WO2010113603A1 - Optical scanner - Google Patents

Optical scanner Download PDF

Info

Publication number
WO2010113603A1
WO2010113603A1 PCT/JP2010/053890 JP2010053890W WO2010113603A1 WO 2010113603 A1 WO2010113603 A1 WO 2010113603A1 JP 2010053890 W JP2010053890 W JP 2010053890W WO 2010113603 A1 WO2010113603 A1 WO 2010113603A1
Authority
WO
WIPO (PCT)
Prior art keywords
width
optical scanner
swing axis
along
same width
Prior art date
Application number
PCT/JP2010/053890
Other languages
French (fr)
Japanese (ja)
Inventor
中村博親
冨田勲
Original Assignee
ブラザー工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ブラザー工業株式会社 filed Critical ブラザー工業株式会社
Publication of WO2010113603A1 publication Critical patent/WO2010113603A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/0816Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements
    • G02B26/0833Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a micromechanical device, e.g. a MEMS mirror, DMD
    • G02B26/0858Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a micromechanical device, e.g. a MEMS mirror, DMD the reflecting means being moved or deformed by piezoelectric means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B3/00Devices comprising flexible or deformable elements, e.g. comprising elastic tongues or membranes
    • B81B3/0064Constitution or structural means for improving or controlling the physical properties of a device
    • B81B3/0067Mechanical properties
    • B81B3/0072For controlling internal stress or strain in moving or flexible elements, e.g. stress compensating layers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/101Scanning systems with both horizontal and vertical deflecting means, e.g. raster or XY scanners
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/1006Beam splitting or combining systems for splitting or combining different wavelengths
    • G02B27/102Beam splitting or combining systems for splitting or combining different wavelengths for generating a colour image from monochromatic image signal sources
    • G02B27/104Beam splitting or combining systems for splitting or combining different wavelengths for generating a colour image from monochromatic image signal sources for use with scanning systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/14Beam splitting or combining systems operating by reflection only
    • G02B27/145Beam splitting or combining systems operating by reflection only having sequential partially reflecting surfaces
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/04Scanning arrangements, i.e. arrangements for the displacement of active reading or reproducing elements relative to the original or reproducing medium, or vice versa
    • H04N1/113Scanning arrangements, i.e. arrangements for the displacement of active reading or reproducing elements relative to the original or reproducing medium, or vice versa using oscillating or rotating mirrors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/20Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators
    • H10N30/204Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators using bending displacement, e.g. unimorph, bimorph or multimorph cantilever or membrane benders
    • H10N30/2041Beam type
    • H10N30/2042Cantilevers, i.e. having one fixed end
    • H10N30/2043Cantilevers, i.e. having one fixed end connected at their free ends, e.g. parallelogram type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2201/00Specific applications of microelectromechanical systems
    • B81B2201/04Optical MEMS
    • B81B2201/042Micromirrors, not used as optical switches
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N2201/00Indexing scheme relating to scanning, transmission or reproduction of documents or the like, and to details thereof
    • H04N2201/04Scanning arrangements
    • H04N2201/047Detection, control or error compensation of scanning velocity or position
    • H04N2201/04753Control or error compensation of scanning position or velocity
    • H04N2201/04755Control or error compensation of scanning position or velocity by controlling the position or movement of a scanning element or carriage, e.g. of a polygonal mirror, of a drive motor

Definitions

  • the present disclosure relates to an optical scanner used in a laser printer, a projection display device, or the like.
  • Patent Document 1 discloses an optical scanner using a MEMS mirror as shown in FIG. In FIG. 11, the optical scanner 101 includes a vibrating body 105 and a base table 102.
  • the vibrating body 105 includes a mirror section 106, a pair of support beams 107a and 107b, a pair of bifurcated beams 108a and 108b, a fixing section 109, and piezoelectric bodies 110a, 110b, 110c, and 110d.
  • the mirror unit 106 has a reflecting surface that reflects incident light.
  • the support beam 107a and the support beam 107b are coupled to the mirror unit 106 so as to face each other with the mirror unit 106 interposed therebetween.
  • the pair of bifurcated beams 108a and 108b are connected to the ends of the support beams 107a and 107b, respectively.
  • Each of the pair of bifurcated beams 108 a and 108 b is divided into bifurcated portions and connected to the fixing portion 109.
  • the fixed portion 109 has a frame-like structure surrounding the mirror portion 106, the pair of support beams 107a and 107b, and the pair of bifurcated beams 108a and 108b.
  • the piezoelectric bodies 110a and 110b are provided across the bifurcated beam 108a and the fixed portion 109, and the piezoelectric bodies 110c and 110d are provided across the bifurcated beam 108b and the fixed portion 109.
  • the piezoelectric bodies 110a and 110b and the piezoelectric bodies 110c and 110d are polarized by applying a voltage, and expand and contract in the longitudinal direction of the bifurcated beams 108a and 108b, respectively.
  • the bifurcated beams 108 a and 108 b bend in the thickness direction of the vibrating body 105 by expansion and contraction of the piezoelectric bodies 110 a and 110 b and the piezoelectric bodies 110 c and 110 d.
  • the bending of the bifurcated beams 108a and 108b causes the bifurcated beams 108a and 108b, the support beams 107a and 107b, and the mirror unit 106 to swing.
  • the base table 102 includes a pair of support portions 103 a and 103 b and a recess 104.
  • the support part 103 a and the support part 103 b are bonded to the fixing part 109.
  • the recess 104 is formed between the support portion 103a and the support portion 103b.
  • the concave portion 104 is recessed in a direction away from the vibrating body 105 with respect to the support portion 103a and the support portion 103b in order to secure a space in which the mirror portion 106 swings.
  • An object of the present disclosure is to provide an optical scanner capable of obtaining a large optical deflection angle of the optical scanner with a small driving voltage.
  • a mirror unit that has a reflecting surface that reflects an incident light beam and is swung around a swing axis, and a first beam coupled to the mirror unit.
  • a movable beam composed of a first beam portion, a second beam portion coupled to the first beam portion, a fixed portion coupled to the second beam portion, the second beam portion, and the fixed portion.
  • a piezoelectric body that vibrates the movable beam, and the second beam portion extends along the reflecting surface and intersects the swing axis in the direction intersecting the first beam portion and the second beam.
  • the second beam portion is connected to the first beam portion, and the first beam portion and the second beam portion in a direction along the reflection surface and intersecting the swing axis.
  • the same width portion having the same width as the first beam portion in the vicinity of the connecting portion to which the beam portion is connected, and one side extending from one side of the same width portion along the reflecting surface and intersecting the swing axis An optical scanner provided with an extending portion can be obtained.
  • the one extending portion extends only to one side of the same width portion. Therefore, the corners of the second beam portion are fewer than when the one extension portion extends to both sides of the same width portion. Therefore, it is possible to reduce the number of corners where stress is likely to concentrate during the oscillation of the optical scanner, and the possibility of damage to the optical scanner can be kept low.
  • the first beam part includes a mirror support beam connected to the mirror part, and a first connection part connected to the mirror support beam, along the reflection surface and An extending beam extending from the first connecting portion to both sides of the mirror support beam and a pair of second connecting portions connected to both ends of the extending beam in a direction intersecting the swing axis; A pair of connecting beams extending from the second connecting portion in a direction away from the mirror portion along the swing axis, and the second beam portion is connected to each of the pair of connecting beams.
  • the second beam portion is positioned away from the swing axis of both sides of the same width portion in a direction along the reflection surface and away from the swing axis.
  • An optical scanner provided with an outward extending portion extending from the outside can be obtained.
  • the second beam portion when the second beam portion is composed of the same width portion and the extending portion extending from both sides of the same width portion, or the swinging of the same width portion and the same width portion.
  • the drive voltage can be further reduced as compared with a case where the extension portion extends from the inner side close to the axis.
  • the second beam portion when the second beam portion is composed of the same width portion and an extension portion extending from both sides of the same width portion, or the inner side of the same width portion and the same width portion close to the swing axis is extended.
  • the pair of extending portions sandwiching the oscillation axis do not interfere with each other during the oscillation of the optical scanner.
  • an optical scanner in which a width of the outwardly extending portion in a direction along the reflecting surface and away from the swing axis is larger than the width of the same width portion. it can.
  • the width of the outwardly extending portion along the reflecting surface and away from the swing axis is set to be larger than the width of the same width portion.
  • the drive voltage for driving the piezoelectric body can be approximately half or less. Accordingly, the drive voltage can be kept small.
  • a width of the outward extending portion in a direction along the reflecting surface and away from the swing axis is larger than a width of the same width portion and of the same width portion.
  • the width of the outwardly extending portion in the direction along the reflecting surface and away from the swing axis is set larger than the width of the same width portion.
  • the drive voltage for driving the piezoelectric body can be approximately half or less. Accordingly, the drive voltage can be kept small.
  • the width of the outwardly extending portion along the direction parallel to the reflecting surface and away from the swing axis is larger than the width 10 times larger than the width of the same width portion, the driving voltage is not significantly reduced. Therefore, there arises a problem that the entire optical scanner is increased in size.
  • the width of the outward extension along the reflecting surface and away from the swing axis is set to be smaller than a width 10 times larger than the width of the same width, so that the outward extension is within this range. Even if the width does not exceed 1, the piezoelectric body is driven with a constant small driving voltage, and the entire optical scanner can be miniaturized.
  • a width of the piezoelectric body in a direction intersecting the swing axis along the reflective surface is larger than a width of the same width portion, and the piezoelectric body has a width on the reflective surface.
  • An optical scanner having a length in the direction from the fixed portion to the mirror portion along the swing axis is greater than the width of the same width portion.
  • the width of the piezoelectric body in the direction along the reflecting surface and intersecting the swing axis is larger than the width of the same width portion.
  • the length in the direction from the fixed part to the mirror part along the axis is larger than the width of the same width part.
  • the second beam portion is positioned away from the swing axis of both sides of the same width portion in a direction along the reflection surface and away from the swing axis.
  • An outwardly extending portion extending from the outside, and the length of the outwardly extending portion along the reflecting surface and along the swing axis is greater than the width of the same-width portion and is movable Less than half of the length of the beam along the reflecting surface and along the swing axis, and from the fixed portion to the mirror portion along the reflecting surface of the piezoelectric body and along the swing axis. It is possible to obtain an optical scanner having a length in the direction in which it is larger than the width of the same width portion and smaller than half of the length of the movable beam along the reflecting surface and along the swing axis.
  • the length of the outwardly extending portion along the reflecting surface and along the swing axis is larger than the width of the same width portion, and along the reflecting surface of the movable beam and Less than half the length in the direction along the swing axis.
  • the length of the piezoelectric body in the direction from the fixed part to the mirror part along the reflection surface and along the swing axis is larger than the width of the same width part, and the length of the movable beam along the reflection surface and the rocking part. Less than half of the length along the axis of movement.
  • FIG. 1 is a perspective view of an optical scanner 1 according to an embodiment of the present invention.
  • FIG. 4 is a perspective view showing the optical scanner 1 excluding driving units 4a to 4d according to the present embodiment.
  • 2 is a partially enlarged perspective view of the optical scanner 1.
  • FIG. FIG. 4 is an enlarged partial plan view showing the optical scanner 1 excluding driving units 4a to 4d according to the present embodiment.
  • FIG. 6 is an explanatory diagram for explaining a configuration of the drive units 4a to 4d. It is explanatory drawing for demonstrating the rocking
  • FIG. It is explanatory drawing for demonstrating the conventional optical scanner 1.
  • FIG. It is explanatory drawing for demonstrating the dimension of each part of the optical scanner 1 set in the case of simulation. It is a figure which shows the manufacturing process of the structure which concerns on this embodiment. It is a figure which shows the usage example in the retinal scanning display 201 of the said optical scanner 1.
  • FIG. It is a figure which shows the conventional optical scanner 101.
  • FIG. in the conventional optical scanner 101 it is a figure which shows the state which made a pair of bifurcated beams 108a wide uniformly.
  • the optical scanner 1 is a resonance type optical scanner. As shown in FIG. 1, the optical scanner 1 includes a reflection mirror 2, movable beams 3a and 3b, driving units 4a to 4d, and a fixed unit 5.
  • the reflection mirror 2 in the present embodiment is an example of the mirror unit of the present invention.
  • the movable beams 3a and 3b in the present embodiment are examples of the movable beam of the present invention.
  • the drive units 4a to 4d in the present embodiment are examples of the piezoelectric body of the present invention.
  • the fixing part 5 in the present embodiment is an example of the fixing part of the present invention.
  • the reflection mirror 2, the movable beams 3a and 3b, the drive units 4a to 4d, and the fixed unit 5 are disposed on a base table (not shown).
  • the movable beams 3a and 3b and the fixed portion 5 are integrally formed by wet etching.
  • the reflection mirror 2 is configured to be swingable about the swing axis AX.
  • the reflection mirror 2 includes a reflection surface 6 that reflects and scans an incident light beam.
  • the direction along the reflection surface 6 and intersecting the swing axis AX is taken as the X axis, and along the reflection surface 6 and the swing axis AX. Is defined as the Y axis, and the direction intersecting the reflecting surface 6 is defined as the Z axis.
  • the optical scanner 1 when the optical scanner 1 is stationary, the direction along the reflection surface 6 and intersecting the swing axis AX is taken as the X axis, and along the reflection surface 6 and the swing axis AX. Is defined as the Y axis, and the direction intersecting the reflecting surface 6 is defined as the Z axis.
  • the X axis is parallel to the reflecting surface 7 and perpendicular to the swing axis AX
  • the Y axis is on the reflecting surface 7.
  • the Z axis is defined to be parallel to the swing axis AX and perpendicular to the reflecting surface 7. Note that the definitions of the directions of the X axis, the Y axis, and the Z axis are common to other drawings.
  • the reflective surface 6 in the present embodiment is an example of the reflective surface of the present invention.
  • the structure of the movable beams 3a and 3b will be described with reference to FIG.
  • the movable beams 3 a and 3 b are connected to the reflection mirror 2 so as to face each other with the reflection mirror 2 interposed therebetween.
  • the movable beams 3 a and 3 b have a shape that is bifurcated toward the fixed portion 5.
  • the movable beam 3a includes a first beam portion 7a and second beam portions 8a and 8b.
  • the movable beam 3b includes a first beam portion 7b and second beam portions 8c and 8d.
  • the movable beam 3 a and the movable beam 3 b are symmetrical with respect to the reflection mirror 2.
  • the first beam portion 7a is connected to the second beam portions 8a and 8b.
  • the second beam portions 8 a and 8 b are connected to the fixed portion 5.
  • the first beam portions 7a and 7b in the present embodiment are an example of the first beam portion of the present invention.
  • the second beam portions 8a to 8d in the present embodiment are examples of the second beam portion of the present invention.
  • the drive units 4a to 4d are provided on the second beam portions 8a to 8d and the fixed portion 5 across the second beam portions 8a to 8d and the fixed portion 5, respectively. ing.
  • the first beam portion 7a includes a support beam 9a, an extended beam 10a, and a pair of connecting beams 11a and 11b.
  • the first beam portion 7b includes a support beam 9b, an extended beam 10b, and a pair of connecting beams 11c and 11d.
  • the first beam portion 7 a and the first beam portion 7 b are symmetrical with respect to the reflection mirror 2. Therefore, the description of the first beam portion 7a will be given below, and the description of the first beam portion 7b will be omitted.
  • the extended beam 10a has a first connecting portion CPa that is connected to the support beam 9a.
  • Each of the connecting beams 11a and 11b has a second connecting portion CPb that is connected to the end of the extended beam 10a.
  • the support beam 9a supports the reflection mirror 2 in the Y-axis direction.
  • the support beam 9a includes the swing axis AX of the reflection mirror 2 and faces the support beam 9b with the reflection mirror 2 interposed therebetween.
  • the extending beam 10a extends from the first connecting portion CPa to both sides of the support beam 9a in the X-axis direction.
  • the connecting beams 11a and 11b each extend from the second connecting portion CPb in a direction away from the reflecting mirror 2 along the Y axis.
  • the connecting beams 11a and 11b are composed of a first region R1, a second region R2, and a third region R3.
  • the width of the first region R1 in the X-axis direction is larger than the width of the second region.
  • the width of the second region R2 is larger than the width of the third region R3.
  • the width in the X-axis direction between the first region R1 and the third region R3 in the X-axis direction is substantially constant.
  • the width in the X-axis direction of the second region R2 decreases as the distance from the reflection mirror 2 increases.
  • the third region R3 of the connecting beam 11a is connected to the second beam portion 8a, and the third region R3 of the connecting beam 11b is connected to the second beam portion 8a (see FIG. 2).
  • the support beams 9a and 9b in the present embodiment are examples of the mirror support beam of the present invention.
  • the extended beams 10a and 10b in the present embodiment are examples of the extended beam of the present invention.
  • the connecting beams 11a to 11d in the present embodiment are examples of the connecting beam of the present invention.
  • the first connecting portion CPa and the second connecting portion CPb in the present embodiment are examples of the first connecting portion and the second connecting portion of the present invention, respectively.
  • the second beam portions 8a to 8d will be described with reference to FIG. For simplicity, only the second beam portions 8a and 8b are shown in FIG. 4, but the second beam portions 8c and 8d have the same configuration as the second beam portions 8a and 8b.
  • the second beam portions 8a and 8b are connected to the third region R3 of the connection beams 11a and 11b at the connection portion CP, respectively.
  • the second beam portions 8 a and 8 b include the same width portions 12 a and 12 b and extending portions 13 a and 13 b.
  • the same width portions 12a and 12b are respectively connected to the connecting beams 11a and 11b in the vicinity of the connecting portion CP where the connecting beams 11a and 11b and the second beam portions 8a and 8b are connected in the X-axis direction, that is, the connecting beams 11a and 11b.
  • the same width portions 12a and 12b are portions represented by dotted lines and bidirectional arrows in FIG.
  • Each of the extending portions 13a and 13b extends in the direction away from the swing axis AX in the X axis direction from the outer OS positioned away from the swing axis AX on both sides of the same width portions 12a and 12b in the X axis direction. It is extended.
  • the inner side of both sides of the same width portions 12a and 12b is the inner side IS shown in FIG.
  • the second beam portions 8c and 8d include the same width portion and an extension portion.
  • the same width parts 12a and 12b in this embodiment are an example of the same width part of this invention.
  • the extension parts 13a and 13b in this embodiment are examples of the outward extension part and the one-side extension part of the present invention.
  • the connecting portion CP in the present embodiment is an example of the connecting portion of the present invention.
  • the vicinity of the connection part CP is the range of the part which is easy to deform
  • the vicinity of the connecting portion CP is the third region R3 of the connecting beams 11a and 11b of the first beam portion 7a.
  • the same width portions 12a and 12b refer to portions between the outer OS and the inner IS on the extension line in the Y-axis direction on both sides of the third region R3 of the connecting beams 11a and 11b of the first beam portion 7a.
  • the drive unit 4a is a laminated body in which a thin plate-like piezoelectric body 14a is sandwiched between an upper electrode 15a and a lower electrode 16a.
  • the piezoelectric body 14a is, for example, lead zirconate titanate (hereinafter referred to as “PZT”) that is deformed by voltage application.
  • PZT lead zirconate titanate
  • the connecting beam 11a of the first beam part and the second beam part 8a are connected by a connecting part CP, and the second beam part 8a and the recessed part 5a of the fixing part 5 are connected by a connecting part CPc.
  • the drive part 4a is provided on the recessed part 5a and the 2nd beam part 8a across the recessed part 5a and the 2nd beam part 8a of the fixing
  • the drive units 4b to 4d each include a piezoelectric body (not shown), an upper electrode, and a lower electrode.
  • the four upper electrodes including the upper electrode 15a and the four lower electrodes including the lower electrode 16a are connected to a pair of input terminals provided in the fixed portion 5 by lead wires (not shown). Then, the voltage is applied to the driving units 4a to 4d through the input terminals, so that the four piezoelectric bodies including the piezoelectric body 14a are deformed and expanded. When the four piezoelectric bodies expand and contract, the second beam portions 8a to 8d are bent upward or downward in the Z-axis direction. Whether the second beam portions 8a to 8d are bent upward or downward is controlled by positive / negative of voltages between the four upper electrodes and the four lower electrodes.
  • the upper side and the lower side in the Z-axis direction are the positive region side and the negative region side of the Z-axis, respectively, and do not indicate a direction strictly parallel to the Z-axis direction.
  • FIG. 6 shows only the reflection mirror 2 and the movable beams 3a and 3b for simplification.
  • the optical scanner 1 indicated by a solid line indicates the optical scanner 1 at rest.
  • An optical scanner 1 indicated by a one-dot chain line indicates the optical scanner 1 at a certain swing angle when swinging.
  • the movable beams 3a and 3b are shown in a simplified state. First, a voltage is applied so that the second beam portions 8a and 8c are bent upward in the Z-axis direction and the second beam portions 8b and 8d are bent downward in the Z-axis direction, respectively.
  • the optical scanner 1 swings about the swing axis AX by periodically changing the sign of the voltage applied to the drive units 4b to 4d.
  • the reflecting surface 6 reflects the incident light beam while swinging about the swing axis AX. In this way, the light beam is reflected by the reflecting surface 6 so that the light beam is scanned.
  • the oscillation of the optical scanner 1 is caused by the bending of the second beam portions 8a to 8d caused by the periodic application of voltages to the drive portions 4b to 4d.
  • FIG. 7A and 7B and a table will be used to explain the analysis result by simulation of the change in the drive voltage of the optical scanner 1.
  • FIG. The numerical values such as the driving voltage and the resonance frequency described in FIGS. 7A and 7B and the table are all values when the optical deflection angle of the optical scanner 1 is set to 25 degrees as an example of a desired value.
  • the extending portions 13a and 13b extend “outside”, as shown in FIG. 8A, the extending portions 13a and 13b extend from the same width portions 12a and 12b to the side away from the swing axis AX. It means when it is extended. Further, when the extending portions 13a and 13b extend inward, as shown in FIG.
  • the extending portions 13a and 13b have the same width portion on the side toward the swing axis AX in the X-axis direction. It means the case of extending from 12a, 12b. Further, when the extending portions 13a and 13b extend to “both sides”, as shown in FIG. 8C, the extending portions 13a and 13b are in the X-axis direction toward the swing axis AX and the swing axis. The case where it is extended from the same width parts 12a and 12b on both sides with the side away from AX is pointed out. Note that the widths of the extending portions 13a and 13b in the X-axis direction are the same as those in FIGS.
  • the width in the X-axis direction of the extending portions 13a and 13b is the width Wd1 and Wd2 on both sides of the extending portions 13a and 13b. Refers to the sum.
  • the same width Wd1 and width Wd2 as the second beam portions 8a and 8b and the connecting beams 11a and 11b of the first beam portion 7a are widened on both sides in the X-axis direction, that is, the conventional optical scanner 1.
  • 8A to 8E show only the movable beam 3a, it is assumed that the movable beam 3b also has the same structure.
  • 8A to 8E omit the drive units 4a and 4b for the sake of simplicity.
  • the model shown in FIGS. 8A to 8E is used as a model of the optical scanner 1.
  • this model is different in structure from the optical scanner 1 shown in FIGS.
  • the approximate structure is the same as that of the optical scanner 1 shown in FIGS. 1 to 5, the same results can be said for the optical scanner 1 shown in FIGS.
  • FIG. 8F is a diagram in which the drive units 4a and 4b are provided in the optical scanner 1 when the extending portions 13a and 13b illustrated in FIG. 8A extend “outside”. Also for the optical scanner 1 of FIGS. 8B to 8E, the same dimensions are set for the width Bw and the lengths G1 and G2, which will be described in detail later.
  • the width Bw in the X-axis direction of the connecting beams 11a and 11b is 85 ⁇ m, and the tips of the piezoelectric bodies 14a and 14b on the second beam portions 8a and 8b from the connecting portion CP of the second beam portions 8a and 8b in the Y-axis direction.
  • the length G1 to the AP is 90 ⁇ m, and the length G2 from the tip AP of the piezoelectric bodies 14a and 14b to the tip of the upper electrodes 15a and 15b in the Y-axis direction is 100 ⁇ m.
  • the widths of the piezoelectric bodies 14a and 14b in the X-axis direction are the widths of the second beam portions 8a and 8b in the X-axis direction, that is, Wd + Bw.
  • the lower electrodes 16a and 16b are disposed below the piezoelectric bodies 14a and 14b in the Z-axis direction, and are not illustrated in FIG. 8F.
  • the width in the X-axis direction and the length Lp in the Y-axis direction of the piezoelectric bodies 14a and 14b are the width in the X-axis direction and the length in the Y-axis direction of the drive units 4a and 4b, respectively. And have the same meaning.
  • Table 1 shows the relationship between the width Wd of the extending portions 13a and 13b in the X-axis direction, the drive voltage, and the resonance frequency. As shown in Table 1, it can be seen that when the extending portions 13a and 13b extend outward, the drive voltage is minimized. Further, the highest resonance frequency is obtained when the extending portions 13a and 13b extend outward. 8D, when the width of the first beam is wide with the same width Wd as that of the second beam, or in the case of the conventional optical scanner 1 as shown in FIG. 8E, a very large driving voltage is applied. You can see this. Hereinafter, the case where the drive voltage is minimized and the highest resonance frequency is obtained, that is, the case where the extending portions 13a and 13b extend outward will be analyzed in more detail.
  • FIG. 7A and Table 2 show the relationship between the width Wd in the X-axis direction of the extending portions 13a and 13b and the drive voltage when the extending portions 13a and 13b extend outward.
  • the driving voltage can be reduced as the width Wd in the X-axis direction of the extending portions 13a and 13b is increased.
  • the drive voltage can be reduced as the width Wd in the X-axis direction of the extending portions 13a to 13d is increased.
  • the resonance frequency starts to decrease from the range where the width Wd exceeds 800.
  • the width Wd is the width of the connecting beams 11a and 11b in the X-axis direction, that is, the width Bw of the same width portions 12a and 12b. It is desirable to set a width 10 times larger than 85 ⁇ m, that is, about 850 ⁇ m or less.
  • FIG. 7B shows a relationship between the driving voltage and the length Lg of the extending portions 13a and 13b in the Y-axis direction when the extending portions 13a and 13b extend outward.
  • the longer the length Lg of the extending portions 13a and 13b in the Y-axis direction is, the greater the driving voltage is applied.
  • the lengths of the drive units 4a and 4b in the Y-axis direction are increased in accordance with the length Lg of the extension portions 13a and 13b in the Y-axis direction, the lengths of the drive units 4a and 4b in the Y-axis direction are constant. It can be seen that a larger driving voltage is applied than in the case of.
  • the drive voltage increases rapidly in the range where the length Lg of the extending portions 13a and 13b in the Y-axis direction exceeds approximately 1100 ⁇ m.
  • This sudden increase in drive voltage results in a shortening of the connecting beams 11a and 11b, which are greatly deformed portions of the first beam portion 7a, by increasing the length Lg of the extending portions 13a and 13b in the Y-axis direction. to cause. That is, since the movable beam 3a is not easily deformed, a large driving voltage is required to obtain a constant optical deflection angle of the optical scanner 1.
  • the length Lg of the extending portions 13a and 13b in the Y-axis direction is 1100 ⁇ m, which is approximately equal to half of about 2060 ⁇ m, which is the length of the movable beam 3a in the Y-axis direction.
  • the structure refers to the movable beams 3a and 3b and the fixed portion 5.
  • a plate-like silicon substrate having elasticity is prepared as a material to be etched (step S1, hereinafter referred to as S1).
  • a resist film is formed on both surfaces of the silicon substrate by applying a photoresist on both surfaces of the silicon substrate. (S2).
  • a predetermined pattern light is exposed to the resist film by using a photolithography technique. By exposing the predetermined pattern light, unnecessary portions of the resist film are removed.
  • mask patterns are formed on both surfaces of the silicon substrate, respectively (S3).
  • the mask pattern is formed, the laminated body of the silicon substrate and the mask pattern is immersed in an etching tank containing an etching solution, and wet etching is performed (S4).
  • the laminated body of the silicon substrate and the mask pattern is taken out from the etching tank (S5). Subsequently, the mask pattern is peeled from both surfaces of the silicon substrate (S6).
  • a structure having a predetermined shape is manufactured by the above manufacturing method.
  • the retinal scanning display 201 is a form of a head-mounted display device (hereinafter, referred to as “HMD”) that guides image light to the wearer's eyes while worn on the wearer's head and the vicinity thereof.
  • the retina operation display is configured such that an image corresponding to image data is visually recognized by the wearer by scanning image light in a two-dimensional direction on the retina of the wearer.
  • the retinal scanning display 201 includes a light beam generation unit 220, a horizontal scanning unit 260, and a vertical scanning unit 280.
  • the light beam generation unit 220 generates image light based on the image data S supplied from the outside, and supplies the image light to the horizontal scanning unit 260.
  • the horizontal scanning unit 260 scans the image light generated by the light beam generation unit 20 in the horizontal direction, and supplies the image light scanned in the horizontal direction to the vertical scanning unit 280 via the relay optical system 262.
  • the vertical scanning unit 280 scans the image light supplied from the horizontal scanning unit 260 in the vertical direction via the relay optical system 262 and the image light scanned in the vertical direction via the relay optical system 290. To the pupil Ea.
  • the light beam generation unit includes a signal processing circuit 221, a light source unit 230, and a light combining unit 240.
  • the signal processing circuit 221 receives image data S from the outside. Based on the received image data S, the signal processing circuit 221 generates blue, red, and green image signals, B video signals, R video signals, and G video signals, which are elements for synthesizing images, To the unit 30.
  • the signal processing circuit 221 supplies a horizontal synchronizing signal for driving the horizontal scanning unit 260 to the horizontal scanning unit 260 and a vertical synchronizing signal for driving the vertical scanning unit 280 to the vertical scanning unit 280, respectively.
  • the light source unit 230 functions as an image light output unit that converts each of the B video signal, the R video signal, and the G video signal supplied from the signal processing circuit 221 into image light.
  • the light source unit 230 includes a B laser 234 that generates blue image light and a B laser driver 231 that drives the B laser 234, an R laser 235 that generates red image light, and an R laser driver 232 that drives the R laser 235.
  • a G laser 236 that generates green image light, and a G laser driver 233 that drives the G laser 236.
  • the light source unit 230 outputs the three image lights of red, green, and blue to the light combining unit.
  • the light combining unit 240 generates arbitrary image light by combining the three colors of image light from the light source unit 230 into one image light.
  • the light combining unit 240 includes collimating optical systems 241, 242, and 243, dichroic mirrors 244, 245, and 246, and a coupling optical system 247.
  • the laser beams of the respective colors emitted from the lasers 234, 235, and 236 are collimated by collimating optical systems 241, 242, and 243, respectively, and then enter the dichroic mirrors 244, 245, and 246.
  • the collimated laser beams of the respective colors are synthesized as image light by selectively reflecting or transmitting each image light with respect to the wavelength by the dichroic mirrors 244, 245, and 246.
  • the combined image light is guided to the transmission cable 250 by the coupling optical system 247.
  • the collimating optical system 251 converts the image light emitted through the transmission cable 250 into parallel light and guides it to the horizontal scanning unit 260.
  • the horizontal scanning unit 260 reciprocally scans the image light that has been collimated by the collimating optical system 251 in the horizontal direction for image display.
  • the vertical scanning unit 280 scans the image light scanned in the horizontal direction by the horizontal scanning unit 260 in the vertical direction.
  • the relay optical system 270 is provided between the horizontal scanning unit 260 and the vertical scanning unit 280.
  • the relay optical system 270 guides the image light scanned by the horizontal scanning unit 260 to the vertical scanning unit 280.
  • the relay optical system 290 emits image light scanned (two-dimensionally scanned) in the horizontal direction and the vertical direction to the pupil Ea.
  • the horizontal scanning unit 260 includes a resonance type deflection element 261 and a horizontal scanning control circuit 262.
  • the optical scanner 1 is used for the resonance type deflection element 261.
  • the resonant deflection element 261 has a reflection surface for scanning the image light in the horizontal direction.
  • the horizontal scanning control circuit 262 resonates the resonance type deflection element 261 based on the horizontal synchronization signal supplied from the signal processing circuit 221.
  • the relay optical system 270 relays image light between the horizontal scanning unit 260 and the vertical scanning unit 280.
  • the light reciprocated in the horizontal direction by the resonance type deflection element 261 is converged on the reflection surface of the deflection element 281 in the vertical scanning unit 280 by the relay optical system 270.
  • the vertical scanning unit 280 includes a deflection element 281 and a vertical scanning control circuit 282.
  • the optical scanner 1 is used for the deflection element 281.
  • the deflection element 281 scans the image light guided by the relay optical system 270 in the vertical direction.
  • the vertical scanning control circuit 282 swings the deflection element 281 based on the vertical synchronization signal supplied from the signal processing circuit 221.
  • the image light scanned in the horizontal direction by the resonance type deflection element 261 and scanned in the vertical direction by the deflection element 281 is emitted to the relay optical system 290 as scanning image light scanned two-dimensionally.
  • the relay optical system 290 relays image light between the vertical scanning unit 280 and the pupil Ea of the wearer.
  • the image light scanned in the horizontal direction by the resonance type deflection element 261 and scanned in the vertical direction by the deflection element 281 is converged on the pupil Ea of the wearer by the relay optical system 290. In this way, the wearer can visually recognize an image corresponding to the image information.
  • the structure is formed by a technique using wet etching.
  • the structure forming method is not limited to wet etching.
  • the structure may be formed by dry etching or the like.
  • the structure is manufactured by one mask pattern formation and one wet etching.
  • these manufacturing steps may be performed a plurality of times.
  • the mask pattern for manufacturing the structure is formed by directly applying a photoresist on the silicon substrate and then exposing to a predetermined pattern light.
  • the mask pattern may be formed by other methods. For example, after forming a silicon thermal oxide film on both sides of a heated silicon substrate, a resist is applied on the silicon thermal oxide film. After resist application, a predetermined pattern light is exposed to form a resist film having a predetermined shape. Then, the mask pattern may be formed by removing an excess portion of the silicon thermal oxide film using hydrofluoric acid or the like.
  • the retinal scanning display 201 is shown as an example of use of the optical scanner 1, but the present invention is not limited to this, and may be used for an electrophotographic multifunction device, a laser printer, a barcode reader, or the like.

Abstract

An optical scanner (1) is provided with a reflecting mirror (2), a movable beam (3a), driving sections (4a-4b), and a fixed section (5). The reflecting mirror (2) is provided with a reflecting surface (6) which can swing about a swinging axis line (AX), reflects a luminous flux entered and performs scanning. The movable beam (3a) is composed of a first beam portion (7a) and second beam portions (8a, 8b). The first beam portion (7a) is connected to the reflecting mirror (2). The second beam portions (8a, 8b) are connected to the first beam portion (7a) and the fixed section (5). The driving sections (4a, 4b) are provided over the second beam portions (8a, 8b) and the fixed section (5), respectively, and vibrate the movable beam (3a). The second beam portions (8a, 8b) are wider than the connecting beams (11a, 11b) of the first beam portion (7a) in the vicinity of a connecting portion (CP) where the first beam portion (7a) and the second beam portions (8a, 8b) are connected to each other, in the direction perpendicular to the swinging axis line (AX), i.e., in the X axis direction, on a plane parallel to the reflecting surface (6).

Description

光スキャナOptical scanner
 本開示は、レーザプリンタや投影型表示装置などに用いられる光スキャナに関する。 The present disclosure relates to an optical scanner used in a laser printer, a projection display device, or the like.
 従来、小型の光スキャナとして、MEMSミラーが使用されている。例えば、特許文献1には、図11に示されるようなMEMSミラーを用いた光スキャナが開示されている。図11において、光スキャナ101は、振動体105とベース台102とで構成される。 Conventionally, MEMS mirrors are used as small optical scanners. For example, Patent Document 1 discloses an optical scanner using a MEMS mirror as shown in FIG. In FIG. 11, the optical scanner 101 includes a vibrating body 105 and a base table 102.
 振動体105は、ミラー部106と、一対の支持梁107a、107bと、一対の二股梁108a、108bと、固定部109と、圧電体110a、110b、110c、110dと、を備える。ミラー部106は、入射した光を反射する反射面を有する。支持梁107aと支持梁107bとは、ミラー部106を挟んで互いに対向するように、ミラー部106に連結される。一対の二股梁108a、108bは、各々支持梁107a、107bの端部に連結する。一対の二股梁108a、108bは、各々、二股に分かれ、固定部109に連結される。固定部109は、ミラー部106と、一対の支持梁107a、107bと、一対の二股梁108a、108bとの周囲を囲む、枠状の構造である。圧電体110a、110bは、二股梁108aと固定部109とに跨って備えられ、圧電体110c、110dは二股梁108bと固定部109とに跨って備えられる。圧電体110a、110bと圧電体110c、110dとは、電圧が印加されることで分極し、各々二股梁108a、108bの長手方向に伸縮する。圧電体110a、110bと圧電体110c、110dとの伸縮によって、二股梁108a、108bは、振動体105の厚み方向へ撓む。二股梁108a、108bの撓みが、二股梁108a、108b、支持梁107a、107b、及びミラー部106の揺動を引き起こす。 The vibrating body 105 includes a mirror section 106, a pair of support beams 107a and 107b, a pair of bifurcated beams 108a and 108b, a fixing section 109, and piezoelectric bodies 110a, 110b, 110c, and 110d. The mirror unit 106 has a reflecting surface that reflects incident light. The support beam 107a and the support beam 107b are coupled to the mirror unit 106 so as to face each other with the mirror unit 106 interposed therebetween. The pair of bifurcated beams 108a and 108b are connected to the ends of the support beams 107a and 107b, respectively. Each of the pair of bifurcated beams 108 a and 108 b is divided into bifurcated portions and connected to the fixing portion 109. The fixed portion 109 has a frame-like structure surrounding the mirror portion 106, the pair of support beams 107a and 107b, and the pair of bifurcated beams 108a and 108b. The piezoelectric bodies 110a and 110b are provided across the bifurcated beam 108a and the fixed portion 109, and the piezoelectric bodies 110c and 110d are provided across the bifurcated beam 108b and the fixed portion 109. The piezoelectric bodies 110a and 110b and the piezoelectric bodies 110c and 110d are polarized by applying a voltage, and expand and contract in the longitudinal direction of the bifurcated beams 108a and 108b, respectively. The bifurcated beams 108 a and 108 b bend in the thickness direction of the vibrating body 105 by expansion and contraction of the piezoelectric bodies 110 a and 110 b and the piezoelectric bodies 110 c and 110 d. The bending of the bifurcated beams 108a and 108b causes the bifurcated beams 108a and 108b, the support beams 107a and 107b, and the mirror unit 106 to swing.
 ベース台102は、一対の支持部103a、103bと、凹部104とを備える。支持部103aと支持部103bとは、固定部109に接着される。凹部104は、支持部103aと支持部103bとの間に形成される。凹部104は、ミラー部106が揺動する空間を確保するために、支持部103aと支持部103bとに対して、振動体105から離間する方向に陥没している。 The base table 102 includes a pair of support portions 103 a and 103 b and a recess 104. The support part 103 a and the support part 103 b are bonded to the fixing part 109. The recess 104 is formed between the support portion 103a and the support portion 103b. The concave portion 104 is recessed in a direction away from the vibrating body 105 with respect to the support portion 103a and the support portion 103b in order to secure a space in which the mirror portion 106 swings.
特開2003-57586号公報JP 2003-57586 A
 ところで、光スキャナの光学触れ角を大きくするためには、圧電体の駆動力を大きくする方法が考えられる。図12に示されるような従来の光スキャナ101において、圧電体の駆動力を大きくするためには、圧電体110a、110bを従来のものより大きくする必要がある。尚、図12では簡略化のため、振動体105の片側のみが示されているが、他方の側も同様の構成を有する。このとき、圧電体110a、110bが、光スキャナ101の揺動時に、一対の二股梁108a上で不安定に動かないよう、一対の二股梁108aの幅を広くする必要がある。 Incidentally, in order to increase the optical touch angle of the optical scanner, a method of increasing the driving force of the piezoelectric body is conceivable. In the conventional optical scanner 101 as shown in FIG. 12, in order to increase the driving force of the piezoelectric body, it is necessary to make the piezoelectric bodies 110a and 110b larger than the conventional one. In FIG. 12, for simplification, only one side of the vibrating body 105 is shown, but the other side also has the same configuration. At this time, it is necessary to increase the width of the pair of bifurcated beams 108a so that the piezoelectric bodies 110a and 110b do not move unstablely on the pair of bifurcated beams 108a when the optical scanner 101 swings.
 しかしながら、梁を図12に示すように一対の二股梁108aを一様に幅広くすると、二股梁108aの剛性が高くなる。その結果、大きな駆動電圧を圧電体110a、110bにかける必要がある。従って、小さな駆動電圧で圧電体110a、110bを駆動させることができないという問題点がある。 However, if the pair of bifurcated beams 108a is uniformly widened as shown in FIG. 12, the rigidity of the bifurcated beams 108a increases. As a result, it is necessary to apply a large drive voltage to the piezoelectric bodies 110a and 110b. Therefore, there is a problem that the piezoelectric bodies 110a and 110b cannot be driven with a small driving voltage.
 本開示は、小さな駆動電圧で、光スキャナの大きな光学振れ角を得ることが可能な光スキャナを提供することを目的とする。 An object of the present disclosure is to provide an optical scanner capable of obtaining a large optical deflection angle of the optical scanner with a small driving voltage.
 本開示の一側面によれば入射した光束を反射する反射面を有し、揺動軸線の回りに揺動されることで前記光束を走査するミラー部と、前記ミラー部に連結する第1梁部と、前記第1梁部に連結する第2梁部と、から構成される可動梁と、前記第2梁部に対して連結される固定部と、前記第2梁部と前記固定部とに跨って設けられ、前記可動梁を振動させる圧電体と、を備え、前記第2梁部は、前記反射面に沿い且つ前記揺動軸線に交わる方向において、前記第1梁部と前記第2梁部とが連結する連結部の近傍における前記第1梁部よりも幅広である光スキャナを得ることができる。 According to one aspect of the present disclosure, a mirror unit that has a reflecting surface that reflects an incident light beam and is swung around a swing axis, and a first beam coupled to the mirror unit. A movable beam composed of a first beam portion, a second beam portion coupled to the first beam portion, a fixed portion coupled to the second beam portion, the second beam portion, and the fixed portion. And a piezoelectric body that vibrates the movable beam, and the second beam portion extends along the reflecting surface and intersects the swing axis in the direction intersecting the first beam portion and the second beam. An optical scanner that is wider than the first beam portion in the vicinity of the connecting portion where the beam portion is connected can be obtained.
 このような光スキャナによれば、光スキャナの大きな光学振れ角を得るために、幅広な圧電体を光スキャナに設けた際に、可動梁の一部、即ち圧電体が搭載される第2梁部のみ幅広にすることで、駆動電圧を小さく抑えることができる。 According to such an optical scanner, in order to obtain a large optical deflection angle of the optical scanner, when a wide piezoelectric body is provided in the optical scanner, a part of the movable beam, that is, the second beam on which the piezoelectric body is mounted. By making only the portion wide, the driving voltage can be kept small.
 本開示の他の側面によれば、前記第2梁部は、前記第1梁部に連結し、前記反射面に沿い且つ前記揺動軸線に交わる方向において、前記第1梁部と前記第2梁部とが連結する連結部の近傍における前記第1梁部と同じ幅の同幅部と、前記反射面に沿い且つ前記揺動軸線に交わる方向において、同幅部の片側から延出する片方延出部と、を備える光スキャナを得ることができる。 According to another aspect of the present disclosure, the second beam portion is connected to the first beam portion, and the first beam portion and the second beam portion in a direction along the reflection surface and intersecting the swing axis. The same width portion having the same width as the first beam portion in the vicinity of the connecting portion to which the beam portion is connected, and one side extending from one side of the same width portion along the reflecting surface and intersecting the swing axis An optical scanner provided with an extending portion can be obtained.
 このような光スキャナによれば、片方延出部は、同幅部の片側にのみ延出している。従って、片方延出部が同幅部の両側に延出している場合に比べ、第2梁部の角部が少ない。従って、光スキャナの揺動中に応力が集中しやすい角部が少なくて済み、光スキャナの破損の可能性を低く抑えることができる。 According to such an optical scanner, the one extending portion extends only to one side of the same width portion. Therefore, the corners of the second beam portion are fewer than when the one extension portion extends to both sides of the same width portion. Therefore, it is possible to reduce the number of corners where stress is likely to concentrate during the oscillation of the optical scanner, and the possibility of damage to the optical scanner can be kept low.
 本開示のさらに他の側面によれば、前記第1梁部は、前記ミラー部に連結するミラー支持梁と、前記ミラー支持梁に連結する第1連結部を有し、前記反射面に沿い且つ前記揺動軸線に交わる方向において、前記第1連結部から前記ミラー支持梁の両側に延出する延出梁と、前記延出梁の両端の各々に連結する一対の第2連結部を有し、前記揺動軸線に沿って前記ミラー部から離れる方向に、前記第2連結部から延出する一対の連結梁と、を備え、前記第2梁部は、前記一対の連結梁の各々に連結し、一対の前記第1梁部と前記第2梁部とが、前記ミラー部を挟んだ両側に備えられる光スキャナを得ることができる。 According to still another aspect of the present disclosure, the first beam part includes a mirror support beam connected to the mirror part, and a first connection part connected to the mirror support beam, along the reflection surface and An extending beam extending from the first connecting portion to both sides of the mirror support beam and a pair of second connecting portions connected to both ends of the extending beam in a direction intersecting the swing axis; A pair of connecting beams extending from the second connecting portion in a direction away from the mirror portion along the swing axis, and the second beam portion is connected to each of the pair of connecting beams. In addition, it is possible to obtain an optical scanner in which a pair of the first beam portion and the second beam portion are provided on both sides of the mirror portion.
 このような光スキャナによれば、光スキャナの大きな光学振れ角を得るために、幅広な圧電体を光スキャナに設けた際に、可動梁の一部、即ち圧電体が搭載される第2梁部のみ幅広にすることで、駆動電圧を小さく抑えることができる。 According to such an optical scanner, in order to obtain a large optical deflection angle of the optical scanner, when a wide piezoelectric body is provided in the optical scanner, a part of the movable beam, that is, the second beam on which the piezoelectric body is mounted. By making only the portion wide, the driving voltage can be kept small.
 本開示のさらに他の側面によれば、前記第2梁部は、前記反射面に沿い且つ前記揺動軸線から離れる方向に、前記同幅部の両側のうち前記揺動軸線から離れて位置する外側から延出する外方延出部を備える光スキャナを得ることができる。 According to still another aspect of the present disclosure, the second beam portion is positioned away from the swing axis of both sides of the same width portion in a direction along the reflection surface and away from the swing axis. An optical scanner provided with an outward extending portion extending from the outside can be obtained.
 このような光スキャナによれば、第2梁部が、同幅部と同幅部の両側から延出している延出部とから構成される場合、又は同幅部と同幅部の揺動軸線に近い内側から延出している延出部とから構成される場合に比べ、駆動電圧をより小さく抑えることができる。また、第2梁部が、同幅部と同幅部の両側から延出している延出部とから構成される場合、又は同幅部と同幅部の揺動軸線に近い内側から延出している延出部とから構成される場合に比べ、光スキャナの揺動中に、揺動軸線を挟んだ一対の延出する部分が互いに干渉しない。 According to such an optical scanner, when the second beam portion is composed of the same width portion and the extending portion extending from both sides of the same width portion, or the swinging of the same width portion and the same width portion. The drive voltage can be further reduced as compared with a case where the extension portion extends from the inner side close to the axis. In addition, when the second beam portion is composed of the same width portion and an extension portion extending from both sides of the same width portion, or the inner side of the same width portion and the same width portion close to the swing axis is extended. Compared with the case where the optical scanner is constituted by the extending portion, the pair of extending portions sandwiching the oscillation axis do not interfere with each other during the oscillation of the optical scanner.
 本開示のさらに他の側面によれば、前記外方延出部の、前記反射面に沿い且つ前記揺動軸線から離れる方向の幅は、前記同幅部の幅より大きい光スキャナを得ることができる。 According to still another aspect of the present disclosure, it is possible to obtain an optical scanner in which a width of the outwardly extending portion in a direction along the reflecting surface and away from the swing axis is larger than the width of the same width portion. it can.
 このような光スキャナによれば、外方延出部の、反射面に沿い且つ揺動軸線にから離れる方向の幅が同幅部の幅より大きく設定されていることから、従来の光スキャナと比較して、圧電体を駆動するための駆動電圧がほぼ半分以下で済む。従って、駆動電圧を小さく抑えることができる。 According to such an optical scanner, the width of the outwardly extending portion along the reflecting surface and away from the swing axis is set to be larger than the width of the same width portion. In comparison, the drive voltage for driving the piezoelectric body can be approximately half or less. Accordingly, the drive voltage can be kept small.
 本開示のさらに他の側面によれば、前記外方延出部の、前記反射面に沿い且つ前記揺動軸線から離れる方向の幅は、前記同幅部の幅より大きく且つ前記同幅部の幅の10倍大きい幅より小さい光スキャナを得ることができる。 According to still another aspect of the present disclosure, a width of the outward extending portion in a direction along the reflecting surface and away from the swing axis is larger than a width of the same width portion and of the same width portion. An optical scanner smaller than a width 10 times larger than the width can be obtained.
 このような光スキャナによれば、外方延出部の、反射面に沿い且つ揺動軸線から離れる方向の幅が、同幅部の幅より大きく設定されていることから、従来の光スキャナと比較して、圧電体を駆動するための駆動電圧がほぼ半分以下で済む。従って、駆動電圧を小さく抑えることができる。外方延出部の、反射面に平行沿い且つ揺動軸線から離れる方向の幅が、同幅部の幅の10倍大きい幅より大きい場合、駆動電圧は大幅に小さくならない。従って、光スキャナ全体が大型化する問題が生ずる。このため、外方延出部の、反射面に沿い且つ揺動軸線から離れる方向の幅が同幅部の幅の10倍大きい幅より小さく設定されることで、外方延出部がこの範囲を超える幅でなくとも、一定の小さな駆動電圧で圧電体が駆動されるとともに、光スキャナ全体の小型化が図られる。 According to such an optical scanner, the width of the outwardly extending portion in the direction along the reflecting surface and away from the swing axis is set larger than the width of the same width portion. In comparison, the drive voltage for driving the piezoelectric body can be approximately half or less. Accordingly, the drive voltage can be kept small. When the width of the outwardly extending portion along the direction parallel to the reflecting surface and away from the swing axis is larger than the width 10 times larger than the width of the same width portion, the driving voltage is not significantly reduced. Therefore, there arises a problem that the entire optical scanner is increased in size. For this reason, the width of the outward extension along the reflecting surface and away from the swing axis is set to be smaller than a width 10 times larger than the width of the same width, so that the outward extension is within this range. Even if the width does not exceed 1, the piezoelectric body is driven with a constant small driving voltage, and the entire optical scanner can be miniaturized.
 本開示のさらに他の側面によれば、前記圧電体の、前記反射面に沿い前記揺動軸線に交わる方向の幅は、前記同幅部の幅より大きく、前記圧電体の、前記反射面に沿い且つ前記揺動軸線に沿って前記固定部から前記ミラー部に向かう方向の長さは、前記同幅部の幅より大きい光スキャナを得ることができる。 According to still another aspect of the present disclosure, a width of the piezoelectric body in a direction intersecting the swing axis along the reflective surface is larger than a width of the same width portion, and the piezoelectric body has a width on the reflective surface. An optical scanner having a length in the direction from the fixed portion to the mirror portion along the swing axis is greater than the width of the same width portion.
 このような光スキャナによれば、圧電体の、反射面に沿い且つ揺動軸線に交わる方向の幅は、同幅部の幅より大きく、更に、圧電体の、反射面に沿い且つ前記揺動軸線に沿って固定部からミラー部に向かう方向の長さは、同幅部の幅より大きい。このような構成から、小さな駆動電圧で光スキャナの大きな光学振れ角を得ることができる。 According to such an optical scanner, the width of the piezoelectric body in the direction along the reflecting surface and intersecting the swing axis is larger than the width of the same width portion. The length in the direction from the fixed part to the mirror part along the axis is larger than the width of the same width part. With such a configuration, a large optical deflection angle of the optical scanner can be obtained with a small drive voltage.
 本開示のさらに他の側面によれば、前記第2梁部は、前記反射面に沿い且つ前記揺動軸線から離れる方向に、前記同幅部の両側のうち前記揺動軸線から離れて位置する外側から延出する外方延出部を備え、前記外方延出部の、前記反射面に沿い且つ前記揺動軸線に沿う方向の長さは、前記同幅部の幅より大きく、前記可動梁の、前記反射面に沿い且つ前記揺動軸線に沿う方向の長さの半分より小さく、前記圧電体の、前記反射面に沿い且つ前記揺動軸線に沿って前記固定部から前記ミラー部に向かう方向の長さは、前記同幅部の幅より大きく、前記可動梁の、前記反射面に沿い且つ前記揺動軸線に沿う方向の長さの半分より小さい光スキャナを得ることができる。 According to still another aspect of the present disclosure, the second beam portion is positioned away from the swing axis of both sides of the same width portion in a direction along the reflection surface and away from the swing axis. An outwardly extending portion extending from the outside, and the length of the outwardly extending portion along the reflecting surface and along the swing axis is greater than the width of the same-width portion and is movable Less than half of the length of the beam along the reflecting surface and along the swing axis, and from the fixed portion to the mirror portion along the reflecting surface of the piezoelectric body and along the swing axis. It is possible to obtain an optical scanner having a length in the direction in which it is larger than the width of the same width portion and smaller than half of the length of the movable beam along the reflecting surface and along the swing axis.
 このような光スキャナによれば、外方延出部の、反射面に沿い且つ前記揺動軸線に沿う方向の長さは、同幅部の幅より大きく、可動梁の、反射面に沿い且つ前記揺動軸線に沿う方向の長さの半分より小さい。更に、圧電体の、反射面に沿い且つ前記揺動軸線に沿って固定部からミラー部に向かう方向の長さは、同幅部の幅より大きく、可動梁の、反射面に沿い且つ前記揺動軸線に沿う方向の長さの半分より小さい。これらの構成から、第1梁部の変形する領域が長くなるので、可動梁が変形し易くなる。その結果、小さな駆動電圧で光スキャナの大きな光学振れ角を得つつ、圧電体が、光スキャナの揺動時に第2梁部上で不安定に動くことを防ぐことができる。 According to such an optical scanner, the length of the outwardly extending portion along the reflecting surface and along the swing axis is larger than the width of the same width portion, and along the reflecting surface of the movable beam and Less than half the length in the direction along the swing axis. Further, the length of the piezoelectric body in the direction from the fixed part to the mirror part along the reflection surface and along the swing axis is larger than the width of the same width part, and the length of the movable beam along the reflection surface and the rocking part. Less than half of the length along the axis of movement. From these structures, since the area | region which a 1st beam part deform | transforms becomes long, a movable beam becomes easy to deform | transform. As a result, while obtaining a large optical deflection angle of the optical scanner with a small driving voltage, it is possible to prevent the piezoelectric body from unstablely moving on the second beam portion when the optical scanner is swung.
本発明の一実施形態に係る光スキャナ1の斜視図である。1 is a perspective view of an optical scanner 1 according to an embodiment of the present invention. 上記光スキャナ1から本実施形態に係る駆動部4a~4dを除いて示す斜視図である。FIG. 4 is a perspective view showing the optical scanner 1 excluding driving units 4a to 4d according to the present embodiment. 上記光スキャナ1の部分拡大斜視図である。2 is a partially enlarged perspective view of the optical scanner 1. FIG. 上記光スキャナ1から本実施形態に係る駆動部4a~4dを除いて示す部分平面拡大図である。FIG. 4 is an enlarged partial plan view showing the optical scanner 1 excluding driving units 4a to 4d according to the present embodiment. 上記駆動部4a~4dの構成を説明するための説明図である。FIG. 6 is an explanatory diagram for explaining a configuration of the drive units 4a to 4d. 上記光スキャナ1の揺動を説明するための説明図である。It is explanatory drawing for demonstrating the rocking | fluctuation of the said optical scanner. 本実施形態に係る延出部13a、13bが外側に延出している場合の、延出部13a、13bのX軸方向における幅Wdと駆動電圧との関係を示すグラフである。It is a graph which shows the relationship between the width Wd and the drive voltage in the X-axis direction of the extension parts 13a and 13b when the extension parts 13a and 13b which concern on this embodiment are extended outside. 上記延出部13a、13bが外側に延出している場合の、延出部13a、13bのY軸方向における長さLgと駆動電圧との関係を示すグラフである。It is a graph which shows the relationship between the length Lg in the Y-axis direction of the extension parts 13a and 13b, and the drive voltage when the said extension parts 13a and 13b are extended outside. 上記延出部13a、13bが外側に延出している場合の光スキャナ1を説明するための説明図である。It is explanatory drawing for demonstrating the optical scanner 1 in case the said extension parts 13a and 13b are extended outside. 上記延出部13a、13bが内側に延出している場合の光スキャナ1を説明するための説明図である。It is explanatory drawing for demonstrating the optical scanner 1 in case the said extension parts 13a and 13b are extended inside. 上記延出部13a、13bが両側に延出している場合の光スキャナ1を説明するための説明図である。It is explanatory drawing for demonstrating the optical scanner 1 in case the said extension parts 13a and 13b are extended on both sides. 第1梁部7aのX軸方向における幅を第2梁部と同じだけ幅広くした場合の光スキャナ1を説明するための説明図である。It is explanatory drawing for demonstrating the optical scanner 1 when the width | variety in the X-axis direction of the 1st beam part 7a is made as wide as the 2nd beam part. 従来の光スキャナ1を説明するための説明図である。It is explanatory drawing for demonstrating the conventional optical scanner 1. FIG. シミュレーションに際し設定した、光スキャナ1の各部の寸法を説明するための説明図である。It is explanatory drawing for demonstrating the dimension of each part of the optical scanner 1 set in the case of simulation. 本実施形態に係る構造体の製造工程を示す図である。It is a figure which shows the manufacturing process of the structure which concerns on this embodiment. 上記光スキャナ1の網膜走査ディスプレイ201における使用例を示す図である。It is a figure which shows the usage example in the retinal scanning display 201 of the said optical scanner 1. FIG. 従来の光スキャナ101を示す図である。It is a figure which shows the conventional optical scanner 101. FIG. 従来の光スキャナ101において、一対の二股梁108aを一様に幅広にした状態を示す図である。In the conventional optical scanner 101, it is a figure which shows the state which made a pair of bifurcated beams 108a wide uniformly.
 以下、本発明の一実施形態について、図面を参照して具体的に説明する。 Hereinafter, an embodiment of the present invention will be specifically described with reference to the drawings.
[光スキャナ外観]
 光スキャナ1は、共振型の光スキャナである。図1に示すように、光スキャナ1は、反射ミラー2と、可動梁3a、3bと、駆動部4a~4dと、固定部5とを備えている。本実施形態における反射ミラー2が、本発明のミラー部の一例である。本実施形態における可動梁3a、3bが、本発明の可動梁の一例である。本実施形態における駆動部4a~4dが、本発明の圧電体の一例である。本実施形態における固定部5が、本発明の固定部の一例である。なお、反射ミラー2と、可動梁3a、3bと、駆動部4a~4dと、固定部5とは、図示しないベース台上に配置される。可動梁3a、3bと固定部5とはウェットエッチングにより一体成形されている。
[Optical scanner appearance]
The optical scanner 1 is a resonance type optical scanner. As shown in FIG. 1, the optical scanner 1 includes a reflection mirror 2, movable beams 3a and 3b, driving units 4a to 4d, and a fixed unit 5. The reflection mirror 2 in the present embodiment is an example of the mirror unit of the present invention. The movable beams 3a and 3b in the present embodiment are examples of the movable beam of the present invention. The drive units 4a to 4d in the present embodiment are examples of the piezoelectric body of the present invention. The fixing part 5 in the present embodiment is an example of the fixing part of the present invention. The reflection mirror 2, the movable beams 3a and 3b, the drive units 4a to 4d, and the fixed unit 5 are disposed on a base table (not shown). The movable beams 3a and 3b and the fixed portion 5 are integrally formed by wet etching.
 反射ミラー2は、揺動軸線AXの回りに揺動可能に構成される。反射ミラー2は、入射した光束を反射して、走査する反射面6を備える。以後、簡略化のため、図1に示すように、光スキャナ1の静止時の、反射面6に沿い且つ揺動軸線AXに交わる方向をX軸とし、反射面6に沿い且つ揺動軸線AXに沿う方向をY軸とし、反射面6に交わる方向をZ軸として定義する。図1に示される本実施形態においては、X軸、Y軸、Z軸の具体的な例として、X軸は反射面7に平行且つ揺動軸線AXに垂直に、Y軸は反射面7に平行且つ揺動軸線AXに平行に、Z軸は反射面7に垂直に、それぞれ定義される。なお、X軸、Y軸、Z軸の方向の定義は、他の図面においても共通のものとする。本実施形態における反射面6が、本発明の反射面の一例である。 The reflection mirror 2 is configured to be swingable about the swing axis AX. The reflection mirror 2 includes a reflection surface 6 that reflects and scans an incident light beam. Hereinafter, for simplification, as shown in FIG. 1, when the optical scanner 1 is stationary, the direction along the reflection surface 6 and intersecting the swing axis AX is taken as the X axis, and along the reflection surface 6 and the swing axis AX. Is defined as the Y axis, and the direction intersecting the reflecting surface 6 is defined as the Z axis. In the present embodiment shown in FIG. 1, as specific examples of the X, Y, and Z axes, the X axis is parallel to the reflecting surface 7 and perpendicular to the swing axis AX, and the Y axis is on the reflecting surface 7. The Z axis is defined to be parallel to the swing axis AX and perpendicular to the reflecting surface 7. Note that the definitions of the directions of the X axis, the Y axis, and the Z axis are common to other drawings. The reflective surface 6 in the present embodiment is an example of the reflective surface of the present invention.
 図2を用いて、可動梁3a、3bの構造について説明する。図2に示すように、可動梁3a、3bは、反射ミラー2を挟んで互いに対向するように、反射ミラー2に連結している。可動梁3a、3bは、固定部5に向けて二股に分かれる形状をしている。可動梁3aは、第1梁部7aと、第2梁部8a、8bとから構成される。同様に、可動梁3bは、第1梁部7bと、第2梁部8c、8dとから構成される。可動梁3aと可動梁3bとは、反射ミラー2に対して対称な形状である。そのため、以下では可動梁3aの説明を行い、可動梁3bの説明は省略される。第1梁部7aは、第2梁部8a、8bに連結する。第2梁部8a、8bは、固定部5に連結する。本実施形態における第1梁部7a、7bが、本発明の第1梁部の一例である。本実施形態における第2梁部8a~8dが、本発明の第2梁部の一例である。 The structure of the movable beams 3a and 3b will be described with reference to FIG. As shown in FIG. 2, the movable beams 3 a and 3 b are connected to the reflection mirror 2 so as to face each other with the reflection mirror 2 interposed therebetween. The movable beams 3 a and 3 b have a shape that is bifurcated toward the fixed portion 5. The movable beam 3a includes a first beam portion 7a and second beam portions 8a and 8b. Similarly, the movable beam 3b includes a first beam portion 7b and second beam portions 8c and 8d. The movable beam 3 a and the movable beam 3 b are symmetrical with respect to the reflection mirror 2. Therefore, the movable beam 3a will be described below, and the description of the movable beam 3b will be omitted. The first beam portion 7a is connected to the second beam portions 8a and 8b. The second beam portions 8 a and 8 b are connected to the fixed portion 5. The first beam portions 7a and 7b in the present embodiment are an example of the first beam portion of the present invention. The second beam portions 8a to 8d in the present embodiment are examples of the second beam portion of the present invention.
 図1に示されるように、駆動部4a~4dは、各々、第2梁部8a~8dと固定部5とに跨って、第2梁部8a~8dと固定部5との上に設けられている。 As shown in FIG. 1, the drive units 4a to 4d are provided on the second beam portions 8a to 8d and the fixed portion 5 across the second beam portions 8a to 8d and the fixed portion 5, respectively. ing.
[第1梁部及び第2梁部の構造]
 図3を用いて、第1梁部7a、7bの詳細な構造について説明する。図3に示すように、第1梁部7aは、支持梁9aと、延出梁10aと、一対の連結梁11a、11bとを備える。同様に、第1梁部7bは、支持梁9bと、延出梁10bと、一対の連結梁11c、11dとを備える。第1梁部7aと第1梁部7bとは、反射ミラー2に対して対称な形状である。そのため、以下では第1梁部7aの説明を行い、第1梁部7bの説明は省略される。延出梁10aは、支持梁9aに連結する第1連結部CPaを有する。連結梁11a、11bは、各々、延出梁10aの端部に連結する第2連結部CPbを有する。支持梁9aは、Y軸方向において、反射ミラー2を支持する。支持梁9aは、反射ミラー2の揺動軸線AXを含むようにして、反射ミラー2を挟んで支持梁9bに対向する。延出梁10aは、X軸方向において、第1連結部CPaから支持梁9aの両側に延出する。連結梁11a、11bは、各々、Y軸に沿って反射ミラー2から離れる方向に、第2連結部CPbから延出する。連結梁11a、11bは、第1領域R1と第2領域R2と第3領域R3とから構成される。X軸方向における、第1領域R1の幅は、第2領域の幅よりも大きい。第2領域R2の幅は、第3領域R3の幅よりも大きい。X軸方向における、第1領域R1と第3領域R3とのX軸方向における幅は、ほぼ一定である。一方、第2領域R2のX軸方向における幅は、反射ミラー2から離れるに従い、小さくなる。連結梁11aの第3領域R3が、第2梁部8aに連結し、連結梁11bの第3領域R3が、第2梁部8aに連結する(図2参照)。本実施形態における支持梁9a、9bが、本発明のミラー支持梁の一例である。本実施形態における延出梁10a、10bが、本発明の延出梁の一例である。本実施形態における連結梁11a~11dが、本発明の連結梁の一例である。本実施形態における第1連結部CPa、第2連結部CPbが、各々、本発明の第1連結部、第2連結部の一例である。
[Structure of the first beam and the second beam]
The detailed structure of the first beam portions 7a and 7b will be described with reference to FIG. As shown in FIG. 3, the first beam portion 7a includes a support beam 9a, an extended beam 10a, and a pair of connecting beams 11a and 11b. Similarly, the first beam portion 7b includes a support beam 9b, an extended beam 10b, and a pair of connecting beams 11c and 11d. The first beam portion 7 a and the first beam portion 7 b are symmetrical with respect to the reflection mirror 2. Therefore, the description of the first beam portion 7a will be given below, and the description of the first beam portion 7b will be omitted. The extended beam 10a has a first connecting portion CPa that is connected to the support beam 9a. Each of the connecting beams 11a and 11b has a second connecting portion CPb that is connected to the end of the extended beam 10a. The support beam 9a supports the reflection mirror 2 in the Y-axis direction. The support beam 9a includes the swing axis AX of the reflection mirror 2 and faces the support beam 9b with the reflection mirror 2 interposed therebetween. The extending beam 10a extends from the first connecting portion CPa to both sides of the support beam 9a in the X-axis direction. The connecting beams 11a and 11b each extend from the second connecting portion CPb in a direction away from the reflecting mirror 2 along the Y axis. The connecting beams 11a and 11b are composed of a first region R1, a second region R2, and a third region R3. The width of the first region R1 in the X-axis direction is larger than the width of the second region. The width of the second region R2 is larger than the width of the third region R3. The width in the X-axis direction between the first region R1 and the third region R3 in the X-axis direction is substantially constant. On the other hand, the width in the X-axis direction of the second region R2 decreases as the distance from the reflection mirror 2 increases. The third region R3 of the connecting beam 11a is connected to the second beam portion 8a, and the third region R3 of the connecting beam 11b is connected to the second beam portion 8a (see FIG. 2). The support beams 9a and 9b in the present embodiment are examples of the mirror support beam of the present invention. The extended beams 10a and 10b in the present embodiment are examples of the extended beam of the present invention. The connecting beams 11a to 11d in the present embodiment are examples of the connecting beam of the present invention. The first connecting portion CPa and the second connecting portion CPb in the present embodiment are examples of the first connecting portion and the second connecting portion of the present invention, respectively.
 図4を用いて、第2梁部8a~8dの詳細な構造について説明する。図4には簡略化のため、第2梁部8a、8bのみが示されているが、第2梁部8c、8dも第2梁部8a、8bと同一の構成を有する。第2梁部8a、8bは、各々、連結梁11a、11bの第3領域R3と、連結部CPにおいて連結している。図4に示すように、第2梁部8a、8bは、同幅部12a、12bと、延出部13a、13bとを備える。同幅部12a、12bは、各々、X軸方向において、連結梁11a、11bと第2梁部8a、8bとが連結する連結部CPの近傍における連結梁11a、11b、即ち連結梁11a、11bの第3領域R3と同じ幅である。同幅部12a、12bは、図4にて点線と双方向矢印とで表した部分である。延出部13a、13bは、各々、X軸方向において、同幅部12a、12bの両側のうち揺動軸線AXから離れて位置する外側OSから、X軸方向に揺動軸線AXから離れる方向に延出している。なお、同幅部12a、12bの両側のうち内側とは、図4に示した内側ISである。第2梁部8c、8dも第2梁部8a、8bと同様に、同幅部と延出部とを備える。本実施形態における同幅部12a、12bが、本発明の同幅部の一例である。本実施形態における延出部13a、13bが、本発明の外方延出部、及び片方延出部の一例である。本実施形態における連結部CPが、本発明の連結部の一例である。なお、連結部CPの近傍とは、連結部CPを含んで、第1梁部7aの中で最も変形し易い部分の範囲である。本実施形態において、連結部CPの近傍は、第1梁部7aの連結梁11a、11bの第3領域R3である。同幅部12a、12bとは、第1梁部7aの連結梁11a、11bの第3領域R3の両側のY軸方向における延長線上にある外側OSと内側ISとの間の部分を指す。 The detailed structure of the second beam portions 8a to 8d will be described with reference to FIG. For simplicity, only the second beam portions 8a and 8b are shown in FIG. 4, but the second beam portions 8c and 8d have the same configuration as the second beam portions 8a and 8b. The second beam portions 8a and 8b are connected to the third region R3 of the connection beams 11a and 11b at the connection portion CP, respectively. As shown in FIG. 4, the second beam portions 8 a and 8 b include the same width portions 12 a and 12 b and extending portions 13 a and 13 b. The same width portions 12a and 12b are respectively connected to the connecting beams 11a and 11b in the vicinity of the connecting portion CP where the connecting beams 11a and 11b and the second beam portions 8a and 8b are connected in the X-axis direction, that is, the connecting beams 11a and 11b. The same width as the third region R3. The same width portions 12a and 12b are portions represented by dotted lines and bidirectional arrows in FIG. Each of the extending portions 13a and 13b extends in the direction away from the swing axis AX in the X axis direction from the outer OS positioned away from the swing axis AX on both sides of the same width portions 12a and 12b in the X axis direction. It is extended. Note that the inner side of both sides of the same width portions 12a and 12b is the inner side IS shown in FIG. Similarly to the second beam portions 8a and 8b, the second beam portions 8c and 8d include the same width portion and an extension portion. The same width parts 12a and 12b in this embodiment are an example of the same width part of this invention. The extension parts 13a and 13b in this embodiment are examples of the outward extension part and the one-side extension part of the present invention. The connecting portion CP in the present embodiment is an example of the connecting portion of the present invention. In addition, the vicinity of the connection part CP is the range of the part which is easy to deform | transform in the 1st beam part 7a including the connection part CP. In the present embodiment, the vicinity of the connecting portion CP is the third region R3 of the connecting beams 11a and 11b of the first beam portion 7a. The same width portions 12a and 12b refer to portions between the outer OS and the inner IS on the extension line in the Y-axis direction on both sides of the third region R3 of the connecting beams 11a and 11b of the first beam portion 7a.
[駆動部の構造]
 図5を用いて、駆動部4a~4dの構造について詳細に説明する。図5では代表して、駆動部4aのみが示されているが、駆動部4b~4dも駆動部4aと同一の構成を有する。駆動部4aは、図5に示すように、薄板状の圧電体14aが、上部電極15aと下部電極16aとに挟まれた積層体である。圧電体14aは、一例として、電圧印加により変形するチタン酸ジルコン酸鉛(以後、「PZT」と記す。)である。図5に示すように、第1梁部の連結梁11aと第2梁部8aとは、連結部CPにて連結し、第2梁部8aと固定部5の凹部5aとは、連結部CPcにて連結する。駆動部4aは、図5に示すように、固定部5の凹部5aと第2梁部8aとに跨って、凹部5aと第2梁部8aとの上に設けられている。駆動部4b~4dも、駆動部4aと同様に、各々、図示しない圧電体と、上部電極と下部電極とを備える。
[Structure of drive unit]
The structure of the drive units 4a to 4d will be described in detail with reference to FIG. In FIG. 5, only the drive unit 4a is shown as a representative, but the drive units 4b to 4d have the same configuration as the drive unit 4a. As shown in FIG. 5, the drive unit 4a is a laminated body in which a thin plate-like piezoelectric body 14a is sandwiched between an upper electrode 15a and a lower electrode 16a. The piezoelectric body 14a is, for example, lead zirconate titanate (hereinafter referred to as “PZT”) that is deformed by voltage application. As shown in FIG. 5, the connecting beam 11a of the first beam part and the second beam part 8a are connected by a connecting part CP, and the second beam part 8a and the recessed part 5a of the fixing part 5 are connected by a connecting part CPc. Connect with As shown in FIG. 5, the drive part 4a is provided on the recessed part 5a and the 2nd beam part 8a across the recessed part 5a and the 2nd beam part 8a of the fixing | fixed part 5. As shown in FIG. Similarly to the drive unit 4a, the drive units 4b to 4d each include a piezoelectric body (not shown), an upper electrode, and a lower electrode.
 上部電極15aを含む4つの上部電極と下部電極16aを含む4つの下部電極とは、各々図示しないリード線により、固定部5に設けられた一対の入力端子に接続されている。そして、入力端子を介して電圧が駆動部4a~4dに印加されることで、圧電体14aを含む4つの圧電体が伸縮変形する。4つの圧電体が伸縮変形することにより、第2梁部8a~8dがZ軸方向の上側、または下側に屈曲する。第2梁部8a~8dが上側に屈曲するか、下側に屈曲するかは、4つの上部電極と、4つの下部電極との間の電圧の正負によって制御される。なお、Z軸方向の上側、下側とは、各々、Z軸の正の領域側、負の領域側であり、厳密にZ軸方向に平行な方向を指してはいない。 The four upper electrodes including the upper electrode 15a and the four lower electrodes including the lower electrode 16a are connected to a pair of input terminals provided in the fixed portion 5 by lead wires (not shown). Then, the voltage is applied to the driving units 4a to 4d through the input terminals, so that the four piezoelectric bodies including the piezoelectric body 14a are deformed and expanded. When the four piezoelectric bodies expand and contract, the second beam portions 8a to 8d are bent upward or downward in the Z-axis direction. Whether the second beam portions 8a to 8d are bent upward or downward is controlled by positive / negative of voltages between the four upper electrodes and the four lower electrodes. The upper side and the lower side in the Z-axis direction are the positive region side and the negative region side of the Z-axis, respectively, and do not indicate a direction strictly parallel to the Z-axis direction.
[動作説明]
 図6を用いて、光スキャナ1の揺動について説明する。図6は、簡略化のため、反射ミラー2と可動梁3a、3bのみを示している。図6において、実線により示した光スキャナ1は静止時の光スキャナ1を示す。また、一点鎖線により示した光スキャナ1は揺動時の、ある揺動角度における光スキャナ1を示す。可動梁3a、3bは構造を簡略化した状態で示される。先ず、第2梁部8a、及び8cがZ軸方向の上側に、第2梁部8b及び8dがZ軸方向の下側にそれぞれ屈曲するように、電圧が印加される。次に、第2梁部8a、及び8cがZ軸方向の下側に、第2梁部8b及び8dがZ軸方向の上側にそれぞれ屈曲するように、電圧が印加される。このように駆動部4b~4dに印加される電圧の正負を周期的に変化させることで、光スキャナ1は、揺動軸線AXを中心に揺動する。反射面6は、揺動軸線AXを中心に揺動しながら、入射した光束を反射する。このように光束が反射面6により反射されることで、光束が走査される。以上のように、光スキャナ1の揺動は、駆動部4b~4dに対する周期的な電圧印加により引き起こされる第2梁部8a~8dの屈曲に起因するものである。
[Description of operation]
The swinging of the optical scanner 1 will be described with reference to FIG. FIG. 6 shows only the reflection mirror 2 and the movable beams 3a and 3b for simplification. In FIG. 6, the optical scanner 1 indicated by a solid line indicates the optical scanner 1 at rest. An optical scanner 1 indicated by a one-dot chain line indicates the optical scanner 1 at a certain swing angle when swinging. The movable beams 3a and 3b are shown in a simplified state. First, a voltage is applied so that the second beam portions 8a and 8c are bent upward in the Z-axis direction and the second beam portions 8b and 8d are bent downward in the Z-axis direction, respectively. Next, a voltage is applied so that the second beam portions 8a and 8c are bent downward in the Z-axis direction, and the second beam portions 8b and 8d are bent upward in the Z-axis direction, respectively. As described above, the optical scanner 1 swings about the swing axis AX by periodically changing the sign of the voltage applied to the drive units 4b to 4d. The reflecting surface 6 reflects the incident light beam while swinging about the swing axis AX. In this way, the light beam is reflected by the reflecting surface 6 so that the light beam is scanned. As described above, the oscillation of the optical scanner 1 is caused by the bending of the second beam portions 8a to 8d caused by the periodic application of voltages to the drive portions 4b to 4d.
[解析結果]
 図7A、図7B、及び表を用いて、光スキャナ1の駆動電圧の変化についてのシミュレーションによる解析結果を説明する。図7A、図7B、及び表に記載されている、駆動電圧や共振周波数等の数値は、全て光スキャナ1の光学振れ角を、所望の値の一例として25度と設定した際の数値である。以後、延出部13a、13bが「外側」に延出している場合とは、図8Aに示すように、延出部13a、13bが揺動軸線AXから離れる側に同幅部12a、12bから延出している場合を意味する。また、延出部13a、13bが「内側」に延出している場合とは、図8Bに示すように、延出部13a、13bがX軸方向において揺動軸線AXに向かう側に同幅部12a、12bから延出している場合を意味する。また、延出部13a、13bが「両側」に延出している場合とは、図8Cに示すように、延出部13a、13bがX軸方向において揺動軸線AXに向かう側と揺動軸線AXから離れる側との両側に同幅部12a、12bから延出している場合を指す。なお、延出部13a、13bのX軸方向における幅とは、延出部13a、13bが一方に延出している図8A、図8Bにおいては、延出部13a、13bがX軸方向において同幅部12a、12bから延出している幅Wdを意味する。一方、延出部13a、13bが両側に延出している図8Cにおいては、延出部13a、13bのX軸方向における幅とは、延出部13a、13bの両側の幅Wd1とWd2との和を指す。なお、図8Dは、第2梁部8a、8bと同じ幅Wd1、幅Wd2で第1梁部7aの連結梁11a、11bもX軸方向の両側に幅広くした場合、即ち、従来の光スキャナ1に近い構造のまま、第1梁部7aと第2梁部8a、8bとをX軸方向において幅広くした場合の光スキャナ1の構造を示す。図8Eは、従来の光スキャナの構造を示しており、幅Wd=0μmである。図8A~図8Eには可動梁3aのみが記されているが、可動梁3bも同一の構造を有するものとする。また、図8A~図8Eは、簡略化のため、駆動部4a、4bを省略して示している。なお、シミュレーションに際して、光スキャナ1のモデルとして、図8A~図8Eに示したモデルを用いたが、このモデルは図1~図5に示した光スキャナ1と構造上異なる点がある。しかし、おおよその構造は図1~図5に示した光スキャナ1と等しいため、以後に示す解析結果は、図1~図5に示した光スキャナ1においても同様のことが言える。
[Analysis result]
7A and 7B and a table will be used to explain the analysis result by simulation of the change in the drive voltage of the optical scanner 1. FIG. The numerical values such as the driving voltage and the resonance frequency described in FIGS. 7A and 7B and the table are all values when the optical deflection angle of the optical scanner 1 is set to 25 degrees as an example of a desired value. . Hereinafter, when the extending portions 13a and 13b extend “outside”, as shown in FIG. 8A, the extending portions 13a and 13b extend from the same width portions 12a and 12b to the side away from the swing axis AX. It means when it is extended. Further, when the extending portions 13a and 13b extend inward, as shown in FIG. 8B, the extending portions 13a and 13b have the same width portion on the side toward the swing axis AX in the X-axis direction. It means the case of extending from 12a, 12b. Further, when the extending portions 13a and 13b extend to “both sides”, as shown in FIG. 8C, the extending portions 13a and 13b are in the X-axis direction toward the swing axis AX and the swing axis. The case where it is extended from the same width parts 12a and 12b on both sides with the side away from AX is pointed out. Note that the widths of the extending portions 13a and 13b in the X-axis direction are the same as those in FIGS. 8A and 8B in which the extending portions 13a and 13b extend in one direction. It means the width Wd extending from the width portions 12a and 12b. On the other hand, in FIG. 8C in which the extending portions 13a and 13b extend on both sides, the width in the X-axis direction of the extending portions 13a and 13b is the width Wd1 and Wd2 on both sides of the extending portions 13a and 13b. Refers to the sum. In FIG. 8D, the same width Wd1 and width Wd2 as the second beam portions 8a and 8b and the connecting beams 11a and 11b of the first beam portion 7a are widened on both sides in the X-axis direction, that is, the conventional optical scanner 1. The structure of the optical scanner 1 in the case where the first beam portion 7a and the second beam portions 8a and 8b are wide in the X-axis direction is shown with the structure close to. FIG. 8E shows the structure of a conventional optical scanner, where the width Wd = 0 μm. 8A to 8E show only the movable beam 3a, it is assumed that the movable beam 3b also has the same structure. 8A to 8E omit the drive units 4a and 4b for the sake of simplicity. In the simulation, the model shown in FIGS. 8A to 8E is used as a model of the optical scanner 1. However, this model is different in structure from the optical scanner 1 shown in FIGS. However, since the approximate structure is the same as that of the optical scanner 1 shown in FIGS. 1 to 5, the same results can be said for the optical scanner 1 shown in FIGS.
 図8Fを用いて、シミュレーションに際して設定した光スキャナ1の各部の寸法について説明する。図8Fは、図8Aに示した延出部13a、13bが「外側」に延出している場合の光スキャナ1に駆動部4a、4bが設けられた図である。図8B~図8Eの光スキャナ1に対しても、以後詳述する幅Bw,長さG1,G2に対し、同一の寸法が設定されている。一例として、連結梁11a、11bのX軸方向における幅Bwは85μm、Y軸方向における第2梁部8a、8bの連結部CPから第2梁部8a、8b上の圧電体14a、14bの先端APまでの長さG1は90μm、Y軸方向における圧電体14a、14bの先端APから上部電極15a、15b先端までの長さG2は100μmである。X軸方向における圧電体14a、14bの幅は、第2梁部8a、8bのX軸方向における幅、即ち、Wd+Bwである。X軸方向における圧電体14a、14bの幅をWd+Bwに設定することで、Wd>0の場合、X軸方向における圧電体14a、14bの幅は、同幅部12a、12bの幅Bwよりも大きくなる。また、圧電体14a、14bのY軸方向における長さLpは、第2梁部8a、8bのY軸方向における長さLgから、G1を差し引いた値、即ちLp=Lg-G1である。下部電極16a、16bは、圧電体14a、14bのZ軸方向における下側に設置され、図8Fでは図示されていない。なお、本実施形態において、圧電体14a、14bのX軸方向における幅、及びY軸方向における長さLpとは、各々、駆動部4a、4bのX軸方向における幅、及びY軸方向における長さと同じ意味を持つものとする。 The dimensions of each part of the optical scanner 1 set in the simulation will be described with reference to FIG. 8F. FIG. 8F is a diagram in which the drive units 4a and 4b are provided in the optical scanner 1 when the extending portions 13a and 13b illustrated in FIG. 8A extend “outside”. Also for the optical scanner 1 of FIGS. 8B to 8E, the same dimensions are set for the width Bw and the lengths G1 and G2, which will be described in detail later. As an example, the width Bw in the X-axis direction of the connecting beams 11a and 11b is 85 μm, and the tips of the piezoelectric bodies 14a and 14b on the second beam portions 8a and 8b from the connecting portion CP of the second beam portions 8a and 8b in the Y-axis direction. The length G1 to the AP is 90 μm, and the length G2 from the tip AP of the piezoelectric bodies 14a and 14b to the tip of the upper electrodes 15a and 15b in the Y-axis direction is 100 μm. The widths of the piezoelectric bodies 14a and 14b in the X-axis direction are the widths of the second beam portions 8a and 8b in the X-axis direction, that is, Wd + Bw. By setting the width of the piezoelectric bodies 14a and 14b in the X-axis direction to Wd + Bw, when Wd> 0, the width of the piezoelectric bodies 14a and 14b in the X-axis direction is larger than the width Bw of the same width portions 12a and 12b. Become. The length Lp of the piezoelectric bodies 14a and 14b in the Y-axis direction is a value obtained by subtracting G1 from the length Lg of the second beam portions 8a and 8b in the Y-axis direction, that is, Lp = Lg−G1. The lower electrodes 16a and 16b are disposed below the piezoelectric bodies 14a and 14b in the Z-axis direction, and are not illustrated in FIG. 8F. In the present embodiment, the width in the X-axis direction and the length Lp in the Y-axis direction of the piezoelectric bodies 14a and 14b are the width in the X-axis direction and the length in the Y-axis direction of the drive units 4a and 4b, respectively. And have the same meaning.
 表1に、延出部13a、13bのX軸方向における幅Wdと、駆動電圧、及び共振周波数との関係を示す。表1に示すように、延出部13a、13bが外側に延出している場合に、最も駆動電圧が小さく抑えられることがわかる。また、延出部13a、13bが外側に延出した場合に最も高い共振周波数が得られる。なお、図8Dに示したように第2梁部と同じ幅Wdで第1梁部も幅広くした場合、または、図8Eに示したように従来の光スキャナ1の場合、非常に大きな駆動電圧がかかることがわかる。以下、最も駆動電圧が小さく抑えられ且つ最も高い共振周波数が得られる場合、即ち、延出部13a、13bが外側に延出している場合について、より詳細に解析を行う。 Table 1 shows the relationship between the width Wd of the extending portions 13a and 13b in the X-axis direction, the drive voltage, and the resonance frequency. As shown in Table 1, it can be seen that when the extending portions 13a and 13b extend outward, the drive voltage is minimized. Further, the highest resonance frequency is obtained when the extending portions 13a and 13b extend outward. 8D, when the width of the first beam is wide with the same width Wd as that of the second beam, or in the case of the conventional optical scanner 1 as shown in FIG. 8E, a very large driving voltage is applied. You can see this. Hereinafter, the case where the drive voltage is minimized and the highest resonance frequency is obtained, that is, the case where the extending portions 13a and 13b extend outward will be analyzed in more detail.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 図7A、及び表2に、延出部13a、13bが外側に延出している場合の、延出部13a、13bのX軸方向における幅Wdと駆動電圧との関係を示す。図7A、及び表2に示すように、延出部13a、13bのX軸方向における幅Wdを大きくすればするほど、駆動電圧を小さく抑えることができることがわかる。駆動電圧は、幅Wdが、X軸方向における連結梁11a、11bの幅、即ち同幅部12a、12bの幅Bw=85μmより大きい範囲では、従来の光スキャナ1の場合、即ち幅Wd=0μmの場合と比較して、ほぼ半分以下である。従って、幅Wdは、同幅部12a、12bの幅Bw=85μmより大きく設定するのが望ましい。なお、幅Wdを、同幅部12a、12bの幅Bw=85μmより大きく設定するに伴い、圧電体14a、14bのX軸方向における幅も同幅部12a、12bの幅Bw=85μmより大きく設定するのが望ましい。図7Aに示すように、延出部13a~13dのX軸方向における幅Wdを大きくすればするほど、駆動電圧を小さく抑えることができる。しかし一方で、表2に示すように、幅Wdが800を超える範囲から、共振周波数が減少に転ずる。共振周波数が小さくなると、光スキャナ1を網膜走査ディスプレイ等の画像表示装置に適用した際に、画像の解像度が低下する。従って、一定の共振周波数を保ち、また、光スキャナ1全体の小型化を図るためにも、幅Wdは、X軸方向における連結梁11a、11bの幅、即ち同幅部12a、12bの幅Bw=85μmの10倍大きい幅、即ち約850μm以下に設定するのが望ましい。 7A and Table 2 show the relationship between the width Wd in the X-axis direction of the extending portions 13a and 13b and the drive voltage when the extending portions 13a and 13b extend outward. As shown in FIG. 7A and Table 2, it can be seen that the driving voltage can be reduced as the width Wd in the X-axis direction of the extending portions 13a and 13b is increased. In the driving voltage, in the case where the width Wd is larger than the width of the connecting beams 11a and 11b in the X-axis direction, that is, the width Bw of the same width portions 12a and 12b = 85 μm, the width Wd = 0 μm. Compared to the case of, it is almost less than half. Therefore, the width Wd is desirably set to be larger than the width Bw of the same width portions 12a and 12b = 85 μm. As the width Wd is set larger than the width Bw = 85 μm of the same width portions 12a, 12b, the width in the X-axis direction of the piezoelectric bodies 14a, 14b is also set larger than the width Bw = 85 μm of the same width portions 12a, 12b. It is desirable to do. As shown in FIG. 7A, the drive voltage can be reduced as the width Wd in the X-axis direction of the extending portions 13a to 13d is increased. However, as shown in Table 2, the resonance frequency starts to decrease from the range where the width Wd exceeds 800. When the resonance frequency decreases, the resolution of the image decreases when the optical scanner 1 is applied to an image display device such as a retinal scanning display. Therefore, in order to maintain a constant resonance frequency and reduce the size of the entire optical scanner 1, the width Wd is the width of the connecting beams 11a and 11b in the X-axis direction, that is, the width Bw of the same width portions 12a and 12b. It is desirable to set a width 10 times larger than 85 μm, that is, about 850 μm or less.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 図7Bに、延出部13a、13bが外側に延出している場合の、延出部13a、13bのY軸方向における長さLgと駆動電圧との関係を示す。図7Bに示すように、延出部13a、13bのY軸方向における長さLgが、長ければ長いほど、大きな駆動電圧がかかることがわかる。また、駆動部4a、4bのY軸方向における長さを、延出部13a、13bのY軸方向における長さLgに合わせて長くすると、駆動部4a、4bのY軸方向における長さが一定の場合と比べ、より大きな駆動電圧がかかることがわかる。図7Bに示すように、延出部13a、13bのY軸方向における長さLgがおおよそ1100μmを超える範囲で、駆動電圧が急激に大きくなる。この駆動電圧の急増は、延出部13a、13bのY軸方向における長さLgが長くなることで、第1梁部7aのうち大きく変形する箇所である連結梁11a、11bが短くなることに起因する。即ち、可動梁3aが変形しにくくなるため、光スキャナ1の一定の光学振れ角を得るまでに、大きな駆動電圧を要する。延出部13a、13bのY軸方向における長さLgが1100μmとは、可動梁3aのY軸方向の長さである約2060μmの半分におおよそ等しい。延出部13a、13bのY軸方向における長さLgは、最低限、同幅部12a、12bの幅Bw=85μmより大きいことが望ましい。以上から、延出部13a、13bのY軸方向における長さLgは、同幅部12a、12bの幅Bw=85μmより大きく、可動梁3aのY軸方向の長さの半分より小さいことが望ましい。また、これに伴い、圧電体14a、14bのY軸方向における長さLpは、同幅部12a、12bの幅Bw=85μmより大きく、可動梁3aのY軸方向の長さの半分より小さいことが望ましい。 FIG. 7B shows a relationship between the driving voltage and the length Lg of the extending portions 13a and 13b in the Y-axis direction when the extending portions 13a and 13b extend outward. As shown in FIG. 7B, it can be seen that the longer the length Lg of the extending portions 13a and 13b in the Y-axis direction is, the greater the driving voltage is applied. Further, when the lengths of the drive units 4a and 4b in the Y-axis direction are increased in accordance with the length Lg of the extension portions 13a and 13b in the Y-axis direction, the lengths of the drive units 4a and 4b in the Y-axis direction are constant. It can be seen that a larger driving voltage is applied than in the case of. As shown in FIG. 7B, the drive voltage increases rapidly in the range where the length Lg of the extending portions 13a and 13b in the Y-axis direction exceeds approximately 1100 μm. This sudden increase in drive voltage results in a shortening of the connecting beams 11a and 11b, which are greatly deformed portions of the first beam portion 7a, by increasing the length Lg of the extending portions 13a and 13b in the Y-axis direction. to cause. That is, since the movable beam 3a is not easily deformed, a large driving voltage is required to obtain a constant optical deflection angle of the optical scanner 1. The length Lg of the extending portions 13a and 13b in the Y-axis direction is 1100 μm, which is approximately equal to half of about 2060 μm, which is the length of the movable beam 3a in the Y-axis direction. The length Lg in the Y-axis direction of the extending portions 13a and 13b is desirably at least larger than the width Bw of the same width portions 12a and 12b = 85 μm. From the above, it is desirable that the length Lg of the extending portions 13a and 13b in the Y-axis direction is larger than the width Bw = 85 μm of the same width portions 12a and 12b and smaller than half the length of the movable beam 3a in the Y-axis direction. . Accordingly, the length Lp of the piezoelectric bodies 14a and 14b in the Y-axis direction is larger than the width Bw = 85 μm of the same width portions 12a and 12b and smaller than half the length of the movable beam 3a in the Y-axis direction. Is desirable.
[構造体の製造方法]
 図9を用いて、本実施形態における構造体の製造方法について説明する。構造体とは、可動梁3a、3bと固定部5とを指す。
[Method of manufacturing structure]
With reference to FIGS. 9A and 9B, a method for manufacturing a structure in the present embodiment will be described. The structure refers to the movable beams 3a and 3b and the fixed portion 5.
 まず、図9に示すように、弾性を有する板状のシリコン基板が被エッチング材として準備される(ステップS1、以下S1と記す)。次に、シリコン基板の両面にフォトレジストが塗布されることで、シリコン基板の両面にレジスト膜が形成される。(S2)。その後、フォトリソグラフィ技術を用いて、レジスト膜に対して所定のパターン光が露光される。所定のパターン光が露光されることにより、レジスト膜のうち不要な部分が除去される。これにより、シリコン基板の両面上に、各々、マスクパターンが形成される(S3)。マスクパターンが形成されると、シリコン基板とマスクパターンとの積層体が、エッチング溶液を収容しているエッチング槽に浸漬され、ウェットエッチングが施される(S4)。ウェットエッチングが施されると、シリコン基板とマスクパターンとの積層体が、エッチング槽から取り出される(S5)。続いて、マスクパターンがシリコン基板の両面から剥離される(S6)。以上の製造方法により、所定の形状をした構造体が製造される。 First, as shown in FIG. 9, a plate-like silicon substrate having elasticity is prepared as a material to be etched (step S1, hereinafter referred to as S1). Next, a resist film is formed on both surfaces of the silicon substrate by applying a photoresist on both surfaces of the silicon substrate. (S2). Thereafter, a predetermined pattern light is exposed to the resist film by using a photolithography technique. By exposing the predetermined pattern light, unnecessary portions of the resist film are removed. Thereby, mask patterns are formed on both surfaces of the silicon substrate, respectively (S3). When the mask pattern is formed, the laminated body of the silicon substrate and the mask pattern is immersed in an etching tank containing an etching solution, and wet etching is performed (S4). When the wet etching is performed, the laminated body of the silicon substrate and the mask pattern is taken out from the etching tank (S5). Subsequently, the mask pattern is peeled from both surfaces of the silicon substrate (S6). A structure having a predetermined shape is manufactured by the above manufacturing method.
 [光スキャナ使用例]
 本実施形態に係る光スキャナ1の網膜走査ディスプレイ201における使用例について、図10を用いて説明する。網膜走査ディスプレイ201とは、装着者の頭部およびその近辺に装着された状態で、画像光を装着者の眼に導くヘッドマウントディスプレイ装置(以後、「HMD」と記す。)の一形態である。網膜操作ディスプレイは、装着者の網膜上で画像光を2次元方向に走査することにより、画像データに対応する画像が装着者により視認されるように構成される。
[Optical scanner usage example]
A usage example of the optical scanner 1 according to this embodiment in the retinal scanning display 201 will be described with reference to FIG. The retinal scanning display 201 is a form of a head-mounted display device (hereinafter, referred to as “HMD”) that guides image light to the wearer's eyes while worn on the wearer's head and the vicinity thereof. . The retina operation display is configured such that an image corresponding to image data is visually recognized by the wearer by scanning image light in a two-dimensional direction on the retina of the wearer.
 網膜走査ディスプレイ201は、光束生成部220と、水平走査部260と、垂直走査部280とを備えている。光束生成部220は、外部から供給される画像データSに基づいて画像光を生成し、その画像光を水平走査部260に供給する。水平走査部260は、光束生成部20により生成された画像光を水平方向に走査し、水平方向に走査された画像光をリレー光学系262を介して、垂直走査部280に供給する。垂直走査部280は、リレー光学系262を介して、水平走査部260から供給された画像光を垂直方向に走査し、垂直方向に走査された画像光をリレー光学系290を介して、装着者の瞳孔Eaに供給する。 The retinal scanning display 201 includes a light beam generation unit 220, a horizontal scanning unit 260, and a vertical scanning unit 280. The light beam generation unit 220 generates image light based on the image data S supplied from the outside, and supplies the image light to the horizontal scanning unit 260. The horizontal scanning unit 260 scans the image light generated by the light beam generation unit 20 in the horizontal direction, and supplies the image light scanned in the horizontal direction to the vertical scanning unit 280 via the relay optical system 262. The vertical scanning unit 280 scans the image light supplied from the horizontal scanning unit 260 in the vertical direction via the relay optical system 262 and the image light scanned in the vertical direction via the relay optical system 290. To the pupil Ea.
 光束生成部は、信号処理回路221と、光源部230と、光合成部240と、を備えている。信号処理回路221は、外部からの画像データSを受信する。信号処理回路221は、受信した画像データSに基づいて、画像を合成するための要素となる青、赤、緑の各画像信号、B映像信号、R映像信号、G映像信号を生成し、光源部30に供給する。信号処理回路221は、水平走査部260を駆動するための水平同期信号を水平走査部260に、垂直走査部280を駆動するための垂直同期信号を垂直走査部280に、それぞれ供給する。 The light beam generation unit includes a signal processing circuit 221, a light source unit 230, and a light combining unit 240. The signal processing circuit 221 receives image data S from the outside. Based on the received image data S, the signal processing circuit 221 generates blue, red, and green image signals, B video signals, R video signals, and G video signals, which are elements for synthesizing images, To the unit 30. The signal processing circuit 221 supplies a horizontal synchronizing signal for driving the horizontal scanning unit 260 to the horizontal scanning unit 260 and a vertical synchronizing signal for driving the vertical scanning unit 280 to the vertical scanning unit 280, respectively.
 光源部230は、信号処理回路221から供給されるB映像信号、R映像信号、G映像信号をそれぞれ画像光にする画像光出力部として機能する。光源部230は、青色の画像光を発生するBレーザ234及びBレーザ234を駆動するBレーザドライバ231と、赤色の画像光を発生するRレーザ235及びRレーザ235を駆動するRレーザドライバ232と、緑色の画像光を発生するGレーザ236及びGレーザ236を駆動するGレーザドライバ233と、を備えている。光源部230は、これら赤色、緑色、青色の3つの画像光を、光合成部に対して出力する。 The light source unit 230 functions as an image light output unit that converts each of the B video signal, the R video signal, and the G video signal supplied from the signal processing circuit 221 into image light. The light source unit 230 includes a B laser 234 that generates blue image light and a B laser driver 231 that drives the B laser 234, an R laser 235 that generates red image light, and an R laser driver 232 that drives the R laser 235. A G laser 236 that generates green image light, and a G laser driver 233 that drives the G laser 236. The light source unit 230 outputs the three image lights of red, green, and blue to the light combining unit.
 光合成部240は、光源部230からの3色の画像光を1つの画像光に合成することで、任意の画像光を生成する。光合成部240は、コリメート光学系241、242、243と、ダイクロイックミラー244、245、246と、結合光学系247とを備えている。各レーザ234、235、236から出射した各色のレーザ光は、コリメート光学系241、242、243によってそれぞれ平行光化された後に、ダイクロイックミラー244、245、246に入射される。平行光化された各色のレーザ光は、ダイクロイックミラー244、245、246により、各画像光が波長に関して選択的に反射または透過されることで、画像光として合成される。合成された画像光は、結合光学系247によって、伝送ケーブル250に導かれる。 The light combining unit 240 generates arbitrary image light by combining the three colors of image light from the light source unit 230 into one image light. The light combining unit 240 includes collimating optical systems 241, 242, and 243, dichroic mirrors 244, 245, and 246, and a coupling optical system 247. The laser beams of the respective colors emitted from the lasers 234, 235, and 236 are collimated by collimating optical systems 241, 242, and 243, respectively, and then enter the dichroic mirrors 244, 245, and 246. The collimated laser beams of the respective colors are synthesized as image light by selectively reflecting or transmitting each image light with respect to the wavelength by the dichroic mirrors 244, 245, and 246. The combined image light is guided to the transmission cable 250 by the coupling optical system 247.
 コリメート光学系251は、伝送ケーブル250を介して出射される画像光を平行光化し、水平走査部260に導く。 The collimating optical system 251 converts the image light emitted through the transmission cable 250 into parallel light and guides it to the horizontal scanning unit 260.
 水平走査部260は、コリメート光学系251で平行光化された画像光を画像表示のために水平方向に往復走査する。垂直走査部280は、水平走査部260で水平方向に走査された画像光を垂直方向に走査する。リレー光学系270は、水平走査部260と垂直走査部280との間に設けられる。リレー光学系270は、水平走査部260により走査された画像光を、垂直走査部280に導く。リレー光学系290は、水平方向と垂直方向とに走査(2次元的に走査)された画像光を瞳孔Eaへ出射する。 The horizontal scanning unit 260 reciprocally scans the image light that has been collimated by the collimating optical system 251 in the horizontal direction for image display. The vertical scanning unit 280 scans the image light scanned in the horizontal direction by the horizontal scanning unit 260 in the vertical direction. The relay optical system 270 is provided between the horizontal scanning unit 260 and the vertical scanning unit 280. The relay optical system 270 guides the image light scanned by the horizontal scanning unit 260 to the vertical scanning unit 280. The relay optical system 290 emits image light scanned (two-dimensionally scanned) in the horizontal direction and the vertical direction to the pupil Ea.
 水平走査部260は、共振型偏向素子261と、水平走査制御回路262と、を備えている。 The horizontal scanning unit 260 includes a resonance type deflection element 261 and a horizontal scanning control circuit 262.
 本実施形態に係る光スキャナ1は、共振型偏向素子261に用いられる。共振型偏向素子261は、画像光を水平方向に走査するための反射面を有する。水平走査制御回路262は、信号処理回路221から供給される水平同期信号に基づいて、共振型偏向素子261を共振させる。 The optical scanner 1 according to this embodiment is used for the resonance type deflection element 261. The resonant deflection element 261 has a reflection surface for scanning the image light in the horizontal direction. The horizontal scanning control circuit 262 resonates the resonance type deflection element 261 based on the horizontal synchronization signal supplied from the signal processing circuit 221.
 リレー光学系270は、水平走査部260と垂直走査部280との間で画像光を中継する。共振型偏向素子261によって水平方向に往復走査された光は、リレー光学系270によって垂直走査部280内の偏向素子281の反射面に収束される。 The relay optical system 270 relays image light between the horizontal scanning unit 260 and the vertical scanning unit 280. The light reciprocated in the horizontal direction by the resonance type deflection element 261 is converged on the reflection surface of the deflection element 281 in the vertical scanning unit 280 by the relay optical system 270.
 垂直走査部280は、偏向素子281と、垂直走査制御回路282と、を備えている。 The vertical scanning unit 280 includes a deflection element 281 and a vertical scanning control circuit 282.
 本実施形態に係る光スキャナ1は、偏向素子281に用いられる。偏向素子281は、リレー光学系270により導かれた画像光を垂直方向に走査する。垂直走査制御回路282は、信号処理回路221から供給される垂直同期信号に基づいて、偏向素子281を揺動させる。 The optical scanner 1 according to this embodiment is used for the deflection element 281. The deflection element 281 scans the image light guided by the relay optical system 270 in the vertical direction. The vertical scanning control circuit 282 swings the deflection element 281 based on the vertical synchronization signal supplied from the signal processing circuit 221.
 共振型偏向素子261により水平方向に走査され、偏向素子281によって垂直方向に走査された画像光は、2次元的に走査された走査画像光としてリレー光学系290へ出射される。 The image light scanned in the horizontal direction by the resonance type deflection element 261 and scanned in the vertical direction by the deflection element 281 is emitted to the relay optical system 290 as scanning image light scanned two-dimensionally.
 リレー光学系290は、垂直走査部280と装着者の瞳孔Eaの間で画像光を中継する。共振型偏向素子261により水平方向に走査され、偏向素子281によって垂直方向に走査された画像光は、リレー光学系290によって装着者の瞳孔Eaに収束される。このようにして、装着者は画像情報に対応する画像を視認することができる。 The relay optical system 290 relays image light between the vertical scanning unit 280 and the pupil Ea of the wearer. The image light scanned in the horizontal direction by the resonance type deflection element 261 and scanned in the vertical direction by the deflection element 281 is converged on the pupil Ea of the wearer by the relay optical system 290. In this way, the wearer can visually recognize an image corresponding to the image information.
 (変形例)
 本実施形態において、構造体は、ウェットエッチングを用いた手法により形成されていた。しかし、構造体の形成方法はウェットエッチングに限定されない。例えば、ドライエッチングなどにより、構造体が形成されてもよい。
(Modification)
In the present embodiment, the structure is formed by a technique using wet etching. However, the structure forming method is not limited to wet etching. For example, the structure may be formed by dry etching or the like.
 本実施形態において、構造体は、図9に示したように一度のマスクパターン形成と、一度のウェットエッチングにより製造されていた。しかし、例えば、これらの製造工程は複数回行われてもよい。 In this embodiment, as shown in FIG. 9, the structure is manufactured by one mask pattern formation and one wet etching. However, for example, these manufacturing steps may be performed a plurality of times.
 本実施形態において、構造体を製造する際のマスクパターンは、シリコン基板に直接フォトレジストを塗布し、その後所定のパターン光を露光することで形成されていた。しかし、他の方法でマスクパターンが形成されても良い。例えば、加熱されたシリコン基板の両面にシリコン熱酸化膜を形成した後で、シリコン熱酸化膜上にレジストが塗布される。レジスト塗布後に、所定のパターン光を露光することで、所定の形状をしたレジスト膜が形成される。そして、フッ酸等を用いて、シリコン熱酸化膜のうちの余分な部分を除去することで、マスクパターンが形成されてもよい。 In this embodiment, the mask pattern for manufacturing the structure is formed by directly applying a photoresist on the silicon substrate and then exposing to a predetermined pattern light. However, the mask pattern may be formed by other methods. For example, after forming a silicon thermal oxide film on both sides of a heated silicon substrate, a resist is applied on the silicon thermal oxide film. After resist application, a predetermined pattern light is exposed to form a resist film having a predetermined shape. Then, the mask pattern may be formed by removing an excess portion of the silicon thermal oxide film using hydrofluoric acid or the like.
 本実施形態において、光スキャナ1の使用例として、網膜走査ディスプレイ201を示したが、これに限らず、電子写真式複合機や、レーザプリンタ、バーコードリーダ等に用いられてもよい。 In this embodiment, the retinal scanning display 201 is shown as an example of use of the optical scanner 1, but the present invention is not limited to this, and may be used for an electrophotographic multifunction device, a laser printer, a barcode reader, or the like.
 1 光スキャナ
 2 反射ミラー
 3a、3b 可動梁
 4a~4d 駆動部
 5 固定部
 5a 凹部
 6 反射面
 7a、7b 第1梁部
 8a~8d 第2梁部
 9a、9b 支持梁
 10a、10b 延出梁
 11a~11d 連結梁
 12a~12d 同幅部
 13a~13d 延出部
 14a 圧電体
 15a 上部電極
 16a 下部電極
DESCRIPTION OF SYMBOLS 1 Optical scanner 2 Reflecting mirror 3a, 3b Movable beam 4a-4d Drive part 5 Fixed part 5a Recessed part 6 Reflecting surface 7a, 7b 1st beam part 8a-8d 2nd beam part 9a, 9b Support beam 10a, 10b Extension beam 11a 11d Connecting beam 12a-12d Same width part 13a-13d Extension part 14a Piezoelectric body 15a Upper electrode 16a Lower electrode

Claims (8)

  1.  入射した光束を反射する反射面を有し、揺動軸線の回りに揺動されることで前記光束を走査するミラー部と、
     前記ミラー部に連結する第1梁部と、前記第1梁部に連結する第2梁部と、から構成される可動梁と、
     前記第2梁部に対して連結される固定部と、
     前記第2梁部と前記固定部とに跨って設けられ、前記可動梁を振動させる圧電体と、を備え、
     前記第2梁部は、前記反射面に沿い且つ前記揺動軸線に交わる方向において、前記第1梁部と前記第2梁部とが連結する連結部の近傍における前記第1梁部よりも幅広であることを特徴とする光スキャナ。
    A mirror unit that has a reflecting surface that reflects an incident light beam and that scans the light beam by being swung around a swing axis;
    A movable beam composed of a first beam portion connected to the mirror portion and a second beam portion connected to the first beam portion;
    A fixing part connected to the second beam part;
    A piezoelectric body provided across the second beam portion and the fixed portion and vibrating the movable beam;
    The second beam portion is wider than the first beam portion in the vicinity of a connecting portion where the first beam portion and the second beam portion are connected in a direction along the reflection surface and intersecting the swing axis. An optical scanner characterized by that.
  2.  前記第2梁部は、
     前記第1梁部に連結し、前記反射面に沿い且つ前記揺動軸線に交わる方向において、前記第1梁部と前記第2梁部とが連結する連結部の近傍における前記第1梁部と同じ幅の同幅部と、
     前記反射面に沿い且つ前記揺動軸線に交わる方向において、前記同幅部の片側から延出する片方延出部と、を備える請求項1に記載の光スキャナ。
    The second beam portion is
    The first beam portion connected to the first beam portion and in the vicinity of the connection portion where the first beam portion and the second beam portion are connected in the direction along the reflection surface and intersecting the swing axis. The same width of the same width,
    The optical scanner according to claim 1, further comprising: a one-side extending portion extending from one side of the same width portion in a direction along the reflecting surface and intersecting the swing axis.
  3.  前記第1梁部は、
     前記ミラー部に連結するミラー支持梁と、
     前記ミラー支持梁に連結する第1連結部を有し、前記反射面に沿い且つ前記揺動軸線に交わる方向において、前記第1連結部から前記ミラー支持梁の両側に延出する延出梁と、
     前記延出梁の両端の各々に連結する一対の第2連結部を有し、前記揺動軸線に沿って前記ミラー部から離れる方向に、前記第2連結部から延出する一対の連結梁と、を備え、
     前記第2梁部は、前記一対の連結梁の各々に連結し、
     一対の前記第1梁部と前記第2梁部とが、前記ミラー部を挟んだ両側に備えられる請求項1又は2に記載の光スキャナ。
    The first beam portion is
    A mirror support beam connected to the mirror part;
    A first connecting portion connected to the mirror support beam, and an extending beam extending from the first connection portion to both sides of the mirror support beam in a direction along the reflection surface and intersecting the swing axis; ,
    A pair of second connecting portions connected to each of both ends of the extending beam; and a pair of connecting beams extending from the second connecting portion in a direction away from the mirror portion along the swing axis. With
    The second beam portion is connected to each of the pair of connecting beams,
    The optical scanner according to claim 1, wherein a pair of the first beam portion and the second beam portion are provided on both sides of the mirror portion.
  4.  前記第2梁部は、前記反射面に沿い且つ前記揺動軸線から離れる方向に、前記同幅部の両側のうち前記揺動軸線から離れて位置する外側から延出する外方延出部を備える請求項2に記載の光スキャナ。 The second beam portion includes an outwardly extending portion that extends from the outside of the both sides of the same width portion located away from the swing axis in a direction along the reflection surface and away from the swing axis. An optical scanner according to claim 2.
  5.  前記外方延出部の、前記反射面に沿い且つ前記揺動軸線から離れる方向の幅は、前記同幅部の幅より大きい請求項4に記載の光スキャナ。 The optical scanner according to claim 4, wherein a width of the outwardly extending portion along the reflecting surface and away from the swing axis is larger than a width of the same width portion.
  6.  前記外方延出部の、前記反射面に沿い且つ前記揺動軸線から離れる方向の幅は、前記同幅部の幅より大きく且つ前記同幅部の幅の10倍大きい幅より小さい請求項5に記載の光スキャナ。 The width of the outwardly extending portion in the direction along the reflecting surface and away from the swing axis is smaller than the width of the same width portion and 10 times larger than the width of the same width portion. The optical scanner described in.
  7.  前記圧電体の、前記反射面に沿い前記揺動軸線に交わる方向の幅は、前記同幅部の幅より大きく、
     前記圧電体の、前記反射面に沿い且つ前記揺動軸線に沿って前記固定部から前記ミラー部に向かう方向の長さは、前記同幅部の幅より大きい請求項2、4~6の何れかに記載の光スキャナ。
    The width of the piezoelectric body in the direction intersecting the swing axis along the reflection surface is larger than the width of the same width portion,
    7. The length of the piezoelectric body in the direction from the fixed portion toward the mirror portion along the reflecting surface and along the swing axis is larger than the width of the same width portion. An optical scanner according to the above.
  8.  前記第2梁部は、前記反射面に沿い且つ前記揺動軸線から離れる方向に、前記同幅部の両側のうち前記揺動軸線から離れて位置する外側から延出する外方延出部を備え、
     前記外方延出部の、前記反射面に沿い且つ前記揺動軸線に沿う方向の長さは、前記同幅部の幅より大きく、前記可動梁の、前記反射面に沿い且つ前記揺動軸線に沿う方向の長さの半分より小さく、
     前記圧電体の、前記反射面に沿い且つ前記揺動軸線に沿って前記固定部から前記ミラー部に向かう方向の長さは、前記同幅部の幅より大きく、前記可動梁の、前記反射面に沿い且つ前記揺動軸線に沿う方向の長さの半分より小さい請求項2、5、6の何れかに記載の光スキャナ。
    The second beam portion includes an outwardly extending portion that extends from the outside of the both sides of the same width portion located away from the swing axis in a direction along the reflection surface and away from the swing axis. Prepared,
    The length of the outwardly extending portion along the reflecting surface and along the swing axis is greater than the width of the same width portion, and the movable beam extends along the reflecting surface and the swing axis. Less than half the length in the direction along
    The length of the piezoelectric body in the direction from the fixed portion to the mirror portion along the reflection surface and along the swing axis is larger than the width of the same width portion, and the reflection surface of the movable beam The optical scanner according to claim 2, wherein the optical scanner is smaller than half of the length along the swing axis.
PCT/JP2010/053890 2009-03-31 2010-03-09 Optical scanner WO2010113603A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009086458A JP2010237520A (en) 2009-03-31 2009-03-31 Optical scanner
JP2009-086458 2009-03-31

Publications (1)

Publication Number Publication Date
WO2010113603A1 true WO2010113603A1 (en) 2010-10-07

Family

ID=42827903

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/053890 WO2010113603A1 (en) 2009-03-31 2010-03-09 Optical scanner

Country Status (2)

Country Link
JP (1) JP2010237520A (en)
WO (1) WO2010113603A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103038694A (en) * 2010-07-29 2013-04-10 日本电气株式会社 Optical scanning device and image display device
JP7375471B2 (en) 2019-10-30 2023-11-08 株式会社リコー Mobile devices, image projection devices, head-up displays, laser headlamps, head-mounted displays, object recognition devices, and vehicles

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003057586A (en) * 2001-08-20 2003-02-26 Brother Ind Ltd Optical scanner, vibrating body used for optical scanner and image forming apparatus equipped with optical scanner
JP2005308863A (en) * 2004-04-19 2005-11-04 Ricoh Co Ltd Deflection mirror, optical scanner, and image forming apparatus
JP2007268374A (en) * 2006-03-30 2007-10-18 Brother Ind Ltd Vibration element, manufacturing method of vibration element, optical scanner, image forming apparatus and image display device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003057586A (en) * 2001-08-20 2003-02-26 Brother Ind Ltd Optical scanner, vibrating body used for optical scanner and image forming apparatus equipped with optical scanner
JP2005308863A (en) * 2004-04-19 2005-11-04 Ricoh Co Ltd Deflection mirror, optical scanner, and image forming apparatus
JP2007268374A (en) * 2006-03-30 2007-10-18 Brother Ind Ltd Vibration element, manufacturing method of vibration element, optical scanner, image forming apparatus and image display device

Also Published As

Publication number Publication date
JP2010237520A (en) 2010-10-21

Similar Documents

Publication Publication Date Title
US9405121B2 (en) Image display apparatus and head-mounted display
WO2010035469A1 (en) Optical scanner and image display device equipped with optical scanner
WO2010113602A1 (en) Optical scanner
US11750779B2 (en) Light deflector, optical scanning system, image projection device, image forming apparatus, and lidar device
JP4972781B2 (en) A micro scanner and an optical scanning device including the same.
JP3956839B2 (en) Optical scanning device and image forming apparatus provided with optical scanning device
US10598950B2 (en) Image projection apparatus and movable body
JP2019164213A (en) Optical scanner, image projection device, moving body, and manufacturing method of optical scanner
JP2004191953A (en) Optical scanning device and image forming device
JP2019164324A (en) Image display device, image projection device, and movable body
JP2007010823A (en) Driven mirror, light scanning optical apparatus and picture display apparatus
JP2007268374A (en) Vibration element, manufacturing method of vibration element, optical scanner, image forming apparatus and image display device
JP2011069954A (en) Optical scanner
WO2010113603A1 (en) Optical scanner
JP2013160891A (en) Oscillation mirror element and electronic apparatus with projector function
US7582219B1 (en) Method of fabricating reflective mirror by wet-etch using improved mask pattern and reflective mirror fabricated using the same
JP7225771B2 (en) Mobile devices, distance measuring devices, image projection devices, vehicles, and pedestals
JP2009003165A (en) Micro scanner and optical scanning apparatus with the same
JP4645067B2 (en) Reflection mirror manufacturing method
JP5381751B2 (en) Optical scanner and image display apparatus using optical scanner
JP2011007902A (en) Optical scanner
JP5516746B2 (en) Micro scanner and optical apparatus equipped with the same
US20240027746A1 (en) Movable device, projection apparatus, head-up display, laser headlamp, head-mounted display, and object recognition apparatus
JP2011053253A (en) Optical scanner
US11624903B2 (en) Light deflector, LiDAR device, and image forming apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10758379

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10758379

Country of ref document: EP

Kind code of ref document: A1