WO2010113745A1 - Ejector for die casting machine and method of controlling the same - Google Patents

Ejector for die casting machine and method of controlling the same Download PDF

Info

Publication number
WO2010113745A1
WO2010113745A1 PCT/JP2010/055179 JP2010055179W WO2010113745A1 WO 2010113745 A1 WO2010113745 A1 WO 2010113745A1 JP 2010055179 W JP2010055179 W JP 2010055179W WO 2010113745 A1 WO2010113745 A1 WO 2010113745A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
injection
plunger
casting machine
holding
Prior art date
Application number
PCT/JP2010/055179
Other languages
French (fr)
Japanese (ja)
Inventor
昌弘 紙
倫治 武田
正志 内田
一城 平泉
Original Assignee
宇部興産機械株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2009083851A external-priority patent/JP5365995B2/en
Priority claimed from JP2009111348A external-priority patent/JP5408413B2/en
Priority claimed from JP2009127529A external-priority patent/JP5353447B2/en
Priority claimed from JP2010021807A external-priority patent/JP5359907B2/en
Application filed by 宇部興産機械株式会社 filed Critical 宇部興産機械株式会社
Priority to CN201080015369.XA priority Critical patent/CN102378656B/en
Publication of WO2010113745A1 publication Critical patent/WO2010113745A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D17/00Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
    • B22D17/20Accessories: Details
    • B22D17/2015Means for forcing the molten metal into the die
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D17/00Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
    • B22D17/20Accessories: Details
    • B22D17/32Controlling equipment

Definitions

  • the present invention relates to an injection device of a die casting machine which is used when casting an aluminum product and driven by a servo motor and a control method thereof.
  • the die casting machine (casting apparatus) 1100 includes a mold apparatus 1101 and an injection apparatus 1102.
  • a fixed mold 1118 and a movable mold 1119 are attached to the mold apparatus 1101 between the pair of opposed fixed platen 1120 and the movable platen 1121.
  • the fixed mold 1118 and the movable mold 1119 are closed by a mold clamping device composed of a fixed platen 1120 and a movable platen 1121 to form a cavity (cavity) 1122 therebetween.
  • a molten metal such as aluminum (AL) (a molten state at high temperature) is injected and filled in the cavity 1122 under a load of a mold clamping force, and the mold is opened and taken out after cooling and solidification to manufacture a cast molded article. it can.
  • An injection device 1102 is provided to inject and charge the molten aluminum.
  • the stationary platen 1120 is provided with a plunger sleeve 1117 in which the molten aluminum is stored, and it passes through the stationary platen 1120 and the stationary mold 1118 and is distributed to the cavity 1122.
  • the injection device 1102 is provided with an injection cylinder provided with a hydraulically driven reciprocating piston / cylinder for injecting a molten aluminum.
  • the injection cylinder comprises an injection cylinder body 1116 and a piston 1103.
  • the piston 1103 engages a plunger sleeve 1117. Further, the piston 1103 has a piston head 1115 at the left end in FIG. 23, and a plunger rod 1112 is connected to a piston rod 1114 integrated with the piston head 1115 by an injection coupling 1113. 1111 is attached.
  • the plunger tip 1111 fits in the plunger sleeve 1117, reciprocates in the plunger sleeve 1117, and pumps the molten aluminum in the plunger sleeve 1117 to inject and fill the molten aluminum in the cavity 1122. Do.
  • the injection device 1102 is hydraulic, hydraulic fluid (not shown) is supplied to the head side of the cylinder body 1116 to drive the piston head 1115 and the piston rod 1114. Then, the molten aluminum (AL) stored in the plunger sleeve 1117 is pushed by the plunger tip 1111 and injected into the cavity 1122 formed by the fixed die 1118 and the movable die 1119 for casting.
  • the low speed injection process is performed first.
  • VL stable low speed
  • the plunger tip 1111 and the like are accelerated at once, and the molten metal is injected and filled into the cavity 1122 at high speed (Vh).
  • Vh high speed
  • the molten metal instantaneously solidifies when coming into contact with the surface of the cavity 1122 which is at a low temperature, and it is desirable for the casting of a non-defective product to be filled before solidifying in as short a time as possible.
  • higher speed is required.
  • the pressure is increased and the speed starts to decrease.
  • the speed may be reduced intentionally.
  • the injection pressure head side pressure of the injection cylinder
  • the next pressure increase Switch to the process (see the third drawing from the top of FIG. 24).
  • the pressure rising step if the pressure is raised too quickly, burrs are generated, and if it is slow, shrinkage spots are generated, so the pressure is increased at an appropriate pressure rising speed.
  • the molten metal pressure is held and controlled for a certain period of time (holding step), and the molten metal is solidified, cooled and contracted to advance the plunger tip 1111 (see FIG. See the figure).
  • Patent Documents 1 and 2 high-speed operation is performed using an oil pressure accumulator at the time of high-speed injection in the injection filling process, and in the low-speed injection and pressure holding process (pressure increasing process) Discloses an injection mechanism of the type that drives the In the systems of these Patent Documents 1 and 2, a rotational transmission system composed of a timing belt, a pulley and the like directly transmits rotational force from the rotational shaft of the servomotor to the ball screw shaft.
  • Patent Document 4 a friction clutch is interposed between the servomotor and the ball screw, and transmission is performed so that the moment of inertia and kinetic energy of the rotation shaft of the servomotor are not transmitted to the plunger.
  • a motorized injection mechanism of the type that limits torque is disclosed.
  • Patent Documents 1 and 2 are driven by the electric servomotor during the pressure holding process, the injection filling process still uses a large injection cylinder and an accumulator, so a large oil tank and piping are used. , Hydraulic valves are required, and problems with hydraulic drive systems such as oil leaks and facility upsizing have not been solved.
  • an object of this invention is to provide the injection device of the die-cast machine which can simplify equipment and can improve the quality of cast products, and its control method.
  • an injection device of a die casting machine is an injection device of a die casting machine for injecting and filling a molten metal in a sleeve into a mold by advancing a plunger, An injection filling device for advancing the plunger at a low speed and a high speed by a motor, a pressure holding device for applying pressure to the molten metal through the plunger, and the plunger during a holding pressure applied to the molten metal And a movement suppressing mechanism that suppresses the relative movement of the pressure holding device with respect to the moving part.
  • the movement suppressing mechanism moves the plunger and the pressure-rising holding device by the pressure received from the molten metal when the pressure received from the molten metal is higher than a set pressure. It is preferable that it is a lock mechanism which suppresses relative movement of the parts.
  • the injection filling device may be driven by a servomotor and a screw, or may be driven by a linear motor.
  • the pressure rising and holding device may be driven by a servomotor and a screw.
  • the lock mechanism suppresses the relative movement of the plunger and the moving part of the pressure holding device by suppressing the rotation of the screw nut by the frictional force by the pressure the plunger receives from the molten metal.
  • the set pressure may be set by the elastic force of a spring or may be set by the pressure of the hydraulic fluid.
  • An injection device of another die casting machine is an injection device of a die casting machine in which the molten metal in the sleeve is injected and filled in the mold by advancing the plunger, and the servo motor and the servo motor And a surge pressure preventing device connected between the linear motion part of the motion converter and the plunger.
  • a spring may be incorporated in the surge pressure preventing device, and the elastic deformation of the spring may prevent the surge pressure.
  • the surge pressure prevention device comprises a hydraulic cylinder, and a piston rod of the hydraulic cylinder is connected to a plunger, and a flow passage communicating the head chamber and the rod chamber in the hydraulic cylinder is the inside of the piston head and the piston rod
  • the orifice may be formed in the middle of the flow path, and the head chamber may be provided with a compressed spring.
  • the surge pressure preventing device is formed of a hydraulic cylinder, a piston rod of the hydraulic cylinder is connected to a plunger, and a flow passage communicating with the head chamber and the rod chamber in the hydraulic cylinder crosses halfway by an external flow passage. , And may be connected to an accumulator.
  • the surge pressure preventing device is composed of a double diameter rod hydraulic cylinder, and a piston rod on one side of the hydraulic cylinder is connected to a plunger, and a plunger side rod chamber and an anti plunger in the hydraulic cylinder.
  • the flow passage leading to the side rod chamber is connected in circuit via a check valve and a relief valve connected in parallel, and when the piston head moves to the plunger side, the hydraulic oil in the plunger side rod chamber is reversed via the check valve. It can flow without resistance into the plunger side rod chamber, and when the piston head moves to the opposite side to the plunger, the hydraulic oil of the opposite plunger side rod chamber receives resistance through the relief valve, and the opposite plunger side It may flow into the rod chamber.
  • the surge pressure preventing device comprises a hydraulic cylinder, a rod of the hydraulic cylinder is connected to a plunger, and a head chamber in the hydraulic cylinder is connected in circuit with a head chamber of a hydraulic pressure absorbing hydraulic cylinder.
  • the piston rod of the pressure absorbing hydraulic cylinder may be movable back and forth by a servomotor and a ball screw.
  • the surge pressure preventing device comprises a hydraulic cylinder, a rod of the hydraulic cylinder is connected to a plunger, and a head chamber in the hydraulic cylinder is connected with a tank via a flow control valve capable of continuously adjusting the flow. It may be a circuit connection.
  • the pressure rising and holding device includes a servo motor, a ball screw for converting a rotational movement of the servo motor into a linear movement, and an advancing force of a linear portion of the ball screw. And a brake mounted between the servomotor and the ball screw and capable of suppressing the rotational movement of the ball screw, and the injection filling device performs the linear movement of the rotational movement of the motor.
  • the movement suppressing mechanism is a brake mounted between the motor of the injection filling device and the ball screw of the injection filling device and capable of suppressing the rotational movement of the ball screw, and the pressure holding step
  • the pressure of the molten metal is increased while compressing the compression spring by the rotation operation of the servomotor, and after the pressure increase, the brake is released.
  • a speed reducer may be mounted between the brake of the pressure rising and holding device and the ball screw of the pressure rising and holding device.
  • a plunger member integrally coupled with the plunger and a high speed moving member coupled with the plunger member via a surge pressure preventing cylinder are further provided.
  • the movement restraining mechanism is mounted on the high-speed moving member via a bearing, and is screwed with a trapezoidal screw, and is in contact with the plunger member by pressure received by the plunger and is relative to the trapezoidal screw.
  • the injection filling device is connected to the high speed moving member via the cushion cylinder, and the pressing and holding device presses the trapezoidal screw so as to press the trapezoidal screw.
  • a holding force is applied to the molten metal from the plunger through the lock nut and the plunger member. Preferred.
  • the injection filling device may include an injection filling servomotor and an injection filling ball screw, and a nut portion of the injection filling ball screw may be integral with a moving portion of the cushion cylinder.
  • the pressure rising and holding device may include a pressure rising servomotor and a pressure rising ball screw.
  • a compression spring for transmitting an advancing force of a nut portion of the pressure-raising ball screw to the trapezoidal screw, a pressure-rising ball screw mounted between the pressure-raising servomotor and the pressure-raising ball screw.
  • a brake capable of suppressing the rotational movement, and in the pressure holding step, the pressure increase of the molten metal pressure is performed while compressing the compression spring by the rotation operation of the pressure raising servomotor, and after pressure rising, the brake is operated to raise the pressure. It may be possible to hold the pressure of the molten metal by the compression force of the compression spring by suppressing the rotational movement of the ball screw.
  • the hydraulic oil in the oil chamber of the cushion cylinder may be controlled not to rise above a predetermined pressure by a relief valve connected in circuit.
  • the oil chamber of the surge pressure preventing cylinder is connected in circuit to a surge pressure absorbing hydraulic cylinder, and the piston rod of the surge pressure absorbing hydraulic cylinder is moved by a hydraulic ball screw and a hydraulic servomotor.
  • the position and pressure of the moving part of the surge pressure preventing cylinder may be controllable. Furthermore, the oil chamber of the surge pressure preventing cylinder may be connected in circuit to a flow rate adjusting valve, and the position and pressure of the moving part of the surge pressure preventing cylinder may be controlled by the flow rate adjusting valve.
  • the method of controlling the injection device of these die casting machines adjusts the pressure of the oil chamber of the surge pressure prevention cylinder after switching from the injection filling process to the pressure increase process, and controls the contact speed of the plunger member and the lock cylinder It is characterized by
  • an injection device of a die casting machine capable of simplifying equipment and improving the quality of cast products and a control method thereof.
  • FIG. 6 shows an embodiment of a hydraulic circuit connected to the oil chamber of the cushion cylinder. It is a figure which shows the Example of the hydraulic circuit connected with the oil chamber of a surge pressure prevention cylinder (ring-like cylinder).
  • FIG. 1 It is a figure which shows the other Example of the hydraulic circuit connected with the oil chamber of a surge pressure prevention cylinder (ring-like cylinder). It is a graph showing the speed, the pressure, and the state of each device during the injection filling process and the pressure rising and holding process. It is a figure which shows the injection apparatus of the conventional hydraulic drive system, and a die periphery. It is a figure and graph which show the relationship of the position of the plunger in general die casting, the state of a molten metal, injection speed, and molten metal pressure. It is a time-axis graph which shows the injection speed and pressure of the injection
  • FIGS. 1 to 6 An injection device of a die casting machine according to a first embodiment of the present invention will be described based on FIGS. 1 to 6.
  • first to fifth examples of the injection device of the die casting machine according to the first embodiment will be described in detail.
  • FIG. 1 is a schematic view showing a structure of a first example of an injection device of a die casting machine according to a first embodiment.
  • the base (main) frame 11 is connected to a fixed platen (not shown) and supported by the ground.
  • the plunger 10 consisting of the plunger tip 10a and the plunger rod 10b is fitted in a sleeve (not shown), and by advancing operation, the molten metal in the sleeve can be injected and filled in the mold cavity.
  • the plunger 10 is connected to the slide member 15, and the injection filling ball screw nut 17 is incorporated in the slide member 15.
  • the injection filling ball screw shaft 16 integral with the injection filling ball screw nut 17 is supported by the bearing holding member 18 via the injection filling bearing 19 and the pressing nut 20, and is rotated by the injection filling servomotor 12. .
  • the bearing holding member 18 is attached to the main member 14 in a slidable and rotationally restrained state by the bearing holding member linear guide 24b. Moreover, it is attached also through the spring 22 and the holding member 23 of a compression state (compression force f). A friction disc 25 is fixed to the end face of the injection filling ball screw shaft 16, and a small (0.5 to 1 mm) gap is formed between the main member 14 and the spring by the compression state. There is.
  • the injection filling servomotor 12 is attached to the main member 14, and when it rotates, it rotates the injection filling ball screw shaft 16 to move the slide member 15 and the plunger 10 back and forth.
  • the main member 14 is slidably mounted on a main member linear guide 24 c provided on the main frame 11. Further, a pressure holding device comprising a pressure holding ball screw nut 28, a motor support member 26 fixed to the main frame 11, a pressure holding ball screw shaft 27, a coupling 29 and a pressure holding bearing 30 in the main member 14. 32 is attached. Further, the pressure holding servo motor 13 and the pressure holding ball screw shaft 27 are connected by a coupling 29. When the step-up holding servomotor 13 is driven to rotate, the step-up holding ball screw nut 28 and the main member 14, which are moving parts of the step-up holding device 32, move forward and backward, and the pressure holding pressure is transferred to the molten metal via the plunger. It can be added. In FIG.
  • the pressure rising and holding device 32 is described as a mechanism using a servomotor and a ball screw, the same operation is performed even if the main body of the hydraulic cylinder is fixed to the main frame 11 and the rod is connected to the main member It can produce an effect.
  • FIG. 6 is a graph showing a control method in each process in the injection device of the die casting machine according to the first embodiment.
  • the forward movement of the plunger 10 is first performed at low speed, and then the high speed injection is performed when the surface of the molten metal reaches near the gate of the mold.
  • the injection and filling servomotor 12 performs speed control in accordance with the set speed, and the pressure rising and holding servomotor 13 performs position holding control.
  • the compression force f of the spring 22 is designed to be sufficiently larger than the injection pressure received by the plunger 10 during the injection and filling process (such as selection of the spring constant).
  • the injection filling ball screw shaft 16 can rotate smoothly without contact between the main body 25 and the main member 25.
  • the injection speed is reduced. Then, since the injection pressure (metal pressure received by the plunger 10) rises rapidly in the full-filling state, when the set switching pressure is reached, the pressure is switched to the pressure holding process.
  • the pressure rising and holding servomotor 13 is subjected to torque control (pressure control) so as to correspond to the set pressure rising speed and holding pressure. Also, the injection filling servomotor 12 is subjected to the same torque control or position holding control.
  • the injection pressure may be measured by a pressure sensor for molten metal provided in a sleeve or a mold, or a load cell provided in the plunger 10, or the torque of the injection filling servomotor 12 or the pressure holding servomotor 13 It may be converted from the measured value.
  • the injection pressure (molten metal pressure) further increases, and when the compression force f of the spring 22 is exceeded, the gap disappears and the friction disc 25 and the main member 14 start contact. Further, when the injection pressure increases and the pressing force between the friction disc 25 and the main member 14 increases, the friction force against the rotation increases, and the rotation of the injection filling ball screw shaft 16 is suppressed and locked.
  • the lock mechanism (movement suppressing mechanism) is configured from the friction disc 25, the contact portion of the main member 14, the spring 22, the pressing member 23 and the like.
  • F the injection pressure (set pressure) when the rotation of the injection filling ball screw shaft 16 is locked.
  • the radius of the friction disc 25 is r
  • the friction coefficient is ⁇
  • the lead of the injection filling ball screw shaft 16 is L.
  • the injection filling ball screw shaft 16 is locked when the injection pressure increases to F or more satisfying the equation (2), so the injection filling ball screw nut 17 and the injection filling ball screw shaft even if the pressure-rising holding force becomes large. 16 does not loosen (the injection filling servomotor 12 and the injection filling ball screw are designed to have a high speed, so they can not exert a force large enough to resist the pressure holding force). Then, it is possible to load the molten metal (metal) through the plunger 10 with the large holding power exerted by the pressure holding device 32 and the pressure holding servo motor 13.
  • FIG. 2 is a schematic view showing the structure of a second example of the injection device of the die casting machine according to the first embodiment.
  • a main member 48 is connected to the base frame 11 via a main member linear guide 46b, and a pressure holding device 32 and a pressure holding servomotor 13 similar to those of the first embodiment are also attached.
  • the plunger 10 is integrally attached to the plunger holding member 35 and the key holding member 36.
  • the key holding member 36 is incorporated in the bearing holding member 37 via the key 38 and the spring 39 in a compressed state (compression force f), and can slide in the longitudinal direction of the plunger 10 and its rotation is restricted. There is.
  • the key 38 may be a spline.
  • a nut 41 is incorporated in the bearing holding member 37 via the bearing 50 and the bearing retainer 42.
  • a friction disc 49 is attached to an end face of the nut 41 on the plunger 10 side, and a gap is formed between the friction disc 49 and the key holding member 36 by the compression force of the spring 39.
  • the nut 41 is screwed to the screw shaft 40, and one end of the screw shaft 40 is fixed to the screw shaft support member 43 by the key 44 and the pressing nut 45. Further, the screw shaft support member 43 is integrated with the main member 48.
  • the fixed portion of the linear motor 47 is attached to the main member 48, and the movable portion is connected to the bearing holding member 37. Further, the fixed portion of the linear motor 47 may be attached to the main frame 11. Further, the bearing holding member 37 is supported on a bearing holding member linear guide 46a provided on the main frame 11, and although the longitudinal movement of the plunger 10 is possible, the rotation is restricted.
  • FIG. 3 is a schematic view showing the structure of a third example of the injection device of the die casting machine according to the first embodiment.
  • the third embodiment is a modification of the second embodiment, so only the differences will be described.
  • the forward and backward movement of the bearing holding member 37 is driven by a linear motor, but in the third embodiment, it is performed by a combination of the ball screw type high speed injection device 52 and the injection filling servomotor 12.
  • a spring in a compressed state is incorporated between the key holding member 36 and the bearing holding member 37, but in the third embodiment, the ring-shaped cylinder 51 is incorporated.
  • the hydraulic system comprises a hydraulic pump 53, an electric motor 54, an oil tank 56, and a proportional electromagnetic pressure control valve 55, and applies pressure to the hydraulic oil of the oil chamber of the ring-like cylinder 51 to compress it according to the second embodiment. It can exhibit the same action as the state spring.
  • the oil pressure in this case is the same as the compression force f of the spring in the second embodiment.
  • the plunger 10 is advanced at high speed by the ball screw type high speed injection device 52 and the injection filling servomotor 12, and in the pressure rising and holding process, the pressure rising and holding device 32 and the pressure rising and holding servo motor 13
  • the molten metal can be loaded with a large holding power.
  • the pressure may be reduced by adjusting the proportional electromagnetic pressure control valve 55 during the pressure holding process. Replacing the spring of the second embodiment with the ring-shaped cylinder 51 and the hydraulic device of the third embodiment can be applied to the first embodiment and the fourth and fifth embodiments described later.
  • FIG. 4 is a schematic view showing the structure of a fourth example of the injection device of the die casting machine according to the first embodiment.
  • the main member 64 is attached to the base frame 11 via the linear guide 46b for the main member, and the pressure holding device 32 and the pressure holding servo motor 13 are also attached.
  • the plunger 10 is connected to a plunger holding member 61.
  • the plunger holding member 61 is incorporated in the slide member 60 through the key 61a and the spring 62 in a compressed state (compression force f) while being allowed to slide back and forth but being restrained from rotating. .
  • a shaft 66 is incorporated via a shaft bearing 65 and a plurality of spacers 66a.
  • a friction disc 63 is attached to an end face of the shaft 66 on the plunger 10 side, and a bevel gear 67 a is connected to the opposite side.
  • a pair of bevel gears 67b is engaged with the bevel gear 67a, and a pinion shaft 68 connected to the bevel gear 67b is rotatably attached to the slide member 60 via a pinion bearing 68a and a plurality of spacers.
  • a pinion 69 is connected to the opposite side of the pinion shaft 68, and the pinion 69 meshes with the rack 70.
  • the rack 70 is fixed to the main member 64.
  • the fixed portion of the linear motor 47 is attached to the main member 64, and the movable portion is attached to the slide member 60. Furthermore, here, a gap is secured between the friction disc 63 and the plunger holding member 61 by the compression force f of the spring 62.
  • the plunger 69 advances while the pinion 69, the pinion shaft 68, the bevel gears 67a and 67b, the shaft 66 and the friction disc 63 rotate.
  • the friction disc 63 comes into contact with the plunger holding member 61 and the rotation is restrained, whereby the rack 70, the pinion 69, the slide member 60, etc. are integrated (locked) and pressure rising and holding device 32 and pressure rising and holding
  • the large holding power exerted by the servomotor 13 can be loaded on the molten metal through the plunger 10.
  • FIG. 5 is a schematic view showing the structure of a fifth example of the injection device of the die casting machine according to the first embodiment.
  • the main body 80 can slide on the main frame (not shown) in the longitudinal direction of the plunger 10, and the pressure holding device 32 and the pressure holding servo motor 13 are attached.
  • An outer wedge 81 and an inner wedge 82 are incorporated into the body 80.
  • Rollers 84 are incorporated between the outer wedge 81 and the inner wedge 82 so that they can slide without friction.
  • the inner wedge 82 is connected to the plunger 10.
  • the inner wedge 82 is connected to the moving member 85 via the spring 83 in a compressed state (compression force f).
  • the moving member 85 is coupled to the movable portion of the linear motor 47, and the moving member 85 and the outer wedge 81 are slidably coupled in the vertical direction of the drawing.
  • a gap is formed between the main body 80 and the outer wedge 81.
  • the following advantageous effects can be achieved. (1) Since the locking of the injection filling device is achieved by the increase of the injection pressure, it is possible to shift from the injection filling step to the pressure holding step continuously and stably. (2) Since the drive source for high-speed injection operation is a servomotor, a large accumulator, gas bottle, hydraulic piping, etc. are not required, and the apparatus is simplified and maintenance is improved. In addition, energy loss due to pressure loss that occurs when hydraulic oil flows at high speed is eliminated, and energy saving operation can be achieved. (3) The feedback control by the servomotor is possible, and the freedom of operation condition setting and the stability of operation control are increased.
  • the injection apparatus of the die casting machine according to the first embodiment can be put to practical use in a production plant that casts an aluminum product by the die casting machine, and can contribute to simplification of equipment, improvement of productivity and maintainability, and energy saving operation.
  • FIG. 7 is a schematic view showing a structure of a first example of an injection device of a die casting machine according to a second embodiment and a surge pressure preventing device.
  • the servomotor 115 is connected to the ball screw shaft 118 via a motor coupling 116.
  • the ball screw shaft 118 is supported in a rotatable but axially restrained state by a bearing incorporated in the bearing box 117.
  • a ball screw nut 119 screwed with the ball screw shaft 118 is fixed to the moving member 114.
  • the surge pressure preventing device 120 is fixed to the moving member 114, and the movable portion of the surge pressure preventing device 120 is coupled to the plunger rod 112 by the plunger coupling 113.
  • the plunger tip 111 is fixed to the tip of the plunger rod 112, and the plunger 110 is integrally formed.
  • the bearing box 117 is fixed relative to a stationary platen that holds the mold so that it can transfer the blast power to the melt in the mold cavity.
  • the moving member 114 is slidably supported by a linear slide (not shown).
  • a ball screw or the like performs the function of a motion conversion device that converts rotational motion into linear motion.
  • the surge pressure prevention device 120 is in the form of a hydraulic cylinder, and comprises a cylinder body 121 of the main body portion, a piston rod 121 of the movable portion, and a piston head 123.
  • the head chamber of the hydraulic cylinder incorporates a shock absorbing spring 124 in a compressed state, which provides resistance to the force with which the piston head 123 is pushed rearward (right side in the drawing).
  • the rod chamber and the head chamber are in communication with the atmosphere via the air breather 125, so that air can enter and exit without entering dust inside.
  • the cylinder body 121 may be integral with the moving member 114.
  • the switching pressure (molten metal pressure) of the conditions for switching from the injection filling step to the pressurization holding step is Pc and the diameter of the plunger tip is Dp
  • Fs compressive force
  • the upper figure is a time-axis graph of the injection speed of the plunger 110 and the injection pressure (melt pressure, metal pressure) received by the plunger tip 111
  • the lower figure is the rotational speed (motor speed) and rotational torque of the servomotor.
  • It is a time-axis graph which shows (motor torque).
  • the servomotor 115 starts to rotate to a low injection speed.
  • a large motor torque is required in order to rotate and accelerate a rotating body having a large inertia moment such as the motor shaft of the servomotor 115, the coupling 116, and the ball screw shaft 118.
  • the injection speed becomes high next, but since it is necessary to accelerate to high speed in a short time, the motor torque at that time also becomes large.
  • the motor rotational speed and the injection speed are in a proportional relationship.
  • the injection pressure (melt pressure) starts to rise as the mold cavity is almost filled with the melt.
  • the servomotor 115 is switched to torque control (boosting step), and the injection pressure is further controlled to increase.
  • the shock absorbing spring 124 starts to exert a compressive force exceeding Fs, the shock absorbing spring 124 is contracted.
  • the rotating body such as the ball screw shaft 118 can keep rotating by the amount by which the shock absorbing spring 124 is contracted. Therefore, since the decelerating time and the decelerating rotation angle of the rotating body can be secured, it can be stopped gradually. As shown in FIG.
  • the motor torque is controlled to rise along the set boosting speed.
  • constant torque holding control is performed.
  • the holding force is lowered to 0, and the holding process is completed. Thereafter, the process proceeds to the next mold opening process. If the required holding pressure can not be increased only by the torque of the servomotor 115, a holding pressure assisting device may be attached to the moving member 114 to compensate.
  • FIG. 8 is a schematic view showing a structure of a second example of the injection device of the die casting machine according to the second embodiment and a surge pressure preventing device.
  • the hydraulic cylinder of the surge pressure prevention device 120 is filled with hydraulic oil, and the rod chamber 137 is connected to the tank 135 by piping.
  • a projection 131 is attached to the head chamber side of the piston head 123, and a disc spring 132 is attached to the outside thereof.
  • the disc spring 132 has a compression force of Fs and is incorporated therein, and the piston head 123 is pressed to the rod chamber 137 side of the cylinder body 121.
  • a packing is incorporated in the sliding portion to prevent the hydraulic oil from leaking.
  • a flow path 133 is provided inside the protrusion 131, the piston head 123, and the piston rod 122, and the head chamber 136 and the rod chamber 137 are in communication. In the middle of the flow path 133, an orifice 134 of a small diameter portion is provided to restrict the flow of hydraulic oil.
  • FIG. 9 is a schematic view showing the structure and surge pressure prevention device of the third example of the injection device of the die casting machine according to the second embodiment.
  • the hydraulic cylinder of the surge pressure prevention device 120 is filled with hydraulic oil, and the head chamber 144 is connected in circuit to an external accumulator side throttle valve 142 and an accumulator 141 via an external flow path.
  • the rod chamber 145 is also connected to the flow passage on the head chamber 144 side via the rod-side throttle valve 143 by the external flow passage.
  • FIG. 10 is a schematic view showing the structure of a fourth example of the injection device of the die casting machine according to the second embodiment and the surge pressure preventing device.
  • the surge pressure prevention device 120 is a dual rod type hydraulic cylinder with equal rod diameter, and the anti-plunger side rod chamber 153 and the plunger side rod chamber 154 are filled with hydraulic oil.
  • the anti-plunger side rod chamber 153 and the plunger side rod chamber 154 are externally connected in circuit via the check valve 152, and the hydraulic oil flows from the plunger side rod chamber 154 to the anti plunger side rod chamber 153. However, the circuit does not flow in the opposite direction.
  • FIG. 11 is a schematic view showing the structure and surge pressure prevention device of the fifth example of the injection device of the die casting machine according to the second embodiment.
  • the head chamber 162 of the hydraulic cylinder which is the surge pressure preventing device 120, is filled with the hydraulic fluid, and the rod chamber 163 contains air, so that air can enter and exit through the air breather 161.
  • the head chamber 162 is connected in circuit to the head chamber of the surge pressure absorbing hydraulic cylinder 167, the spring accumulator 164, and the switching valve 165 by piping.
  • the piston rod of the surge pressure absorbing hydraulic cylinder 167 is integrally connected with the nut holder 168 and the ball screw nut 169, and the ball screw shaft 170 screwed with the ball screw nut 169 is a motor shaft of the servomotor 172 by the coupling 171. It is linked with The switching valve 165 is in circuit connection with the tank 166 and is normally closed. However, when the hydraulic oil in the head chamber 162 or the like decreases due to a leak or the like, the solenoid is energized and the valve is opened to operate the tank 166. Oil can be supplied to the head chamber 162 and the like.
  • the servomotor 172 is torque-controlled, and the hydraulic pressure generated in the head chamber and the head chamber 162 of the surge pressure absorbing hydraulic cylinder 167 is adjusted to Psc by the action of the ball screw.
  • the spring-type accumulator 164 is set to have a spring force so as to balance the force that the internal piston receives with the pressure Psc.
  • the pressure in the head chamber 162 is maintained at Psc by controlling the torque while the servomotor 172 rotates in the backward direction. If the piston head 123 starts moving quickly and the piston rod etc. of the surge pressure absorbing hydraulic cylinder 167 loses inertia due to the inertia of the piston rod etc., the piston of the spring accumulator 164 retreats (the lower side of the figure) It is maintained almost at Psc. During the movement of the piston head 123 to the cylinder end, the rotation speed of the rotating body such as the ball screw shaft 118 (see FIG. 7) is gradually reduced to almost zero rotational speed, so that no surge pressure is generated in the molten metal.
  • FIG. 12 is a schematic view showing the structure of a sixth example of the injection device of the die casting machine according to the second embodiment and the surge pressure preventing device.
  • the head chamber 182 of the hydraulic cylinder which is the surge pressure preventing device 120 is filled with the hydraulic fluid
  • the rod chamber 183 is filled with air and the air breather 181 is used to It is possible to go in and out.
  • the piping path branches along the way, and is in circuit connection with the spring accumulator 184, the check valve 185, the flow control valve 191, and the pressure sensor 190.
  • the flow rate adjustment valve 191 is structured such that the opening degree can be freely changed from the closed state to the fully open state by the rotation control of the servomotor 192, and the flow rate of hydraulic fluid flowing from the head chamber 182 to the tank 193 can be adjusted.
  • the check valve 185 is in circuit connection with the pump 186, the tank 188, the electric motor 187, and the relief valve 189, and can supply the hydraulic fluid to the head chamber 182 at an appropriate pressure.
  • the spring-type accumulator 184 is set to have a spring force so as to be balanced with the force that the internal piston receives due to the pressure Psc.
  • the pressure of the hydraulic oil in the head chamber 182 is maintained at Psc by the action of the pump 186, the electric motor 187 and the relief valve 189. Further, the action of the check valve 185 prevents the hydraulic oil from flowing in the direction from the head chamber 182 to the pump 186.
  • the pressure of the hydraulic fluid in the head chamber 182 rises, so that pressure is detected by the pressure sensor 190, and the opening degree of the flow rate adjustment valve 191 is controlled so that the pressure does not exceed Psc. Adjust and release the hydraulic oil to the tank 193.
  • the piston of the spring-type accumulator 184 moves and the pressure is maintained at approximately Psc. Due to such an action, no surge pressure is generated in the molten metal as in the fifth embodiment.
  • the injection device of the die casting machine concerning a 2nd embodiment, the following advantageous effects can be produced.
  • (3) The impact force generated on the servomotor, the ball screw, the coupling, and the bearing as the reaction force of the surge pressure is alleviated, and mechanical damage and failure can be avoided.
  • the injection device of the die casting machine according to the second embodiment can be put to practical use in a production plant that casts an aluminum product by the die casting machine, and can contribute to quality improvement of cast products and stable operation of a casting facility.
  • FIG. 14 is a schematic view showing a structure of an injection device of a die casting machine according to a third embodiment.
  • a plunger 210 consisting of a plunger tip 210a and a plunger rod 210b is in a slidable state in a sleeve (not shown), and by advancing it can inject and fill the molten metal in the sleeve into the mold cavity. At that time, the tip surface of the plunger tip 210a receives metal pressure (injection pressure) from the molten metal.
  • the plunger rod 210b is connected to the slidable injection slide member 215 by a linear guide.
  • An injection filling ball screw nut 217 is attached to the injection slide member 215, and moves forward and backward by rotational movement of the injection filling ball screw shaft 216 screwed with the injection filling ball screw nut 217.
  • the injection filling ball screw shaft 216 is attached to the bearing holding member 218 in an axially constrained but rotatable state by the injection filling bearing 219 and the pressing nut 220.
  • the injection filling ball screw shaft 216 is connected to the rotation portion of the injection filling brake 221 (movement suppressing mechanism), and is further connected to the rotation axis of the injection filling servomotor 212 via the coupling 222. Therefore, when the injection filling servomotor 212 is rotated, the injection slide member 215 and the plunger 210 can be moved forward and backward.
  • the injection brake 221 is an electromagnetic type, and when an electric current is applied, a braking force is exerted, and the rotation of the injection filling ball screw shaft 216 can be suppressed. In order to realize high-speed injection, it is preferable that the lead of the injection filling ball screw be large.
  • a main member 214 is slidably attached to the base frame 211 via a linear guide 223.
  • the aforementioned injection slide member 215 is slidably attached to the main member 214 via a linear guide, and a bearing holding member 218 is integrally fixed.
  • On the bearing holding member 218, an injection filling servomotor 212, an injection filling brake 221, and an injection filling bearing 219 are mounted.
  • the base frame 211 is integrally connected to a fixed plate for holding the mold, the molten metal in the mold cavity is moved forward by moving the plunger 210 (left direction in the figure). Metal pressure can be loaded.
  • the portion excluding the upper plunger 210 of FIG. 14 is an injection filling device.
  • the lower part of FIG. 14 is a pressure holding device.
  • the pressure holding member 238 is coupled to the base frame 211, and a pressure boosting servomotor 230, a holding brake 232, a reduction gear 233, and a pressure holding bearing 235 are attached.
  • the rotational shaft of the pressure-raising servomotor 230 is coupled to the rotational portion of the holding brake 232 via a coupling 231, and is further coupled to the rotational shaft of the reduction gear 233 and the ball screw shaft 236.
  • the ball screw shaft 236 is axially restrained and rotatably supported by the pressure holding bearing 235 and the bearing holding nut 234.
  • a nut holder 239 is attached to the ball screw nut 237 screwed with the ball screw shaft 236, and the nut holder 239 can axially move in the pressure holding slide member 241 via the key 242. Is confined in the direction of rotation.
  • a spring 240 is mounted between the nut holder 239 and the pressure holding slide member 241 in a compressed state.
  • the spring 240 may be a coil spring or a disc spring.
  • the pressure holding slide member 241 is fixed to the lower side of the main member 214 and is slidably attached to the base frame 11 via a linear guide. In this case, the straight part of the ball screw for pressure increase is the ball screw nut 237.
  • the ball screw for pressure increase needs to exert a large force (forward force), it is better that the lead is not so large.
  • FIG. 15 is a graph showing the injection speed, pressure, control method and the like in each step in the injection device of the die casting machine according to the third embodiment.
  • the injection filling process is started.
  • the injection filling servomotor 212 is rotated at low speed to perform low speed injection.
  • the rotation of the injection filling servomotor 212 is accelerated at once to perform high speed injection.
  • the injection speed is reduced to prevent the occurrence of shock (surge pressure) at the time of full filling.
  • the injection pressure can be measured from the pressure of the molten metal in the mold, or can be measured by attaching a load cell to a plunger 210 or the like.
  • the injection and filling servomotor 212 performs speed control
  • the pressure raising servomotor 230 performs position holding control and is kept stationary. By performing position holding control of the pressure rising servomotor 230, the injection pressure during injection filling can be transmitted to the injection filling device and the plunger 210 via the pressure rising holding device.
  • the injection filling brake 221 After switching from the injection filling process to the pressure-rising holding process, the injection filling brake 221 is operated (ON) to restrain the rotation of the injection filling ball screw shaft 216. This is to prevent the injection filling ball screw 216 from rotating in the opposite direction due to the high molten metal pressure at the time of pressure increase, thereby preventing the plunger 210 from being retracted.
  • the injection filling servomotor 212 is set to servo free (resting state).
  • the pressure increase servomotor 230 is subjected to torque increase control according to the set pressure increase speed.
  • the spring 240 is further contracted. Then, when the injection pressure reaches the set holding pressure, the holding brake 232 is turned on. When the holding brake 232 acts, the rotation of the ball screw shaft 236 is suppressed and the holding pressure is maintained, even if the pressure raising servomotor 230 is in the servo free state.
  • the plunger 210 advances slightly as the molten metal in the mold cavity solidifies and contracts, but since the contraction of the spring 240 extends, the set pressure can be substantially maintained although the injection pressure slightly decreases.
  • the boosting servomotor 230 can be servo-free after the holding brake 232 is turned on, and the boosting time is usually 1 second or less, so the maximum instantaneous torque (about 250% of the rated torque) of the servomotor ) Can be used. Therefore, a servomotor with a small capacity can be adopted, and the manufacturing cost is reduced.
  • the mechanism of Patent Document 2 since the brake is not attached, the servomotor needs to continuously exert the torque during the long time of the pressure rising and holding process, and the maximum momentary torque can not be used. Therefore, it is necessary to use a large capacity servomotor which can be boosted and held at the rated torque.
  • the reduction gear 233 can also be used with a small reduction ratio, the rotational speed of the ball screw shaft 236 can be increased without rotating the servomotor with large inertia to a high speed, and the pressure increase in a shorter time is also possible. It becomes possible.
  • the servomotor is almost stopped in order to perform a constant holding time by the operation of the servomotor for pressure holding (pressure increasing) during pressure holding process. It is necessary to keep exerting a large torque. Also, in order to keep exerting a large torque, it is necessary to keep flowing a large current, so the servomotor generates heat, and a servomotor with a large capacity is installed to avoid it, or a large cooling fan Need to be attached.
  • the following advantageous effects can be produced. (1) Since the step-up servomotor does not have to continuously exert a large torque during the holding time, it is not necessary to keep the current flowing for a long time, energy saving operation is possible, and the servomotor does not generate heat. (2) Since the boosting servomotor only needs to exert a large torque instantaneously, a servomotor with a small capacity can be used. (3) Even when a reduction gear is used to generate a large torque, the reduction ratio can be reduced, so there is no need to rotate the servo motor rotation axis with a large inertia moment to a high speed, and pressure can be increased in a short time. It becomes.
  • the injection device of the die casting machine according to the third embodiment can be put to practical use in a production plant that casts an aluminum product by the die casting machine, and can contribute to cost reduction and energy saving operation of the electric injection device.
  • FIG. 16 is a schematic view showing the structure of the injection device of the die casting machine according to the fourth embodiment.
  • a plunger 310 consisting of a plunger tip 310a and a plunger rod 310b is in a slidable state in a sleeve (not shown), and by advancing it can inject and fill the molten metal in the sleeve into the mold cavity. At that time, the tip surface of the plunger tip 310a receives metal pressure (injection pressure) from the molten metal.
  • the plunger rod 310 b is integrally connected to the plunger member 312.
  • the plunger member 312 is joined to the moving part of the surge pressure preventing cylinder 316 (ring-shaped cylinder), and the high speed moving member 314 can slide though a key but has a rotational movement. It is connected in the state of being restrained.
  • a lock nut 330 (movement suppressing mechanism) is attached to the high speed moving member 314 via a lock nut bearing 331 in a state where the lock nut 330 is rotatably and axially restrained.
  • a friction disk 315 is fixed to the high speed moving member 314 side of the lock nut 330 and constitutes a part of the lock nut 330.
  • Two sets of cushion cylinders 318 are mounted on both sides of the high speed moving member 314.
  • a cushion cylinder moving member 321 is attached to the cushion cylinder 318 via a spline 319 or a key in a slidable but rotationally restricted state.
  • An injection filling ball screw nut 320 is integrally fastened to the cushion cylinder moving member 321 by a bolt.
  • the injection filling ball screw shaft 322 screwed with the injection filling ball screw nut 320 is mounted and supported on the rear support member 340 via the injection filling bearing 323 in a rotatably and axially restrained state.
  • the injection filling ball screw shaft 322 is further coupled to the rotation axis of the injection filling servomotor 325 by a coupling 324.
  • the injection filling apparatus described here is composed of an injection filling ball screw, an injection filling servomotor 325, etc., but a linear motor may be used.
  • a trapezoidal screw 332 screwed with the lock nut 330 is fixed to the pressure member 333 by a key 333a and a collar 333b.
  • a pressurizing nut holder 335 integral with the pressurizing ball screw nut 336 is mounted in the pressurizing member 333 so as to be slidable through a key but restricted in rotation, and the spring 334 is in a compressed state. It is pressed to one side (right direction in the figure) by (a disc spring or a coil spring).
  • a pressurizing ball screw shaft 337 screwed with the pressurizing ball screw nut 336 is supported by the pressurizing support 338 in a rotatably and axially restrained state by the rear support member 340.
  • the booster ball screw shaft 337 is further connected to the rotation shaft of the booster servomotor 344 via the reduction gear 341, the brake 342, and the booster coupling 343.
  • the non-rotating portions of the reduction gear 341, the brake 342, and the boosting servomotor 344 are fixed to the rear support member 340.
  • the pressure-boosting ball screw is preferably a ball screw having a small rotational friction resistance, but in the case of a large machine on which a large load acts, a trapezoidal screw or the like may be used. Further, by means of the reduction gear 341, even if the boost servomotor 344 with a small rotational torque, a large rotational torque can be transmitted to the boost ball screw shaft 337. Therefore, the reduction gear 341 may not be provided.
  • FIG. 17 is a view of the mold periphery and the injection device as seen from the side (injection filling ball screw etc. are omitted), the molten metal is poured into the injection sleeve 355 and the state immediately before the injection filling step is shown. It represents.
  • a mold clamping force is applied to the fixed mold 352 attached to the fixed platen 350 and the movable mold 353 attached to the movable platen 351 by a mold clamping device (not shown), and these movable mold 352 and the movable mold 353 And a cavity, which is a cast-shaped space, is formed therebetween.
  • An injection sleeve 355 is mounted on the stationary platen 350 and the stationary mold 352 and is in communication with the cavity. Therefore, when the plunger 310 is advanced (left direction in the figure), the molten metal can be filled in the cavity.
  • the rear support member 340 is integral with the lower support frame 346 and the upper support frame 347 and is connected to the stationary platen 350. Therefore, the pressure that the plunger 310 receives from the molten metal during injection filling and pressure holding can be supported and supported.
  • the high-speed moving member 314 and the pressing member 333 can slide smoothly in the front-rear direction on the lower support frame 346 by the high-speed member linear guide 349 and the pressing member linear guide 348, respectively. It is supported in a constrained state in the direction.
  • FIG. 18 is a view from the arrow A of FIG.
  • the high speed moving member 314 is supported by two sets of linear guides 349 for high speed moving member. Further, on both sides of the high speed moving member 314, the injection filling ball screw shaft 322 and the like are supported via a cushion cylinder.
  • FIG. 19 shows a hydraulic device in circuit connection with the oil chambers of two sets of cushion cylinders 318 via piping and hoses.
  • the switching valve 361 With the switching valve 361 energized, hydraulic oil of an appropriate pressure is supplied from the hydraulic pressure source to the oil chamber of the cushion cylinder 318, and with the cushion cylinder moving member 321 pressed against the cylinder end, the switching valve 361 is demagnetized, Seal the pressure. Further, the hydraulic circuit branches halfway and is connected to the oil tank 362 via a relief valve 360 set to a predetermined pressure.
  • FIG. 20 shows a hydraulic system in circuit connection with the oil chamber of the surge pressure prevention cylinder 316 (ring cylinder).
  • the circuit from the surge pressure preventing cylinder 316 branches into three circuits along the way, and is connected to the tank 366 and the hydraulic pressure absorbing hydraulic cylinder 367 via a spring type accumulator 364 and a switching valve 365.
  • the spring-type accumulator 364 is for temporarily evacuating the hydraulic fluid flowing from the surge pressure preventing cylinder 316 so that the pressure in the circuit does not rapidly increase.
  • a tank 366 and a switching valve 365 are provided to appropriately replenish the hydraulic oil in the circuit.
  • the piston rod is integrally connected to the nut holder 368 and the ball screw nut 369 for hydraulic pressure.
  • a ball screw shaft 370 screwed to the ball screw nut 369 is connected to the rotary shaft of the hydraulic servomotor 372 via a coupling 371 and supported by a bearing (not shown). Therefore, by controlling the rotation amount and torque of the hydraulic servomotor 372, the position of the piston rod and the pressure of the hydraulic oil can be controlled. As a result, the hydraulic fluid in the oil chamber of the surge pressure preventing cylinder 316 can be supplied and maintained at an appropriate pressure, and furthermore, can be evacuated at an appropriate speed and pressure. Therefore, after the molten metal is fully filled in the cavity, the plunger member 312 and the friction disk 315 can be gently brought into contact with each other at a low speed, and then the pressure can be released.
  • FIG. 21 is a view showing another example of the hydraulic device connected in circuit with the oil chamber of the surge pressure preventing cylinder 316.
  • the circuit from the surge pressure prevention cylinder 316 branches into three, and is connected to a tank 393 via a spring-type accumulator 384, a pump 386 via a check valve 385, and a flow control valve 391.
  • the pump 386 is rotationally driven by the electric motor 387, sucks up the hydraulic fluid from the tank 388, and supplies the hydraulic fluid of appropriate pressure to the anti-surge pressure cylinder 316 by the relief valve 389.
  • the flow control valve 391 can freely adjust the valve opening degree continuously and in a short time from 0 to full opening by the rotation operation of the servomotor 392.
  • the hydraulic oil in the oil chamber of the surge pressure prevention cylinder 316 is fed back to the tank 393 while appropriately controlling the pressure by feeding back the measured value of the pressure sensor 390 etc., and the plunger member 312 and the friction disc 315 are gently hit. It can be brought in contact and then the pressure released.
  • the pressure rising and holding device is described as the structure for generating the holding force by the servomotor and the ball screw, but the holding force may be generated by the hydraulic cylinder.
  • adjusting the boosting speed and the like by torque control of the servomotor is more excellent in the stability of the operation and the like.
  • FIG. 22 is a graph showing the speed, pressure, and state of each device during the injection filling step and the pressure rising and holding step.
  • Hydraulic fluid is supplied from the hydraulic pressure source 363 to the oil chamber of the cushion cylinder 318, and the cushion cylinder moving member 321 is moved to the cylinder end and held at an appropriate pressure. Also, an appropriate pressure is loaded on the surge pressure prevention cylinder 316 (ring cylinder). This pressure is made to correspond to the molten metal pressure to be switched from the injection filling process to the pressure raising process or slightly higher than that.
  • the brake 342 is kept off.
  • the injection filling process is started immediately.
  • the injection filling servomotor 325 is rotated at low speed to perform low speed injection.
  • the rotation of the injection filling servomotor 325 is accelerated at a stroke to carry out high speed injection.
  • an acceleration region acceleration time for increasing the speed to a high speed exists.
  • the pressure raising servomotor 344 performs position holding control so that the pressure member 333 and the like do not move.
  • the pressure received from the molten metal by the plunger 310 becomes high, and when the switching pressure is reached, the pressure is switched to the pressure increasing process.
  • the switching pressure may be detected by loading a load cell or the like into the plunger 310 or the plunger member 312, or the pressure of the surge pressure preventing cylinder 316 is set to be equivalent to the switching pressure, and the moving portion
  • the moment of movement may be detected by a position sensor, movement of a spring-type accumulator 364 or pressure.
  • the injection filling servomotor 325 When switching to the pressure increase process, the injection filling servomotor 325 generates torque in the direction opposite to the rotation direction to stop the rotation. At this time, since the hydraulic oil from the oil chamber of the cushion cylinder 318 falls to the oil tank 362 via the relief valve 360, the cushion cylinder moving member 321 can make a stroke. Therefore, since a large pressure is not generated in the cushion cylinder 318, a large impact does not occur on the injection filling ball screw shaft 322, the bearing 323, and the coupling 324, and there is no breakage. In addition, since the rotational kinetic energy of the rotating body such as the injection filling ball screw shaft 322 does not act on the plunger 310 in an impacting manner, the generation of the burr due to the surge pressure can be prevented. Then, when the rotation of the injection filling ball screw shaft 322 or the like stops, the injection filling servomotor 325 is stopped to be in a free state.
  • the hydraulic oil in the oil chamber of the surge pressure preventing cylinder 316, the hydraulic servomotor 372, and the surge prevent the surge pressure from being generated in the molten metal
  • the pressure absorbing hydraulic cylinder 367 or the flow control valve 391 is operated appropriately and the pressure is released at an appropriate pressure.
  • the plunger member 312 and the friction disc 315 are brought into contact at low speed without impact.
  • the rotation of the lock nut 330 is stopped and the relative movement between the lock nut 330 and the trapezoidal screw 332 is suppressed and locked.
  • the pressure raising servomotor 344 is driven to move the pressure member 333, the trapezoidal screw 332 and the plunger member 312 forward by torque control to raise the pressure of the molten metal and raise the pressure.
  • the boost speed can be freely adjusted by torque control.
  • the spring 334 is compressed by the pressing force.
  • the brake 342 is operated to stop the rotation of the pressure rising ball screw shaft 337, and the pressure rising servomotor 344 is put in a free state to stop power consumption. .
  • the holding pressure is slightly reduced because the plunger 310 advances since the molten metal solidifies and contracts.
  • the forward drive of the boosting servomotor 344 has been described as after the contact between the plunger member 312 and the friction disk 315, if it is desired to further increase the boosting speed, the forward operation may be started before the contact. . Further, even if the spring 334 and the brake 342 are not attached, the holding pressure can be maintained as long as the boosting servomotor 344 continues to generate rotational torque during the holding process.
  • the holding process ends, and the operation of the brake 342 is released (OFF) to lower the holding pressure. Then, with the next mold opening, the injection filling servomotor 325 or the pressure rising servomotor 344 is driven to carry out the ejection process.
  • the cast product is removed from the mold, a series of casting processes are completed and the next casting process is started.
  • the injection device of the die-cast machine which concerns on 4th Embodiment, there can exist the following advantageous effects. (1) Since a large hydraulic tank and a hydraulic cylinder for injection are not required, the hydraulic circuit and the entire injection device can be simplified. (2) Since the speed of the injection and filling process can be controlled by electrical control, the operation is stabilized and the freedom of setting the operating conditions is increased. (3) The surge pressure can be prevented, and the generation of burrs in the cast product can be prevented. (4) The injection filling device is not damaged by the impact of the reaction force of the surge pressure.
  • the injection device of the die casting machine according to the fourth embodiment can be put to practical use in a production plant that casts an aluminum product by the die casting machine, and can contribute to the improvement of cast product quality, simplification of the injection device, and energy saving operation.
  • the ball screw for injection filling preferably has a large lead angle, and the ball screw for boosting has a small lead angle. It is preferable to have This is different from an injection device for resin molding in an injection device of a die casting machine, for example, as shown in FIG. 6, FIG. 13, FIG. 15, and FIG. This is because a high pressure holding capacity when the molten metal is filled is required.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

Provided is an ejector, simple in structure, for a die casting machine and a method of controlling the ejector capable of die-casting with high quality. The ejector for a die casting machine, wherein a plunger is pushed forward to eject molten metal contained in a sleeve, has an ejector provided with a plunger driven by a motor at a high and a low speed, a pressure mechanism for imparting a pressure on the molten metal by means of the plunger, and a shift lock mechanism for blocking the shift between the plunger and the pressure mechanism during the time when the molten metal is under pressure.

Description

ダイカストマシンの射出装置及びその制御方法Injection apparatus for die casting machine and control method therefor
 本発明は、アルミニウム製品を鋳造する際に用いられ、サーボモータにより駆動するダイカストマシンの射出装置及びその制御方法に関する。 The present invention relates to an injection device of a die casting machine which is used when casting an aluminum product and driven by a servo motor and a control method thereof.
 まず、油圧駆動式の横型のダイカストマシンによる一般的なダイカスト鋳造装置及び方法を、図23を用いて説明する。
 ダイカストマシン(鋳造装置)1100は、金型装置1101と、射出装置1102とを具備している。金型装置1101には、対向する一対の固定プラテン1120と可動プラテン1121との間に、固定金型1118と可動金型1119が取付けられている。固定金型1118と可動金型1119は、固定プラテン1120と可動プラテン1121などで構成される型締装置によって閉じられることにより、その間にキャビティ(空洞)1122を形成する。型締力が負荷された状態において、キャビティ1122内にアルミニウム(AL)などの溶湯(高温で溶融状態)が射出充填され、冷却固化後に金型が開かれて取り出すことにより、鋳造成形品を製造できる。アルミ溶湯を射出充填するために、射出装置1102が設けられている。また、固定プラテン1120には、アルミ溶湯が貯められるプランジャースリーブ1117が設けられており、固定プラテン1120及び固定金型1118を貫通して、キャビティ1122に流通している。
First, a general die casting apparatus and method using a hydraulically driven horizontal die casting machine will be described with reference to FIG.
The die casting machine (casting apparatus) 1100 includes a mold apparatus 1101 and an injection apparatus 1102. A fixed mold 1118 and a movable mold 1119 are attached to the mold apparatus 1101 between the pair of opposed fixed platen 1120 and the movable platen 1121. The fixed mold 1118 and the movable mold 1119 are closed by a mold clamping device composed of a fixed platen 1120 and a movable platen 1121 to form a cavity (cavity) 1122 therebetween. A molten metal such as aluminum (AL) (a molten state at high temperature) is injected and filled in the cavity 1122 under a load of a mold clamping force, and the mold is opened and taken out after cooling and solidification to manufacture a cast molded article. it can. An injection device 1102 is provided to inject and charge the molten aluminum. Further, the stationary platen 1120 is provided with a plunger sleeve 1117 in which the molten aluminum is stored, and it passes through the stationary platen 1120 and the stationary mold 1118 and is distributed to the cavity 1122.
 射出装置1102には、アルミ溶湯を射出するための油圧駆動の往復動ピストン/シリンダーを備える射出シリンダーが設けられている。射出シリンダーは、射出シリンダー本体1116とピストン1103とを具備する。ピストン1103は、プランジャースリーブ1117に係合する。また、ピストン1103は、図23において左端にピストンヘッド1115を具備し、そのピストンヘッド1115と一体化しているピストンロッド1114に射出カップリング1113でプランジャーロッド1112が連結され、その先にプランジャーチップ1111が取付けられている。プランジャーチップ1111は、プランジャースリーブ1117内に嵌合し、プランジャースリーブ1117内で往復運動して、プランジャースリーブ1117内のアルミ溶湯を圧送することにより、アルミ溶湯をキャビティ1122内に射出充填する。
 図23の実施の形態においては、射出装置1102は油圧式であるので、図示しない油圧装置により、作動油をシリンダー本体1116のヘッド側に供給して、ピストンヘッド1115及びピストンロッド1114を駆動する。そして、プランジャースリーブ1117に貯められたアルミ(AL)溶湯をプランジャーチップ1111で押して、固定金型1118、可動金型1119から形成されるキャビティ(空洞)1122に射出充填して鋳造成形する。
The injection device 1102 is provided with an injection cylinder provided with a hydraulically driven reciprocating piston / cylinder for injecting a molten aluminum. The injection cylinder comprises an injection cylinder body 1116 and a piston 1103. The piston 1103 engages a plunger sleeve 1117. Further, the piston 1103 has a piston head 1115 at the left end in FIG. 23, and a plunger rod 1112 is connected to a piston rod 1114 integrated with the piston head 1115 by an injection coupling 1113. 1111 is attached. The plunger tip 1111 fits in the plunger sleeve 1117, reciprocates in the plunger sleeve 1117, and pumps the molten aluminum in the plunger sleeve 1117 to inject and fill the molten aluminum in the cavity 1122. Do.
In the embodiment shown in FIG. 23, since the injection device 1102 is hydraulic, hydraulic fluid (not shown) is supplied to the head side of the cylinder body 1116 to drive the piston head 1115 and the piston rod 1114. Then, the molten aluminum (AL) stored in the plunger sleeve 1117 is pushed by the plunger tip 1111 and injected into the cavity 1122 formed by the fixed die 1118 and the movable die 1119 for casting.
 ここで、溶湯をキャビティ内に射出充填する際の射出速度や射出圧力を、適切に設定し制御することが、良品を鋳造するためには極めて重要である。
 一般的な鋳造の射出速度パターンを、図24を用いて説明する。
 射出充填工程が開始される前の給湯工程において、図示しない給湯装置により溶湯が射出スリーブ1117内に注湯され、射出開始状態となる。この時のプランジャーチップ1111の先端位置はAである(図24の上の図を参照)。
Here, properly setting and controlling the injection speed and the injection pressure at the time of injecting and filling the molten metal into the cavity is extremely important for casting a non-defective product.
A general casting injection speed pattern will be described with reference to FIG.
In the hot water supply process before the injection filling process is started, the molten metal is poured into the injection sleeve 1117 by a hot water supply device (not shown), and an injection start state is established. The tip position of the plunger tip 1111 at this time is A (see the upper view of FIG. 24).
 この状態から、まず低速射出工程が行われる。この工程では、低速でプランジャーチップ1111を前進させ、射出スリーブ1117の内部において溶湯が波立ち空気を巻き込まないようにすることが必要である。そのため、安定した低速(VL)の制御が要求される。プランジャーチップ1111が前進し、溶湯が射出スリーブ1117の上壁まで達し更に湯面がゲート近傍まで上昇するB位置に達すると(射出ストロークセンサがSL前進したことを検知すると)、高速射出工程に切り替えられる(図24の上から2番目の図を参照)。
 高速射出工程では、プランジャーチップ1111等を一気に加速し、高速(Vh)でキャビティ1122内に溶湯を射出充填する。これは、溶湯が低温であるキャビティ1122の表面に接触すると瞬時に凝固するためであり、できるだけ短時間で凝固する前に充填することが、良品の鋳造のためには望ましい。特に、キャビティ1122(鋳造品)が大型化、複雑化すると、より高速化が求められる。
 そして、キャビティ1122内に溶湯が完全に充填する直前になると、溶湯の圧力が上がることにより速度は下がりだす。またサージ圧によるバリの発生を防ぐため、意図的に速度を下げる場合もある。プランジャーチップ1111がC位置に達しキャビティ1122内に溶湯が充満すると、射出圧力(射出シリンダーのヘッド側圧力)が上昇するので、圧力センサの測定値が設定切換え圧力になった時に、次の昇圧工程に切換える(図24の上から3番目の図を参照)。
 昇圧工程では、あまり早く圧力を上昇させるとバリが発生し、また遅いと引け巣が発生するので、適切な昇圧速度で上昇させる。そして、設定された保持圧力(P)まで達すると一定の時間溶湯圧力を保持制御(保持工程)し、溶湯が凝固冷却して収縮する分、プランジャーチップ1111を前進させる(図24の下の図を参照)。
From this state, the low speed injection process is performed first. In this process, it is necessary to advance the plunger tip 1111 at a low speed so that the molten metal does not take in the corrugated air inside the injection sleeve 1117. Therefore, stable low speed (VL) control is required. When the plunger tip 1111 moves forward and the molten metal reaches the upper wall of the injection sleeve 1117 and further reaches the B position where the surface of the molten metal rises to the vicinity of the gate (when detecting that the injection stroke sensor advances SL) It is switched (see the second drawing from the top of FIG. 24).
In the high-speed injection process, the plunger tip 1111 and the like are accelerated at once, and the molten metal is injected and filled into the cavity 1122 at high speed (Vh). This is because the molten metal instantaneously solidifies when coming into contact with the surface of the cavity 1122 which is at a low temperature, and it is desirable for the casting of a non-defective product to be filled before solidifying in as short a time as possible. In particular, as the size and complexity of the cavity 1122 (cast product) increases, higher speed is required.
Then, immediately before the molten metal is completely filled in the cavity 1122, the pressure is increased and the speed starts to decrease. In addition, in order to prevent the generation of burrs due to surge pressure, the speed may be reduced intentionally. When the plunger tip 1111 reaches C position and the molten metal fills the cavity 1122, the injection pressure (head side pressure of the injection cylinder) rises, so when the measurement value of the pressure sensor becomes the setting switching pressure, the next pressure increase Switch to the process (see the third drawing from the top of FIG. 24).
In the pressure rising step, if the pressure is raised too quickly, burrs are generated, and if it is slow, shrinkage spots are generated, so the pressure is increased at an appropriate pressure rising speed. Then, when reaching the set holding pressure (P), the molten metal pressure is held and controlled for a certain period of time (holding step), and the molten metal is solidified, cooled and contracted to advance the plunger tip 1111 (see FIG. See the figure).
 このように高速射出と高い保持圧力が要求されるため、従来のダイカストマシンの射出装置は、油圧装置によって駆動されていた。この油圧装置には、油圧ポンプ、大容量のアキュムレータ、ガスボトル、切換えバルブ、配管、オイルタンクなど多くの機器が必要で、油圧回路は複雑になっていた。そのため、装置の大型化や、油漏れ、メインテナンス作業の増大などの問題点があった。さらに、油圧回路内を高速で作動油が流動するため、圧力損失が発生し、エネルギー的なロスが生じていた。 Since high-speed injection and high holding pressure are required in this way, the injection device of the conventional die casting machine has been driven by a hydraulic device. This hydraulic system requires many devices such as a hydraulic pump, a large capacity accumulator, a gas bottle, a switching valve, piping, an oil tank, etc., and the hydraulic circuit is complicated. As a result, there have been problems such as an increase in size of the device, oil leakage, and an increase in maintenance work. Furthermore, since the hydraulic fluid flows at high speed in the hydraulic circuit, a pressure loss occurs and an energy loss occurs.
 これらの問題を解決するため、近年では、サーボモータとボールねじの組合せによって装置を駆動する電動方式のものが開発されている。
 特許文献1及び2においては、射出充填工程の高速射出時に、油圧のアキュムレータを用いて高速動作を行ない、低速射出時と昇圧保持工程(増圧工程)ではサーボモータとボールねじの組合せによってプランジャーを駆動する方式の射出機構が開示されている。これら特許文献1及び2の方式では、タイミングベルトとプーリなどから構成される回転伝達系によって、サーボモータの回転軸からボールねじ軸に、直接回転力を伝える構造である。
In order to solve these problems, in recent years, a motorized system has been developed which drives a device by a combination of a servomotor and a ball screw.
In Patent Documents 1 and 2, high-speed operation is performed using an oil pressure accumulator at the time of high-speed injection in the injection filling process, and in the low-speed injection and pressure holding process (pressure increasing process) Discloses an injection mechanism of the type that drives the In the systems of these Patent Documents 1 and 2, a rotational transmission system composed of a timing belt, a pulley and the like directly transmits rotational force from the rotational shaft of the servomotor to the ball screw shaft.
 また、特許文献3においては、射出充填工程と昇圧保持工程を、それぞれ別のサーボモータとボールねじを組み合わせによって駆動する機構を採用している。そして、昇圧保持工程用の機構の方が、射出充填工程用の機構より大きな力を発揮することにより、昇圧保持工程では射出充填工程用の機構が緩み後退するので、それを阻止するために2つの機構の間にラチェットを介入させ、射出充填工程用の機構をロックし、大きな保持力も負荷できるような射出機構を開示している。 Moreover, in patent document 3, the mechanism which drives an injection filling process and a pressure | voltage rise holding process by the combination of another servomotor and a ball screw is employ | adopted, respectively. Then, the mechanism for the pressure rising and holding step exerts a larger force than the mechanism for the injection and filling step, and the mechanism for the injection and filling step is loosened and retracted in the pressure rising and holding step. An injection mechanism is disclosed, in which a ratchet intervenes between two mechanisms to lock the mechanism for the injection filling process and also to apply a large holding force.
 一方、これらの電動駆動方式においては、電動モータの回転軸、ボールねじ軸、回転軸とボールねじ軸をつなぐカップリングなどの回転体の慣性モーメントが大きくなる。また、高速射出に応じて回転体が高速で回転することにより、運動エネルギーは大きくなる。すると、溶湯が金型キャビティ内にフル充填した後も回転が直ちに止まらず、プランジャーは前進を続けてしまう。図25に示すよう、溶湯のフル充填後もプランジャーが前進すると、金型キャビティ内の溶湯は過度に圧縮され、瞬間的に大きな圧力(サージ圧)が発生する。サージ圧が発生すると、金型パーティング面が開いてバリが生じたり、ひどい場合には金型を損傷するという問題を起こす。
 さらに、プランジャーチップがサージ圧によって大きな反力を受けるため、それまで高速で回転していた回転体に衝撃的な減速力が作用し、ボールねじやスラスト軸受け、カップリングなどが損傷してしまう問題もある。
On the other hand, in these electric drive systems, the moment of inertia of the rotating body such as the rotating shaft and ball screw shaft of the electric motor and the coupling connecting the rotating shaft and the ball screw shaft becomes large. In addition, kinetic energy is increased by rotating the rotating body at high speed according to high-speed ejection. Then, the rotation does not stop immediately after the molten metal fully fills the mold cavity, and the plunger continues to advance. As shown in FIG. 25, when the plunger advances even after full filling of the molten metal, the molten metal in the mold cavity is excessively compressed and a momentary large pressure (surge pressure) is generated. When surge pressure occurs, the mold parting surface opens to cause burrs, and in severe cases, the mold is damaged.
Furthermore, since the plunger tip receives a large reaction force by the surge pressure, an impact-like decelerating force acts on the rotating body that has been rotating at a high speed so that the ball screw, thrust bearing, coupling, etc. are damaged. There is also a problem.
 これらの問題を解決するため、特許文献4においては、サーボモータとボールねじの間に摩擦クラッチを介在させ、サーボモータの回転軸が持つ慣性モーメントと運動エネルギーをプランジャーに伝わらないように、伝達トルクを制限する方式の電動射出機構が開示されている。 In order to solve these problems, in Patent Document 4, a friction clutch is interposed between the servomotor and the ball screw, and transmission is performed so that the moment of inertia and kinetic energy of the rotation shaft of the servomotor are not transmitted to the plunger. A motorized injection mechanism of the type that limits torque is disclosed.
 また、特許文献5では、電動駆動方式の射出機構を用いた射出充填において、金型キャビティの流動末端部分に湯だまりを設けるとともに、溶湯先端がキャビティ内を流動している充填途中において射出速度を減速し、さらにトルク制御に切換えることによって、サージ圧を防止するような電動射出制御方法が開示されている。 Moreover, in patent document 5, while providing a pool at the flow end part of a mold cavity in injection filling using the injection mechanism of an electric drive system, while the molten metal tip is flowing in the inside of a cavity, injection speed is An electric injection control method is disclosed that prevents surge pressure by decelerating and switching to torque control.
特開2006-315050号公報Japanese Patent Application Publication No. 2006-315050 特開2006-315071号公報Japanese Patent Application Publication No. 2006-315071 特開2008-87064号公報JP 2008-87064 A 特開2007-296550号公報JP 2007-296550 A 特開2008-126294号公報JP, 2008-126294, A
 しかしながら、特許文献1及び2に記載の機構では、昇圧保持工程中は、電動サーボモータによって駆動するものの、射出充填工程は、依然として大きな射出シリンダーとアキュムレータを用いているため、大型のオイルタンクや配管、油圧バルブが必要となり、油漏れや設備の大型化などの油圧駆動方式の持つ問題は解決できていない。 However, although the mechanisms described in Patent Documents 1 and 2 are driven by the electric servomotor during the pressure holding process, the injection filling process still uses a large injection cylinder and an accumulator, so a large oil tank and piping are used. , Hydraulic valves are required, and problems with hydraulic drive systems such as oil leaks and facility upsizing have not been solved.
 また、特許文献3に記載の方法では、射出充填用の機構をラチェットでロックするが、ラチェットは移動方向に並べられた複数の爪の引っ掛かりによってロックするため、ロックする位置が不連続となる。そのため、特に給湯量が一定ではないので、射出充填工程から昇圧保持工程に切換えるタイミングに遅れとバラツキが生じ、鋳造品の品質に悪影響を及ぼしていた。 Further, in the method described in Patent Document 3, although the mechanism for injection filling is locked by the ratchet, the ratchet is locked by the hooking of the plurality of claws aligned in the moving direction, so the locking position becomes discontinuous. Therefore, since the amount of hot water supply is not particularly constant, the timing for switching from the injection filling process to the pressure holding process is delayed and varies, which adversely affects the quality of the cast product.
 そこで、本発明は、設備の簡素化及び鋳造品の品質向上が可能なダイカストマシンの射出装置及びその制御方法を提供することを目的とする。 Then, an object of this invention is to provide the injection device of the die-cast machine which can simplify equipment and can improve the quality of cast products, and its control method.
 以上の課題を解決するために、本発明に係る一のダイカストマシンの射出装置は、プランジャーを前進させることによりスリーブ内の溶湯を金型内に射出充填するダイカストマシンの射出装置であって、モータによって前記プランジャーを低速及び高速で前進させる射出充填装置と、前記プランジャーを介して溶湯に圧力を負荷する昇圧保持装置と、前記溶湯に保持圧力を負荷している期間に前記プランジャーと前記昇圧保持装置の移動部との相対的な移動を抑制する移動抑制機構とを備えることを特徴とする。 In order to solve the above problems, an injection device of a die casting machine according to the present invention is an injection device of a die casting machine for injecting and filling a molten metal in a sleeve into a mold by advancing a plunger, An injection filling device for advancing the plunger at a low speed and a high speed by a motor, a pressure holding device for applying pressure to the molten metal through the plunger, and the plunger during a holding pressure applied to the molten metal And a movement suppressing mechanism that suppresses the relative movement of the pressure holding device with respect to the moving part.
 本発明に係る一のダイカストマシンの射出装置において、前記移動抑制機構は、前記プランジャーが溶湯から受ける圧力が設定圧力以上になると、溶湯から受ける圧力によって、前記プランジャーと前記昇圧保持装置の移動部の相対的な動作を抑制するロック機構であることが好ましい。
 この場合において、前記射出充填装置は、サーボモータとねじによって駆動されるとしても良いし、リニアモータによって駆動されるとしても良い。
 また、前記昇圧保持装置は、サーボモータとねじによって駆動されるとしても良い。
 さらに、前記ロック機構は、プランジャーが溶湯から受ける圧力により、ねじナットの回転を摩擦力によって抑制することにより、前記プランジャーと前記昇圧保持装置の移動部の相対的な動作を抑制するとしても良い。
 またさらに、前記設定圧力は、ばねの弾性力によって設定されるとしても良いし、作動油の圧力によって設定されるとしても良い。
 これらのダイカストマシンの射出装置を制御する方法は、低速及び高速の前進を行なう射出充填工程においては、射出充填装置は速度制御を行なうとともに昇圧保持装置は位置保持制御を行ない、前記プランジャーが溶湯から受ける圧力が切換え圧力に達した後の昇圧保持工程においては、射出充填装置は圧力制御または位置保持制御を行ない、昇圧保持装置は圧力制御を行なうことを特徴とする。
In the injection device of a die casting machine according to the present invention, the movement suppressing mechanism moves the plunger and the pressure-rising holding device by the pressure received from the molten metal when the pressure received from the molten metal is higher than a set pressure. It is preferable that it is a lock mechanism which suppresses relative movement of the parts.
In this case, the injection filling device may be driven by a servomotor and a screw, or may be driven by a linear motor.
The pressure rising and holding device may be driven by a servomotor and a screw.
Furthermore, even if the lock mechanism suppresses the relative movement of the plunger and the moving part of the pressure holding device by suppressing the rotation of the screw nut by the frictional force by the pressure the plunger receives from the molten metal. good.
Furthermore, the set pressure may be set by the elastic force of a spring or may be set by the pressure of the hydraulic fluid.
The method of controlling the injection device of these die casting machines is that in the injection filling process performing low speed and high speed advancing, the injection filling device performs speed control, and the pressure rising and holding device performs position holding control, and the plunger is a molten metal. In the boosting and holding step after the pressure received from the switching pressure reaches the switching pressure, the injection filling device performs pressure control or position holding control, and the boosting holding device performs pressure control.
 また、本発明に係る他のダイカストマシンの射出装置は、プランジャーを前進させることによりスリーブ内の溶湯を金型内に射出充填するダイカストマシンの射出装置であって、サーボモータと、前記サーボモータの回転運動を直線運動に変換する運動変換装置と、前記運動変換装置の直線運動部分と前記プランジャーとの間に接続されたサージ圧防止装置とを備えていることを特徴とする。
 この場合において、前記サージ圧防止装置には、ばねが内蔵されており、ばねの弾性変形によってサージ圧を防止するとしても良い。
 また、前記サージ圧防止装置は、油圧シリンダーからなり、前記油圧シリンダーのピストンロッドがプランジャーと連結され、前記油圧シリンダー内のヘッド室とロッド室を連通する流路がピストンヘッドおよびピストンロッドの内部に設けられ、前記流路の途中にはオリフィスが形成され、ヘッド室には圧縮状態のばねが備えられているとしても良い。
 また、前記サージ圧防止装置は、油圧シリンダーからなり、前記油圧シリンダーのピストンロッドがプランジャーと連結され、前記油圧シリンダー内のヘッド室とロッド室に通ずる流路は、外部流路によって途中で交わり、さらにアキュムレータに繋がっているとしても良い。
 さらに、前記サージ圧防止装置は、径が等しい両ロッド式の油圧シリンダーからなり、前記油圧シリンダーの片側のピストンロッドがプランジャーと連結され、前記油圧シリンダー内のプランジャー側ロッド室と反プランジャー側ロッド室に通ずる流路は並列に接続されたチェック弁とリリーフ弁を介して回路接続され、ピストンヘッドがプランジャー側に動く際はプランジャー側ロッド室の作動油はチェック弁を介して反プランジャー側ロッド室に無抵抗で流れることができ、またピストンヘッドがプランジャーと反対側に動く際は反プランジャー側ロッド室の作動油はリリーフ弁を介して抵抗を受けながら反プランジャー側ロッド室に流れるとしても良い。
 さらに、前記サージ圧防止装置は、油圧シリンダーからなり、前記油圧シリンダーのロッドがプランジャーと連結され、前記油圧シリンダー内のヘッド室はサージ圧吸収用油圧シリンダーのヘッド室と回路接続され、前記サージ圧吸収用油圧シリンダーのピストンロッドはサーボモータとボールねじによって前後進運動可能であるとしても良い。
 またさらに、前記サージ圧防止装置は、油圧シリンダーからなり、前記油圧シリンダーのロッドがプランジャーと連結され、前記油圧シリンダー内のヘッド室は連続的に流量を調整できる流量調整弁を介してタンクと回路接続されているとしても良い。
An injection device of another die casting machine according to the present invention is an injection device of a die casting machine in which the molten metal in the sleeve is injected and filled in the mold by advancing the plunger, and the servo motor and the servo motor And a surge pressure preventing device connected between the linear motion part of the motion converter and the plunger.
In this case, a spring may be incorporated in the surge pressure preventing device, and the elastic deformation of the spring may prevent the surge pressure.
Further, the surge pressure prevention device comprises a hydraulic cylinder, and a piston rod of the hydraulic cylinder is connected to a plunger, and a flow passage communicating the head chamber and the rod chamber in the hydraulic cylinder is the inside of the piston head and the piston rod The orifice may be formed in the middle of the flow path, and the head chamber may be provided with a compressed spring.
Further, the surge pressure preventing device is formed of a hydraulic cylinder, a piston rod of the hydraulic cylinder is connected to a plunger, and a flow passage communicating with the head chamber and the rod chamber in the hydraulic cylinder crosses halfway by an external flow passage. , And may be connected to an accumulator.
Furthermore, the surge pressure preventing device is composed of a double diameter rod hydraulic cylinder, and a piston rod on one side of the hydraulic cylinder is connected to a plunger, and a plunger side rod chamber and an anti plunger in the hydraulic cylinder. The flow passage leading to the side rod chamber is connected in circuit via a check valve and a relief valve connected in parallel, and when the piston head moves to the plunger side, the hydraulic oil in the plunger side rod chamber is reversed via the check valve. It can flow without resistance into the plunger side rod chamber, and when the piston head moves to the opposite side to the plunger, the hydraulic oil of the opposite plunger side rod chamber receives resistance through the relief valve, and the opposite plunger side It may flow into the rod chamber.
Further, the surge pressure preventing device comprises a hydraulic cylinder, a rod of the hydraulic cylinder is connected to a plunger, and a head chamber in the hydraulic cylinder is connected in circuit with a head chamber of a hydraulic pressure absorbing hydraulic cylinder. The piston rod of the pressure absorbing hydraulic cylinder may be movable back and forth by a servomotor and a ball screw.
Still further, the surge pressure preventing device comprises a hydraulic cylinder, a rod of the hydraulic cylinder is connected to a plunger, and a head chamber in the hydraulic cylinder is connected with a tank via a flow control valve capable of continuously adjusting the flow. It may be a circuit connection.
 さらに、本発明に係る一のダイカストマシンの射出装置において、前記昇圧保持装置は、サーボモータと、前記サーボモータの回転運動を直進運動に変換するボールねじと、前記ボールねじの直進部の前進力を前記プランジャーに伝える圧縮ばねと、前記サーボモータと前記ボールねじの間に装着されボールねじの回転運動を抑止可能なブレーキとを備え、前記射出充填装置は、前記モータの回転運動を直進運動に変換するボールねじを備え、前記移動抑制機構は、前記射出充填装置のモータと前記射出充填装置のボールねじの間に装着されボールねじの回転運動を抑止可能なブレーキであり、前記昇圧保持工程において、溶湯圧力の昇圧は前記サーボモータの回転動作によって前記圧縮ばねを圧縮しながら行い、昇圧後には前記ブレーキを動作しボールねじの回転運動を抑止することにより、ばねの圧縮力によって溶湯圧力の保持が可能であることが好ましい。
 この場合において、前記昇圧保持装置のブレーキと前記昇圧保持装置のボールねじとの間には減速機が装着されているとしても良い。
 これらのダイカストマシンの射出装置を制御する方法は、射出充填工程から昇圧工程に切換え後、前記サージ圧防止シリンダーの油室の圧力を調整し、前記プランジャー部材とロックシリンダーの当接速度を制御することを特徴とする。
Furthermore, in the injection device of a die casting machine according to the present invention, the pressure rising and holding device includes a servo motor, a ball screw for converting a rotational movement of the servo motor into a linear movement, and an advancing force of a linear portion of the ball screw. And a brake mounted between the servomotor and the ball screw and capable of suppressing the rotational movement of the ball screw, and the injection filling device performs the linear movement of the rotational movement of the motor. And the movement suppressing mechanism is a brake mounted between the motor of the injection filling device and the ball screw of the injection filling device and capable of suppressing the rotational movement of the ball screw, and the pressure holding step The pressure of the molten metal is increased while compressing the compression spring by the rotation operation of the servomotor, and after the pressure increase, the brake is released. By suppressing the rotational motion of the work Shi ball screw, it is preferably capable of retaining the melt pressure by the compression force of the spring.
In this case, a speed reducer may be mounted between the brake of the pressure rising and holding device and the ball screw of the pressure rising and holding device.
The method of controlling the injection device of these die casting machines adjusts the pressure of the oil chamber of the surge pressure prevention cylinder after switching from the injection filling process to the pressure increase process, and controls the contact speed of the plunger member and the lock cylinder It is characterized by
 またさらに、本発明に係る一のダイカストマシンの射出装置において、前記プランジャーと一体的に結合するプランジャー部材と、前記プランジャー部材にサージ圧防止シリンダーを介して連結する高速移動部材とを更に備え、前記移動抑制機構は、前記高速移動部材に軸受を介して装着されるとともに、台形ねじと螺合し、前記プランジャーが受ける圧力によって前記プランジャー部材と当接して前記台形ねじとの相対的な動作が拘束されるロックナットであり、前記射出充填装置は、前記高速移動部材にクッションシリンダーを介して移動部分が接続されており、前記昇圧保持装置は、前記台形ねじを押圧して前記ロックナット及び前記プランジャー部材を介して前記プランジャーから溶湯に保持力を負荷するように構成されていることが好ましい。
 この場合において、前記射出充填装置は、射出充填用サーボモータと射出充填用ボールねじを備え、前記射出充填用ボールねじのナット部分が前記クッションシリンダーの移動部分と一体であるとしても良い。
 また、前記昇圧保持装置は、昇圧用サーボモータと昇圧用ボールねじを備えるとしても良い。
 また、前記昇圧保持装置は、前記昇圧用ボールねじのナット部分の前進力を前記台形ねじに伝える圧縮ばねと、前記昇圧用サーボモータと前記昇圧用ボールねじの間に装着され昇圧用ボールねじの回転運動を抑止可能なブレーキとを備え、昇圧保持工程において、溶湯圧力の昇圧は前記昇圧用サーボモータの回転動作によって前記圧縮ばねを圧縮しながら行い、昇圧後には前記ブレーキを動作し前記昇圧用ボールねじの回転運動を抑止することにより、前記圧縮ばねの圧縮力によって溶湯圧力の保持が可能であるとしても良い。
 さらに、前記クッションシリンダーの油室の作動油は、回路接続するリリーフ弁によって、所定の圧力以上に上がらないように制御されているとしても良い。
 さらに、前記サージ圧防止シリンダーの油室は、サージ圧吸収用油圧シリンダーと回路接続されており、前記サージ圧吸収用油圧シリンダーのピストンロッドは油圧用ボールねじと油圧用サーボモータによって移動動作され、前記サージ圧防止シリンダーの移動部分の位置および圧力を制御可能であるとしても良い。
 またさらに、前記サージ圧防止シリンダーの油室は、流量調整弁と回路接続されており、前記流量調整弁によって前記サージ圧防止シリンダーの移動部分の位置および圧力を制御可能であるとしても良い。
 これらのダイカストマシンの射出装置を制御する方法は、射出充填工程から昇圧工程に切換え後、前記サージ圧防止シリンダーの油室の圧力を調整し、前記プランジャー部材とロックシリンダーの当接速度を制御することを特徴とする。
Still further, in the injection device of a die casting machine according to the present invention, a plunger member integrally coupled with the plunger and a high speed moving member coupled with the plunger member via a surge pressure preventing cylinder are further provided. The movement restraining mechanism is mounted on the high-speed moving member via a bearing, and is screwed with a trapezoidal screw, and is in contact with the plunger member by pressure received by the plunger and is relative to the trapezoidal screw The injection filling device is connected to the high speed moving member via the cushion cylinder, and the pressing and holding device presses the trapezoidal screw so as to press the trapezoidal screw. A holding force is applied to the molten metal from the plunger through the lock nut and the plunger member. Preferred.
In this case, the injection filling device may include an injection filling servomotor and an injection filling ball screw, and a nut portion of the injection filling ball screw may be integral with a moving portion of the cushion cylinder.
Further, the pressure rising and holding device may include a pressure rising servomotor and a pressure rising ball screw.
In the pressure-rising holding device, a compression spring for transmitting an advancing force of a nut portion of the pressure-raising ball screw to the trapezoidal screw, a pressure-rising ball screw mounted between the pressure-raising servomotor and the pressure-raising ball screw. And a brake capable of suppressing the rotational movement, and in the pressure holding step, the pressure increase of the molten metal pressure is performed while compressing the compression spring by the rotation operation of the pressure raising servomotor, and after pressure rising, the brake is operated to raise the pressure. It may be possible to hold the pressure of the molten metal by the compression force of the compression spring by suppressing the rotational movement of the ball screw.
Furthermore, the hydraulic oil in the oil chamber of the cushion cylinder may be controlled not to rise above a predetermined pressure by a relief valve connected in circuit.
Further, the oil chamber of the surge pressure preventing cylinder is connected in circuit to a surge pressure absorbing hydraulic cylinder, and the piston rod of the surge pressure absorbing hydraulic cylinder is moved by a hydraulic ball screw and a hydraulic servomotor. The position and pressure of the moving part of the surge pressure preventing cylinder may be controllable.
Furthermore, the oil chamber of the surge pressure preventing cylinder may be connected in circuit to a flow rate adjusting valve, and the position and pressure of the moving part of the surge pressure preventing cylinder may be controlled by the flow rate adjusting valve.
The method of controlling the injection device of these die casting machines adjusts the pressure of the oil chamber of the surge pressure prevention cylinder after switching from the injection filling process to the pressure increase process, and controls the contact speed of the plunger member and the lock cylinder It is characterized by
 以上のように、本発明によれば、設備の簡素化及び鋳造品の品質向上が可能なダイカストマシンの射出装置及びその制御方法を提供することができる。 As described above, according to the present invention, it is possible to provide an injection device of a die casting machine capable of simplifying equipment and improving the quality of cast products and a control method thereof.
第1実施形態に係るダイカストマシンの射出装置の第1の実施例の構造を示す概略図である。It is the schematic which shows the structure of the 1st Example of the injection device of the die-cast machine which concerns on 1st Embodiment. 第1実施形態に係るダイカストマシンの射出装置の第2の実施例の構造を示す概略図である。It is the schematic which shows the structure of the 2nd Example of the injection device of the die-cast machine which concerns on 1st Embodiment. 第1実施形態に係るダイカストマシンの射出装置の第3の実施例の構造を示す概略図である。It is the schematic which shows the structure of the 3rd Example of the injection device of the die-cast machine which concerns on 1st Embodiment. 第1実施形態に係るダイカストマシンの射出装置の第4の実施例の構造を示す概略図である。It is the schematic which shows the structure of the 4th Example of the injection device of the die-cast machine which concerns on 1st Embodiment. 第1実施形態に係るダイカストマシンの射出装置の第5の実施例の構造を示す概略図である。It is the schematic which shows the structure of the 5th Example of the injection device of the die-cast machine which concerns on 1st Embodiment. 第1実施形態に係るダイカストマシンの射出装置における、各工程での制御方法を示すグラフである。It is a graph which shows the control method in each process in the injection device of the die-cast machine which concerns on 1st Embodiment. 第2実施形態に係るダイカストマシンの射出装置の第1の実施例の構造及びサージ圧防止装置を示す概略図である。It is the schematic which shows the structure and surge pressure prevention apparatus of 1st Example of the injection device of the die-cast machine which concerns on 2nd Embodiment. 第2実施形態に係るダイカストマシンの射出装置の第2の実施例の構造及びサージ圧防止装置を示す概略図である。It is the schematic which shows the structure and surge pressure prevention apparatus of 2nd Example of the injection device of the die-cast machine which concerns on 2nd Embodiment. 第2実施形態に係るダイカストマシンの射出装置の第3の実施例の構造及びサージ圧防止装置を示す概略図である。It is the schematic which shows the structure and surge pressure prevention apparatus of the 3rd Example of the injection device of the die-cast machine which concerns on 2nd Embodiment. 第2実施形態に係るダイカストマシンの射出装置の第4の実施例の構造及びサージ圧防止装置を示す概略図である。It is the schematic which shows the structure and surge pressure prevention apparatus of the 4th Example of the injection device of the die-cast machine which concerns on 2nd Embodiment. 第2実施形態に係るダイカストマシンの射出装置の第5の実施例の構造及びサージ圧防止装置を示す概略図である。It is the schematic which shows the structure and surge pressure prevention apparatus of 5th Example of the injection device of the die-cast machine which concerns on 2nd Embodiment. 第2実施形態に係るダイカストマシンの射出装置の第6の実施例の構造及びサージ圧防止装置を示す概略図である。It is the schematic which shows the structure and surge pressure prevention apparatus of the 6th Example of the injection device of the die-cast machine which concerns on 2nd Embodiment. 第2実施形態に係るダイカストマシンの射出装置における、射出充填工程および昇圧保持工程における射出速度および圧力、ならびにモータ速度およびトルクを示す時間軸グラフである。It is a time-axis graph which shows the injection speed and pressure in the injection filling process and the pressure | voltage rise holding process, and motor speed and torque in the injection device of the die-cast machine which concerns on 2nd Embodiment. 第3実施形態に係るダイカストマシンの射出装置の構造を示す概略図である。It is the schematic which shows the structure of the injection device of the die-cast machine which concerns on 3rd Embodiment. 第3実施形態に係るダイカストマシンの射出装置における、各工程での射出速度、圧力、および制御方法などを示すグラフである。It is a graph which shows the injection speed in each process, the pressure, the control method, etc. in the injection device of the die-cast machine which concerns on 3rd Embodiment. 第4実施形態に係るダイカストマシンの射出装置の構造を示す概略図である。It is the schematic which shows the structure of the injection device of the die-cast machine which concerns on 4th Embodiment. 第4実施形態に係るダイカストマシンの射出装置および金型周辺を横から見た図であり、射出充填装置(射出充填用ボールねじ等)は省略して示されている。It is the figure which looked at the injection device and die periphery of the die-cast machine which concerns on 4th Embodiment from the side, and the injection filling apparatus (ball screw for injection filling etc.) is abbreviate | omitted and shown. 図17における矢視Aから見た射出装置を示す。The injection device seen from arrow A in FIG. 17 is shown. クッションシリンダーの油室と接続する油圧回路の実施例を示す図である。FIG. 6 shows an embodiment of a hydraulic circuit connected to the oil chamber of the cushion cylinder. サージ圧防止シリンダー(リング状シリンダー)の油室と接続する油圧回路の実施例を示す図である。It is a figure which shows the Example of the hydraulic circuit connected with the oil chamber of a surge pressure prevention cylinder (ring-like cylinder). サージ圧防止シリンダー(リング状シリンダー)の油室と接続する油圧回路の他の実施例を示す図である。It is a figure which shows the other Example of the hydraulic circuit connected with the oil chamber of a surge pressure prevention cylinder (ring-like cylinder). 射出充填工程、昇圧保持工程中における、各装置の速度、圧力、状態を表すグラフである。It is a graph showing the speed, the pressure, and the state of each device during the injection filling process and the pressure rising and holding process. 従来の油圧駆動方式の射出装置、および金型周辺を示す図である。It is a figure which shows the injection apparatus of the conventional hydraulic drive system, and a die periphery. 一般的なダイカスト鋳造におけるプランジャーの位置、溶湯の状態、射出速度、溶湯圧力の関係を示す図およびグラフである。It is a figure and graph which show the relationship of the position of the plunger in general die casting, the state of a molten metal, injection speed, and molten metal pressure. 従来の射出装置における、射出充填工程および昇圧保持工程の射出速度と圧力を示す時間軸グラフであり、サージ圧の発生する状態を表わす。It is a time-axis graph which shows the injection speed and pressure of the injection | pouring filling process and the pressure | voltage rise holding process in the conventional injection device, and represents the state which surge pressure generate | occur | produces.
 次に、本発明の第1実施形態に係るダイカストマシンの射出装置について、図1~図6に基づいて説明する。以下、第1実施形態に係るダイカストマシンの射出装置の第1の実施例~第5の実施例について、詳細に説明する。 Next, an injection device of a die casting machine according to a first embodiment of the present invention will be described based on FIGS. 1 to 6. Hereinafter, first to fifth examples of the injection device of the die casting machine according to the first embodiment will be described in detail.
 [第1の実施例]
 まず、第1実施形態に係るダイカストマシンの射出装置の第1の実施例について、図1を用いて説明する。図1は、第1実施形態に係るダイカストマシンの射出装置の第1の実施例の構造を示す概略図である。
 ベース(メイン)フレーム11は、図示しない固定プラテンと接続され、地面により支持されている。プランジャーチップ10aとプランジャーロッド10bからなるプランジャー10は、図示しないスリーブ内に嵌合しており、前進動作することによってスリーブ内の溶湯を金型キャビティ内に射出充填することができる。プランジャー10はスライド部材15と連結し、スライド部材15には射出充填用ボールねじナット17が組み込まれている。射出充填用ボールねじナット17と一体の射出充填用ボールねじ軸16は、射出充填用軸受け19や押さえナット20を介して軸受け保持部材18に支持され、射出充填用サーボモータ12によって回転動作される。
First Embodiment
First, a first example of an injection device of a die casting machine according to the first embodiment will be described with reference to FIG. FIG. 1 is a schematic view showing a structure of a first example of an injection device of a die casting machine according to a first embodiment.
The base (main) frame 11 is connected to a fixed platen (not shown) and supported by the ground. The plunger 10 consisting of the plunger tip 10a and the plunger rod 10b is fitted in a sleeve (not shown), and by advancing operation, the molten metal in the sleeve can be injected and filled in the mold cavity. The plunger 10 is connected to the slide member 15, and the injection filling ball screw nut 17 is incorporated in the slide member 15. The injection filling ball screw shaft 16 integral with the injection filling ball screw nut 17 is supported by the bearing holding member 18 via the injection filling bearing 19 and the pressing nut 20, and is rotated by the injection filling servomotor 12. .
 射出充填用サーボモータ12の軸と射出充填用ボールねじ軸16は、スプライン軸21によって連結されているため、軸方向の相対的な動作は可能であるが、回転方向の動作は拘束されるようになっている。軸受け保持部材18は、軸受け保持部材用リニアガイド24bによって摺動可能かつ回転拘束状態でメイン部材14に取付けられている。また、圧縮状態(圧縮力f)のばね22と押さえ部材23を介しても取付けられている。射出充填用ボールねじ軸16の端面には摩擦ディスク25が固定されており、圧縮状態のばねの作用によって、メイン部材14との間には若干(0.5~1mm)の隙間が形成されている。射出充填用サーボモータ12は、メイン部材14に取付けられており、回転運動すると、射出充填用ボールねじ軸16を回転させ、スライド部材15およびプランジャー10を前後進運動させる。 Since the axis of the injection filling servomotor 12 and the injection filling ball screw shaft 16 are connected by the spline shaft 21, relative movement in the axial direction is possible, but movement in the rotational direction is restricted. It has become. The bearing holding member 18 is attached to the main member 14 in a slidable and rotationally restrained state by the bearing holding member linear guide 24b. Moreover, it is attached also through the spring 22 and the holding member 23 of a compression state (compression force f). A friction disc 25 is fixed to the end face of the injection filling ball screw shaft 16, and a small (0.5 to 1 mm) gap is formed between the main member 14 and the spring by the compression state. There is. The injection filling servomotor 12 is attached to the main member 14, and when it rotates, it rotates the injection filling ball screw shaft 16 to move the slide member 15 and the plunger 10 back and forth.
 メイン部材14は、メインフレーム11に設けられたメイン部材用リニアガイド24c上に摺動可能な状態で取付けられている。また、メイン部材14には、昇圧保持用ボールねじナット28、メインフレーム11に固定されたモータ支持部材26、昇圧保持用ボールねじ軸27、カップリング29、昇圧保持用軸受け30からなる昇圧保持装置32が取付けられている。さらに、昇圧保持用サーボモータ13と昇圧保持用ボールねじ軸27はカップリング29で連結されている。昇圧保持用サーボモータ13が回転駆動すると、昇圧保持装置32の移動部である昇圧保持用ボールねじナット28やメイン部材14が前後進し、プランジャーを介して昇圧保持圧力を溶湯(メタル)に加えることができる。
 図1において、昇圧保持装置32はサーボモータとボールねじによる機構で説明しているが、油圧シリンダーの本体部をメインフレーム11に固定し、ロッドをメイン部材14と接続しても、同様の作用効果を奏することができる。
The main member 14 is slidably mounted on a main member linear guide 24 c provided on the main frame 11. Further, a pressure holding device comprising a pressure holding ball screw nut 28, a motor support member 26 fixed to the main frame 11, a pressure holding ball screw shaft 27, a coupling 29 and a pressure holding bearing 30 in the main member 14. 32 is attached. Further, the pressure holding servo motor 13 and the pressure holding ball screw shaft 27 are connected by a coupling 29. When the step-up holding servomotor 13 is driven to rotate, the step-up holding ball screw nut 28 and the main member 14, which are moving parts of the step-up holding device 32, move forward and backward, and the pressure holding pressure is transferred to the molten metal via the plunger. It can be added.
In FIG. 1, although the pressure rising and holding device 32 is described as a mechanism using a servomotor and a ball screw, the same operation is performed even if the main body of the hydraulic cylinder is fixed to the main frame 11 and the rod is connected to the main member It can produce an effect.
 このように構成されたダイカストマシンの射出装置に対する射出充填工程と昇圧保持工程の制御方法について、図6を用いて説明する。図6は、第1実施形態に係るダイカストマシンの射出装置における、各工程での制御方法を示すグラフである。
 前述したように射出充填工程では、まず低速でプランジャー10の前進動作が行なわれ、そして湯面が金型のゲート付近に達すると続いて高速射出動作が行なわれる。射出充填工程中は、射出充填用サーボモータ12は設定速度に沿った速度制御が行なわれ、また昇圧保持用サーボモータ13は位置保持制御が行なわれている。ばね22の圧縮力fは、射出充填工程中にプランジャー10が受ける射出圧力より十分大きくなるよう設計(ばね定数の選定など)されているので、隙間が確実に確保されることにより、摩擦ディスク25とメイン部材14は接触することなく、射出充填用ボールねじ軸16はスムーズに回転することができる。
A control method of the injection filling process and the pressure rising and holding process for the injection device of the die casting machine configured as described above will be described with reference to FIG. FIG. 6 is a graph showing a control method in each process in the injection device of the die casting machine according to the first embodiment.
As described above, in the injection and filling process, the forward movement of the plunger 10 is first performed at low speed, and then the high speed injection is performed when the surface of the molten metal reaches near the gate of the mold. During the injection and filling process, the injection and filling servomotor 12 performs speed control in accordance with the set speed, and the pressure rising and holding servomotor 13 performs position holding control. The compression force f of the spring 22 is designed to be sufficiently larger than the injection pressure received by the plunger 10 during the injection and filling process (such as selection of the spring constant). The injection filling ball screw shaft 16 can rotate smoothly without contact between the main body 25 and the main member 25.
 金型キャビティ内が溶湯でフル充填近くになると射出速度は下げられる。そして、フル充填状態になると射出圧力(プランジャー10が受けるメタル圧力)が急激に上がり出すので、設定された切換え圧力に達すると昇圧保持工程に切換える。昇圧保持工程では、設定された昇圧速度と保持圧力に対応するよう、昇圧保持用サーボモータ13はトルク制御(圧力制御)される。また、射出充填用サーボモータ12は、同様のトルク制御をされるか、あるいは位置保持制御される。射出圧力は、スリーブや金型内に設けた溶湯用の圧力センサ、またはプランジャー10に設けたロードセルによって測定しても良いし、あるいは射出充填用サーボモータ12や昇圧保持用サーボモータ13のトルク測定値から換算しても良い。 When the inside of the mold cavity is close to full filling with molten metal, the injection speed is reduced. Then, since the injection pressure (metal pressure received by the plunger 10) rises rapidly in the full-filling state, when the set switching pressure is reached, the pressure is switched to the pressure holding process. In the pressure rising and holding process, the pressure rising and holding servomotor 13 is subjected to torque control (pressure control) so as to correspond to the set pressure rising speed and holding pressure. Also, the injection filling servomotor 12 is subjected to the same torque control or position holding control. The injection pressure may be measured by a pressure sensor for molten metal provided in a sleeve or a mold, or a load cell provided in the plunger 10, or the torque of the injection filling servomotor 12 or the pressure holding servomotor 13 It may be converted from the measured value.
 昇圧保持工程への切換え後、さらに射出圧力(溶湯圧力)が高くなり、ばね22の圧縮力fを超えると、隙間が無くなって摩擦ディスク25とメイン部材14が接触を開始する。さらに射出圧力が上がり摩擦ディスク25とメイン部材14の押し付け力が大きくなると、回転に対する摩擦力が大きくなり、射出充填用ボールねじ軸16の回転が抑制されロックされる。
 このように、摩擦ディスク25、メイン部材14の接触部、ばね22および押さえ部材23などから、ロック機構(移動抑制機構)は構成される。
After switching to the pressure increase holding process, the injection pressure (molten metal pressure) further increases, and when the compression force f of the spring 22 is exceeded, the gap disappears and the friction disc 25 and the main member 14 start contact. Further, when the injection pressure increases and the pressing force between the friction disc 25 and the main member 14 increases, the friction force against the rotation increases, and the rotation of the injection filling ball screw shaft 16 is suppressed and locked.
Thus, the lock mechanism (movement suppressing mechanism) is configured from the friction disc 25, the contact portion of the main member 14, the spring 22, the pressing member 23 and the like.
 ここで、射出充填用ボールねじ軸16の回転がロックされる時の射出圧力(設定圧力)をFとする。また、摩擦ディスク25の半径をr、摩擦係数をμ、射出充填用ボールねじ軸16のリードをLとする。押し付け力(F-f)で1回転する時の摩擦エネルギー、およびFの力でL進む時の推進エネルギーの関係より(1)式が成立し、(1)式を満たすF以上に射出圧力が大きくなると回転はロックされる。
 2π・μ(F-f)・r = F・L  ・・・(1)
 (1)式を変形すると、(2)式となる。
 F = {(2π・μ・r)/(2π・μ・r-L)}・f  ・・・(2)
 よって、F(設定圧力)は、摩擦ディスクの半径r、ばねの圧縮力fなどを適宜設計することにより、設定を変えることができる。
Here, let F be the injection pressure (set pressure) when the rotation of the injection filling ball screw shaft 16 is locked. The radius of the friction disc 25 is r, the friction coefficient is μ, and the lead of the injection filling ball screw shaft 16 is L. From the relationship between the friction energy when rotating one turn with the pressing force (Ff) and the propulsion energy when advancing L with the force of F, equation (1) holds, and the injection pressure is greater than F satisfying equation (1) The rotation is locked as it gets larger.
2π · μ (F−f) · r = F · L (1)
When equation (1) is modified, equation (2) is obtained.
F = {(2π · μ · r) / (2π · μ · r−L)} · f (2)
Therefore, the setting of F (set pressure) can be changed by appropriately designing the radius r of the friction disk, the compression force f of the spring, and the like.
 射出圧力が(2)式を満たすF以上に大きくなると、射出充填用ボールねじ軸16はロックされるので、昇圧保持力が大きくなっても射出充填用ボールねじナット17および射出充填用ボールねじ軸16は緩むことが無くなる(射出充填用サーボモータ12や射出充填用ボールねじは、高速が出るよう設計されているので、昇圧保持力に抗することができる程の大きな力は出せない)。
 そして、昇圧保持装置32および昇圧保持用サーボモータ13が発揮する大きな保持力を、プランジャー10を介して溶湯(メタル)に負荷することが可能となる。
The injection filling ball screw shaft 16 is locked when the injection pressure increases to F or more satisfying the equation (2), so the injection filling ball screw nut 17 and the injection filling ball screw shaft even if the pressure-rising holding force becomes large. 16 does not loosen (the injection filling servomotor 12 and the injection filling ball screw are designed to have a high speed, so they can not exert a force large enough to resist the pressure holding force).
Then, it is possible to load the molten metal (metal) through the plunger 10 with the large holding power exerted by the pressure holding device 32 and the pressure holding servo motor 13.
 以下、第1実施形態に係るダイカストマシンの射出装置の第2~第5の実施例を説明するが、基本的な装置の作用や制御方法は第1の実施例と同様である。 The second to fifth examples of the injection device of the die casting machine according to the first embodiment will be described below, but the operation and control method of the basic device are the same as those of the first example.
 [第2の実施例]
 第1実施形態に係るダイカストマシンの射出装置の第2の実施例について、図2を用いて説明する。図2は、第1実施形態に係るダイカストマシンの射出装置の第2の実施例の構造を示す概略図である。
 ベースフレーム11には、メイン部材用リニアガイド46bを介してメイン部材48が接続されており、さらに第1の実施例と同様の昇圧保持装置32および昇圧保持用サーボモータ13も取付けられている。プランジャー10は、プランジャー保持部材35およびキー保持部材36と一体で取付けられている。キー保持部材36は、キー38と圧縮状態(圧縮力f)のばね39を介して軸受け保持部材37に内蔵されており、プランジャー10の長手方向に摺動可能であるとともに回転は拘束されている。キー38は、スプラインであっても良い。また、軸受け保持部材37には、軸受け50および軸受け押さえ42を介してナット41が組み込まれている。ナット41のプランジャー10側の端面には、摩擦ディスク49が取付けられており、ばね39の圧縮力によってキー保持部材36との間には隙間が形成されている。ナット41は、ねじ軸40と螺合しており、ねじ軸40の片端はキー44と押さえナット45によって、ねじ軸支持部材43に固定されている。また、ねじ軸支持部材43は、メイン部材48と一体となっている。
Second Embodiment
A second example of the injection device of the die casting machine according to the first embodiment will be described with reference to FIG. FIG. 2 is a schematic view showing the structure of a second example of the injection device of the die casting machine according to the first embodiment.
A main member 48 is connected to the base frame 11 via a main member linear guide 46b, and a pressure holding device 32 and a pressure holding servomotor 13 similar to those of the first embodiment are also attached. The plunger 10 is integrally attached to the plunger holding member 35 and the key holding member 36. The key holding member 36 is incorporated in the bearing holding member 37 via the key 38 and the spring 39 in a compressed state (compression force f), and can slide in the longitudinal direction of the plunger 10 and its rotation is restricted. There is. The key 38 may be a spline. Further, a nut 41 is incorporated in the bearing holding member 37 via the bearing 50 and the bearing retainer 42. A friction disc 49 is attached to an end face of the nut 41 on the plunger 10 side, and a gap is formed between the friction disc 49 and the key holding member 36 by the compression force of the spring 39. The nut 41 is screwed to the screw shaft 40, and one end of the screw shaft 40 is fixed to the screw shaft support member 43 by the key 44 and the pressing nut 45. Further, the screw shaft support member 43 is integrated with the main member 48.
 メイン部材48には、リニアモータ47の固定部が取付けられており、可動部が軸受け保持部材37と連結している。また、リニアモータ47の固定部は、メインフレーム11に取付けられていても良い。さらに、軸受け保持部材37は、メインフレーム11に設けられた軸受け保持部材リニアガイド46a上に支持されており、プランジャー10の長手方向の前後進は可能であるが、回転は拘束されている。 The fixed portion of the linear motor 47 is attached to the main member 48, and the movable portion is connected to the bearing holding member 37. Further, the fixed portion of the linear motor 47 may be attached to the main frame 11. Further, the bearing holding member 37 is supported on a bearing holding member linear guide 46a provided on the main frame 11, and although the longitudinal movement of the plunger 10 is possible, the rotation is restricted.
 このような状態でリニアモータ47を前進させると、隙間は確保されているため、ナット41が回転しながら、プランジャー10、プランジャー保持部材35、軸受け保持部材37が前進し、射出充填が行なわれる。射出圧力が高くなると、第1の実施例と同様にばね39がさらに圧縮され、ナット41の摩擦ディスク49とキー保持部材36が接触を開始し、さらに高くなりFまで達するとナット41はロックされる。すると、プランジャー10、軸受け保持部材37、ナット41、ねじ軸40、ねじ軸支持部材43、メイン部材48などが一体化するので、昇圧保持装置32および昇圧保持用サーボモータ13の駆動により、大きな保持力を溶湯に負荷することができる。 When the linear motor 47 is advanced in such a state, the gap is secured, so that while the nut 41 rotates, the plunger 10, the plunger holding member 35, and the bearing holding member 37 are advanced, and injection filling is performed. Be When the injection pressure becomes high, the spring 39 is further compressed as in the first embodiment, and the friction disc 49 of the nut 41 and the key holding member 36 start contact, and when the height reaches F further, the nut 41 is locked. Ru. Then, since the plunger 10, the bearing holding member 37, the nut 41, the screw shaft 40, the screw shaft support member 43, the main member 48, etc. are integrated, the large pressure holding device 32 and the pressure holding servomotor 13 drive The holding power can be applied to the molten metal.
 [第3の実施例]
 次に、第1実施形態に係るダイカストマシンの射出装置の第3の実施例について、図3を用いて説明する。図3は、第1実施形態に係るダイカストマシンの射出装置の第3の実施例の構造を示す概略図である。なお、第3の実施例は、第2の実施例の変形であるため、相違点のみ述べる。
 第2の実施例では軸受け保持部材37の前後進は、リニアモータ駆動であったが、第3の実施例では、ボールねじ式高速射出装置52と射出充填用サーボモータ12の組み合わせで行なう。また、第2の実施例ではキー保持部材36と軸受け保持部材37の間に圧縮状態のばねが組み込まれていたが、第3の実施例ではリング状シリンダー51を組み込む。リング状シリンダー51の油室からは、配管で作動油を油圧装置と連通させる。油圧装置は、油圧ポンプ53、電気モータ54、オイルタンク56および比例電磁式圧力制御弁55からなり、リング状シリンダー51の油室の作動油に圧力を加えることにより、第2の実施例による圧縮状態のばねと同じ作用を奏することができる。この場合の油圧力は、第2の実施例におけるばねの圧縮力fと同じとする。
Third Embodiment
Next, a third example of the injection device of the die casting machine according to the first embodiment will be described with reference to FIG. FIG. 3 is a schematic view showing the structure of a third example of the injection device of the die casting machine according to the first embodiment. The third embodiment is a modification of the second embodiment, so only the differences will be described.
In the second embodiment, the forward and backward movement of the bearing holding member 37 is driven by a linear motor, but in the third embodiment, it is performed by a combination of the ball screw type high speed injection device 52 and the injection filling servomotor 12. In the second embodiment, a spring in a compressed state is incorporated between the key holding member 36 and the bearing holding member 37, but in the third embodiment, the ring-shaped cylinder 51 is incorporated. From the oil chamber of the ring-shaped cylinder 51, hydraulic fluid is communicated with the hydraulic device by piping. The hydraulic system comprises a hydraulic pump 53, an electric motor 54, an oil tank 56, and a proportional electromagnetic pressure control valve 55, and applies pressure to the hydraulic oil of the oil chamber of the ring-like cylinder 51 to compress it according to the second embodiment. It can exhibit the same action as the state spring. The oil pressure in this case is the same as the compression force f of the spring in the second embodiment.
 よって、射出充填工程では、ボールねじ式高速射出装置52と射出充填用サーボモータ12によって、プランジャー10を高速で前進させ、昇圧保持工程では、昇圧保持装置32と昇圧保持用サーボモータ13によって、溶湯に大きな保持力を負荷することができる。この場合、昇圧保持工程中には、比例電磁式圧力制御弁55を調整し、圧力を下げても良い。
 第2の実施例のばねを、第3の実施例のリング状シリンダー51と油圧装置に置き換えることは、第1の実施例および後述する第4、第5の実施例にも適用できる。
Therefore, in the injection filling process, the plunger 10 is advanced at high speed by the ball screw type high speed injection device 52 and the injection filling servomotor 12, and in the pressure rising and holding process, the pressure rising and holding device 32 and the pressure rising and holding servo motor 13 The molten metal can be loaded with a large holding power. In this case, the pressure may be reduced by adjusting the proportional electromagnetic pressure control valve 55 during the pressure holding process.
Replacing the spring of the second embodiment with the ring-shaped cylinder 51 and the hydraulic device of the third embodiment can be applied to the first embodiment and the fourth and fifth embodiments described later.
 [第4の実施例]
 次に、第1実施形態に係るダイカストマシンの射出装置の第4の実施例について、図4を用いて説明する。図4は、第1実施形態に係るダイカストマシンの射出装置の第4の実施例の構造を示す概略図である。
 ベースフレーム11には、メイン部材用リニアガイド46bを介して、メイン部材64が取付けられており、さらに昇圧保持装置32及び昇圧保持用サーボモータ13も取付けられている。プランジャー10はプランジャー保持部材61と連結されている。プランジャー保持部材61は、キー61aおよび圧縮状態(圧縮力f)のばね62を介して、スライド部材60の中に前後の摺動は可能であるが回転が拘束された状態で組み込まれている。また、スライド部材60には、シャフト66がシャフト軸受け65と複数のスペーサ66aを介して組み込まれている。シャフト66のプランジャー10側の端面には、摩擦ディスク63が取付けられているとともに、その反対側にはかさ歯車67aが連結されている。かさ歯車67aには、対となるかさ歯車67bが噛み合っており、かさ歯車67bと繋がるピニオン軸68は、ピニオン軸受け68a及び複数のスペーサを介して、スライド部材60に回転自在に取付けられている。ピニオン軸68の反対側にはピニオン69が繋がっており、ピニオン69はラック70と噛み合っている。ラック70は、メイン部材64に固定されている。また、リニアモータ47の固定部はメイン部材64に取付けられており、可動部はスライド部材60に取付けられている。さらにここでも、ばね62の圧縮力fによって、摩擦ディスク63とプランジャー保持部材61の間には、隙間が確保されている。
Fourth Embodiment
Next, a fourth example of the injection device of the die casting machine according to the first embodiment will be described with reference to FIG. FIG. 4 is a schematic view showing the structure of a fourth example of the injection device of the die casting machine according to the first embodiment.
The main member 64 is attached to the base frame 11 via the linear guide 46b for the main member, and the pressure holding device 32 and the pressure holding servo motor 13 are also attached. The plunger 10 is connected to a plunger holding member 61. The plunger holding member 61 is incorporated in the slide member 60 through the key 61a and the spring 62 in a compressed state (compression force f) while being allowed to slide back and forth but being restrained from rotating. . In the slide member 60, a shaft 66 is incorporated via a shaft bearing 65 and a plurality of spacers 66a. A friction disc 63 is attached to an end face of the shaft 66 on the plunger 10 side, and a bevel gear 67 a is connected to the opposite side. A pair of bevel gears 67b is engaged with the bevel gear 67a, and a pinion shaft 68 connected to the bevel gear 67b is rotatably attached to the slide member 60 via a pinion bearing 68a and a plurality of spacers. A pinion 69 is connected to the opposite side of the pinion shaft 68, and the pinion 69 meshes with the rack 70. The rack 70 is fixed to the main member 64. The fixed portion of the linear motor 47 is attached to the main member 64, and the movable portion is attached to the slide member 60. Furthermore, here, a gap is secured between the friction disc 63 and the plunger holding member 61 by the compression force f of the spring 62.
 射出充填工程では、リニアモータ47を駆動させることによりピニオン69、ピニオン軸68、かさ歯車67a、67b、シャフト66および摩擦ディスク63が回転しながらプランジャー10が前進する。昇圧保持工程では、摩擦ディスク63がプランジャー保持部材61と接触し回転が拘束されることにより、ラック70、ピニオン69、スライド部材60などが一体化(ロック)し、昇圧保持装置32および昇圧保持用サーボモータ13により発揮される大きな保持力を、プランジャー10を介して溶湯に負荷することができる。 In the injection and filling process, by driving the linear motor 47, the plunger 69 advances while the pinion 69, the pinion shaft 68, the bevel gears 67a and 67b, the shaft 66 and the friction disc 63 rotate. In the pressure rising and holding step, the friction disc 63 comes into contact with the plunger holding member 61 and the rotation is restrained, whereby the rack 70, the pinion 69, the slide member 60, etc. are integrated (locked) and pressure rising and holding device 32 and pressure rising and holding The large holding power exerted by the servomotor 13 can be loaded on the molten metal through the plunger 10.
 [第5の実施例]
 次に、第1実施形態に係るダイカストマシンの射出装置の第5の実施例について、図5を用いて説明する。図5は、第1実施形態に係るダイカストマシンの射出装置の第5の実施例の構造を示す概略図である。
 本体ボディ80は、図示しないメインフレーム上をプランジャー10の長手方向に摺動可能となっており、昇圧保持装置32及び昇圧保持用サーボモータ13が取付けられている。本体ボディ80の中には外側くさび81および内側くさび82が組み込まれている。外側くさび81と内側くさび82の間には、ころ84が組み込まれ、摩擦無く摺動できるようになっている。また、内側くさび82はプランジャー10と連結している。さらに内側くさび82は、圧縮状態(圧縮力f)のばね83を介して移動部材85と繋がっている。移動部材85は、リニアモータ47の可動部と連結しており、移動部材85と外側くさび81は、図面の上下方向に摺動自在に連結されている。プランジャー10が受けるメタル圧力が小さい時は、本体ボディ80と外側くさび81の間には隙間が形成されている。
Fifth Embodiment
Next, a fifth example of the injection device of the die casting machine according to the first embodiment will be described with reference to FIG. FIG. 5 is a schematic view showing the structure of a fifth example of the injection device of the die casting machine according to the first embodiment.
The main body 80 can slide on the main frame (not shown) in the longitudinal direction of the plunger 10, and the pressure holding device 32 and the pressure holding servo motor 13 are attached. An outer wedge 81 and an inner wedge 82 are incorporated into the body 80. Rollers 84 are incorporated between the outer wedge 81 and the inner wedge 82 so that they can slide without friction. Also, the inner wedge 82 is connected to the plunger 10. Furthermore, the inner wedge 82 is connected to the moving member 85 via the spring 83 in a compressed state (compression force f). The moving member 85 is coupled to the movable portion of the linear motor 47, and the moving member 85 and the outer wedge 81 are slidably coupled in the vertical direction of the drawing. When the metal pressure received by the plunger 10 is small, a gap is formed between the main body 80 and the outer wedge 81.
 このような状態でリニアモータ47を駆動すると、プランジャー10、外側くさび81、内側くさび82、ばね83、ころ84および移動部材85が前進し、射出充填工程が動作される。そして、射出圧力が高くなり昇圧保持工程に切り換わると、ばね85が圧縮され、2つの外側くさび81は広げられる。すると、隙間はなくなり本体ボディ80と外側くさび81が接触する。外側くさび81と内側くさび82の間の角度を適切に設定することにより、本体ボディ80と外側くさび81との摩擦力が、プランジャー10が受ける射出圧力より大きくなり、本体ボディ80およびプランジャー10などが一体化(ロック)する。この状態で昇圧保持用モータ13を駆動し昇圧保持装置32を作用させると、大きな保持力を溶湯に負荷することが可能となる。 When the linear motor 47 is driven in such a state, the plunger 10, the outer wedge 81, the inner wedge 82, the spring 83, the roller 84 and the moving member 85 are advanced, and the injection filling process is operated. And if injection pressure becomes high and switches to a pressurization holding process, spring 85 will be compressed and two outside wedges 81 will be spread. Then, the gap disappears and the main body 80 contacts the outer wedge 81. By appropriately setting the angle between the outer wedge 81 and the inner wedge 82, the frictional force between the main body 80 and the outer wedge 81 becomes larger than the injection pressure that the plunger 10 receives, and the main body 80 and the plunger 10 Etc. unify (lock). In this state, when the pressure holding motor 13 is driven to cause the pressure holding device 32 to act, a large holding force can be loaded on the molten metal.
 以上のように、第1実施形態に係るダイカストマシンの射出装置によれば、以下の有利な効果を奏することができる。
(1)射出充填装置のロックが射出圧力の上昇によってなされるので、射出充填工程から連続的かつ安定的に昇圧保持工程に移行できる。
(2)高速射出動作の駆動源がサーボモータであるため、大型のアキュムレータやガスボトル、油圧配管などが不要となり、装置が簡素化しメインテナンス性が向上する。また、作動油が高速で流れる時に生じる圧力損失よるエネルギーロスが無くなり、省エネ運転が図れる。
(3)サーボモータによるフィードバック制御が可能で、運転条件設定の自由度と動作制御の安定性が増す。
As described above, according to the injection device of the die casting machine according to the first embodiment, the following advantageous effects can be achieved.
(1) Since the locking of the injection filling device is achieved by the increase of the injection pressure, it is possible to shift from the injection filling step to the pressure holding step continuously and stably.
(2) Since the drive source for high-speed injection operation is a servomotor, a large accumulator, gas bottle, hydraulic piping, etc. are not required, and the apparatus is simplified and maintenance is improved. In addition, energy loss due to pressure loss that occurs when hydraulic oil flows at high speed is eliminated, and energy saving operation can be achieved.
(3) The feedback control by the servomotor is possible, and the freedom of operation condition setting and the stability of operation control are increased.
 第1実施形態に係るダイカストマシンの射出装置は、ダイカストマシンによりアルミニウム製品を鋳造する生産工場において実用可能であり、設備の簡素化、生産性とメインテナンス性の向上、省エネ運転に貢献できる。 The injection apparatus of the die casting machine according to the first embodiment can be put to practical use in a production plant that casts an aluminum product by the die casting machine, and can contribute to simplification of equipment, improvement of productivity and maintainability, and energy saving operation.
 次に、本発明の第2実施形態に係るダイカストマシンの射出装置について、図7~図13に基づいて説明する。以下、第2実施形態に係るダイカストマシンの射出装置の第1の実施例~第6の実施例について、詳細に説明する。 Next, an injection device of a die casting machine according to a second embodiment of the present invention will be described based on FIG. 7 to FIG. Hereinafter, first to sixth examples of the injection device of the die casting machine according to the second embodiment will be described in detail.
 [第1の実施例]
 まず、第2実施形態に係るダイカストマシンの射出装置の第1の実施例について、図7を用いて説明する。図7は、第2実施形態に係るダイカストマシンの射出装置の第1の実施例の構造及びサージ圧防止装置を示す概略図である。
 サーボモータ115は、モータカップリング116を介してボールねじ軸118と連結されている。ボールねじ軸118は、軸受けボックス117に内蔵された軸受けによって、回転可能であるが軸方向には拘束された状態で支持されている。ボールねじ軸118と螺合するボールねじナット119は、移動部材114に固定されている。さらに、移動部材114にはサージ圧防止装置120が固定されており、サージ圧防止装置120の可動部分は、プランジャーカップリング113によってプランジャーロッド112と結合されている。プランジャーロッド112の先端にはプランジャーチップ111が固着し、一体となってプランジャー110が構成される。軸受けボックス117は、金型を保持する固定プラテンに対して固定されているので、射出力を金型キャビティ内の溶湯に伝えることができる。また、移動部材114は、図示しないリニアスライドによって摺動自在に支持されている。ここでは、ボールねじなどが、回転運動を直線運動に変換する運動変換装置の機能を果たす。
First Embodiment
First, a first example of an injection device of a die casting machine according to the second embodiment will be described with reference to FIG. FIG. 7 is a schematic view showing a structure of a first example of an injection device of a die casting machine according to a second embodiment and a surge pressure preventing device.
The servomotor 115 is connected to the ball screw shaft 118 via a motor coupling 116. The ball screw shaft 118 is supported in a rotatable but axially restrained state by a bearing incorporated in the bearing box 117. A ball screw nut 119 screwed with the ball screw shaft 118 is fixed to the moving member 114. Further, the surge pressure preventing device 120 is fixed to the moving member 114, and the movable portion of the surge pressure preventing device 120 is coupled to the plunger rod 112 by the plunger coupling 113. The plunger tip 111 is fixed to the tip of the plunger rod 112, and the plunger 110 is integrally formed. The bearing box 117 is fixed relative to a stationary platen that holds the mold so that it can transfer the blast power to the melt in the mold cavity. Further, the moving member 114 is slidably supported by a linear slide (not shown). Here, a ball screw or the like performs the function of a motion conversion device that converts rotational motion into linear motion.
 サージ圧防止装置120は、油圧シリンダーの形状をしており、本体部分のシリンダー本体121と、可動部分のピストンロッド121およびピストンヘッド123からなる。油圧シリンダーのヘッド室には、圧縮状態の衝撃緩衝ばね124が内蔵されており、ピストンヘッド123が後方(図の右側)に押される力に対して抵抗を与える。また、ロッド室とヘッド室は、エアーブリーザ125を介して大気と連通しており、ゴミを内部に入れることなく空気の出入りが可能となっている。プランジャー110とピストンロッド122をつなぐカップリング113には、ロードセルを内蔵させ、射出圧力を測定できるようにすることも可能である。また、シリンダー本体121は移動部材114と一体であっても良い。 The surge pressure prevention device 120 is in the form of a hydraulic cylinder, and comprises a cylinder body 121 of the main body portion, a piston rod 121 of the movable portion, and a piston head 123. The head chamber of the hydraulic cylinder incorporates a shock absorbing spring 124 in a compressed state, which provides resistance to the force with which the piston head 123 is pushed rearward (right side in the drawing). Further, the rod chamber and the head chamber are in communication with the atmosphere via the air breather 125, so that air can enter and exit without entering dust inside. It is also possible to incorporate a load cell in the coupling 113 connecting the plunger 110 and the piston rod 122 so that the injection pressure can be measured. Also, the cylinder body 121 may be integral with the moving member 114.
 ここで、射出充填工程から昇圧保持工程に切換える条件の切換圧力(溶湯圧力)をPc、プランジャーチップの径をDpとすると、その時の切換力:Fcは、Fc=(π/4)・Dp2となる。よって、衝撃緩衝ばね124はFcと同等か少し大きい(例えば1.05~1.1倍)圧縮力(Fs)を負荷されて内蔵される。そのため、射出充填途中に衝撃緩衝ばね124が縮むことはない。 Here, assuming that the switching pressure (molten metal pressure) of the conditions for switching from the injection filling step to the pressurization holding step is Pc and the diameter of the plunger tip is Dp, the switching force at that time is Fc = (π / 4) · Dp 2 It becomes. Therefore, the shock absorbing spring 124 is loaded with a compressive force (Fs) equal to or slightly larger than Fc (for example, 1.05 to 1.1 times) and incorporated. Therefore, the shock absorbing spring 124 is not contracted during injection and filling.
 このような射出装置を用いて行なう射出充填工程および昇圧保持工程について、図13を用いて説明する。上の図はプランジャー110の射出速度とプランジャーチップ111が受ける射出圧力(溶湯圧力、メタル圧)の時間軸グラフであり、また下の図はサーボモータの回転速度(モータ速度)および回転トルク(モータトルク)を示す時間軸グラフである。
 まず、サーボモータ115が回転を開始し低速射出速度となる。この時の加速時においては、サーボモータ115のモータ軸やカップリング116、ボールねじ軸118などの慣性モーメントの大きい回転体を回転加速するため、大きなモータトルクを要する。所定のストロークを前進すると、次に高速射出速度となるが、短時間に高速まで加速する必要があるため、その時のモータトルクも大きくなる。低速および高速射出の間は、モータ回転速度と射出速度は比例関係にある。
An injection filling process and a pressure holding process performed using such an injection device will be described with reference to FIG. The upper figure is a time-axis graph of the injection speed of the plunger 110 and the injection pressure (melt pressure, metal pressure) received by the plunger tip 111, and the lower figure is the rotational speed (motor speed) and rotational torque of the servomotor. It is a time-axis graph which shows (motor torque).
First, the servomotor 115 starts to rotate to a low injection speed. At the time of acceleration at this time, a large motor torque is required in order to rotate and accelerate a rotating body having a large inertia moment such as the motor shaft of the servomotor 115, the coupling 116, and the ball screw shaft 118. When the predetermined stroke is advanced, the injection speed becomes high next, but since it is necessary to accelerate to high speed in a short time, the motor torque at that time also becomes large. During low speed and high speed injection, the motor rotational speed and the injection speed are in a proportional relationship.
 プランジャー110の前進が進み、金型キャビティ内が溶湯でほぼ充満してくると、射出圧力(溶湯圧力)は上がりだす。そして切換圧力(Pc)まで上昇制御すると、サーボモータ115はトルク制御(昇圧工程)に切換えられ、射出圧力はさらに上昇制御される。この直後に、衝撃緩衝ばね124にはFsを超える圧縮力が作用しだすので、衝撃緩衝ばね124は縮んでいく。このことにより、プランジャーの前進速度がほぼ0になっても、衝撃緩衝ばね124が縮む分だけボールねじ軸118などの回転体は回り続けことができる。よって、回転体の減速時間および減速回転角度が確保できるので、徐々に止まることができる。図13に示すように、減速時間中は、サーボモータの回転速度と射出速度(プランジャーの速度)は比例の関係になっていない。
 これらのことにより、回転体の運動エネルギーは衝撃緩衝ばね124によって吸収される。よって、金型キャビティ内の溶湯は過度に圧縮されることが無いので、サージ圧の発生を防止することができ、バリの発生は回避され、さらに衝撃力も防げる。
As the plunger 110 advances, the injection pressure (melt pressure) starts to rise as the mold cavity is almost filled with the melt. Then, when control is performed to increase the switching pressure (Pc), the servomotor 115 is switched to torque control (boosting step), and the injection pressure is further controlled to increase. Immediately after this, since the shock absorbing spring 124 starts to exert a compressive force exceeding Fs, the shock absorbing spring 124 is contracted. By this, even if the advancing speed of the plunger becomes almost zero, the rotating body such as the ball screw shaft 118 can keep rotating by the amount by which the shock absorbing spring 124 is contracted. Therefore, since the decelerating time and the decelerating rotation angle of the rotating body can be secured, it can be stopped gradually. As shown in FIG. 13, during the deceleration time, the rotational speed of the servomotor and the injection speed (the speed of the plunger) are not in proportion.
The kinetic energy of the rotating body is absorbed by the shock absorbing spring 124 by these things. Accordingly, since the molten metal in the mold cavity is not excessively compressed, the generation of surge pressure can be prevented, the generation of burrs can be avoided, and the impact force can also be prevented.
 昇圧工程では、設定された昇圧速度に沿ってモータトルクが上昇制御される。そして設定された保持圧力に達すると、一定のトルク保持制御となる。そして、設定された保持時間が経過すると保持力は0まで下げられて、保持工程は終了となる。その後、次の型開き工程へと移行する。なお、サーボモータ115のトルクだけでは必要な保持圧力まで上げられない場合は、移動部材114に保持圧力補助装置を付けて補っても良い。 In the boosting step, the motor torque is controlled to rise along the set boosting speed. When the set holding pressure is reached, constant torque holding control is performed. Then, when the set holding time has elapsed, the holding force is lowered to 0, and the holding process is completed. Thereafter, the process proceeds to the next mold opening process. If the required holding pressure can not be increased only by the torque of the servomotor 115, a holding pressure assisting device may be attached to the moving member 114 to compensate.
 以下、第2実施形態に係るダイカストマシンの射出装置の第2~6の実施例について説明するが、装置の基本的な部分や作用、制御方法は第1の実施例と共通する部分が多いので、相違する部分についてのみ説明する。 Hereinafter, although the second to sixth examples of the injection device of the die casting machine according to the second embodiment will be described, since the basic portion, action and control method of the device have many parts in common with the first example. , Only the differences will be described.
 [第2の実施例]
 第2実施形態に係るダイカストマシンの射出装置の第2の実施例について、図8を用いて説明する。図8は、第2実施形態に係るダイカストマシンの射出装置の第2の実施例の構造及びサージ圧防止装置を示す概略図である。
 サージ圧防止装置120の油圧シリンダー内には作動油が充満されており、ロッド室137は配管によってタンク135に接続されている。ピストンヘッド123のヘッド室側には突起物131が取り付けられており、その外側に皿ばね132が装着されている。皿ばね132は、圧縮力はFsで圧縮され内蔵されており、ピストンヘッド123は、シリンダー本体121のロッド室137側に押し付けられている。摺動部には、作動油の漏れを防ぐためパッキンが組み込まれている。突起物131、ピストンヘッド123、ピストンロッド122の内部には流路133が設けられ、ヘッド室136とロッド室137を連通している。流路133の途中には小径部のオリフィス134が設けられ、作動油の流れが絞られる。
Second Embodiment
A second example of the injection device of the die casting machine according to the second embodiment will be described with reference to FIG. FIG. 8 is a schematic view showing a structure of a second example of the injection device of the die casting machine according to the second embodiment and a surge pressure preventing device.
The hydraulic cylinder of the surge pressure prevention device 120 is filled with hydraulic oil, and the rod chamber 137 is connected to the tank 135 by piping. A projection 131 is attached to the head chamber side of the piston head 123, and a disc spring 132 is attached to the outside thereof. The disc spring 132 has a compression force of Fs and is incorporated therein, and the piston head 123 is pressed to the rod chamber 137 side of the cylinder body 121. A packing is incorporated in the sliding portion to prevent the hydraulic oil from leaking. A flow path 133 is provided inside the protrusion 131, the piston head 123, and the piston rod 122, and the head chamber 136 and the rod chamber 137 are in communication. In the middle of the flow path 133, an orifice 134 of a small diameter portion is provided to restrict the flow of hydraulic oil.
 溶湯圧力がFs以上の力でプランジャー110を押すと、皿ばね132がさらに圧縮され、ヘッド136内の作動油は流路133を通ってヘッド室137に流れる。この時、流路133の途中のオリフィス134を通過する際に作動油は絞られ、ヘッド室136側には圧力が発生し皿ばね132の力と合わせて反力が大きくなり、衝撃吸収がより効果的に行なわれる。ロッド室137は体積が広がるので、作動油がタンク135から供給される。また、シリンダーのストロークは、衝撃吸収(運動エネルギーの吸収)ができる長さ以上に設計しておく必要がある。 When the molten metal pressure pushes the plunger 110 with a force of Fs or more, the disc spring 132 is further compressed, and the hydraulic oil in the head 136 flows through the flow path 133 to the head chamber 137. At this time, when passing through the orifice 134 in the middle of the flow path 133, the working oil is squeezed, a pressure is generated in the head chamber 136 side, and the reaction force becomes larger together with the force of the disc spring 132, and shock absorption is more It is done effectively. As the rod chamber 137 expands in volume, hydraulic oil is supplied from the tank 135. In addition, the stroke of the cylinder needs to be designed to be longer than the length capable of shock absorption (kinetic energy absorption).
 [第3の実施例]
 次に、第2実施形態に係るダイカストマシンの射出装置の第3の実施例について、図9を用いて説明する。図9は、第2実施形態に係るダイカストマシンの射出装置の第3の実施例の構造及びサージ圧防止装置を示す概略図である。
 サージ圧防止装置120の油圧シリンダーには作動油が充満されるとともに、ヘッド室144は、外部流路を介して外部のアキュムレータ側絞り弁142、さらにアキュムレータ141に回路接続されている。また、ロッド室145も外部流路により、ロッド側絞り弁143を介してヘッド室144側の流路に接続されている。アキュムレータ141の圧力は、作動油がピストンヘッドを押す力がFsとなる圧力である。
 シリンダーの内径をDs、ロッド径をDrとし、アキュムレータ圧力をPsaとすると、Fs=(π/4)・Dr2・Psaより、Psaを算出できる。
Third Embodiment
Next, a third example of the injection device of the die casting machine according to the second embodiment will be described with reference to FIG. FIG. 9 is a schematic view showing the structure and surge pressure prevention device of the third example of the injection device of the die casting machine according to the second embodiment.
The hydraulic cylinder of the surge pressure prevention device 120 is filled with hydraulic oil, and the head chamber 144 is connected in circuit to an external accumulator side throttle valve 142 and an accumulator 141 via an external flow path. The rod chamber 145 is also connected to the flow passage on the head chamber 144 side via the rod-side throttle valve 143 by the external flow passage. The pressure of the accumulator 141 is a pressure at which the hydraulic oil pushes the piston head at Fs.
Assuming that the inner diameter of the cylinder is Ds, the rod diameter is Dr, and the accumulator pressure is Psa, Psa can be calculated from Fs = (π / 4) · Dr2 · Psa.
 プランジャーがFs以上の力で押されると、ピストンは後方(図の右側)に動き、ヘッド室144の作動油は、ロッド室145とアキュムレータ141へ流れ出す。この時、作動油の流れは、アキュムレータ側絞り弁142とロッド側絞り弁143によって絞られるので、シリンダー内の圧力はPsa以上となり、ピストンが後方に動くことに対する反力は大きくなる。ピストンが後方に動いている間に衝撃吸収は行なわれるので、このことにより、衝撃吸収はより効果的に行なわれる。この場合も、ピストンヘッドがシリンダーエンドに達するまでに、衝撃吸収(運動エネルギーの吸収)ができるよう、シリンダーのストロークを適切に設計しておく必要がある。 When the plunger is pushed with a force of Fs or more, the piston moves rearward (right side in the figure), and the hydraulic fluid in the head chamber 144 flows out to the rod chamber 145 and the accumulator 141. At this time, since the flow of the hydraulic oil is throttled by the accumulator side throttle valve 142 and the rod side throttle valve 143, the pressure in the cylinder becomes equal to or higher than Psa, and the reaction force against the piston moving backward becomes large. This makes shock absorption more effective, since shock absorption takes place while the piston is moving backwards. Also in this case, it is necessary to design the stroke of the cylinder appropriately so that shock absorption (absorption of kinetic energy) can be performed before the piston head reaches the cylinder end.
 [第4の実施例]
 次に、第2実施形態に係るダイカストマシンの射出装置の第4の実施例について、図10を用いて説明する。図10は、第2実施形態に係るダイカストマシンの射出装置の第4の実施例の構造及びサージ圧防止装置を示す概略図である。
 サージ圧防止装置120は、ロッド径が等しい両ロッド式の油圧シリンダーであり、反プランジャー側ロッド室153およびプランジャー側ロッド室154には、作動油が満たされている。反プランジャー側ロッド室153とプランジャー側ロッド室154は、チェック弁152を介して外部で回路接続されており、プランジャー側ロッド室154から反プランジャー側ロッド室153には作動油が流れるが、反対方向には流れないような回路になっている。また、チェック弁152と並列にリリーフ弁151が回路接続されており、反プランジャー側ロッド室153からプランジャー側ロッド室154には設定された圧力以上で作動油は流れるが、反対方向には流れない回路となっている。
 よって、プランジャーが後方(図の右側)に動く時は、リリーフ弁151の設定圧力の抵抗が働き、一方、前方(図の左側)に動く時は、チェック弁152の作用により無抵抗で動くことができる。また、リリーフ弁の設定圧をPsbとすると、Fs=(π/4)・(Ds2-Dr2)・Psbより、Psbを換算できる。
Fourth Embodiment
Next, a fourth example of the injection device of the die casting machine according to the second embodiment will be described with reference to FIG. FIG. 10 is a schematic view showing the structure of a fourth example of the injection device of the die casting machine according to the second embodiment and the surge pressure preventing device.
The surge pressure prevention device 120 is a dual rod type hydraulic cylinder with equal rod diameter, and the anti-plunger side rod chamber 153 and the plunger side rod chamber 154 are filled with hydraulic oil. The anti-plunger side rod chamber 153 and the plunger side rod chamber 154 are externally connected in circuit via the check valve 152, and the hydraulic oil flows from the plunger side rod chamber 154 to the anti plunger side rod chamber 153. However, the circuit does not flow in the opposite direction. In addition, a relief valve 151 is connected in parallel with the check valve 152, and hydraulic fluid flows from the anti-plunger side rod chamber 153 to the plunger side rod chamber 154 at a pressure higher than the set pressure. It is a circuit that does not flow.
Therefore, when the plunger moves rearward (right side in the drawing), resistance of the set pressure of the relief valve 151 works, while when moving forward (left side in the drawing), movement by resistance of the check valve 152 works without resistance. be able to. Further, assuming that the set pressure of the relief valve is Psb, Psb can be converted from Fs = (π / 4) · (Ds2-Dr2) · Psb.
 プランジャーがFs以上の力で押されると、ピストンは後方(図の右側)に動き、反プランジャー側ロッド室153の作動油はプランジャー側ロッド室154へ流れ出す。この時、反プランジャー側ロッド室153にはPsbの圧力が発生し反力が働くので、サージ圧の防止と衝撃緩和が効果的に行なわれる。 When the plunger is pushed with a force of Fs or more, the piston moves rearward (right side in the figure), and the hydraulic oil of the anti-plunger side rod chamber 153 flows out to the plunger side rod chamber 154. At this time, since a pressure of Psb is generated in the anti-plunger side rod chamber 153 and a reaction force works, prevention of surge pressure and shock relaxation are effectively performed.
 [第5の実施例]
 次に、第2実施形態に係るダイカストマシンの射出装置の第5の実施例について、図11を用いて説明する。図11は、第2実施形態に係るダイカストマシンの射出装置の第5の実施例の構造及びサージ圧防止装置を示す概略図である。
 サージ圧防止装置120である油圧シリンダーのヘッド室162は作動油で満たされており、またロッド室163には空気が入っておりエアーブリーザ161を介して空気の出入りが可能となっている。ヘッド室162は、配管によってサージ圧吸収用油圧シリンダー167のヘッド室、ばね式アキュムレータ164、および切換え弁165と回路接続されている。サージ圧吸収用油圧シリンダー167のピストンロッドは、ナットホルダー168およびボールねじナット169と一体的に連結し、ボールねじナット169と螺合するボールねじ軸170はカップリング171によってサーボモータ172のモータ軸と連結されている。切換え弁165はタンク166に回路接続しており、通常は閉じられているが、ヘッド室162内などの作動油が漏れなどによって少なくなった場合、ソレノイドが励磁され弁が開いてタンク166の作動油をヘッド室162などに供給できる。
Fifth Embodiment
Next, a fifth example of the injection device of the die casting machine according to the second embodiment will be described with reference to FIG. FIG. 11 is a schematic view showing the structure and surge pressure prevention device of the fifth example of the injection device of the die casting machine according to the second embodiment.
The head chamber 162 of the hydraulic cylinder, which is the surge pressure preventing device 120, is filled with the hydraulic fluid, and the rod chamber 163 contains air, so that air can enter and exit through the air breather 161. The head chamber 162 is connected in circuit to the head chamber of the surge pressure absorbing hydraulic cylinder 167, the spring accumulator 164, and the switching valve 165 by piping. The piston rod of the surge pressure absorbing hydraulic cylinder 167 is integrally connected with the nut holder 168 and the ball screw nut 169, and the ball screw shaft 170 screwed with the ball screw nut 169 is a motor shaft of the servomotor 172 by the coupling 171. It is linked with The switching valve 165 is in circuit connection with the tank 166 and is normally closed. However, when the hydraulic oil in the head chamber 162 or the like decreases due to a leak or the like, the solenoid is energized and the valve is opened to operate the tank 166. Oil can be supplied to the head chamber 162 and the like.
 射出工程の開始時には、サーボモータ172はトルク制御され、ボールねじの作用によって、サージ圧吸収用油圧シリンダー167のヘッド室およびヘッド室162に発生する油圧はPscに調整されている。
 Pscは、シリンダーの内径をDs、圧力をPscとすると、Fs=(π/4)・Ds2・Pscを満たす圧力である。また、ばね式アキュムレータ164は、内部のピストンが圧力Pscによって受ける力とつり合うように、ばね力は設定されている。
 射出圧力が大きくなり射出力がFsになると、ピストンヘッド123は後方(図の右側)に動き出す。この時、ヘッド室162の圧力は、サーボモータ172が後退方向に回転しながらもトルク制御することによって、Pscに保たれている。ピストンヘッド123の動き出しが早く、サージ圧吸収用油圧シリンダー167のピストンロッド等の慣性によってピストンロッド等の後退が遅れる場合は、ばね式アキュムレータ164のピストンが後退(図の下側)し、圧力はほぼPscに維持される。ピストンヘッド123がシリンダーエンドまで動く間に、ボールねじ軸118(図7参照)などの回転体の回転は、回転速度がほぼ0まで徐々に減速されるので、溶湯にはサージ圧が発生しない。
At the start of the injection process, the servomotor 172 is torque-controlled, and the hydraulic pressure generated in the head chamber and the head chamber 162 of the surge pressure absorbing hydraulic cylinder 167 is adjusted to Psc by the action of the ball screw.
Psc is a pressure that satisfies Fs = (π / 4) · Ds2 · Psc, where Ds is the inner diameter of the cylinder and Psc is the pressure. Also, the spring-type accumulator 164 is set to have a spring force so as to balance the force that the internal piston receives with the pressure Psc.
When the injection pressure becomes large and the injection output becomes Fs, the piston head 123 starts to move rearward (right side in the figure). At this time, the pressure in the head chamber 162 is maintained at Psc by controlling the torque while the servomotor 172 rotates in the backward direction. If the piston head 123 starts moving quickly and the piston rod etc. of the surge pressure absorbing hydraulic cylinder 167 loses inertia due to the inertia of the piston rod etc., the piston of the spring accumulator 164 retreats (the lower side of the figure) It is maintained almost at Psc. During the movement of the piston head 123 to the cylinder end, the rotation speed of the rotating body such as the ball screw shaft 118 (see FIG. 7) is gradually reduced to almost zero rotational speed, so that no surge pressure is generated in the molten metal.
 [第6の実施例]
 次に、第2実施形態に係るダイカストマシンの射出装置の第6の実施例について、図12を用いて説明する。図12は、第2実施形態に係るダイカストマシンの射出装置の第6の実施例の構造及びサージ圧防止装置を示す概略図である。
 第5の実施例と同様に、サージ圧防止装置120である油圧シリンダーのヘッド室182は作動油で満たされており、またロッド室183には空気が入っておりエアーブリーザ181を介して空気の出入りが可能となっている。ヘッド室182は、配管経路が途中で分岐し、ばね式アキュムレータ184、チェック弁185、流量調整弁191、圧力センサ190と回路接続されている。流量調整弁191は、サーボモータ192の回転制御によって、開度を閉状態から全開状態まで自由に変えることができる構造となっており、ヘッド室182からタンク193に流れる作動油の流量を調整できる。チェック弁185は、ポンプ186、タンク188、電気モータ187、リリーフ弁189と回路接続されており、適正な圧力でヘッド室182に作動油を供給することができる。また、ばね式アキュムレータ184は、内部のピストンが圧力Pscによって受ける力とつり合うように、ばね力が設定されている。
Sixth Embodiment
Next, a sixth example of the injection device of the die casting machine according to the second embodiment will be described with reference to FIG. FIG. 12 is a schematic view showing the structure of a sixth example of the injection device of the die casting machine according to the second embodiment and the surge pressure preventing device.
As in the fifth embodiment, the head chamber 182 of the hydraulic cylinder which is the surge pressure preventing device 120 is filled with the hydraulic fluid, and the rod chamber 183 is filled with air and the air breather 181 is used to It is possible to go in and out. In the head chamber 182, the piping path branches along the way, and is in circuit connection with the spring accumulator 184, the check valve 185, the flow control valve 191, and the pressure sensor 190. The flow rate adjustment valve 191 is structured such that the opening degree can be freely changed from the closed state to the fully open state by the rotation control of the servomotor 192, and the flow rate of hydraulic fluid flowing from the head chamber 182 to the tank 193 can be adjusted. . The check valve 185 is in circuit connection with the pump 186, the tank 188, the electric motor 187, and the relief valve 189, and can supply the hydraulic fluid to the head chamber 182 at an appropriate pressure. Also, the spring-type accumulator 184 is set to have a spring force so as to be balanced with the force that the internal piston receives due to the pressure Psc.
 射出開始時は、ポンプ186、電気モータ187、リリーフ弁189の作用によりヘッド室182内の作動油の圧力はPscに保たれている。また、チェック弁185の作用により、ヘッド室182側からポンプ186の方向には作動油は流れないようになっている。
 プランジャーにFcを超える射出力が作用すると、ヘッド室182内の作動油は圧力が上がるので、その圧力を圧力センサ190で検知し、圧力がPscを超えないよう流量調整弁191の開度を調整し、作動油をタンク193に逃がす。流量調整弁191の応答遅れがある時は、ばね式アキュムレータ184のピストンが動き、圧力はほぼPscに保たれる。
 このような作用により、第5の実施例と同様、溶湯にはサージ圧が発生しない。
At the start of injection, the pressure of the hydraulic oil in the head chamber 182 is maintained at Psc by the action of the pump 186, the electric motor 187 and the relief valve 189. Further, the action of the check valve 185 prevents the hydraulic oil from flowing in the direction from the head chamber 182 to the pump 186.
When an injection force exceeding Fc acts on the plunger, the pressure of the hydraulic fluid in the head chamber 182 rises, so that pressure is detected by the pressure sensor 190, and the opening degree of the flow rate adjustment valve 191 is controlled so that the pressure does not exceed Psc. Adjust and release the hydraulic oil to the tank 193. When there is a response delay of the flow control valve 191, the piston of the spring-type accumulator 184 moves and the pressure is maintained at approximately Psc.
Due to such an action, no surge pressure is generated in the molten metal as in the fifth embodiment.
 従来の特許文献4に記載の機構では、摩擦クラッチよりもプランジャー側に装着されているボールねじ軸の慣性モーメントは溶湯に伝わるため、依然サージ圧の原因は残ることになるという問題がある。
 また、従来の特許文献5の方法では、大容量のサーボモータが必要な高速高圧用の射出装置においては、サーボモータの軸など回転体の慣性モーメントが大きくなるため、サージ圧を防止するための湯だまりを大きくする必要が生じ、1回の鋳造に多量の溶湯を使うといった無駄が生じるという問題がある。さらに、充填途中に減速をかけると、キャビティ内で湯先が飛んでエアーを巻き込み、製品の中に空隙欠陥が生じて不良品となるという問題がある。
In the mechanism described in Patent Document 4 of the prior art, the moment of inertia of the ball screw shaft mounted on the plunger side of the friction clutch is transmitted to the molten metal, so that the cause of the surge pressure still remains.
Further, according to the conventional method of Patent Document 5, in the injection apparatus for high speed and high pressure which requires a large capacity servomotor, the inertia moment of the rotating body such as the shaft of the servomotor becomes large. There is a problem that it is necessary to increase the size of the bath and waste occurs such as using a large amount of molten metal in one casting. Furthermore, if the speed is reduced during filling, the tip of the hot water will fly in the cavity and air will be caught, causing a void defect in the product, resulting in a defect.
 これに対し、第2実施形態に係るダイカストマシンの射出装置によれば、以下の有利な効果を奏することができる。
(1)慣性が大きな電動式射出装置であっても、金型キャビティ内が溶湯で充満されるフル充填時のサージ圧を防止できるため、バリの発生やそれにともなう金型の損傷が回避可能である。
(2)フル充填あるいはその直前まで高速射出充填が可能で、湯先の飛びが回避されることや充填時間が短縮されることにより、鋳造品の品質が向上する。
(3)サージ圧の反力としてサーボモータやボールねじ、カップリング、軸受けに発生する衝撃力が緩和され、機械的な損傷や故障を回避できる。
On the other hand, according to the injection device of the die casting machine concerning a 2nd embodiment, the following advantageous effects can be produced.
(1) Even in the case of an electric injection device with a large inertia, the surge pressure at the time of full filling in which the inside of the mold cavity is filled with the molten metal can be prevented, so generation of burrs and damage to the mold associated therewith can be avoided is there.
(2) It is possible to perform high-speed injection filling up to the full filling or just before that, and the quality of the cast product is improved by avoiding the jump of the hot water tip and shortening the filling time.
(3) The impact force generated on the servomotor, the ball screw, the coupling, and the bearing as the reaction force of the surge pressure is alleviated, and mechanical damage and failure can be avoided.
 第2実施形態に係るダイカストマシンの射出装置は、ダイカストマシンによりアルミニウム製品を鋳造する生産工場において実用可能であり、鋳造品の品質向上や鋳造設備の安定運転に貢献できる。 The injection device of the die casting machine according to the second embodiment can be put to practical use in a production plant that casts an aluminum product by the die casting machine, and can contribute to quality improvement of cast products and stable operation of a casting facility.
 次に、本発明の第3実施形態に係るダイカストマシンの射出装置について、図14及び図15に基づいて説明する。図14は、第3実施形態に係るダイカストマシンの射出装置の構造を示す概略図である。 Next, an injection device of a die casting machine according to a third embodiment of the present invention will be described based on FIG. 14 and FIG. FIG. 14 is a schematic view showing a structure of an injection device of a die casting machine according to a third embodiment.
 プランジャーチップ210aとプランジャーロッド210bからなるプランジャー210は、図示しないスリーブ内で摺動可能な状態であり、前進することによってスリーブ内の溶湯を金型キャビティ内に射出充填することができる。その時、プランジャーチップ210aの先端面は溶湯からメタル圧(射出圧力)を受けることになる。プランジャーロッド210bは、リニアガイドによって摺動自在な射出スライド部材215と連結されている。射出スライド部材215には、射出充填用ボールねじナット217が取付けられており、それと螺合する射出充填用ボールねじ軸216の回転運動によって前後進する。射出充填用ボールねじ軸216は、射出充填用軸受け219および押さえナット220によって、軸方向には拘束されるが回転自在の状態で軸受け保持部材218に取付けられている。射出充填用ボールねじ軸216は、射出充填ブレーキ221(移動抑制機構)の回転部と連結し、さらにカップリング222を介して射出充填用サーボモータ212の回転軸と連結される。よって、射出充填用サーボモータ212を回転させると、射出スライド部材215およびプランジャー210を前後進させることができる。射出ブレーキ221は電磁式であり、電流を通電するとブレーキ力が作用し、射出充填用ボールねじ軸216の回転を抑止することができる。高速射出を実現するため、射出充填用ボールねじのリードは大きいほうが好ましい。 A plunger 210 consisting of a plunger tip 210a and a plunger rod 210b is in a slidable state in a sleeve (not shown), and by advancing it can inject and fill the molten metal in the sleeve into the mold cavity. At that time, the tip surface of the plunger tip 210a receives metal pressure (injection pressure) from the molten metal. The plunger rod 210b is connected to the slidable injection slide member 215 by a linear guide. An injection filling ball screw nut 217 is attached to the injection slide member 215, and moves forward and backward by rotational movement of the injection filling ball screw shaft 216 screwed with the injection filling ball screw nut 217. The injection filling ball screw shaft 216 is attached to the bearing holding member 218 in an axially constrained but rotatable state by the injection filling bearing 219 and the pressing nut 220. The injection filling ball screw shaft 216 is connected to the rotation portion of the injection filling brake 221 (movement suppressing mechanism), and is further connected to the rotation axis of the injection filling servomotor 212 via the coupling 222. Therefore, when the injection filling servomotor 212 is rotated, the injection slide member 215 and the plunger 210 can be moved forward and backward. The injection brake 221 is an electromagnetic type, and when an electric current is applied, a braking force is exerted, and the rotation of the injection filling ball screw shaft 216 can be suppressed. In order to realize high-speed injection, it is preferable that the lead of the injection filling ball screw be large.
 ベースフレーム211には、リニアガイド223を介してメイン部材214が摺動可能に取付けられている。メイン部材214には、前述の射出スライド部材215がリニアガイドを介して摺動可能に取付けられているとともに、軸受け保持部材218が一体的に固着されている。軸受け保持部材218には、射出充填用サーボモータ212、射出充填ブレーキ221、および射出充填用軸受け219が装着されている。
 ベースフレーム211は、図示されていないが、金型を保持する固定盤と一体的に接続されているので、プランジャー210を前進(図の左方向)させることにより、金型キャビティ内の溶湯にメタル圧を負荷することができる。
 また、図14の上側のプランジャー210を除く部分が、射出充填装置となる。
A main member 214 is slidably attached to the base frame 211 via a linear guide 223. The aforementioned injection slide member 215 is slidably attached to the main member 214 via a linear guide, and a bearing holding member 218 is integrally fixed. On the bearing holding member 218, an injection filling servomotor 212, an injection filling brake 221, and an injection filling bearing 219 are mounted.
Although not shown, since the base frame 211 is integrally connected to a fixed plate for holding the mold, the molten metal in the mold cavity is moved forward by moving the plunger 210 (left direction in the figure). Metal pressure can be loaded.
Further, the portion excluding the upper plunger 210 of FIG. 14 is an injection filling device.
 図14の下側部分は、昇圧保持装置である。昇圧保持部材238は、ベースフレーム211に結合されており、昇圧用サーボモータ230、保持ブレーキ232、減速機233、昇圧保持用軸受け235が取付けられている。昇圧用サーボモータ230の回転軸は、カップリング231を介して保持ブレーキ232の回転部分と連結し、さらに減速機233の回転軸、およびボールねじ軸236に連結されている。ボールねじ軸236は、昇圧保持用軸受け235および軸受け押さえナット234によって、軸方向には拘束されるが回転自在に支持されている。ボールねじ軸236と螺合するボールねじナット237には、ナットホルダー239が取付けられており、ナットホルダー239は、昇圧保持スライド部材241の中に、キー242を介して、軸方向には動作できるが回転方向に拘束された状態で収められている。また、ばね240が、圧縮状態でナットホルダー239と昇圧保持スライド部材241の間に装着されている。ばね240は、コイルばねでも皿ばねでも良い。昇圧保持スライド部材241は、メイン部材214の下側に固着されるとともに、リニアガイドを介してベースフレーム11に摺動自在に取付けられている。
 この場合、昇圧用のボールねじの直進部は、ボールねじナット237となる。また、昇圧用のボールねじは、大きな力(前進力)を発揮する必要があるため、リードはあまり大きくない方が良い。
The lower part of FIG. 14 is a pressure holding device. The pressure holding member 238 is coupled to the base frame 211, and a pressure boosting servomotor 230, a holding brake 232, a reduction gear 233, and a pressure holding bearing 235 are attached. The rotational shaft of the pressure-raising servomotor 230 is coupled to the rotational portion of the holding brake 232 via a coupling 231, and is further coupled to the rotational shaft of the reduction gear 233 and the ball screw shaft 236. The ball screw shaft 236 is axially restrained and rotatably supported by the pressure holding bearing 235 and the bearing holding nut 234. A nut holder 239 is attached to the ball screw nut 237 screwed with the ball screw shaft 236, and the nut holder 239 can axially move in the pressure holding slide member 241 via the key 242. Is confined in the direction of rotation. Further, a spring 240 is mounted between the nut holder 239 and the pressure holding slide member 241 in a compressed state. The spring 240 may be a coil spring or a disc spring. The pressure holding slide member 241 is fixed to the lower side of the main member 214 and is slidably attached to the base frame 11 via a linear guide.
In this case, the straight part of the ball screw for pressure increase is the ball screw nut 237. In addition, since the ball screw for pressure increase needs to exert a large force (forward force), it is better that the lead is not so large.
 次に、このような射出装置によって行なう射出充填工程、昇圧保持工程、およびその制御方法について、図15を用いて説明する。図15は、第3実施形態に係るダイカストマシンの射出装置における、各工程での射出速度、圧力、および制御方法などを示すグラフである。 Next, an injection filling process, a pressure holding process, and a control method thereof performed by such an injection device will be described with reference to FIG. FIG. 15 is a graph showing the injection speed, pressure, control method and the like in each step in the injection device of the die casting machine according to the third embodiment.
 給湯装置によってスリーブ内に溶湯が注湯されると、直ちに射出充填工程が開始される。まず、射出充填用サーボモータ212を低速で回転させ、低速射出を行なう。そして、プランジャー210が設定された距離を前進して、スリーブ内の溶湯の上面が金型ゲート付近まで上昇すると、射出充填用サーボモータ212の回転を一気に加速し高速射出を行なう。金型キャビティ内が溶湯でほぼ充満されてきた際には、フル充填時の衝撃(サージ圧)の発生を防止するため、射出速度を下げていく。金型キャビティ内がフル充填の直前になると、射出圧力が急激に上がりだすので、射出圧力の測定値が切換え圧力に達すると、昇圧保持工程に切換える。射出圧力は、金型内の溶湯の圧力から測定でき、また、プランジャー210などにロードセルを装着して測定することもできる。
 射出充填工程中は、射出充填用サーボモータ212は速度制御を行ない、また昇圧用サーボモータ230は、位置保持制御を行って動かないよう静止させておく。昇圧用サーボモータ230を位置保持制御することにより、射出充填中の射出圧力を、昇圧保持装置を介して射出充填装置およびプランジャー210に伝えることができる。
As soon as the molten metal is poured into the sleeve by the water heater, the injection filling process is started. First, the injection filling servomotor 212 is rotated at low speed to perform low speed injection. Then, when the plunger 210 moves forward by the set distance and the upper surface of the molten metal in the sleeve rises to the vicinity of the mold gate, the rotation of the injection filling servomotor 212 is accelerated at once to perform high speed injection. When the inside of the mold cavity is substantially filled with the molten metal, the injection speed is reduced to prevent the occurrence of shock (surge pressure) at the time of full filling. Since the injection pressure starts to rise sharply immediately before full filling in the mold cavity, when the measurement value of the injection pressure reaches the switching pressure, the pressure is switched to the pressure holding process. The injection pressure can be measured from the pressure of the molten metal in the mold, or can be measured by attaching a load cell to a plunger 210 or the like.
During the injection and filling process, the injection and filling servomotor 212 performs speed control, and the pressure raising servomotor 230 performs position holding control and is kept stationary. By performing position holding control of the pressure rising servomotor 230, the injection pressure during injection filling can be transmitted to the injection filling device and the plunger 210 via the pressure rising holding device.
 射出充填工程から昇圧保持工程への切換え後、射出充填ブレーキ221を作動(ON)させて、射出充填用ボールねじ軸216の回転を拘束する。これは、昇圧時の高い溶湯圧力によって射出充填用ボールねじ216が反対方向に回転させられ、プランジャー210が後退することを防ぐためである。また、射出充填ブレーキ221が作動した後は、射出充填用サーボモータ212を、サーボフリー(休止状態)とする。
 また、射出充填工程から昇圧保持工程への切換え後、昇圧用サーボモータ230は、設定された昇圧速度に沿って、トルクの上昇制御が行なわれる。この時、射出圧力(溶湯圧力)が上昇し、昇圧用のボールねじの前進力が、ばね240の取り付け時の収縮力を超えると、ばね240はさらに収縮していく。そして、射出圧力が設定された保持圧力に達すると、保持ブレーキ232がONされる。保持ブレーキ232が作用すると、昇圧用サーボモータ230をサーボフリー状態にしても、ボールねじ軸236の回転は抑制され、保持圧力は維持される。保持中において、金型キャビティ内の溶湯が凝固収縮する分プランジャー210が若干前進するが、ばね240の収縮している分が伸びるので、射出圧力は若干下がるものの設定圧力をほぼ維持できる。
After switching from the injection filling process to the pressure-rising holding process, the injection filling brake 221 is operated (ON) to restrain the rotation of the injection filling ball screw shaft 216. This is to prevent the injection filling ball screw 216 from rotating in the opposite direction due to the high molten metal pressure at the time of pressure increase, thereby preventing the plunger 210 from being retracted. In addition, after the injection filling brake 221 is actuated, the injection filling servomotor 212 is set to servo free (resting state).
In addition, after switching from the injection filling process to the pressure increase holding process, the pressure increase servomotor 230 is subjected to torque increase control according to the set pressure increase speed. At this time, when the injection pressure (molten metal pressure) rises and the forward force of the pressure-raising ball screw exceeds the contraction force at the time of attachment of the spring 240, the spring 240 is further contracted. Then, when the injection pressure reaches the set holding pressure, the holding brake 232 is turned on. When the holding brake 232 acts, the rotation of the ball screw shaft 236 is suppressed and the holding pressure is maintained, even if the pressure raising servomotor 230 is in the servo free state. During holding, the plunger 210 advances slightly as the molten metal in the mold cavity solidifies and contracts, but since the contraction of the spring 240 extends, the set pressure can be substantially maintained although the injection pressure slightly decreases.
 このように、昇圧用サーボモータ230は、保持ブレーキ232のON後はサーボフリーにすることができ、かつ昇圧時間は通常1秒以下なので、サーボモータの持つ最大瞬間トルク(定格トルクの250%程度)が使えることになる。よって、容量の小さなサーボモータを採用可能で、製作コストが低くなる。
 一方、特許文献2の機構ではブレーキが装着されていないため、昇圧保持工程の長い時間中サーボモータはトルクを発揮し続ける必要があり、最大瞬間トルクは使えない。よって、定格トルクで昇圧、保持できる大きな容量のサーボモータの使用が必要となる。
As described above, the boosting servomotor 230 can be servo-free after the holding brake 232 is turned on, and the boosting time is usually 1 second or less, so the maximum instantaneous torque (about 250% of the rated torque) of the servomotor ) Can be used. Therefore, a servomotor with a small capacity can be adopted, and the manufacturing cost is reduced.
On the other hand, in the mechanism of Patent Document 2, since the brake is not attached, the servomotor needs to continuously exert the torque during the long time of the pressure rising and holding process, and the maximum momentary torque can not be used. Therefore, it is necessary to use a large capacity servomotor which can be boosted and held at the rated torque.
 また、減速機233も減速比の小さいものが使えるので、慣性の大きいサーボモータを、高速まで回転させなくてもボールねじ軸236の回転速度が上げられることができ、より短時間での昇圧も可能となる。 Further, since the reduction gear 233 can also be used with a small reduction ratio, the rotational speed of the ball screw shaft 236 can be increased without rotating the servomotor with large inertia to a high speed, and the pressure increase in a shorter time is also possible. It becomes possible.
 設定された保持時間が経過すると昇圧保持工程は終了となり、射出充填ブレーキ221や保持ブレーキ232の作動を解除(OFF)し、次の型開き、突き出し工程に移行して、一連の鋳造工程を行なう。 When the set holding time elapses, the pressure rising holding process ends, and the operation of the injection filling brake 221 and the holding brake 232 is released (turned off), and the next mold opening and pushing out process is performed to perform a series of casting processes. .
 従来の特許文献1及び2の射出装置においては、昇圧保持工程中における圧力保持を昇圧保持用(増圧用)のサーボモータの動作により一定の保持時間行なうために、サーボモータがほぼ止まった状態で大きなトルクを発揮し続ける必要がある。また、大きなトルクを発揮し続けるためには、大きな電流を流し続ける必要があるので、サーボモータは発熱してしまい、それを回避するために容量の大きなサーボモータを装備したり、あるいは大きな冷却ファンを取り付けたりする必要がある。 In the conventional injection devices of Patent Documents 1 and 2, the servomotor is almost stopped in order to perform a constant holding time by the operation of the servomotor for pressure holding (pressure increasing) during pressure holding process. It is necessary to keep exerting a large torque. Also, in order to keep exerting a large torque, it is necessary to keep flowing a large current, so the servomotor generates heat, and a servomotor with a large capacity is installed to avoid it, or a large cooling fan Need to be attached.
 これに対し、第3実施形態に係るダイカストマシンの射出装置によれば、以下の有利な効果を奏することができる。
(1)昇圧用サーボモータは、保持時間中に大きなトルクを発揮し続ける必要がなくなるため、長時間電流を流し続ける必要がなく、省エネ運転が可能となり、かつサーボモータが発熱することもない。
(2)昇圧用サーボモータは、瞬間的に大きなトルクを発揮すれば良いので、小さな容量のサーボモータを使用できる。
(3)大きなトルクを出すために減速機を使った場合でも、減速比を小さくできるので、慣性モーメントの大きいサーボモータの回転軸を、高速まで回転させる必要がなく、短時間での昇圧が可能となる。
On the other hand, according to the injection device of the die casting machine concerning a 3rd embodiment, the following advantageous effects can be produced.
(1) Since the step-up servomotor does not have to continuously exert a large torque during the holding time, it is not necessary to keep the current flowing for a long time, energy saving operation is possible, and the servomotor does not generate heat.
(2) Since the boosting servomotor only needs to exert a large torque instantaneously, a servomotor with a small capacity can be used.
(3) Even when a reduction gear is used to generate a large torque, the reduction ratio can be reduced, so there is no need to rotate the servo motor rotation axis with a large inertia moment to a high speed, and pressure can be increased in a short time. It becomes.
 第3実施形態に係るダイカストマシンの射出装置は、ダイカストマシンによりアルミニウム製品を鋳造する生産工場において実用可能であり、電動射出装置の低コスト化、省エネ運転に貢献できる。 The injection device of the die casting machine according to the third embodiment can be put to practical use in a production plant that casts an aluminum product by the die casting machine, and can contribute to cost reduction and energy saving operation of the electric injection device.
 次に、本発明の第4実施形態に係るダイカストマシンの射出装置について、図16~図22に基づいて説明する。図16は、第4実施形態に係るダイカストマシンの射出装置の構造を示す概略図である。 Next, an injection device of a die casting machine according to a fourth embodiment of the present invention will be described based on FIG. 16 to FIG. FIG. 16 is a schematic view showing the structure of the injection device of the die casting machine according to the fourth embodiment.
 プランジャーチップ310aとプランジャーロッド310bからなるプランジャー310は、図示しないスリーブ内で摺動可能な状態であり、前進することによってスリーブ内の溶湯を金型キャビティ内に射出充填することができる。その時、プランジャーチップ310aの先端面は溶湯からメタル圧(射出圧力)を受けることになる。プランジャーロッド310bは、プランジャー部材312と一体的に接続している。プランジャー部材312は、サージ圧防止シリンダー316(リング状シリンダー)の移動部分と接合しており、また、高速移動部材314とは、キーを介すことにより、摺動可能であるが回転動作が拘束された状態で連結している。高速移動部材314には、ロックナット軸受331を介して、ロックナット330(移動抑制機構)が回転自在且つ軸方向に拘束された状態で取り付けされている。ロックナット330の高速移動部材314側には摩擦ディスク315が固着されており、ロックナット330の一部を構成している。サージ圧防止シリンダー316の油室の作動油に圧力が負荷されると、プランジャー部材312と高速移動部材314が当接し、プランジャー部材312と摩擦ディスク315の間には、一定距離の隙間313が形成される。 A plunger 310 consisting of a plunger tip 310a and a plunger rod 310b is in a slidable state in a sleeve (not shown), and by advancing it can inject and fill the molten metal in the sleeve into the mold cavity. At that time, the tip surface of the plunger tip 310a receives metal pressure (injection pressure) from the molten metal. The plunger rod 310 b is integrally connected to the plunger member 312. The plunger member 312 is joined to the moving part of the surge pressure preventing cylinder 316 (ring-shaped cylinder), and the high speed moving member 314 can slide though a key but has a rotational movement. It is connected in the state of being restrained. A lock nut 330 (movement suppressing mechanism) is attached to the high speed moving member 314 via a lock nut bearing 331 in a state where the lock nut 330 is rotatably and axially restrained. A friction disk 315 is fixed to the high speed moving member 314 side of the lock nut 330 and constitutes a part of the lock nut 330. When pressure is applied to the hydraulic oil of the oil chamber of the surge pressure preventing cylinder 316, the plunger member 312 and the high speed moving member 314 abut, and a gap 313 of a certain distance is formed between the plunger member 312 and the friction disk 315. Is formed.
 高速移動部材314の両側には、クッションシリンダー318が2組取り付けられている。クッションシリンダー318には、クッションシリンダー移動部材321が、スプライン319またはキーを介して、摺動可能であるが回転が拘束された状態で装着されている。クッションシリンダー移動部材321には、射出充填ボールねじナット320がボルトによって一体的に締結されている。射出充填ボールねじナット320と螺合する射出充填ボールねじ軸322は、後部支持部材340に射出充填軸受323を介して、回転自在且つ軸方向に拘束された状態で装着及び支持されている。射出充填ボールねじ軸322は、さらにカップリング324によって射出充填用サーボモータ325の回転軸と連結している。
 ここで説明した射出充填装置は、射出充填ボールねじと射出充填用サーボモータ325等から構成されるが、リニアモータを用いても良い。
Two sets of cushion cylinders 318 are mounted on both sides of the high speed moving member 314. A cushion cylinder moving member 321 is attached to the cushion cylinder 318 via a spline 319 or a key in a slidable but rotationally restricted state. An injection filling ball screw nut 320 is integrally fastened to the cushion cylinder moving member 321 by a bolt. The injection filling ball screw shaft 322 screwed with the injection filling ball screw nut 320 is mounted and supported on the rear support member 340 via the injection filling bearing 323 in a rotatably and axially restrained state. The injection filling ball screw shaft 322 is further coupled to the rotation axis of the injection filling servomotor 325 by a coupling 324.
The injection filling apparatus described here is composed of an injection filling ball screw, an injection filling servomotor 325, etc., but a linear motor may be used.
 ロックナット330と螺合する台形ねじ332は、キー333a及びカラー333bによって加圧部材333に固着されている。加圧部材333の内部には、昇圧ボールねじナット336と一体の昇圧ナットホルダー335が、キーを介して摺動可能であるが回転が拘束された状態で装着されており、圧縮状態のばね334(皿ばね又はコイルばね)によって片側(図の右方向)に押し付けられている。昇圧ボールねじナット336と螺合する昇圧ボールねじ軸337は、昇圧軸受338によって、後部支持部材340に回転自在且つ軸方向に拘束された状態で支持されている。昇圧ボールねじ軸337は、さらに減速機341、ブレーキ342、および昇圧カップリング343を介して昇圧用サーボモータ344の回転軸と連結している。減速機341、ブレーキ342、および昇圧サーボモータ344の回転しない部分は、後部支持部材340に固定されている。昇圧ボールねじは、回転摩擦抵抗が少ないボールねじであることが好適であるが、大荷重が作用する大型機の場合は、台形ねじなどを用いても良い。また、減速機341を介すことにより、小さな回転トルクの昇圧サーボモータ344であっても、大きな回転トルクを昇圧ボールねじ軸337に伝えることができる。よって、減速機341は、設けなくても良い場合もある。 A trapezoidal screw 332 screwed with the lock nut 330 is fixed to the pressure member 333 by a key 333a and a collar 333b. A pressurizing nut holder 335 integral with the pressurizing ball screw nut 336 is mounted in the pressurizing member 333 so as to be slidable through a key but restricted in rotation, and the spring 334 is in a compressed state. It is pressed to one side (right direction in the figure) by (a disc spring or a coil spring). A pressurizing ball screw shaft 337 screwed with the pressurizing ball screw nut 336 is supported by the pressurizing support 338 in a rotatably and axially restrained state by the rear support member 340. The booster ball screw shaft 337 is further connected to the rotation shaft of the booster servomotor 344 via the reduction gear 341, the brake 342, and the booster coupling 343. The non-rotating portions of the reduction gear 341, the brake 342, and the boosting servomotor 344 are fixed to the rear support member 340. The pressure-boosting ball screw is preferably a ball screw having a small rotational friction resistance, but in the case of a large machine on which a large load acts, a trapezoidal screw or the like may be used. Further, by means of the reduction gear 341, even if the boost servomotor 344 with a small rotational torque, a large rotational torque can be transmitted to the boost ball screw shaft 337. Therefore, the reduction gear 341 may not be provided.
 図17は、金型周辺および射出装置を、横から見た図(射出充填ボールねじ等は省略している)であり、射出スリーブ355内に溶湯が注湯され、射出充填工程直前の状態を表している。固定プラテン350に取り付けられた固定金型352と可動プラテン351に取り付けられた可動金型353は、図示しない型締装置によって型締力が負荷されており、これら可動金型352と可動金型353との間には、鋳造品形状の空間であるキャビティが形成されている。固定プラテン350と固定金型352には、射出スリーブ355が装着されており、キャビティと連通している。よって、プランジャー310を前進(図の左方向)させると、溶湯をキャビティ内に充填することができる。 FIG. 17 is a view of the mold periphery and the injection device as seen from the side (injection filling ball screw etc. are omitted), the molten metal is poured into the injection sleeve 355 and the state immediately before the injection filling step is shown. It represents. A mold clamping force is applied to the fixed mold 352 attached to the fixed platen 350 and the movable mold 353 attached to the movable platen 351 by a mold clamping device (not shown), and these movable mold 352 and the movable mold 353 And a cavity, which is a cast-shaped space, is formed therebetween. An injection sleeve 355 is mounted on the stationary platen 350 and the stationary mold 352 and is in communication with the cavity. Therefore, when the plunger 310 is advanced (left direction in the figure), the molten metal can be filled in the cavity.
 後部支持部材340は、下部支持フレーム346および上部支持フレーム347と一体化しており、固定プラテン350と連結されている。そのため、プランジャー310が射出充填および昇圧保持中に溶湯から受ける圧力を、受け止め支持することができる。
 高速移動部材314と加圧部材333は、それぞれ高速部材用リニアガイド349と加圧部材用リニアガイド348によって、下部支持フレーム346上に前後方向には滑らかに摺動可能で、且つ、上下、横方向には拘束された状態で支持されている。
 図18は、図17の矢視Aから見た図である。高速移動部材314は、2組の高速移動部材用リニアガイド349に支持されている。また、高速移動部材314の両側においては、クッションシリンダーを介して射出充填ボールねじ軸322等を支持している。
The rear support member 340 is integral with the lower support frame 346 and the upper support frame 347 and is connected to the stationary platen 350. Therefore, the pressure that the plunger 310 receives from the molten metal during injection filling and pressure holding can be supported and supported.
The high-speed moving member 314 and the pressing member 333 can slide smoothly in the front-rear direction on the lower support frame 346 by the high-speed member linear guide 349 and the pressing member linear guide 348, respectively. It is supported in a constrained state in the direction.
FIG. 18 is a view from the arrow A of FIG. The high speed moving member 314 is supported by two sets of linear guides 349 for high speed moving member. Further, on both sides of the high speed moving member 314, the injection filling ball screw shaft 322 and the like are supported via a cushion cylinder.
 図19は、2組のクッションシリンダー318の油室と、配管やホースを介して回路接続している油圧装置を示す。切換えバルブ361を励磁した状態で、油圧源より適切な圧力の作動油をクッションシリンダー318の油室に供給し、クッションシリンダー移動部材321をシリンダーエンドに押し付けた状態で、切換えバルブ361を消磁し、圧力を封入しておく。また、油圧回路は途中で分岐し、所定の圧力に設定されたリリーフ弁360を介してオイルタンク362と接続している。よって、溶湯が金型キャビティ内にフル充填した瞬間、高速射出部材314は急減速するが、リリーフ弁360から作動油がタンクに流れることによりクッションシリンダー318内で移動部材321が前方にストロークできる(動ける)。よって、射出充填ボールねじや、軸受323、カップリング324に、急減速によって作用する衝撃力が緩和されるので、それらに損傷が生じることはない。また、高速射出充填中にはクッションシリンダー移動部材321がストローク(移動)しないよう、高速射出充填中の溶湯圧力に抗することができる適切な圧力を、クッションシリンダー318の油室内に封入しておく必要がある。 FIG. 19 shows a hydraulic device in circuit connection with the oil chambers of two sets of cushion cylinders 318 via piping and hoses. With the switching valve 361 energized, hydraulic oil of an appropriate pressure is supplied from the hydraulic pressure source to the oil chamber of the cushion cylinder 318, and with the cushion cylinder moving member 321 pressed against the cylinder end, the switching valve 361 is demagnetized, Seal the pressure. Further, the hydraulic circuit branches halfway and is connected to the oil tank 362 via a relief valve 360 set to a predetermined pressure. Therefore, the moment the molten metal fully fills the mold cavity, the high-speed injection member 314 decelerates rapidly, but the hydraulic oil flows from the relief valve 360 to the tank so that the moving member 321 can stroke forward in the cushion cylinder 318 ( Can move Therefore, since the impact force acting on the injection filling ball screw, the bearing 323 and the coupling 324 due to the rapid deceleration is alleviated, they are not damaged. In addition, an appropriate pressure capable of resisting the melt pressure during high-speed injection filling is enclosed in the oil chamber of the cushion cylinder 318 so that the cushion cylinder moving member 321 does not stroke (move) during high-speed injection filling. There is a need.
 図20は、サージ圧防止シリンダー316(リング状シリンダー)の油室と回路接続する油圧装置を示す。サージ圧防止シリンダー316からの回路は途中で3回路に分岐し、ばね式アキュムレータ364、切換え弁365を介してタンク366、サージ圧吸収用油圧シリンダー367に繋がっている。ばね式アキュムレータ364は、サージ圧防止シリンダー316から流れてきた作動油を一時退避させ、回路内の圧力が急激に上がらないようにするためのものである。タンク366と切換え弁365は、回路内に作動油を適宜補充するために設けられている。また、サージ圧吸収用油圧シリンダー367は、ピストンロッドがナットホルダー368および油圧用ボールねじナット369と一体的に接続している。ボールねじナット369に螺合するボールねじ軸370は、カップリング371を介して油圧用サーボモータ372の回転軸と連結するとともに、図示しない軸受によって支持されている。よって、油圧用サーボモータ372の回転量およびトルクを制御することにより、ピストンロッドの位置と作動油の圧力を制御することができる。これにより、サージ圧防止シリンダー316の油室内の作動油を適切な圧力で供給、保持し、さらに、適切な速度と圧力で抜くことができる。そのため、キャビティ内に溶湯がフル充填した後、プランジャー部材312と摩擦ディスク315を低速で穏やかに当接させ、その後圧力を抜くことができる。圧力を抜くことにより、プランジャー部材312と摩擦ディスク315の間に生じる垂直抗力が大きくなるので、摩擦力も大きくなり、ロックナット330の回転の拘束をより確実に行なうことができる。これは、台形ねじ332のリードの作用がロックナット330を回転させようとする力よりも、回転を止めようとする摩擦力が上回るためである。プランジャー部材312と摩擦ディスク315を穏やかに当接させることで、そのときに生じるサージ圧も抑えることができる。 FIG. 20 shows a hydraulic system in circuit connection with the oil chamber of the surge pressure prevention cylinder 316 (ring cylinder). The circuit from the surge pressure preventing cylinder 316 branches into three circuits along the way, and is connected to the tank 366 and the hydraulic pressure absorbing hydraulic cylinder 367 via a spring type accumulator 364 and a switching valve 365. The spring-type accumulator 364 is for temporarily evacuating the hydraulic fluid flowing from the surge pressure preventing cylinder 316 so that the pressure in the circuit does not rapidly increase. A tank 366 and a switching valve 365 are provided to appropriately replenish the hydraulic oil in the circuit. In the surge pressure absorbing hydraulic cylinder 367, the piston rod is integrally connected to the nut holder 368 and the ball screw nut 369 for hydraulic pressure. A ball screw shaft 370 screwed to the ball screw nut 369 is connected to the rotary shaft of the hydraulic servomotor 372 via a coupling 371 and supported by a bearing (not shown). Therefore, by controlling the rotation amount and torque of the hydraulic servomotor 372, the position of the piston rod and the pressure of the hydraulic oil can be controlled. As a result, the hydraulic fluid in the oil chamber of the surge pressure preventing cylinder 316 can be supplied and maintained at an appropriate pressure, and furthermore, can be evacuated at an appropriate speed and pressure. Therefore, after the molten metal is fully filled in the cavity, the plunger member 312 and the friction disk 315 can be gently brought into contact with each other at a low speed, and then the pressure can be released. By releasing the pressure, the normal force generated between the plunger member 312 and the friction disk 315 is increased, so that the friction force is also increased, and the rotation of the lock nut 330 can be restrained more reliably. This is because the action of the lead of the trapezoidal screw 332 exceeds the force for stopping the rotation of the lock nut 330 more than the force for stopping the rotation. By gently abutting the plunger member 312 and the friction disc 315, the surge pressure generated at that time can also be suppressed.
 図21は、サージ圧防止シリンダー316の油室と回路接続する油圧装置の他の例を示す図である。サージ圧防止シリンダー316からの回路は、3つに分岐し、ばね式アキュムレータ384、チェック弁385を介してポンプ386、および流量調整弁391を介してタンク393と繋がっている。ポンプ386は、電気モータ387によって回転駆動し、タンク388から作動油を吸い上げ、リリーフ弁389によって適切な圧力の作動油をサージ圧防止シリンダー316に供給する。流量調整弁391は、サーボモータ392の回転動作によって、弁開度を0から全開まで連続的且つ短時間に自由に調整することができる。よって、サージ圧防止シリンダー316の油室の作動油を、圧力センサ390の測定値などをフィードバックし、圧力を適切に制御しながらタンク393に落とし、プランジャー部材312と摩擦ディスク315を穏やかに当接させ、その後圧力を抜くことができる。 FIG. 21 is a view showing another example of the hydraulic device connected in circuit with the oil chamber of the surge pressure preventing cylinder 316. In FIG. The circuit from the surge pressure prevention cylinder 316 branches into three, and is connected to a tank 393 via a spring-type accumulator 384, a pump 386 via a check valve 385, and a flow control valve 391. The pump 386 is rotationally driven by the electric motor 387, sucks up the hydraulic fluid from the tank 388, and supplies the hydraulic fluid of appropriate pressure to the anti-surge pressure cylinder 316 by the relief valve 389. The flow control valve 391 can freely adjust the valve opening degree continuously and in a short time from 0 to full opening by the rotation operation of the servomotor 392. Therefore, the hydraulic oil in the oil chamber of the surge pressure prevention cylinder 316 is fed back to the tank 393 while appropriately controlling the pressure by feeding back the measured value of the pressure sensor 390 etc., and the plunger member 312 and the friction disc 315 are gently hit. It can be brought in contact and then the pressure released.
 なお、第4実施形態に係るダイカストマシンの射出装置においては、昇圧保持装置はサーボモータとボールねじによって保持力を発生させる構造で説明したが、油圧シリンダーによって保持力を発生させても良い。しかし、昇圧速度等をサーボモータのトルク制御で調整した方が、動作の安定性等に優れる。 In the injection device of the die casting machine according to the fourth embodiment, the pressure rising and holding device is described as the structure for generating the holding force by the servomotor and the ball screw, but the holding force may be generated by the hydraulic cylinder. However, adjusting the boosting speed and the like by torque control of the servomotor is more excellent in the stability of the operation and the like.
 次に、このような射出装置によって行なう射出充填工程、昇圧保持工程、およびその制御方法について、図22を用いて説明する。図22は、射出充填工程、昇圧保持工程中における、各装置の速度、圧力、状態を表すグラフである。 Next, an injection filling process, a pressure holding process, and a control method thereof performed by such an injection apparatus will be described with reference to FIG. FIG. 22 is a graph showing the speed, pressure, and state of each device during the injection filling step and the pressure rising and holding step.
 まず、射出充填工程開始前の射出装置の状態について説明する。クッションシリンダー318の油室に油圧源363より作動油を供給し、クッションシリンダー移動部材321をシリンダーエンドまで移動させ、適切な圧力で保持しておく。また、サージ圧防止シリンダー316(リング状シリンダー)に適切な圧力を負荷しておく。この圧力は、射出充填工程から昇圧工程に切換える溶湯圧力に相当するようにしておくか、あるいはそれより若干高めにしておく。ブレーキ342はOFFにしておく。 First, the state of the injection device before the start of the injection filling process will be described. Hydraulic fluid is supplied from the hydraulic pressure source 363 to the oil chamber of the cushion cylinder 318, and the cushion cylinder moving member 321 is moved to the cylinder end and held at an appropriate pressure. Also, an appropriate pressure is loaded on the surge pressure prevention cylinder 316 (ring cylinder). This pressure is made to correspond to the molten metal pressure to be switched from the injection filling process to the pressure raising process or slightly higher than that. The brake 342 is kept off.
 型締工程の完了後、給湯装置によって射出スリーブ内に溶湯が注湯されると、直ちに射出充填工程が開始される。まず、射出充填用サーボモータ325を低速で回転させ、低速射出を行なう。そして、プランジャー310が設定された距離を前進して、スリーブ内の溶湯の上面が金型ゲート付近まで上昇すると、射出充填用サーボモータ325の回転を一気に加速し高速射出を行なう。この時、射出充填ボールねじ軸322やカップリング324の回転慣性のため、高速まで速度を上げるための加速域(加速時間)が存在する。射出充填工程中は、昇圧用サーボモータ344は位置保持制御し、加圧部材333等が動かないようにしておく。金型キャビティ内が溶湯でほぼ充満されると、プランジャー310が溶湯から受ける圧力が高くなり、切換え圧に達すると昇圧工程に切換える。この切換え圧は、プランジャー310やプランジャー部材312にロードセルなどを仕込んでおいて検知しても良いし、あるいは、サージ圧防止シリンダー316の圧力を切換え圧力相当に設定しておき、移動部分が動いた瞬間を位置センサや、ばね式アキュムレータ364の動き、または圧力で検知しても良い。 As soon as the molten metal is poured into the injection sleeve by the water heater after completion of the clamping process, the injection filling process is started immediately. First, the injection filling servomotor 325 is rotated at low speed to perform low speed injection. Then, when the plunger 310 advances by a set distance and the upper surface of the molten metal in the sleeve rises to near the mold gate, the rotation of the injection filling servomotor 325 is accelerated at a stroke to carry out high speed injection. At this time, due to the rotational inertia of the injection filling ball screw shaft 322 and the coupling 324, an acceleration region (acceleration time) for increasing the speed to a high speed exists. During the injection and filling process, the pressure raising servomotor 344 performs position holding control so that the pressure member 333 and the like do not move. When the inside of the mold cavity is substantially filled with the molten metal, the pressure received from the molten metal by the plunger 310 becomes high, and when the switching pressure is reached, the pressure is switched to the pressure increasing process. The switching pressure may be detected by loading a load cell or the like into the plunger 310 or the plunger member 312, or the pressure of the surge pressure preventing cylinder 316 is set to be equivalent to the switching pressure, and the moving portion The moment of movement may be detected by a position sensor, movement of a spring-type accumulator 364 or pressure.
 昇圧工程に切換わると、射出充填用サーボモータ325に回転方向と反対向けのトルクを生じさせ、回転を止めようとする。この時、クッションシリンダー318の油室から作動油がリリーフ弁360を介してオイルタンク362に落ちるので、クッションシリンダー移動部材321はストロークできる。よって、クッションシリンダー318内には大きな圧力が発生しないので、射出充填ボールねじ軸322や、軸受323、カップリング324に大きな衝撃が生じなく、破損することは無い。また、射出充填ボールねじ軸322等の回転体の回転運動エネルギーは、プランジャー310には衝撃的に作用しなくなるので、サージ圧によるバリの発生を防止できることになる。そして、射出充填ボールねじ軸322等の回転が止まると、射出充填用サーボモータ325を休止し、フリー状態にする。 When switching to the pressure increase process, the injection filling servomotor 325 generates torque in the direction opposite to the rotation direction to stop the rotation. At this time, since the hydraulic oil from the oil chamber of the cushion cylinder 318 falls to the oil tank 362 via the relief valve 360, the cushion cylinder moving member 321 can make a stroke. Therefore, since a large pressure is not generated in the cushion cylinder 318, a large impact does not occur on the injection filling ball screw shaft 322, the bearing 323, and the coupling 324, and there is no breakage. In addition, since the rotational kinetic energy of the rotating body such as the injection filling ball screw shaft 322 does not act on the plunger 310 in an impacting manner, the generation of the burr due to the surge pressure can be prevented. Then, when the rotation of the injection filling ball screw shaft 322 or the like stops, the injection filling servomotor 325 is stopped to be in a free state.
 昇圧工程への切換え後、さらに同時に、高速移動部材314などの速度の慣性によって溶湯にサージ圧が発生しないように、サージ圧防止シリンダー316の油室内の作動油を、油圧用サーボモータ372とサージ圧吸収用油圧シリンダー367、あるいは流量調整弁391を適切に動作させ、適切な圧力、速度で抜く。そして、プランジャー部材312と摩擦ディスク315を低速で衝撃無く当接させる。すると、プランジャー310からの溶湯圧力によって、接触面に摩擦力が働くので、ロックナット330の回転は止まり、ロックナット330と台形ねじ332は相対的動作が抑止されロックされる。 At the same time after switching to the pressure raising process, the hydraulic oil in the oil chamber of the surge pressure preventing cylinder 316, the hydraulic servomotor 372, and the surge prevent the surge pressure from being generated in the molten metal The pressure absorbing hydraulic cylinder 367 or the flow control valve 391 is operated appropriately and the pressure is released at an appropriate pressure. Then, the plunger member 312 and the friction disc 315 are brought into contact at low speed without impact. Then, since the molten metal pressure from the plunger 310 exerts a frictional force on the contact surface, the rotation of the lock nut 330 is stopped and the relative movement between the lock nut 330 and the trapezoidal screw 332 is suppressed and locked.
 この状態になると、昇圧用サーボモータ344を駆動してトルク制御によって加圧部材333、台形ねじ332、プランジャー部材312を前進させ、溶湯の圧力を上げて昇圧する。昇圧速度は、トルク制御によって自在に調整することができる。この時、ばね334は、押圧力によって圧縮されていく。そして、溶湯の圧力が所望の保持圧に達すると、ブレーキ342を動作させて、昇圧ボールねじ軸337の回転を止め、昇圧用サーボモータ344をフリー状態にして休止させ、電力の消費を削減する。保持工程中は、ばね334の圧縮力によって、プランジャー310から溶湯への押圧力は維持されるが、溶湯が凝固収縮する分、プランジャー310は前進するので、保持圧力は若干落ちていく。 In this state, the pressure raising servomotor 344 is driven to move the pressure member 333, the trapezoidal screw 332 and the plunger member 312 forward by torque control to raise the pressure of the molten metal and raise the pressure. The boost speed can be freely adjusted by torque control. At this time, the spring 334 is compressed by the pressing force. Then, when the pressure of the molten metal reaches a desired holding pressure, the brake 342 is operated to stop the rotation of the pressure rising ball screw shaft 337, and the pressure rising servomotor 344 is put in a free state to stop power consumption. . During the holding process, although the pressing force from the plunger 310 to the molten metal is maintained by the compression force of the spring 334, the holding pressure is slightly reduced because the plunger 310 advances since the molten metal solidifies and contracts.
 昇圧用サーボモータ344の前進駆動は、プランジャー部材312と摩擦ディスク315の当接後と説明したが、昇圧速度をさらに早くしたい場合は、当接前に前進動作を開始しておいても良い。
 また、ばね334とブレーキ342を装着しなくても、保持工程中に昇圧用サーボモータ344が回転トルクを発生し続ければ、保持圧を維持することもできる。
Although the forward drive of the boosting servomotor 344 has been described as after the contact between the plunger member 312 and the friction disk 315, if it is desired to further increase the boosting speed, the forward operation may be started before the contact. .
Further, even if the spring 334 and the brake 342 are not attached, the holding pressure can be maintained as long as the boosting servomotor 344 continues to generate rotational torque during the holding process.
 設定された保持時間が経過すると保持工程は終了となり、ブレーキ342の作動を解除(OFF)し、保持圧力を落とす。そして、次の型開きとともに射出充填用サーボモータ325あるいは昇圧用サーボモータ344を駆動し、突き出し工程を行なう。鋳造品を金型から取り外すと、一連の鋳造工程が終わり、次の鋳造工程を開始する。 When the set holding time has elapsed, the holding process ends, and the operation of the brake 342 is released (OFF) to lower the holding pressure. Then, with the next mold opening, the injection filling servomotor 325 or the pressure rising servomotor 344 is driven to carry out the ejection process. When the cast product is removed from the mold, a series of casting processes are completed and the next casting process is started.
 以上のように、第4実施形態に係るダイカストマシンの射出装置によれば、以下の有利な効果を奏することができる。
(1)大きな油圧タンクや射出用油圧シリンダーが不要となるため、油圧回路および射出装置全体を簡素化できる。
(2)射出充填工程を電気制御により速度制御できるので、動作が安定するとともに運転条件設定の自由度が増す。
(3)サージ圧を防止でき鋳造品にバリが発生することを防げる。
(4)射出充填装置がサージ圧の反力による衝撃によって破損することが無い。
As mentioned above, according to the injection device of the die-cast machine which concerns on 4th Embodiment, there can exist the following advantageous effects.
(1) Since a large hydraulic tank and a hydraulic cylinder for injection are not required, the hydraulic circuit and the entire injection device can be simplified.
(2) Since the speed of the injection and filling process can be controlled by electrical control, the operation is stabilized and the freedom of setting the operating conditions is increased.
(3) The surge pressure can be prevented, and the generation of burrs in the cast product can be prevented.
(4) The injection filling device is not damaged by the impact of the reaction force of the surge pressure.
 第4実施形態に係るダイカストマシンの射出装置は、ダイカストマシンによりアルミニウム製品を鋳造する生産工場において実用可能であり、鋳造品品質の向上、射出装置の簡素化、省エネ運転に貢献できる。 The injection device of the die casting machine according to the fourth embodiment can be put to practical use in a production plant that casts an aluminum product by the die casting machine, and can contribute to the improvement of cast product quality, simplification of the injection device, and energy saving operation.
 上述した第1~第4実施形態は、本発明の例であり、本発明は、該実施形態により制限されるものではなく、請求項に記載される事項によってのみ規定されており、上記以外の実施の形態も実施可能である。 The above-described first to fourth embodiments are examples of the present invention, and the present invention is not limited by the embodiments, and is defined only by the matters described in the claims, and other than the above. Embodiments are also feasible.
 上述した第1~第4実施形態に係るダイカストマシンの射出装置において、射出充填用のボールねじは、大きなリード角を有するものであることが好ましく、また、昇圧用のボールねじは、小さなリード角を有するものであることが好ましい。
 これは、ダイカストマシンの射出装置においては、樹脂成形用の射出装置と異なり、例えば図6、図13、図15及び図22に示すように、射出充填の際の高い高速射出能力及びキャビティ内に溶湯が充満した際の高い昇圧保持能力が要求されるためである。
In the injection device of the die casting machine according to the first to fourth embodiments described above, the ball screw for injection filling preferably has a large lead angle, and the ball screw for boosting has a small lead angle. It is preferable to have
This is different from an injection device for resin molding in an injection device of a die casting machine, for example, as shown in FIG. 6, FIG. 13, FIG. 15, and FIG. This is because a high pressure holding capacity when the molten metal is filled is required.
10、110、210、310 プランジャー
12、212、325 射出充填用サーボモータ
13、230、344 昇圧(保持)用サーボモータ
16、216、322 射出充填用ボールねじ軸
17、217、320 射出充填用ボールねじナット
25、49、63、315 摩擦ディスク
27、236、337 昇圧保持用ボールねじ軸
28、237、336 昇圧保持用ボールねじナット
120 サージ圧防止装置(油圧シリンダー)
124 衝撃緩和ばね
221 射出充填ブレーキ
232 保持ブレーキ
313 隙間
316 サージ圧防止シリンダー(リング状シリンダー)
318 クッションシリンダー
10, 110, 210, 310 Plunger 12, 212, 325 Injection filling servomotor 13, 230, 344 Pressure boosting (holding) servomotor 16, 216, 322 Injection filling ball screw shaft 17, 217, 320 For injection filling Ball screw nut 25, 49, 63, 315 Friction disk 27, 236, 337 Ball screw shaft 28, 237, 336 for pressure holding and holding Ball screw nut 120 for pressure holding and holding 120 Surge pressure prevention device (hydraulic cylinder)
124 shock absorbing spring 221 injection filling brake 232 holding brake 313 gap 316 surge pressure prevention cylinder (ring-shaped cylinder)
318 cushion cylinder

Claims (27)

  1.  プランジャーを前進させることによりスリーブ内の溶湯を金型内に射出充填するダイカストマシンの射出装置であって、
     モータによって前記プランジャーを低速及び高速で前進させる射出充填装置と、
     前記プランジャーを介して溶湯に圧力を負荷する昇圧保持装置と、
     前記溶湯に圧力を負荷している期間に前記プランジャーと前記昇圧保持装置の移動部との相対的な移動を抑制する移動抑制機構と
     を備えることを特徴とするダイカストマシンの射出装置。
    What is claimed is: 1. An injection device of a die casting machine for injecting and filling molten metal in a sleeve into a mold by advancing a plunger,
    An injection filling device for advancing the plunger at low speed and high speed by a motor;
    A pressure holding device for applying pressure to the molten metal through the plunger;
    An injection device of a die casting machine comprising: a movement suppressing mechanism which suppresses relative movement between the plunger and a moving portion of the pressure holding device during a period in which pressure is applied to the molten metal.
  2.  前記移動抑制機構は、前記プランジャーが溶湯から受ける圧力が設定圧力以上になると、溶湯から受ける圧力によって、前記プランジャーと前記昇圧保持装置の移動部の相対的な動作を抑制するロック機構であることを特徴とする請求項1に記載のダイカストマシンの射出装置。 The movement suppression mechanism is a lock mechanism that suppresses relative movement between the plunger and the moving part of the pressure holding device by the pressure received from the molten metal when the pressure received from the molten metal from the molten metal is equal to or higher than a set pressure. The injection device of the die casting machine according to claim 1, characterized in that:
  3.  前記射出充填装置は、サーボモータとねじによって駆動されることを特徴とする請求項1又は2に記載のダイカストマシンの射出装置。 The said injection | pouring filling apparatus is driven by a servomotor and a screw, The injection apparatus of the die-cast machine of Claim 1 or 2 characterized by the above-mentioned.
  4.  前記射出充填装置は、リニアモータによって駆動されることを特徴とする請求項1又は2に記載のダイカストマシンの射出装置。 The injection device of a die casting machine according to claim 1 or 2, wherein the injection filling device is driven by a linear motor.
  5.  前記昇圧保持装置は、サーボモータとねじによって駆動されることを特徴とする請求項1乃至4いずれか1項に記載のダイカストマシンの射出装置。 The said pressure | voltage rise holding apparatus is driven by a servomotor and a screw, The injection device of the die-cast machine of any one of the Claims 1 thru | or 4 characterized by the above-mentioned.
  6.  前記ロック機構は、プランジャーが溶湯から受ける圧力により、ねじナットの回転を摩擦力によって抑制することにより、前記プランジャーと前記昇圧保持装置の移動部の相対的な動作を抑制することを特徴とする請求項2乃至5いずれか1項に記載のダイカストマシンの射出装置。 The locking mechanism is characterized in that the relative movement of the plunger and the moving part of the pressure holding device is suppressed by suppressing the rotation of the screw nut by the frictional force by the pressure received from the molten metal by the plunger. The injection apparatus of the die-cast machine according to any one of claims 2 to 5.
  7.  前記設定圧力は、ばねの弾性力によって設定されることを特徴とする請求項2乃至6いずれか1項に記載のダイカストマシンの射出装置。 The injection device of a die casting machine according to any one of claims 2 to 6, wherein the set pressure is set by an elastic force of a spring.
  8.  前記設定圧力は、作動油の圧力によって設定されることを特徴とする請求項2乃至6いずれか1項に記載のダイカストマシンの射出装置。 The said set pressure is set by the pressure of hydraulic fluid, The injection device of the die-cast machine of any one of the Claims 2 thru | or 6 characterized by the above-mentioned.
  9.  プランジャーを前進させることによりスリーブ内の溶湯を金型内に射出充填するダイカストマシンの射出装置であって、
     サーボモータと、
     前記サーボモータの回転運動を直線運動に変換する運動変換装置と、
     前記運動変換装置の直線運動部分と前記プランジャーとの間に接続されたサージ圧防止装置とを備えていることを特徴とするダイカストマシンの射出装置。
    What is claimed is: 1. An injection device of a die casting machine for injecting and filling molten metal in a sleeve into a mold by advancing a plunger,
    Servo motor,
    A motion conversion device for converting the rotational motion of the servomotor into a linear motion;
    An injection device of a die casting machine comprising a surge pressure preventing device connected between a linear motion part of the motion converting device and the plunger.
  10.  前記サージ圧防止装置には、ばねが内蔵されており、ばねの弾性変形によってサージ圧を防止することを特徴とする請求項9記載のダイカストマシンの射出装置。 10. The injection device of a die casting machine according to claim 9, wherein a spring is built in the surge pressure preventing device, and the elastic deformation of the spring prevents the surge pressure.
  11.  前記サージ圧防止装置は、油圧シリンダーからなり、前記油圧シリンダーのピストンロッドがプランジャーと連結され、前記油圧シリンダー内のヘッド室とロッド室を連通する流路がピストンヘッドおよびピストンロッドの内部に設けられ、前記流路の途中にはオリフィスが形成され、ヘッド室には圧縮状態のばねが備えられていることを特徴とする請求項9記載のダイカストマシンの射出装置。 The surge pressure prevention device comprises a hydraulic cylinder, a piston rod of the hydraulic cylinder is connected to a plunger, and a flow passage communicating the head chamber and the rod chamber in the hydraulic cylinder is provided inside the piston head and the piston rod 10. An injection apparatus for a die casting machine according to claim 9, wherein an orifice is formed in the middle of the flow path, and a spring in a compressed state is provided in the head chamber.
  12.  前記サージ圧防止装置は、油圧シリンダーからなり、前記油圧シリンダーのピストンロッドがプランジャーと連結され、前記油圧シリンダー内のヘッド室とロッド室に通ずる流路は、外部流路によって途中で交わり、さらにアキュムレータに繋がっていることを特徴とする請求項9記載のダイカストマシンの射出装置。 The surge pressure preventing device comprises a hydraulic cylinder, a piston rod of the hydraulic cylinder is connected to a plunger, and a flow passage communicating with the head chamber and the rod chamber in the hydraulic cylinder crosses halfway by an external flow passage. The injection device of a die casting machine according to claim 9, which is connected to an accumulator.
  13.  前記サージ圧防止装置は、径が等しい両ロッド式の油圧シリンダーからなり、前記油圧シリンダーの片側のピストンロッドがプランジャーと連結され、前記油圧シリンダー内のプランジャー側ロッド室と反プランジャー側ロッド室に通ずる流路は並列に接続されたチェック弁とリリーフ弁を介して回路接続され、ピストンヘッドがプランジャー側に動く際はプランジャー側ロッド室の作動油はチェック弁を介して反プランジャー側ロッド室に無抵抗で流れることができ、またピストンヘッドがプランジャーと反対側に動く際は反プランジャー側ロッド室の作動油はリリーフ弁を介して抵抗を受けながら反プランジャー側ロッド室に流れことを特徴とする請求項9記載のダイカストマシンの射出装置。 The surge pressure prevention device is composed of a double diameter rod hydraulic cylinder, and a piston rod on one side of the hydraulic cylinder is connected to a plunger, and a plunger side rod chamber and an anti plunger side rod in the hydraulic cylinder The flow passage leading to the chamber is connected in circuit via a check valve and a relief valve connected in parallel, and when the piston head moves to the plunger side, the hydraulic oil on the plunger side rod chamber is anti-plunger via the check valve It can flow into the side rod chamber without resistance, and when the piston head moves to the opposite side to the plunger, the hydraulic oil of the opposite plunger side rod chamber receives resistance through the relief valve and the opposite plunger side rod chamber The injection device of a die-casting machine according to claim 9, characterized in that:
  14.  前記サージ圧防止装置は、油圧シリンダーからなり、前記油圧シリンダーのロッドがプランジャーと連結され、前記油圧シリンダー内のヘッド室はサージ圧吸収用油圧シリンダーのヘッド室と回路接続され、前記サージ圧吸収用油圧シリンダーのピストンロッドはサーボモータとボールねじによって前後進運動可能であることを特徴とする請求項9記載のダイカストマシンの射出装置。 The surge pressure prevention device comprises a hydraulic cylinder, a rod of the hydraulic cylinder is connected to a plunger, a head chamber in the hydraulic cylinder is connected in circuit with a head chamber of a hydraulic pressure absorbing hydraulic cylinder, and the surge pressure is absorbed 10. The injection device of a die-casting machine according to claim 9, wherein the piston rod of the hydraulic cylinder is movable back and forth by means of a servomotor and a ball screw.
  15.  前記サージ圧防止装置は、油圧シリンダーからなり、前記油圧シリンダーのロッドがプランジャーと連結され、前記油圧シリンダー内のヘッド室は連続的に流量を調整できる流量調整弁を介してタンクと回路接続されていることを特徴とする請求項9記載のダイカストマシンの射出装置。 The surge pressure prevention device comprises a hydraulic cylinder, a rod of the hydraulic cylinder is connected to a plunger, and a head chamber in the hydraulic cylinder is connected to a tank through a flow control valve capable of continuously adjusting the flow rate. The injection device of the die casting machine according to claim 9, characterized in that:
  16.  前記昇圧保持装置は、サーボモータと、前記サーボモータの回転運動を直進運動に変換するボールねじと、前記ボールねじの直進部の前進力を前記プランジャーに伝える圧縮ばねと、前記サーボモータと前記ボールねじの間に装着されボールねじの回転運動を抑止可能なブレーキとを備え、
     前記射出充填装置は、前記モータの回転運動を直進運動に変換するボールねじを備え、
     前記移動抑制機構は、前記射出充填装置のモータと前記射出充填装置のボールねじの間に装着されボールねじの回転運動を抑止可能なブレーキであり、
     前記昇圧保持工程において、溶湯圧力の昇圧は前記サーボモータの回転動作によって前記圧縮ばねを圧縮しながら行い、昇圧後には前記ブレーキを動作しボールねじの回転運動を抑止することにより、ばねの圧縮力によって溶湯圧力の保持が可能であること
     を特徴とする請求項1記載のダイカストマシンの射出装置。
    The pressure rising and holding device includes a servo motor, a ball screw for converting the rotational movement of the servo motor into a linear movement, a compression spring for transmitting an advancing force of the linear portion of the ball screw to the plunger, the servo motor, and And a brake mounted between the ball screws and capable of suppressing rotational movement of the ball screws,
    The injection filling device includes a ball screw that converts rotational motion of the motor into linear motion;
    The movement suppressing mechanism is a brake which is mounted between a motor of the injection filling device and a ball screw of the injection filling device and which can suppress rotational movement of the ball screw.
    In the pressure holding step, the pressure of the molten metal is increased while compressing the compression spring by the rotational movement of the servomotor, and after the pressure increase, the brake is operated to suppress the rotational movement of the ball screw, thereby compressing the spring. The injection device of a die casting machine according to claim 1, wherein the pressure of the molten metal can be maintained by
  17.  前記昇圧保持装置のブレーキと前記昇圧保持装置のボールねじとの間には減速機が装着されていることを特徴とする請求項16記載のダイカストマシンの射出装置。 17. The injection device of a die casting machine according to claim 16, wherein a reduction gear is mounted between the brake of the pressure rising and holding device and the ball screw of the pressure rising and holding device.
  18.  前記プランジャーと一体的に結合するプランジャー部材と、
     前記プランジャー部材にサージ圧防止シリンダーを介して連結する高速移動部材と
     を更に備え、
     前記移動抑制機構は、前記高速移動部材に軸受を介して装着されるとともに、台形ねじと螺合し、前記プランジャーが受ける圧力によって前記プランジャー部材と当接して前記台形ねじとの相対的な動作が拘束されるロックナットであり、
     前記射出充填装置は、前記高速移動部材にクッションシリンダーを介して移動部分が接続されており、
     前記昇圧保持装置は、前記台形ねじを押圧して前記ロックナット及び前記プランジャー部材を介して前記プランジャーから溶湯に保持力を負荷するように構成されている
     ことを特徴とする請求項1記載のダイカストマシンの射出装置。
    A plunger member integrally coupled with the plunger;
    A high speed moving member connected to the plunger member via a surge pressure preventing cylinder;
    The movement restraining mechanism is mounted on the high speed moving member via a bearing, and is screwed with a trapezoidal screw, and is in contact with the plunger member by pressure received by the plunger and is relative to the trapezoidal screw. A lock nut whose motion is constrained,
    In the injection filling device, a moving part is connected to the high speed moving member via a cushion cylinder,
    The pressure rising and holding device is configured to press the trapezoidal screw and apply a holding force to the molten metal from the plunger through the lock nut and the plunger member. Die casting machine injection device.
  19.  前記射出充填装置は、射出充填用サーボモータと射出充填用ボールねじとを備え、前記射出充填用ボールねじのナット部分が前記クッションシリンダーの移動部分と一体であることを特徴とする請求項18に記載のダイカストマシンの射出装置。 19. The injection filling apparatus according to claim 18, further comprising an injection filling servomotor and an injection filling ball screw, wherein a nut portion of the injection filling ball screw is integral with a moving portion of the cushion cylinder. The injection device of the die-cast machine described.
  20.  前記昇圧保持装置は、昇圧用サーボモータと昇圧用ボールねじとを備えることを特徴とする請求項18に記載のダイカストマシンの射出装置。 19. The injection device of a die casting machine according to claim 18, wherein the pressure rising and holding device comprises a pressure rising servomotor and a pressure rising ball screw.
  21.  前記昇圧保持装置は、前記昇圧用ボールねじのナット部分の前進力を前記台形ねじに伝える圧縮ばねと、前記昇圧用サーボモータと前記昇圧用ボールねじの間に装着され昇圧用ボールねじの回転運動を抑止可能なブレーキとを備え、
     昇圧保持工程において、溶湯圧力の昇圧は前記昇圧用サーボモータの回転動作によって前記圧縮ばねを圧縮しながら行い、昇圧後には前記ブレーキを動作し前記昇圧用ボールねじの回転運動を抑止することにより、前記圧縮ばねの圧縮力によって溶湯圧力の保持が可能であることを特徴とする請求項20に記載のダイカストマシンの射出装置。
    The pressure rising and holding device is provided between the pressure rising servomotor and the pressure rising ball screw, and the rotational motion of the pressure rising ball screw transmits the forward force of the nut portion of the pressure rising ball screw to the trapezoidal screw. Equipped with a brake that can deter
    In the pressure raising and holding step, the pressure increase of the molten metal pressure is performed while compressing the compression spring by the rotation operation of the pressure rising servomotor, and after pressure rising, the brake is operated to suppress the rotation movement of the pressure rising ball screw. The injection device of a die casting machine according to claim 20, wherein the pressure of the molten metal can be held by the compression force of the compression spring.
  22.  前記クッションシリンダーの油室の作動油は、回路接続するリリーフ弁によって、所定の圧力以上に上がらないように制御されていることを特徴とする請求項18に記載のダイカストマシンの射出装置。 The injection device of a die casting machine according to claim 18, wherein the hydraulic oil in the oil chamber of the cushion cylinder is controlled not to rise above a predetermined pressure by a relief valve connected in circuit.
  23.  前記サージ圧防止シリンダーの油室は、サージ圧吸収用油圧シリンダーと回路接続されており、前記サージ圧吸収用油圧シリンダーのピストンロッドは油圧用ボールねじと油圧用サーボモータによって移動動作され、前記サージ圧防止シリンダーの移動部分の位置および圧力を制御可能であることを特徴とする請求項18に記載のダイカストマシンの射出装置。 The oil chamber of the surge pressure preventing cylinder is connected in circuit to a surge pressure absorbing hydraulic cylinder, and the piston rod of the surge pressure absorbing hydraulic cylinder is moved by a hydraulic ball screw and a hydraulic servomotor, the surge The injection device of a die casting machine according to claim 18, characterized in that the position and pressure of the moving part of the pressure preventing cylinder can be controlled.
  24.  前記サージ圧防止シリンダーの油室は、流量調整弁と回路接続されており、前記流量調整弁によって前記サージ圧防止シリンダーの移動部分の位置および圧力を制御可能であることを特徴とする請求項18に記載のダイカストマシンの射出装置。 The oil chamber of the surge pressure preventing cylinder is in circuit connection with a flow rate adjusting valve, and the flow rate adjusting valve can control the position and pressure of the moving part of the surge pressure preventing cylinder. Die casting machine injection device described in.
  25.  請求項1又は2に記載のダイカストマシンの射出装置を動作させる制御方法であって、
     低速及び高速の前進を行なう射出充填工程においては、射出充填装置は速度制御を行なうとともに昇圧保持装置は位置保持制御を行ない、
     前記プランジャーが溶湯から受ける圧力が切換え圧力に達した後の昇圧保持工程においては、射出充填装置は圧力制御または位置保持制御を行ない、昇圧保持装置は圧力制御を行なう
     ことを特徴とするダイカストマシンの射出装置の制御方法。
    A control method for operating an injection device of a die casting machine according to claim 1 or 2, wherein
    In the injection and filling process for low speed and high speed advancement, the injection filling device performs speed control and the pressure rising and holding device performs position holding control,
    The die-cast machine is characterized in that the injection filling device carries out pressure control or position holding control and the pressure holding device carries out pressure control in the pressurization holding step after the pressure received from the molten metal from the molten metal reaches the switching pressure. Control method of the injection device.
  26.  請求項16又は17に記載のダイカストマシンの射出装置において、溶湯圧力の昇圧後に前記ブレーキを動作し、その後前記サーボモータをフリー状態にすることを特徴とするダイカストマシンの射出装置の制御方法。 The method for controlling an injection apparatus of a die-cast machine according to claim 16 or 17, wherein the brake is operated after the pressure of the molten metal is increased, and then the servomotor is brought into a free state.
  27.  請求項18に記載のダイカストマシンの射出装置において、射出充填工程から昇圧工程に切換え後、前記サージ圧防止シリンダーの油室の圧力を調整し、前記プランジャー部材とロックシリンダーの当接速度を制御することを特徴とするダイカストマシンの射出装置の制御方法。 The injection device of the die casting machine according to claim 18, wherein after switching from the injection filling step to the pressure increase step, the pressure in the oil chamber of the surge pressure preventing cylinder is adjusted to control the contact speed of the plunger member and the lock cylinder. Method of controlling an injection device of a die casting machine characterized by
PCT/JP2010/055179 2009-03-31 2010-03-25 Ejector for die casting machine and method of controlling the same WO2010113745A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201080015369.XA CN102378656B (en) 2009-03-31 2010-03-25 Ejector for die casting machine and method of controlling the same

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2009083851A JP5365995B2 (en) 2009-03-31 2009-03-31 Die casting machine injection equipment
JP2009-083851 2009-03-31
JP2009111348A JP5408413B2 (en) 2009-04-30 2009-04-30 Electric injection device for die casting machine
JP2009-111348 2009-04-30
JP2009-127529 2009-05-27
JP2009127529A JP5353447B2 (en) 2009-05-27 2009-05-27 Die casting machine injection equipment
JP2010021807A JP5359907B2 (en) 2010-02-03 2010-02-03 Die casting machine injection equipment
JP2010-021807 2010-02-03

Publications (1)

Publication Number Publication Date
WO2010113745A1 true WO2010113745A1 (en) 2010-10-07

Family

ID=42828038

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/055179 WO2010113745A1 (en) 2009-03-31 2010-03-25 Ejector for die casting machine and method of controlling the same

Country Status (2)

Country Link
CN (1) CN102378656B (en)
WO (1) WO2010113745A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014058017A1 (en) * 2012-10-12 2014-04-17 東洋機械金属株式会社 Electric die casting machine

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5870857B2 (en) * 2012-06-21 2016-03-01 株式会社豊田自動織機 Injection device
JP6034645B2 (en) * 2012-10-12 2016-11-30 東洋機械金属株式会社 Electric die casting machine
JP6433140B2 (en) * 2014-04-07 2018-12-05 東洋機械金属株式会社 Electric die casting machine
JP6450152B2 (en) * 2014-11-07 2019-01-09 東洋機械金属株式会社 Electric die casting machine
US10525623B2 (en) * 2015-05-11 2020-01-07 U-Mhi Platech Co., Ltd. Mold opening/closing device
CN112657013B (en) * 2015-08-20 2023-10-03 坦德姆糖尿病护理股份有限公司 Driving mechanism for perfusion pump
JP6772032B2 (en) * 2016-11-02 2020-10-21 東洋機械金属株式会社 Electric die casting machine and its control method
JP7073925B2 (en) * 2018-06-07 2022-05-24 株式会社デンソー Valve device
CN110385413A (en) * 2019-08-14 2019-10-29 安徽江淮汽车集团股份有限公司 Die casting experimental rig
CN110548852B (en) * 2019-09-04 2021-03-30 仁兴机械(佛山)有限公司 Injection device
JP7567522B2 (en) * 2021-02-02 2024-10-16 トヨタ自動車株式会社 Motor Driven Powder Molding Machine
CN114378273B (en) * 2022-01-20 2024-08-20 厦门市佳嘉达机械有限公司 Die casting die, die casting device and ultra-high speed die casting method
CN116944463B (en) * 2023-09-20 2023-12-15 江苏德优镁轻合金科技有限公司 Discharging device for casting machine

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007167940A (en) * 2005-12-26 2007-07-05 Toyo Mach & Metal Co Ltd Die casting machine
JP2007260688A (en) * 2006-03-27 2007-10-11 Toyota Motor Corp Molten material injection equipment
JP2008087064A (en) * 2006-10-04 2008-04-17 Toyota Motor Corp Injection device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006142369A (en) * 2004-11-24 2006-06-08 Ykk Corp ELECTRIC INJECTION UNIT, DIE-CAST MACHINE HAVING THE UNIT, AND ELECTRIC INJECTION METHOD
JP2007296550A (en) * 2006-04-28 2007-11-15 Toyota Motor Corp Electric injection device
CN101516546A (en) * 2006-09-20 2009-08-26 宇部兴产机械株式会社 Injection device for die casting machine
JP4997921B2 (en) * 2006-10-25 2012-08-15 宇部興産機械株式会社 Die casting machine and die casting method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007167940A (en) * 2005-12-26 2007-07-05 Toyo Mach & Metal Co Ltd Die casting machine
JP2007260688A (en) * 2006-03-27 2007-10-11 Toyota Motor Corp Molten material injection equipment
JP2008087064A (en) * 2006-10-04 2008-04-17 Toyota Motor Corp Injection device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014058017A1 (en) * 2012-10-12 2014-04-17 東洋機械金属株式会社 Electric die casting machine
JP2014079763A (en) * 2012-10-12 2014-05-08 Toyo Mach & Metal Co Ltd Electrically-driven die cast machine

Also Published As

Publication number Publication date
CN102378656B (en) 2014-01-22
CN102378656A (en) 2012-03-14

Similar Documents

Publication Publication Date Title
WO2010113745A1 (en) Ejector for die casting machine and method of controlling the same
JP5359907B2 (en) Die casting machine injection equipment
US7316259B2 (en) Diecasting machine
US20090242161A1 (en) Injection device for die casting machine
KR101014021B1 (en) Center mechanism of tire vulcanizer and its control method
JP5408413B2 (en) Electric injection device for die casting machine
JP5673483B2 (en) Injection device
CN104703728B (en) Electric press casting machine
JP4458291B2 (en) Injection device and injection control method
JP2014087843A (en) Injection unit of die cast machine
JP3703745B2 (en) Molding device clamping machine
JP6026212B2 (en) Electric die casting machine
JP2010234396A (en) Injection device of die casting machine
JP4041994B2 (en) Injection device
JP2010094886A (en) Injection molding machine and method for controlling the same
JP4312498B2 (en) Clamping device
JP5353447B2 (en) Die casting machine injection equipment
JP2018176192A (en) Die casting machine
CN107073568A (en) Electric press casting machine
CN106132592B (en) Electric press casting machine
JP5491270B2 (en) Injection machine for molding machine
JP7648447B2 (en) Injection Unit and Molding Machine
JP4121891B2 (en) Clamping device
JP5491271B2 (en) Injection machine for molding machine
CN106163695B (en) Electric press casting machine

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080015369.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10758518

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10758518

Country of ref document: EP

Kind code of ref document: A1