WO2010114753A1 - Composition comprising delivery particles - Google Patents
Composition comprising delivery particles Download PDFInfo
- Publication number
- WO2010114753A1 WO2010114753A1 PCT/US2010/028559 US2010028559W WO2010114753A1 WO 2010114753 A1 WO2010114753 A1 WO 2010114753A1 US 2010028559 W US2010028559 W US 2010028559W WO 2010114753 A1 WO2010114753 A1 WO 2010114753A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- sulfooxy
- propyl
- mixtures
- composition
- inner salt
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D17/00—Detergent materials or soaps characterised by their shape or physical properties
- C11D17/0039—Coated compositions or coated components in the compositions, (micro)capsules
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/0005—Other compounding ingredients characterised by their effect
- C11D3/001—Softening compositions
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/39—Organic or inorganic per-compounds
- C11D3/3902—Organic or inorganic per-compounds combined with specific additives
- C11D3/3905—Bleach activators or bleach catalysts
- C11D3/3935—Bleach activators or bleach catalysts granulated, coated or protected
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/39—Organic or inorganic per-compounds
- C11D3/3945—Organic per-compounds
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/50—Perfumes
- C11D3/502—Protected perfumes
- C11D3/505—Protected perfumes encapsulated or adsorbed on a carrier, e.g. zeolite or clay
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M13/00—Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
- D06M13/005—Compositions containing perfumes; Compositions containing deodorants
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M23/00—Treatment of fibres, threads, yarns, fabrics or fibrous goods made from such materials, characterised by the process
- D06M23/12—Processes in which the treating agent is incorporated in microcapsules
Definitions
- the present application relates to particles, compositions comprising such particles, and processes for making and using such particles and compositions.
- Benefit agents such as perfume delivery compositions, bleaching agents and fabric softening agents, are expensive and generally less effective when employed at high levels in personal care compositions, cleaning compositions, and fabric care compositions. As a result, there is a desire to maximize the effectiveness of such benefit agents.
- One method of achieving this objective is to improve the delivery efficiencies of such benefit agents. Unfortunately, it is difficult to improve the delivery efficiencies of benefit agents as such agents may be lost due to the agents' physical or chemical characteristics or such agents may be incompatible with other compositional components or the situs that is treated.
- the present application relates to particles and/or agglomerates, compositions comprising such particles and/or agglomerates, and processes for making and using such particles and/or agglomerates and compositions.
- Such particles and/or agglomerates minimize or eliminate certain drawbacks of encapsulated benefit agents.
- consumer product means baby care, beauty care, fabric & home care, family care, feminine care, health care, snack and/or beverage products or devices intended to be used or consumed in the form in which it is sold, and not intended for subsequent commercial manufacture or modification.
- Such products include but are not limited to diapers, bibs, wipes; products for and/or methods relating to treating hair (human, dog, and/or cat), including, bleaching, coloring, dyeing, conditioning, shampooing, styling; deodorants and antiperspirants; personal cleansing; cosmetics; skin care including application of creams, lotions, and other topically applied products for consumer use; and shaving products, products for and/or methods relating to treating fabrics, hard surfaces and any other surfaces in the area of fabric and home care, including: air care, car care, dishwashing, fabric conditioning (including softening), laundry detergency, laundry and rinse additive and/or care, hard surface cleaning and/or treatment, and other cleaning for consumer or institutional use; products and/or methods relating to bath tissue, facial tissue, paper handkerchiefs, and/or paper towels; tampons, feminine napkins; products and/or methods relating to oral care including toothpastes, tooth gels, tooth rinses, denture adhesives, tooth whitening; over-the-counter health care including cough and cold remedies
- cleaning composition includes, unless otherwise indicated, granular or powder-form all-purpose or "heavy-duty” washing agents, especially cleaning detergents; liquid, gel or paste-form all-purpose washing agents, especially the so-called heavy- duty liquid types; liquid fine-fabric detergents; hand dishwashing agents or light duty dishwashing agents, especially those of the high- foaming type; machine dishwashing agents, including the various tablet, granular, liquid and rinse-aid types for household and institutional use; liquid cleaning and disinfecting agents, including antibacterial hand-wash types, cleaning bars, mouthwashes, denture cleaners, dentifrice, car or carpet shampoos, bathroom cleaners; hair shampoos and hair-rinses; shower gels and foam baths and metal cleaners; as well as cleaning auxiliaries such as bleach additives and "stain-stick” or pre-treat types, substrate-laden products such as dryer added sheets, dry and wetted wipes and pads, nonwoven substrates, and sponges; as well as sprays and mists
- fabric care composition includes, unless otherwise indicated, fabric softening compositions, fabric enhancing compositions, fabric freshening compositions and combinations there of.
- benefit agent delivery particle encompasses microcapsules including perfume microcapsules.
- waxes include natural waxes, chemically modified waxes and the synthetic waxes.
- the natural waxes include, for example, plant waxes such as candelilla wax, carnauba wax, Japan wax, esparto grass wax, cork wax, guaruma wax, rice germ oil wax, sugarcane wax, ouricury wax or montan wax, animal waxes such as beeswax, shellac wax, zein wax, spermaceti, lanolin (wool wax), or uropygial grease, mineral waxes such as ceresin or ozokerite (earth wax), or petrochemical waxes such as petrolatum, paraffin waxes or microwaxes.
- plant waxes such as candelilla wax, carnauba wax, Japan wax, esparto grass wax, cork wax, guaruma wax, rice germ oil wax, sugarcane wax, ouricury wax or montan wax
- animal waxes such
- the chemically modified waxes include, for example, hard waxes such as montan ester waxes, sassol waxes or hydrogenated jojoba waxes.
- Synthetic waxes include polyalkylene waxes or polyalkylene glycol waxes. Suitable synthetic waxes include higher esters of phthalic acid, in particular dicyclohexyl phthalate, which is obtainable commercially under the name Unimoll® 66 (Bayer AG). Also suitable are synthetic waxes made from lower carboxylic acids and fatty alcohols, for example dimyristyl tartrate which is obtainable under the name Cosmacol® ETLP (Condea). Synthetic or semisynthetic esters of lower alcohols with fatty acids include, for example, Tegin® 90 (Goldschmidt), a glycerol monostearate palmitate.
- test methods disclosed in the Test Methods Section of the present application should be used to determine the respective values of the parameters of Applicants' inventions.
- component or composition levels are in reference to the active portion of that component or composition, and are exclusive of impurities, for example, residual solvents or by-products, which may be present in commercially available sources of such components or compositions.
- a composition comprising:
- a benefit agent selected from the group consisting of: a.) an encapsulated benefit agent wherein said encapsulated benefit agent comprises a material selected from the group consisting of a perfume; a perfume delivery composition; a bleaching agent comprising a material selected from the group consisting of a diacyl, a clathrated diacyl, sodium nonanoyloxybenzene sulfonate, a bleach booster, a metal catalyst and mixtures thereof; a fabric softening agent; and mixtures thereof; and a melamine formaldehyde polymer, said melamine formaldehyde polymer encapsulating said material; b.) a perfume delivery composition; c.) a bleaching agent comprising a material selected from the group consisting of a diacyl, a clathrated diacyl, sodium nonanoyloxybenzene sulfonate, a bleach booster, a metal catalyst and mixtures thereof; and d.) a fabric softening agent;
- a wax selected from the group consisting of shellac, zein, paraffins and mixtures thereof, said wax covering said benefit agent to form a particle, an agglomerate, or a bead;
- the diacyl may comprise a material selected from the group consisting of dinonoyl peroxide, didecanoyl peroxide, diundecanoyl peroxide, dilauroyl peroxide, dibenzoyl peroxide, di-(3,5,5-trimethyl hexanoyl) peroxide and mixtures thereof and the aforementioned diacyl component of the clathrated diacyl may be selected from the group consisting of dinonoyl peroxide, didecanoyl peroxide, diundecanoyl peroxide, dilauroyl peroxide, dibenzoyl peroxide, di-(3,5,5-trimethyl hexanoyl) peroxide and mixtures thereof.
- the perfume delivery composition may comprise a material selected from the group consisting of amine reaction product, a polymer assisted delivery system, starch encapsulated accord, zeolite or inorganic comprising an accord and mixtures thereof. Examples of suitable perfume delivery compositions and processes of making same are found in USPA publications: 2007/0275866 Al; 2008/0200359 Al and 2008/0200363 Al.
- the bleach booster may comprise a material selected from the group consisting of: 2-[3-[(2-hexyldodecyl)oxy]-2-(sulfooxy)propyl]-3,4-dihydroisoquinolinium, inner salt;
- the metal catalyst may comprise a material selected from the group consisting of dichloro-l,4-diethyl-l,4,8,ll-tetraaazabicyclo[6.6.2]hexadecane manganese( ⁇ ); dichloro-l,4-dimethyl-l,4,8,ll-tetraaazabicyclo[6.6.2]hexadecane manganese(II) and mixtures thereof; and mixtures thereof; a fabric softening agent; and mixtures thereof.
- such composition may have a weight ratio of benefit agent to wax of from about 95:5 to about 1:99, from about 95:5 to about 15: 85, or even from about 90: 10 to about 50:50 and a mean particle size of from about 1 micron to about 5 mm, from about 2 microns to about 2 mm or even from about 5 microns to about 100 microns.
- such composition's wax may comprise shellac. In one aspect, of the aforementioned composition, such composition's wax may encapsulate such composition's benefit agent.
- such composition's wax may encapsulate such composition's benefit agent to form a particle.
- composition's wax may comprises shellac and such composition's benefit agent may comprise an encapsulated benefit agent that may comprise perfume microcapsules that may comprise perfume and a melamine formaldehyde polymer that may encapsulate said perfume, such particle may have a mean particle size of from about 5 microns to about 100 microns.
- such composition's shellac may comprise borax and/or ammonia.
- such composition's wax may comprise a plasticizer selected from the group consisting of dibutyl sebacate, polyethylene glycol and polypropylene glycol, dibutyl phthalate, diethyl phthalate, triethyl citrate, tributyl citrate, acetylated monoglyceride, acetyl tributyl citrate, triacetin, dimethyl phthalate, hydroxypropyl methylcellulose, benzyl benzoate, butyl and/or glycol esters of fatty acids, refined mineral oils, oleic acid, castor oil, corn oil, camphor, glycerol, sorbic acid, sorbitol and mixtures thereof.
- a plasticizer selected from the group consisting of dibutyl sebacate, polyethylene glycol and polypropylene glycol, dibutyl phthalate, diethyl phthalate, triethyl citrate, tributyl citrate, acetylated monoglycer
- composition's wax and benefit agent may form an agglomerate particle.
- composition's benefit agent may comprise a bleaching agent.
- composition's benefit agent may comprise a material selected from the group consisting of dilauroyl peroxide; dinonoyl peroxide; sodium nonanoyloxybenzene sulfonate; isoquinolinium, 2-[3-[(2-butyloctyl)oxy]-2- (sulfooxy)propyl]-3,4-dihydro-, inner salt; isoquinolinium, 2-[3-[(2-ethylhexyl)oxy]-2- (sulfooxy)propyl]-3,4-dihydro-, inner salt; dichloro-l,4-dimethyl-l,4,8,l l- tetraaazabicyclo[6.6.2]hexadecane manganese(II); dichloro-l,4-diethyl-l,4,8,l 1- tetraaazabicyclo[6.6.2]hexadecane manganese(II); dichloro-l,4-dieth
- composition's benefit agent may comprise a fabric softening agent.
- composition's benefit agent may comprise a fabric softening agent selected from the group consisting of a paraffin, an oil, a silicone, a clay and mixtures there of.
- composition that may comprise any combination of the aforementioned parameters as listed in the aforementioned aspects is disclosed.
- the suitable materials and equipment for practicing the present invention may be obtained from: United Initiators, GmbH & Co.KG, Dr.-Gustav-Adolph-Str.3, 82049 Pullach, Germany SSB, Stroever GmbH & Co. KG, Muggenburg 11, 28217 Bremen, Germany; Emerson Resources INC, Suite 1, 600 Markley Street, Norristown, PA. 19401; Appleton, 825 E Wisconsin Avenue, P.O. Box 359, WI 54912-0359, US; Sigma Aldrich NV/SA, Kardinaal Cardijnplein 8, 2880 Bornem, Belgium; ProCepT nv, Rosteyne 4, 9060 Zelzate, Belgium; Ingeniatrics, Avd.
- the process of making the aforementioned compositions, including wax coated particles and/or agglomerates may comprise two (2) parts: a) combining and/or contacting a solution comprising a wax, including but not limited to, shellac and/or zein, and a solvent, including but not limited to water and/or ethanol, with melamine-formaldehyde microcapsules comprising a benefit agent and/or a slurry comprising such melamine-formaldehyde microcapsules to form a shellac/microcapsule slurry and b) collecting wax coated melamine formaldehyde microcapsules from such slurry.
- a solution comprising a wax including but not limited to, shellac and/or zein
- a solvent including but not limited to water and/or ethanol
- a wax solution is prepared and a slurry comprising melamine-formaldehyde microcapsules comprising a benefit agent, is added to such solution to form a slurry comprising wax and such melamine-formaldehyde microcapsules.
- a second wax solution that may comprise a wax including but not limited to, shellac and/or zein.
- a plasticizer may be added to the wax/melamine-formaldehyde microcapsule slurry to modify the properties of the resulting wax coated melamine formaldehyde microcapsules - for example to soften the wax coated microcapsules and/or improve the wax coated microcapsules' benefit agent's release during use.
- Suitable plasticizers include plasticizers selected from the group consisting of dibutyl sebacate, polyethylene glycol and polypropylene glycol, dibutyl phthalate, diethyl phthalate, triethyl citrate, tributyl citrate, acetylated monoglyceride, acetyl tributyl citrate, triacetin, dimethyl phthalate, hydroxypropyl methylcellulose, benzyl benzoate, butyl and/or glycol esters of fatty acids, refined mineral oils, oleic acid, castor oil, corn oil, camphor, glycerol, sorbic acid, sorbitol and mixtures thereof.
- said plasticizer comprises glycerol.
- the wax and melamine-formaldehyde microcapsule slurry is combined with an organic material, for example an oil including but not limited to a vegetable oil such as soybean oil, to form a slurry comprising wax, melamine formaldehyde microcapsules and the organic material.
- an organic material for example an oil including but not limited to a vegetable oil such as soybean oil
- a material that can provide cations may then be combined with the wax, melamine formaldehyde and organic material slurry to assist in hardening the wax coated melamine formaldehyde microcapsules that may be collected from such slurry.
- the wax and melamine-formaldehyde microcapsule slurry may be contacted with a material that can provide cations - typically such material comprises water and a cation that may be supplied by a salt, such as calcium chloride and/or magnesium and such contact is achieved by passing drops of such slurry through such material that can provide cations.
- a material that can provide cations such material may comprise a density modifier such as organic solvent like an alcohol such as ethanol.
- a second solvent is added to the wax/melamine formaldehyde microcapsule slurry and the first solvent is evaporated which results in wax coated melamine formaldehyde microcapsules in the second solvent.
- the aforementioned slurry may, as needed, be kept homogenous by continual mixing and/or the addition of a surfactant prior to drying.
- Suitable collecting techniques include, but are not limited to, spray drying, filtration, flow focusing, and combinations thereof.
- a process of making wax coated particles and/or agglomerates may comprise contacting a benefit agent with a fluid wax such as shellac and/or zein, to form wax coated particles.
- said process comprises contacting a benefit agent and/or a melamine formaldehyde benefit agent with a liquid wax such as paraffin, to form wax coated particles.
- a plasticizer may be combined with the wax to modify the properties of the resulting wax coated particles- for example to soften the wax coated particles and/or improve the wax coated particles' benefit agent's release during use.
- a material selected from the group consisting of a benefit agent, a melamine formaldehyde encapsulated benefit agent, a liquid wax comprising a benefit agent and/or a melamine formaldehyde encapsulated benefit agent and mixtures there of may be contacted with a second wax that may comprise a wax including but not limited to, shellac, paraffin and/or zein. Additional collection techniques include, but are not limited to spray drying, filtration, cooling and combinations thereof.
- a process of making wax coated particles and/agglomerates may comprise the use of a fluidized bed, wherein a material selected from the group consisting of a benefit agent, a melamine formaldehyde encapsulated benefit agent, a wax coated a benefit agent and/or a wax coated melamine formaldehyde encapsulated benefit agent and mixtures thereof may be contacted with a second wax, that may comprise a wax including but not limited to, shellac, paraffin and/or zein.
- compositions Comprising Applicants' Compositions
- compositions comprising the aforementioned variants of Applicants' compositions may comprise any embodiment of such variants including the particle variant disclosed in the present application and mixtures of such variants.
- said composition comprising a variant of Applicants' compositions may be a consumer product. While the precise level of Applicants' composition that is employed depends on the type and end use of the composition, consumer products may comprise, in one aspect, based on total composition weight, from about 0.001% to about 20%, from about 0.001% to about 5%, from about 0.001% to about 1%, from about 0.001% to about any variant or mixture there of Applicants' compositions.
- a cleaning composition may comprise, based on total cleaning composition weight, from about 0.1 to about 1 weight % of the Applicants' composition.
- a fabric treatment composition may comprise, based on total fabric treatment composition weight, from about 0.01 to about 10% of the particles of any variant or mixture there of Applicants' compositions.
- aspects of the invention include the use of the particles of the present invention in laundry detergent compositions (e.g., TIDETM), hard surface cleaners (e.g., MR CLEANTM), automatic dishwashing liquids (e.g., CASCADETM), dishwashing liquids (e.g., DAWNTM), Bleach Additives (e.g. Ace) and floor cleaners (e.g., SWIFFERTM).
- the cleaning compositions disclosed herein are typically formulated such that, during use in aqueous cleaning operations, the wash water will have a pH of between about 6.5 and about 12, or between about 7.5 and 10.5.
- Liquid dishwashing product formulations typically have a pH between about 6.8 and about 9.0.
- Cleaning products are typically formulated to have a pH of from about 7 to about 12. Techniques for controlling pH at recommended usage levels include the use of buffers, alkalis, acids, etc., and are well known to those skilled in the art.
- Fabric treatment compositions disclosed herein typically comprise a fabric softening active ("FSA").
- FSA fabric softening active
- Suitable fabric softening actives include, but are not limited to, materials selected from the group consisting of quats, amines, fatty esters, sucrose esters, silicones, dispersible polyolefins, clays, polysaccharides, fatty oils, polymer latexes and mixtures thereof.
- adjuncts While not essential for the purposes of the present invention, the non-limiting list of adjuncts illustrated hereinafter are suitable for use in the instant compositions and may be desirably incorporated in certain embodiments of the invention, for example to assist or enhance performance, for treatment of the substrate to be cleaned, or to modify the aesthetics of the composition as is the case with perfumes, colorants, dyes or the like. It is understood that such adjuncts are in addition to the components that are supplied via Applicants' compositions and other components of products previously disclosed herein. The precise nature of these additional components, and levels of incorporation thereof, will depend on the physical form of the composition and the nature of the operation for which it is to be used.
- Suitable adjunct materials include, but are not limited to, polymers, for example cationic polymers, surfactants, builders, chelating agents, dye transfer inhibiting agents, dispersants, enzymes, and enzyme stabilizers, catalytic materials, bleach activators, polymeric dispersing agents, clay soil removal/anti- redeposition agents, brighteners, suds suppressors, dyes, additional perfume and perfume delivery systems, structure elasticizing agents, fabric softeners, carriers, hydrotropes, processing aids and/or pigments.
- suitable examples of such other adjuncts and levels of use are found in U.S. Patent Nos. 5,576,282, 6,306,812 Bl and 6,326,348 Bl that are incorporated by reference.
- adjunct ingredients are not essential to Applicants' cleaning and fabric care compositions.
- certain embodiments of Applicants' compositions do not contain one or more of the following adjuncts materials: bleach activators, surfactants, builders, chelating agents, dye transfer inhibiting agents, dispersants, enzymes, and enzyme stabilizers, catalytic metal complexes, polymeric dispersing agents, clay and soil removal/anti-redeposition agents, brighteners, suds suppressors, dyes, additional perfumes and perfume delivery systems, structure elasticizing agents, fabric softeners, carriers, hydrotropes, processing aids and/or pigments.
- one or more adjuncts may be present as detailed below:
- compositions according to the present invention can comprise a surfactant or surfactant system wherein the surfactant can be selected from nonionic and/or anionic and/or cationic surfactants and/or ampholytic and/or zwitterionic and/or semi-polar nonionic surfactants.
- the surfactant is typically present at a level of from about 0.1%, from about 1%, or even from about 5% by weight of the cleaning compositions to about 99.9%, to about 80%, to about 35%, or even to about 30% by weight of the cleaning compositions.
- Builders - The compositions of the present invention can comprise one or more detergent builders or builder systems.
- compositions will typically comprise at least about 1% builder, or from about 5% or 10% to about 80%, 50%, or even 30% by weight, of said builder.
- Builders include, but are not limited to, the alkali metal, ammonium and alkanolammonium salts of polyphosphates, alkali metal silicates, alkaline earth and alkali metal carbonates, aluminosilicate builders polycarboxylate compounds, ether hydroxypolycarboxylates, copolymers of maleic anhydride with ethylene or vinyl methyl ether, 1,3,5-trihydroxybenzene- 2,4,6-trisulphonic acid, and carboxymethyl-oxysuccinic acid, the various alkali metal, ammonium and substituted ammonium salts of polyacetic acids such as ethylenediamine tetraacetic acid and nitrilotriacetic acid, as well as polycarboxylates such as mellitic acid, succinic acid, oxydisuccinic acid
- compositions herein may also optionally contain one or more copper, iron and/or manganese chelating agents. If utilized, chelating agents will generally comprise from about 0.1% by weight of the compositions herein to about 15%, or even from about 3.0% to about 15% by weight of the compositions herein.
- Dye Transfer Inhibiting Agents The compositions of the present invention may also include one or more dye transfer inhibiting agents.
- Suitable polymeric dye transfer inhibiting agents include, but are not limited to, polyvinylpyrrolidone polymers, polyamine N-oxide polymers, copolymers of N-vinylpyrrolidone and N-vinylimidazole, polyvinyloxazolidones and polyvinylimidazoles or mixtures thereof.
- the dye transfer inhibiting agents are present at levels from about 0.0001%, from about 0.01%, from about 0.05% by weight of the cleaning compositions to about 10%, about 2%, or even about 1% by weight of the cleaning compositions.
- compositions of the present invention can also contain dispersants.
- Suitable water-soluble organic materials are the homo- or co-polymeric acids or their salts, in which the polycarboxylic acid may comprise at least two carboxyl radicals separated from each other by not more than two carbon atoms.
- Enzymes - The compositions can comprise one or more detergent enzymes which provide cleaning performance and/or fabric care benefits.
- suitable enzymes include, but are not limited to, hemicellulases, peroxidases, proteases, cellulases, xylanases, lipases, phospholipases, esterases, cutinases, pectinases, keratanases, reductases, oxidases, phenoloxidases, lipoxygenases, ligninases, pullulanases, tannases, pentosanases, malanases, ⁇ - glucanases, arabinosidases, hyaluronidase, chondroitinase, laccase, and amylases, or mixtures thereof.
- a typical combination is a cocktail of conventional applicable enzymes like protease, lipase, cutinase and/or cellulase in conjunction with amylase.
- Enzyme Stabilizers - Enzymes for use in compositions for example, detergents can be stabilized by various techniques.
- the enzymes employed herein can be stabilized by the presence of water-soluble sources of calcium and/or magnesium ions in the finished compositions that provide such ions to the enzymes.
- compositions may include catalytic metal complexes.
- One type of metal-containing bleach catalyst is a catalyst system comprising a transition metal cation of defined bleach catalytic activity, such as copper, iron, titanium, ruthenium, tungsten, molybdenum, or manganese cations, an auxiliary metal cation having little or no bleach catalytic activity, such as zinc or aluminum cations, and a sequestrate having defined stability constants for the catalytic and auxiliary metal cations, particularly ethylenediaminetetraacetic acid, ethylenediaminetetra (methyl-enephosphonic acid) and water- soluble salts thereof.
- Such catalysts are disclosed in U.S. patent 4,430,243. If desired, the compositions herein can be catalyzed by means of a manganese compound.
- Such compounds and levels of use are well known in the art and include, for example, the manganese-based catalysts disclosed in U.S. patent 5,576,282.
- Cobalt bleach catalysts useful herein are known, and are described, for example, in U.S. patents 5,597,936 and 5,595,967. Such cobalt catalysts are readily prepared by known procedures, such as taught for example in U.S. patents 5,597,936, and 5,595,967.
- compositions herein may also suitably include a transition metal complex of a macropolycyclic rigid ligand - abbreviated as "MRL".
- MRL macropolycyclic rigid ligand
- the compositions and cleaning processes herein can be adjusted to provide on the order of at least one part per hundred million of the benefit agent MRL species in the aqueous washing medium, and may provide from about 0.005 ppm to about 25 ppm, from about 0.05 ppm to about 10 ppm, or even from about 0.1 ppm to about 5 ppm, of the MRL in the wash liquor.
- Preferred transition-metals in the instant transition-metal bleach catalyst include manganese, iron and chromium.
- Preferred MRL' s herein are a special type of ultra-rigid ligand that is cross-bridged such as 5,12-diethyl-l,5,8,12-tetraazabicyclo[6.6.2]hexa-decane.
- Suitable transition metal MRLs are readily prepared by known procedures, such as taught for example in WO 00/32601, and U.S. patent 6,225,464.
- compositions of the present invention can be formulated into any suitable form and prepared by any process chosen by the formulator, non- limiting examples of which are described in U.S. 5,879,584; U.S. 5,691,297; U.S. 5,574,005; U.S. 5,569,645; U.S. 5,565,422; U.S. 5,516,448; U.S. 5,489,392; U.S. 5,486,303 all of which are incorporated herein by reference.
- compositions and/or products/compositions comprising any aspect of
- compositions disclosed herein may be used to clean or treat a situs inter alia a surface or fabric. Typically at least a portion of the situs is contacted with an embodiment of Applicants' composition and/or /compositions comprising any aspect of Applicants' compositions, in neat form or diluted in a liquor, for example, a wash liquor and then the situs may be optionally washed and/or rinsed. In one aspect, a situs is optionally washed and/or rinsed, contacted with any of the compositions and/or products/compositions comprising any aspect of Applicants' compositions disclosed herein then optionally washed and/or rinsed. For purposes of the present invention, washing includes but is not limited to, scrubbing, and mechanical agitation.
- the fabric may comprise most any fabric capable of being laundered or treated in normal consumer use conditions.
- Liquors that may comprise the disclosed compositions may have a pH of from about 3 to about 11.5. Such compositions are typically employed at concentrations of from about 500 ppm to about 15,000 ppm in solution.
- the wash solvent is water
- the water temperature may range from about 5 0 C to about 90 0 C
- the situs comprises a fabric
- the water to fabric ratio may be from about 1:1 to about 30:1.
- a situs that has been treated in accordance with any of the aforementioned methods is disclosed.
- test methods that are disclosed in the Test Methods Section of the present application should be used to determine the respective values of the parameters of Applicants' invention as such invention is described and claimed herein.
- the mean particle size of the wax coated particles is determined using a Lasentec M500L- 316-K supplied by Mettler-Toledo, Inc., 1900 Polaris Parkway, Columbus, OH, 43240, US.
- the equipment is setup (Lasentec, FBRM Control Interface, version 6.0) as described in the Lasentec procedure , issued February 2000.
- Software setup and sample analysis is performed using Windox software (Windox XP, version 2002) in the WINDOX manual.
- EXAMPLE 1 60 wt% Core / 40 wt% Wall Shellac Microcapsules in dry laundry composition.
- a 25% solution of shellac SSB-63-HE-N (SSB, Bremen, Germany) in demi-water is prepared at 6OC and filtered with a l,2microns filter (Albet, Dassel, Germany). This solution is cooled to room temperature and 2% Glycerol (Sigma Aldrich) is added as plasticizer.
- EXAMPLE 2 Beads generation entrapping microcapsules in shellac cross-linked with calcium by extrusion
- microcapsules slurry with perfume as benefit agent (Appleton, Wisconsin, US) are suspended in lOOg Marcoat 125 solution (Emerson Resources INC, Pennsylvania, US).
- lOOg Marcoat 125 solution (Emerson Resources INC, Pennsylvania, US).
- above suspension is dropped into a 7,5% calcium chloride (Sigma Aldrich) aqueous bath. Particles are kept there for one hour, then aqueous phase is removed and particles are dried 48hours at room temperature.
- Particles are suspended in a liquid laundry composition containing hydrogen peroxide for 72hours at 35C and then used in a wash with a powder and/or liquid co-detergent to determine microcapsule release.
- EXAMPLE 3 20 wt% Core / 80 wt% Wall Shellac Microcapsules in liquid laundry composition.
- a 25% solution of shellac SSB-NPU-N (SSB, Bremen, Germany) in demi-water is prepared at 6OC and filtered with a l,2microns filter (Albet, Dassel, Germany). This solution is cooled to room temperature and 4% Glycerol (Sigma Aldrich) is added as plasticizer.
- microcapsules (Appleton, Wisconsin, US) containing a perfume composition as benefit agent and containing a 50% of solids, are suspended in 3216g of the previous shellac solution. This suspension is stirred for 1 hour at 700rpm and then introduced in the spray-drier (Niro GmbH, Gemany) using a peristaltic pump (Watson-Marlow, Massachusetts, US). Solid particles are collected and then analyzed by microscopy techniques: SEM (TM- 1000, Hitachi), Axio Microscope (Zeiss, Germany) and STEREO microscope (Zeiss, Germany). These particles contain perfume as the benefit agent, and they are used in a liquid laundry composition as follows:
- Example 3 The liquid laundry detergents of Example 3 are used and tested in a full washing test using free perfume as reference.
- EXAMPLE 4 20 wt% Core / 80 wt% Shellac coated Dichloro-l,4-diethyl-l,4,8,l l- tetraaazabicyclo[6.6.2]hexadecane manganese(II) in liquid laundry composition.
- a 10% solution of shellac SSB-63-HE-N (SSB, Bremen, Germany) in demi-water is prepared at 6OC and filtered with a l,2microns filter (Albet, Dassel, Germany). This solution is cooled to room temperature.
- EXAMPLE 6 13 wt% Core / 87 wt% Shellac coated sodium nonanoyloxybenzene sulfonate in liquid laundry composition.
- a 25% solution of shellac SSB-63-HE-N (SSB, Bremen, Germany) in demi-water is prepared at 6OC and filtered with a l,2microns filter (Albet, Dassel, Germany). This solution is cooled to room temperature.
- 13g of sodium nonanoyloxybenzene sulfonate are added to 348g of the shellac solution, previously prepared, and mixed (IKA RW-16-Basic, supplied by IKA-Werke GmbH & Co. KG, Janke & Kunkel Str.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Wood Science & Technology (AREA)
- Organic Chemistry (AREA)
- Textile Engineering (AREA)
- Inorganic Chemistry (AREA)
- Dispersion Chemistry (AREA)
- Detergent Compositions (AREA)
- Chemical Or Physical Treatment Of Fibers (AREA)
Abstract
Description
Claims
Priority Applications (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU2010232858A AU2010232858A1 (en) | 2009-04-02 | 2010-03-25 | Composition comprising delivery particles |
JP2012502220A JP2012522072A (en) | 2009-04-02 | 2010-03-25 | Composition comprising delivery particles |
EP10716432A EP2414497A1 (en) | 2009-04-02 | 2010-03-25 | Composition comprising delivery particles |
CA2754009A CA2754009A1 (en) | 2009-04-02 | 2010-03-25 | Composition comprising delivery particles |
CN2010800140350A CN102361965A (en) | 2009-04-02 | 2010-03-25 | Composition comprising delivery particles |
MX2011010364A MX2011010364A (en) | 2009-04-02 | 2010-03-25 | Composition comprising delivery particles. |
BRPI1015050A BRPI1015050A2 (en) | 2009-04-02 | 2010-03-25 | a composition comprising release particles, said particles, consumer product, method of treatment and / or cleaning and said location |
ZA2011/06651A ZA201106651B (en) | 2009-04-02 | 2011-09-12 | Composition comprising delivery particles |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16594109P | 2009-04-02 | 2009-04-02 | |
US61/165,941 | 2009-04-02 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010114753A1 true WO2010114753A1 (en) | 2010-10-07 |
Family
ID=42236710
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2010/028559 WO2010114753A1 (en) | 2009-04-02 | 2010-03-25 | Composition comprising delivery particles |
Country Status (10)
Country | Link |
---|---|
US (1) | US20100251485A1 (en) |
EP (1) | EP2414497A1 (en) |
JP (1) | JP2012522072A (en) |
CN (1) | CN102361965A (en) |
AU (1) | AU2010232858A1 (en) |
BR (1) | BRPI1015050A2 (en) |
CA (1) | CA2754009A1 (en) |
MX (1) | MX2011010364A (en) |
WO (1) | WO2010114753A1 (en) |
ZA (1) | ZA201106651B (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2689835A1 (en) | 2012-07-26 | 2014-01-29 | Papierfabrik August Koehler AG | Encapsulage d'huile parfumée |
JP2016188365A (en) * | 2011-09-13 | 2016-11-04 | ザ プロクター アンド ギャンブル カンパニー | Capsule agent |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB201304667D0 (en) * | 2013-03-15 | 2013-05-01 | Revolymer Ltd | Wax blend polymer encapsulates |
WO2015188049A1 (en) * | 2014-06-06 | 2015-12-10 | T-Vac, Inc. | Self-adhesive protective wrap |
MX2017010934A (en) | 2015-02-25 | 2018-01-23 | Procter & Gamble | Fibrous structures comprising a surface softening composition. |
AR105299A1 (en) * | 2015-07-10 | 2017-09-20 | Procter & Gamble | FABRIC CARE COMPOSITION INCLUDING METATESIZED INSTITUTED POLYOL ESTERS |
CN106297547A (en) * | 2016-08-15 | 2017-01-04 | 佛山市顺德区阿波罗环保器材有限公司 | A kind of anti-fake identification mark, preparation method and application |
CA3082567A1 (en) | 2017-12-13 | 2019-06-20 | Colgate-Palmolive Company | Compositions comprising ph-sensitive microcapsules |
WO2021224133A1 (en) * | 2020-05-07 | 2021-11-11 | Unilever Ip Holdings B.V. | An antiperspirant composition |
Citations (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4430243A (en) | 1981-08-08 | 1984-02-07 | The Procter & Gamble Company | Bleach catalyst compositions and use thereof in laundry bleaching and detergent compositions |
EP0510761A1 (en) * | 1991-04-24 | 1992-10-28 | Unilever N.V. | Wax-encapsulated particles and method for making same |
WO1994012613A1 (en) * | 1992-12-03 | 1994-06-09 | Unilever Plc | Protection of adjuncts |
US5486303A (en) | 1993-08-27 | 1996-01-23 | The Procter & Gamble Company | Process for making high density detergent agglomerates using an anhydrous powder additive |
US5489392A (en) | 1994-09-20 | 1996-02-06 | The Procter & Gamble Company | Process for making a high density detergent composition in a single mixer/densifier with selected recycle streams for improved agglomerate properties |
US5516448A (en) | 1994-09-20 | 1996-05-14 | The Procter & Gamble Company | Process for making a high density detergent composition which includes selected recycle streams for improved agglomerate |
US5565422A (en) | 1995-06-23 | 1996-10-15 | The Procter & Gamble Company | Process for preparing a free-flowing particulate detergent composition having improved solubility |
US5569645A (en) | 1995-04-24 | 1996-10-29 | The Procter & Gamble Company | Low dosage detergent composition containing optimum proportions of agglomerates and spray dried granules for improved flow properties |
US5574005A (en) | 1995-03-07 | 1996-11-12 | The Procter & Gamble Company | Process for producing detergent agglomerates from high active surfactant pastes having non-linear viscoelastic properties |
US5576282A (en) | 1995-09-11 | 1996-11-19 | The Procter & Gamble Company | Color-safe bleach boosters, compositions and laundry methods employing same |
US5595967A (en) | 1995-02-03 | 1997-01-21 | The Procter & Gamble Company | Detergent compositions comprising multiperacid-forming bleach activators |
US5597936A (en) | 1995-06-16 | 1997-01-28 | The Procter & Gamble Company | Method for manufacturing cobalt catalysts |
US5691297A (en) | 1994-09-20 | 1997-11-25 | The Procter & Gamble Company | Process for making a high density detergent composition by controlling agglomeration within a dispersion index |
DE19727073A1 (en) * | 1997-06-25 | 1999-01-07 | Henkel Kgaa | Coated detergent component |
US5879584A (en) | 1994-09-10 | 1999-03-09 | The Procter & Gamble Company | Process for manufacturing aqueous compositions comprising peracids |
DE19855349A1 (en) * | 1998-12-01 | 2000-06-08 | Henkel Kgaa | Peroxide-containing preparations with stabilized fragrances |
WO2000032601A2 (en) | 1998-11-30 | 2000-06-08 | The Procter & Gamble Company | Process for preparing cross-bridged tetraaza macrocycles |
US6225464B1 (en) | 1997-03-07 | 2001-05-01 | The Procter & Gamble Company | Methods of making cross-bridged macropolycycles |
US6306812B1 (en) | 1997-03-07 | 2001-10-23 | Procter & Gamble Company, The | Bleach compositions containing metal bleach catalyst, and bleach activators and/or organic percarboxylic acids |
US6326348B1 (en) | 1996-04-16 | 2001-12-04 | The Procter & Gamble Co. | Detergent compositions containing selected mid-chain branched surfactants |
WO2003089019A1 (en) * | 2002-04-18 | 2003-10-30 | The Procter & Gamble Company | Malodor-controlling compositions comprising odor control agents and microcapsules containing an active material |
WO2003093405A2 (en) * | 2002-05-02 | 2003-11-13 | The Procter & Gamble Company | Detergent compositions and components thereof |
US20040072719A1 (en) * | 2002-10-10 | 2004-04-15 | Bennett Sydney William | Encapsulated fragrance chemicals |
EP1811014A1 (en) * | 2006-01-23 | 2007-07-25 | The Procter and Gamble Company | A composition comprising a pre-formed peroxyacid and a bleach catalyst |
US20070275866A1 (en) | 2006-05-23 | 2007-11-29 | Robert Richard Dykstra | Perfume delivery systems for consumer goods |
US20080200363A1 (en) | 2007-02-15 | 2008-08-21 | Johan Smets | Benefit agent delivery compositions |
US20080305982A1 (en) * | 2007-06-11 | 2008-12-11 | Johan Smets | Benefit agent containing delivery particle |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10237200A1 (en) * | 2002-08-14 | 2004-03-04 | Henkel Kgaa | Portioned detergent or cleaning agent composition |
US20040103821A1 (en) * | 2002-11-29 | 2004-06-03 | Freund Industrial Co., Ltd. | Aqueous shellac coating agent and production process therefor, and coated food and production process therefor, coated drug and production process therefor, glazing composition for oil-based confectionary, glazing process, and glazed oil-based confectionary using same |
EP2301517A1 (en) * | 2006-08-01 | 2011-03-30 | The Procter & Gamble Company | Benefit agent containing delivery particle |
-
2010
- 2010-03-25 MX MX2011010364A patent/MX2011010364A/en not_active Application Discontinuation
- 2010-03-25 JP JP2012502220A patent/JP2012522072A/en not_active Withdrawn
- 2010-03-25 US US12/731,185 patent/US20100251485A1/en not_active Abandoned
- 2010-03-25 CN CN2010800140350A patent/CN102361965A/en active Pending
- 2010-03-25 CA CA2754009A patent/CA2754009A1/en not_active Abandoned
- 2010-03-25 AU AU2010232858A patent/AU2010232858A1/en not_active Withdrawn
- 2010-03-25 WO PCT/US2010/028559 patent/WO2010114753A1/en active Application Filing
- 2010-03-25 BR BRPI1015050A patent/BRPI1015050A2/en not_active Application Discontinuation
- 2010-03-25 EP EP10716432A patent/EP2414497A1/en not_active Withdrawn
-
2011
- 2011-09-12 ZA ZA2011/06651A patent/ZA201106651B/en unknown
Patent Citations (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4430243A (en) | 1981-08-08 | 1984-02-07 | The Procter & Gamble Company | Bleach catalyst compositions and use thereof in laundry bleaching and detergent compositions |
EP0510761A1 (en) * | 1991-04-24 | 1992-10-28 | Unilever N.V. | Wax-encapsulated particles and method for making same |
WO1994012613A1 (en) * | 1992-12-03 | 1994-06-09 | Unilever Plc | Protection of adjuncts |
US5486303A (en) | 1993-08-27 | 1996-01-23 | The Procter & Gamble Company | Process for making high density detergent agglomerates using an anhydrous powder additive |
US5879584A (en) | 1994-09-10 | 1999-03-09 | The Procter & Gamble Company | Process for manufacturing aqueous compositions comprising peracids |
US5489392A (en) | 1994-09-20 | 1996-02-06 | The Procter & Gamble Company | Process for making a high density detergent composition in a single mixer/densifier with selected recycle streams for improved agglomerate properties |
US5516448A (en) | 1994-09-20 | 1996-05-14 | The Procter & Gamble Company | Process for making a high density detergent composition which includes selected recycle streams for improved agglomerate |
US5691297A (en) | 1994-09-20 | 1997-11-25 | The Procter & Gamble Company | Process for making a high density detergent composition by controlling agglomeration within a dispersion index |
US5595967A (en) | 1995-02-03 | 1997-01-21 | The Procter & Gamble Company | Detergent compositions comprising multiperacid-forming bleach activators |
US5574005A (en) | 1995-03-07 | 1996-11-12 | The Procter & Gamble Company | Process for producing detergent agglomerates from high active surfactant pastes having non-linear viscoelastic properties |
US5569645A (en) | 1995-04-24 | 1996-10-29 | The Procter & Gamble Company | Low dosage detergent composition containing optimum proportions of agglomerates and spray dried granules for improved flow properties |
US5597936A (en) | 1995-06-16 | 1997-01-28 | The Procter & Gamble Company | Method for manufacturing cobalt catalysts |
US5565422A (en) | 1995-06-23 | 1996-10-15 | The Procter & Gamble Company | Process for preparing a free-flowing particulate detergent composition having improved solubility |
US5576282A (en) | 1995-09-11 | 1996-11-19 | The Procter & Gamble Company | Color-safe bleach boosters, compositions and laundry methods employing same |
US6326348B1 (en) | 1996-04-16 | 2001-12-04 | The Procter & Gamble Co. | Detergent compositions containing selected mid-chain branched surfactants |
US6225464B1 (en) | 1997-03-07 | 2001-05-01 | The Procter & Gamble Company | Methods of making cross-bridged macropolycycles |
US6306812B1 (en) | 1997-03-07 | 2001-10-23 | Procter & Gamble Company, The | Bleach compositions containing metal bleach catalyst, and bleach activators and/or organic percarboxylic acids |
DE19727073A1 (en) * | 1997-06-25 | 1999-01-07 | Henkel Kgaa | Coated detergent component |
WO2000032601A2 (en) | 1998-11-30 | 2000-06-08 | The Procter & Gamble Company | Process for preparing cross-bridged tetraaza macrocycles |
DE19855349A1 (en) * | 1998-12-01 | 2000-06-08 | Henkel Kgaa | Peroxide-containing preparations with stabilized fragrances |
WO2003089019A1 (en) * | 2002-04-18 | 2003-10-30 | The Procter & Gamble Company | Malodor-controlling compositions comprising odor control agents and microcapsules containing an active material |
WO2003093405A2 (en) * | 2002-05-02 | 2003-11-13 | The Procter & Gamble Company | Detergent compositions and components thereof |
US20040072719A1 (en) * | 2002-10-10 | 2004-04-15 | Bennett Sydney William | Encapsulated fragrance chemicals |
EP1811014A1 (en) * | 2006-01-23 | 2007-07-25 | The Procter and Gamble Company | A composition comprising a pre-formed peroxyacid and a bleach catalyst |
US20070275866A1 (en) | 2006-05-23 | 2007-11-29 | Robert Richard Dykstra | Perfume delivery systems for consumer goods |
US20080200363A1 (en) | 2007-02-15 | 2008-08-21 | Johan Smets | Benefit agent delivery compositions |
US20080200359A1 (en) | 2007-02-15 | 2008-08-21 | Johan Smets | Benefit agent delivery compositions |
US20080305982A1 (en) * | 2007-06-11 | 2008-12-11 | Johan Smets | Benefit agent containing delivery particle |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016188365A (en) * | 2011-09-13 | 2016-11-04 | ザ プロクター アンド ギャンブル カンパニー | Capsule agent |
EP2689835A1 (en) | 2012-07-26 | 2014-01-29 | Papierfabrik August Koehler AG | Encapsulage d'huile parfumée |
WO2014016395A1 (en) | 2012-07-26 | 2014-01-30 | Papierfabrik August Koehler Ag | Fragrant oil encapsulation |
Also Published As
Publication number | Publication date |
---|---|
BRPI1015050A2 (en) | 2016-04-12 |
CN102361965A (en) | 2012-02-22 |
CA2754009A1 (en) | 2010-10-07 |
ZA201106651B (en) | 2014-03-26 |
US20100251485A1 (en) | 2010-10-07 |
EP2414497A1 (en) | 2012-02-08 |
MX2011010364A (en) | 2011-10-12 |
JP2012522072A (en) | 2012-09-20 |
AU2010232858A1 (en) | 2011-10-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2414497A1 (en) | Composition comprising delivery particles | |
EP2496678B1 (en) | High efficiency particle comprising benefit agent | |
US20090247449A1 (en) | Delivery particle | |
CA2687560C (en) | Benefit agent containing delivery particle | |
CA2713594C (en) | Delivery particle | |
USRE45538E1 (en) | Benefit agent containing delivery particle | |
US8551935B2 (en) | Benefit agent containing delivery particle | |
US8067355B2 (en) | Benefit agent containing delivery particles | |
EP2046269A1 (en) | Benefit agent containing delivery particle | |
EP2382302A2 (en) | Encapsulates | |
EP2382301A2 (en) | Encapsulates |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201080014035.0 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10716432 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2754009 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010716432 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 7111/DELNP/2011 Country of ref document: IN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012502220 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: MX/A/2011/010364 Country of ref document: MX Ref document number: 12011501968 Country of ref document: PH |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2010232858 Country of ref document: AU Date of ref document: 20100325 Kind code of ref document: A |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: PI1015050 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: PI1015050 Country of ref document: BR Kind code of ref document: A2 Effective date: 20111003 |