WO2010117943A1 - Method of predicting a predisposition to qt prolongation based on bai3 gene sequence or product thereof - Google Patents

Method of predicting a predisposition to qt prolongation based on bai3 gene sequence or product thereof Download PDF

Info

Publication number
WO2010117943A1
WO2010117943A1 PCT/US2010/029945 US2010029945W WO2010117943A1 WO 2010117943 A1 WO2010117943 A1 WO 2010117943A1 US 2010029945 W US2010029945 W US 2010029945W WO 2010117943 A1 WO2010117943 A1 WO 2010117943A1
Authority
WO
WIPO (PCT)
Prior art keywords
individual
compound
prolongation
interval
lower alkyl
Prior art date
Application number
PCT/US2010/029945
Other languages
French (fr)
Inventor
Christian Lavedan
Simona Volpi
Louis Licamele
Original Assignee
Vanda Pharmaceuticals, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=42244300&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2010117943(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Vanda Pharmaceuticals, Inc. filed Critical Vanda Pharmaceuticals, Inc.
Priority to CA2757646A priority Critical patent/CA2757646C/en
Priority to JP2012504748A priority patent/JP5692872B2/en
Priority to EP10712676.5A priority patent/EP2416779B1/en
Priority to US13/263,077 priority patent/US9072742B2/en
Publication of WO2010117943A1 publication Critical patent/WO2010117943A1/en
Priority to US14/694,142 priority patent/US20150225795A1/en
Priority to US15/705,071 priority patent/US10570452B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • A61K31/519Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim ortho- or peri-condensed with heterocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D413/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D413/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings
    • C07D413/04Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/106Pharmacogenomics, i.e. genetic variability in individual responses to drugs and drug metabolism
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/136Screening for pharmacological compounds
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/156Polymorphic or mutational markers

Definitions

  • the invention relates generally to a method of predicting an individual's predisposition to QT prolongation, and more particularly, to a method of predicting such predisposition based on a sequence of the individual's BAI3 (brain-specific angiogenesis inhibitor 3) gene.
  • LQTS long QT syndrome
  • QT prolongation can be a chronic condition.
  • LQTS may be induced by the administration of an active pharmaceutical ingredient that prolongs the QT interval. A number of compounds are believed to be capable of prolonging the QT interval.
  • amiodarone arsenic thoxide, bepridil, chloroquine, chlorpromazine, cisapride, clarithromycin, disopyramide, dofetilide, dompehdone, dropehdol, erythromycin, halofantrine, haloperidol, ibutilide, ilopehdone, levomethadyl, mesohdazine, methadone, pentamidine, pimozide, procainamide,
  • VAND-0046-PCT 1 quinidine, sotalol, sparfloxacin, and thioridazine.
  • VAND-0046-PCT 2 glioblastoma Shiratsuchi et al., Cloning and characterization of BAI2 and BAI3, novel genes homologous to brain-specific angiogenesis inhibitor 1 (BAM ), Cytogenet. Cell Genet. 79: 103-108, 1997. PubMed ID : 9533023.
  • BAM brain-specific angiogenesis inhibitor 1
  • the present invention describes an association between genetic polymorphisms in the BAI3 gene and a predisposition to prolongation of the QT interval, and provides related methods for the diagnosis of such predisposition and for the administration of QT interval-prolonging compounds to individuals having such a predisposition.
  • a first aspect of the invention provides a method of administering to an individual a compound capable of prolonging the individual's QT interval, the method comprising determining at least a portion of an individual's BAI3 gene sequence; and in the case that a portion of the individual's BAI3 sequence is associated with an increased risk of QT prolongation, administering to the individual a quantity of the compound less than would be administered to an individual having a BAI3 gene sequence not associated with an increased risk of QT prolongation, or electing instead to treat the individual with a different compound not known to be associated with QT prolongation.
  • a second aspect of the invention provides a method of determining whether or not an individual is predisposed to prolongation of the QT interval, the method comprising: determining at least a portion of an individual's BAI3 gene sequence.
  • a third aspect of the invention provides a method of administering a compound capable of prolonging a QT interval to an individual suffering from long
  • VAND-0046-PCT 3 QT syndrome the method comprising: determining at least a portion of an individual's BAI3 gene sequence; and administering to the individual a quantity of the compound based on the individual's BAI3 gene sequence.
  • a fourth aspect of the invention provides a method of administering to an individual a compound capable of prolonging the individual's QT interval, the method comprising: characterizing an expression product of an individual's BAI3 gene; and in the case that the characterized expression product is associated with an increased risk of QT prolongation, administering to the individual a quantity of the compound less than would be administered to an individual having an expression product not associated with an increased risk of QT prolongation.
  • Expression products of the BAI3 gene may include, for example, mRNA and protein including any isoform of the mRNA and protein.
  • a fifth aspect of the invention provides a method of determining whether an individual is predisposed to prolongation of the QT interval, the method comprising: characterizing an expression product of an individual's BAI3 gene.
  • a sixth aspect of the invention provides a method of administering a compound capable of prolonging a QT interval to an individual suffering from long QT syndrome (LQTS), the method comprising: characterizing an expression product of an individual's BAI3 gene; and administering to the individual a quantity of the compound based on the characterized expression product.
  • LQTS long QT syndrome
  • a seventh aspect of the invention provides a method of determining whether a compound is capable of prolonging QT interval in an individual, the method comprising: measuring an expression product of the individual's BAI3 gene; administering to the individual a quantity of the compound; remeasuring the
  • VAND-0046-PCT 4 expression product of the individual's BAI3 gene determining whether the compound is capable of prolonging the individual's QT interval based on a difference in the measurements of the expression product of the individual's BAI3 gene.
  • An eighth aspect of the invention provides a method of determining whether a compound is capable of prolonging a QT interval in an individual, the method comprising: measuring a QT interval of each of a plurality of test organisms, the plurality including a first test organism having a BAI3 genotype associated with a predisposition for prolongation of QT interval and a second organism having BAI3 genotype not associated with a predisposition for prolongation of QT interval; administering a quantity of the compound to each of the plurality of test organisms; remeasuring a QT interval of at least the first test organism; and determining that the compound is capable of prolonging a QT interval in an individual in the case that the remeasured QT interval is greater than the measured QT interval.
  • Test organisms may include, for example, humans, animal models, and/or cell lines.
  • the invention provides a method of predicting an individual's predisposition to QT prolongation based on the sequence of the individual's BAI3 (brain-specific angiogenesis inhibitor 3) gene.
  • At least one single nucleotide polymorphisms (SNPs) within the BAI3 gene has been found to have a significant correlation to a predisposition to drug-induced QT prolongation.
  • Table 1 shows such SNPs and the genotypes associated with QT prolongation following the administration of ilopehdone.
  • SNPs useful in the practice of the invention are selected from among SNPs listed in Table 1 and can be used singly or in any combination of two or more.
  • a genotype of GG at the rs1083338 locus was found to most accurately predict a predisposition to QT prolongation. This genotype is included amongst all genotypes associated with a predisposition to QT prolongation. Therefore, individuals having a genotype of GG at the rs1083338 locus may be considered predisposed to QT prolongation following the administration of a compound capable of prolonging the QT interval.
  • QTc corrected QT
  • Fridericia formula QTcF
  • Bazett formula QTcB
  • Rautaharju formula QTp
  • VAND-0046-PCT 14 the present invention includes the use of any such formula or method for calculating a QTc or an uncorrected QT.
  • iloperidone As noted above, a large number of compounds are known or suspected to be capable of inducing QT prolongation in some individuals, including individuals not suffering from LQTS.
  • One such compound is iloperidone.
  • llopehdone is disclosed in US Patent Nos. 5,364,866, 5,658,911 , and 6,140,345, each of which is incorporated herein by reference. Metabolites of iloperidone may also be capable of prolonging a QT interval.
  • iloperidone metabolites include: 1 -[4-[3-[4-(6-Fluoro-1 ,2-benzisoxazol-3- yl)-1 -piperidinyl]propoxy]-3-hydroxyphenyl]ethanone; 1 -[4-[3-[4-(6-Fluoro-1 ,2- benzisoxazol-3-yl)-1 -pipehdinyl]propoxy]-3-methoxyphenyl]-2-hydroxyethanone; 4- [3-[4-(6-Fluoro-1 ,2-benzisoxazol-3-yl)-1 -piperidinyl]propoxy]-3-hydroxy- ⁇ r methylbenzene methanol; 4-[3-[4-(6-Fluoro-1 ,2-benzisoxazol-3-yl)-1 - piperidinyl]propoxyl-2-hydroxy-5-methoxy- ⁇ -methylbenzenemethanol; 1 -[4
  • VAND-0046-PCT 15 shows the results of a study of 174 individuals, each of whom was genotyped at the rs1083338 locus and their QT interval measured following the oral administration of 24 mg/day B. I. D. of ilopehdone for a period of two weeks.
  • an individual's BAI3 sequence at the SNP A- 1810514, rs1083338 locus is highly predictive of whether the individual will experience QT prolongation following the administration of iloperidone. For example, using the lowest threshold of a change in QTc interval (between baseline and the end of the second week) greater than 5 milliseconds (normal QTc intervals are between 0.30 and 0.44 seconds for males and between 0.30 and 0.45 for females), 39 of those individuals with the GG genotype (test is considered positive if the genotype for SNP_A-1810514, rs1083338 is GG) experienced QT prolongation while only seven such individuals did not. The resulting sensitivity (probability that the individual will have a SNP genotype associated with a predisposition to QT prolongation, given that he/she experienced QT prolongation) of 0.33, specificity
  • VAND-0046-PCT 16 (probability that the individual will not have a SNP genotype associated with a predisposition to QT prolongation, given that he/she did not experience QT prolongation) of 0.89, negative predictive value (probability that the individual will not experience QT prolongation, given that he/she does not have a SNP genotype associated with a predisposition to QT prolongation) of 0.43, and a positive predictive value (probability that the individual will experience QT prolongation, given that he/she has a SNP genotype associated with a predisposition to QT prolongation) of 0.85, permit one to predict with great accuracy that an individual possessing the GG genotype is likely to experience QT prolongation.
  • an individual's BAI3 sequence at the SNP loci above may be used to predict whether an individual is predisposed to QT prolongation due to the administration of a compound capable of prolonging the QT interval. That is, individuals having a genotype of GG at the rs1083338 locus may reliably be predicted to experience a prolonged QT interval (i.e., a change in QT interval of at least 5 milliseconds) following the administration of a compound capable of prolonging the QT interval.
  • a prolonged QT interval i.e., a change in QT interval of at least 5 milliseconds
  • individuals having a genotype other than GG at the rs1083338 locus may reliably be predicted to not experience severe QT prolongation (i.e., a change in QT interval of greater than 15 milliseconds) following the administration of a compound capable of prolonging the QT interval.
  • VAND-0046-PCT 17 The ability to make such predictions may be used in deciding whether to treat an individual with a particular compound and/or in determining the dosage appropriate for the individual. For example, an individual predicted to experience QT prolongation may be treated with an alternative compound not known or suspected to cause QT prolongation or may be administered a lower dose of a compound capable of causing QT prolongation than would be administered to an individual not predicted to experience QT prolongation.
  • the present invention also includes the administration of another compound useful in treating LQTS, in addition to one or more of the compounds above.
  • Compounds useful in treating LQTS and/or preventing cardiac events resulting from LQTS include, for example, beta blockers, such as propranolol, nadolol, atenolol, metoprolol.
  • the present invention also includes the prediction of an individual's predisposition for QT prolongation based on one or more of the SNP loci above in combination with the individual's genotype or gene sequence at one or more additional genes or loci.
  • International Patent Application Publication No. WO2006039663 incorporated herein by reference, describes a method of treating an individual with a compound capable of inducing QT prolongation based on the individual's CYP2D6 genotype.
  • Other genotypes and/or gene sequences may similarly be used in combination with the SNP loci above, including those associated with LQTS.
  • the present invention includes the characterization of an expression product of the BAI3 gene rather than, or in addition to, the determination of one or more SNP genotypes within the BAI3 gene. For example, by determining a sequence of an mRNA strand transcribed from
  • VAND-0046-PCT 18 the BAI3 gene, it is possible to determine the sequence of the BAI3 gene itself and, as described above, determine whether the BAI3 gene sequence is associated with a predisposition to QT prolongation.
  • the present invention includes determining whether a compound is capable of prolonging a QT interval in an individual. This may be done, for example, by measuring a change in QT interval in a test organism (e.g., human, animal model, cell line) known to possess a BAI3 genotype associated with a predisposition to QT prolongation following the administration of a quantity of compound under study.
  • a test organism e.g., human, animal model, cell line
  • the compound is also administered to a test organism known to possess a BAI3 genotype not associated with a predisposition to QT prolongation.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Analytical Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Microbiology (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Pathology (AREA)
  • Medicinal Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Neurosurgery (AREA)
  • Neurology (AREA)
  • Biomedical Technology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

The present invention describes an association between genetic polymorphisms in the BAI3 gene and a predisposition to prolongation of the QT interval, and provides related methods for the prediction of such a predisposition, the administration of QT interval-prolonging compounds to individuals having such a predisposition, and determining whether a compound is capable of inducing QT prolongation.

Description

METHOD OF PREDICTING A PREDISPOSITION TO QT PROLONGATION BASED ON BAI3 GENE SEQUENCE OR PRODUCT THEREOF
CROSS-REFERENCE TO RELATED APPLICATIONS This application claims the benefit of co-pending US Provisional Patent Application No. 61/167,140, filed 06 April 2009, which is hereby incorporated herein.
BACKGROUND OF THE INVENTION
1. Technical Field
The invention relates generally to a method of predicting an individual's predisposition to QT prolongation, and more particularly, to a method of predicting such predisposition based on a sequence of the individual's BAI3 (brain-specific angiogenesis inhibitor 3) gene.
2. Background
Prolongation of the electrocardiographic QT interval (the time between the start of the Q wave and the end of the T wave) is referred to as long QT syndrome (LQTS). LQTS may comprise a genetic component. In some patients with LQTS, QT prolongation can be a chronic condition. In some persons, LQTS may be induced by the administration of an active pharmaceutical ingredient that prolongs the QT interval. A number of compounds are believed to be capable of prolonging the QT interval. These include amiodarone, arsenic thoxide, bepridil, chloroquine, chlorpromazine, cisapride, clarithromycin, disopyramide, dofetilide, dompehdone, dropehdol, erythromycin, halofantrine, haloperidol, ibutilide, ilopehdone, levomethadyl, mesohdazine, methadone, pentamidine, pimozide, procainamide,
VAND-0046-PCT 1 quinidine, sotalol, sparfloxacin, and thioridazine.
Other compounds are suspected of being capable of prolonging the QT interval, although such prolongation has not been definitively established. These include alfuzosin, amantadine, azithromycin, chloral hydrate, clozapine, dolasetron, felbamate, flecainide, foscarnet, fosphenytoin, gatifloxacin, gemifloxacin, granisetron, indapamide, isradipine, levofloxacin, lithium, moexipril, moxifloxacin, nicardipine, octreotide, ofloxacin, ondansetron, quetiapine, ranolazine, risperidone, roxithromycin, tacrolimus, tamoxifen, telithromycin, tizanidine, vardenafil, venlafaxine, voriconazole, and ziprasidone.
Individuals at risk of suffering LQTS are advised not to use still other compounds, due to the possibility that they may prolong the QT interval. These include albuterol, amitriptyline, amoxapine, amphetamine, dextroamphetamine, atomoxetine, chloroquine, ciprofloxacin, citalopram, clomipramine, cocaine, desipramine, dexmethylphenidate, dobutamine, dopamine, doxepin, ephedrine, epinephrine, fenfluramine, fluconazole, fluoxetine, galantamine, imipramine, isoproterenol, itraconazole, ketoconazole, levalbuterol, metaproterenol, methylphenidate, mexiletine, midodrine, norepinephrine, nortriptyline, paroxetine, phentermine, phenylephrine, phenylpropanolamine, protriptyline, pseudoephedrine, ritodrine, salmeterol, sertraline, sibutramine, solifenacin, terbutaline, tolterodine, trimethoprim-sulfa, and trimipramine.
Shiratsuchi et al. mapped the BAI3 gene to 6q12 by fluorescence in situ hybridization. They found that BAI3 expression was absent in 2 of 9 glioblastoma cell lines examined and was significantly reduced in 3 of the remaining 7. These findings suggested that the gene may play an important role in suppression of
VAND-0046-PCT 2 glioblastoma. Shiratsuchi et al., Cloning and characterization of BAI2 and BAI3, novel genes homologous to brain-specific angiogenesis inhibitor 1 (BAM ), Cytogenet. Cell Genet. 79: 103-108, 1997. PubMed ID : 9533023.
SUMMARY OF THE INVENTION
The present invention describes an association between genetic polymorphisms in the BAI3 gene and a predisposition to prolongation of the QT interval, and provides related methods for the diagnosis of such predisposition and for the administration of QT interval-prolonging compounds to individuals having such a predisposition.
A first aspect of the invention provides a method of administering to an individual a compound capable of prolonging the individual's QT interval, the method comprising determining at least a portion of an individual's BAI3 gene sequence; and in the case that a portion of the individual's BAI3 sequence is associated with an increased risk of QT prolongation, administering to the individual a quantity of the compound less than would be administered to an individual having a BAI3 gene sequence not associated with an increased risk of QT prolongation, or electing instead to treat the individual with a different compound not known to be associated with QT prolongation.
A second aspect of the invention provides a method of determining whether or not an individual is predisposed to prolongation of the QT interval, the method comprising: determining at least a portion of an individual's BAI3 gene sequence.
A third aspect of the invention provides a method of administering a compound capable of prolonging a QT interval to an individual suffering from long
VAND-0046-PCT 3 QT syndrome (LQTS), the method comprising: determining at least a portion of an individual's BAI3 gene sequence; and administering to the individual a quantity of the compound based on the individual's BAI3 gene sequence.
A fourth aspect of the invention provides a method of administering to an individual a compound capable of prolonging the individual's QT interval, the method comprising: characterizing an expression product of an individual's BAI3 gene; and in the case that the characterized expression product is associated with an increased risk of QT prolongation, administering to the individual a quantity of the compound less than would be administered to an individual having an expression product not associated with an increased risk of QT prolongation. Expression products of the BAI3 gene may include, for example, mRNA and protein including any isoform of the mRNA and protein.
A fifth aspect of the invention provides a method of determining whether an individual is predisposed to prolongation of the QT interval, the method comprising: characterizing an expression product of an individual's BAI3 gene.
A sixth aspect of the invention provides a method of administering a compound capable of prolonging a QT interval to an individual suffering from long QT syndrome (LQTS), the method comprising: characterizing an expression product of an individual's BAI3 gene; and administering to the individual a quantity of the compound based on the characterized expression product.
A seventh aspect of the invention provides a method of determining whether a compound is capable of prolonging QT interval in an individual, the method comprising: measuring an expression product of the individual's BAI3 gene; administering to the individual a quantity of the compound; remeasuring the
VAND-0046-PCT 4 expression product of the individual's BAI3 gene; and determining whether the compound is capable of prolonging the individual's QT interval based on a difference in the measurements of the expression product of the individual's BAI3 gene.
An eighth aspect of the invention provides a method of determining whether a compound is capable of prolonging a QT interval in an individual, the method comprising: measuring a QT interval of each of a plurality of test organisms, the plurality including a first test organism having a BAI3 genotype associated with a predisposition for prolongation of QT interval and a second organism having BAI3 genotype not associated with a predisposition for prolongation of QT interval; administering a quantity of the compound to each of the plurality of test organisms; remeasuring a QT interval of at least the first test organism; and determining that the compound is capable of prolonging a QT interval in an individual in the case that the remeasured QT interval is greater than the measured QT interval. Test organisms may include, for example, humans, animal models, and/or cell lines.
DETAILED DESCRIPTION OF THE INVENTION As indicated above, the invention provides a method of predicting an individual's predisposition to QT prolongation based on the sequence of the individual's BAI3 (brain-specific angiogenesis inhibitor 3) gene.
At least one single nucleotide polymorphisms (SNPs) within the BAI3 gene has been found to have a significant correlation to a predisposition to drug-induced QT prolongation. Table 1 , below, shows such SNPs and the genotypes associated with QT prolongation following the administration of ilopehdone.
VAND-0046-PCT TABLE 1 - BAI3 SNP Genotypes and QT Prolongation Following Administration of lloperidone
Figure imgf000007_0001
1 Official SNP nomenclature according to NCBI db SNP version 126, May 2006.
2 Chromosomal position based on the NCBI Build 36.1 , March 2006.
3 P value of genotype having highest QT values versus all other genotypes.
VAND-0046-PCT 6
Figure imgf000008_0001
VAND-0046-PCT
Figure imgf000009_0001
VAND-0046-PCT 8
Figure imgf000010_0001
VAND-0046-PCT
Figure imgf000011_0001
VAND-0046-PCT 10
Figure imgf000012_0001
VAND-0046-PCT 11
Figure imgf000013_0001
VAND-0046-PCT 12
Figure imgf000014_0001
VAND-0046-PCT 13
Figure imgf000015_0001
SNPs useful in the practice of the invention are selected from among SNPs listed in Table 1 and can be used singly or in any combination of two or more.
A genotype of GG at the rs1083338 locus was found to most accurately predict a predisposition to QT prolongation. This genotype is included amongst all genotypes associated with a predisposition to QT prolongation. Therefore, individuals having a genotype of GG at the rs1083338 locus may be considered predisposed to QT prolongation following the administration of a compound capable of prolonging the QT interval.
Since the QT interval changes with changes in heart rate, the QT interval is often measured as a corrected QT (QTc) interval. Any number of formulas may be employed to calculate the QTc, including, for example, the Fridericia formula (QTcF), the Bazett formula (QTcB), and the Rautaharju formula (QTp), among others. In the studies described herein, QT was calculated using the Fridericia formula. However,
VAND-0046-PCT 14 the present invention includes the use of any such formula or method for calculating a QTc or an uncorrected QT.
As noted above, a large number of compounds are known or suspected to be capable of inducing QT prolongation in some individuals, including individuals not suffering from LQTS. One such compound is iloperidone. llopehdone is disclosed in US Patent Nos. 5,364,866, 5,658,911 , and 6,140,345, each of which is incorporated herein by reference. Metabolites of iloperidone may also be capable of prolonging a QT interval. Metabolites of Iloperidone, e.g., 1 -[4-[3-[4-(6-Fluoro-1 ,2-benzisoxazol-3- yl)-1 -piperidinyl]propoxy]-3-methoxyphenyl]ethanol, are described in International Patent Application Publication No. WO03020707, which is also incorporated herein by reference.
Other iloperidone metabolites include: 1 -[4-[3-[4-(6-Fluoro-1 ,2-benzisoxazol-3- yl)-1 -piperidinyl]propoxy]-3-hydroxyphenyl]ethanone; 1 -[4-[3-[4-(6-Fluoro-1 ,2- benzisoxazol-3-yl)-1 -pipehdinyl]propoxy]-3-methoxyphenyl]-2-hydroxyethanone; 4- [3-[4-(6-Fluoro-1 ,2-benzisoxazol-3-yl)-1 -piperidinyl]propoxy]-3-hydroxy-αr methylbenzene methanol; 4-[3-[4-(6-Fluoro-1 ,2-benzisoxazol-3-yl)-1 - piperidinyl]propoxyl-2-hydroxy-5-methoxy-α-methylbenzenemethanol; 1 -[4-[3-[4-(6- Fluoro-1 ,2-benzisoxazol-3-yl)-1 -piperidinyl]propoxy]-2-hydroxy-5- methoxyphenyl]ethanone; and 1 -[4-[3-[4-(6-Fluoro-1 ,2-benzisoxazol-3-yl)-1 - piperidinyl]propoxy]-2,5-dihydroxyphenyl]ethanone. See US Patent No. 5,364,866 and International Patent Application Publication Nos. WO9309276 and WO9511680, which are incorporated herein by reference.
Using the genotypes at the SNP loci above, it is possible, with a high degree of certainty, to predict an individual's predisposition to QT prolongation. Table 2
VAND-0046-PCT 15 below shows the results of a study of 174 individuals, each of whom was genotyped at the rs1083338 locus and their QT interval measured following the oral administration of 24 mg/day B. I. D. of ilopehdone for a period of two weeks.
Table 2 - QT Prolongation and Presence or Absence of a Genotype for SNP A- 1810514, rs1083338 Associated with a Predisposition to QT Prolongation
Figure imgf000017_0001
As can be seen in Table 2, an individual's BAI3 sequence at the SNP A- 1810514, rs1083338 locus is highly predictive of whether the individual will experience QT prolongation following the administration of iloperidone. For example, using the lowest threshold of a change in QTc interval (between baseline and the end of the second week) greater than 5 milliseconds (normal QTc intervals are between 0.30 and 0.44 seconds for males and between 0.30 and 0.45 for females), 39 of those individuals with the GG genotype (test is considered positive if the genotype for SNP_A-1810514, rs1083338 is GG) experienced QT prolongation while only seven such individuals did not. The resulting sensitivity (probability that the individual will have a SNP genotype associated with a predisposition to QT prolongation, given that he/she experienced QT prolongation) of 0.33, specificity
VAND-0046-PCT 16 (probability that the individual will not have a SNP genotype associated with a predisposition to QT prolongation, given that he/she did not experience QT prolongation) of 0.89, negative predictive value (probability that the individual will not experience QT prolongation, given that he/she does not have a SNP genotype associated with a predisposition to QT prolongation) of 0.43, and a positive predictive value (probability that the individual will experience QT prolongation, given that he/she has a SNP genotype associated with a predisposition to QT prolongation) of 0.85, permit one to predict with great accuracy that an individual possessing the GG genotype is likely to experience QT prolongation.
The use of higher thresholds (i.e., QTs greater than 15 and 30 milliseconds) yielded markedly increased negative predictive values (0.68 and 0.90, respectively). The associated decrease in positive predictive values, from 0.85 for QTs greater than 5 milliseconds to 0.30 for QTs greater than 30 milliseconds) suggests that additional factors affect more severe QT prolongation.
As the data in Table 2 show, an individual's BAI3 sequence at the SNP loci above may be used to predict whether an individual is predisposed to QT prolongation due to the administration of a compound capable of prolonging the QT interval. That is, individuals having a genotype of GG at the rs1083338 locus may reliably be predicted to experience a prolonged QT interval (i.e., a change in QT interval of at least 5 milliseconds) following the administration of a compound capable of prolonging the QT interval. Similarly, individuals having a genotype other than GG at the rs1083338 locus may reliably be predicted to not experience severe QT prolongation (i.e., a change in QT interval of greater than 15 milliseconds) following the administration of a compound capable of prolonging the QT interval.
VAND-0046-PCT 17 The ability to make such predictions may be used in deciding whether to treat an individual with a particular compound and/or in determining the dosage appropriate for the individual. For example, an individual predicted to experience QT prolongation may be treated with an alternative compound not known or suspected to cause QT prolongation or may be administered a lower dose of a compound capable of causing QT prolongation than would be administered to an individual not predicted to experience QT prolongation.
The present invention also includes the administration of another compound useful in treating LQTS, in addition to one or more of the compounds above. Compounds useful in treating LQTS and/or preventing cardiac events resulting from LQTS, include, for example, beta blockers, such as propranolol, nadolol, atenolol, metoprolol.
The present invention also includes the prediction of an individual's predisposition for QT prolongation based on one or more of the SNP loci above in combination with the individual's genotype or gene sequence at one or more additional genes or loci. For example, International Patent Application Publication No. WO2006039663, incorporated herein by reference, describes a method of treating an individual with a compound capable of inducing QT prolongation based on the individual's CYP2D6 genotype. Other genotypes and/or gene sequences may similarly be used in combination with the SNP loci above, including those associated with LQTS. It should also be understood that the present invention includes the characterization of an expression product of the BAI3 gene rather than, or in addition to, the determination of one or more SNP genotypes within the BAI3 gene. For example, by determining a sequence of an mRNA strand transcribed from
VAND-0046-PCT 18 the BAI3 gene, it is possible to determine the sequence of the BAI3 gene itself and, as described above, determine whether the BAI3 gene sequence is associated with a predisposition to QT prolongation.
Similarly, by properly characterizing a functional peptide or protein, including the BAI3 enzyme, translated from the mRNA strand above, it is possible to determine the sequence of the BAI3 gene itself and, as described above, determine whether the BAI3 gene sequence is associated with a predisposition to QT prolongation. In addition, the present invention includes determining whether a compound is capable of prolonging a QT interval in an individual. This may be done, for example, by measuring a change in QT interval in a test organism (e.g., human, animal model, cell line) known to possess a BAI3 genotype associated with a predisposition to QT prolongation following the administration of a quantity of compound under study.
Preferably, the compound is also administered to a test organism known to possess a BAI3 genotype not associated with a predisposition to QT prolongation. The foregoing description of various aspects of the invention has been presented for purposes of illustration and description. It is not intended to be exhaustive or to limit the invention to the precise form disclosed, and obviously, many modifications and variations are possible. Such modifications and variations that may be apparent to a person skilled in the art are intended to be included within the scope of the invention as defined by the accompanying claims.
VAND-0046-PCT 19

Claims

CLAIMS What is claimed is:
1. A method of administering to an individual a compound capable of prolonging the individual's QT interval, the method comprising: determining at least a portion of an individual's BAI3 gene sequence; and in the case that a portion of the individual's BAI3 gene sequence is associated with an increased risk of QT prolongation, administering to the individual a quantity of the compound less than would be administered to an individual having a BAI3 gene sequence not associated with an increased risk of QT prolongation.
2. The method of claim 1 , wherein determining includes determining the individual's genotype at the rs1083338 locus.
3. The method of claim 2, wherein the genotype associated with an increased risk of QT prolongation is GG.
4. The method of claim 1 , further comprising: determining the individual's CYP2D6 genotype.
VAND-0046-PCT 20
5. The method of claim 1 , wherein the compound is selected from a group consisting of: amiodarone, arsenic thoxide, bepridil, chloroquine, chlorpromazine, cisapride, clarithromycin, disopyramide, dofetilide, domperidone, droperidol, erythromycin, halofanthne, halopehdol, ibutilide, iloperidone, levomethadyl, mesoridazine, methadone, pentamidine, pimozide, procainamide, quinidine, sotalol, sparfloxacin, thioridazine; alfuzosin, amantadine, azithromycin, chloral hydrate, clozapine, dolasetron, felbamate, flecainide, foscarnet, fosphenytoin, gatifloxacin, gemifloxacin, granisetron, indapamide, isradipine, levofloxacin, lithium, moexipril, moxifloxacin, nicardipine, octreotide, ofloxacin, ondansetron, quetiapine, ranolazine, risperidone, roxithromycin, tacrolimus, tamoxifen, telithromycin, tizanidine, vardenafil, venlafaxine, voriconazole, ziprasidone; albuterol, amitriptyline, amoxapine, amphetamine, dextroamphetamine, atomoxetine, chloroquine, ciprofloxacin, citalopram, clomipramine, cocaine, desipramine, dexmethylphenidate, dobutamine, dopamine, doxepin, ephedrine, epinephrine, fenfluramine, fluconazole, fluoxetine, galantamine, imipramine, isoproterenol, itraconazole, ketoconazole, levalbuterol, metaproterenol, methylphenidate, mexiletine, midodrine, norepinephrine, nortriptyline, paroxetine, phentermine, phenylephrine, phenylpropanolamine, protriptyline, pseudoephedrine, ritodrine, salmeterol, sertraline, sibutramine, solifenacin, terbutaline, tolterodine, trimethoprim-sulfa, trimipramine, and metabolites, pharmaceutically-acceptable salts, and combinations thereof.
VAND-0046-PCT 21
6. The method of claim 5, wherein the compound has the formula:
Figure imgf000023_0001
wherein:
R is, independently, hydrogen, lower alkyl, lower alkoxy, hydroxyl, carboxyl, lower hydroxyketone, lower alkanol, hydroxyl acetic acid, pyruvic acid, ethanediol, chlorine, fluorine, bromine, iodine, amino, lower mono or dialkylamino, nitro, lower alkyl thio, thfluoromethoxy, cyano, acylamino, thfluoromethyl, thfluoroacetyl, aminocarbonyl, monoaklylaminocarbonyl, dialkylaminocarbonyl, formyl,
O O O
C — aikyi C - O - aikyt aryl — C — heteroaryt
OR- W W W alkyl - C -- alky! aryl C heteroaryt or alkyl is lower alkyl, branched or straight and saturated or unsaturated; acyl is lower alkyl or lower alkyloxy bonded through a carbonyl; aryl is phenyl or phenyl substituted with at least one group, R5, wherein each R5 is, independently, hydrogen, lower alkyl, lower alkoxy, hydroxy, chlorine, fluorine, bromine, iodine, lower monoalkylamino, lower dialkylamino, nitro, cyano, trifluoromethyl, or trifluoromethoxy; heteroaryl is is a five- or six-membered aryl ring having at least one
VAND-0046-PCT 22 heteroatom, Q3, wherein each Q3 is, independently, -O-, -S-, -N(H)-, or -C(H)=N-
W is CH2 or CHR8 or N-R9;
Ri is -H, lower alkyl, -OH, halo, lower alkoxy, trifluormethyl, nitro, or amino;
R2 is C2-C5 alkylene, alkenylene (cis or trans), or alkynylene, optionally substituted by at least one d-C6 linear alkyl group, phenyl group or
lower alkyleny!
Figure imgf000024_0001
where Z^ is lower alkyl, -OH, lower alkoxy, -CF3, -NO2, -NH2, or halogen;
R3 is lower alkyl or hydrogen;
R7 is hydrogen, lower alkyl, or acyl;
R8 is lower alkyl;
R9 is hydroxy, lower alkoxy, or -NHRi0;
Rio is hydrogen, lower alkyl, Ci-C3 acyl, aryl,
O O
— C — aryl — C — heteroaryi or ;
Xi, X2, and X3are, independently, -O-, -S-, =N-, Or -N(R3)-, or Xi and X2 are not covalently bound to each other and are, independently, -OH, =0, -R3, or =NR3; lower is 1 -4 carbon atoms; m is 1 , 2, or 3; and n is 1 or 2.
VAND-0046-PCT 23
7. The method of claim 6, wherein:
R is -C(O)CH2OH, -CH(OH)C(O)CH2OH, -C(O)OH, CH(OH)CH3, or C(O)CH3;
Ri is halo;
Xi and X2 are different and are =0, -OH, =N-, or -O-;
R2 is C2-C4 alkylene or alkenylene;
R3 is hydrogen, methyl, or ethyl;
X3 is -O-;
R is
Figure imgf000025_0001
8. The method of claim 7, wherein the compound of Formula 1 is 1 -[4-3-[4-(6- fluoro-1 ,2-benzisoxazol-3-yl)-1 -pipehdinyl]propoxy]-3-methoxyphenyl]ethanone, as shown in Formula 1 B:
Figure imgf000025_0002
VAND-0046-PCT 24
9. The method of claim 7, wherein the compound of Formula 1 is 1-[4-[3-[4-(6- Fluoro-1 ,2-benzisoxazol-3-yl)-1 -piperidinyl]propoxy]-3-methoxyphenyl]ethanol, as shown in Formula 1 C:
Figure imgf000026_0001
10. A method of determining whether an individual is predisposed to prolongation of the QT interval, the method comprising: determining at least a portion of an individual's BAI3 gene sequence.
11. The method of claim 10, further comprising: in the case that a portion of the individual's BAI3 gene sequence is associated with an increased risk of QT prolongation, administering to the individual a compound not known or suspected to cause QT prolongation.
12. The method of claim 10, wherein determining includes determining the individual's genotype at the rs1083338 locus.
13. The method of claim 12, wherein the genotype associated with an increased risk of QT prolongation is GG.
VAND-0046-PCT 25
14. The method of claim 10, further comprising: determining the individual's CYP2D6 genotype.
15. A method of administering a compound capable of prolonging a QT interval to an individual suffering from long QT syndrome (LQTS), the method comprising: determining at least a portion of an individual's BAI3 gene sequence; and administering to the individual a quantity of the compound based on the individual's BAI3 gene sequence.
16. The method of claim 15, wherein determining includes determining the individual's genotype at the rs1083338 locus.
17. The method of claim 16, wherein the genotype associated with an increased risk of QT prolongation is GG.
18. The method of claim 15, further comprising: determining the individual's CYP2D6 genotype.
19. The method of claim 15, wherein the compound is selected from a group consisting of: amiodarone, arsenic thoxide, bepridil, chloroquine, chlorpromazine, cisapride, clarithromycin, disopyramide, dofetilide, domperidone, droperidol, erythromycin, halofanthne, halopehdol, ibutilide, iloperidone, levomethadyl, mesoridazine, methadone, pentamidine, pimozide, procainamide, quinidine, sotalol, sparfloxacin,
VAND-0046-PCT 26 thioridazine; alfuzosin, amantadine, azithromycin, chloral hydrate, clozapine, dolasetron, felbamate, flecainide, foscarnet, fosphenytoin, gatifloxacin, gemifloxacin, granisetron, indapamide, isradipine, levofloxacin, lithium, moexipril, moxifloxacin, nicardipine, octreotide, ofloxacin, ondansetron, quetiapine, ranolazine, risperidone, roxithromycin, tacrolimus, tamoxifen, telithromycin, tizanidine, vardenafil, venlafaxine, voriconazole, ziprasidone; albuterol, amitriptyline, amoxapine, amphetamine, dextroamphetamine, atomoxetine, chloroquine, ciprofloxacin, citalopram, clomipramine, cocaine, desipramine, dexmethylphenidate, dobutamine, dopamine, doxepin, ephedrine, epinephrine, fenfluramine, fluconazole, fluoxetine, galantamine, imipramine, isoproterenol, itraconazole, ketoconazole, levalbuterol, metaproterenol, methylphenidate, mexiletine, midodrine, norepinephrine, nortriptyline, paroxetine, phentermine, phenylephrine, phenylpropanolamine, protriptyline, pseudoephedrine, ritodrine, salmeterol, sertraline, sibutramine, solifenacin, terbutaline, tolterodine, trimethoprim-sulfa, trimipramine, and metabolites, pharmaceutically-acceptable salts, and combinations thereof.
20. The method of claim 19, wherein the compound has the formula:
Figure imgf000028_0001
wherein:
VAND-0046-PCT 27 R is, independently, hydrogen, lower alkyl, lower alkoxy, hydroxyl, carboxyl, lower hydroxyketone, lower alkanol, hydroxyl acetic acid, pyruvic acid, ethanediol, chlorine, fluorine, bromine, iodine, amino, lower mono or dialkylamino, nitro, lower alkyl thio, thfluoromethoxy, cyano, acylamino, thfluoromethyl, thfluoroacetyl, aminocarbonyl, monoaklylaminocarbonyl, dialkylaminocarbonyl, formyl,
O C ) C ) C 3
Q aikyi - : - O - aikyt — C - aryl — C heteroaryt
— heteroaryt
Figure imgf000029_0001
alkyl is lower alkyl, branched or straight and saturated or unsaturated; acyl is lower alkyl or lower alkyloxy bonded through a carbonyl; aryl is phenyl or phenyl substituted with at least one group, R5, wherein each R5 is, independently, hydrogen, lower alkyl, lower alkoxy, hydroxy, chlorine, fluorine, bromine, iodine, lower monoalkylamino, lower dialkylamino, nitro, cyano, trifluoromethyl, or trifluoromethoxy; heteroaryl is is a five- or six-membered aryl ring having at least one heteroatom, Q3, wherein each Q3 is, independently, -O-, -S-, -N(H)-, or -C(H)=N-
W is CH2 or CHR8 or N-R9;
Ri is -H, lower alkyl, -OH, halo, lower alkoxy, trifluormethyl, nitro, or amino;
R2 is C2-C5 alkylene, alkenylene (cis or trans), or alkynylene, optionally substituted by at least one d-C6 linear alkyl group, phenyl group or
lower alkylenyl
Figure imgf000029_0002
VAND-0046-PCT 28 where Zi is lower alkyl, -OH, lower alkoxy, -CF3, -NO2, -NH2, or halogen; R3 is lower alkyl or hydrogen; R7 is hydrogen, lower alkyl, or acyl; R8 is lower alkyl;
R9 is hydroxy, lower alkoxy, or -NHRi0; Rio is hydrogen, lower alkyl, Ci-C3 acyl, aryl,
O O
w Cti y I w ---~ i IcI1Ci Uαl y \ or ;
Xi, X2, and X3are, independently, -O-, -S-, =N-, Or -N(R3)-, or Xi and X2 are not covalently bound to each other and are, independently, -OH, =0, -R3, or =NR3; lower is 1 -4 carbon atoms; m is 1 , 2, or 3; and n is 1 or 2.
21. The method of claim 20, wherein:
R is -C(O)CH2OH, -CH(OH)C(O)CH2OH, -C(O)OH, CH(OH)CH3, or C(O)CH3;
Ri is halo;
Xi and X2 are different and are =0, -OH, =N-, or -O-;
R2 is C2-C4 alkylene or alkenylene;
R3 is hydrogen, methyl, or ethyl;
X3 is -O-;
R is
VAND-0046-PCT 29
Figure imgf000031_0001
22. The method of claim 21 , wherein the compound of Formula 1 is 1 -[4-3-[4-(6- fluoro-1 ,2-benzisoxazol-3-yl)-1 -pipehdinyl]propoxy]-3-methoxyphenyl]ethanone, as shown in Formula 1 B:
Figure imgf000031_0002
23. The method of claim 21 , wherein the compound of Formula 1 is 1 -[4-[3-[4-(6- Fluoro-1 ,2-benzisoxazol-3-yl)-1 -piperidinyl]propoxy]-3-methoxyphenyl]ethanol, as shown in Formula 1 C:
Figure imgf000031_0003
VAND-0046-PCT 30
24. A method of administering to an individual a compound capable of prolonging the individual's QT interval, the method comprising: characterizing an expression product of an individual's BAI3 gene; and in the case that the characterized expression product is associated with an increased risk of QT prolongation, administering to the individual a quantity of the compound less than would be administered to an individual having an expression product not associated with an increased risk of QT prolongation.
25. The method of claim 24, wherein the expression product includes at least one expression product selected from a group consisting of: mRNA, a peptide, and a protein.
26. A method of determining whether an individual is predisposed to prolongation of the QT interval, the method comprising: characterizing an expression product of an individual's BAI3 gene.
27. The method of claim 26, wherein the expression product includes at least one expression product selected from a group consisting of: mRNA, a peptide, and a protein.
28. A method of administering a compound capable of prolonging a QT interval to an individual suffering from long QT syndrome (LQTS), the method comprising: characterizing an expression product of an individual's BAI3 gene; and administering to the individual a quantity of the compound based on the
VAND-0046-PCT 31 characterized expression product.
29. The method of claim 28, wherein the expression product includes at least one expression product selected from a group consisting of: mRNA, a peptide, and a protein.
30. A method of determining whether a compound is capable of prolonging a QT interval in an individual, the method comprising: measuring an expression product of the individual's BAI3 gene; administering to the individual a quantity of the compound; remeasuring the expression product of the individual's BAI3 gene; and determining whether the compound is capable of prolonging the individual's QT interval based on a difference in the measurements of the expression product of the individual's BAI3 gene.
31. The method of claim 30, wherein the expression product includes at least one expression product selected from a group consisting of: mRNA, a peptide, and a protein.
32. A method of determining whether a compound is capable of prolonging a QT interval in an individual, the method comprising: measuring a QT interval of each of a plurality of test organisms, the plurality including a first test organism having a BAI3 genotype associated with a predisposition for prolongation of QT interval and a second organism having a BAI3
VAND-0046-PCT 32 genotype not associated with a predisposition for prolongation of QT interval; administering a quantity of the compound to each of the plurality of test organisms; remeasuring a QT interval of at least the first test organism; and determining that the compound is capable of prolonging a QT interval in an individual in the case that the remeasured QT interval is greater than the measured
QT interval.
33. The method of claim 32, wherein each of the plurality of test organisms is selected from a group consisting of: humans, animals, and cell lines.
VAND-0046-PCT 33
PCT/US2010/029945 2009-04-06 2010-04-05 Method of predicting a predisposition to qt prolongation based on bai3 gene sequence or product thereof WO2010117943A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CA2757646A CA2757646C (en) 2009-04-06 2010-04-05 Method of predicting a predisposition to qt prolongation
JP2012504748A JP5692872B2 (en) 2009-04-06 2010-04-05 Method for predicting predisposition to QT prolongation based on BAI gene sequence or product thereof
EP10712676.5A EP2416779B1 (en) 2009-04-06 2010-04-05 Method of predicting a predisposition to qt prolongation based on bai3 gene sequence or product thereof
US13/263,077 US9072742B2 (en) 2009-04-06 2010-04-05 Method of predicting a predisposition to QT prolongation
US14/694,142 US20150225795A1 (en) 2009-04-06 2015-04-23 Method of predicting a predisposition to qt prolongation
US15/705,071 US10570452B2 (en) 2009-04-06 2017-09-14 Method of predicting a predisposition to QT prolongation

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US16714009P 2009-04-06 2009-04-06
US61/167,140 2009-04-06

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/263,077 A-371-Of-International US9072742B2 (en) 2009-04-06 2010-04-05 Method of predicting a predisposition to QT prolongation
US14/694,142 Continuation US20150225795A1 (en) 2009-04-06 2015-04-23 Method of predicting a predisposition to qt prolongation

Publications (1)

Publication Number Publication Date
WO2010117943A1 true WO2010117943A1 (en) 2010-10-14

Family

ID=42244300

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2010/029945 WO2010117943A1 (en) 2009-04-06 2010-04-05 Method of predicting a predisposition to qt prolongation based on bai3 gene sequence or product thereof

Country Status (5)

Country Link
US (3) US9072742B2 (en)
EP (1) EP2416779B1 (en)
JP (1) JP5692872B2 (en)
CA (1) CA2757646C (en)
WO (1) WO2010117943A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013138602A1 (en) 2012-03-14 2013-09-19 Vanda Pharmaceuticals Inc. An iloperidone metabolite for use in the treatment of psychiatric disorders
US12117453B2 (en) 2018-12-07 2024-10-15 Washington University Predicting patient response to sodium channel blockers

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2582022C (en) * 2004-09-30 2021-05-18 Vanda Pharmaceuticals, Inc. Methods for the administration of iloperidone

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993009276A1 (en) 1991-11-01 1993-05-13 National-Standard Company Age resistant solder coatings
US5364866A (en) 1989-05-19 1994-11-15 Hoechst-Roussel Pharmaceuticals, Inc. Heteroarylpiperidines, pyrrolidines and piperazines and their use as antipsychotics and analetics
WO1995011680A1 (en) 1993-10-28 1995-05-04 Hoechst-Roussel Pharmaceuticals Inc. Heteroarylpiperidines, pyrrolidines and piperazines and their use as antipsychotics and analgetics
WO2003020707A1 (en) 2001-08-31 2003-03-13 Novartis Ag Optical isomers of an iloperidone metabolite
WO2006039663A2 (en) 2004-09-30 2006-04-13 Vanda Pharmaceuticals, Inc Methods for the administration of iloperidone

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9419099D0 (en) 1994-09-22 1994-11-09 Procter & Gamble Detergent composition
WO2001024681A2 (en) 1999-08-09 2001-04-12 University Of Utah Research Foundation Alterations in the long qt syndrome genes kvlqt1 and scn5a and methods for detecting same
US7179597B2 (en) 2000-04-13 2007-02-20 Georgetown University Genetic diagnosis for QT prolongation related adverse drug reactions
DE10040526A1 (en) 2000-08-18 2002-03-14 Bosch Gmbh Robert Fuel injection system
US20030162192A1 (en) 2001-08-20 2003-08-28 Sotos John G. Polymorphisms associated with ion-channel disease
JP2005519593A (en) * 2002-01-18 2005-07-07 ユニバーシティ オブ ユタ リサーチ ファウンデーション Single nucleotide polymorphism detection method using planar waveguide
EP1579003A2 (en) 2002-12-21 2005-09-28 Pfizer Products Inc. Methods and compositions relating to drug-induced arrhythmia
WO2006124646A2 (en) 2005-05-13 2006-11-23 University Of Chicago Methods and compostions relating to the pharmacogenetics of different gene variants in the context of irinotecan-based therapies
EP1647600A3 (en) * 2004-09-17 2006-06-28 Affymetrix, Inc. (A US Entity) Methods for identifying biological samples by addition of nucleic acid bar-code tags
ITMI20051047A1 (en) 2005-06-07 2006-12-08 Irccs Fond Salvatore Maugeri C MUTATIONS ASSOCIATED WITH THE LONG QT SYNDROME AND THEIR DIAGNOSTIC USE
US20110077539A1 (en) 2009-09-30 2011-03-31 George Alfred L Methods and Compositions for Prediction of Risk for Sudden Death in Long QT Syndrome

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5364866A (en) 1989-05-19 1994-11-15 Hoechst-Roussel Pharmaceuticals, Inc. Heteroarylpiperidines, pyrrolidines and piperazines and their use as antipsychotics and analetics
US5658911A (en) 1989-05-19 1997-08-19 Hoechst Marion Roussel, Inc. Heteroarylpiperidines, and their use as antipsychotics and analgetics
US6140345A (en) 1989-05-19 2000-10-31 Aventis Pharmaceuticals Inc. 1-(aryloxyalkyl)-4-(heteroaryl)piperidines and related compounds useful as antipsychotics and analgesics
WO1993009276A1 (en) 1991-11-01 1993-05-13 National-Standard Company Age resistant solder coatings
WO1995011680A1 (en) 1993-10-28 1995-05-04 Hoechst-Roussel Pharmaceuticals Inc. Heteroarylpiperidines, pyrrolidines and piperazines and their use as antipsychotics and analgetics
WO2003020707A1 (en) 2001-08-31 2003-03-13 Novartis Ag Optical isomers of an iloperidone metabolite
WO2006039663A2 (en) 2004-09-30 2006-04-13 Vanda Pharmaceuticals, Inc Methods for the administration of iloperidone

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DEROSSE PAMELA ET AL: "The Genetics of Symptom-Based Phenotypes: Toward a Molecular Classification of Schizophrenia", SCHIZOPHRENIA BULLETIN, vol. 34, no. 6, November 2008 (2008-11-01), pages 1047 - 1053, XP007913527, ISSN: 0586-7614 *
SHIRATSUCHI ET AL.: "Cloning and characterization of BA12 and BA13, novel genes homologous to brain-specific angiogenesis inhibitor 1 (BA11)", CYTOGENET. CELL GENET., vol. 79, 1997, pages 103 - 108

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013138602A1 (en) 2012-03-14 2013-09-19 Vanda Pharmaceuticals Inc. An iloperidone metabolite for use in the treatment of psychiatric disorders
EP3345603A1 (en) 2012-03-14 2018-07-11 Vanda Pharmaceuticals Inc. Iloperidone metabolite for use in the treatment of psychiatric disorders
US10874659B2 (en) 2012-03-14 2020-12-29 Vanda Pharmaceuticals Inc. Iloperidone metabolite for use in the treatment of psychiatric disorders
US12117453B2 (en) 2018-12-07 2024-10-15 Washington University Predicting patient response to sodium channel blockers

Also Published As

Publication number Publication date
CA2757646C (en) 2020-03-10
US9072742B2 (en) 2015-07-07
US20150225795A1 (en) 2015-08-13
US20120059035A1 (en) 2012-03-08
US10570452B2 (en) 2020-02-25
EP2416779A1 (en) 2012-02-15
US20180002758A1 (en) 2018-01-04
JP2012522839A (en) 2012-09-27
CA2757646A1 (en) 2010-10-14
EP2416779B1 (en) 2016-03-09
JP5692872B2 (en) 2015-04-01

Similar Documents

Publication Publication Date Title
US9157121B2 (en) Method of treatment based on polymorphisms of the KCNQ1 gene
US10570452B2 (en) Method of predicting a predisposition to QT prolongation
EP2134873B1 (en) Method of predicting a predisposition to qt prolongation
US10563260B2 (en) Method of predicting a predisposition to QT prolongation
US10563261B2 (en) Method of predicting a predisposition to QT prolongation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10712676

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2757646

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 13263077

Country of ref document: US

Ref document number: 2012504748

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010712676

Country of ref document: EP