼオライト及びその製造方法と用途
US9919297B2 (en) 2013-08-05 2018-03-20 Mitsubishi Chemical Corporation Zeolite, and production method and use therefor

Also Published As

Publication number Publication date
US8337594B2 (en) 2012-12-25
EP2420551B1 (en) 2020-11-18
EP2420551A4 (en) 2013-01-30
ES2346627B1 (es) 2011-08-08
AU2010238431B2 (en) 2016-03-17
EP2420551A1 (en) 2012-02-22
US20120067216A1 (en) 2012-03-22
JP5732451B2 (ja) 2015-06-10
AU2010238431A1 (en) 2011-12-01
CN102439123A (zh) 2012-05-02
CN102439123B (zh) 2015-09-16
JP2012524048A (ja) 2012-10-11
ES2346627A1 (es) 2010-10-18

Similar Documents

Publication Publication Date Title
ES2346627B1 (es) Uso de un material cristalino microporoso de naturaleza zeolitica conestructura rho en tratamiento de gas natural.
ES2290261T3 (es) Procedimiento de purificacion de gas de sintesis.
Liu et al. Preparation of CHA zeolite (chabazite) crystals and membranes without organic structural directing agents for CO2 separation
RU2705340C2 (ru) Адсорбирующие материалы и способы их применения
Tagliabue et al. Natural gas treating by selective adsorption: Material science and chemical engineering interplay
EP2158020B8 (en) Process for producing purified natural gas from natural gas comprising water and carbon dioxide
ES2326468T3 (es) Retirada selectiva de nitrogeno del gas natural mediante adsorcion con presion oscilante.
US8227377B2 (en) Carbon dioxide adsorbent capable of adsorption and desorption in dependence on pressure of atmospheric pressure or higher
KR101404484B1 (ko) 질소를 도핑한 이산화탄소 포집용 활성탄소 제조방법
Jusoh et al. Mixed matrix membranes comprising of ZIF-8 nanofillers for enhanced gas transport properties
CA2604410A1 (en) Performance stability in shallow beds in pressure swing adsorption systems
JP5186410B2 (ja) Co2分離剤、及びco2の選択的分離方法
KR101946733B1 (ko) 제올라이트의 조절된 구조적 붕괴에 의한 극-소 기공 알루미노실리케이트의 합성
ES2265768B1 (es) Adsorbentes de gases basados en polimeros de coordinacion microporosos.
PT103615B (pt) Coluna de separação e processo de adsorção com modulação de pressão para purificação de gases
EP1700630A8 (en) Process of removal of sulphur compounds from hydrocarbon streams using adsorbents
JP2023542069A (ja) 微多孔性エアロゲル
ES2751176B2 (es) Instalación y procedimiento para recuperar sustancias gaseosas a partir de corrientes gaseosas
ITMI20082126A1 (it) Processo per la separazione di gas
WO2013178855A1 (es) Carbón mesoestructurado funcionalizado con grupos amino, método de síntesis y aplicación en captura de co2
KR102644329B1 (ko) 암모니아 흡착제
Mohd Noor et al. Modification of adsorbents for high CO2 content capture from stranded natural gas reserve: A critical review
WO2024133922A1 (en) Method for obtaining a ch4-enriched gas fraction
Wu et al. Synthesis of all-silica ZSM-58 zeolite membranes on hollow fibers for CO2/H2 separation
JP2015107450A (ja) 二酸化炭素吸着剤

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080017196.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10764136

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012505194

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010764136

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010238431

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2010238431

Country of ref document: AU

Date of ref document: 20100419

Kind code of ref document: A