WO2010119115A1 - Moteur a turbine a gaz a double corps pourvu d ' un palier inter-arbres - Google Patents

Moteur a turbine a gaz a double corps pourvu d ' un palier inter-arbres Download PDF

Info

Publication number
WO2010119115A1
WO2010119115A1 PCT/EP2010/055003 EP2010055003W WO2010119115A1 WO 2010119115 A1 WO2010119115 A1 WO 2010119115A1 EP 2010055003 W EP2010055003 W EP 2010055003W WO 2010119115 A1 WO2010119115 A1 WO 2010119115A1
Authority
WO
WIPO (PCT)
Prior art keywords
bearing
downstream
shaft
turbine
upstream
Prior art date
Application number
PCT/EP2010/055003
Other languages
English (en)
Inventor
Jacques René Bart
Didier René André Escure
Ornella Gastineau
Original Assignee
Snecma
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Snecma filed Critical Snecma
Priority to CN201080017118.5A priority Critical patent/CN102395772B/zh
Priority to BRPI1014437-4A priority patent/BRPI1014437B1/pt
Priority to RU2011146530/06A priority patent/RU2553634C2/ru
Priority to US13/260,152 priority patent/US8919133B2/en
Priority to JP2012505175A priority patent/JP5710590B2/ja
Priority to EP10713964.4A priority patent/EP2419616B1/fr
Priority to CA2758175A priority patent/CA2758175C/fr
Publication of WO2010119115A1 publication Critical patent/WO2010119115A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/16Arrangement of bearings; Supporting or mounting bearings in casings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/06Arrangements of bearings; Lubricating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02KJET-PROPULSION PLANTS
    • F02K3/00Plants including a gas turbine driving a compressor or a ducted fan
    • F02K3/02Plants including a gas turbine driving a compressor or a ducted fan in which part of the working fluid by-passes the turbine and combustion chamber
    • F02K3/04Plants including a gas turbine driving a compressor or a ducted fan in which part of the working fluid by-passes the turbine and combustion chamber the plant including ducted fans, i.e. fans with high volume, low pressure outputs, for augmenting the jet thrust, e.g. of double-flow type
    • F02K3/06Plants including a gas turbine driving a compressor or a ducted fan in which part of the working fluid by-passes the turbine and combustion chamber the plant including ducted fans, i.e. fans with high volume, low pressure outputs, for augmenting the jet thrust, e.g. of double-flow type with front fan
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/60Assembly methods
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/50Bearings

Definitions

  • the present invention relates to gas turbine engines, particularly for aeronautical application, comprising a low pressure body and a high pressure body. It relates to the arrangement of the bearings supporting, inside the motor housing, the BP and HP shafts and more particularly the downstream bearings.
  • a dual-body gas turbine engine comprises a first rotary assembly, said low-pressure body, BP, formed of a shaft connecting a BP compressor upstream, upstream and downstream being defined with respect to the flow of air into the machine, and a LP turbine downstream.
  • Each of the compressor and turbine elements may be composed of one or a plurality of stages.
  • the two elements BP are spaced axially from each other and provide a location for a second rotary assembly, said high-pressure body, HP, formed by an HP compressor, disposed downstream of the compressor BP, and a HP turbine arranged upstream of the LP turbine.
  • the HP compressor and the HP turbine are mechanically connected to each other by a drum-shaped connecting member.
  • the combustion chamber of the engine fixed relative to the two bodies, is annular and housed circumferentially around said drum. It receives the compressed air successively by the compressors of the LP stages and HP stages, and delivers high energy combustion gases to the turbine stages HP and BP successively.
  • the engine may comprise a rotor of blower at the front driven by the BP body shaft. Other arrangements are known.
  • a known motor such as the CFM56 comprises structural housing elements supporting in particular the rotating assemblies by bearings.
  • Upstream, a housing element, said intermediate housing, comprises a hub supporting the LP shaft via an upstream LP bearing.
  • a casing element, said exhaust casing also comprises a hub supporting the LP shaft via a downstream LP bearing.
  • the HP body is supported by the BP shaft downstream by means of an inter-shaft bearing.
  • a motor mounted on an aircraft experiences transverse dynamic loads when the latter makes changes in direction.
  • the present applicant has analyzed the behavior of the HP and BP rotors when the engine is subjected such maneuvering charges.
  • the transverse displacement of the rotors along the motor axis is a critical parameter insofar as this displacement has a direct influence on the game consumptions at the end of the vanes with the stator rings. These game consumptions must be kept low if we want to maintain optimal performance.
  • the applicant therefore set itself the objective of reducing the radial clearances at the end of the blades of the compressor and turbine rotors under maneuvering loads. More particularly, the applicant has set a goal of improving the arrangement of the bearings supporting the rotors in a double-body gas turbine engine in order to reduce transverse displacements along the axis of the engine when the engine , mounted on an aircraft, undergoes maneuvering charges.
  • a dual-body gas turbine engine comprising a low pressure body LP and a high pressure body HP rotatably mounted about the same axis.
  • the low pressure body having a LP compressor and a LP turbine connected by a LP low pressure shaft
  • said LP shaft being supported by an upstream LP bearing and a first downstream LP bearing in structural housing elements
  • the HP body being supported by an upstream HP bearing and a downstream HP bearing
  • said motor being characterized in that the LP shaft is supported downstream, in a structural housing element, by an additional downstream LP bearing.
  • the additional downstream LP bearing makes it possible to ensure, in cooperation with the downstream LP bearing, a better fitting of the LP shaft with respect to the downstream casing element.
  • the additional downstream LP bearing is arranged upstream with respect to said downstream LP bearing.
  • the additional downstream LP bearing is of diameter greater than that of said downstream LP bearing.
  • downstream HP bearing being an inter-shaft bearing between the LP shaft and the HP rotor, the HP body being supported by the BP shaft.
  • additional downstream LP bearing is arranged axially between the downstream HP bearing and the downstream LP bearing.
  • downstream HP bearing and the additional downstream LP bearing are arranged in respective transverse planes close to each other.
  • downstream LP bearing and the additional downstream LP bearing being supported by the same structural casing element, said structural casing element has radial stiffening means. More particularly, said structural housing element forms the exhaust structural housing.
  • FIG. 1 schematically represents in axial half-section a gas turbine engine with a front blower, according to the prior art
  • FIG. 2 shows in more detail the downstream part of the engine of FIG. 1;
  • FIG. 3 shows, in axial half-section, the rear part of the engine comprising an additional downstream LP bearing according to the invention;
  • FIG. 4 represents the circulation of the ventilation air of the bearing enclosure according to the invention
  • FIG. 5 represents an alternative arrangement of the bearings according to the invention.
  • the gas turbine engine 1 of FIG. 1 comprises, inside a housing and from upstream to downstream, a front blower 3, a part of the air flow that it compresses is ejected into the air. atmosphere and a radially inner part is guided through the motor. That comprises successively a plurality of compressor stages forming the low pressure compressor, BP, 4. Then the stages of the HP high pressure compressor, 5. The air enters a diffuser through which it is admitted into the combustion chamber 6. Downstream of the combustion chamber, the combustion gases are guided through the high-pressure turbine HP 7 and then in the stages of the LP low-pressure turbine 8; finally the gases are ejected into the atmosphere by a not shown ejection nozzle.
  • the rotor of the compressor BP 4 and that of the turbine BP 8 are mechanically connected by a BP shaft 9 thus forming the BP 9C body.
  • the rotor of the HP compressor 5 and the rotor of the HP turbine 7 together with the drum 10 which connects them mechanically, the body HP 1OC.
  • the casing 2, in which are mounted the two BP and HP bodies, 9C and 1OC, comprises a plurality of elements including, with regard to the present invention, an upstream casing element, said intermediate casing 21, and a crankcase element. downstream, said exhaust housing 2E.
  • These two crankcase elements are structural insofar as the forces between the engine and the structure of the aircraft pass through them.
  • the rotating assemblies are supported in the hubs by a set of bearings; the LP shaft 9 is connected here to the fan shaft which is supported by a bearing Pl.
  • the LP shaft 9 is supported upstream by a bearing P2.
  • These two bearings P1 and P2 are themselves supported by the intermediate casing 21.
  • the shaft BP is supported downstream by a bearing designated P5, itself mounted on the exhaust casing 2E.
  • the body HP 1OC is supported by the shaft BP 9 through the inter-shaft bearing P4, downstream. It is supported upstream by the bearing P3 mounted in the intermediate casing.
  • the shaft 9 of the body BP 9C passes through the disk of the HP turbine 7. It is supported by the bearing P5 in a frustoconical element 2El of the hub of the exhaust casing 2E. It comprises a cage with bearings held between an inner race integral with an end pin 9Cl of the LP shaft 9 and an outer race integral with the frustoconical hub element 2E1.
  • the rotor of the LP 8 turbine is secured to the BP 9 shaft
  • the inter-shaft bearing P4 comprises a cage with bearings mounted between an inner race secured to the LP shaft 9 and an outer race secured to a pin 10Cl at the end of the HP 1OC body and more particularly attached to a flange of HP 7 turbine disk.
  • the BP shaft has the reference 19. It has on the side of its downstream end a pin 19Cl which is here reported but which could also be monoblock with the BP shaft.
  • the pin comprises a portion 19C1A which is in the extension of the BP shaft 19 and of substantially the same diameter. It comprises another portion 19C1B, of larger diameter, attached by a radial portion 19C1C to the first portion 19C1A trunnion.
  • the hub of the exhaust casing 12E comprises two frustoconical portions 12E1 and 12E2 forming supports of two bearings P5 'and P6 respectively.
  • the bearing P5 ' is disposed between the portion 19C1A of the pin of the BP shaft 19 and the frustoconical portion 12E2. It comprises a bearing cage mounted between a track or inner ring integral with the trunnion portion 19C1A and an outer race or ring secured to a cylindrical extension 12E10 of the frustoconical portion 12E1 of the exhaust casing hub.
  • the bearing P6 is mounted between the cylindrical portion 19C1B of larger diameter of the pin 19Cl and a cylindrical extension 12E20 of the frustoconical portion 12E2 of the exhaust casing hub.
  • Stiffening ribs in longitudinal radial planes 12E3 and distributed around the axis of the motor, are formed between the two frustoconical portions so as to enhance the resistance to the radial forces to which these two frustoconical portions are subjected to their upstream end.
  • the hub also includes longitudinal and radial ribs 12E4 distributed around the axis of the engine.
  • the pin 19Cl comprises a cylindrical portion 19C1D extending the cylindrical portion 19C1A upstream and slid on outer bearing surfaces of the shaft 19.
  • the inter-shaft bearing P4 is housed in the annular space between the two cylindrical portions 19C1B and 19C1D.
  • This bearing comprises a bearing cage mounted between a track or ring integral with the pin 10Cl located at the downstream end of the rotor HP 1OC and a track or outer ring integral with a ring 19C1E, itself mounted on the pin 19Cl inside. of the cylindrical portion 19C1B.
  • the pin 10Cl is attached to a downstream flange of the HP turbine disk 7.
  • the pin 19Cl of the LP shaft 19 is bolted, by a radial flange external to the cylindrical portion 19C1B, to a cone 8C attached to one of the disks of the LP turbine rotor 8.
  • the LP turbine rotor here consists of four turbine disks assembled in a single turbine block.
  • Lubrication is shown in Fig. 4.
  • An enclosure for the lubricating oil is provided by labyrinth seals disposed between the moving parts therebetween.
  • labyrinth seals L1 between the pin 10Cl of the HP rotor and the LP shaft 10 are located between the pin 10Cl and the pin 19Cl of the pin.
  • the labyrinth seal L4 closes the chamber between the LP shaft 19 and the hub of the exhaust casing 12E.
  • the arrows F1, F2, F3, F4 and F5 illustrate the pressurization air flow taken upstream by which the chamber of the bearings is maintained pressurized with respect to the pressure prevailing in the low pressure turbine stages.
  • the oil admitted by appropriate conduits is projected on the bearings of the bearings as is known per se and is discharged from the inside of the shaft BP 19 which comprises a de-oiler not shown.
  • the bearing P4 is moved downstream so that it is located substantially in the same transverse plane as the bearing P6.
  • the spigot is extended at the end of the HP rotor.
  • This pin is referenced 110Cl in FIG. 5.
  • the pin of the LP shaft is also modified with respect to the solution of FIG.
  • the solution of the invention is advantageous compared to a prior art where the HP tubin pin is disposed externally relative to the inter-shaft bearing.
  • the operating speed of the HP turbine being greater than that of the internally mounted LP turbine shaft, causes this piece to swell.
  • it In order to guarantee a normal inter-shaft bearing operation, it must be mounted between the LP turbine shaft and the HP turbine shaft.
  • the HP turbine spigot is disposed internally with respect to the inter-shaft bearing and the LP turbine shaft externally of the same bearing.
  • the LP turbine equipped with its shaft itself equipped with the outer race shaft race
  • the HP turbine spigot equipped with the inner ring and the rolling elements of the bearing with play. It is therefore not necessary to heat the HP turbine spigot.
  • the editing is facilitated.
  • the cold clearance is calculated to ensure the proper functioning of the bearing, depending on the mechanical and thermal stresses of the assembly and the fact that the speed of the HP turbine spigot is greater than that of the LP turbine shaft.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Rolling Contact Bearings (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Support Of The Bearing (AREA)
  • Supercharger (AREA)

Abstract

La présente invention porte sur une moteur à turbine à gaz (1) à double corps, comprenant un corps basse pression BP (9C) et un corps haute pression HP (10C), montés rotatifs autour d'un même axe dans un carter fixe (2), le corps basse pression BP (9C) présentant un compresseur et une turbine reliés par un arbre basse pression BP (9) ledit arbre basse pression BP étant supporté par un palier BP amont (P2), un premier palier BP aval (P5') et un palier BP aval supplémentaire (P6) par le carter fixe, le corps haute pression HP (10C) étant supporté par un palier HP amont (P3) et un palier HP aval (P4) qui est un palier inter-arbres comprenant une piste intérieure solidaire du rotor de turbine HP (10C) et une piste extérieure solidaire de l'arbre BP (9).

Description

MOTEUR A TURBINE A GAZ A DOUBLE CORPS POURVU D ' UN PALIER INTER-ARBRES
La présente invention concerne les moteurs à turbine à gaz, notamment à application aéronautique, comprenant un corps à basse pression et un corps à haute pression. Elle vise l'agencement des paliers supportant, à l'intérieur du carter du moteur, les arbres BP et HP et plus particulièrement les paliers aval.
Un moteur à turbine à gaz à double corps comprend un premier ensemble rotatif, dit corps à basse pression, BP, formé d'un arbre reliant un compresseur BP à l'amont, l'amont et l'aval étant définis par rapport à l'écoulement de l'air dans la machine, et une turbine BP à l'aval. Chacun des éléments de compresseur et de turbine peut être composé d'un ou d'une pluralité d'étages. Les deux éléments BP sont espacés axialement l'un de l'autre et ménagent un emplacement pour un second ensemble rotatif, dit corps à haute pression, HP, formé d'un compresseur HP, disposé en aval du compresseur BP, et d'une turbine HP disposée en amont de la turbine BP. Le compresseur HP et la turbine HP sont reliés mécaniquement l'un à l'autre par un organe de liaison en forme de tambour. La chambre de combustion du moteur, fixe par rapport aux deux corps, est annulaire et logée circonférentiellement autour dudit tambour. Elle reçoit l'air comprimé successivement par les compresseurs des étages BP et des étages HP, et délivre des gaz de combustion à haute énergie aux étages de turbine HP et BP successivement. Le moteur peut comprendre un rotor de soufflante à l'avant entraîné par l'arbre du corps BP. D'autres agencements sont connus.
Un moteur connu tel que le CFM56 comprend des éléments de carter structuraux supportant notamment les ensembles rotatifs par des paliers. A l'amont, un élément de carter, dit carter intermédiaire, comprend un moyeu supportant l'arbre BP par l'intermédiaire d'un palier BP amont. A l'aval un élément de carter, dit carter d'échappement, comprend également un moyeu supportant l'arbre BP par l'intermédiaire d'un palier BP aval. Le corps HP est supporté par l'arbre BP à l'aval au moyen d'un palier inter-arbres.
Un moteur monté sur un aéronef subit des charges dynamiques transversales quand ce dernier effectue des manœuvres de changement de direction. Avec un tel agencement des paliers et pour des réalisations de moteur notamment dont la longueur est importante par rapport à la finesse de l'arbre du corps basse pression BP, le présent déposant a analysé le comportement des rotors HP et BP quand le moteur est soumis à de telles charges de manœuvre. Le déplacement transversal des rotors le long de l'axe moteur est un paramètre critique dans la mesure où ce déplacement a une influence directe sur les consommations de jeux en extrémité des aubes avec les anneaux de stator. Ces consommations de jeux doivent être maintenues à des valeurs faibles si on souhaite conserver des performances optimales.
Le déposant s'est donc fixé comme objectif de réduire les jeux radiaux en bout d'aubes des rotors de compresseur et de turbine sous charges de manœuvre. Plus particulièrement le déposant s'est fixé comme objectif d'améliorer l'agencement des paliers supportant les rotors dans un moteur à turbine à gaz à double corps dans le but de réduire les déplacements transversaux le long de l'axe du moteur lorsque le moteur, monté sur un aéronef, subit des charges de manœuvre.
On parvient à un tel objectif, conformément à l'invention, avec un moteur à turbine à gaz à double corps, comprenant un corps à basse pression, BP, et un corps à haute pression, HP, montés rotatifs autour d'un même axe dans un carter fixe du moteur, le corps basse pression présentant un compresseur BP et une turbine BP reliés par un arbre basse pression BP, ledit arbre BP étant supporté par un palier BP amont et un premier palier BP aval dans des éléments de carter structuraux, le corps HP étant supporté par un palier HP amont et un palier HP aval, ledit moteur étant caractérisé par le fait que l'arbre BP est supporté en aval, dans un élément de carter structural, par un palier BP aval supplémentaire.
Le palier BP aval supplémentaire permet d'assurer, en coopération avec le palier BP aval, un meilleur encastrement de l'arbre BP par rapport à l'élément de carter aval.
Conformément à une autre caractéristique, le palier BP aval supplémentaire est disposé en amont par rapport audit palier BP aval. Ainsi le palier BP aval supplémentaire est de diamètre supérieur à celui dudit palier BP aval.
Il est, notamment, aussi de diamètre supérieur à celui du palier HP aval, le palier HP aval étant un palier inter-arbres entre l'arbre BP et le rotor HP, le corps HP étant supporté par l'arbre BP. Conformément à un mode de réalisation, le palier BP aval supplémentaire est disposé axialement entre le palier HP aval et le palier BP aval.
Conformément à un autre mode de réalisation, le palier HP aval et le palier BP aval supplémentaire sont disposés dans des plans transversaux respectifs proches l'un de l'autre.
Avantageusement, le palier BP aval et le palier BP aval supplémentaire étant supportés par le même élément de carter structural, ledit élément de carter structural présente des moyens de raidissement radial. Plus particulièrement, ledit élément de carter structural forme le carter structural d'échappement.
D'autres caractéristiques et avantages de l'invention apparaîtront à la lecture qui suit de la description d'un mode de réalisation de l'invention, donné à titre d'exemple non limitatif, en référence aux dessins annexés sur lesquels
La figure 1 représente schématiquement en demi-coupe axiale un moteur à turbine à gaz avec une soufflante avant, selon l'art antérieur,
La figure 2 représente plus en détail la partie aval du moteur de la figure 1, La figure 3 représente, vue en demi-coupe axiale, la partie arrière du moteur comportant un palier BP aval supplémentaire conforme à l'invention,
La figure 4 représente, la circulation de l'air de ventilation de l'enceinte de palier selon l'invention, La figure 5 représente une variante d'agencement des paliers selon l'invention.
Le moteur à turbine à gaz 1 de la figure 1 comprend à l'intérieur d'un carter et de l'amont vers l'aval, une soufflante avant 3 dont une partie du flux d'air qu'elle comprime est éjectée dans l'atmosphère et une partie radialement intérieure est guidée à travers le moteur. Celui comprend successivement une pluralité d'étages de compresseur formant le compresseur basse pression, BP, 4. Puis les étages du compresseur haute pression HP, 5. L'air pénètre dans un diffuseur par lequel il est admis dans la chambre de combustion 6. En aval de la chambre de combustion les gaz de combustion sont guidés au travers de la turbine haute pression HP 7 puis dans les étages de la turbine basse pression BP 8 ; enfin les gaz sont éjectés dans l'atmosphère par une tuyère d'éjection non représentée.
Structurellement, le rotor du compresseur BP 4 et celui de la turbine BP 8 sont reliés mécaniquement par un arbre BP 9 formant ainsi le corps BP 9C. Le rotor du compresseur HP 5 et le rotor de la turbine HP 7 forment ensemble avec le tambour 10 qui les relie mécaniquement, le corps HP 1OC. Le carter 2, dans lequel sont montés les deux corps BP et HP, 9C et 1OC, comprend une pluralité d'éléments dont pour ce qui concerne la présente invention, un élément de carter amont, dit carter intermédiaire 21, et un élément de carter aval, dit carter d'échappement 2E. Ces deux éléments de carter sont structuraux dans la mesure où les efforts entre le moteur et la structure de l'aéronef transitent par eux. Ils sont formés d'un moyeu central et de bras radiaux traversant la veine de gaz reliant le moyeu à une virole externe. Les ensembles rotatifs sont supportés dans les moyeux par un ensemble de paliers ; l'arbre BP 9 est relié ici à l'arbre de soufflante qui est supporté par un palier Pl. L'arbre BP 9 est supporté à l'amont par un palier P2. Ces deux paliers Pl et P2 sont eux-mêmes supportés par le carter intermédiaire 21. L'arbre BP est supporté à l'aval par un palier désigné P5, lui-même monté sur le carter d'échappement 2E. Le corps HP 1OC est supporté par l'arbre BP 9 par l'intermédiaire du palier inter-arbres P4, à l'aval. Il est supporté à l'amont par le palier P3 monté dans le carter intermédiaire. On voit sur la figure 2 plus en détail, la partie arrière du moteur.
L'arbre 9 du corps BP 9C traverse le disque de la turbine HP 7. Il est supporté par le palier P5 dans un élément de forme tronconique 2El du moyeu du carter d'échappement 2E. Il comprend une cage avec des roulements maintenue entre une piste intérieure solidaire d'un tourillon d'extrémité 9Cl de l'arbre BP 9 et une piste extérieure solidaire de l'élément de moyeu tronconique 2El. Le rotor de la turbine BP 8 est solidaire de l'arbre BP 9
Plus en amont, le palier inter-arbres P4 comprend une cage avec des roulements montée entre une piste intérieure solidaire de l'arbre BP 9 et une piste extérieure solidaire d'un tourillon 10Cl en extrémité du corps HP 1OC et plus particulièrement rattaché à une bride du disque de turbine HP 7.
On décrit maintenant, en référence à la figure 3 un mode de réalisation de l'invention qui est dérivé de l'agencement de palier de l'art antérieur illustré par la figure 2. Sur cette figure 3, les turbines HP 7 et BP 8 sont inchangées par rapport à la figure 2. L'arbre BP a la référence 19. Il présente du côté de son extrémité aval un tourillon 19Cl qui est ici rapporté mais qui pourrait aussi être monobloc avec l'arbre BP. Le tourillon comprend une partie 19C1A qui est dans le prolongement de l'arbre BP 19 et sensiblement de même diamètre. Il comprend une autre partie 19C1B, de plus grand diamètre, rattachée par une portion radiale 19C1C à la première partie 19C1A de tourillon.
Le moyeu du carter d'échappement 12E comprend deux portions tronconiques 12El et 12E2 formant supports de deux paliers P5' et P6 respectivement. Le palier P5' est disposé entre la partie 19C1A du tourillon de l'arbre BP 19 et la portion tronconique 12E2. Il comprend une cage de roulements montée entre une piste ou bague intérieure solidaire de la partie 19C1A de tourillon et une piste ou bague extérieure solidaire d'un prolongement cylindrique 12E10 de la portion tronconique 12El du moyeu de carter d'échappement.
Le palier P6 est monté entre la partie cylindrique 19C1B de plus grand diamètre du tourillon 19Cl et un prolongement cylindrique 12E20 de la portion tronconique 12E2 du moyeu de carter d'échappement. Des nervures de raidissement, dans des plans longitudinaux radiaux 12E3 et réparties autour de l'axe du moteur, sont ménagées entre les deux portions tronconiques de manière à renforcer la résistance aux efforts radiaux auxquels ces deux portions tronconiques sont soumises à leur extrémité amont. Le moyeu comprend également des nervures 12E4 longitudinales et radiales réparties autour de l'axe du moteur. Le tourillon 19Cl comprend une portion cylindrique 19C1D prolongeant la portion cylindrique 19C1A vers l'amont et glissée sur des surfaces d'appui extérieures de l'arbre 19. Le palier inter-arbre P4 est logé dans l'espace annulaire entre les deux portions cylindriques 19C1B et 19C1D. Ce palier comprend une cage de roulements montée entre une piste ou bague solidaire du tourillon 10Cl situé en extrémité aval du rotor HP 1OC et une piste ou bague extérieure solidaire d'une bague 19C1E, elle- même montée sur le tourillon 19Cl à l'intérieur de la portion cylindrique 19C1B. Comme on peut le voir sur la figure 3, le tourillon 10Cl est fixé à une bride aval du disque de turbine HP 7. Le tourillon 19Cl de l'arbre BP 19 est boulonné, par une bride radiale extérieure à la portion cylindrique 19C1B, à un cône 8C rattaché à l'un des disques du rotor de turbine BP 8. Le rotor de turbine BP est ici constitué de quatre disques de turbine assemblés en un seul bloc de turbine.
La lubrification est montrée sur la figure 4. Une enceinte pour l'huile de lubrification est ménagée par des joints à labyrinthe disposés entre les parties mobiles entre elles.
Ainsi à l'amont de l'ensemble des paliers P4, P5' et P6, on trouve les joints à labyrinthe Ll entre le tourillon 10Cl du rotor HP et l'arbre BP 10, L2 entre le tourillon 10Cl et le tourillon 19Cl de l'arbre BP 19, L3 entre le cône 8C du rotor de turbine BP et le moyeu du carter d'échappement 12E. A l'aval le joint à labyrinthe L4 ferme l'enceinte entre l'arbre BP 19 et le moyeu du carter d'échappement 12E. Les flèches Fl, F2, F3, F4 et F5 illustrent la circulation d'air de pressurisation prélevé en amont par lequel l'enceinte des paliers est maintenue pressurisée par rapport à la pression régnant dans les étages de turbine basse pression. L'huile admise par des conduits appropriés est projetée sur les roulements des paliers comme cela est connu en soi et est évacuée par l'intérieur de l'arbre BP 19 qui comprend un déshuileur non représenté.
Dans cette version, on a cherché à conserver les pièces existantes par rapport au moteur de l'art antérieur de manière à devoir en modifier le moins possible. Notamment le palier inter-arbre P4 est monté sur le tourillon 10Cl qui n'a pas été modifié. Le palier P4 est ainsi en amont par rapport au palier P6.
Conformément à une variante de réalisation représentée sur la figure 5, on déplace le palier P4 vers l'aval de manière à ce qu'il soit situé sensiblement dans le même plan transversal que le palier P6. Dans ce but on allonge le tourillon en extrémité du rotor HP. Ce tourillon est référencé 110Cl sur la figure 5. Le tourillon de l'arbre BP est également modifié par rapport à la solution de la figure 3.
La solution de l'invention est avantageuse par rapport à un art antérieur où le tourillon de tubine HP est disposé extérieurement par rapport au palier inter-arbres.
Dans ce dernier cas, le régime de fonctionnement de la turbine HP étant supérieur à celui de l'arbre de turbine BP monté intérieurement, entraîne un gonflement de cette pièce. Afin de garantir un jeu normal de fonctionnement du roulement inter-arbres, il faut monter celui-ci fretté entre l'arbre de turbine BP et le tourillon de turbine HP.
Au montage lors de l'accostage de la turbine BP avec son arbre sur le module corps HP, il faut chauffer le tourillon de turbine HP équipé de la bague extérieure du roulement, afin qu'il se dilate et accepte la mise en place de l'arbre de turbine BP équipé de la bague intérieure et des éléments roulants de ce même roulement. Le montage est contraignant.
Avec la solution de l'invention, le tourillon de turbine HP se trouve disposé intérieurement par rapport au palier inter-arbres et l'arbre de turbine BP extérieurement de ce même roulement.
Ainsi contrairement à un montage de type de l'art antérieur, la turbine BP équipée de son arbre, lui-même équipé de la bague extérieure de roulement inter-arbres, est accostée sur le tourillon de turbine HP équipé de la bague intérieure et des éléments roulants du palier, avec du jeu. Il n'est donc pas nécessaire de procéder au chauffage du tourillon de turbine HP. Le montage en est facilité. Le jeu à froid est calculé afin de garantir le bon fonctionnement du roulement, en fonction des contraintes mécaniques et thermiques de l'ensemble et du fait que le régime du tourillon de turbine HP est supérieur à celui de l'arbre de turbine BP.

Claims

Revendications
1) Moteur à turbine à gaz (1) à double corps, comprenant un corps basse pression BP (9C) et un corps haute pression HP (10C), montés rotatifs autour d'un même axe dans un carter fixe (2), le corps basse pression BP (9C) présentant un compresseur et une turbine reliés par un arbre basse pression BP (9) ledit arbre basse pression BP (9) étant supporté par un palier BP amont (P2) , un premier palier BP aval (P5') et un palier BP aval supplémentaire (P6) par le carter fixe (2), le corps haute pression HP (10C) étant supporté par un palier HP amont (P3) et un palier HP aval (P4), caractérisé par le fait que le palier HP aval (P4) est un palier inter-arbres comprenant une piste intérieure solidaire du rotor de turbine HP (10C) et une piste extérieure solidaire de l'arbre BP (9).
2) Moteur selon la revendication 1 dont le palier BP aval supplémentaire (P6) est disposé en amont par rapport audit palier BP aval
(P51
3) Moteur selon l'une des revendications 1 ou 2 dont le palier BP aval supplémentaire (P6) est de diamètre supérieur à celui dudit palier BP aval (P5'). 4) Moteur selon la revendication 3 dont le palier BP aval supplémentaire (P6) est de diamètre supérieur à celui du palier HP aval (P4).
5) Moteur selon la revendication 4 dont le palier BP aval (P4) supplémentaire (P6) est axialement disposé entre le palier HP aval (P4) et le palier BP aval (P5'). 6) Moteur selon la revendication 4 ou 5, dont le palier HP aval (P4) et le palier BP aval supplémentaire (P6) sont disposés dans des plans transversaux par rapport à l'axe du moteur, respectifs proches l'une de l'autre. 7) Moteur selon l'une des revendications précédentes dont, le palier BP aval (P5') et palier BP aval supplémentaire (P6) étant supportés par le même élément de carter structural (2E), ledit carter structural présente des moyens de raidissement radial (2 E2, 2 E3).
8) Moteur selon la revendication précédente dont ledit élément de carter structural forme le carter structural d'échappement (2 E).
PCT/EP2010/055003 2009-04-17 2010-04-15 Moteur a turbine a gaz a double corps pourvu d ' un palier inter-arbres WO2010119115A1 (fr)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CN201080017118.5A CN102395772B (zh) 2009-04-17 2010-04-15 设置有轴间轴承的双主体气体涡轮引擎
BRPI1014437-4A BRPI1014437B1 (pt) 2009-04-17 2010-04-15 Motor de turbina a gás de duplo corpo
RU2011146530/06A RU2553634C2 (ru) 2009-04-17 2010-04-15 Двухроторный газотурбинный двигатель, оборудованный межвальным опорным подшипником
US13/260,152 US8919133B2 (en) 2009-04-17 2010-04-15 Double-body gas turbine engine provided with an inter-shaft bearing
JP2012505175A JP5710590B2 (ja) 2009-04-17 2010-04-15 シャフト間軸受を備えた2体型ガスタービンエンジン
EP10713964.4A EP2419616B1 (fr) 2009-04-17 2010-04-15 Moteur à turbine à gaz à double corps pourvu d'un palier inter-arbres
CA2758175A CA2758175C (fr) 2009-04-17 2010-04-15 Moteur a turbine a gaz a double corps pourvu d ' un palier inter-arbres

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0952515A FR2944558B1 (fr) 2009-04-17 2009-04-17 Moteur a turbine a gaz double corps pourvu d'un palier de turbine bp supplementaire.
FR0952515 2009-04-17

Publications (1)

Publication Number Publication Date
WO2010119115A1 true WO2010119115A1 (fr) 2010-10-21

Family

ID=41278407

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2010/055003 WO2010119115A1 (fr) 2009-04-17 2010-04-15 Moteur a turbine a gaz a double corps pourvu d ' un palier inter-arbres

Country Status (9)

Country Link
US (1) US8919133B2 (fr)
EP (1) EP2419616B1 (fr)
JP (1) JP5710590B2 (fr)
CN (1) CN102395772B (fr)
BR (1) BRPI1014437B1 (fr)
CA (1) CA2758175C (fr)
FR (1) FR2944558B1 (fr)
RU (1) RU2553634C2 (fr)
WO (1) WO2010119115A1 (fr)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013085435A1 (fr) 2011-12-08 2013-06-13 Volvo Aero Corporation Composant de turbine à gaz
WO2013187938A1 (fr) * 2012-01-31 2013-12-19 United Technology Corporation Agencement de palier d'arbre de moteur de turbine à gaz
EP2809953A4 (fr) * 2012-01-31 2015-11-25 United Technologies Corp Moteur à turbine à gaz à section de turbine basse pression, haute vitesse et éléments de support de paliers
EP2920445A4 (fr) * 2012-11-14 2015-12-16 United Technologies Corp Moteur à turbine à gaz doté d'une monture pour section de turbine basse-pression
EP3165753A1 (fr) * 2015-11-05 2017-05-10 United Technologies Corporation Moteur à turbine à gaz avec fixation pour section de turbine basse pression
WO2017212196A1 (fr) * 2016-06-10 2017-12-14 Safran Aircraft Engines Element tubulaire de rotor a section etoilee pour une turbomachine
RU222823U1 (ru) * 2023-12-06 2024-01-18 Публичное Акционерное Общество "Одк-Сатурн" Межроторная опора газотурбинного двигателя

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8128021B2 (en) 2008-06-02 2012-03-06 United Technologies Corporation Engine mount system for a turbofan gas turbine engine
US20140174056A1 (en) 2008-06-02 2014-06-26 United Technologies Corporation Gas turbine engine with low stage count low pressure turbine
JP5031126B1 (ja) * 2011-04-07 2012-09-19 パイオニア株式会社 移動体の周囲状況検知システム
US9239012B2 (en) 2011-06-08 2016-01-19 United Technologies Corporation Flexible support structure for a geared architecture gas turbine engine
US9631558B2 (en) 2012-01-03 2017-04-25 United Technologies Corporation Geared architecture for high speed and small volume fan drive turbine
US20140196472A1 (en) * 2012-01-31 2014-07-17 United Technologies Corporation Geared turbofan gas turbine engine architecture
US10287914B2 (en) 2012-01-31 2019-05-14 United Technologies Corporation Gas turbine engine with high speed low pressure turbine section and bearing support features
US8935913B2 (en) 2012-01-31 2015-01-20 United Technologies Corporation Geared turbofan gas turbine engine architecture
US9476320B2 (en) 2012-01-31 2016-10-25 United Technologies Corporation Gas turbine engine aft bearing arrangement
US20130340435A1 (en) * 2012-01-31 2013-12-26 Gregory M. Savela Gas turbine engine aft spool bearing arrangement and hub wall configuration
US20150345426A1 (en) 2012-01-31 2015-12-03 United Technologies Corporation Geared turbofan gas turbine engine architecture
US8887487B2 (en) 2012-01-31 2014-11-18 United Technologies Corporation Geared turbofan gas turbine engine architecture
US20130195647A1 (en) 2012-01-31 2013-08-01 Marc J. Muldoon Gas turbine engine bearing arrangement including aft bearing hub geometry
US9222417B2 (en) 2012-01-31 2015-12-29 United Technologies Corporation Geared turbofan gas turbine engine architecture
US10125693B2 (en) 2012-04-02 2018-11-13 United Technologies Corporation Geared turbofan engine with power density range
US20150308351A1 (en) 2012-05-31 2015-10-29 United Technologies Corporation Fundamental gear system architecture
US8756908B2 (en) 2012-05-31 2014-06-24 United Technologies Corporation Fundamental gear system architecture
US8572943B1 (en) 2012-05-31 2013-11-05 United Technologies Corporation Fundamental gear system architecture
US20150247458A1 (en) * 2012-10-09 2015-09-03 United Technologies Corporation Bearing support stiffness control
US9790857B2 (en) * 2014-04-17 2017-10-17 United Technologies Corporation Multiple bearing stack retention
US9932858B2 (en) 2015-07-27 2018-04-03 General Electric Company Gas turbine engine frame assembly
CN107795384B (zh) * 2016-08-31 2019-10-11 中国航发商用航空发动机有限责任公司 断开装置及航空发动机
CN107975498B (zh) * 2016-10-24 2021-08-31 开利公司 用于离心压缩机的扩压器及具有其的离心压缩机
US10294821B2 (en) 2017-04-12 2019-05-21 General Electric Company Interturbine frame for gas turbine engine
FR3086020B1 (fr) * 2018-09-13 2020-12-25 Safran Aircraft Engines Systeme de retenue axiale d'une bague de roulement
GB201906167D0 (en) * 2019-05-02 2019-06-19 Rolls Royce Plc Gas turbine engine with core mount
GB201910009D0 (en) * 2019-07-12 2019-08-28 Rolls Royce Plc Gas turbine engine electrical generator
GB201910010D0 (en) * 2019-07-12 2019-08-28 Rolls Royce Plc Gas turbine engine electrical generator
FR3104205B1 (fr) * 2019-12-10 2021-11-19 Safran Aircraft Engines Pressurisation d’enceintes de lubrification dans une turbomachine a turbine contrarotative
FR3104206B1 (fr) * 2019-12-10 2021-11-26 Safran Aircraft Engines Enceinte de lubrification pour une turbomachine d’aeronef
FR3109401B1 (fr) * 2020-04-16 2022-03-18 Safran Aircraft Engines Turbomachine d’aeronef equipee de vis fusibles
FR3114122B1 (fr) 2020-09-17 2023-12-22 Safran Aircraft Engines Turbine de turbomachine
US11428160B2 (en) 2020-12-31 2022-08-30 General Electric Company Gas turbine engine with interdigitated turbine and gear assembly

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2484574A1 (fr) * 1980-06-13 1981-12-18 Snecma Palier inter-arbres de turbomachine multi-corps a amortissement par pellicule d'huile
FR2535789A1 (fr) * 1982-11-10 1984-05-11 Snecma Montage d'un palier inter-arbres de turbomachine multi-corps
EP0335779A1 (fr) * 1988-03-30 1989-10-04 Societe Nationale D'etude Et De Construction De Moteurs D'aviation "Snecma" Palier inter-arbres de turbomachine multi-corps muni d'un dispositif de pilotage de jeu
EP0389353A1 (fr) * 1989-03-23 1990-09-26 Societe Nationale D'etude Et De Construction De Moteurs D'aviation "Snecma" Suspension du rotor de la turbine basse pression d'une turbomachine a double corps
US20010009592A1 (en) * 2000-01-25 2001-07-26 Maquire Alan R. Bearing damper
EP1316676A1 (fr) * 2001-11-29 2003-06-04 General Electric Company Moteur d'avion avec un carter situé entre les turbines
EP1396611A2 (fr) * 2002-09-06 2004-03-10 General Electric Company Procédé et dispositif pour la variation de la vitesse critique d'un arbre
EP1703085A2 (fr) * 2005-03-14 2006-09-20 Rolls-Royce Plc Turbine à arbres multiples
EP1757777A1 (fr) * 2005-08-26 2007-02-28 Snecma Procédé d'assemblage d'une turbomachine

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3823553A (en) * 1972-12-26 1974-07-16 Gen Electric Gas turbine with removable self contained power turbine module
US3844110A (en) * 1973-02-26 1974-10-29 Gen Electric Gas turbine engine internal lubricant sump venting and pressurization system
US4916894A (en) * 1989-01-03 1990-04-17 General Electric Company High bypass turbofan engine having a partially geared fan drive turbine
US5813214A (en) * 1997-01-03 1998-09-29 General Electric Company Bearing lubrication configuration in a turbine engine
US6619030B1 (en) * 2002-03-01 2003-09-16 General Electric Company Aircraft engine with inter-turbine engine frame supported counter rotating low pressure turbine rotors
US6732502B2 (en) * 2002-03-01 2004-05-11 General Electric Company Counter rotating aircraft gas turbine engine with high overall pressure ratio compressor
RU2265742C1 (ru) * 2004-04-29 2005-12-10 Открытое акционерное общество "Научно-производственное объединение "Сатурн" (ОАО "НПО "Сатурн") Межроторная опора газотурбинного двигателя
US7097413B2 (en) * 2004-05-12 2006-08-29 United Technologies Corporation Bearing support
US7409819B2 (en) * 2004-10-29 2008-08-12 General Electric Company Gas turbine engine and method of assembling same
US7513102B2 (en) * 2005-06-06 2009-04-07 General Electric Company Integrated counterrotating turbofan
US7526913B2 (en) * 2005-10-19 2009-05-05 General Electric Company Gas turbine engine assembly and methods of assembling same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2484574A1 (fr) * 1980-06-13 1981-12-18 Snecma Palier inter-arbres de turbomachine multi-corps a amortissement par pellicule d'huile
FR2535789A1 (fr) * 1982-11-10 1984-05-11 Snecma Montage d'un palier inter-arbres de turbomachine multi-corps
EP0335779A1 (fr) * 1988-03-30 1989-10-04 Societe Nationale D'etude Et De Construction De Moteurs D'aviation "Snecma" Palier inter-arbres de turbomachine multi-corps muni d'un dispositif de pilotage de jeu
EP0389353A1 (fr) * 1989-03-23 1990-09-26 Societe Nationale D'etude Et De Construction De Moteurs D'aviation "Snecma" Suspension du rotor de la turbine basse pression d'une turbomachine a double corps
US20010009592A1 (en) * 2000-01-25 2001-07-26 Maquire Alan R. Bearing damper
EP1316676A1 (fr) * 2001-11-29 2003-06-04 General Electric Company Moteur d'avion avec un carter situé entre les turbines
EP1396611A2 (fr) * 2002-09-06 2004-03-10 General Electric Company Procédé et dispositif pour la variation de la vitesse critique d'un arbre
EP1703085A2 (fr) * 2005-03-14 2006-09-20 Rolls-Royce Plc Turbine à arbres multiples
EP1757777A1 (fr) * 2005-08-26 2007-02-28 Snecma Procédé d'assemblage d'une turbomachine

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013085435A1 (fr) 2011-12-08 2013-06-13 Volvo Aero Corporation Composant de turbine à gaz
JP2015500427A (ja) * 2011-12-08 2015-01-05 ゲーコーエヌ エアロスペース スウェーデン アーベー ガスタービンエンジン構成要素
EP2788585A4 (fr) * 2011-12-08 2015-10-14 Gkn Aerospace Sweden Ab Composant de turbine à gaz
WO2013187938A1 (fr) * 2012-01-31 2013-12-19 United Technology Corporation Agencement de palier d'arbre de moteur de turbine à gaz
EP2809953A4 (fr) * 2012-01-31 2015-11-25 United Technologies Corp Moteur à turbine à gaz à section de turbine basse pression, haute vitesse et éléments de support de paliers
US10145266B2 (en) 2012-01-31 2018-12-04 United Technologies Corporation Gas turbine engine shaft bearing arrangement
EP2920445A4 (fr) * 2012-11-14 2015-12-16 United Technologies Corp Moteur à turbine à gaz doté d'une monture pour section de turbine basse-pression
EP3594483A1 (fr) * 2012-11-14 2020-01-15 United Technologies Corporation Moteur à turbine à gaz avec fixation pour section de turbine basse pression
EP3165753A1 (fr) * 2015-11-05 2017-05-10 United Technologies Corporation Moteur à turbine à gaz avec fixation pour section de turbine basse pression
WO2017212196A1 (fr) * 2016-06-10 2017-12-14 Safran Aircraft Engines Element tubulaire de rotor a section etoilee pour une turbomachine
FR3052487A1 (fr) * 2016-06-10 2017-12-15 Snecma Element tubulaire de rotor a section etoilee pour une turbomachine
RU222823U1 (ru) * 2023-12-06 2024-01-18 Публичное Акционерное Общество "Одк-Сатурн" Межроторная опора газотурбинного двигателя

Also Published As

Publication number Publication date
FR2944558B1 (fr) 2014-05-02
JP2012524203A (ja) 2012-10-11
CA2758175A1 (fr) 2010-10-21
FR2944558A1 (fr) 2010-10-22
RU2553634C2 (ru) 2015-06-20
CN102395772A (zh) 2012-03-28
CN102395772B (zh) 2014-05-14
JP5710590B2 (ja) 2015-04-30
BRPI1014437A2 (pt) 2020-08-18
US20120017603A1 (en) 2012-01-26
EP2419616A1 (fr) 2012-02-22
US8919133B2 (en) 2014-12-30
RU2011146530A (ru) 2013-05-27
EP2419616B1 (fr) 2018-06-06
CA2758175C (fr) 2018-04-03
BRPI1014437B1 (pt) 2021-05-25

Similar Documents

Publication Publication Date Title
EP2419616B1 (fr) Moteur à turbine à gaz à double corps pourvu d'un palier inter-arbres
EP1785588B1 (fr) Dispositif de ventilation de disque de turbine dans un moteur à turbine à gaz
EP2337929A1 (fr) Ventilation d'une turbine haute-pression dans une turbomachine
EP3155234A1 (fr) Turbomachine comprenant un systeme d'entrainement d'un equipement tel qu'un boitier d'accessoires
EP3673164B2 (fr) Turboréacteur à double corps ayant un palier de butée d'arbre basse pression positionné dans le carter d'échappement
EP3870809A1 (fr) Module electrique de soufflante d'aeronef comportant des aubes a fixation perfectionnee
EP3394401B1 (fr) Turboréacteur avec un moyen de reprise de poussée sur le carter inter-compresseurs
FR3046200B1 (fr) Turbomachine comprenant un reservoir d'huile et un echangeur air-huile associe
FR3108655A1 (fr) Turbomachine à double flux comprenant un dispositif de régulation du débit de fluide de refroidissement
EP3963190B1 (fr) Architecture améliorée de turbomachine à turbine contrarotative
FR2983909A1 (fr) Enceinte lubrifiee logeant un palier inter-turbine et fermee par un joint a labyrinthe a faible usure
EP4165285B1 (fr) Architecture amelioree de turbomachine a turbine contrarotative
WO2021009436A1 (fr) Reducteur a train epicycloïdal pour une turbomachine
EP4259906B1 (fr) Ensemble statorique de turbine avec degré de liberté radial entre un distributeur et un anneau d'étanchéité
WO2017212196A1 (fr) Element tubulaire de rotor a section etoilee pour une turbomachine
EP1473462B1 (fr) Groupe compresseur à montage en cartouche
FR3118093A1 (fr) Aube de turbine, en particulier destinée à une turbine contrarotative
WO2024084150A1 (fr) Turbomachine a cycle recupere equipee d'un echangeur de chaleur
WO2024200967A1 (fr) Module de turbomachine equipee d'une machine electrique
FR2966200A1 (fr) Architecture de turbine a gaz, en particulier de turbomoteur, sans palier dans la zone inter-turbines
EP4185765A1 (fr) Turbine à cavités pressurisées
EP4226034A1 (fr) Ensemble d'étanchéité pour un cône d'éjection de turbine
FR3110934A1 (fr) Dispositif de support d’un arbre de soufflante d’une turbomachine, turbomachine munie de celui-ci

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080017118.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10713964

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2758175

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2012505175

Country of ref document: JP

Ref document number: 13260152

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2011146530

Country of ref document: RU

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2010713964

Country of ref document: EP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: PI1014437

Country of ref document: BR

ENP Entry into the national phase

Ref document number: PI1014437

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20111017