WO2010115853A2 - Procede de fabrication d'un panneau raidi en materiau composite a matrice thermoplastique et panneau ainsi obtenu - Google Patents

Procede de fabrication d'un panneau raidi en materiau composite a matrice thermoplastique et panneau ainsi obtenu Download PDF

Info

Publication number
WO2010115853A2
WO2010115853A2 PCT/EP2010/054458 EP2010054458W WO2010115853A2 WO 2010115853 A2 WO2010115853 A2 WO 2010115853A2 EP 2010054458 W EP2010054458 W EP 2010054458W WO 2010115853 A2 WO2010115853 A2 WO 2010115853A2
Authority
WO
WIPO (PCT)
Prior art keywords
stiffener
skin
elements
core
composite material
Prior art date
Application number
PCT/EP2010/054458
Other languages
English (en)
Other versions
WO2010115853A3 (fr
Inventor
Frédérick CAVALIERE
Original Assignee
European Aeronautic Defence And Space Company Eads France
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by European Aeronautic Defence And Space Company Eads France filed Critical European Aeronautic Defence And Space Company Eads France
Priority to EP10712445A priority Critical patent/EP2416946B1/fr
Priority to ES10712445T priority patent/ES2408116T3/es
Publication of WO2010115853A2 publication Critical patent/WO2010115853A2/fr
Publication of WO2010115853A3 publication Critical patent/WO2010115853A3/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D99/00Subject matter not provided for in other groups of this subclass
    • B29D99/001Producing wall or panel-like structures, e.g. for hulls, fuselages, or buildings
    • B29D99/0014Producing wall or panel-like structures, e.g. for hulls, fuselages, or buildings provided with ridges or ribs, e.g. joined ribs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/30Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core
    • B29C70/302Details of the edges of fibre composites, e.g. edge finishing or means to avoid delamination
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C1/00Fuselages; Constructional features common to fuselages, wings, stabilising surfaces or the like
    • B64C1/06Frames; Stringers; Longerons ; Fuselage sections
    • B64C1/064Stringers; Longerons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C1/00Fuselages; Constructional features common to fuselages, wings, stabilising surfaces or the like
    • B64C1/06Frames; Stringers; Longerons ; Fuselage sections
    • B64C1/12Construction or attachment of skin panels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C1/00Fuselages; Constructional features common to fuselages, wings, stabilising surfaces or the like
    • B64C2001/0054Fuselage structures substantially made from particular materials
    • B64C2001/0072Fuselage structures substantially made from particular materials from composite materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/40Weight reduction

Definitions

  • the field of the invention relates to the field of the manufacture of complex shaped parts made of composite material. More specifically, the invention relates to a method particularly suitable for producing parts made of thermoplastic matrix composite material and comprising hollow closed cross-section reinforcing elements.
  • the invention also relates to composite material parts adapted to the implementation of the method.
  • Composite materials are nowadays widely used for the manufacture of parts in many industrial fields, in particular in the aeronautical field, including for structural parts, ie to support significant efforts of the order of magnitude. their structural strength during their use.
  • composite materials exist, the most common being constituted by more or less long fibers of mineral or organic materials (glass, carbon, aramid ...) contained in a matrix formed by a thermosetting or thermoplastic resin.
  • thermosetting composite parts comprises the impregnation of a fiber reinforcement with a thermosetting resin, and the solidification of the part is obtained by the polymerization of the resin.
  • manufacture of thermoplastic composite parts comprises the impregnation of a fiber reinforcement with a thermoplastic resin, its pressurization and temperature, generally at high pressure and temperature. The solidification of the part is obtained during cooling.
  • stiffeners are composed of a skin and reinforcing elements, said stiffeners, integral with the skin, for example the panels used in the manufacture of fuselages or aircraft wings.
  • the stiffeners have cross sections of various shapes. By way of example, there may be mentioned a section in the form of Z, J or T. These forms, which have the advantage to be open, allow to achieve stiffeners that can be made simultaneously with the skin by means of simple molds to extract, but have a major drawback when the piece is subjected to certain efforts. Indeed, when the stiffener is loaded in compression, it tends to dump, that is to say more or less bed relative to the skin on which they are attached.
  • closed-section stiffeners for example in the shape of omega, having two flanges, two cores and a head, like the stiffeners illustrated in Figure 1a.
  • a piece comprising omega-type stiffeners has, in addition to better stability, improved inertia compared to a part comprising stiffeners type T or Z.
  • a known solution consists in simultaneously producing the various elements of the part (skin and stiffeners) by integrating a filling core into place and place of a cavity, before the polymerization step.
  • This filling core must have characteristics such that it can withstand polymerization temperatures, for example of the order of 180 ° C. for class 180 resins, and relatively moderate pressures (of the order of 7 to 9 ° C.). bars) implemented in this type of process. This relatively limited performance required by this process makes it possible to obtain extractable cores after polymerization without major difficulty and generally reusable.
  • thermoplastic resin for example of polyetheretherketone (PEEK) or polyphenylene sulphide (PPS) type
  • PEEK polyetheretherketone
  • PPS polyphenylene sulphide
  • the term consolidation is understood to mean the operations of producing an elementary thermoplastic part.
  • co-consolidation refers to the operations of producing a thermoplastic component composed of several elementary thermoplastic parts, these elementary parts being able to be previously consolidated or not.
  • the autoraidis panels are co-consolidated, that is to say that the stiffeners are previously consolidated, the skin is previously consolidated or unconsolidated, or draped on the consolidated stiffeners, then the skin and the stiffeners are consolidated simultaneously.
  • the co-consolidation method makes it possible to obtain an interface having a good material health and very good mechanical properties, particularly sought especially for the connections between the soles of the stiffeners and the skin.
  • welding means an assembly of the elementary parts by heating the elementary parts located at a connection interface between said elementary parts.
  • dynamic welding is understood to mean an assembly of the elementary parts by a local welding operation, over a limited area, repeated over the entire bonding interface to be welded.
  • assembly techniques are generally difficult to implement, or have disadvantages and / or limitations.
  • Joining or welding techniques are for example:
  • thermoplastic interposition material Joining or welding by adding a thermoplastic interposition material.
  • This method consists in integrating on each elementary part (skin, stiffener), during their production and at a binding interface (skin-to-skin connection), an interposition material, such as for example a resin film, having a melting temperature lower than that of the resin contained in the different elementary parts to be assembled.
  • the assembly or the welding is obtained by diffusion of the molecules of the resin of the thermoplastic material at a temperature below the melting temperature of the resin contained in the different elementary pieces, thus preserving the geometry and the material health of the elementary parts of the room.
  • this method requires assembly or welding under pressure, an autoclave or a press is required. It also requires the integration of a surface interposition material during the production of the elementary parts and a good control of the geometric tolerances at the interface of the parts to be assembled or welded.
  • the heating is obtained by generating an electric current in the metallic material due to the displacement of a strong local magnetic field near the interface to be welded.
  • this method has some disadvantages, such as, for example, the need to integrate a metallic material at the interface to be welded, the welding on a relatively narrow bead, a sensitivity to the variation in thickness of the elementary parts to welding, the need for a control of the geometrical tolerances, and a possible perturbation caused by a possible presence on the external surface of a metallic protection against the lightning,
  • the heating is obtained by the passage of an electric current.
  • this method has some disadvantages, such as, for example, the need to integrate a metallic material at the interface to be welded, the control of geometric tolerances at the interface of the elementary parts to be welded.
  • the main dynamic welding techniques are difficult to implement in areas where the skin has significant variations or abrupt thickness, such as in the example of panel shown in Figure 1 b.
  • the present invention aims to overcome the disadvantages of existing autoraid parts, including the disadvantages of assembly between the soles and the skin described above, by proposing a solution for integrating a stiffener having a hollow closed section on a skin which allows the realization of autoraidie parts of complex geometry and improves the mechanical strength at the interface soles / skin to benefit from the properties of the thermoplastic composite material.
  • the invention proposes a method for manufacturing a stiffened piece made of composite material comprising organic or mineral fibers held in an organic matrix.
  • the stiffened part comprises a skin formed mainly of a thermoplastic composite material and at least one stiffener of length L large compared to its transverse dimensions, width I and height h.
  • the stiffener considered comprises two flanges, two souls, each soul being secured at a first edge of a sole, and comprises a head solidarisant the two souls together at a second edge of each soul, distant from the first edge, said two souls and the head determines with the skin a hollow volume of the stiffener of closed cross section when the stiffener, whose general shape of the section is said to be in ⁇ , is integral with the skin at the level of the soles.
  • the method in order to be able to assemble the stiffener on the skin in several steps, and to make the most of the potential advantages of the thermoplastic composite materials in terms of shaping and of assembly, the method comprises:
  • thermoplastic composite material comprising a first sole and a first core or at least a part of a first core
  • thermoplastic composite material comprising a second sole and a second core or at least a part of a second core
  • a positioning step at the desired locations on a surface of the skin of the soles of the first and second elements; a step of joining the skin and the first and second elements by co-consolidation of the thermoplastic material of said skin and the soles of the said first and second elements,
  • a step of fixing the third element on the second edges of the first and second elements at junction zones To carry out the step of co-consolidation of the soles of the stiffener and the skin, by applying the necessary pressures simultaneously with the rise in the temperature of the thermoformable composite material and without the risk of deforming the elements of the part, a core is placed at the location of the hollow volume of the stiffener, between the first and second elements, before the step of positioning the skin and the first and second elements, and the core is removed before the step of fixing the third element.
  • the core is advantageously made in at least two parts to be extracted in part by the longitudinal opening left free between souls before the introduction of the third element.
  • the third element is fixed on the second edges of the first and second elements at the junction zones by a welding process that allows the third element to be joined to the other parts of the stiffener.
  • the welding processes advantageously consist of, and are not limited to, a dynamic welding process such as the ultrasonic welding method, an induction welding method or a resistance welding method, which are suitable for thermoplastic materials.
  • the third member is attached to the second edges of the first and second members at the junction areas by a spot welding method.
  • This method consists of applying a welding process intermittently in a series of points.
  • the third member is attached to the second edges of the first and second members at the rivet juncture areas. It is thus possible to produce the third element in a material that does not necessarily have thermoplastic characteristics or whose resin is not necessarily compatible with that of the other elements.
  • the invention also relates to a stiffened panel for which the method of the invention is particularly advantageous.
  • the stiffened panel of the invention is mainly composite material comprising organic or inorganic fibers maintained in an organic matrix.
  • the stiffener considered comprises three elements assembled together:
  • thermoplastic composite material comprising a first sole, integral with the skin, and a first core, or part of a first core, integral with the first sole along a first edge of said first core;
  • thermoplastic composite material comprising a second sole, integral with the skin, and a second core, or part of a second core, integral with the second sole along a first edge of said second core;
  • a third element comprising a head, attached to a second edge of each web, or each web portion, opposite the first edge, of said first and second webs, or parts of webs, at a junction zone; .
  • the first and second soles of thermoplastic composite material are co-consolidate ideas with the skin made of thermoplastic composite material.
  • the possible variations in the geometry of the junction zones, between the first element and the third element of the stiffener on the one hand and between the second element and the third element of the stiffener on the other hand are compatible with an assembly process. between them of said elements by welding less traumatic for the part to allow the implementation of such a welding process in a less loaded area that the junction of the soles with the skin.
  • a junction zone is determined: by a contact surface between an end, or an end extension, a soul and longitudinal edges of the head; - by a contact surface between an end or an end extension of a web portion of the first and second members and a web portion or an extension of a web portion.
  • the third element is also made of a thermoplastic composite material.
  • the third element is provided with attachment means for fixing elements external to the panel such as for example pipes, electrical harnesses or supports for such equipment.
  • FIG. 1a already cited, a schematic perspective view of a stiffened panel
  • FIG. 1b an enlargement of FIG. 1a in a zone of thickness variation of the skin
  • FIGS. 2a to 2r different examples of stiffeners according to the invention illustrating different embodiments
  • FIG. 3 a perspective view of the stiffener of FIG. 2r
  • FIG. 4 a perspective view of a stiffener comprising complementary system hooking means
  • FIG. 5 a schematic perspective view of a stiffened panel with FIGS. stiffeners having soles of variable width
  • Figures 6a to 6h an illustration of the various steps of the method according to the invention.
  • a stiffened panel 1 made of composite material according to the invention as illustrated in FIG. 1a, has a skin 2 and stiffeners 3 on one of the faces 21 of the skin 2.
  • Such a stiffened panel may comprise other structural elements, not specific to the invention, or accessories, such as openings, local reinforcements, inserts ..., which are not shown so as not to overload the drawings. .
  • Such a panel also optionally comprises stiffeners on a face opposite to the face 21, not shown solution.
  • a stiffener 3 is a structural element of elongated shape, that is to say that it has a characteristic dimension, the length L, large in front of the other dimensions of a section, the width I and the height h.
  • the width I and the height h are different according to the position of the section considered along the length and the stiffener has a shape more or less complex along the length (curvatures, twists, height variation) according to the shape desired panel and desired features.
  • the stiffener 3 considered in the context of the invention has a closed cross section, when secured to the panel 2, forming a hollow volume.
  • Figure 1a illustrates a panel whose omega-shaped stiffeners have a closed cross section.
  • the exemplary embodiment is described in detail in its application to the case of a simple curvature panel. This choice is not limiting and the invention also applies to other forms of stiffened panels, such as panels stiffened by frames or other structures having once made at least one cavity 4.
  • the composite materials to which the invention is directed are materials comprising, at least during a step of assembling the stiffeners with the skin, thermoplastic properties comprising fibers, such as for example glass fibers, aramid or carbon, trapped in an organic matrix, such as for example a polyetheretherketone resin (PEEK) or a phenylene polysulfide resin (PPS).
  • thermoplastic properties comprising fibers, such as for example glass fibers, aramid or carbon, trapped in an organic matrix, such as for example a polyetheretherketone resin (PEEK) or a phenylene polysulfide resin (PPS).
  • PEEK polyetheretherketone resin
  • PPS phenylene polysulfide resin
  • thermoplastic property is meant a matrix taking a plastic state when its temperature is brought to a so-called plastic forming value and having a solid state when the temperature is lowered to a value corresponding to a workpiece implementation temperature.
  • the parts considered are most often made from so-called thermoplastic composite materials in the form of flat plates of substantially constant thickness and which are formed hot. to take the desired form, for example in molds.
  • the desired thicknesses most often depending on the location considered on the part, are obtained, hot and under pressure, by stacking previously cut plates in order to achieve the structural cohesion of the plates by a so-called co-consolidation operation.
  • the matrix resin of the stacked plates is mixed at the interface between the plates and the different fiber planes are brought together to obtain a good health of the material.
  • the invention is described in detail for a stiffener of a panel but the invention is applicable to a panel having any number of stiffeners.
  • a closed-section stiffener such as an omega-section stiffener of FIG. 2a, comprises a first and a second insole 321 integral with the skin 2 at a face 21 of said skin, a first 312 and a second 322 souls integral soles respectively 311, 321, and a head 331 integral with the souls so that the skin 2, the souls 312, 322 and the head 331 form a closed section, most often, but not necessarily substantially symmetrical with respect to an axis of the stiffener substantially perpendicular to the skin.
  • such a stiffener is formed in a single part, for example by hot forming, by plastically deforming a blank of a thermoplastic composite material to obtain a stiffener.
  • the stiffener 3 comprises three elements assembled together: a first element 31 integral with the skin, comprising at least the first sole 311; a second element 32 integral with the skin comprising at least the second sole 321; a third element 33 integral with the first 31 and the second 32 elements, said third element comprising at least the head 331.
  • the first and second elements 31, 32 of the stiffener are made of a thermoplastic composite material whose matrix is compatible with that of the composite material of the skin 2.
  • the soles 311, 321 are co-consolidate ideas with the skin 2 which is characterized at the level of the sole-skin junction by a co-fusion of the thermoplastic resin at the interface between the soles and the skin.
  • the solidarity of the soles with the skin by co-consolidation is feasible without difficulty even when the soles have a variable width, as shown in Figure 5.
  • the third element 33 is preferably made of a thermoplastic composite material of the same nature as the material. first and second elements 31, 32. This choice ensures the compatibility of material between the different elements.
  • the third element 33 is secured to the first 31 and second 32 elements by assembly.
  • the assembly can be obtained for example by riveting, gluing, static or dynamic welding, or by combination of assembly techniques compatible with the materials used to produce the various assembled elements, such as for example welding and welding. riveting.
  • the first element 31 comprises the first sole 311 and the first core 312 inclined with respect to a local plane of the sole and integral, along a first edge. 313, the first flange 311.
  • the second element 32 comprises the second flange 321, the second core 322 inclined relative to the plane of the second sole 321 and secured along a first edge 323 of the second flange 321.
  • the head 331 is attached to second edges 314, 324 opposite the first edges, respectively 313, 323, souls 312, 322, determining a junction zone between the head and the souls.
  • the head 331 is thus maintained at a substantially constant distance from the face
  • the head 331 is substantially flat and attached to contact surfaces 315, 325 of the junction zones, second edges 314, 324 formed by the extensions of the webs 312, 322.
  • the junction zone thus has a thickness corresponding to the cumulative thickness of the core and the head, extending outwardly of the stiffener 3, and which advantageously participates in increasing the inertia of the stiffener.
  • the contact surfaces 315, 325 each have a width sufficient to allow the assembly of the elements together with the desired structural strength and the method implemented.
  • the width of said contact surfaces can easily be adapted, in particular as a function of the type of assembly used, by choosing the dimension along the width of the stiffener of the extensions of the cores.
  • the contact surfaces have evolutions of their shapes and in particular of their local curvatures, in particular in the longitudinal direction of the stiffener, compatible with the assembly technique to be implemented to fix the head 331 to the first and second elements 31, 32.
  • This local curvature is different, if any, in that it has radii of curvature always large enough to meet the requirements of the assembly technique used, local curvatures of the soles which can be of locally small radii of curvature , or even steps, to follow the variations of the surface 21 of the skin 2.
  • the contact surfaces 315, 325 are in a local plane of the head 331 substantially parallel to the face 21 of the skin on which the stiffener is assembled, as illustrated in Figures 2a, 2b and 2c.
  • the stiffener 3 has a section in the form of ⁇ .
  • FIG. 2a illustrates an example in which the webs are substantially perpendicular locally to the skin and figure 2p present an example where the souls move away from each other when one moves away from the skin. Such situations may in certain situations allow simple molding core extractions as will be understood in the process description.
  • the shape of the head 331 is, in variants of this first example, adapted to facilitate accurate positioning of the head on the contact surfaces 315, 325.
  • a countersink is formed on each edge of the head at the location said contact surfaces as illustrated in Figure 2b or fallen edges are formed on the head as shown in Figure 2c.
  • the head 331 and the webs 312, 322 have a substantially constant geometry and the skin 2 has a variable geometry related to variations in the thickness of the skin, such as the presence of jogging.
  • the substantially constant geometry of the head and souls advantageously allows to ensure a consistent quality of assembly over the entire junction area.
  • the contact surfaces 315, 325 are not in a local plane substantially parallel to the face 21 of the skin and move substantially away from this local plane.
  • the contact surfaces 315, 325 are in a local plane of their respective core 312, 322.
  • the contact surfaces 315, 325 are in a local plane intermediate between that determined by the head 331 on the one hand and by the respective cores 312, 322, on the other hand, as illustrated in FIG. 2nd.
  • the variant shown in FIG. 2f is very close to the variant of FIG. 2e, the widths of the contact surfaces 315, 325 being reduced substantially to a surface of a lateral section of the head 331, which is possible when the The thickness of the third element 33 makes it possible to obtain a sufficient contact area to ensure the assembly according to the method chosen.
  • the head 331 is attached to ends 316, 326 of the second edges, forming all or part of the contact surfaces of a junction zone, respectively 314, 324, souls, respectively 321, 322.
  • the head 331 comprises two grooves 337 adapted to each receive an end 316, 326 of a core, respectively 321, 322, as shown in Figure 2g.
  • the groove 337 are located on the head 331 at the edges of said head, thus forming cures adapted to each receive a core end 316, 326, as illustrated in Figure 2h.
  • the stiffener has a symmetry with respect to a longitudinal plane, as illustrated in the examples of FIGS. 2a to 2h, but the stiffener may also have an asymmetrical structure, such as illustrated in Figure 2i.
  • the head 331 has a dropped edge 332 on a single edge so that its positioning during the assembly is made accurately against the soul located on the side of said fallen edge without creating stress relative to the other. stiffener core 3.
  • the first element 31 comprises the first sole 311 and a portion 312a of a first core inclined relative to the plane of the sole and secured along a first edge 313, of the first sole plate 311.
  • the second member 32 comprises the second sole 321 and a portion 322a of a second core inclined with respect to the plane of said second sole and secured, along a first edge 323, of the second sole plate 321.
  • the third element 33 comprises a head 331 integral, at two longitudinal edges 338, 339, with lateral portions 333, 334 of the third element 33, said lateral portions being integral with the head 331 and forming part of the complementary souls of the soul parts integral with the soles.
  • the lateral parts 333, 334 of the third element 33 are integral with the soul portions, respectively 312a and 322a, integral with the flanges, at the respective core-joining regions 315a, 325a.
  • the head 331a is thus kept at a distance from the face 21 of the skin 2.
  • the third element 33 is attached at a contact surface 315a, 325a substantially in the local plane of the web portions 312a, 322a.
  • the contact surfaces 315a, 325a are located near the head 331 which has the advantage of increasing the inertia of the stiffener by increasing the amount of material on the side of the head.
  • the contact surfaces 315a, 325a are located close to the flanges 311, 321 which has the advantage of locating the assembly area of the third element on the first and second elements in the vicinity of the skin for simplifying said first and second elements.
  • Figures 21 and 2m show variants in which cakes, Figure 21, or counterbores, Figure 2m, are formed at the contact surfaces so that the outer surface of the stiffener 3 does not have a prominent shape on the souls.
  • each contact surface 315a, 325a is inclined relative to the local plane of the respective webs by adapted shapes of free ends of the web portions 312a, 322a integral with the flanges and the lateral portions 333, 334, of the third element.
  • the stiffener has a symmetry with respect to a longitudinal plane substantially perpendicular locally to the skin 2, as illustrated in the figures, but the stiffener may also have an asymmetry, resulting for example from a combination of different variants according to the invention. considered soul.
  • the contact surface 315a, 325a is determined during the design of the stiffener to have sufficient dimensions to allow the attachment of the elements together.
  • the realization of the third element separately from the other elements of the stiffener has among others the advantage of allowing the integration of complementary functions to the stiffener.
  • Figures 2q, 2r and 3 illustrate examples of stiffeners in which the head has a complex shape, for example T or L, to facilitate the installation and attachment of systems, such as for example son strands electrical or secondary structures.
  • Fastening means 5 are integral, for example at a longitudinal edge or in the longitudinal plane of symmetry, of the head.
  • Such attachment means consist, for example, of tabs preferably provided with a fixing hole as shown in FIG. 3.
  • the stiffener is of closed section in ⁇ , as illustrated in FIGS. 2a to 2c, the presence of protruding edges on the sides of the head makes it possible to fix specific supports 51, complementary to the shape of the head, as illustrated in FIG. 4, without requiring piercing or gluing.
  • the stiffened panel of the invention is capable of variants within the reach of those skilled in the art in particular to incorporate specific design constraints.
  • the third element 33 has a thickness substantially equal to the thickness of the first 31 and second 32 elements, which allows to consider the production of these elements by cutting blanks in flat plates in the form of panoplies.
  • the third element 33 has a different thickness, preferably greater than that of the first and second elements, which is more complex to achieve for omega stiffeners made in a single element, in order to increase certain mechanical characteristics.
  • the third element 33 is formed in a different composite material, in particular as regards the fibers of said material, of the composite material of the first 31 and second 32 elements.
  • the links between the third element and the first and second elements are mechanically less stressed than the skin / first and second element connections, which makes it possible to simplify the fixing between said third element and said first and second elements.
  • the stiffener according to the invention has a better tolerance to damage. Indeed, a mechanical impact on the third element would create a delamination, a detachment between layers of fibers within the material, located at this element. Due to the realization of the stiffener in three parts, the risk of propagation of delamination in the first and second elements is greatly reduced.
  • repair solutions can be envisaged such as for example the replacement of the third element and a new weld, and or riveting ...
  • the present invention is not limited to the examples of closed section stiffeners described above as non-limiting examples. Those skilled in the art are able to adapt the shape of said stiffener to undescribed shapes.
  • the invention also relates to a method for producing a stiffened panel such as one of the panels illustrated in FIGS. 1 to 5.
  • a description of the process is made, see FIGS. 6a to 6h, in application of the realization of a stiffened panel similar to the stiffened panel of Figure 1a, the details of the process being illustrated for a stiffener having a section similar to that of the stiffener of Figure 2a.
  • the three elements 31, 32, 33 of the stiffener are made separately.
  • This first step implements conventional methods and methods for producing elementary parts, known to those skilled in the art.
  • blanks 131, 132, 133, ie flat elements are prepared, for example cut from sheets of thermoplastic composite material of desired thickness taking into account the orientation of the fibers to be respected, see Figure 6a.
  • the blanks 131, 132, 133 are then formed, advantageously by hot forming, Figure 6b, to be brought to the desired shape for each element 31, 32, 33 of the stiffener.
  • each piece 131, 132, 133 is shaped by thermoforming, for example in a hot press type machine equipped with a punch and a die, or a punch and a bladder.
  • Thermoforming shaping techniques of parts made of thermoplastic matrix composite material are known per se and are therefore not described.
  • the elements are subjected to compression forces to perform a consolidation operation.
  • This consolidation operation makes it possible to reduce the porosities inside the thermoplastic material and improves the connection between the different plies that constitute it.
  • the elements 31, 32, 33 are cooled to the ambient temperature at which they retain the shapes acquired during forming.
  • the blanks are prepared by means of fibers pre-impregnated with thermosetting resin, for example by cutting in a panel formed by a stack of plies of pre-impregnated fibers, which are subjected to partial firing. that is to say interrupted cooking before the complete polymerization of the resin, which gives the intermediate material obtained thermoplastic characteristics.
  • the first and second elements 31, 32 are made so as to present at their soles 311, 321 a bearing surface on the skin
  • each of the different structural elements intended to form the stiffener is available in the desired shape and dimensions.
  • a second step the skin 2 and the first and second elements 31, 32 are placed relative to each other in the desired position for the stiffened panel.
  • the first 31 and second 32 elements are placed individually in a mold 8 so as to be held precisely in the desired position.
  • the first and second elements 31, 32 are positioned separately on specific tools 7 so as to take into account the particular shapes of the first and second elements made in the preceding step and said first and second elements are placed with their specific tools. in the mold 8 in which they are wedged in position.
  • the tools comprise a bearing surface having a shape complementary to those of the first and second elements.
  • a core 71 reproducing the shape of the cavity 4 of the stiffener with its variations in shape and section, is placed between the webs of the first and second elements 31, 32.
  • the core 71 must be rigid enough to withstand mechanical handling and stresses. and thermal during the subsequent consolidation step.
  • the core may be made of metal material or be made of different materials, to achieve similar thermal and mechanical requirements.
  • the core 71 is made so that it can be extracted through the opening available at the head 33, after the consolidation step and before the head is fixed.
  • the core is, for example, in particular for the stiffener profile of the illustration, a key core made in at least two parts.
  • the core is made in three parts 71a, 71b.
  • the kernel provides two functions in the subsequent step of consolidating the panel. On the one hand it makes it possible to apply pressure to the webs of the stiffener without deforming them, including at the forming and co-consolidation temperature, and on the other hand it forms a bearing surface on the side of the soles of the stiffener. stiffener in the continuity of said soles to serve as a support, at the cavity, to the skin subsequently deposited to form the panel.
  • the skin is placed on the mold 8 by covering the tools 7, 71 ensuring the positioning of the elements of the stiffener so as to cover the soles at the desired locations on the skin.
  • the skin is made by an assembly of plates of a thermoplastic composite material in order to produce a skin having the desired thicknesses of the skin of the panel.
  • the plates are fixed together by a partial co-consolidation operation.
  • the skin 2 and the first and second elements 31, 32 undergo a co-consolidation operation.
  • This co-consolidation operation is characterized by the application of a pressure on the skin and on the first and second elements simultaneously with heating at a temperature at which the resin is partially melted, in order to allow the fusion between the plies. .
  • the pressure is for example applied to the surface of the skin opposite the mold 8 via a counter-mold (not shown).
  • the matrix of the thermoplastic composite material is cured and the skin and the elements are fixed together at their contacting surfaces during the co-consolidation operation.
  • the skin 2 and the first and second elements 31, 32 are demolded.
  • the mold 8 and the external tools 7 necessary for the consolidation of the partially realized panel structure are removed, as shown in FIG. 6e.
  • the core 71 trapped in the cavity between the first and second elements is extracted, in the case illustrated by first removing the key 71a which releases the other parts 71b of the core, through the opening still present at the location of the third element not yet assembled, as shown in Figure 6f.
  • the third element 33 is fixed on the first and second members 31, 32.
  • the third element 33 is positioned on the edges of the first and second elements 31, 32 opposite to the skin to be in contact with said first and second elements at the level of the zones. junction 315, 325 and allow its attachment.
  • the third element is riveted at the junction zone.
  • the third element 33 is welded, advantageously by a dynamic welding process such as for example ultrasonic welding, induction welding or resistance welding which makes it possible to join the elements without elevation.
  • a dynamic welding process such as for example ultrasonic welding, induction welding or resistance welding which makes it possible to join the elements without elevation.
  • general temperature of the elements general elevation of temperature which could cause deformation of the stiffener, and without exerting high pressure, also source of deformation.
  • the method according to the invention makes it possible to produce a piece of thermoplastic composite material comprising closed-section stiffeners.
  • the method according to the invention makes it possible to create skin / solenoid bonds co-consolidating ideas by making maximum use of the advantages of thermoplastic composite materials, bonds which are strongly mechanically stressed, and of transferring to the level of the head / soul links, which are less solicited as the skin / soles connections and more easily accessible, the use of fixation processes that guarantee sufficient structural strength without the constraints of co-consolidation processes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Laminated Bodies (AREA)
  • Moulding By Coating Moulds (AREA)

Abstract

L'invention concerne un procédé de fabrication d'une pièce raidie (1), en matériau composite thermoplastique, comportant une peau (2) formée d'un matériau composite thermoplastique et au moins un raidisseur (3), à section fermée comportant deux semelles (311, 321), deux âmes (312, 322) et une tête (331). Le procédé comporte une étape de réalisation d'un premier élément (31) 5 du raidisseur, comportant une première semelle (311) et une première âme (312) ou au moins une partie (312a) d'une première âme, d'un deuxième élément (32) du raidisseur, comportant une deuxième semelle (321) et une deuxième âme (322) ou au moins une partie (322a) d'une deuxième âme, d'un troisième élément (33) comportant la tête. Il comporte ensuite une étape de 10 positionnement des semelles des premier et deuxième éléments (31, 32) sur la peau (2), une étape de solidarisation de la peau (2) et des premier et deuxième éléments (31, 32) par co-consolidation et une étape de fixation du troisième élément (33) sur les premier et deuxième éléments. Figure 2a15

Description

Procédé de fabrication d'un panneau raidi en matériau composite à matrice thermoplastique et panneau ainsi obtenu
Le domaine de l'invention est relatif au domaine de la fabrication des pièces de formes complexes en matériau composite. Plus précisément, l'invention concerne un procédé particulièrement adapté à la réalisation de pièces en matériau composite à matrice thermoplastique et comportant des éléments de renfort à section transversale fermée creuse.
L'invention concerne également des pièces en matériaux composites adaptées à la mise en œuvre du procédé.
Les matériaux composites sont aujourd'hui largement utilisés pour la fabrication de pièces dans de nombreux domaines industriels, en particulier dans le domaine aéronautique, y compris pour des pièces structurales, c'est à dire devant supporter des efforts significatifs de l'ordre de grandeur de leur résistance structurale lors de leur utilisation.
De nombreux matériaux composites existent, les plus répandus étant constitués de fibres plus ou moins longues de matières minérales ou organiques (verre, carbone, aramide...) contenues dans une matrice formée par une résine thermodurcissable ou thermoplastique.
La fabrication de pièces composites thermodurcissables comprend l'imprégnation d'un renfort de fibres par une résine thermodurcissable, et la solidification de la pièce est obtenue par la polymérisation de la résine. La fabrication de pièces composites thermoplastiques comprend l'imprégnation d'un renfort de fibres par une résine thermoplastique, sa mise en pression et en température, généralement à haute pression et température. La solidification de la pièce est obtenue lors du refroidissement.
Certaines pièce structurales sont composées d'une peau et d'éléments de renfort, dits raidisseurs, solidaires de la peau, par exemple les panneaux mis en œuvre dans la fabrication de fuselages ou d'ailes d'aéronefs. Les raidisseurs ont des sections transversales de formes diverses. A titre d'exemple, on peut citer une section en forme de Z, J ou encore T. Ces formes, qui ont l'avantage d'être ouvertes, permettent de réaliser des raidisseurs pouvant être réalisés simultanément avec la peau au moyen de moules simples à extraire, mais présentent un inconvénient majeur lorsque la pièce est soumise à certains efforts. En effet, lorsque le raidisseur est chargé en compression, celui-ci a tendance à déverser, c'est à dire à se coucher plus ou moins par rapport à la peau sur laquelle ils sont fixés.
Pour éviter ce déversement, il est préféré d'utiliser des raidisseurs à section fermée, par exemple en forme de oméga, comportant deux semelles, deux âmes et une tête, comme les raidisseurs illustrés sur la figure 1 a. A masse équivalente, une pièce comportant des raidisseurs de type oméga présente, en plus d'une meilleure stabilité, une inertie améliorée par rapport à une pièce comportant des raidisseurs type T ou Z.
Cependant une difficulté particulière rencontrée lors de la réalisation de pièces comportant un raidisseur de type oméga est liée à l'existence d'une cavité fermée dans le raidisseur, ouverte seulement aux extrémités du raidisseur.
Dans le cas de la réalisation de pièces au moyen de matériau composite à base de résine thermodurcissable, par exemple de type époxy, une solution connue consiste à réaliser simultanément les différents éléments de la pièce (peau et raidisseurs) en intégrant un noyau de remplissage en lieu et place d'une cavité, avant l'étape de polymérisation. Ce noyau de remplissage doit présenter des caractéristiques telles qu'il puisse supporter les températures de polymérisation, par exemple de l'ordre de 1800C pour les résines de classe 180, et les pressions relativement modérées (de l'ordre de 7 à 9 bars ) mises en œuvre dans ce type de procédé. Ces performances relativement limitées exigées par ce procédé permettent de réaliser des noyaux extractibles après la polymérisation sans difficulté majeure et généralement réutilisables.
Dans le cas de la réalisation de pièces au moyen de matériau composite à base de résine thermoplastique, par exemple de type polyétheréthercétone (PEEK) ou polysulfure de phénylène (PPS), il est nécessaire d'élever la température à des valeurs plus élevées, par exemple généralement de l'ordre de 4000C, pour atteindre la refusion totale ou partielle de la résine et de mettre en œuvre des pressions nécessaires à la consolidation du matériau pouvant atteindre plusieurs fois celles utilisées dans le cas des matériaux thermodurcissables. La réalisation d'un noyau extractible présentant les caractéristiques, en particulier de stabilité dimensionnelle aux températures et pressions considérées, adaptées à la mise en œuvre de cette technologie avec des raidisseurs à section fermée s'avère ainsi beaucoup plus difficile.
Il n'existe pas de technologie simple et d'un coût industriellement acceptable permettant de remplir la cavité du raidisseur en oméga pendant une opération de fabrication de la pièce et étant extractible facilement, notamment lorsque la pièce est de grande longueur, présente une ou des courbures et ou des sections de raidisseur variables, par exemple en raison de soyages sur la face de la peau où sont fixés les raidisseurs. De ce fait la réalisation de pièces composites à matrice thermoplastique qui implique la mise en œuvre de noyaux dans les cavités des raidisseurs lors d'opérations de consolidation et ou co-consolidation, s'avère relativement difficile et onéreuse, voire industriellement impossible.
Par le terme consolidation, on entend les opérations de réalisation d'une pièce thermoplastique élémentaire.
Par le terme co-consolidation, on entend les opérations de réalisation d'une pièce thermoplastique composée de plusieurs pièces thermoplastiques élémentaires, ces pièces élémentaires pouvant être préalablement consolidées ou non. Dans un mode de réalisation préféré, les panneaux autoraidis sont co- consolidés, c'est à dire que les raidisseurs sont préalablement consolidés, la peau est préalablement soit consolidée, soit non consolidée, soit drapée sur les raidisseurs consolidés, puis la peau et les raidisseurs sont consolidés simultanément. Le procédé de co-consolidation permet d'obtenir une interface ayant une bonne santé matière et de très bonnes propriétés mécaniques, particulièrement recherchées notamment pour les liaisons entre les semelles des raidisseurs et la peau.
Cependant, la solution consistant à réaliser une pièce autoraidie en co- consolidation sans utiliser de noyaux démoulables pour remplir les cavités fermées des raidisseurs ne s'avère pas satisfaisante pour tirer tous les bénéfices apportés par les matériaux thermoplastiques. En effet, le comportement réversible des résines thermoplastiques, c'est à dire le fait que leurs viscosités diminuent lorsqu'elles sont chauffées à un niveau de température suffisant, les rend instables et peut provoquer une déconsolidation des pièces thermoplastiques élémentaires si la pièce autoraidie n'est plus sous pression. Ainsi, l'intégration d'un raidisseur en oméga, préalablement consolidé, sur la peau lors de l'étape de co-consolidation sans noyau pour remplir la cavité du raidisseur n'est actuellement pas envisageable pour obtenir une pièce autoraidie ayant une bonne géométrie et une bonne santé matière et il convient de mettre en œuvre d'autres techniques d'assemblage.
Les techniques actuelles consistent à assembler le raidisseur en oméga sur la peau, tous deux préalablement consolidés séparément et à réaliser un assemblage par diffusion d'un matériau d'interposition entre les semelles du raidisseur et la peau, ou par soudage statique ou dynamique entre les semelles du raidisseur et la peau.
Par le terme de soudage, on entend un assemblage des pièces élémentaires par un chauffage des pièces élémentaires localisé au niveau d'une interface de liaison entre lesdites pièces élémentaires.
Par le terme de soudage statique, on entend un assemblage des pièces élémentaires par une opération de chauffage simultanément sur la totalité de l'interface de liaison à souder.
Par le terme de soudage dynamique, on entend un assemblage des pièces élémentaires par une opération de soudage locale, sur une zone limitée, répétée sur la totalité de l'interface de liaison à souder. Cependant, les techniques d'assemblage sont généralement difficiles à mettre en œuvre, ou présentent des inconvénients et/ou limitations. Les techniques d'assemblage ou de soudage sont par exemple :
L'assemblage ou le soudage par ajout d'un matériau thermoplastique d'interposition.
Cette méthode consiste à intégrer sur chaque pièce élémentaire (peau, raidisseur), lors de leur réalisation et au niveau d'une interface de liaison (liaison semelle-peau), un matériau d'interposition, tel que par exemple un film de résine, présentant une température de fusion inférieure à celle de la résine contenue dans les différentes pièces élémentaires à assembler. L'assemblage ou le soudage est obtenu par diffusion des molécules de la résine du matériau thermoplastique d'apport, à une température inférieure à la température de fusion de la résine contenue dans les différentes pièces élémentaires, préservant ainsi la géométrie et la santé matière des pièces élémentaires de la pièce. Cependant, cette méthode nécessite d'assembler ou de souder sous pression, un autoclave ou une presse est donc requis. Elle nécessite également d'intégrer un matériau d'interposition en surface lors de la fabrication des pièces élémentaires et une bonne maîtrise des tolérances géométriques à l'interface des pièces à assembler ou à souder.
Le soudage par ultrasons :
C'est une méthode de soudage dynamique qui permet de souder directement deux pièces élémentaires (la peau et le raidisseur) entre elles sans matériau d'interposition. Elle consiste à associer une pression d'appui, au niveau de l'interface entre les deux pièces élémentaires, à une vibration ultrasonore, générée par un outil vibrant, ou sonotrode. L'énergie locale transmise par les ultrasons, produit un échauffement intense à l'interface et permet la soudure à l'interface entre les deux pièces élémentaires lorsque la résine des pièces élémentaires est thermo-fusible. Cependant cette méthode ne permet le soudage que sur une bande, dit cordon, relativement étroite. De plus, on observe la présence d'effets de bords en début et fin de soudage. La méthode nécessite un effort de contact non négligeable. La méthode est également sensible à la variation d'épaisseur des structures à souder, et elle nécessite une bonne maîtrise des tolérances géométriques à l'interface des pièces élémentaires à souder.
Le soudage par induction :
C'est une méthode de soudage dynamique qui consiste à échauffer un matériau métallique, tel que par exemple un grillage métallique, introduit à l'interface de liaison des pièces élémentaires à souder pour provoquer la fusion recherchée de la résine. L'échauffement est obtenu par génération d'un courant électrique dans le matériau métallique dû au déplacement d'un fort champ magnétique local à proximité de l'interface à souder. Cependant, cette méthode présente quelques inconvénients, tels que par exemple, la nécessité d'intégrer un matériau métallique au niveau de l'interface à souder, le soudage sur un cordon relativement étroit, une sensibilité à la variation d'épaisseur des pièces élémentaires à souder, la nécessité d'une maîtrise des tolérances géométriques, et une possible perturbation provoquée par une éventuelle présence sur la surface extérieure d'une protection métallique contre la foudre,
Le soudage par résistance :
C'est une méthode de soudage dynamique qui consiste également à échauffer un matériau métallique, tel que par exemple un grillage métallique, introduit à l'interface de liaison des pièces élémentaires à souder. L'échauffement est obtenu par le passage d'un courant électrique. Comme dans le cas du soudage par induction, cette méthode présente quelques inconvénients, tels que par exemple, la nécessité d'intégrer un matériau métallique au niveau de l'interface à souder, la maîtrise des tolérances géométriques à l'interface des pièces élémentaires à souder.
Les principales techniques de soudage dynamique sont difficiles à mettre en œuvre dans les zones où la peau présente des variations significatives et ou brutales d'épaisseur, telles dans l'exemple de panneau illustré sur la figure 1 b.
Il est également difficile de recourir aux techniques de soudage dynamique lorsque les semelles présentent une largeur variable.
La présente invention vise à remédier aux inconvénients des pièces autoraidies existantes, notamment aux inconvénients d'assemblage entre les semelles et la peau énoncés ci-avant, en proposant une solution d'intégration d'un raidisseur présentant une section fermée creuse sur une peau qui permette la réalisation de pièces autoraidies de géométrie complexe et qui améliore la tenue mécanique à l'interface semelles/peau permettant de bénéficier des propriétés du matériau composite thermoplastique. L'invention propose un procédé pour la fabrication d'une pièce raidie réalisée en matériau composite comportant des fibres organiques ou minérales maintenues dans une matrice organique.
La pièce raidie comporte une peau formée principalement d'un matériau composite thermoplastique et au moins un raidisseur de longueur L grande par rapport à ses dimensions transversales, largeur I et hauteur h.
Le raidisseur considéré comporte deux semelles, deux âmes, chaque âme étant solidaire au niveau d'un premier bord d'une semelle, et comporte une tête solidarisant les deux âmes entre elles au niveau d'un second bord de chaque âme, distant du premier bord, lesdites deux âmes et la tête déterminant avec la peau un volume creux du raidisseur de section transversale fermée lorsque le raidisseur, dont la forme générale de la section est dite en Ω, est solidaire de la peau au niveau des semelles.
Suivant le procédé, afin de pouvoir assembler le raidisseur sur la peau en plusieurs étapes, et de tirer le meilleur parti des avantages potentiels des matériaux composites thermoplastique en terme de façonnage et d'assemblage, le procédé comporte :
- une étape de réalisation :
- d'un premier élément du raidisseur, dans un matériau composite thermoplastique, comportant une première semelle et une première âme ou au moins une partie d'une première âme,
- d'un deuxième élément du raidisseur, dans un matériau composite thermoplastique, comportant une deuxième semelle et une deuxième âme ou au moins une partie d'une deuxième âme,
- d'un troisième élément comportant la tête,
- une étape de positionnement aux emplacements voulus sur une surface de la peau des semelles des premier et deuxième éléments, - une étape de solidarisation de la peau et des premier et deuxième éléments par co-consolidation du matériau thermoplastique de ladite peau et des semelles des dits premier et deuxième éléments,
- une étape de fixation du troisième élément sur les seconds bords des premier et deuxième éléments au niveau de zones de jonction. Pour réaliser l'étape de co-consolidation des semelles du raidisseur et de la peau, en appliquant les pressions nécessaires simultanément à l'élévation de la température du matériau composite thermoformable et sans risquer de déformer les éléments de la pièce, un noyau est placé à l'emplacement du volume creux du raidisseur, entre les premier et deuxième éléments, avant l'étape de positionnement de la peau et des premier et deuxième éléments, et le noyau est retiré avant l'étape de fixation du troisième élément.
Pour permettre une extraction aisée du noyau, en particulier si les âmes du raidisseur sont enveloppantes en raison de la forme du raidisseur, le noyau est avantageusement réalisé en au moins deux parties pour pouvoir être extrait par partie par l'ouverture longitudinale laissée libre entre les âmes avant la mise en place du troisième élément. Avantageusement, le troisième élément est fixé sur les seconds bords des premier et deuxième éléments au niveau des zones de jonction par un procédé de soudage qui permet de réaliser la solidarisation du troisième élément aux autres parties du raidisseur. Les procédés de soudage consistent avantageusement, et de manière non limitative, en un procédé de soudage dynamique tel que le procédé de soudage par ultrason, un procédé de soudage par induction ou un procédé de soudage par résistance, qui sont adaptés aux matériaux thermoplastiques.
De manière alternative, le troisième élément est fixé sur les seconds bords des premier et deuxième éléments au niveau des zones de jonction par un procédé de soudage par points. Ce procédé consiste à appliquer un procédé de soudage de manière intermittente en une série de points.
De manière alternative ou en combinaison avec un autre procédé d'assemblage, le troisième élément est fixé sur les seconds bords des premier et deuxième éléments au niveau des zones de jonction par rivetage. Il est ainsi possible de réaliser le troisième élément dans un matériau qui ne présente pas nécessairement des caractéristiques thermoplastiques ou dont la résine n'est pas obligatoirement compatible avec celle des autres éléments.
En outre il est possible de réaliser des réparations d'un décollement local, par exemple d'une soudure, par un procédé différent, par exemple d'un rivetage ou d'un soudage par point, disponible et plus pratique à réaliser sur la pièce lorsque celle-ci est exploitation par exemple sur un avion.
L'invention concerne également un panneau raidi pour lequel le procédé de l'invention s'avère particulièrement avantageux. Le panneau raidi de l'invention est principalement en matériau composite comportant des fibres organiques ou minérales maintenues dans une matrice organique.
Il comporte une peau formée principalement d'un matériau composite thermoplastique et au moins un raidisseur de longueur L grande par rapport à ses dimensions transversales, largeur I et hauteur h, le raidisseur déterminant avec la peau un volume creux de section transversale fermée. Dans le panneau de l'invention, le raidisseur considéré comporte trois éléments assemblés entre eux :
- un premier élément en matériau composite thermoplastique comportant une première semelle, solidaire de la peau, et une première âme, ou d'une partie d'une première âme, solidaire de la première semelle le long d'un premier bord de ladite première âme,
- un deuxième élément en matériau composite thermoplastique comportant une deuxième semelle, solidaire de la peau, et une deuxième âme, ou d'une partie d'une deuxième âme, solidaire de la deuxième semelle le long d'un premier bord de ladite deuxième âme,
- un troisième élément comportant une tête, rapporté sur un second bord de chaque âme, ou de chaque partie d'âme, opposé au premier bord, desdites première et deuxième âmes, ou parties d'âmes, au niveau d'une zone de jonction.
Pour assurer une liaison optimale du raidisseur avec la peau au niveau des semelles, liaison fortement chargée, les première et seconde semelles en matériau composite thermoplastique sont co-consol idées avec la peau en matériau composite thermoplastique. Avantageusement les variations éventuelles de géométrie des zones de jonction, entre le premier élément et le troisième élément du raidisseur d'une part et entre le deuxième élément et le troisième élément du raidisseur d'autre part, sont compatibles d'un procédé d'assemblage entre eux desdits éléments par soudage moins traumatisant pour la pièce afin de permettre la mise en œuvre d'un tel procédé de soudage dans une zone moins chargée que la jonction des semelles avec la peau.
Suivant les contraintes de la fixation du troisième élément, en particulier de la dimension de la surface de contact dans la zone de jonction, une zone de jonction est déterminée : - par une surface de contact entre une extrémité, ou une extension d'extrémité, d'une âme et des rebords longitudinaux de la tête ; - par une surface de contact entre une extrémité ou une extension d'extrémité d'une partie d'âme des premier et ou deuxième éléments et une partie d'âme ou une extension d'une partie d'âme. Pour assembler aisément les éléments du raidisseur entre eux par des procédés de thermosoudage, avantageusement le troisième élément est également réalisé dans un matériau composite thermoplastique.
Dans une forme particulière de réalisation que permet de réaliser sans éléments ajoutés la réalisation séparée du troisième élément, le troisième élément est pourvu de moyens d'accrochage pour la fixation d'éléments extérieurs au panneau tels que par exemple des tuyauteries, des harnais électriques ou des supports pour de tels équipements.
Dans une autre forme particulière de réalisation de l'invention, lorsque le raidisseur est de section fermée en Ω, des supports spécifiques, complémentaires de la forme du raidisseur, plus spécifiquement de la tête du raidisseur, sont fixés sur le raidisseur, sans nécessiter de perçage dudit raidisseur ou de collage des supports spécifiques sur ledit raidisseur, lesdits supports permettant la fixation d'éléments extérieurs au panneau raidi tels que tuyauteries, harnais électriques ou supports pour de tels équipements.
La description détaillée de l'invention est faite en référence aux figures qui représentent :
Figure 1 a, déjà citée, une vue schématique en perspective d'un panneau raidi,
Figure 1 b, un agrandissement de la figure 1 a dans une zone de variation d'épaisseur de la peau, Figures 2a à 2r, différents exemple de raidisseurs suivant l'invention illustrant des formes différentes de réalisation,
Figure 3, une vue en perspective du raidisseur de la figure 2r, Figure 4, une vue en perspective d'un raidisseur comportant des moyens complémentaires d'accrochage de système, Figure 5, une vue schématique en perspective d'un panneau raidi avec des raidisseurs comportant des semelles de largeur variable, Figures 6a à 6h, une illustration des différentes étapes du procédé suivant l'invention.
Un panneau raidi 1 en matériau composite suivant l'invention, comme illustré sur la figure 1 a, comporte une peau 2 et des raidisseurs 3 sur une des faces 21 de la peau 2.
Un tel panneau raidi peut comporter d'autres éléments de structure, non spécifique de l'invention, ou des accessoires, tels que des ouvertures, des renforts locaux, des inserts ..., qui ne sont pas représentés pour ne pas surcharger les dessins. Un tel panneau comporte également le cas échéant des raidisseurs sur une face opposée à la face 21 , solution non représentée.
Un raidisseur 3 est un élément de structure de forme allongée, c'est à dire qu'il présente une dimension caractéristique, la longueur L, grande devant les autres dimensions d'une section, la largeur I et la hauteur h. De manière générale, la largeur I et la hauteur h sont différentes suivant la position de la section considérée sur la longueur et le raidisseur a une forme plus ou moins complexe sur la longueur (courbures, vrillages, variation de hauteur) en fonction de la forme voulue du panneau et de caractéristiques recherchées. Le raidisseur 3 considéré dans le cadre de l'invention présente une section transversale fermée, lorsqu'il est solidaire du panneau 2, formant un volume creux.
A titre d'exemple non limitatif, la figure 1 a illustre un panneau dont les raidisseurs en forme de oméga présentent une section transversale fermée.
L'exemple de réalisation est décrit de manière détaillée dans son application au cas d'un panneau de courbure simple. Ce choix n'est pas limitatif et l'invention s'applique également à d'autres formes de panneaux raidis, tels que des panneaux raidis par des cadres ou d'autres structures présentant une fois réalisée au moins une cavité 4.
Les matériaux composites auxquels s'adresse l'invention sont les matériaux comportant, au moins pendant une étape d'assemblage des raidisseurs avec la peau, des propriétés thermoplastiques comportant des fibres, telles que par exemple des fibres de verre, d'aramide ou de carbone, emprisonnées dans une matrice organique, telle que par exemple une résine polyétheréthercetone (PEEK) ou une résine polysulfure de phénylène (PPS).
Par propriété thermoplastique on entend une matrice prenant un état plastique lorsque sa température est portée à une valeur dite de formage plastique et présentant un état solide lorsque la température est abaissée à une valeur correspondante à une température de mise en œuvre de la pièce.
Pour bien identifier l'intérêt de l'invention, il convient de remarquer que les pièces considérées sont le plus souvent réalisées à partir de matériaux composites dits thermoplastiques se présentant sous la forme de plaques planes d'épaisseur sensiblement constantes et qui sont formées à chaud pour prendre la forme recherchée, par exemple dans des moules. Les épaisseurs voulues, le plus souvent fonction de l'emplacement considéré sur la pièce, sont obtenues, à chaud et sous pression, par des empilages de plaques préalablement découpées afin de réaliser la cohésion structurale des plaques par une opération dite de co-consolidation au cours de laquelle la résine de la matrice des plaques empilées est mélangée à l'interface entre les plaques et les différents plans de fibres sont rapprochés pour obtenir une bonne santé de la matière. L'invention est décrite en détail pour un raidisseur d'un panneau mais l'invention est applicable à un panneau comportant un nombre quelconque de raidisseurs.
De manière connue, un raidisseur de section fermé, tel qu'un raidisseur à section en oméga de la figure 2a, comporte une première 311 et une seconde 321 semelles solidaires de la peau 2 au niveau d'une face 21 de la dite peau, une première 312 et une seconde 322 âmes solidaires des semelles respectivement 311 , 321 , et une tête 331 solidaire des âmes de sorte que la peau 2, les âmes 312, 322 et la tête 331 forment une section fermée, le plus souvent, mais non nécessairement, sensiblement symétrique par rapport à un axe du raidisseur sensiblement perpendiculaire à la peau.
Suivant une forme connue, un tel raidisseur est formé en une seule partie, par exemple par formage à chaud, en déformant plastiquement un flan d'un matériau composite thermoplastique pour obtenir un raidisseur.
A contrario, suivant l'invention, comme illustré sur les figures 2a à 2r et 3, le raidisseur 3 comporte trois éléments assemblés entre eux : un premier élément 31 solidaires de la peau, comportant au moins la première semelle 311 ; un deuxième élément 32 solidaire de la peau comportant au moins la seconde semelle 321 ; un troisième élément 33 solidaire du premier 31 et du deuxième 32 éléments, ledit troisième élément comportant au moins la tête 331.
Les premier et deuxième éléments 31 , 32 du raidisseur sont réalisés dans un matériau composite thermoplastique dont la matrice est compatible avec celle du matériau composite de la peau 2.
Les semelles 311 , 321 sont co-consol idées avec la peau 2 ce qui se caractérise au niveau de la jonction semelle-peau par une co-fusion de la résine thermoplastique au niveau de l'interface entre les semelles et la peau.
La solidarisation des semelles avec la peau par co-consolidation est réalisable sans difficulté même lorsque les semelles présentent une largeur variable, comme illustré sur la figure 5. Le troisième élément 33 est de préférence réalisé dans un matériau composite thermoplastique de même nature que le matériau des premier et deuxième éléments 31 , 32. Ce choix permet de garantir la compatibilité de matériau entre les différents éléments.
Ce choix n'est cependant pas imposé. Le troisième élément 33 est solidaire des premier 31 et deuxième 32 éléments par assemblage. L'assemblage peut être obtenu par exemple par rivetage, par collage, par soudage statique ou dynamique, ou par combinaison de techniques d'assemblage compatibles avec les matériaux mis en oeuvre pour réaliser les différents éléments assemblés, tel que par exemple le soudage et le rivetage. Suivant un premier mode de réalisation, comme illustré sur les figures 2a à 2h, le premier élément 31 comporte la première semelle 311 et la première âme 312 inclinée par rapport à un plan local de la semelle et solidaire, le long d'un premier bord 313, de la première semelle 311. Le deuxième élément 32 comporte la deuxième semelle 321 , la deuxième âme 322 inclinée par rapport au plan de la deuxième semelle 321 et solidaire, le long d'un premier bord 323, de la deuxième semelle 321.
Suivant ce premier mode, la tête 331 est rapportée sur des seconds bords 314, 324, opposés aux premiers bords, respectivement 313, 323, des âmes 312, 322, déterminant une zone de jonction entre la tête et les âmes. La tête 331 est ainsi maintenue à une distance sensiblement constante de la face
21 de la peau 2.
Dans un premier exemple de réalisation de ce premier mode, illustré sur les figures 2a, 2b et 2c, la tête 331 est sensiblement plane et rapportée sur des surfaces de contact 315, 325 des zones de jonction, des seconds bords 314, 324 formés par les extensions des âmes 312, 322. La zone de jonction présente ainsi une épaisseur correspondant à l'épaisseur cumulée de l'âme et de la tête, s'étendant vers l'extérieur du raidisseur 3, et qui participe avantageusement à augmenter l'inertie du raidisseur. Les surfaces de contact 315, 325 présentent chacune une largeur suffisante pour permettre l'assemblage des éléments entre eux avec la résistance structurale souhaité et par le procédé mis en œuvre.
Avantageusement la largeur desdites surfaces de contact peut aisément être adaptée, en particulier en fonction du type d'assemblage mis en œuvre, en choisissant la dimension suivant la largeur du raidisseur des extensions des âmes.
Avantageusement, les surfaces de contact présentent des évolutions de leurs formes et en particulier de leurs courbures locales, en particulier suivant le sens longitudinal du raidisseur, compatible avec la technique d'assemblage devant être mise en oeuvre pour fixer la tête 331 aux premier et deuxième éléments 31 , 32. Cette courbure locale est le cas échéant différente, en ce qu'elle présente des rayons de courbure toujours suffisamment grands pour répondre aux exigences de la technique d'assemblage mise en oeuvre, des courbures locales des semelles qui peuvent être de rayons de courbure localement petits, voire en marches d'escalier, pour suivre les variations de la surface 21 de la peau 2.
Dans ce premier exemple de réalisation, les surfaces de contact 315, 325 sont dans un plan local de la tête 331 sensiblement parallèle à la face 21 de la peau sur laquelle est assemblé le raidisseur, comme illustrée sur les figures 2a, 2b et 2c. Le raidisseur 3 présente une section en forme de Ω.
La forme caractéristique présentée sur la figure 2a est cependant susceptible de variations en fonction de l'angle avec lequel chaque âme est inclinée par rapport à la surface de la peau 2. La figure 2o illustre un exemple dans lequel les âmes sont sensiblement perpendiculaires localement à la peau et la figure 2p présente un exemple où les âmes s'écartent l'une de l'autre lorsque l'on s'éloigne de la peau. De telles situations peuvent dans certaines situations permettre des extractions de noyaux de moulage simples comme il sera compris dans la description du procédé.
La forme de la tête 331 est, dans des variantes de ce premier exemple, adaptée pour faciliter un positionnement précis de la tête sur les surfaces de contact 315, 325. Par exemple un lamage est réalisé sur chaque bord de la tête à l'emplacement desdites surfaces de contact comme illustré sur la figure 2b ou des bords tombés sont réalisés sur la tête comme illustré sur la figure 2c.
Dans un exemple particulier, la tête 331 et les âmes 312, 322 présentent une géométrie sensiblement constante et la peau 2 présente une géométrie variable liée à des variations d'épaisseur de la peau, telles que la présence de soyage.
Ainsi, la géométrie sensiblement constante de la tête et des âmes permet avantageusement d'assurer une qualité d'assemblage homogène sur toute la zone de jonction. Dans un autre exemple de réalisation voisin, illustré sur les figures 2d à 2f, les surfaces de contact 315, 325 ne sont pas dans un plan local sensiblement parallèle à la face 21 de la peau et s'éloignent sensiblement de ce plan local. Dans la variante de la figure 2d, les surfaces de contact 315, 325 sont dans un plan local de leur âme 312, 322 respective.
Dans une autre variante de réalisation, les surfaces de contact 315, 325 sont dans un plan local intermédiaire entre celui déterminé par la tête 331 d'une part et par les âmes respectives 312, 322, d'autre part, comme illustrée sur la figure 2e.
La variante présentée sur la figure 2f est très voisine de la variante de la figure 2e, les largeurs des surfaces de contact 315, 325 étant réduites sensiblement à une surface d'une section latérale de la tête 331 , ce qui est possible lorsque l'épaisseur du troisième élément 33 permet d'obtenir une surface de contact suffisante pour assurer l'assemblage suivant le procédé choisi.
Dans un troisième exemple de réalisations, la tête 331 est rapportée sur des extrémités 316, 326 des seconds bords, formant tout ou partie des surfaces de contact d'une zone de jonction, respectivement 314, 324, des âmes, respectivement 321 , 322.
Dans une forme de réalisation, la tête 331 comporte deux rainures 337 adaptées pour recevoir chacune une extrémité 316, 326 d'une âme, respectivement 321 , 322, comme illustrée sur la figure 2g.
Dans une variante de réalisation suivant cet exemple, les rainure 337 sont situées sur la tête 331 au niveau des bords de ladite tête, formant ainsi des soyages adaptés pour recevoir chacune une extrémité 316, 326 d'âme, comme illustrée sur la figure 2h.
De préférence, le raidisseur présente une symétrie par rapport à un plan de longitudinal, comme illustré sur les exemples des figures 2a à 2h, mais le raidisseur peut également présenter une structure dissymétrique, comme illustré sur la figure 2i.
Dans cet exemple la tête 331 présente un bord tombé 332 sur un seul bord de sorte que son positionnement lors de l'assemblage est réalisé de manière précise contre l'âme située du côté dudit bord tombé sans créer de contrainte par rapport à l'autre âme du raidisseur 3.
Suivant un deuxième mode de réalisation, comme illustré sur les figures j à n, le premier élément 31 comporte la première semelle 311 et une partie 312a d'une première âme inclinée par rapport au plan de la semelle et solidaire, le long d'un premier bord 313, de la première semelle 311. Le deuxième élément 32 comporte la deuxième semelle 321 et une partie 322a d'une deuxième âme inclinée par rapport au plan de ladite deuxième semelle et solidaire, le long d'un premier bord 323, de la deuxième semelle 321. Le troisième élément 33 comporte une tête 331 solidaire, au niveau de deux bords longitudinaux 338, 339, de parties latérales 333, 334 du troisième élément 33, lesdites parties latérales étant solidaires de la tête 331 et formant une partie des âmes complémentaires des parties d'âme solidaires des semelles.
Les parties latérales 333, 334 du troisième élément 33 sont solidaires des parties d'âmes, respectivement 312a et 322a, solidaires des semelles, au niveau de zones de jonction d'âme respectivement 315a, 325a. La tête 331 a est ainsi maintenue à distance de la face 21 de la peau 2.
Dans un exemple de réalisation de ce deuxième mode, le troisième élément 33 est rapportée au niveau d'une surface de contact 315a, 325a sensiblement dans le plan local des parties d'âmes 312a, 322a.
Dans la variante de la figure 2j, les surfaces de contact 315a, 325a sont localisées proches de la tête 331 ce qui présente comme avantage d'augmenter l'inertie du raidisseur en augmentant la quantité de matière du côté de la tête.
Dans la variante de la figure 2k, les surfaces de contact 315a, 325a sont localisées proches des semelles 311 , 321 ce qui présente comme avantage de localiser la zone d'assemblage du troisième élément sur les premier et deuxième éléments au voisinage de la peau permettant de simplifier lesdits premier et deuxième éléments.
Les figures 21 et 2m présentent des variantes dans lesquelles des soyages, figure 21, ou des lamages, figure 2m, sont réalisés au niveau des surfaces de contact de sorte que la surface extérieure du raidisseur 3 ne présente pas de forme proéminente sur les âmes.
Dans la variante de la figure 2n, chaque surface de contact 315a, 325a est inclinée par rapport au plan local des âmes respectives par des formes adaptées d'extrémités libres des parties d'âmes 312a, 322a solidaires des semelles et des parties latérales 333, 334, du troisième élément.
De préférence, le raidisseur présente une symétrie par rapport à un plan longitudinal sensiblement perpendiculaire localement à la peau 2, comme illustré sur les figures, mais le raidisseur peut également présenter une dissymétrie, résultant par exemple d'une combinaison de différentes variantes suivant l'âme considérée.
Dans ces différentes variantes de réalisation, la surface de contact 315a, 325a est déterminée lors de la conception du raidisseur pour présenter des dimensions suffisantes pour permettre la fixation des éléments entre eux.
La réalisation du troisième élément séparément des autres éléments du raidisseur présente entre autre l'avantage de permettre l'intégration de fonctions complémentaires au raidisseur.
Les figures 2q, 2r et 3, illustrent des exemples de raidisseurs dans lesquels la tête présente une forme complexe, par exemple en T ou en L, pour faciliter l'installation et l'accrochage de systèmes, tels que par exemple des torons de fils électriques ou des structures secondaires.
Des moyens d'accrochage 5 sont solidaires, par exemple au niveau d'un bord longitudinal ou dans le plan de symétrie longitudinal, de la tête.
De tels moyens d'accrochage consistent par exemple en des languettes de préférence munies de trou de fixation comme illustré sur la figure 3. Dans une forme particulière, lorsque le raidisseur est de section fermée en Ω, comme illustrée sur les figures 2a à 2c, la présence de bords saillants sur les côtés de la tête permet de fixer des supports spécifiques 51 , complémentaires de la forme de la tête, tels qu'illustré sur la figure 4, sans nécessiter de perçage ou de collage. Le panneau raidi de l'invention est susceptible de variantes à la portée de l'homme du métier en particulier pour intégrer des contraintes propres de conception.
Par exemple, le troisième élément 33 présente une épaisseur sensiblement égale à l'épaisseur des premier 31 et deuxième 32 éléments, ce qui permet d'envisager la production de ces éléments par découpage de flans dans des plaques planes sous la forme de panoplies.
Par exemple, le troisième élément 33 présente une épaisseur différente, de préférence supérieure, de celle des premier et deuxième éléments, ce qui est plus complexe à réaliser pour des raidisseurs oméga réalisés en un seul élément, afin d'en augmenter certaines caractéristiques mécaniques.
Par exemple, le troisième élément 33 est formé dans un matériau composite différent, notamment en ce qui concerne les fibres dudit matériau, du matériau composite des premier 31 et deuxième 32 éléments. Avantageusement, dans des conditions normales de chargement, les liaisons entre le troisième élément et les premier et deuxième éléments sont moins sollicitées mécaniquement que les liaisons peau / premier et deuxième éléments, ce qui permet de simplifier la fixation entre ledit troisième élément et lesdits premier et deuxième éléments. Avantageusement, le raidisseur suivant l'invention présente une meilleure tolérance aux dommages. En effet, un impact mécanique sur le troisième élément créerait un délaminage, un décollement entre des couches de fibres au sein du matériau, localisé au niveau de cet élément. Du fait de la réalisation du raidisseur en trois parties, le risque de propagation du délaminage dans les premier et deuxième éléments est fortement atténué. De plus, dans l'éventualité d'un décollement du troisième élément par rapport aux premier et deuxième éléments lié à l'impact, des solutions de réparations peuvent être envisagées telles que par exemple le remplacement du troisième élément et une nouvelle soudure, et ou un rivetage ...
La présente invention ne se limite pas aux exemples de raidisseurs à section fermée décrits ci dessus à titre d'exemples non limitatifs. L'homme du métier est en mesure d'adapter la forme dudit raidisseur à des formes non décrites.
L'invention concerne également un procédé pour réaliser un panneau raidi tel qu'un des panneaux illustré sur les figures 1 à 5. Une description du procédé est faite, voir les figures 6a à 6h, en application de la réalisation d'un panneau raidi semblable au panneau raidi de la figure 1 a, les détails du procédé étant illustrés pour un raidisseur ayant une section similaire à celle du raidisseur de la figure 2a.
Suivant une première étape du procédé, les trois éléments 31 , 32, 33 du raidisseur sont réalisés séparément.
Cette première étape met en œuvre des méthodes et procédés conventionnels pour réaliser des pièces élémentaires, connus de l'homme du métier.
Par exemple des flans 131 , 132, 133, c'est à dire des éléments plats, sont préparés, par exemple découpés dans des plaques de matériau composite thermoplastique d'épaisseur voulu en prenant en compte l'orientation des fibres devant être respectée, voir figure 6a.
Les flans 131 , 132, 133 sont ensuite formés, avantageusement par formage à chaud, figure 6b, pour être amenés à la forme voulue pour chaque élément 31 , 32, 33 du raidisseur.
Par exemple, chaque pièce 131 , 132, 133 est mise en forme par thermoformage, par exemple dans une machine de type presse chauffante équipée d'un poinçon et d'une matrice, ou d'un poinçon et d'une vessie. Les techniques de mise en forme par thermoformage de pièces en matériau composite à matrice thermoplastique sont connues en soi et ne sont donc pas décrites.
Au cours de cette opération de formage, avantageusement les éléments sont soumis à des efforts de compression pour réaliser une opération de consolidation. Cette opération de consolidation permet de réduire les porosités à l'intérieur du matériau thermoplastique et améliore la liaison entre les différents plis qui le constituent.
A l'issue de cette opération de formage et de consolidation, les éléments 31 , 32, 33 sont refroidis à la température ambiante à laquelle ils conservent les formes acquises lors du formage. Dans une variante de mise en œuvre du procédé, les flans sont préparés au moyen de fibres préimprégnées de résine thermodurcissable, par exemple par découpe dans un panneau formé par un empilage de plis de fibres préimprégnées, qui sont soumis à une cuisson partielle, c'est à dire à une cuisson interrompue avant la polymérisation complète de la résine, qui confère au matériau intermédiaire obtenu des caractéristiques thermoplastiques.
Les premier et deuxième éléments 31 , 32 sont réalisés de sorte à présenter au niveau de leurs semelles 311 , 321 une surface d'appui sur la peau
2 correspondant sensiblement au profil de la face 21 de la peau sur laquelle les semelles sont destinées à être fixées. L'ordre de mise en œuvre de la phase de consolidation et celle de mise en forme n'est pas imposé et, suivant le procédé, peuvent être réalisées dans l'ordre inverse de l'ordre décrit ou réalisées simultanément sans modifier le résultats desdites phases.
A l'issue de cette première étape, chacun des différents éléments structuraux destinés à former le raidisseur est disponible dans la forme et les dimensions voulues.
Dans une deuxième étape, la peau 2 et les premier et deuxième éléments 31 , 32, sont placés les uns par rapport aux autres dans la position voulue pour le panneau raidi. Dans une première phase de cette deuxième étape, comme illustré sur la figure 6c, les premier 31 et deuxième 32 éléments sont placés individuellement dans un moule 8 de sorte à être maintenus précisément dans la position souhaitée.
Par exemple les premier et deuxième éléments 31 , 32 sont positionnés séparément sur des outillages spécifiques 7 de sorte à prendre en compte les formes particulières des premier et deuxième éléments réalisé à l'étape précédente et lesdits premiers et second éléments sont placés avec leurs outillages spécifiques dans le moule 8 dans lequel ils se trouvent calés en position. Les outillages comportent une surface d'appui présentant une forme complémentaire à celles des premier et deuxième éléments. Un noyau 71 , reproduisant la forme de la cavité 4 du raidisseur avec ses variations de forme et de section, est placé entre les âmes des premier et deuxième éléments 31 , 32. Le noyau 71 doit être suffisamment rigide pour résister aux manipulations et contraintes mécaniques et thermiques pendant l'étape ultérieure de consolidation. Le noyau peut être réalisé en matériau métallique ou être constitué de matériaux différents, permettant d'atteindre des exigences thermiques et mécaniques similaires.
Le noyau 71 est réalisé de sorte à pouvoir être extrait par l'ouverture disponible au niveau de la tête 33, après l'étape de consolidation et avant que la tête ne soit fixée.
Le noyau est par exemple, en particulier pour le profil du raidisseur de l'illustration, un noyau à clé réalisé en au moins deux parties. Dans l'exemple de la figure 6c, le noyau est réalisé en trois parties 71 a, 71 b.
Le noyau assure deux fonctions dans l'étape ultérieure de consolidation du panneau. D'un part il permet d'appliquer une pression sur les âmes du raidisseur sans les déformer, y compris à la température de formage et de co- consolidation, et d'autre part il forme une surface d'appui du côté des semelles du raidisseur dans la continuité desdites semelles pour servir de support, au niveau de la cavité, à la peau ultérieurement déposée pour former le panneau. Dans une deuxième phase de cette deuxième étape, comme illustrée figure 6d, la peau est mise en place sur le moule 8 en recouvrant les outillages 7, 71 assurant le positionnement des éléments du raidisseur de sorte à recouvrir les semelles aux emplacements voulus sur la peau.
Une telle opération de mise en place de la peau est connue en soi de l'homme du métier. Par exemple la peau est réalisée par un assemblage de plaques d'un matériau composite thermoplastique afin de réaliser une peau ayant les épaisseurs voulues de la peau du panneau. Avantageusement les plaques sont fixées entre elles par une opération de co-consolidation partielle.
Dans une troisième étape du procédé, la peau 2 et les premier et second éléments 31 , 32 subissent une opération de co-consolidation.
Cette opération de co-consolidation se caractérise par l'application d'une pression sur la peau et sur les premier et second éléments simultanément à un chauffage à une température à laquelle la résine est partiellement en fusion, afin de permettre la fusion entre les plis. La pression est par exemple appliquée sur la surface de la peau opposée au moule 8 par l'intermédiaire d'un contre-moule (non représenté). Après refroidissement la matrice du matériau composite thermoplastique est durcie et la peau et les éléments sont fixés entre eux au niveau de leurs surfaces en contact lors de l'opération de co- consolidation. Dans une quatrième étape du procédé, la peau 2 et les premier et deuxième éléments 31 , 32 sont démoulés.
Le moule 8 et les outillages extérieurs 7 nécessaires à la consolidation de la structure du panneau partiellement réalisé sont enlevés, comme illustré sur la figure 6e. Le noyau 71 prisonnier de la cavité entre les premier et deuxième éléments est extrait, dans le cas illustré en démontant d'abord la clé 71 a qui libère les autres parties 71 b du noyau, par l'ouverture encore présente à l'emplacement du troisième élément non encore assemblé, comme illustré par la figure 6f. Dans une cinquième étape du procédé, le troisième élément 33 est fixé sur les premier et deuxième éléments 31 , 32.
Dans une première phase, figure 6g, de cette cinquième étape, le troisième élément 33 est positionné sur les bords des premier et second éléments 31 , 32 opposés à la peau pour se trouver en contact avec lesdits premier et second éléments au niveau des zones de jonction 315, 325 et permettre sa fixation.
Dans une deuxième phase, figure 6h, de cette cinquième étape, le troisième élément 33 est fixé.
Dans un exemple de mise en œuvre de cette deuxième phase, le troisième élément est riveté au niveau de la zone de jonction.
Dans un autre exemple préféré de mise en œuvre, le troisième élément 33 est soudé, avantageusement par un procédé de soudage dynamique tel que par exemple le soudage par ultrasons, le soudage par induction ou le soudage par résistance qui permet de solidariser les éléments sans élévation générale de la température des éléments, élévation générale de température qui pourrait provoquer des déformations du raidisseur, et sans exercer de pression élevées, également source de déformation.
Le procédé suivant l'invention permet de réaliser une pièce en matériau composite thermoplastique comportant des raidisseurs à section fermée creuse.
Le procédé suivant l'invention permet de créer des liaisons peau/semelles co-consol idées en utilisant au maximum les avantages des matériaux composites thermoplastiques, liaisons qui sont fortement sollicitées mécaniquement, et de reporter au niveau des liaisons tête/âmes, qui sont moins sollicitées que les liaisons peau/semelles et plus facilement accessibles, l'utilisation de procédés de fixation qui garantissent une résistance structurale suffisante sans avoir les contraintes des procédés de co-consol idation.

Claims

RE V E N D I C A T I O N S
- Procédé de fabrication d'une pièce raidie (1 ), en matériau composite comportant des fibres organiques ou minérales maintenues dans une matrice organique, comportant une peau (2) formée principalement d'un matériau composite thermoplastique et au moins un raidisseur (3) de longueur L grande par rapport à des dimensions transversales, largeur I et hauteur h, dudit raidisseur, ledit au moins un raidisseur comportant deux semelles (311 , 321 ), deux âmes (312, 322), chaque âme étant solidaire au niveau d'un premier bord (313, 323) d'une semelle, et comportant une tête (331 ) solidarisant les deux âmes entre elles au niveau d'un second bord (314, 324) de chaque âme, distant dudit premier bord, lesdites deux âmes et la tête déterminant avec la peau un volume creux du raidisseur de section transversale fermée lorsque le raidisseur est solidaire de la peau au niveau des semelles, caractérisé en ce que le procédé comporte :
- une étape de réalisation : - d'un premier élément (31 ) du raidisseur, dans un matériau composite thermoplastique, comportant une première semelle (311 ) et une première âme (312) ou au moins une partie (312a) d'une première âme,
- d'un deuxième élément (32) du raidisseur, dans un matériau composite thermoplastique, comportant une deuxième semelle
(321 ) et une deuxième âme (322) ou au moins une partie (322a) d'une deuxième âme,
- d'un troisième élément (33) comportant la tête (331 ),
- une étape de positionnement aux emplacements voulus sur une surface de la peau (2) des semelles (311 , 321 ) des premier et deuxième éléments (31 , 32),
- une étape de positionnement d'un noyau (71 ) à l'emplacement du volume creux du raidisseur, entre les premier (31 ) et deuxième (32) éléments, ledit noyau étant le cas échéant en au moins deux parties,
- une étape de solidarisation de la peau (2) et des premier et deuxième éléments (31 , 32) par co-consolidation du matériau thermoplastique de ladite peau et des semelles (311 , 321 ) des dits premier et deuxième éléments,
- une étape de retrait du noyau (71 ),
- une étape de fixation du troisième élément (33) sur les seconds bords (314, 324) des premier (31 ) et deuxième (32) éléments au niveau de zones de jonction (315, 325).
2- Procédé suivant la revendication 1 dans lequel un noyau (71 ) est formé de deux ou plusieurs parties (71a, 71 b) permettant de retirer successivement chaque partie du volume creux du raidisseur par une ouverture longitudinale dudit volume creux devant être fermée par la fixation du troisième élément (33).
3- Procédé suivant l'une des revendications précédentes dans lequel le troisième élément est fixé sur les seconds bords (314, 324) des premier (31 ) et deuxième (32) éléments au niveau des zones de jonction par un procédé de soudage. 4- Procédé suivant la revendication 3 dans lequel le procédé de soudage est un procédé de soudage dynamique. 5- Procédé suivant la revendication 4 dans lequel le procédé de soudage dynamique est un procédé de soudage par ultrason ou un procédé de soudage par induction ou un procédé de soudage par résistance. 6- Procédé suivant l'une des revendications précédentes dans lequel le troisième élément est fixé sur les seconds bords (314, 324) des premier (31 ) et deuxième (32) éléments au niveau des zones de jonction par rivetage. 7- Panneau raidi (1 ) en matériau composite comportant une peau (2) constituée d'un matériau composite thermoplastique et comportant un raidisseur (3) de longueur L grande par rapport à des dimensions transversales de largeur I et de hauteur h, dudit raidisseur, ledit raidisseur déterminant avec la peau un volume creux de section transversale fermée, caractérisé en ce que ledit raidisseur comporte :
- un premier élément (31 ) en matériau composite thermoplastique comportant une première semelle (311 ), en contact avec la peau (2), et une première âme (312),
- un deuxième élément (32) en matériau composite thermoplastique comportant une deuxième semelle (321 ), en contact avec la peau (2), et une deuxième âme (322),
- un troisième élément (33) comportant une tête (331 ), chaque âme (312, 322) des premier (31 ) et deuxième (32) éléments comportant un bord, dit second bord (314, 324), en contact avec le troisième élément (33) et s'étendant vers un extérieur du raidisseur. 8- Panneau raidi suivant la revendication 7 dans lequel le troisième élément (33) est constitué d'un matériau composite thermoplastique. 9- Panneau raidi suivant l'une des revendications 7 ou 8 dans lequel le troisième élément (33) présente une forme en L pour la fixation d'éléments extérieurs audit panneau.
10- Panneau raidi suivant l'une des revendications 7 ou 8 dans lequel le troisième élément (33) présente une forme en T pour la fixation d'éléments extérieurs audit panneau.
PCT/EP2010/054458 2009-04-06 2010-04-02 Procede de fabrication d'un panneau raidi en materiau composite a matrice thermoplastique et panneau ainsi obtenu WO2010115853A2 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP10712445A EP2416946B1 (fr) 2009-04-06 2010-04-02 Procede de fabrication d'un panneau raidi en materiau composite a matrice thermoplastique et panneau ainsi obtenu
ES10712445T ES2408116T3 (es) 2009-04-06 2010-04-02 Procedimiento de fabricación de un panel rigidizado de material compuesto de matriz termoplástica y panel así obtenido

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0952224A FR2943944A1 (fr) 2009-04-06 2009-04-06 Procede de fabrication d'un panneau raidi en materiau composite a matrice thermoplastique et panneau ainsi obtenu
FR0952224 2009-04-06

Publications (2)

Publication Number Publication Date
WO2010115853A2 true WO2010115853A2 (fr) 2010-10-14
WO2010115853A3 WO2010115853A3 (fr) 2011-01-06

Family

ID=41401652

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2010/054458 WO2010115853A2 (fr) 2009-04-06 2010-04-02 Procede de fabrication d'un panneau raidi en materiau composite a matrice thermoplastique et panneau ainsi obtenu

Country Status (4)

Country Link
EP (1) EP2416946B1 (fr)
ES (1) ES2408116T3 (fr)
FR (1) FR2943944A1 (fr)
WO (1) WO2010115853A2 (fr)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108099080A (zh) * 2016-11-25 2018-06-01 江西洪都航空工业集团有限责任公司 一种复合材料舱体设计成型方法
DE102017217339A1 (de) * 2017-09-28 2019-03-28 Airbus Operations Gmbh Faserverbundbauteil und Verfahren zu dessen Herstellung, sowie Flügelstruktur
GB2566920A (en) * 2017-07-12 2019-04-03 Safran Nacelles Ltd Fitting for a stiffened panel
US11351743B2 (en) 2018-07-24 2022-06-07 The Boeing Company Co-consolidation of thermoplastic parts

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2990409B1 (fr) * 2012-05-09 2015-01-30 Airbus Operations Sas Poutre ventrale d'un aeronef
US9399507B2 (en) 2014-01-22 2016-07-26 The Boeing Company Joints between a composite skin and a load-bearing component and methods of forming same
FR3044291B1 (fr) * 2015-11-27 2020-02-28 Airbus Operations (S.A.S.) Raidisseur d'aeronef a tete raidie
US10220935B2 (en) * 2016-09-13 2019-03-05 The Boeing Company Open-channel stiffener
GB2564927B (en) * 2017-05-18 2020-06-17 Bae Systems Plc Stiffening structure for an aircraft door or panel
EP3403918A1 (fr) * 2017-05-18 2018-11-21 BAE SYSTEMS plc Structure de raidissement pour une porte ou un panneau d'aéronef
NL2023459B1 (en) * 2019-07-08 2021-02-02 Kok & Van Engelen Composite Structures B V Fuselage structure of an aircraft and method for manufacturing the same
FR3105165A1 (fr) * 2019-12-19 2021-06-25 Airbus Operations Élément de cadre pour fuselage d’aéronef pourvu d’ouvertures adaptées à un montage par enfilage de raidisseur.

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4946526A (en) * 1987-10-29 1990-08-07 Ltv Aerospace And Defense Company Method for compression molding of laminated panels
FR2766407B1 (fr) * 1997-07-22 1999-10-15 Aerospatiale Procede de fabrication de pieces de grandes dimensions en materiau composite a matrice thermoplastique, telles que des troncons de fuselage d'aeronefs
JP5116282B2 (ja) * 2006-10-31 2013-01-09 株式会社ジャムコ 構造部材の連続製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108099080A (zh) * 2016-11-25 2018-06-01 江西洪都航空工业集团有限责任公司 一种复合材料舱体设计成型方法
GB2566920A (en) * 2017-07-12 2019-04-03 Safran Nacelles Ltd Fitting for a stiffened panel
US11945567B2 (en) 2017-07-12 2024-04-02 Safran Nacelles Limited Fitting for a stiffened panel
DE102017217339A1 (de) * 2017-09-28 2019-03-28 Airbus Operations Gmbh Faserverbundbauteil und Verfahren zu dessen Herstellung, sowie Flügelstruktur
US10569476B2 (en) 2017-09-28 2020-02-25 Airbus Operations Gmbh Fibre composite component and method for the production thereof, and wing structure
US11351743B2 (en) 2018-07-24 2022-06-07 The Boeing Company Co-consolidation of thermoplastic parts

Also Published As

Publication number Publication date
EP2416946B1 (fr) 2013-03-20
ES2408116T3 (es) 2013-06-18
EP2416946A2 (fr) 2012-02-15
FR2943944A1 (fr) 2010-10-08
WO2010115853A3 (fr) 2011-01-06

Similar Documents

Publication Publication Date Title
EP2416946B1 (fr) Procede de fabrication d'un panneau raidi en materiau composite a matrice thermoplastique et panneau ainsi obtenu
EP2709839B1 (fr) Panneau composite raidi double face et procédé de réalisation d'un tel panneau
EP2170585B1 (fr) Bielle structurale en materiau composite et procede de realisation d 'une telle bielle
EP2268474B1 (fr) Pièce structurale courbe en matériau composite et procédé de fabrication d'une telle pièce
EP3004669B1 (fr) Bielle composite, son procede de fabrication et structure de plafond ou de plancher aeronautique l'incorporant
EP2665597B1 (fr) Ferrure multi-branche en materiau composite et procede de fabrication d'une telle ferrure multi-branche
EP2726272B1 (fr) Procédé de renforcement local d'un panneau composite à renfort fibreux et panneau obtenu par un tel procédé
EP3233364B1 (fr) Procede pour l'assemblage entre une piece en materiau metallique et une piece en materiau composite a matrice organique ; ensemble correspondant
EP3119585A1 (fr) Dispositif et procédé de soudage de pièces en matériau composite thermoplastique
WO2012152936A1 (fr) Panneau composite et son procédé de réalisation
EP3296089A1 (fr) Procédé de fabrication amélioré d'une pièce de structure hybride de véhicule automobile et pièce de structure hybride correspondante
EP3700740A1 (fr) Procede de collage structural de pieces de structure et insert de surface texturee pour la mise en oeuvre dudit procede
EP3625038A1 (fr) Procédé de réalisation d'une pièce coudée en matériau composite et pièce coudée correspondante
FR3095775A1 (fr) Elément structurel profilé pour le renforcement de structures composées d’éléments, structure ainsi que procédés de fabrication s’y rapportant
EP2845707A1 (fr) Maintien provisoire de feuillard sur moule RTM par microsoudures
EP3827972B1 (fr) Procédé de fabrication d'une pièce thermoplastique composite et pièce obtenue
EP3536489A1 (fr) Système et procédé de fabrication de pièces thermoplastiques structurelles
EP2578383B1 (fr) Procédé et dispositif pour la réalisation d'un trou à bord tombé dans un panneau composite
EP4098860B1 (fr) Lame pour inverseur de poussee et un procede de fabrication d'une telle lame
EP4444534A1 (fr) Procede de fabrication d'une piece aubagee pour une turbomachine d'aeronef
EP2423081A1 (fr) Structure pour former une enceinte de stockage et procédé pour réaliser une telle structure
FR2794400A1 (fr) Procede d'empilage et de decoupe des feuilles d'un element en materiau composite de caisse de vehicule automobile

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10712445

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010712445

Country of ref document: EP