WO2010113246A1 - Fuel consumption estimating device fuel consumption estimating method, fuel consumption estimating program and recording medium - Google Patents

Fuel consumption estimating device fuel consumption estimating method, fuel consumption estimating program and recording medium Download PDF

Info

Publication number
WO2010113246A1
WO2010113246A1 PCT/JP2009/056630 JP2009056630W WO2010113246A1 WO 2010113246 A1 WO2010113246 A1 WO 2010113246A1 JP 2009056630 W JP2009056630 W JP 2009056630W WO 2010113246 A1 WO2010113246 A1 WO 2010113246A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel consumption
vehicle
estimation
coefficient
fuel
Prior art date
Application number
PCT/JP2009/056630
Other languages
French (fr)
Japanese (ja)
Inventor
隆一郎 森岡
要一 伊藤
光男 安士
雅俊 柳平
Original Assignee
パイオニア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パイオニア株式会社 filed Critical パイオニア株式会社
Priority to PCT/JP2009/056630 priority Critical patent/WO2010113246A1/en
Priority to JP2011506873A priority patent/JP5312574B2/en
Publication of WO2010113246A1 publication Critical patent/WO2010113246A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F9/00Measuring volume flow relative to another variable, e.g. of liquid fuel for an engine
    • G01F9/02Measuring volume flow relative to another variable, e.g. of liquid fuel for an engine wherein the other variable is the speed of a vehicle
    • G01F9/023Measuring volume flow relative to another variable, e.g. of liquid fuel for an engine wherein the other variable is the speed of a vehicle with electric, electro-mechanic or electronic means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F9/00Measuring volume flow relative to another variable, e.g. of liquid fuel for an engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/0625Fuel consumption, e.g. measured in fuel liters per 100 kms or miles per gallon

Definitions

  • the present invention relates to a fuel consumption estimation device, a fuel consumption estimation method, a fuel consumption estimation program, and a recording medium for estimating fuel consumption of a vehicle.
  • the use of the present invention is not limited to the above-described fuel consumption estimation device, fuel consumption estimation method, fuel consumption estimation program, and recording medium.
  • Non-Patent Document 1 when determining the fuel consumption during actual traveling of the vehicle, the traveling sections are modeled and independent calculation formulas are derived for the respective sections. Then, using these equations, the fuel consumption is estimated by using the following regression equation.
  • FC 0.5119 ⁇ a + 0.2858
  • FC 0.00259 ⁇ V2 + 0.1808
  • FC 0.0261 ⁇ a + 0.2848
  • FC 0.258
  • FC fuel consumption per unit time (cc / s)
  • V average speed (m / s)
  • a acceleration (m / s2).
  • the regression section is applied by dividing the traveling section for estimating the fuel consumption into a plurality of sections according to the traveling state of the vehicle, but acceleration and deceleration are performed in a short period during actual traveling. Make various changes. For this reason, the problem that the above-mentioned model is not always applicable as it is at the time of actual traveling is given as an example.
  • a fuel consumption estimation device includes first fuel consumption information relating to the stop of the vehicle in a state where the engine is operating, and a first fuel consumption information relating to the acceleration of the vehicle. Based on a single fuel estimation formula consisting only of two fuel consumption information and third fuel consumption information relating to resistance generated when the vehicle travels, a fuel consumption amount per unit time during travel of the vehicle is estimated .
  • a fuel consumption estimation apparatus is a fuel consumption estimation apparatus that estimates the fuel consumption of a vehicle, wherein a coefficient k 1 based on fuel consumption when the vehicle is stopped when the engine is in motion, A holding means for storing in advance a coefficient k 2 based on fuel consumption at the time of acceleration and a coefficient k 3 based on air resistance and rolling resistance of the vehicle, detection means for detecting the vehicle speed of the vehicle, and storage in the holding means.
  • an instantaneous fuel consumption estimation means for calculating an instantaneous fuel consumption estimation amount fc according to the following equation (2):
  • f 1 (x) a predetermined function using the vehicle speed and acceleration of the vehicle as parameters
  • f 2 (x) a predetermined function using the vehicle speed of the vehicle as parameters.
  • a fuel consumption estimation method comprising: first fuel consumption information related to idling of a vehicle; second fuel consumption information related to acceleration of the vehicle; and third fuel related to resistance generated during travel of the vehicle.
  • the fuel consumption per unit time when the vehicle is running is estimated on the basis of consumption information and a single fuel estimation formula consisting only of the consumption information.
  • a fuel consumption estimation program according to the invention of claim 17 causes a computer to execute the fuel consumption estimation method according to any one of claims 13 to 16.
  • a recording medium according to the invention of claim 18 is characterized in that the fuel consumption estimation program according to claim 17 is recorded in a computer-readable state.
  • FIG. 1 is a block diagram illustrating a functional configuration of the fuel consumption estimation apparatus according to the embodiment.
  • FIG. 2 is a flowchart showing a procedure of fuel consumption estimation processing by the fuel consumption estimation device.
  • FIG. 3 is a block diagram illustrating a hardware configuration of the navigation apparatus.
  • FIG. 4 is an explanatory diagram showing a coefficient table held by the navigation device.
  • FIG. 5 is a graph showing the relationship between the coefficient k 1 and the displacement.
  • FIG. 6 is a graph showing the relationship between the coefficient k 2 and the vehicle weight.
  • FIG. 7 is a graph showing the relationship between the coefficient k 3 and the displacement.
  • FIG. 8 is an explanatory diagram schematically showing acceleration applied to a vehicle traveling on a road having a gradient.
  • FIG. 9 is a flowchart showing a procedure of fuel consumption estimation processing by the navigation device.
  • FIG. 1 is a block diagram illustrating a functional configuration of the fuel consumption estimation apparatus according to the embodiment.
  • the fuel consumption estimation device 100 includes a coefficient acquisition unit 101, a variable acquisition unit 102, a fuel consumption estimation unit 104, and a database 110.
  • the fuel consumption estimation device 100 includes first fuel consumption information related to when the vehicle is stopped when the vehicle engine is in motion, and the vehicle. The fuel per unit time when the vehicle travels based on a single fuel estimation formula consisting of the second fuel consumption information regarding the acceleration of the vehicle and the third fuel consumption information regarding the resistance generated when the vehicle travels Estimate consumption.
  • the fuel estimation formula is not applied to each state of the vehicle travel section (during idling, acceleration, etc.), but rather to the above state of the vehicle. Regardless, it means that the same fuel estimation formula is used.
  • “when the vehicle is stopped in a state where the vehicle engine is moving” means a so-called idling time, and includes, for example, a time before starting the engine and a stop by a signal. .
  • the third fuel consumption information is a value obtained by subtracting the first fuel consumption information and the second fuel consumption information from the total fuel consumption per unit time. It is also information about fuel consumption.
  • the fuel consumption estimation apparatus 100 may further include a gradient information acquisition unit 103, an actual fuel consumption amount information acquisition unit 105, a correction unit 106, and the like as appropriate. “Comprising only” means that the fuel consumption is substantially estimated using coefficients and variables based only on this information, and the relative importance is within a range not departing from this gist. It includes a form in which other low information is added.
  • the coefficient acquisition unit 101 acquires a coefficient based on the fuel consumption at the time of idling of the vehicle as first fuel consumption information, acquires a coefficient based on the fuel consumption at the time of acceleration of the vehicle as second fuel consumption information, and travels the vehicle A coefficient based on the air resistance and rolling resistance that occur at times is acquired as third fuel consumption information.
  • the first fuel consumption information is a coefficient k 1 in formula (1) described later
  • the second fuel consumption information is a coefficient k 2 in formula (1)
  • the third fuel consumption information is in formula (1).
  • Information corresponding to each coefficient k 3 is described later.
  • the coefficient acquisition unit 101 acquires the coefficients by reading the above three types of coefficients from the database 110 (holding means) in which the respective coefficients are recorded, for example.
  • the database 110 may be provided outside the fuel consumption estimation apparatus 100.
  • the database 110 records the above three types of coefficients in, for example, vehicle types (if the same vehicle type has different coefficients depending on the format, the format is different). A constant obtained by a predetermined calculation formula may be recorded as necessary.
  • the coefficient acquisition unit 101 selects and acquires a coefficient suitable for the vehicle type of the vehicle.
  • the coefficient acquisition unit 101 may select a coefficient that matches the displacement and vehicle weight of the vehicle.
  • the coefficient acquisition unit 101 may select a coefficient that matches the mode fuel efficiency of the vehicle.
  • the mode fuel efficiency is the fuel efficiency when traveling under a predetermined condition defined in advance, and 10 mode fuel efficiency, 15 mode fuel efficiency, JC08 mode fuel efficiency, and the like are known.
  • the variable acquisition unit 102 acquires the speed and acceleration when the vehicle is traveling as variables relating to the second fuel consumption information and the third fuel consumption information.
  • the variable acquisition unit 102 acquires, for example, speed information and acceleration information output from a speed sensor or an acceleration sensor installed in the vehicle body.
  • speed information and acceleration information output from a speed sensor or an acceleration sensor installed in the vehicle body.
  • the fuel consumption estimation apparatus 100 is provided with the speed sensor and the acceleration sensor, you may acquire speed information and acceleration information from these sensors.
  • the variable acquisition unit 102 itself may be able to measure (or calculate) the speed and acceleration (detecting means).
  • the gradient information acquisition unit 103 acquires gradient information indicating the degree of gradient of the road on which the vehicle travels.
  • the gradient information acquisition unit 103 acquires gradient information from an inclinometer installed in the vehicle main body, the fuel consumption estimation device 100, or the like.
  • the gradient information acquisition unit 103 itself may measure (or calculate) the gradient of the road, or may extract gradient information from map information corresponding to the current position of the vehicle.
  • you may calculate the fuel consumption of the area with a gradient using the altitude information in map information.
  • the fuel consumption estimation unit 104 estimates the fuel consumption of the vehicle by using a single fuel estimation formula based on the coefficient acquired by the coefficient acquisition unit 101 and the speed and acceleration acquired by the variable acquisition unit 102. Further, the fuel consumption estimation unit 104 may further estimate the fuel consumption of the vehicle by incorporating the gradient information acquired by the gradient information acquisition unit 103 into a single fuel estimation formula. More specifically, the fuel consumption estimation unit 104 estimates the fuel consumption of the vehicle based on the following formula (1) as a single fuel estimation formula.
  • k 1 corresponds to the first fuel consumption information
  • k 2 corresponds to the second fuel consumption information
  • k 3 corresponds to the third fuel consumption information.
  • time (h) and second (s) are mixedly used as a unit representing time, but this employs speed (km / h) as a unit of speed. This is because the second (s) is adopted as the unit time for estimating the fuel consumption. When it is desired to align these units, an appropriate calculation may be performed on each numerical value.
  • the value of fc may be set to [1] to [3] below.
  • the said Formula (1) can also be represented like the following formula (I).
  • f 1 (x) is a predetermined function using the vehicle speed and acceleration of the vehicle as parameters
  • f 2 (x) is a predetermined function using the vehicle speed of the vehicle as parameters. More specifically, f 1 (x) is x ⁇ (dx / dt + g ⁇ sin ⁇ ) in the above equation (1), and f 2 (x) is G (x) in the above equation (1).
  • fc (x) k 1 + k 2 ⁇ f 1 (x) + k 3 ⁇ f 2 (x) (I)
  • the actual fuel consumption amount information acquisition unit 105 acquires actual fuel consumption amount (hereinafter referred to as “actual fuel consumption amount”) information when the vehicle is traveling.
  • the actual fuel consumption amount information acquisition unit 105 acquires the actual fuel consumption amount information by, for example, causing the user to input the actual fuel consumption amount or obtaining a measurement value obtained by a fuel consumption meter mounted on the vehicle.
  • the correction unit 106 corrects the above equation (1) based on the actual fuel consumption amount information acquired by the actual fuel consumption amount information acquisition unit 105.
  • the fuel consumption estimation unit 104 estimates the fuel consumption using the corrected equation (1).
  • the correction of the expression (1) by the correction unit 106 may be performed after the vehicle has finished traveling, or may be performed at any time during the traveling of the vehicle with a predetermined traveling section as a break.
  • the correction unit 106 corrects the above formula (1) based on, for example, the comparison value between the fuel consumption estimated by the fuel consumption estimation unit 104 and the actual fuel consumption and the traveling state of the vehicle during traveling.
  • the traveling state of the vehicle is, for example, whether the vehicle has traveled at a high speed, traveled at a low speed, or traveled in a traffic jam.
  • amendment part 106 is based on the said formula (1) based on the state which occupied the largest ratio in the driving
  • amendment part 106 correct
  • the type of road is, for example, a general road or a highway. Although the road type on which the vehicle travels changes every moment, the correction unit 106 is based on, for example, the type of road that has traveled for the longest time in the travel section where the actual fuel consumption amount information is obtained. The above equation (1) is corrected.
  • FIG. 2 is a flowchart showing a procedure of fuel consumption estimation processing by the fuel consumption estimation device.
  • the fuel consumption estimation apparatus 100 first acquires three types of coefficients from the database 110 by the coefficient acquisition unit 101 (step S201). Next, the fuel consumption estimation apparatus 100 acquires the speed and acceleration of the vehicle by the variable acquisition unit 102 (step S202). Subsequently, the fuel consumption estimation device 100 acquires the gradient information of the road on which the vehicle travels by the gradient information acquisition unit 103 (step S203).
  • the fuel consumption estimation apparatus 100 estimates the fuel consumption of a vehicle based on the said Formula (1) by the fuel consumption estimation part 104 (step S204), and complete
  • the fuel consumption estimation device 100 uses the single fuel estimation formula that includes only information related to idling of the vehicle, information related to acceleration of the vehicle, and information related to resistance generated when the vehicle travels. Is based on a single fuel estimation formula consisting of a coefficient based on fuel consumption when the vehicle is idling, a coefficient based on fuel consumption when the vehicle is accelerated, a coefficient based on air resistance and rolling resistance generated when the vehicle is running Estimate the fuel consumption of the vehicle. For example, in the above-mentioned conventional technology, the travel section is divided and the fuel estimation formulas are established for each. However, since the acceleration section and the deceleration section are switched rapidly during actual travel, it is difficult to make the calculation for fuel estimation more efficient. It is.
  • fuel estimation is performed by incorporating information relating to idling of a vehicle, information relating to acceleration, and information relating to resistance generated during traveling into a single fuel estimation formula.
  • the fuel consumption estimation apparatus 100 can estimate the fuel consumption during actual traveling of the vehicle with high accuracy and stability compared to the conventional calculation method.
  • the fuel consumption estimation device 100 estimates the fuel consumption during actual traveling using a single fuel estimation formula. For this reason, it is not necessary to change the regression equation applied according to the traveling state of the vehicle, and fuel efficiency estimation with high practicality can be performed even during actual traveling where the traveling state changes in a short period of time.
  • the fuel consumption estimation device 100 estimates the fuel consumption using the vehicle speed information and acceleration information. For this reason, the fuel consumption estimation apparatus 100 can reflect the change in the running speed or acceleration of the vehicle in the estimated value of the fuel consumption, and can estimate the fuel consumption more accurately. Furthermore, if the fuel consumption estimation apparatus 100 estimates the fuel consumption amount using the gradient information of the road on which the vehicle travels, the change in the potential energy applied to the vehicle can be reflected in the estimated value of the fuel consumption amount. The fuel consumption can be estimated with higher accuracy.
  • road gradient information is a parameter that is not highly correlated with vehicle speed and acceleration. For example, the correlation of each parameter can be lowered by incorporating this road gradient information into information related to the acceleration of the vehicle. For this reason, the fuel consumption estimation apparatus 100 estimates the fuel consumption by using the gradient information of the road on which the vehicle travels, so that the estimation result is more reliable than when only the speed and acceleration are used as parameters. Can be obtained.
  • the fuel consumption estimation device 100 estimates the fuel consumption per unit time, in addition to the instantaneous fuel consumption, it is possible to calculate a section fuel consumption amount, an average fuel consumption amount, an integrated fuel consumption amount, and the like in an arbitrary section.
  • the amount of fuel consumed can be presented to the user in an easily understandable form.
  • the fuel consumption estimation apparatus 100 records the coefficients used for estimating the fuel consumption in the database according to the vehicle type, the exhaust amount and the vehicle weight, and the mode fuel consumption, the fuel consumption is selected by selecting a more appropriate coefficient. Can be estimated.
  • the fuel consumption estimation apparatus 100 corrects the mathematical formula used for estimating the fuel consumption using the actual fuel consumption information, the characteristics of the vehicle itself and the driving characteristics of the user are reflected when estimating the fuel consumption from the next time. Therefore, it is possible to estimate the fuel consumption with higher accuracy.
  • FIG. 3 is a block diagram illustrating a hardware configuration of the navigation apparatus.
  • a navigation device 300 includes a CPU 301, ROM 302, RAM 303, magnetic disk drive 304, magnetic disk 305, optical disk drive 306, optical disk 307, audio I / F (interface) 308, microphone 309, speaker 310, input device 311, A video I / F 312, a display 313, a camera 314, a communication I / F 315, a GPS unit 316, and various sensors 317 are provided.
  • Each component 301 to 317 is connected by a bus 320.
  • the CPU 301 governs overall control of the navigation device 300.
  • the ROM 302 records programs such as a boot program and a route search program.
  • the RAM 303 is used as a work area for the CPU 301. That is, the CPU 301 controls the entire navigation device 300 by executing various programs recorded in the ROM 302 while using the RAM 303 as a work area.
  • the magnetic disk drive 304 controls the reading / writing of the data with respect to the magnetic disk 305 according to control of CPU301.
  • the magnetic disk 305 records data written under the control of the magnetic disk drive 304.
  • an HD hard disk
  • FD flexible disk
  • the optical disk drive 306 controls reading / writing of data with respect to the optical disk 307 according to the control of the CPU 301.
  • the optical disk 307 is a detachable recording medium from which data is read according to the control of the optical disk drive 306.
  • a writable recording medium can be used as the optical disc 307.
  • an MO, a memory card, or the like can be used as a removable recording medium.
  • Examples of information recorded on the magnetic disk 305 and the optical disk 307 include content data and map data.
  • the content data is, for example, music data, still image data, moving image data, or the like.
  • the map data includes background data that represents features (features) such as buildings, rivers, and the ground surface, and road shape data that represents the shape of the road.
  • the map data consists of multiple data files divided by district. It is configured.
  • the voice I / F 308 is connected to a microphone 309 for voice input and a speaker 310 for voice output.
  • the sound received by the microphone 309 is A / D converted in the sound I / F 308.
  • From the speaker 310 a sound obtained by D / A converting a predetermined sound signal in the sound I / F 308 is output.
  • the input device 311 includes a remote controller, a keyboard, a touch panel, and the like provided with a plurality of keys for inputting characters, numerical values, various instructions, and the like.
  • the input device 311 may be realized by any one form of a remote control, a keyboard, and a touch panel, but may be realized by a plurality of forms.
  • the video I / F 312 is connected to the display 313. Specifically, the video I / F 312 is output from, for example, a graphic controller that controls the entire display 313, a buffer memory such as a VRAM (Video RAM) that temporarily records image information that can be displayed immediately, and a graphic controller. And a control IC for controlling the display 313 based on the image data to be processed.
  • a graphic controller that controls the entire display 313, a buffer memory such as a VRAM (Video RAM) that temporarily records image information that can be displayed immediately, and a graphic controller.
  • VRAM Video RAM
  • the camera 314 captures images inside or outside the vehicle.
  • the image may be either a still image or a moving image.
  • a camera 314 captures a landscape or a feature outside the vehicle, a passenger inside the vehicle, etc., and the captured image is recorded on the magnetic disk 305 or the like via the video I / F 312. Recording is performed on a recording medium such as an optical disk 307.
  • the display 313 displays icons, cursors, menus, windows, or various data such as characters and images.
  • the map data described above is drawn two-dimensionally or three-dimensionally.
  • the map data displayed on the display 313 can be displayed with a mark representing the current position of the vehicle on which the navigation device 300 is mounted.
  • the current position of the vehicle is calculated by the CPU 301.
  • a TFT liquid crystal display, an organic EL display, or the like can be used as the display 313, for example, a TFT liquid crystal display, an organic EL display, or the like can be used.
  • the communication I / F 315 is wirelessly connected to a communication network such as the Internet, and also functions as an interface between the communication network and the CPU 301.
  • the communication I / F 315 transmits and receives data to and from nearby electronic devices by short-range communication such as infrared communication or Bluetooth (registered trademark). Further, the communication I / F 315 receives broadcast waves such as television and radio. Broadcast waves received by the communication I / F 315 are output as audio information and image information to the speaker 310 and the display 313 via the audio I / F 308 and the video I / F 312.
  • the GPS unit 316 receives radio waves from GPS satellites and outputs information indicating the current position of the vehicle.
  • the output information of the GPS unit 316 is used when the CPU 301 calculates the current position of the vehicle together with output values of various sensors 317 described later.
  • the information indicating the current position is information for specifying one point on the map data such as latitude / longitude and altitude.
  • the various sensors 317 output information for determining the position and behavior of the vehicle, such as a vehicle speed sensor, an acceleration sensor, and an angular velocity sensor.
  • the output values of the various sensors 317 are used by the CPU 301 to calculate the current position of the vehicle and the amount of change in speed and direction.
  • the CPU 301 executes a predetermined program using the programs and data recorded in the ROM 302, RAM 303, magnetic disk 305, optical disk 307, etc. in the navigation device 300 shown in FIG. Realize the function.
  • fuel consumption estimation processing by the navigation device 300 will be described.
  • fuel consumption and “fuel consumption” have the same meaning.
  • a dedicated device in order to know the fuel consumption amount of a vehicle, there are methods such as installing a dedicated device (retrofit) or using a fuel consumption meter mounted on the vehicle.
  • a dedicated device When a dedicated device is installed, there are problems that the installation work is complicated, the space inside the vehicle is occupied by the device body, or the device cannot be installed when the signal from the injector cannot be obtained. Even when a fuel consumption meter is installed in the vehicle, only the average fuel consumption may be displayed and the instantaneous fuel consumption may not be known.
  • the instantaneous fuel consumption amount (fuel consumption amount per unit time) while the vehicle on which the device is mounted is estimated and displayed on the display 313. Since the fuel consumption amount estimated by the navigation device 300 is an instantaneous fuel consumption amount, a fuel consumption amount (interval fuel consumption amount), an average fuel consumption amount, an integrated fuel consumption amount, and the like in an arbitrary section can also be calculated. Thus, according to the navigation apparatus 300, the user can know the fuel consumption of a vehicle, without requiring a special apparatus and complicated work.
  • the navigation apparatus 300 estimates the instantaneous fuel consumption amount of the vehicle using the following formula (1).
  • time (h) and second (s) are mixedly used as a unit representing time, but this uses speed (km / h) as a unit of speed. This is because the second (s) is adopted as the unit time for estimating the fuel consumption. When it is desired to align these units, an appropriate calculation may be performed on each numerical value.
  • the above [1] is a condition defined based on the idea that the estimated fuel consumption does not become a positive value or a negative value smaller than the idling consumption. Therefore, for example, when the estimated fuel consumption amount is a positive value or a negative value smaller than k 1, the fuel consumption amount estimated by the above [1] is k 1 .
  • the above [2] and [3] are conditions defined for fuel consumption when the vehicle is decelerated. Depending on the type of vehicle, when there is no accelerator operation at the time of deceleration, the fuel is not sent to the engine, and when the actually measured fuel consumption amount differs from the estimated fuel consumption amount, it may be effective to correct using this condition. Note that the value of fc in the above [1] to [3] is an example, and is appropriately adjusted depending on the vehicle type.
  • the above [2] and [3] are particularly effective when the conditional expression does not include fc and it is desired to make a predetermined determination without obtaining a specific value of fc.
  • the estimated fuel consumption amount is transmitted, such as a server performing such statistical processing, if processed and separated by a value and the other values of k 1 ⁇ k 3, after k 1 ⁇ k 3
  • the value of is updated, the amount of calculation is greatly reduced, and the recalculation of the conditional expression also reduces the load.
  • FIG. 4 is an explanatory diagram showing a coefficient table held by the navigation device.
  • a vehicle type name 401 for identifying the vehicle type of the vehicle and format information 402 indicating the format of each vehicle type are recorded, and coefficient values (k 1 to 4) corresponding to each vehicle type and format are recorded.
  • k 3 ) 406 is recorded.
  • the displacement information 403, the vehicle weight information 404, and the mode fuel consumption information 405 are associated with each vehicle type name 401 and format information 402.
  • the coefficients k 1 to k 3 vary depending on the vehicle type and the format, and the navigation apparatus 300 reads the values of the coefficients k 1 to k 3 corresponding to the vehicle on which the apparatus is mounted from the coefficient table 400. Specifically, for example, when the vehicle type and type of the vehicle on which the device is mounted can be determined, the navigation device 300 selects a corresponding one from the vehicle type name 401 and the type information 402, and the vehicle type name 401 and The coefficient value associated with the format information 402 is read.
  • the navigation device 300 selects the corresponding one from the displacement information 403 and the vehicle weight information 404 when the displacement and weight of the vehicle can be determined.
  • the coefficient values associated with the displacement information 403 and the vehicle weight information 404 are read out.
  • a corresponding one is selected from the mode fuel efficiency information 405 and the coefficient value associated with the mode fuel efficiency information 405 is read out.
  • the coefficient value to be read may be read out.
  • k 1 is a coefficient indicating the fuel consumption when the vehicle is stopped with the engine moving, that is, idling.
  • K 2 is a coefficient indicating the fuel consumption during acceleration.
  • K 3 is a coefficient based on resistance generated when the vehicle travels.
  • the resistance generated when the vehicle travels includes air resistance and rolling resistance applied to the vehicle body. Among these, the rolling resistance includes resistance generated with rotation of the tire, resistance generated with rotation inside the engine, and the like.
  • FIG. 5 is a graph showing the relationship between the coefficient k 1 and the displacement.
  • the vertical axis represents the coefficient k 1 and the horizontal axis represents the displacement.
  • the coefficient k 1 and the displacement are positively correlated. That is, in general, it is known that a vehicle with a larger displacement has a higher fuel consumption during idling, and the coefficient k 1 is a coefficient reflecting the fuel consumption during idling.
  • FIG. 6 is a graph showing the relationship between the coefficient k 2 and the vehicle weight, where the vertical axis represents the coefficient k 2 and the horizontal axis represents the vehicle weight. As shown in FIG. 6, the coefficient k 2 and the vehicle weight have a positive correlation. That is, it is generally known that the heavier the vehicle weight, the larger the fuel consumption during acceleration, and the coefficient k 2 is a coefficient reflecting the fuel consumption during acceleration.
  • FIG. 7 is a graph showing the relationship between the coefficient k 3 and the displacement.
  • the vertical axis represents the coefficient k 3 and the horizontal axis represents the displacement.
  • k 3 is the coefficient based on the resistance generated during running of the vehicle, in order to have a correlation to the shape of the vehicle than the exhaust amount.
  • a coefficient table (coefficient database) as shown in FIG. 4 is constructed in the following procedure, for example.
  • [Procedure 1] Measure actual driving data of a standard vehicle type, and substitute the actual driving data into the following formula ( ⁇ ).
  • the following equation ( ⁇ ) substituted with actual running data is subjected to multiple regression analysis to obtain coefficients k 1 , k 2 , k 3 , k 4 , and k 5 .
  • k 1 is a coefficient based on fuel consumed during idling
  • k 2 is a coefficient based on fuel consumed during acceleration
  • k 3 is a coefficient based on air resistance and rolling resistance
  • k 4 and k 5 are engine torque characteristics. It is a coefficient due to transmission efficiency.
  • fuel consumption (cc / sec)
  • x vehicle speed (km / h)
  • fc (x) k 1 + k 2 ⁇ (dx / dt + g ⁇ sin ⁇ ) ⁇ x + k 3 ⁇ x 3 + k 4 ⁇ x 2 + k 5 ⁇ x ( ⁇ ) [Procedure 2]
  • k 1 ⁇ k 5 obtained in Step 1
  • FIG. 8 is an explanatory diagram schematically showing acceleration applied to a vehicle traveling on a road having a gradient.
  • a vehicle traveling on a slope with a slope of ⁇ is subjected to acceleration (dx / dt) A and traveling direction component (g ⁇ sin ⁇ ) B of gravity acceleration g.
  • the second term on the right side of the equation (1) indicates the acceleration A accompanying the traveling of the vehicle and the combined acceleration C of the traveling direction component B of the gravitational acceleration g.
  • the navigation apparatus 300 estimates the fuel consumption in consideration of the road gradient.
  • the slope of the road on which the vehicle travels can be known using, for example, an inclinometer mounted on the navigation device 300. Further, when the inclinometer is not mounted on the navigation device 300, for example, road gradient information included in the map data can be used.
  • the gradient is calculated using the elevation data in the map data, or if the navigation device is capable of three-dimensional positioning, using the elevation information of the positioning result.
  • the fuel consumption in a certain section can be estimated. Specifically, the fuel consumption in the section with the gradient (gradient section fuel consumption) is estimated using an approximate expression such as the following expression (2).
  • Gradient section fuel consumption Section fuel consumption when the slope is always 0 + k2g (Section end point elevation-Section start point elevation) (2)
  • section fuel consumption (when the gradient is always 0)” on the right side of the equation (2) is a value obtained by integrating the instantaneous fuel consumption (value of the equation (1)) in the section.
  • the second term (section end point elevation ⁇ section start point elevation) on the right side indicates the amount of change in potential energy. It is shown as follows that the above equation (2) can approximate the fuel consumption in a section with a gradient.
  • ⁇ V (dx / dt + g ⁇ sin ⁇ ) ⁇ T ⁇ x ⁇ dx / dt ⁇ ⁇ T + g ⁇ ⁇ (x ⁇ sin ⁇ ) ⁇ T (4) It can be seen that “ ⁇ (x ⁇ sin ⁇ ) ⁇ T” in the second term on the right side of the equation (4) is the amount of movement in the elevation direction in the section.
  • the first term on the right side of the above formula (4) is the amount of fuel consumed with respect to the acceleration energy when the gradient is always considered to be zero. It can be referred to as “section estimation value”. Therefore, even if there is no inclinometer, if the latitude and longitude of the start point and end point of the target section can be obtained, fuel consumption can be estimated in consideration of the road gradient by referring to the altitude data. Alternatively, if the navigation device is capable of three-dimensional positioning, fuel efficiency can be estimated in consideration of the road gradient by directly referring to the elevation information of the start point and end point of the target section.
  • the navigation device 300 estimates the fuel consumption based on the above equation (1).
  • an error may occur between the estimated fuel consumption and the actual fuel consumption due to various factors such as the characteristics of each vehicle and the characteristics of the driver.
  • the navigation apparatus 300 corrects the calculation formula by the following method and uses it for fuel consumption estimation from the next time. Thereby, the estimation precision of a fuel consumption can be improved more.
  • the following method is based on the premise that information on actual fuel consumption can be obtained, but the actual fuel consumption measurement method is arbitrary.
  • the first method is a correction method based on the running state of the vehicle at the time of measuring the actual fuel consumption.
  • the traveling state of the vehicle is, for example, whether the vehicle has traveled at a high speed, traveled at a low speed, or traveled in a traffic jam.
  • the section fuel consumption of the section in which the actual fuel consumption information is obtained is calculated using the following equation (5).
  • h a correction coefficient
  • fc h ⁇ (k 1 + k 2 ⁇ x ⁇ dx / dt + k 3 ⁇ G (x))
  • g (v) x 3 + a 1 ⁇ x 2 + a 2 ⁇ x
  • the actual fuel consumption amount is compared with the section fuel consumption amount to determine whether the actual fuel consumption amount is better or worse than the section fuel consumption amount, and the coefficients k 1 to k 3 are corrected as follows based on the result. . [1] during the low speed, the actual fuel consumption amount when worse than the interval fuel consumption: k 2 greatly to reduce the k 3. [2] during the low speed, the actual fuel consumption amount may better than the interval fuel consumption: k 2 a small, increasing the k 3. [3] During congestion, the actual fuel consumption amount when worse than the interval fuel consumption: k 1 greatly to reduce the k 3. [4] During congestion, the actual fuel consumption amount may better than the interval fuel consumption: k 1 a small, increasing the k 3. [5] during high-speed, real fuel amount if worse than the interval fuel consumption: k 2 a small, increasing the k 3. [6] during high-speed, real fuel consumption amount may better than the interval fuel consumption: k 2 greatly to reduce the k 3.
  • one coefficient may be corrected as follows.
  • [A] congestion ratio during idling is large like section: when the estimated fuel efficiency than the measured fuel consumption by increasing the k 1, when the estimated fuel efficiency is worse than the measured fuel efficiency to reduce the k 1.
  • [B] city travel ratio deceleration is large, etc. section: when the estimated fuel efficiency than the measured fuel consumption by increasing the k 2, when the estimated fuel efficiency is worse than the measured fuel efficiency to reduce the k 2.
  • the second method is a correction method based on the type of road on which the vehicle has traveled when measuring the actual fuel consumption.
  • the type of road is, for example, a general road or a highway. More specifically, the simultaneous equations of the following formulas (6) and (7) are solved using at least two times of fuel supply information to determine the actual fuel consumption Fi on the general road and the actual fuel consumption Fk on the expressway.
  • A1 ⁇ Fi + B1 ⁇ Fk E1 (6)
  • A2 ⁇ Fi + B2 ⁇ Fk E2 (7)
  • E1 is the first gasoline refueling amount
  • A1 is the travel distance of the general road that has traveled from the first full tank to the first fueling
  • B1 is the first full tank to the first fueling.
  • E2 is the second gasoline charge amount
  • A2 is the travel distance on the general road that traveled from the first to the second refueling
  • B2 is traveled from the first to the second refueling Is the mileage of the expressway.
  • the travel distance on the general road and the travel distance on the expressway can be obtained by referring to travel history information recorded in the navigation device 300.
  • Each refueling is a refueling that fills the fuel tank.
  • h1 and h2 are set as unknown parameters.
  • fc h 1 ⁇ (k 1 + k 2 ⁇ x ⁇ dx / dt) + h 2 ⁇ (k 3 ⁇ G (x))
  • G (x) x 3 + a 1 ⁇ x 2 + a 2 ⁇ x
  • the section fuel consumption amount calculated separately for the general road section and the expressway section is compared with the actual fuel consumption amount for each road type.
  • the expression in ⁇ in the first term on the right side of the equation (8) is Ai
  • the expression in ⁇ in the second term on the right side is Bi
  • the expression on the right side of the equation (8) in the expressway section
  • the expression in ⁇ of 1 term is set to Ak
  • the expression in ⁇ of the second term on the right side is set to Bk
  • the following expressions (9) and (10) are obtained.
  • the left side is the estimated fuel consumption and the right side is the actual fuel consumption.
  • h1, Ai + h2, Bi (a1 + a2)
  • (Highway) h1 ⁇ Ak + h2 ⁇ Bk (b1 + b2) ⁇ Fk (10)
  • the h1 ⁇ Ai term should be dominant
  • the h2 ⁇ Bk term should be dominant. is there.
  • the actual fuel consumption is compared with the section fuel consumption to determine whether the actual fuel consumption is better or worse than the section fuel consumption, and the parameter h (h1, h2) is adjusted as follows based on the result. To do. [1] When the actual fuel consumption amount is worse than the section fuel consumption amount on a general road: h1 is increased. [2] When the actual fuel consumption amount is better than the section fuel consumption amount on a general road: h1 is decreased.
  • FIG. 9 is a flowchart showing a procedure of fuel consumption estimation processing by the navigation device.
  • the navigation device 300 first waits until the vehicle on which the device is mounted starts traveling (step S ⁇ b> 901: No loop).
  • the navigation apparatus 300 reads out the coefficients k 1 to k 3 corresponding to the vehicle on which the apparatus is mounted from the coefficient table (step S902).
  • the coefficient need not be read every time it travels.
  • the coefficient value once read may be recorded in the ROM 302 or the like.
  • the navigation device 300 acquires the current vehicle speed information and acceleration information (step S903). Moreover, the navigation apparatus 300 acquires the gradient information of the road on which the vehicle is currently traveling (step S904). Then, the navigation apparatus 300 calculates the current instantaneous fuel consumption amount using the above formula (1) (step S905), and displays the calculated value (current instantaneous fuel consumption amount) on the display 313 (step S906). Note that the display or non-display of the fuel consumption amount may be switched by a user operation.
  • Step S903 the vehicle finishes traveling (step S907: No), and continues the subsequent processing. And if a vehicle complete
  • the fuel consumption estimation formula (the above formula (1)) may be corrected after traveling or during traveling. In this case, the correction of the fuel consumption estimation formula may be performed at an arbitrary timing by a user operation, for example.
  • the fuel consumption estimation process shown in this flowchart may be switched on and off by a user operation in order to reduce the processing load on the CPU 301.
  • the navigation apparatus 300 uses the single fuel estimation formula that includes only information related to idling of the vehicle, information related to acceleration of the vehicle, and information related to resistance generated when the vehicle travels, in more detail. Is a coefficient k 1 based on the fuel consumption at the time of idling of the vehicle, a coefficient k 2 based on the fuel consumption at the time of acceleration of the vehicle, an air resistance generated when the vehicle is running, and a coefficient k 3 based on the rolling resistance. ) To estimate the fuel consumption of the vehicle. For this reason, the fuel consumption estimation apparatus 100 can estimate the fuel consumption during actual traveling of the vehicle with high accuracy and stability compared to the conventional calculation method.
  • the navigation device 300 estimates the fuel consumption during actual traveling using only the above formula (1) as a single fuel estimation formula. For this reason, it is not necessary to change the regression equation applied according to the traveling state of the vehicle, and fuel efficiency estimation with high practicality can be performed even during actual traveling where the traveling state changes in a short period of time.
  • the navigation device 300 estimates the fuel consumption using the vehicle speed information and acceleration information, and the gradient information of the road on which the vehicle travels. For this reason, the navigation apparatus 300 can reflect the change in the running speed and acceleration of the vehicle and the change in the potential energy applied to the vehicle in the estimated value of the fuel consumption, and can estimate the fuel consumption more accurately. .
  • road gradient information is a parameter that is not highly correlated with vehicle speed and acceleration. For this reason, in the navigation apparatus 300, by estimating the fuel consumption using the gradient information of the road on which the vehicle travels, a more reliable estimation result can be obtained compared to the case where only the speed and acceleration are used as parameters. Obtainable.
  • the vehicle speed information and acceleration information and the road gradient information on which the vehicle travels are information acquired by the navigation device 300 from the past. For this reason, according to the navigation apparatus 300, the user can know the fuel consumption of a vehicle, without requiring a special apparatus and complicated work.
  • the navigation apparatus 300 estimates the fuel consumption per unit time, it can calculate the estimated fuel consumption amount, the average fuel consumption amount, the integrated fuel consumption amount, etc. in an arbitrary section in addition to the instantaneous fuel consumption amount.
  • the fuel consumption can be presented to the user in an easy-to-understand manner.
  • the navigation apparatus 300 since the navigation apparatus 300 records the coefficient used for estimating the fuel consumption in the database according to the vehicle type, the displacement, the vehicle weight, and the mode fuel consumption, the navigation apparatus 300 selects a more appropriate coefficient and calculates the fuel consumption. Estimation can be performed.
  • the navigation apparatus 300 corrects the mathematical formula used for estimating the fuel consumption using the actual fuel consumption amount information, the characteristics of the vehicle itself and the driving characteristics of the user are reflected when estimating the fuel consumption from the next time. Thus, the fuel consumption can be estimated with higher accuracy.
  • a coefficient table may be prepared for each road type. More specifically, a coefficient table for ordinary roads and a coefficient table for expressways may be stored in advance, and the coefficient table may be switched in response to this change when the type of road being traveled changes. .
  • the fuel consumption estimation method described in the present embodiment can be realized by executing a program prepared in advance on a computer such as a personal computer or a workstation.
  • This program is recorded on a computer-readable recording medium such as a hard disk, a flexible disk, a CD-ROM, an MO, and a DVD, and is executed by being read from the recording medium by the computer.
  • the program may be a transmission medium that can be distributed via a network such as the Internet.

Abstract

Disclosed is a fuel consumption estimating device (100) that acquires a coefficient based on the amount of fuel consumed when a vehicle is stationary and the engine is in an operable state as a first fuel consumption information item (k1), acquires a coefficient based on fuel consumption when the vehicle is accelerating as a second fuel consumption information item (k2), and acquires a coefficient based on air resistance and rolling resistance generated when the vehicle is moving as a third fuel consumption information item (k3). A variable acquisition unit (102) acquires the velocity and acceleration when the vehicle is moving as a variable relating to the second fuel consumption information item and the third consumption information item. A fuel consumption estimation unit (104) employs a single fuel consumption estimation system to estimate the fuel consumption of the vehicle on the basis of the acquired coefficients, velocity and acceleration.

Description

燃費推定装置、燃費推定方法、燃費推定プログラムおよび記録媒体Fuel consumption estimation device, fuel consumption estimation method, fuel consumption estimation program, and recording medium
 この発明は、車両の燃料消費量を推定する燃費推定装置、燃費推定方法、および燃費推定プログラムおよび記録媒体に関する。ただし、この発明の利用は、上述した燃費推定装置、燃費推定方法、および燃費推定プログラムおよび記録媒体に限られない。 The present invention relates to a fuel consumption estimation device, a fuel consumption estimation method, a fuel consumption estimation program, and a recording medium for estimating fuel consumption of a vehicle. However, the use of the present invention is not limited to the above-described fuel consumption estimation device, fuel consumption estimation method, fuel consumption estimation program, and recording medium.
 従来、実走行時における車両の燃料消費量を推定するため、様々な方法が考案されている(たとえば、下記非特許文献1参照)。下記非特許文献1では、車両の実走行時における燃料消費量を決めるに際して、走行区間をモデル化して、それぞれの区間に独立の計算式を導出している。そしてこれらの式を用いて、次のような回帰式を用いることによって、燃料消費量を推定している。
加速時: FC=0.5119×a+0.2858
定常時: FC=0.00259×V2+0.1808
減速時: FC=0.2061×a+0.2848
アイドリング時: FC=0.258
 ここで、FCは単位時間あたりの燃料消費量(cc/s)、Vは平均速度(m/s)、aは加速度(m/s2)である。
Conventionally, various methods have been devised in order to estimate the fuel consumption of a vehicle during actual driving (see, for example, Non-Patent Document 1 below). In the following Non-Patent Document 1, when determining the fuel consumption during actual traveling of the vehicle, the traveling sections are modeled and independent calculation formulas are derived for the respective sections. Then, using these equations, the fuel consumption is estimated by using the following regression equation.
During acceleration: FC = 0.5119 × a + 0.2858
Regular: FC = 0.00259 × V2 + 0.1808
During deceleration: FC = 0.0261 × a + 0.2848
When idling: FC = 0.258
Here, FC is fuel consumption per unit time (cc / s), V is average speed (m / s), and a is acceleration (m / s2).
 一般に、燃料消費量の推定には、各種の要因をパラメータ化した回帰式が用いられるが、係数の数とパラメータの数とを適切な数にする必要がある。特に、車両の燃料消費量を推定するにあたって車両の走行に関する上記各種の要因(車両の速度など)をパラメータとして採用する場合、これらのパラメータ間に相関性が少なからず出てきてしまい、比較的多くの係数を回帰式に用いることは困難となる。 Generally, a regression equation in which various factors are parameterized is used for estimating the fuel consumption, but the number of coefficients and the number of parameters need to be appropriate numbers. In particular, when the above-described various factors (vehicle speed, etc.) relating to vehicle travel are used as parameters in estimating the fuel consumption of the vehicle, there is a considerable correlation between these parameters, and there are relatively many. It is difficult to use this coefficient in the regression equation.
 このため、上述した従来技術においては、推定した燃料消費量と実際の燃料消費量との誤差が大きいという問題点が一例として挙げられる。すなわち、上述した従来技術においては、平均速度と加速度だけをパラメータとしており、パラメータの数は少ないものの、求めるべき係数は比較的多くなっており、演算結果の精度が保てないおそれがある。 For this reason, in the above-described conventional technology, there is a problem that an error between the estimated fuel consumption and the actual fuel consumption is large. That is, in the above-described prior art, only the average speed and acceleration are used as parameters, and although the number of parameters is small, the coefficient to be obtained is relatively large, and the accuracy of the calculation result may not be maintained.
 一方で、パラメータ数を増加させれば求められる係数の精度は確保しやすくなるが、回帰式中のパラメータ数が多すぎると演算結果が安定しない。このように、実走行時の状況に近く、かつ簡易な回帰式を用いて燃料消費量を精度良く推定するためには、適切なパラメータ数と係数の数との両立が不可欠であるという問題点が一例として挙げられる。 On the other hand, if the number of parameters is increased, the accuracy of the required coefficient can be easily ensured, but if the number of parameters in the regression equation is too large, the calculation result will not be stable. As described above, in order to accurately estimate fuel consumption using a simple regression equation that is close to the actual driving situation, it is indispensable that both the number of parameters and the number of coefficients are compatible. Is given as an example.
 また、従来技術においては、燃料消費量を推定する走行区間を、車両の走行状態によって複数の区間に分けて回帰式をそれぞれ適用しているが、実走行時においては加速や減速は短期間で様々な変化をする。このため、上記のモデルは、実走行時にそのまま適用できるとは限らないという問題点が一例として挙げられる。 In the prior art, the regression section is applied by dividing the traveling section for estimating the fuel consumption into a plurality of sections according to the traveling state of the vehicle, but acceleration and deceleration are performed in a short period during actual traveling. Make various changes. For this reason, the problem that the above-mentioned model is not always applicable as it is at the time of actual traveling is given as an example.
 また、従来技術においては、回帰式で求まる係数が一種類のみ開示されているが、この係数が他の車種にも最適なものとは必ずしも言えない。したがって、上記回帰式をそのまま他の車種に適用した場合、車種によっては推定した燃料消費量と実際の燃料消費量との誤差が大きくなってしまうおそれがあるという問題点が一例として挙げられる。 In the prior art, only one type of coefficient obtained by a regression equation is disclosed, but this coefficient is not necessarily optimal for other vehicle types. Therefore, when the above regression equation is applied to other vehicle types as they are, there is a problem that an error between the estimated fuel consumption amount and the actual fuel consumption amount may increase depending on the vehicle type.
 上述した課題を解決し、目的を達成するため、請求項1の発明にかかる燃費推定装置は、エンジンが可動した状態における車両の停止時に関する第一燃料消費情報と、前記車両の加速時に関する第二燃料消費情報と、前記車両の走行時に生じる抵抗に関する第三燃料消費情報と、のみからなる単一の燃料推定式に基づいて、前記車両の走行時における単位時間当たりの燃料消費量を推定する。 In order to solve the above-described problems and achieve the object, a fuel consumption estimation device according to the invention of claim 1 includes first fuel consumption information relating to the stop of the vehicle in a state where the engine is operating, and a first fuel consumption information relating to the acceleration of the vehicle. Based on a single fuel estimation formula consisting only of two fuel consumption information and third fuel consumption information relating to resistance generated when the vehicle travels, a fuel consumption amount per unit time during travel of the vehicle is estimated .
 また、請求項12の発明にかかる燃費推定装置は、車両の燃費を推定する燃費推定装置であって、エンジンが可動した状態における前記車両の停止時における消費燃料に基づく係数k1、前記車両の加速時における消費燃料に基づく係数k2、および前記車両の空気抵抗および転がり抵抗に基づく係数k3をあらかじめ格納する保持手段と、前記車両の車速を検知する検知手段と、前記保持手段に格納された前記係数k1、k2、k3、および前記検知手段によって検知された前記車両の車速を用いて、下記式(2)により瞬間燃費推定量fcを算出する瞬間燃費推定手段と、
 を備えることを特徴とする燃費推定装置。
 瞬間燃費推定量fc(x)=k1+k2・f1(x)+k3・f2(x)・・・(2)
 ここで、f1(x):前記車両の車速および加速度をパラメータとする所定の関数、f2(x):前記車両の車速をパラメータとする所定の関数
A fuel consumption estimation apparatus according to a twelfth aspect of the present invention is a fuel consumption estimation apparatus that estimates the fuel consumption of a vehicle, wherein a coefficient k 1 based on fuel consumption when the vehicle is stopped when the engine is in motion, A holding means for storing in advance a coefficient k 2 based on fuel consumption at the time of acceleration and a coefficient k 3 based on air resistance and rolling resistance of the vehicle, detection means for detecting the vehicle speed of the vehicle, and storage in the holding means. Using the coefficients k 1 , k 2 , k 3 and the vehicle speed of the vehicle detected by the detection means, an instantaneous fuel consumption estimation means for calculating an instantaneous fuel consumption estimation amount fc according to the following equation (2):
A fuel consumption estimation device comprising:
Instantaneous fuel consumption estimation amount fc (x) = k 1 + k 2 · f 1 (x) + k 3 · f 2 (x) (2)
Here, f 1 (x): a predetermined function using the vehicle speed and acceleration of the vehicle as parameters, and f 2 (x): a predetermined function using the vehicle speed of the vehicle as parameters.
 また、請求項13の発明にかかる燃費推定方法は、車両のアイドリング時に関する第一燃料消費情報と、前記車両の加速時に関する第二燃料消費情報と、前記車両の走行時に生じる抵抗に関する第三燃料消費情報と、のみからなる単一の燃料推定式に基づいて、前記車両の走行時における単位時間当たりの燃料消費量を推定することを特徴とする。 According to a thirteenth aspect of the present invention, there is provided a fuel consumption estimation method comprising: first fuel consumption information related to idling of a vehicle; second fuel consumption information related to acceleration of the vehicle; and third fuel related to resistance generated during travel of the vehicle. The fuel consumption per unit time when the vehicle is running is estimated on the basis of consumption information and a single fuel estimation formula consisting only of the consumption information.
 また、請求項17の発明にかかる燃費推定プログラムは、請求項13~16のいずれか一つに記載の燃費推定方法をコンピュータに実行させることを特徴とする。 Further, a fuel consumption estimation program according to the invention of claim 17 causes a computer to execute the fuel consumption estimation method according to any one of claims 13 to 16.
 また、請求項18の発明にかかる記録媒体は、請求項17に記載の燃費推定プログラムをコンピュータに読み取り可能な状態で記録したことを特徴とする。 Further, a recording medium according to the invention of claim 18 is characterized in that the fuel consumption estimation program according to claim 17 is recorded in a computer-readable state.
図1は、実施の形態にかかる燃費推定装置の機能的構成を示すブロック図である。FIG. 1 is a block diagram illustrating a functional configuration of the fuel consumption estimation apparatus according to the embodiment. 図2は、燃費推定装置による燃費推定処理の手順を示すフローチャートである。FIG. 2 is a flowchart showing a procedure of fuel consumption estimation processing by the fuel consumption estimation device. 図3は、ナビゲーション装置のハードウェア構成を示すブロック図である。FIG. 3 is a block diagram illustrating a hardware configuration of the navigation apparatus. 図4は、ナビゲーション装置が保持する係数テーブルを示す説明図である。FIG. 4 is an explanatory diagram showing a coefficient table held by the navigation device. 図5は、係数k1と排気量との関係を示すグラフである。FIG. 5 is a graph showing the relationship between the coefficient k 1 and the displacement. 図6は、係数k2と車重との関係を示すグラフである。FIG. 6 is a graph showing the relationship between the coefficient k 2 and the vehicle weight. 図7は、係数k3と排気量との関係を示すグラフである。FIG. 7 is a graph showing the relationship between the coefficient k 3 and the displacement. 図8は、勾配がある道路を走行する車両にかかる加速度を模式的に示した説明図である。FIG. 8 is an explanatory diagram schematically showing acceleration applied to a vehicle traveling on a road having a gradient. 図9は、ナビゲーション装置による燃費推定処理の手順を示すフローチャートである。FIG. 9 is a flowchart showing a procedure of fuel consumption estimation processing by the navigation device.
符号の説明Explanation of symbols
 100 燃費推定装置
 101 係数取得部
 102 変数取得部
 103 勾配情報取得部
 104 燃費推定部
 105 実燃費量情報取得部
 106 補正部
 110 データベース
DESCRIPTION OF SYMBOLS 100 Fuel consumption estimation apparatus 101 Coefficient acquisition part 102 Variable acquisition part 103 Gradient information acquisition part 104 Fuel consumption estimation part 105 Actual fuel consumption amount information acquisition part 106 Correction | amendment part 110 Database
 以下に添付図面を参照して、この発明にかかる燃費推定装置、燃費推定方法、および燃費推定プログラムおよび記録媒体の好適な実施の形態を詳細に説明する。 Hereinafter, preferred embodiments of a fuel consumption estimation device, a fuel consumption estimation method, a fuel consumption estimation program, and a recording medium according to the present invention will be described in detail with reference to the accompanying drawings.
(実施の形態)
 図1は、実施の形態にかかる燃費推定装置の機能的構成を示すブロック図である。燃費推定装置100は、係数取得部101、変数取得部102、燃費推定部104、データベース110によって構成され、車両のエンジンが可動した状態における当該車両の停止時に関する第一燃料消費情報と、前記車両の加速時に関する第二燃料消費情報と、前記車両の走行時に生じる抵抗に関する第三燃料消費情報と、のみからなる単一の燃料推定式に基づいて、前記車両の走行時における単位時間当たりの燃料消費量を推定する。
(Embodiment)
FIG. 1 is a block diagram illustrating a functional configuration of the fuel consumption estimation apparatus according to the embodiment. The fuel consumption estimation device 100 includes a coefficient acquisition unit 101, a variable acquisition unit 102, a fuel consumption estimation unit 104, and a database 110. The fuel consumption estimation device 100 includes first fuel consumption information related to when the vehicle is stopped when the vehicle engine is in motion, and the vehicle. The fuel per unit time when the vehicle travels based on a single fuel estimation formula consisting of the second fuel consumption information regarding the acceleration of the vehicle and the third fuel consumption information regarding the resistance generated when the vehicle travels Estimate consumption.
 ここで「単一の燃料推定式に基づいて」とは、車両の走行区間の状態(アイドリング時や加速時など)に分けてそれぞれに燃料推定式を適用するのではなく、車両の上記状態に関わらず同一の燃料推定式を用いるという意味である。また、「車両のエンジンが可動した状態における当該車両の停止時」とは、いわゆるアイドリング時のことであり、例えばエンジンをかけて発進をする前までの時、信号で停止した時などが含まれる。また、第三燃料消費情報は、別の見方をすれば単位時間当たりの総燃料消費量から第一燃料消費情報および第二燃料消費情報を引いた値でもあり、常速(一定速)時に関する消費燃料に関する情報でもある。 Here, “based on a single fuel estimation formula” means that the fuel estimation formula is not applied to each state of the vehicle travel section (during idling, acceleration, etc.), but rather to the above state of the vehicle. Regardless, it means that the same fuel estimation formula is used. Further, “when the vehicle is stopped in a state where the vehicle engine is moving” means a so-called idling time, and includes, for example, a time before starting the engine and a stop by a signal. . In other words, the third fuel consumption information is a value obtained by subtracting the first fuel consumption information and the second fuel consumption information from the total fuel consumption per unit time. It is also information about fuel consumption.
 なお、燃費推定装置100は、さらに勾配情報取得部103、実燃費量情報取得部105、補正部106などを適宜備えていてもよい。また、「のみからなる」とは、これらの情報だけに基づく係数および変数を用いて実質的に燃料消費量を推定することを表すものであり、この趣旨を逸脱しない範囲で重要度が相対的に低い他の情報が付加された形態も含むものである。 In addition, the fuel consumption estimation apparatus 100 may further include a gradient information acquisition unit 103, an actual fuel consumption amount information acquisition unit 105, a correction unit 106, and the like as appropriate. “Comprising only” means that the fuel consumption is substantially estimated using coefficients and variables based only on this information, and the relative importance is within a range not departing from this gist. It includes a form in which other low information is added.
 係数取得部101は、車両のアイドリング時における燃料消費量に基づく係数を第一燃料消費情報として取得し、車両の加速時における消費燃料に基づく係数を第二燃料消費情報として取得し、車両の走行時に生じる空気抵抗および転がり抵抗に基づく係数を第三燃料消費情報として取得する。ここで、第一燃料消費情報とは、後述する式(1)における係数k1、第二燃料消費情報とは式(1)における係数k2、第三燃料消費情報とは式(1)における係数k3にそれぞれ対応する情報である。 The coefficient acquisition unit 101 acquires a coefficient based on the fuel consumption at the time of idling of the vehicle as first fuel consumption information, acquires a coefficient based on the fuel consumption at the time of acceleration of the vehicle as second fuel consumption information, and travels the vehicle A coefficient based on the air resistance and rolling resistance that occur at times is acquired as third fuel consumption information. Here, the first fuel consumption information is a coefficient k 1 in formula (1) described later, the second fuel consumption information is a coefficient k 2 in formula (1), and the third fuel consumption information is in formula (1). Information corresponding to each coefficient k 3 .
 係数取得部101は、たとえば、それぞれの係数が記録されたデータベース110(保持手段)から上記3種類の係数を読み出すことによって係数を取得する。なおデータベース110は、燃費推定装置100の外部に設けられていてもよい。 The coefficient acquisition unit 101 acquires the coefficients by reading the above three types of coefficients from the database 110 (holding means) in which the respective coefficients are recorded, for example. The database 110 may be provided outside the fuel consumption estimation apparatus 100.
 データベース110は、上記3種類の係数を、たとえば車種別(同じ車種でも形式によって係数が異なる場合には形式別)に記録する。なお必要に応じて所定の計算式により求めた定数も記録されていてもよい。この場合、係数取得部101は、車両の車種に適合する係数を選択して取得する。また、データベース110は、それぞれの車種の排気量情報および車重情報を記録しているので、係数取得部101は、車両の排気量および車重に適合する係数を選択してもよい。また、データベース110は、それぞれの車種のモード燃費情報を記録しているので、係数取得部101は、車両のモード燃費に適合する係数を選択してもよい。なお、モード燃費とは、あらかじめ規定された所定の条件下で走行した場合の燃費であり、10モード燃費や15モード燃費、JC08モード燃費などが知られている。 The database 110 records the above three types of coefficients in, for example, vehicle types (if the same vehicle type has different coefficients depending on the format, the format is different). A constant obtained by a predetermined calculation formula may be recorded as necessary. In this case, the coefficient acquisition unit 101 selects and acquires a coefficient suitable for the vehicle type of the vehicle. In addition, since the database 110 records the displacement information and vehicle weight information of each vehicle type, the coefficient acquisition unit 101 may select a coefficient that matches the displacement and vehicle weight of the vehicle. Further, since the database 110 records mode fuel efficiency information of each vehicle type, the coefficient acquisition unit 101 may select a coefficient that matches the mode fuel efficiency of the vehicle. The mode fuel efficiency is the fuel efficiency when traveling under a predetermined condition defined in advance, and 10 mode fuel efficiency, 15 mode fuel efficiency, JC08 mode fuel efficiency, and the like are known.
 変数取得部102は、車両の走行時における速度および加速度を、前記第二燃料消費情報および前記第三燃料消費情報に関する変数として取得する。変数取得部102は、たとえば、車両本体に設置された速度センサや加速度センサから出力される速度情報および加速度情報を取得する。なお、速度センサや加速度センサが燃費推定装置100に備えられている場合には、これらのセンサから速度情報や加速度情報を取得してもよい。また、たとえば、変数取得部102そのもので速度や加速度を計測(または算出)できるようにしてもよい(検知手段)。 The variable acquisition unit 102 acquires the speed and acceleration when the vehicle is traveling as variables relating to the second fuel consumption information and the third fuel consumption information. The variable acquisition unit 102 acquires, for example, speed information and acceleration information output from a speed sensor or an acceleration sensor installed in the vehicle body. In addition, when the fuel consumption estimation apparatus 100 is provided with the speed sensor and the acceleration sensor, you may acquire speed information and acceleration information from these sensors. Further, for example, the variable acquisition unit 102 itself may be able to measure (or calculate) the speed and acceleration (detecting means).
 勾配情報取得部103は、車両が走行する道路の勾配の程度を示す勾配情報を取得する。勾配情報取得部103は、たとえば、車両本体や燃費推定装置100などに設置された傾斜計から勾配情報を取得する。また、たとえば、勾配情報取得部103そのもので道路の勾配を計測(または算出)したり、車両の現在位置に対応する地図情報から勾配情報を抽出してもよい。また、地図情報中の標高情報を用いて、勾配がある区間の燃料消費量を算出してもよい。 The gradient information acquisition unit 103 acquires gradient information indicating the degree of gradient of the road on which the vehicle travels. For example, the gradient information acquisition unit 103 acquires gradient information from an inclinometer installed in the vehicle main body, the fuel consumption estimation device 100, or the like. Further, for example, the gradient information acquisition unit 103 itself may measure (or calculate) the gradient of the road, or may extract gradient information from map information corresponding to the current position of the vehicle. Moreover, you may calculate the fuel consumption of the area with a gradient using the altitude information in map information.
 燃費推定部104は、係数取得部101によって取得された係数、変数取得部102によって取得された速度および加速度に基づいて、単一の燃料推定式を用いることにより車両の燃料消費量を推定する。また、燃費推定部104は、さらに勾配情報取得部103によって取得された勾配情報を単一の燃料推定式に組み込んで車両の燃料消費量を推定してもよい。より詳細には、燃費推定部104は、単一の燃料推定式として下記式(1)に基づいて車両の燃料消費量を推定する。 The fuel consumption estimation unit 104 estimates the fuel consumption of the vehicle by using a single fuel estimation formula based on the coefficient acquired by the coefficient acquisition unit 101 and the speed and acceleration acquired by the variable acquisition unit 102. Further, the fuel consumption estimation unit 104 may further estimate the fuel consumption of the vehicle by incorporating the gradient information acquired by the gradient information acquisition unit 103 into a single fuel estimation formula. More specifically, the fuel consumption estimation unit 104 estimates the fuel consumption of the vehicle based on the following formula (1) as a single fuel estimation formula.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 上記式(1)において、k1は第一燃料消費情報、k2は第二燃料消費情報、k3は第三燃料消費情報に対応する。また、上記式(1)においては、時をあらわす単位として時間(h)および秒(s)が混在して用いられているが、これは、速度の単位として時速(km/h)を採用し、燃料消費量を推定する際の単位時間として秒(s)を採用したためである。これらの単位を揃えたい場合は、それぞれの数値に適宜演算をおこなえばよい。 In the above formula (1), k 1 corresponds to the first fuel consumption information, k 2 corresponds to the second fuel consumption information, and k 3 corresponds to the third fuel consumption information. Further, in the above formula (1), time (h) and second (s) are mixedly used as a unit representing time, but this employs speed (km / h) as a unit of speed. This is because the second (s) is adopted as the unit time for estimating the fuel consumption. When it is desired to align these units, an appropriate calculation may be performed on each numerical value.
 なお、上記式(1)において、燃料カットの影響によって次のいずれかの条件にあてはまる場合には、fcの値を下記[1]~[3]のようにしてもよい。 In the above equation (1), if any of the following conditions is satisfied due to the influence of the fuel cut, the value of fc may be set to [1] to [3] below.
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 また、上記式(1)を下記式(I)のように表すこともできる。下記式(I)において、f1(x)は車両の車速および加速度をパラメータとする所定の関数であり、f2(x)は車両の車速をパラメータとする所定の関数である。より具体的には、f1(x)は上記式(1)におけるx・(dx/dt+g・sinθ)であり、f2(x)は上記式(1)におけるG(x)である。
 fc(x)=k1+k2・f1(x)+k3・f2(x)・・・(I)
Moreover, the said Formula (1) can also be represented like the following formula (I). In the following formula (I), f 1 (x) is a predetermined function using the vehicle speed and acceleration of the vehicle as parameters, and f 2 (x) is a predetermined function using the vehicle speed of the vehicle as parameters. More specifically, f 1 (x) is x · (dx / dt + g · sin θ) in the above equation (1), and f 2 (x) is G (x) in the above equation (1).
fc (x) = k 1 + k 2 · f 1 (x) + k 3 · f 2 (x) (I)
 実燃費量情報取得部105は、車両の走行時における実際の燃料消費量(以下、「実燃費量」という)情報を取得する。実燃費量情報取得部105は、たとえば、ユーザに実燃費量を入力させたり、車両に搭載された燃費計による測定値を得たりすることによって実燃費量情報を取得する。 The actual fuel consumption amount information acquisition unit 105 acquires actual fuel consumption amount (hereinafter referred to as “actual fuel consumption amount”) information when the vehicle is traveling. The actual fuel consumption amount information acquisition unit 105 acquires the actual fuel consumption amount information by, for example, causing the user to input the actual fuel consumption amount or obtaining a measurement value obtained by a fuel consumption meter mounted on the vehicle.
 補正部106は、実燃費量情報取得部105によって取得された実燃費量情報に基づいて、上記式(1)を補正する。補正部106によって上記式(1)が補正されると、燃費推定部104は、補正後の上記式(1)を用いて燃料消費量を推定する。補正部106による上記式(1)の補正は、車両の走行終了後におこなってもよいし、所定の走行区間を区切りとして車両の走行中に随時おこなってもよい。 The correction unit 106 corrects the above equation (1) based on the actual fuel consumption amount information acquired by the actual fuel consumption amount information acquisition unit 105. When the equation (1) is corrected by the correction unit 106, the fuel consumption estimation unit 104 estimates the fuel consumption using the corrected equation (1). The correction of the expression (1) by the correction unit 106 may be performed after the vehicle has finished traveling, or may be performed at any time during the traveling of the vehicle with a predetermined traveling section as a break.
 補正部106は、たとえば、燃費推定部104によって推定された燃料消費量と実燃費量との比較値と、走行時における車両の走行状態と、に基づいて上記式(1)を補正する。車両の走行状態とは、たとえば、高速で走行したか、低速で走行したか、渋滞時に走行したか、などである。なお、車両の走行状態は刻々と変化するものであるが、補正部106は、たとえば、実燃費量情報が得られた走行区間において、最も大きな割合を占めていた状態に基づいて上記式(1)を補正する。 The correction unit 106 corrects the above formula (1) based on, for example, the comparison value between the fuel consumption estimated by the fuel consumption estimation unit 104 and the actual fuel consumption and the traveling state of the vehicle during traveling. The traveling state of the vehicle is, for example, whether the vehicle has traveled at a high speed, traveled at a low speed, or traveled in a traffic jam. In addition, although the driving | running | working state of a vehicle changes every moment, the correction | amendment part 106 is based on the said formula (1) based on the state which occupied the largest ratio in the driving | running | working area where the actual fuel consumption amount information was obtained, for example. ) Is corrected.
 また、補正部106は、たとえば、燃費推定部104によって推定された燃料消費量と実燃費量との比較値と、車両が走行した道路の種別と、に基づいて上記式(1)を補正する。道路の種別とは、たとえば、一般道路および高速道路などである。なお、車両が走行する道路種別は刻々と変化するものであるが、補正部106は、たとえば、実燃費量情報が得られた走行区間において、最も長い時間走行していた道路の種別に基づいて上記式(1)を補正する。 Moreover, the correction | amendment part 106 correct | amends said Formula (1) based on the comparison value of the fuel consumption estimated by the fuel consumption estimation part 104 and an actual fuel consumption, and the classification of the road which the vehicle drive | worked, for example. . The type of road is, for example, a general road or a highway. Although the road type on which the vehicle travels changes every moment, the correction unit 106 is based on, for example, the type of road that has traveled for the longest time in the travel section where the actual fuel consumption amount information is obtained. The above equation (1) is corrected.
 図2は、燃費推定装置による燃費推定処理の手順を示すフローチャートである。図2のフローチャートにおいて、燃費推定装置100は、まず、係数取得部101によってデータベース110から3種類の係数を取得する(ステップS201)。つぎに、燃費推定装置100は、変数取得部102によって車両の速度および加速度を取得する(ステップS202)。つづいて、燃費推定装置100は、勾配情報取得部103によって車両が走行する道路の勾配情報を取得する(ステップS203)。 FIG. 2 is a flowchart showing a procedure of fuel consumption estimation processing by the fuel consumption estimation device. In the flowchart of FIG. 2, the fuel consumption estimation apparatus 100 first acquires three types of coefficients from the database 110 by the coefficient acquisition unit 101 (step S201). Next, the fuel consumption estimation apparatus 100 acquires the speed and acceleration of the vehicle by the variable acquisition unit 102 (step S202). Subsequently, the fuel consumption estimation device 100 acquires the gradient information of the road on which the vehicle travels by the gradient information acquisition unit 103 (step S203).
 そして、燃費推定装置100は、燃費推定部104によって上記式(1)に基づいて車両の燃料消費量を推定して(ステップS204)、本フローチャートによる処理を終了する。この後、燃費推定装置100は、必要に応じて実燃費量情報取得部105によって実燃費量情報を取得し、補正部106によって上記式(1)を補正する。 And the fuel consumption estimation apparatus 100 estimates the fuel consumption of a vehicle based on the said Formula (1) by the fuel consumption estimation part 104 (step S204), and complete | finishes the process by this flowchart. Thereafter, the fuel consumption estimation apparatus 100 acquires the actual fuel consumption amount information by the actual fuel consumption amount information acquisition unit 105 as necessary, and the correction unit 106 corrects the expression (1).
 以上説明したように、燃費推定装置100は、車両のアイドリング時に関する情報、車両の加速時に関する情報および車両の走行時に生じる抵抗に関する情報のみからなる単一の燃料推定式を用いることにより、より詳細には、車両のアイドリング時における燃料消費量に基づく係数、車両の加速時における消費燃料に基づく係数、車両の走行時に生じる空気抵抗および転がり抵抗に基づく係数からなる単一の燃料推定式に基づいて車両の燃料消費量を推定する。例えば上述の従来技術では走行区間を分割してそれぞれで燃料推定式をたてているが、加速区間や減速区間は実際の走行時にめまぐるしく入れ替わるので燃料推定のための計算を効率化することは困難である。一方で本実施の形態においては、車両のアイドリング時に関する情報、加速時に関する情報および走行時に生じる抵抗に関する情報を単一の燃料推定式に組み入れて燃料推定を行っている。このため、燃費推定装置100は、車両の実際の走行時の燃料消費量を、従来の算出方式に比して、精度良く、かつ安定して推測することができる。 As described above, the fuel consumption estimation device 100 uses the single fuel estimation formula that includes only information related to idling of the vehicle, information related to acceleration of the vehicle, and information related to resistance generated when the vehicle travels. Is based on a single fuel estimation formula consisting of a coefficient based on fuel consumption when the vehicle is idling, a coefficient based on fuel consumption when the vehicle is accelerated, a coefficient based on air resistance and rolling resistance generated when the vehicle is running Estimate the fuel consumption of the vehicle. For example, in the above-mentioned conventional technology, the travel section is divided and the fuel estimation formulas are established for each. However, since the acceleration section and the deceleration section are switched rapidly during actual travel, it is difficult to make the calculation for fuel estimation more efficient. It is. On the other hand, in the present embodiment, fuel estimation is performed by incorporating information relating to idling of a vehicle, information relating to acceleration, and information relating to resistance generated during traveling into a single fuel estimation formula. For this reason, the fuel consumption estimation apparatus 100 can estimate the fuel consumption during actual traveling of the vehicle with high accuracy and stability compared to the conventional calculation method.
 また、燃費推定装置100は、単一の燃料推定式を用いて実走行時の燃料消費量を推定する。このため、車両の走行状態によって適用する回帰式を変更する必要がなく、走行状態が短期間で変化する実走行時においても、実用性が高い燃費推定をおこなうことができる。 Further, the fuel consumption estimation device 100 estimates the fuel consumption during actual traveling using a single fuel estimation formula. For this reason, it is not necessary to change the regression equation applied according to the traveling state of the vehicle, and fuel efficiency estimation with high practicality can be performed even during actual traveling where the traveling state changes in a short period of time.
 また、燃費推定装置100は、車両の速度情報および加速度情情報を用いて燃料消費量を推測する。このため、燃費推定装置100は、車両の走行速度や加速度の変化を燃料消費量の推測値に反映させることができ、より精度良く燃料消費量を推測することができる。さらに、燃費推定装置100において、車両が走行する道路の勾配情報を用いて燃料消費量を推測するようにすれば、車両にかかる位置エネルギーの変化も燃料消費量の推測値に反映させることができ、より精度良く燃料消費量を推測することができる。 Further, the fuel consumption estimation device 100 estimates the fuel consumption using the vehicle speed information and acceleration information. For this reason, the fuel consumption estimation apparatus 100 can reflect the change in the running speed or acceleration of the vehicle in the estimated value of the fuel consumption, and can estimate the fuel consumption more accurately. Furthermore, if the fuel consumption estimation apparatus 100 estimates the fuel consumption amount using the gradient information of the road on which the vehicle travels, the change in the potential energy applied to the vehicle can be reflected in the estimated value of the fuel consumption amount. The fuel consumption can be estimated with higher accuracy.
 また、道路の勾配情報は、車両の速度および加速度と相関性の低いパラメータである。たとえば、この道路の勾配情報を車両の加速時に関する情報に組み入れることにより、各パラメータの相関性を下げることができる。このため、燃費推定装置100において、車両が走行する道路の勾配情報を用いて燃料消費量を推測することにより、速度および加速度のみをパラメータとして使用する場合と比較して、信頼性の高い推測結果を得ることができる。 Also, road gradient information is a parameter that is not highly correlated with vehicle speed and acceleration. For example, the correlation of each parameter can be lowered by incorporating this road gradient information into information related to the acceleration of the vehicle. For this reason, the fuel consumption estimation apparatus 100 estimates the fuel consumption by using the gradient information of the road on which the vehicle travels, so that the estimation result is more reliable than when only the speed and acceleration are used as parameters. Can be obtained.
 また、燃費推定装置100は、単位時間あたりの燃料消費量を推定するので、瞬間燃費量の他、任意の区間における区間燃費量や平均燃費量、積算燃費量などを算出することができ、推定した燃料消費量を分かりやすい形でユーザに提示することができる。 In addition, since the fuel consumption estimation device 100 estimates the fuel consumption per unit time, in addition to the instantaneous fuel consumption, it is possible to calculate a section fuel consumption amount, an average fuel consumption amount, an integrated fuel consumption amount, and the like in an arbitrary section. The amount of fuel consumed can be presented to the user in an easily understandable form.
 また、燃費推定装置100は、燃料消費量の推定に用いる係数を、車種別、排気量および車重別、モード燃費別にデータベースに記録しているので、より適切な係数を選択して燃料消費量の推定をおこなうことができる。 Further, since the fuel consumption estimation apparatus 100 records the coefficients used for estimating the fuel consumption in the database according to the vehicle type, the exhaust amount and the vehicle weight, and the mode fuel consumption, the fuel consumption is selected by selecting a more appropriate coefficient. Can be estimated.
 また、燃費推定装置100は、燃料消費量の推定に用いる数式を実燃費量情報を用いて補正するので、車両自体の特性やユーザの運転特性などを次回以降の燃料消費量の推定時に反映させることができ、より精度良く燃料消費量を推定することができる。 In addition, since the fuel consumption estimation apparatus 100 corrects the mathematical formula used for estimating the fuel consumption using the actual fuel consumption information, the characteristics of the vehicle itself and the driving characteristics of the user are reflected when estimating the fuel consumption from the next time. Therefore, it is possible to estimate the fuel consumption with higher accuracy.
 以下に、本発明の実施例について説明する。本実施例では、車両に搭載されたナビゲーション装置300を燃費推定装置100として本発明を適用した場合の一例について説明する。 Hereinafter, examples of the present invention will be described. In the present embodiment, an example in which the present invention is applied using the navigation device 300 mounted on a vehicle as the fuel consumption estimation device 100 will be described.
(ナビゲーション装置300のハードウェア構成)
 まず、ナビゲーション装置300のハードウェア構成について説明する。図3は、ナビゲーション装置のハードウェア構成を示すブロック図である。図3において、ナビゲーション装置300は、CPU301、ROM302、RAM303、磁気ディスクドライブ304、磁気ディスク305、光ディスクドライブ306、光ディスク307、音声I/F(インターフェース)308、マイク309、スピーカ310、入力デバイス311、映像I/F312、ディスプレイ313、カメラ314、通信I/F315、GPSユニット316、各種センサ317を備えている。また、各構成部301~317は、バス320によってそれぞれ接続されている。
(Hardware configuration of navigation device 300)
First, the hardware configuration of the navigation device 300 will be described. FIG. 3 is a block diagram illustrating a hardware configuration of the navigation apparatus. In FIG. 3, a navigation device 300 includes a CPU 301, ROM 302, RAM 303, magnetic disk drive 304, magnetic disk 305, optical disk drive 306, optical disk 307, audio I / F (interface) 308, microphone 309, speaker 310, input device 311, A video I / F 312, a display 313, a camera 314, a communication I / F 315, a GPS unit 316, and various sensors 317 are provided. Each component 301 to 317 is connected by a bus 320.
 まず、CPU301は、ナビゲーション装置300の全体の制御を司る。ROM302は、ブートプログラム、経路探索プログラムなどのプログラムを記録している。また、RAM303は、CPU301のワークエリアとして使用される。すなわち、CPU301は、RAM303をワークエリアとして使用しながら、ROM302に記録された各種プログラムを実行することによって、ナビゲーション装置300の全体の制御を司る。 First, the CPU 301 governs overall control of the navigation device 300. The ROM 302 records programs such as a boot program and a route search program. The RAM 303 is used as a work area for the CPU 301. That is, the CPU 301 controls the entire navigation device 300 by executing various programs recorded in the ROM 302 while using the RAM 303 as a work area.
 磁気ディスクドライブ304は、CPU301の制御にしたがって磁気ディスク305に対するデータの読み取り/書き込みを制御する。磁気ディスク305は、磁気ディスクドライブ304の制御で書き込まれたデータを記録する。磁気ディスク305としては、たとえば、HD(ハードディスク)やFD(フレキシブルディスク)を用いることができる。 The magnetic disk drive 304 controls the reading / writing of the data with respect to the magnetic disk 305 according to control of CPU301. The magnetic disk 305 records data written under the control of the magnetic disk drive 304. As the magnetic disk 305, for example, an HD (hard disk) or an FD (flexible disk) can be used.
 また、光ディスクドライブ306は、CPU301の制御にしたがって光ディスク307に対するデータの読み取り/書き込みを制御する。光ディスク307は、光ディスクドライブ306の制御にしたがってデータが読み出される着脱自在な記録媒体である。光ディスク307は、書き込み可能な記録媒体を利用することもできる。着脱可能な記録媒体として、光ディスク307のほか、MO、メモリカードなどを用いることができる。 The optical disk drive 306 controls reading / writing of data with respect to the optical disk 307 according to the control of the CPU 301. The optical disk 307 is a detachable recording medium from which data is read according to the control of the optical disk drive 306. As the optical disc 307, a writable recording medium can be used. In addition to the optical disk 307, an MO, a memory card, or the like can be used as a removable recording medium.
 磁気ディスク305および光ディスク307に記録される情報の一例としては、コンテンツデータや地図データが挙げられる。コンテンツデータは、たとえば楽曲データや静止画データ、動画データなどである。また、地図データは、建物、河川、地表面などの地物(フィーチャ)をあらわす背景データと、道路の形状をあらわす道路形状データとを含んでおり、地区ごとに分けられた複数のデータファイルによって構成されている。 Examples of information recorded on the magnetic disk 305 and the optical disk 307 include content data and map data. The content data is, for example, music data, still image data, moving image data, or the like. The map data includes background data that represents features (features) such as buildings, rivers, and the ground surface, and road shape data that represents the shape of the road. The map data consists of multiple data files divided by district. It is configured.
 音声I/F308は、音声入力用のマイク309および音声出力用のスピーカ310に接続される。マイク309に受音された音声は、音声I/F308内でA/D変換される。スピーカ310からは、所定の音声信号を音声I/F308内でD/A変換した音声が出力される。 The voice I / F 308 is connected to a microphone 309 for voice input and a speaker 310 for voice output. The sound received by the microphone 309 is A / D converted in the sound I / F 308. From the speaker 310, a sound obtained by D / A converting a predetermined sound signal in the sound I / F 308 is output.
 入力デバイス311は、文字、数値、各種指示などの入力のための複数のキーを備えたリモコン、キーボード、タッチパネルなどが挙げられる。入力デバイス311は、リモコン、キーボード、タッチパネルのうちいずれか1つの形態によって実現されてもよいが、複数の形態によって実現することも可能である。 The input device 311 includes a remote controller, a keyboard, a touch panel, and the like provided with a plurality of keys for inputting characters, numerical values, various instructions, and the like. The input device 311 may be realized by any one form of a remote control, a keyboard, and a touch panel, but may be realized by a plurality of forms.
 映像I/F312は、ディスプレイ313に接続される。映像I/F312は、具体的には、たとえば、ディスプレイ313全体を制御するグラフィックコントローラと、即時表示可能な画像情報を一時的に記録するVRAM(Video RAM)などのバッファメモリと、グラフィックコントローラから出力される画像データに基づいてディスプレイ313を制御する制御ICなどによって構成される。 The video I / F 312 is connected to the display 313. Specifically, the video I / F 312 is output from, for example, a graphic controller that controls the entire display 313, a buffer memory such as a VRAM (Video RAM) that temporarily records image information that can be displayed immediately, and a graphic controller. And a control IC for controlling the display 313 based on the image data to be processed.
 カメラ314は、車両内部あるいは外部の画像を撮影する。画像は静止画像あるいは動画像のどちらでもよく、たとえば、カメラ314によって車両外部の風景や地物、車両内部の搭乗者などを撮影し、撮影した映像を映像I/F312を介して磁気ディスク305や光ディスク307などの記録媒体に記録する。 The camera 314 captures images inside or outside the vehicle. The image may be either a still image or a moving image. For example, a camera 314 captures a landscape or a feature outside the vehicle, a passenger inside the vehicle, etc., and the captured image is recorded on the magnetic disk 305 or the like via the video I / F 312. Recording is performed on a recording medium such as an optical disk 307.
 ディスプレイ313には、アイコン、カーソル、メニュー、ウインドウ、あるいは文字や画像などの各種データが表示される。ディスプレイ313には、上述した地図データが、2次元または3次元に描画される。ディスプレイ313に表示された地図データには、ナビゲーション装置300を搭載した車両の現在位置をあらわすマークなどを重ねて表示することができる。車両の現在位置は、CPU301によって算出される。ディスプレイ313としては、たとえば、TFT液晶ディスプレイ、有機ELディスプレイなどを用いることができる。 The display 313 displays icons, cursors, menus, windows, or various data such as characters and images. On the display 313, the map data described above is drawn two-dimensionally or three-dimensionally. The map data displayed on the display 313 can be displayed with a mark representing the current position of the vehicle on which the navigation device 300 is mounted. The current position of the vehicle is calculated by the CPU 301. As the display 313, for example, a TFT liquid crystal display, an organic EL display, or the like can be used.
 通信I/F315は、無線を介してインターネットなどの通信網に接続され、この通信網とCPU301とのインターフェースとしても機能する。また、通信I/F315は赤外線通信やBluetooth(登録商標)などの近距離通信によって、近傍にある電子機器との間でデータの送受信をおこなう。また、通信I/F315は、テレビやラジオなどの放送波を受信する。通信I/F315で受信された放送波は、音声I/F308や映像I/F312を介して、スピーカ310やディスプレイ313に、音声情報や画像情報として出力される。 The communication I / F 315 is wirelessly connected to a communication network such as the Internet, and also functions as an interface between the communication network and the CPU 301. The communication I / F 315 transmits and receives data to and from nearby electronic devices by short-range communication such as infrared communication or Bluetooth (registered trademark). Further, the communication I / F 315 receives broadcast waves such as television and radio. Broadcast waves received by the communication I / F 315 are output as audio information and image information to the speaker 310 and the display 313 via the audio I / F 308 and the video I / F 312.
 GPSユニット316は、GPS衛星からの電波を受信し、車両の現在位置を示す情報を出力する。GPSユニット316の出力情報は、後述する各種センサ317の出力値とともに、CPU301による車両の現在位置の算出に際して利用される。現在位置を示す情報とは、たとえば緯度・経度、高度などの、地図データ上の1点を特定する情報である。 The GPS unit 316 receives radio waves from GPS satellites and outputs information indicating the current position of the vehicle. The output information of the GPS unit 316 is used when the CPU 301 calculates the current position of the vehicle together with output values of various sensors 317 described later. The information indicating the current position is information for specifying one point on the map data such as latitude / longitude and altitude.
 各種センサ317は、車速センサ、加速度センサ、角速度センサなどの、車両の位置や挙動を判断するための情報を出力する。各種センサ317の出力値は、CPU301による車両の現在位置の算出や、速度や方位の変化量の算出に用いられる。 The various sensors 317 output information for determining the position and behavior of the vehicle, such as a vehicle speed sensor, an acceleration sensor, and an angular velocity sensor. The output values of the various sensors 317 are used by the CPU 301 to calculate the current position of the vehicle and the amount of change in speed and direction.
 なお、図1に示した燃費推定装置100の係数取得部101、変数取得部102、勾配情報取得部103、燃費推定部104、実燃費量情報取得部105、補正部106、データベース110は、図3に示したナビゲーション装置300におけるROM302、RAM303、磁気ディスク305、光ディスク307などに記録されたプログラムやデータを用いて、CPU301が所定のプログラムを実行し、ナビゲーション装置300における各部を制御することによってその機能を実現する。 The coefficient acquisition unit 101, variable acquisition unit 102, gradient information acquisition unit 103, fuel consumption estimation unit 104, actual fuel consumption amount information acquisition unit 105, correction unit 106, and database 110 of the fuel consumption estimation device 100 shown in FIG. The CPU 301 executes a predetermined program using the programs and data recorded in the ROM 302, RAM 303, magnetic disk 305, optical disk 307, etc. in the navigation device 300 shown in FIG. Realize the function.
(ナビゲーション装置300による燃費推定の概要)
 つぎに、ナビゲーション装置300による燃費推定処理について説明する。なお、以下の説明において、「燃料消費量」と「燃費量」とは同じ意味を表す。一般に、車両の燃費量を知るには、専用の機器を設置(後付け)したり、車両に搭載された燃費計を用いるなどの方法がある。専用の機器を設置する場合、設置作業が煩雑であったり、機器本体によって車内のスペースが占有されてしまったり、インジェクターからの信号が取れない場合には機器を設置できないという問題点がある。また、車両に燃費計が設置されている場合でも、平均燃費量のみが表示され瞬間燃費量を知ることができない場合がある。
(Outline of fuel consumption estimation by the navigation device 300)
Next, fuel consumption estimation processing by the navigation device 300 will be described. In the following description, “fuel consumption” and “fuel consumption” have the same meaning. In general, in order to know the fuel consumption amount of a vehicle, there are methods such as installing a dedicated device (retrofit) or using a fuel consumption meter mounted on the vehicle. When a dedicated device is installed, there are problems that the installation work is complicated, the space inside the vehicle is occupied by the device body, or the device cannot be installed when the signal from the injector cannot be obtained. Even when a fuel consumption meter is installed in the vehicle, only the average fuel consumption may be displayed and the instantaneous fuel consumption may not be known.
 一方、本実施例のナビゲーション装置300では、自装置が搭載された車両の走行中における瞬間燃費量(単位時間あたりの燃料消費量)を推定して、ディスプレイ313に表示する。ナビゲーション装置300で推定する燃費量は瞬間燃費量であるため、任意の区間における燃料消費量(区間燃費量)や平均燃費量、積算燃費量なども算出することができる。このように、ナビゲーション装置300によれば、ユーザは特別な機器や煩雑な作業を必要とすることなく、車両の燃料消費量を知ることができる。 On the other hand, in the navigation device 300 of the present embodiment, the instantaneous fuel consumption amount (fuel consumption amount per unit time) while the vehicle on which the device is mounted is estimated and displayed on the display 313. Since the fuel consumption amount estimated by the navigation device 300 is an instantaneous fuel consumption amount, a fuel consumption amount (interval fuel consumption amount), an average fuel consumption amount, an integrated fuel consumption amount, and the like in an arbitrary section can also be calculated. Thus, according to the navigation apparatus 300, the user can know the fuel consumption of a vehicle, without requiring a special apparatus and complicated work.
 具体的には、ナビゲーション装置300は、下記式(1)を用いて車両の瞬間燃費量を推定する。 Specifically, the navigation apparatus 300 estimates the instantaneous fuel consumption amount of the vehicle using the following formula (1).
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 なお、上記式(1)においては、時をあらわす単位として時間(h)および秒(s)が混在して用いられているが、これは、速度の単位として時速(km/h)を採用し、燃料消費量を推定する際の単位時間として秒(s)を採用したためである。これらの単位を揃えたい場合は、それぞれの数値に適宜演算をおこなえばよい。 In the above formula (1), time (h) and second (s) are mixedly used as a unit representing time, but this uses speed (km / h) as a unit of speed. This is because the second (s) is adopted as the unit time for estimating the fuel consumption. When it is desired to align these units, an appropriate calculation may be performed on each numerical value.
 また、上記式(1)において、燃料カットの影響によって次のいずれかの条件にあてはまる場合には、fcの値を以下のようにする。 In the above formula (1), if any of the following conditions is satisfied due to the influence of the fuel cut, the value of fc is set as follows.
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
 ここで、上記[1]は、推定される燃料消費量がアイドリング時の消費量より小さい正の値もしくは負の値になることはないという考えに基づいて規定される条件である。したがって例えば推定される燃料消費量がk1より小さい正の値もしくは負の値となった場合には、上記[1]により推定される燃料消費量はk1となる。また、上記[2]および[3]は、車両の減速時における燃料消費量に関して規定される条件である。車種によっては減速時のアクセル操作のない時は、燃料をエンジンに送り込まないものもあり、実測燃費量と推定燃料消費量が異なる場合は、この条件を用いて補正すると有効な場合もある。なお、上記[1]~[3]におけるfcの値は一例であり、車種などにより適宜調整される。 Here, the above [1] is a condition defined based on the idea that the estimated fuel consumption does not become a positive value or a negative value smaller than the idling consumption. Therefore, for example, when the estimated fuel consumption amount is a positive value or a negative value smaller than k 1, the fuel consumption amount estimated by the above [1] is k 1 . Also, the above [2] and [3] are conditions defined for fuel consumption when the vehicle is decelerated. Depending on the type of vehicle, when there is no accelerator operation at the time of deceleration, the fuel is not sent to the engine, and when the actually measured fuel consumption amount differs from the estimated fuel consumption amount, it may be effective to correct using this condition. Note that the value of fc in the above [1] to [3] is an example, and is appropriately adjusted depending on the vehicle type.
 この場合において、上記[2]および[3]は、条件式にfcが入っておらず、具体的なfcの値を求めることなく所定の判定を行いたい場合に特に有効である。たとえば、推定した燃料消費量をサーバなどに送信して統計処理などをおこなう場合、k1~k3の値とそれ以外の値とで分離して処理しておけば、後にk1~k3の値を更新するときに演算量が大幅に削減され、かつ条件式の再演算も負荷が軽減されることになる。 In this case, the above [2] and [3] are particularly effective when the conditional expression does not include fc and it is desired to make a predetermined determination without obtaining a specific value of fc. For example, if the estimated fuel consumption amount is transmitted, such as a server performing such statistical processing, if processed and separated by a value and the other values of k 1 ~ k 3, after k 1 ~ k 3 When the value of is updated, the amount of calculation is greatly reduced, and the recalculation of the conditional expression also reduces the load.
(係数k1~k3について)
 つぎに、上記式(1)の係数k1~k3について説明する。図4は、ナビゲーション装置が保持する係数テーブルを示す説明図である。図4に示す係数テーブル400には、車両の車種を識別する車種名称401および車種ごとの形式を示す形式情報402が記録されており、それぞれの車種および形式に対応する係数の値(k1~k3)406が記録されている。また、それぞれの車種名称401および形式情報402には、排気量情報403、車重情報404、モード燃費情報405が関連づけられている。
(About the coefficients k 1 to k 3 )
Next, the coefficients k 1 to k 3 in the above equation (1) will be described. FIG. 4 is an explanatory diagram showing a coefficient table held by the navigation device. In the coefficient table 400 shown in FIG. 4, a vehicle type name 401 for identifying the vehicle type of the vehicle and format information 402 indicating the format of each vehicle type are recorded, and coefficient values (k 1 to 4) corresponding to each vehicle type and format are recorded. k 3 ) 406 is recorded. Further, the displacement information 403, the vehicle weight information 404, and the mode fuel consumption information 405 are associated with each vehicle type name 401 and format information 402.
 係数k1~k3は、車種および形式によって異なり、ナビゲーション装置300は、自装置が搭載された車両に対応する係数k1~k3の値を係数テーブル400から読み出す。具体的には、ナビゲーション装置300は、たとえば、自装置が搭載された車両の車種および形式が判別できる場合には、車種名称401および形式情報402から該当するものを選択し、その車種名称401および形式情報402に関連づけられた係数の値を読み出す。 The coefficients k 1 to k 3 vary depending on the vehicle type and the format, and the navigation apparatus 300 reads the values of the coefficients k 1 to k 3 corresponding to the vehicle on which the apparatus is mounted from the coefficient table 400. Specifically, for example, when the vehicle type and type of the vehicle on which the device is mounted can be determined, the navigation device 300 selects a corresponding one from the vehicle type name 401 and the type information 402, and the vehicle type name 401 and The coefficient value associated with the format information 402 is read.
 また、車両の車種および形式が判別できない場合、ナビゲーション装置300は、車両の排気量や車重が判別できる場合には、排気量情報403および車重情報404から該当するものを選択して、その排気量情報403および車重情報404に関連づけられた係数の値を読み出す。また、車両の概算燃費が判別できる場合には、モード燃費情報405から該当するものを選択し、そのモード燃費情報405に関連づけられた係数の値を読み出す。 Further, when the vehicle type and type of the vehicle cannot be determined, the navigation device 300 selects the corresponding one from the displacement information 403 and the vehicle weight information 404 when the displacement and weight of the vehicle can be determined. The coefficient values associated with the displacement information 403 and the vehicle weight information 404 are read out. Further, when the approximate fuel efficiency of the vehicle can be determined, a corresponding one is selected from the mode fuel efficiency information 405 and the coefficient value associated with the mode fuel efficiency information 405 is read out.
 なお、上記は車両の車種および形式が判別できない場合に、排気量情報や概算燃費を用いて係数の読み出しを行う例であるが、これにとくに限定されるものではない。車両の車種や形式が判別できる場合においても、たとえば、自然吸気ガソリン、ディーゼルエンジン、ターボエンジンなどのデータや、概算燃費、車重、排気量などの情報を用いて、類似する車種や形式に対応する係数の値を読み出してもよい。 Note that the above is an example in which the coefficient is read out using the displacement information and the approximate fuel consumption when the vehicle type and model of the vehicle cannot be identified, but is not particularly limited thereto. Even when the vehicle type and model of the vehicle can be identified, for example, data on naturally aspirated gasoline, diesel engine, turbo engine, etc., and information on approximate fuel consumption, vehicle weight, displacement, etc. are supported. The coefficient value to be read may be read out.
 つぎに、係数k1~k3のそれぞれの意味について説明する。k1は、車両がエンジンが可動した状態で停止している場合、すなわちアイドリング時の燃料消費量を示す係数である。また、k2は、加速時の燃料消費量を示す係数である。また、k3は、車両の走行時に生じる抵抗に基づく係数である。車両の走行時に生じる抵抗には、車体にかかる空気抵抗と転がり抵抗であり、このうち転がり抵抗は、タイヤの回転に伴って生じる抵抗やエンジン内部での回転に伴って生じる抵抗などが含まれる。 Next, the meanings of the coefficients k 1 to k 3 will be described. k 1 is a coefficient indicating the fuel consumption when the vehicle is stopped with the engine moving, that is, idling. K 2 is a coefficient indicating the fuel consumption during acceleration. K 3 is a coefficient based on resistance generated when the vehicle travels. The resistance generated when the vehicle travels includes air resistance and rolling resistance applied to the vehicle body. Among these, the rolling resistance includes resistance generated with rotation of the tire, resistance generated with rotation inside the engine, and the like.
 図5は、係数k1と排気量との関係を示すグラフであり、縦軸は係数k1、横軸は排気量を示す。図5に示すように、係数k1と排気量とは正の相関がある。すなわち、一般に、排気量が多い車両ほどアイドリング時の燃料消費量は多いことが知られており、係数k1はアイドリング時の燃料消費量を反映させた係数であることがわかる。 FIG. 5 is a graph showing the relationship between the coefficient k 1 and the displacement. The vertical axis represents the coefficient k 1 and the horizontal axis represents the displacement. As shown in FIG. 5, the coefficient k 1 and the displacement are positively correlated. That is, in general, it is known that a vehicle with a larger displacement has a higher fuel consumption during idling, and the coefficient k 1 is a coefficient reflecting the fuel consumption during idling.
 図6は、係数k2と車重との関係を示すグラフであり、縦軸は係数k2、横軸は車重を示す。図6に示すように、係数k2と車重とは正の相関がある。すなわち、一般に、車重が重いほど加速時の燃料消費量は多いことが知られており、係数k2は加速時の燃料消費量を反映させた係数であることがわかる。 FIG. 6 is a graph showing the relationship between the coefficient k 2 and the vehicle weight, where the vertical axis represents the coefficient k 2 and the horizontal axis represents the vehicle weight. As shown in FIG. 6, the coefficient k 2 and the vehicle weight have a positive correlation. That is, it is generally known that the heavier the vehicle weight, the larger the fuel consumption during acceleration, and the coefficient k 2 is a coefficient reflecting the fuel consumption during acceleration.
 図7は、係数k3と排気量との関係を示すグラフであり、縦軸は係数k3、横軸は排気量を示す。図7に示すように、係数k3と排気量との間には相関がみられない。これは、k3は車両の走行時に生じる抵抗に基づく係数であり、排気量よりも車両の形状などに相関を有するためである。 FIG. 7 is a graph showing the relationship between the coefficient k 3 and the displacement. The vertical axis represents the coefficient k 3 and the horizontal axis represents the displacement. As shown in FIG. 7, there is no correlation between the coefficient k 3 and the displacement. This, k 3 is the coefficient based on the resistance generated during running of the vehicle, in order to have a correlation to the shape of the vehicle than the exhaust amount.
(係数k1~k3のデータベース化方法)
 つづいて、係数k1~k3の値をデータベース化するまでの流れについて説明する。図4に示すような係数テーブル(係数のデータベース)は、たとえば以下のような手順で構築する。
[手順1]
 標準的な車種の実走行データを計測し、下記式(α)に実走行データを代入する。実走行データを代入した下記式(α)を重回帰分析して、係数k1,k2,k3,k4,k5を求める。ここで、k1はアイドリング時の消費燃料に基づく係数、k2は加速時における消費燃料に基づく係数、k3は空気抵抗と転がり抵抗に基づく係数、k4,k5はエンジンのトルク特性と伝達効率による係数である。また、下記式(α)において、fc:燃料消費量(cc/sec)、x:車速(km/h)、dx/dt+g・sinθ:合成加速度(車速加速度と重力の加速度)である。
 fc(x)=k1+k2・(dx/dt+g・sinθ)・x+k3・x3+k4・x2+k5・x ・・・(α)
[手順2]
 手順1で求めたk1~k5のうち、k3~k5を用いて上記式(1)のa1,a2を求める。a1,a2はほとんどの車種に共通した値となるため、これを定数化することによりパラメータの数を減らすことができる。具体的には、a1=k4/k3,a2=k5/k3とする。
[手順3]
 標準的な車種以外の車種の係数k1~k3については、下記式(β)を用いて実走行データを重回帰分析する。下記式(β)ではパラメータが3つに絞られている。そして、車種や排気量、エンジン形式などごとに求められた係数k1~k3をデータベース化する。
 fc(x)=k1+k2・(dx/dt+g・sinθ)・x+k3・(x3+a1・x2+a2・x)・・・(β)
(Database creation method for coefficients k 1 to k 3 )
Next, the flow until the values of the coefficients k 1 to k 3 are made into a database will be described. A coefficient table (coefficient database) as shown in FIG. 4 is constructed in the following procedure, for example.
[Procedure 1]
Measure actual driving data of a standard vehicle type, and substitute the actual driving data into the following formula (α). The following equation (α) substituted with actual running data is subjected to multiple regression analysis to obtain coefficients k 1 , k 2 , k 3 , k 4 , and k 5 . Here, k 1 is a coefficient based on fuel consumed during idling, k 2 is a coefficient based on fuel consumed during acceleration, k 3 is a coefficient based on air resistance and rolling resistance, and k 4 and k 5 are engine torque characteristics. It is a coefficient due to transmission efficiency. In the following formula (α), fc: fuel consumption (cc / sec), x: vehicle speed (km / h), dx / dt + g · sin θ: combined acceleration (vehicle speed acceleration and acceleration of gravity).
fc (x) = k 1 + k 2 · (dx / dt + g · sin θ) · x + k 3 · x 3 + k 4 · x 2 + k 5 · x (α)
[Procedure 2]
Of k 1 ~ k 5 obtained in Step 1, obtain the a 1, a 2 of the equation (1) using a k 3 ~ k 5. Since a 1 and a 2 are values common to most vehicle types, the number of parameters can be reduced by making them constant. Specifically, a 1 = k 4 / k 3 and a 2 = k 5 / k 3 .
[Procedure 3]
With respect to the coefficients k 1 to k 3 of vehicle types other than the standard vehicle type, the actual running data is subjected to multiple regression analysis using the following formula (β). In the following formula (β), the parameters are limited to three. Then, the coefficients k 1 to k 3 obtained for each vehicle type, displacement, engine type, etc. are compiled into a database.
fc (x) = k 1 + k 2 · (dx / dt + g · sin θ) · x + k 3 · (x 3 + a 1 · x 2 + a 2 · x) (β)
(道路勾配θについて)
 つぎに、上記式(1)の右辺第2項の道路勾配θについて説明する。図8は、勾配がある道路を走行する車両にかかる加速度を模式的に示した説明図である。図8に示すように、勾配がθの坂道を走行する車両には、車両の走行に伴う加速度(dx/dt)Aと、重力加速度gの進行方向成分(g・sinθ)Bがかかる。上記式(1)の右辺第2項は、この車両の走行に伴う加速度Aと、重力加速度gの進行方向成分Bの合成加速度Cを示している。
(About road gradient θ)
Next, the road gradient θ in the second term on the right side of the equation (1) will be described. FIG. 8 is an explanatory diagram schematically showing acceleration applied to a vehicle traveling on a road having a gradient. As shown in FIG. 8, a vehicle traveling on a slope with a slope of θ is subjected to acceleration (dx / dt) A and traveling direction component (g · sin θ) B of gravity acceleration g. The second term on the right side of the equation (1) indicates the acceleration A accompanying the traveling of the vehicle and the combined acceleration C of the traveling direction component B of the gravitational acceleration g.
 道路勾配θを考慮せずに燃費の推定をおこなった場合、道路勾配θが小さい領域では推定した燃費と実燃費との誤差が小さいが、道路勾配θが大きい領域では推定した燃費と実燃費との誤差が大きくなってしまう。このため、ナビゲーション装置300では、道路勾配を考慮して燃費の推定をおこなっている。 When estimating the fuel consumption without considering the road gradient θ, the error between the estimated fuel consumption and the actual fuel consumption is small in the region where the road gradient θ is small, but the estimated fuel consumption and the actual fuel consumption are different in the region where the road gradient θ is large. The error will increase. For this reason, the navigation apparatus 300 estimates the fuel consumption in consideration of the road gradient.
 車両が走行する道路の勾配は、たとえば、ナビゲーション装置300に搭載された傾斜計を用いて知ることができる。また、ナビゲーション装置300に傾斜計が搭載されていない場合は、たとえば、地図データに含まれる道路の勾配情報を用いることができる。 The slope of the road on which the vehicle travels can be known using, for example, an inclinometer mounted on the navigation device 300. Further, when the inclinometer is not mounted on the navigation device 300, for example, road gradient information included in the map data can be used.
 また、地図データに勾配情報が含まれていない場合には、地図データ中の標高データを用いて、あるいはナビゲーション装置が三次元測位可能なものであれば測位結果の標高情報を用いて、勾配がある区間における燃料消費量を推定することができる。具体的には、下記式(2)のような近似式を用いて、勾配がある区間における燃料消費量(勾配区間燃料消費量)を推定する。
 勾配区間燃料消費量 = 勾配が常に0の場合の区間燃料消費量+k2・g・(区間終点標高-区間始点標高)・・・(2)
In addition, if the map data does not include gradient information, the gradient is calculated using the elevation data in the map data, or if the navigation device is capable of three-dimensional positioning, using the elevation information of the positioning result. The fuel consumption in a certain section can be estimated. Specifically, the fuel consumption in the section with the gradient (gradient section fuel consumption) is estimated using an approximate expression such as the following expression (2).
Gradient section fuel consumption = Section fuel consumption when the slope is always 0 + k2g (Section end point elevation-Section start point elevation) (2)
 上記式(2)の右辺第1項の「(勾配が常に0の場合の)区間燃料消費量」は、当該区間における瞬間燃料消費量(上記式(1)の値)を積算した値である。また、右辺第2項の(区間終点標高-区間始点標高)は、位置エネルギーの変化量を示す。上記式(2)が、勾配がある区間における燃料消費量を近似できることは、以下のように示される。 The first term “section fuel consumption (when the gradient is always 0)” on the right side of the equation (2) is a value obtained by integrating the instantaneous fuel consumption (value of the equation (1)) in the section. . The second term (section end point elevation−section start point elevation) on the right side indicates the amount of change in potential energy. It is shown as follows that the above equation (2) can approximate the fuel consumption in a section with a gradient.
 区間燃料消費量 =Σfc・ΔT
 =Σ{k1+k2・x・(dx/dt+g・sinθ)+k3・G(x)}ΔT
 =k1・ΣΔT+k2・Σx(dx/dt+g・sinθ)ΔT+k3・ΣG(x)ΔT・・・(3)
 ここで、上記式(3)の第2項に注目すると、
 ΣV(dx/dt+g・sinθ)ΔT=Σx・dx/dt・ΔT+g・Σ(x・sinθ)ΔT・・・(4)
と分解でき、上記式(4)の右辺第2項の「Σ(x・sinθ)ΔT」は区間での標高方向の移動量であることが分かる。上記式(4)の右辺第1項は、勾配が常に0と見なしたときの加速エネルギーに対する燃料消費量なので、傾斜に関係しない他の項とまとめることにより、「傾斜を常に0として計算した区間推定値」とすることができる。よって、傾斜計がなくても、対象区間の始点と終点の緯度と経度が得られれば、標高データを参照することで道路勾配を考慮した燃費推定が可能となる。あるいはナビゲーション装置が三次元測位可能なものであれば対象区間の始点と終点の標高情報を直接参照することで道路勾配を考慮した燃費推定が可能となる。
Section fuel consumption = Σfc · ΔT
= Σ {k 1 + k 2 · x · (dx / dt + g · sin θ) + k 3 · G (x)} ΔT
= K 1 · ΣΔT + k 2 · Σx (dx / dt + g · sin θ) ΔT + k 3 · ΣG (x) ΔT (3)
Here, paying attention to the second term of the above formula (3),
ΣV (dx / dt + g · sin θ) ΔT = Σx · dx / dt · ΔT + g · Σ (x · sin θ) ΔT (4)
It can be seen that “Σ (x · sin θ) ΔT” in the second term on the right side of the equation (4) is the amount of movement in the elevation direction in the section. The first term on the right side of the above formula (4) is the amount of fuel consumed with respect to the acceleration energy when the gradient is always considered to be zero. It can be referred to as “section estimation value”. Therefore, even if there is no inclinometer, if the latitude and longitude of the start point and end point of the target section can be obtained, fuel consumption can be estimated in consideration of the road gradient by referring to the altitude data. Alternatively, if the navigation device is capable of three-dimensional positioning, fuel efficiency can be estimated in consideration of the road gradient by directly referring to the elevation information of the start point and end point of the target section.
(燃費算出式の補正について)
 つぎに、実燃費情報を用いた燃費算出式(上記式(1))の補正について説明する。上述したように、ナビゲーション装置300は、上記式(1)に基づいて燃料消費量を推定する。しかし、それぞれの車両の特性や運転者の特性など様々な要因により、推定した燃費と実燃費との間に誤差が生じる場合がある。この場合、ナビゲーション装置300は、以下の方法で算出式を補正して、次回以降の燃費推定に用いる。これにより、燃費の推定精度をより向上させることができる。なお、以下の方法は、実燃費の情報が得られることが前提であるが、実燃費の計測方法は任意である。
(Regarding correction of fuel consumption calculation formula)
Next, correction of the fuel consumption calculation formula (the above formula (1)) using the actual fuel consumption information will be described. As described above, the navigation device 300 estimates the fuel consumption based on the above equation (1). However, an error may occur between the estimated fuel consumption and the actual fuel consumption due to various factors such as the characteristics of each vehicle and the characteristics of the driver. In this case, the navigation apparatus 300 corrects the calculation formula by the following method and uses it for fuel consumption estimation from the next time. Thereby, the estimation precision of a fuel consumption can be improved more. The following method is based on the premise that information on actual fuel consumption can be obtained, but the actual fuel consumption measurement method is arbitrary.
[方法1:車両の走行状態に基づく補正]
 第1の方法は、実燃費の計測時における車両の走行状態に基づいて補正する方法である。車両の走行状態とは、たとえば、高速で走行したか、低速で走行したか、渋滞時に走行したか、などである。具体的には、まず、下記式(5)を用いて、実燃費情報が得られた区間の区間燃料消費量を算出する。
ΣfcΔt=Σ{h・(k1+k2・x・dx/dt+k3・G(x))}Δt
     =h{Σk1Δt+Σk2・x・dx/dt・Δt+Σk3・G(x)・Δt}・・・(5)
 ここで、h:補正係数であり、
 fc=h・(k1+k2・x・dx/dt+k3・G(x))
 g(v)=x3+a1・x2+a2・x
 ただし、fc<h・k1のfc=h・k1、a1=-100,a2=6000
[Method 1: Correction based on vehicle running state]
The first method is a correction method based on the running state of the vehicle at the time of measuring the actual fuel consumption. The traveling state of the vehicle is, for example, whether the vehicle has traveled at a high speed, traveled at a low speed, or traveled in a traffic jam. Specifically, first, the section fuel consumption of the section in which the actual fuel consumption information is obtained is calculated using the following equation (5).
ΣfcΔt = Σ {h · (k 1 + k 2 · x · dx / dt + k 3 · G (x))} Δt
= H {Σk 1 Δt + Σk 2 · x · dx / dt · Δt + Σk 3 · G (x) · Δt} (5)
Where h is a correction coefficient,
fc = h · (k 1 + k 2 · x · dx / dt + k 3 · G (x))
g (v) = x 3 + a 1 · x 2 + a 2 · x
Where fc <h · k 1 , fc = h · k 1 , a 1 = −100, a 2 = 6000
 上記式(5)において、k1に係る項の比率が大きいときは、当該区間の走行時は渋滞時の割合が多いと判断する。また、k2に係る項の比率が大きいときは、当該区間の走行時は低速時の割合が多いと判断する。また、k3に係る項の比率が大きいときは、当該区間の走行時は高速時の割合が多いと判断する。これにより、実燃費情報が得られた区間における車両の走行状態を把握する。 In the above equation (5), when the ratio of the term relating to k1 is large, it is determined that the ratio of traffic jam is high when traveling in the section. Further, when the ratio of the term relating to k2 is large, it is determined that the ratio at low speed is large when traveling in the section. Further, when the ratio of the term relating to k3 is large, it is determined that the ratio at high speed is high when traveling in the section. Thereby, the traveling state of the vehicle in the section where the actual fuel consumption information is obtained is grasped.
 そして、実燃費量と区間燃料消費量とを比較して、実燃費量が区間燃料消費量よりも良いか悪いかを判断し、その結果によって以下のように係数k1~k3を補正する。
[1]低速時において、実燃費量が区間燃料消費量よりも悪い場合:k2を大きく、k3を小さくする。
[2]低速時において、実燃費量が区間燃料消費量よりも良い場合:k2を小さく、k3を大きくする。
[3]渋滞時において、実燃費量が区間燃料消費量よりも悪い場合:k1を大きく、k3を小さくする。
[4]渋滞時において、実燃費量が区間燃料消費量よりも良い場合:k1を小さく、k3を大きくする。
[5]高速時において、実燃費量が区間燃料消費量よりも悪い場合:k2を小さく、k3を大きくする。
[6]高速時において、実燃費量が区間燃料消費量よりも良い場合:k2を大きく、k3を小さくする。
Then, the actual fuel consumption amount is compared with the section fuel consumption amount to determine whether the actual fuel consumption amount is better or worse than the section fuel consumption amount, and the coefficients k 1 to k 3 are corrected as follows based on the result. .
[1] during the low speed, the actual fuel consumption amount when worse than the interval fuel consumption: k 2 greatly to reduce the k 3.
[2] during the low speed, the actual fuel consumption amount may better than the interval fuel consumption: k 2 a small, increasing the k 3.
[3] During congestion, the actual fuel consumption amount when worse than the interval fuel consumption: k 1 greatly to reduce the k 3.
[4] During congestion, the actual fuel consumption amount may better than the interval fuel consumption: k 1 a small, increasing the k 3.
[5] during high-speed, real fuel amount if worse than the interval fuel consumption: k 2 a small, increasing the k 3.
[6] during high-speed, real fuel consumption amount may better than the interval fuel consumption: k 2 greatly to reduce the k 3.
 なお、上記[1]~[6]では、2つの係数について補正しているがこれに限られない。たとえば、実測燃費量と推定燃費量が一致しない場合において、下記のように1つの係数を補正してもよい。
[a]渋滞などでアイドリング時の割合が多い区間:推定燃費が実測燃費より良い場合にはk1を大きくし、推定燃費が実測燃費より悪い場合にはk1を小さくする。
[b]市街地走行などで加減速の割合が多い区間:推定燃費が実測燃費より良い場合にはk2を大きくし、推定燃費が実測燃費より悪い場合にはk2を小さくする。
[c]有料道路などで高速走行の割合が多い区間:推定燃費が実測燃費より良い場合にはk3を大きくし、推定燃費が実測燃費より悪い場合k3を小さくする。
In the above [1] to [6], two coefficients are corrected, but the present invention is not limited to this. For example, when the actually measured fuel consumption amount does not match the estimated fuel consumption amount, one coefficient may be corrected as follows.
[A] congestion ratio during idling is large like section: when the estimated fuel efficiency than the measured fuel consumption by increasing the k 1, when the estimated fuel efficiency is worse than the measured fuel efficiency to reduce the k 1.
[B] city travel ratio deceleration is large, etc. section: when the estimated fuel efficiency than the measured fuel consumption by increasing the k 2, when the estimated fuel efficiency is worse than the measured fuel efficiency to reduce the k 2.
[C] toll roads, such as at a rate of high-speed traveling is large interval: if the estimated fuel efficiency than the measured fuel consumption by increasing the k 3, estimated fuel consumption is reduced when k 3 worse than the measured fuel consumption.
[方法2:車両が走行した道路の種別に基づく補正]
 第2の方法は、実燃費の計測時において車両が走行した道路の種別に基づいて補正する方法である。道路の種別とは、たとえば、一般道路および高速道路などである。具体的には、少なくとも2回分の給油情報を用いて下記式(6)および(7)の連立方程式を解いて、一般道における実燃費Fiと高速道における実燃費Fkとを求める。
 A1・Fi+B1・Fk = E1・・・(6)
 A2・Fi+B2・Fk = E2・・・(7)
[Method 2: Correction based on the type of road on which the vehicle traveled]
The second method is a correction method based on the type of road on which the vehicle has traveled when measuring the actual fuel consumption. The type of road is, for example, a general road or a highway. More specifically, the simultaneous equations of the following formulas (6) and (7) are solved using at least two times of fuel supply information to determine the actual fuel consumption Fi on the general road and the actual fuel consumption Fk on the expressway.
A1 · Fi + B1 · Fk = E1 (6)
A2 ・ Fi + B2 ・ Fk = E2 (7)
 ここで、E1は1回目のガソリン給油量、A1は最初の満タン状態から1回目の給油までに走行した一般道路の走行距離、B1は最初の満タン状態から1回目の給油までに走行した高速道路の走行距離、E2は2回目のガソリン給油量、A2は1回目の給油から2回目の給油までに走行した一般道路の走行距離、B2は1回目の給油から2回目の給油までに走行した高速道路の走行距離である。なお、一般道路の走行距離および高速道路の走行距離は、ナビゲーション装置300に記録されている走行履歴情報を参照して得ることができる。なお、各回の給油は燃料タンクを満タンにする給油である。 Here, E1 is the first gasoline refueling amount, A1 is the travel distance of the general road that has traveled from the first full tank to the first fueling, and B1 is the first full tank to the first fueling. Travel distance on the expressway, E2 is the second gasoline charge amount, A2 is the travel distance on the general road that traveled from the first to the second refueling, and B2 is traveled from the first to the second refueling Is the mileage of the expressway. The travel distance on the general road and the travel distance on the expressway can be obtained by referring to travel history information recorded in the navigation device 300. Each refueling is a refueling that fills the fuel tank.
 そして、下記式(8)を用いて、上記2つの給油情報に対応する走行区間の区間燃費量を、一般道路区間および高速道路区間に分けて算出する。なお、下記式(8)において、h1およびh2は未知パラメータとしておく。
 ΣfcΔt=Σ{h1・(k1+k2・x・dx/dt)+h2・(k3・G(x))}Δt
 =h1・{Σk1Δt+Σk2・x・dx/dt・Δt}+h2・{Σk3・g(v)・Δt}・・・(8)
 fc=h1・(k1+k2・x・dx/dt)+h2・(k3・G(x))
 G(x)=x3+a1・x2+a2・x
ただし、fc<h1・k1の場合、fc=h1・k1、a1=-100,a2=6000
Then, using the following formula (8), the section fuel consumption amount of the travel section corresponding to the two refueling information is calculated separately for the general road section and the highway section. In the following formula (8), h1 and h2 are set as unknown parameters.
ΣfcΔt = Σ {h1 · (k 1 + k 2 · x · dx / dt) + h2 · (k 3 · G (x))} Δt
= H1 · {Σk 1 Δt + Σk 2 · x · dx / dt · Δt} + h2 · {Σk 3 · g (v) · Δt} (8)
fc = h 1 · (k 1 + k 2 · x · dx / dt) + h 2 · (k 3 · G (x))
G (x) = x 3 + a 1 · x 2 + a 2 · x
However, if fc <of h1 · k 1, fc = h1 · k 1, a 1 = -100, a 2 = 6000
 そして、一般道路区間および高速道路区間に分けて算出した区間燃費量を、道路種類別の実燃費量と比較する。一般道路区間における上記式(8)の右辺第1項の{}内の式をAi、右辺第2項の{}内の式をBiとおき、高速道路区間における上記式(8)の右辺第1項の{}内の式をAk、右辺第2項の{}内の式をBkとおき、下記式(9),(10)を得る。下記式(9),(10)において、左辺は推定燃費量、右辺が実燃費量である。
(一般道路)h1・Ai+h2・Bi=(a1+a2)・Fi・・・(9)
(高速道路)h1・Ak+h2・Bk=(b1+b2)・Fk・・・(10)
Then, the section fuel consumption amount calculated separately for the general road section and the expressway section is compared with the actual fuel consumption amount for each road type. In the general road section, the expression in {} in the first term on the right side of the equation (8) is Ai, and the expression in {} in the second term on the right side is Bi, and the expression on the right side of the equation (8) in the expressway section The expression in {} of 1 term is set to Ak, the expression in {} of the second term on the right side is set to Bk, and the following expressions (9) and (10) are obtained. In the following formulas (9) and (10), the left side is the estimated fuel consumption and the right side is the actual fuel consumption.
(General road) h1, Ai + h2, Bi = (a1 + a2), Fi (9)
(Highway) h1 ・ Ak + h2 ・ Bk = (b1 + b2) ・ Fk (10)
 通常、一般道路の式(上記式(9))では、h1・Aiの項が支配的となり、高速道路の式(上記式(10))では、h2・Bkの項が支配的となるはずである。そして、実燃費量と区間燃料消費量とを比較して、実燃費量が区間燃料消費量よりも良いか悪いかを判断し、その結果によって以下のようにパラメータh(h1,h2)を調整する。
[1]一般道路において、実燃費量が区間燃料消費量よりも悪い場合:h1を大きくする。
[2]一般道路において、実燃費量が区間燃料消費量よりも良い場合:h1を小さくする。
[3]高速道路において、実燃費量が区間燃料消費量よりも悪い場合:h2を大きくする。
[4]高速道路において、実燃費量が区間燃料消費量よりも良い場合:h2を小さくする。
 また、上記式(9),(10)を2元一次の連立方程式とみなしてh1,h2について解いてもよい。
Normally, in the general road equation (the above equation (9)), the h1 · Ai term should be dominant, and in the highway equation (the above equation (10)), the h2 · Bk term should be dominant. is there. Then, the actual fuel consumption is compared with the section fuel consumption to determine whether the actual fuel consumption is better or worse than the section fuel consumption, and the parameter h (h1, h2) is adjusted as follows based on the result. To do.
[1] When the actual fuel consumption amount is worse than the section fuel consumption amount on a general road: h1 is increased.
[2] When the actual fuel consumption amount is better than the section fuel consumption amount on a general road: h1 is decreased.
[3] When the actual fuel consumption is worse than the section fuel consumption on the expressway: h2 is increased.
[4] When the actual fuel consumption amount is higher than the section fuel consumption amount on the highway: h2 is decreased.
Further, the above equations (9) and (10) may be regarded as a binary linear equation and solved for h1 and h2.
(燃料消費量の推定処理)
 図9は、ナビゲーション装置による燃費推定処理の手順を示すフローチャートである。図9のフローチャートにおいて、ナビゲーション装置300は、まず、自装置が搭載された車両が走行を開始するまで待機する(ステップS901:Noのループ)。車両が走行を開始すると(ステップS901:Yes)、ナビゲーション装置300は、自装置が搭載された車両に対応する係数k1~k3を、係数テーブルから読み出す(ステップS902)。なお、係数の読み出しは毎走行時におこなわなくてもよく、たとえば、一度読み出した係数の値をROM302などに記録しておいてもよい。
(Fuel consumption estimation process)
FIG. 9 is a flowchart showing a procedure of fuel consumption estimation processing by the navigation device. In the flowchart of FIG. 9, the navigation device 300 first waits until the vehicle on which the device is mounted starts traveling (step S <b> 901: No loop). When the vehicle starts traveling (step S901: Yes), the navigation apparatus 300 reads out the coefficients k 1 to k 3 corresponding to the vehicle on which the apparatus is mounted from the coefficient table (step S902). It should be noted that the coefficient need not be read every time it travels. For example, the coefficient value once read may be recorded in the ROM 302 or the like.
 つぎに、ナビゲーション装置300は、現在の車両の速度情報および加速度情報を取得する(ステップS903)。また、ナビゲーション装置300は、車両が現在走行している道路の勾配情報を取得する(ステップS904)。そして、ナビゲーション装置300は、上記式(1)を用いて現在の瞬間燃費量を算出し(ステップS905)、ディスプレイ313に算出した値(現在の瞬間燃費量)を表示する(ステップS906)。なお、燃費量の表示、非表示はユーザの操作によって切り替えられるようにしてもよい。 Next, the navigation device 300 acquires the current vehicle speed information and acceleration information (step S903). Moreover, the navigation apparatus 300 acquires the gradient information of the road on which the vehicle is currently traveling (step S904). Then, the navigation apparatus 300 calculates the current instantaneous fuel consumption amount using the above formula (1) (step S905), and displays the calculated value (current instantaneous fuel consumption amount) on the display 313 (step S906). Note that the display or non-display of the fuel consumption amount may be switched by a user operation.
 ナビゲーション装置300は、車両が走行を終了するまでは(ステップS907:No)、ステップS903に戻り、以降の処理を継続する。そして、車両が走行を終了すると(ステップS907:Yes)、本フローチャートによる処理を終了する。なお、走行時における実燃費量情報が取得できる場合には、走行終了後あるいは走行中に燃費推定式(上記式(1))を補正してもよい。この場合、燃費推定式の補正は、たとえばユーザの操作によって任意のタイミングでおこなえるようにしてもよい。また、本フローチャートに示した燃料消費量の推定処理についても、CPU301の処理負荷軽減のため、ユーザの操作によってオン・オフを切り替えられるようにしてもよい。 Navigation device 300 returns to step S903 until the vehicle finishes traveling (step S907: No), and continues the subsequent processing. And if a vehicle complete | finishes driving | running | working (step S907: Yes), the process by this flowchart will be complete | finished. In addition, when the actual fuel consumption amount information at the time of traveling can be acquired, the fuel consumption estimation formula (the above formula (1)) may be corrected after traveling or during traveling. In this case, the correction of the fuel consumption estimation formula may be performed at an arbitrary timing by a user operation, for example. The fuel consumption estimation process shown in this flowchart may be switched on and off by a user operation in order to reduce the processing load on the CPU 301.
 以上説明したように、ナビゲーション装置300は、車両のアイドリング時に関する情報、車両の加速時に関する情報および車両の走行時に生じる抵抗に関する情報のみからなる単一の燃料推定式を用いることより、より詳細には、車両のアイドリング時における燃料消費量に基づく係数k1、車両の加速時における消費燃料に基づく係数k2、車両の走行時に生じる空気抵抗および転がり抵抗に基づく係数k3からなる上記式(1)に基づいて車両の燃料消費量を推定する。このため、燃費推定装置100は、車両の実際の走行時の燃料消費量を、従来の算出方式に比して、精度良く、かつ安定して推測することができる。 As described above, the navigation apparatus 300 uses the single fuel estimation formula that includes only information related to idling of the vehicle, information related to acceleration of the vehicle, and information related to resistance generated when the vehicle travels, in more detail. Is a coefficient k 1 based on the fuel consumption at the time of idling of the vehicle, a coefficient k 2 based on the fuel consumption at the time of acceleration of the vehicle, an air resistance generated when the vehicle is running, and a coefficient k 3 based on the rolling resistance. ) To estimate the fuel consumption of the vehicle. For this reason, the fuel consumption estimation apparatus 100 can estimate the fuel consumption during actual traveling of the vehicle with high accuracy and stability compared to the conventional calculation method.
 また、ナビゲーション装置300は、単一の燃料推定式として上記式(1)のみを用いて実走行時の燃料消費量を推定する。このため、車両の走行状態によって適用する回帰式を変更する必要がなく、走行状態が短期間で変化する実走行時においても、実用性が高い燃費推定をおこなうことができる。 Also, the navigation device 300 estimates the fuel consumption during actual traveling using only the above formula (1) as a single fuel estimation formula. For this reason, it is not necessary to change the regression equation applied according to the traveling state of the vehicle, and fuel efficiency estimation with high practicality can be performed even during actual traveling where the traveling state changes in a short period of time.
 また、ナビゲーション装置300は、車両の速度情報および加速度情報、車両が走行する道路の勾配情報を用いて燃料消費量を推定する。このため、ナビゲーション装置300は、車両の走行速度や加速度の変化、車両にかかる位置エネルギーの変化を燃料消費量の推定値に反映させることができ、より精度良く燃料消費量を推定することができる。 Also, the navigation device 300 estimates the fuel consumption using the vehicle speed information and acceleration information, and the gradient information of the road on which the vehicle travels. For this reason, the navigation apparatus 300 can reflect the change in the running speed and acceleration of the vehicle and the change in the potential energy applied to the vehicle in the estimated value of the fuel consumption, and can estimate the fuel consumption more accurately. .
 また、道路の勾配情報は、車両の速度および加速度と相関性の低いパラメータである。このため、ナビゲーション装置300において、車両が走行する道路の勾配情報を用いて燃料消費量を推測することにより、速度および加速度のみをパラメータとして使用する場合と比較して、信頼性の高い推測結果を得ることができる。 Also, road gradient information is a parameter that is not highly correlated with vehicle speed and acceleration. For this reason, in the navigation apparatus 300, by estimating the fuel consumption using the gradient information of the road on which the vehicle travels, a more reliable estimation result can be obtained compared to the case where only the speed and acceleration are used as parameters. Obtainable.
 また、上述した車両の速度情報および加速度情報、車両が走行する道路の勾配情報は、従来からナビゲーション装置300で取得している情報である。このため、ナビゲーション装置300によれば、ユーザは特別な機器や煩雑な作業を必要とすることなく、車両の燃料消費量を知ることができる。 Further, the vehicle speed information and acceleration information and the road gradient information on which the vehicle travels are information acquired by the navigation device 300 from the past. For this reason, according to the navigation apparatus 300, the user can know the fuel consumption of a vehicle, without requiring a special apparatus and complicated work.
 また、ナビゲーション装置300は、単位時間あたりの燃料消費量を推定するので、瞬間燃費量の他、任意の区間における区間燃費量や平均燃費量、積算燃費量などを算出することができ、推定した燃料消費量を分かりやすい形でユーザに提示することができる。 Moreover, since the navigation apparatus 300 estimates the fuel consumption per unit time, it can calculate the estimated fuel consumption amount, the average fuel consumption amount, the integrated fuel consumption amount, etc. in an arbitrary section in addition to the instantaneous fuel consumption amount. The fuel consumption can be presented to the user in an easy-to-understand manner.
 また、ナビゲーション装置300は、燃料消費量の推定に用いる係数を、車種別、排気量および車重別、モード燃費別にデータベースに記録しているので、より適切な係数を選択して燃料消費量の推定をおこなうことができる。 In addition, since the navigation apparatus 300 records the coefficient used for estimating the fuel consumption in the database according to the vehicle type, the displacement, the vehicle weight, and the mode fuel consumption, the navigation apparatus 300 selects a more appropriate coefficient and calculates the fuel consumption. Estimation can be performed.
 また、ナビゲーション装置300は、燃料消費量の推定に用いる数式を実燃費量情報を用いて補正するので、車両自体の特性やユーザの運転特性などを次回以降の燃料消費量の推定時に反映させることができ、より精度良く燃料消費量を推定することができる。 In addition, since the navigation apparatus 300 corrects the mathematical formula used for estimating the fuel consumption using the actual fuel consumption amount information, the characteristics of the vehicle itself and the driving characteristics of the user are reflected when estimating the fuel consumption from the next time. Thus, the fuel consumption can be estimated with higher accuracy.
 なお上記実施例では図4に示す係数テーブルをナビゲーション装置が保持している例を説明したが、これに限られず、例えば道路種別ごとに係数テーブルをあらかじめ用意してもよい。より具体的には、一般道用の係数テーブルと高速道路用の係数テーブルとをあらかじめ保持しておき、走行中の道路種別が変化したときに係数テーブルもこの変化に対応して切り替えてもよい。 In the above embodiment, the example in which the navigation apparatus holds the coefficient table shown in FIG. 4 has been described. However, the present invention is not limited to this. For example, a coefficient table may be prepared for each road type. More specifically, a coefficient table for ordinary roads and a coefficient table for expressways may be stored in advance, and the coefficient table may be switched in response to this change when the type of road being traveled changes. .
 なお、本実施の形態で説明した燃費推定方法は、あらかじめ用意されたプログラムをパーソナル・コンピュータやワークステーションなどのコンピュータで実行することにより実現することができる。このプログラムは、ハードディスク、フレキシブルディスク、CD-ROM、MO、DVDなどのコンピュータで読み取り可能な記録媒体に記録され、コンピュータによって記録媒体から読み出されることによって実行される。またこのプログラムは、インターネットなどのネットワークを介して配布することが可能な伝送媒体であってもよい。 The fuel consumption estimation method described in the present embodiment can be realized by executing a program prepared in advance on a computer such as a personal computer or a workstation. This program is recorded on a computer-readable recording medium such as a hard disk, a flexible disk, a CD-ROM, an MO, and a DVD, and is executed by being read from the recording medium by the computer. The program may be a transmission medium that can be distributed via a network such as the Internet.

Claims (18)

  1.  エンジンが可動した状態における車両の停止時に関する第一燃料消費情報と、前記車両の加速時に関する第二燃料消費情報と、前記車両の走行時に生じる抵抗に関する第三燃料消費情報と、のみからなる単一の燃料推定式に基づいて、前記車両の走行時における単位時間当たりの燃料消費量を推定することを特徴とする燃費推定装置。 The first fuel consumption information related to the stop of the vehicle in a state where the engine is moving, the second fuel consumption information related to the acceleration of the vehicle, and the third fuel consumption information related to the resistance generated when the vehicle travels A fuel consumption estimation device that estimates fuel consumption per unit time during travel of the vehicle based on one fuel estimation formula.
  2.  エンジンが可動した状態における前記車両の停止時における燃料消費量に基づく係数を前記第一燃料消費情報として取得し、前記車両の加速時における消費燃料に基づく係数を前記第二燃料消費情報として取得し、前記車両の走行時に生じる空気抵抗および転がり抵抗に基づく係数を前記第三燃料消費情報として取得する係数取得手段と、
     前記車両の走行時における速度および加速度を、前記第二燃料消費情報および前記第三燃料消費情報に関する変数として取得する変数取得手段と、
     取得された前記係数、前記速度および前記加速度に基づいて、前記単一の燃料推定式を用いることにより前記車両の燃料消費量を推定する燃費推定手段と、
     を備えたことを特徴とする請求項1に記載の燃費推定装置。
    A coefficient based on fuel consumption when the vehicle is stopped when the engine is moving is acquired as the first fuel consumption information, and a coefficient based on fuel consumption during acceleration of the vehicle is acquired as the second fuel consumption information. Coefficient acquisition means for acquiring, as the third fuel consumption information, a coefficient based on air resistance and rolling resistance generated when the vehicle travels;
    Variable acquisition means for acquiring the speed and acceleration during travel of the vehicle as variables relating to the second fuel consumption information and the third fuel consumption information;
    Fuel consumption estimation means for estimating fuel consumption of the vehicle by using the single fuel estimation formula based on the acquired coefficient, speed and acceleration;
    The fuel consumption estimation apparatus according to claim 1, comprising:
  3.  前記車両が走行する道路の勾配情報を取得する勾配情報取得手段を備え、
     前記燃費推定手段は、前記勾配情報取得手段によって取得された前記勾配情報を前記単一の燃料推定式に組み込んで前記車両の燃料消費量を推定することを特徴とする請求項2に記載の燃費推定装置。
    Gradient information acquisition means for acquiring gradient information of the road on which the vehicle travels,
    The fuel consumption estimation method according to claim 2, wherein the fuel consumption estimation unit estimates the fuel consumption of the vehicle by incorporating the gradient information acquired by the gradient information acquisition unit into the single fuel estimation formula. Estimating device.
  4.  前記燃費推定手段は、前記単一の燃料推定式として下記式(1)に基づいて前記車両の燃料消費量を推定することを特徴とする請求項3に記載の燃費推定装置。
    Figure JPOXMLDOC01-appb-M000001
    The fuel consumption estimation device according to claim 3, wherein the fuel consumption estimation means estimates a fuel consumption amount of the vehicle based on the following formula (1) as the single fuel estimation formula.
    Figure JPOXMLDOC01-appb-M000001
  5.  エンジンが可動した状態における前記車両の停止時時における燃料消費量に基づく係数と、前記車両の加速時における消費燃料に基づく係数と、前記車両の走行時に生じる空気抵抗および転がり抵抗に基づく係数と、が記録されたデータベースを備え、
     前記係数取得手段は、前記データベースからそれぞれの前記係数を読み出すことを特徴とする請求項2に記載の燃費推定装置。
    A coefficient based on fuel consumption when the vehicle is stopped when the engine is moving, a coefficient based on fuel consumption during acceleration of the vehicle, a coefficient based on air resistance and rolling resistance generated when the vehicle is running, Has a recorded database,
    The fuel efficiency estimation apparatus according to claim 2, wherein the coefficient acquisition unit reads each coefficient from the database.
  6.  前記データベースは、前記係数を車種別に記録しており、
     前記係数取得手段は、前記車両の車種に適合する前記係数を取得することを特徴とする請求項5に記載の燃費推定装置。
    The database records the coefficients by vehicle type,
    The fuel efficiency estimation apparatus according to claim 5, wherein the coefficient acquisition unit acquires the coefficient suitable for a vehicle type of the vehicle.
  7.  前記データベースは、前記係数を排気量および車重別に記録しており、
     前記係数取得手段は、前記車両の排気量および車重に適合する前記係数を取得することを特徴とする請求項5に記載の燃費推定装置。
    The database records the coefficient by displacement and vehicle weight,
    The fuel efficiency estimation apparatus according to claim 5, wherein the coefficient acquisition means acquires the coefficient that matches the displacement and weight of the vehicle.
  8.  前記データベースは、前記係数をモード燃費別に記録しており、
     前記係数取得手段は、前記車両の概算燃費に適合する前記係数を取得することを特徴とする請求項5に記載の燃費推定装置。
    The database records the coefficient by mode fuel consumption,
    The fuel efficiency estimation apparatus according to claim 5, wherein the coefficient acquisition unit acquires the coefficient that matches the approximate fuel efficiency of the vehicle.
  9.  前記車両の走行時における実際の燃料消費量(以下、「実燃費量」という)情報を取得する実燃費量情報取得手段と、
     前記実燃費量情報取得手段によって取得された前記実燃費量情報に基づいて、前記単一の燃料推定式を補正する補正手段と、を備え、
     前記燃費推定手段は、前記補正手段によって補正された前記単一の燃料推定式を用いて前記燃料消費量を推定することを特徴とする請求項2に記載の燃費推定装置。
    Actual fuel consumption information acquisition means for acquiring actual fuel consumption (hereinafter referred to as “actual fuel consumption”) information during travel of the vehicle;
    Correction means for correcting the single fuel estimation formula based on the actual fuel consumption amount information acquired by the actual fuel consumption amount acquisition means,
    The fuel consumption estimation apparatus according to claim 2, wherein the fuel consumption estimation unit estimates the fuel consumption using the single fuel estimation formula corrected by the correction unit.
  10.  前記補正手段は、前記燃費推定手段によって推定された前記燃料消費量と前記実燃費量との比較値と、前記走行時における前記車両の走行状態と、に基づいて前記単一の燃料推定式を補正することを特徴とする請求項9に記載の燃費推定装置。 The correction means calculates the single fuel estimation formula based on a comparison value between the fuel consumption amount estimated by the fuel consumption estimation means and the actual fuel consumption amount and a traveling state of the vehicle at the time of traveling. The fuel consumption estimation apparatus according to claim 9, wherein correction is performed.
  11.  前記補正手段は、前記燃費推定手段によって推定された前記燃料消費量と前記実燃費量との比較値と、前記車両が走行した道路の種別と、に基づいて前記単一の燃料推定式を補正することを特徴とする請求項9に記載の燃費推定装置。 The correction means corrects the single fuel estimation formula based on a comparison value between the fuel consumption estimated by the fuel consumption estimation means and the actual fuel consumption and a type of road on which the vehicle has traveled. The fuel consumption estimation apparatus according to claim 9, wherein
  12.  車両の燃費を推定する燃費推定装置であって、
     エンジンが可動した状態における前記車両の停止時における消費燃料に基づく係数k1、前記車両の加速時における消費燃料に基づく係数k2、および前記車両の空気抵抗および転がり抵抗に基づく係数k3をあらかじめ格納する保持手段と、
     前記車両の車速を検知する検知手段と、
     前記保持手段に格納された前記係数k1、k2、k3、および前記検知手段によって検知された前記車両の車速を用いて、下記式(2)により瞬間燃費推定量fcを算出する瞬間燃費推定手段と、
     を備えることを特徴とする燃費推定装置。
     瞬間燃費推定量fc(x)=k1+k2・f1(x)+k3・f2(x)・・・(2)
    ここで、
     f1(x):前記車両の車速および加速度をパラメータとする所定の関数
     f2(x):前記車両の車速をパラメータとする所定の関数
    A fuel consumption estimation device for estimating the fuel consumption of a vehicle,
    A coefficient k 1 based on fuel consumption when the vehicle is stopped when the engine is moving, a coefficient k 2 based on fuel consumption when the vehicle is accelerated, and a coefficient k 3 based on air resistance and rolling resistance of the vehicle are preliminarily set. Holding means for storing;
    Detecting means for detecting the vehicle speed of the vehicle;
    Using the coefficients k 1 , k 2 , k 3 stored in the holding means and the vehicle speed of the vehicle detected by the detecting means, an instantaneous fuel consumption estimated amount fc is calculated by the following equation (2). An estimation means;
    A fuel consumption estimation device comprising:
    Instantaneous fuel consumption estimation amount fc (x) = k 1 + k 2 · f 1 (x) + k 3 · f 2 (x) (2)
    here,
    f 1 (x): a predetermined function using the vehicle speed and acceleration of the vehicle as parameters f 2 (x): a predetermined function using the vehicle speed of the vehicle as parameters
  13.  エンジンが可動した状態における車両の停止時に関する第一燃料消費情報と、前記車両の加速時に関する第二燃料消費情報と、前記車両の走行時に生じる抵抗に関する第三燃料消費情報と、のみからなる単一の燃料推定式に基づいて、前記車両の走行時における単位時間当たりの燃料消費量を推定することを特徴とする燃費推定方法。 The first fuel consumption information related to the stop of the vehicle in a state where the engine is moving, the second fuel consumption information related to the acceleration of the vehicle, and the third fuel consumption information related to the resistance generated when the vehicle is running. A fuel consumption estimation method characterized by estimating a fuel consumption per unit time during travel of the vehicle based on one fuel estimation formula.
  14.  エンジンが可動した状態における前記車両の停止時における燃料消費量に基づく係数を前記第一燃料消費情報として取得し、前記車両の加速時における消費燃料に基づく係数を前記第二燃料消費情報として取得し、前記車両の走行時に生じる空気抵抗および転がり抵抗に基づく係数を前記第三燃料消費情報として取得する係数取得工程と、
     前記車両の走行時における速度および加速度を、前記第二燃料消費情報および前記第三燃料消費情報に関する変数として取得する変数取得工程と、
     取得された前記係数、前記速度および前記加速度に基づいて、前記単一の燃料推定式を用いることにより前記車両の燃料消費量を推定する燃費推定工程と、
     を含んだことを特徴とする請求項13に記載の燃費推定方法。
    A coefficient based on fuel consumption when the vehicle is stopped when the engine is moving is acquired as the first fuel consumption information, and a coefficient based on fuel consumption during acceleration of the vehicle is acquired as the second fuel consumption information. A coefficient acquisition step of acquiring a coefficient based on air resistance and rolling resistance generated during travel of the vehicle as the third fuel consumption information;
    A variable acquisition step of acquiring the speed and acceleration during travel of the vehicle as variables relating to the second fuel consumption information and the third fuel consumption information;
    A fuel consumption estimation step of estimating a fuel consumption amount of the vehicle by using the single fuel estimation formula based on the acquired coefficient, the speed and the acceleration;
    The fuel consumption estimation method according to claim 13, comprising:
  15.  前記燃費推定工程では、前記単一の燃料推定式として下記式(3)に基づいて前記車両の燃料消費量を推定することを特徴とする請求項13に記載の燃費推定方法。
    Figure JPOXMLDOC01-appb-M000002
    14. The fuel consumption estimation method according to claim 13, wherein in the fuel consumption estimation step, fuel consumption of the vehicle is estimated based on the following formula (3) as the single fuel estimation formula.
    Figure JPOXMLDOC01-appb-M000002
  16.  下記式(4)に車両の実走行データを代入し、重回帰分析してk1~k5を算出する分析工程と、
     前記分析工程で算出されたk3~k5を用いて、上記式(3)のa1およびa2を算出する算出工程と、
     を含んだことを特徴とする請求項15に記載の燃費推定方法。
    Figure JPOXMLDOC01-appb-M000003
    Substituting the actual driving data of the vehicle into the following equation (4) and performing multiple regression analysis to calculate k 1 to k 5 ,
    A calculation step of calculating a 1 and a 2 of the above formula (3) using k 3 to k 5 calculated in the analysis step;
    The fuel consumption estimation method according to claim 15, comprising:
    Figure JPOXMLDOC01-appb-M000003
  17.  請求項13~16のいずれか一つに記載の燃費推定方法をコンピュータに実行させることを特徴とする燃費推定プログラム。 A fuel consumption estimation program for causing a computer to execute the fuel consumption estimation method according to any one of claims 13 to 16.
  18.  請求項17に記載の燃費推定プログラムを記録したことを特徴とするコンピュータに読み取り可能な記録媒体。 A computer-readable recording medium in which the fuel consumption estimation program according to claim 17 is recorded.
PCT/JP2009/056630 2009-03-31 2009-03-31 Fuel consumption estimating device fuel consumption estimating method, fuel consumption estimating program and recording medium WO2010113246A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2009/056630 WO2010113246A1 (en) 2009-03-31 2009-03-31 Fuel consumption estimating device fuel consumption estimating method, fuel consumption estimating program and recording medium
JP2011506873A JP5312574B2 (en) 2009-03-31 2009-03-31 Fuel consumption estimation device, fuel consumption estimation method, fuel consumption estimation program, and recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/056630 WO2010113246A1 (en) 2009-03-31 2009-03-31 Fuel consumption estimating device fuel consumption estimating method, fuel consumption estimating program and recording medium

Publications (1)

Publication Number Publication Date
WO2010113246A1 true WO2010113246A1 (en) 2010-10-07

Family

ID=42827578

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/056630 WO2010113246A1 (en) 2009-03-31 2009-03-31 Fuel consumption estimating device fuel consumption estimating method, fuel consumption estimating program and recording medium

Country Status (2)

Country Link
JP (1) JP5312574B2 (en)
WO (1) WO2010113246A1 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012113546A (en) * 2010-11-25 2012-06-14 Denso Corp Necessary power prediction device for vehicle
WO2012101821A1 (en) * 2011-01-28 2012-08-02 パイオニア株式会社 Calculation apparatus, calculation method, calculation program, and recording medium
WO2012114499A1 (en) * 2011-02-24 2012-08-30 パイオニア株式会社 Search device, search system, search method and terminal
JP2012197780A (en) * 2011-03-10 2012-10-18 Denso Corp Fuel-saving driving evaluation system and program for the same
JP2012220415A (en) * 2011-04-12 2012-11-12 Clarion Co Ltd Operation support device and vehicle having the same
JP2013221814A (en) * 2012-04-16 2013-10-28 Mitsubishi Electric Corp Energy consumption prediction apparatus
CN103597317A (en) * 2011-06-10 2014-02-19 日产自动车株式会社 Energy consumption calculation device, and energy consumption calculation method of same
KR101536419B1 (en) * 2013-10-02 2015-07-13 교통안전공단 Fuel Ratio Factor unification Method for Automobile and Navigation thereto
CN105102930A (en) * 2013-04-11 2015-11-25 日产自动车株式会社 Device for predicting amount of energy consumption and method for predicting amount of energy consumption
JP2016076055A (en) * 2014-10-06 2016-05-12 パイオニア株式会社 Server device, terminal device, estimated energy consumption calculation system, estimated energy consumption calculation method, estimated energy consumption calculation program and recording medium
CN113566917A (en) * 2021-06-30 2021-10-29 中汽研汽车检验中心(天津)有限公司 Fuel saving amount calculation and test method for shortening warming process of active grille at low temperature

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10156195B2 (en) * 2016-06-09 2018-12-18 Ford Global Technologies, Llc System and method for selecting a cylinder deactivation mode
JP7137970B2 (en) 2018-06-25 2022-09-15 株式会社クボタ work vehicle

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000333305A (en) * 1999-05-20 2000-11-30 Nissan Motor Co Ltd Drive controller for hybrid car
JP2001188985A (en) * 1999-10-22 2001-07-10 Toyota Motor Corp Travel diagnosing method, travel condition presenting method, and travel diagnostic device for vehicle
JP2005163584A (en) * 2003-12-01 2005-06-23 Denso Corp Fuel economy information supply system, fuel economy information server device, and on-vehicle control device
JP2007050888A (en) * 2006-09-25 2007-03-01 Aisin Aw Co Ltd Driving control system for hybrid vehicle
JP2008183937A (en) * 2007-01-26 2008-08-14 Denso Corp Power generation source controller
JP2009031046A (en) * 2007-07-25 2009-02-12 Hitachi Ltd Fuel consumption estimation system of automobile, route searching system, and driving guiding system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000333305A (en) * 1999-05-20 2000-11-30 Nissan Motor Co Ltd Drive controller for hybrid car
JP2001188985A (en) * 1999-10-22 2001-07-10 Toyota Motor Corp Travel diagnosing method, travel condition presenting method, and travel diagnostic device for vehicle
JP2005163584A (en) * 2003-12-01 2005-06-23 Denso Corp Fuel economy information supply system, fuel economy information server device, and on-vehicle control device
JP2007050888A (en) * 2006-09-25 2007-03-01 Aisin Aw Co Ltd Driving control system for hybrid vehicle
JP2008183937A (en) * 2007-01-26 2008-08-14 Denso Corp Power generation source controller
JP2009031046A (en) * 2007-07-25 2009-02-12 Hitachi Ltd Fuel consumption estimation system of automobile, route searching system, and driving guiding system

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012113546A (en) * 2010-11-25 2012-06-14 Denso Corp Necessary power prediction device for vehicle
JP5635632B2 (en) * 2011-01-28 2014-12-03 パイオニア株式会社 Calculation device, calculation method, calculation program, and recording medium
CN103328268B (en) * 2011-01-28 2015-08-26 日本先锋公司 Computer device, method of calculating, calculation procedure and recording medium
CN103328268A (en) * 2011-01-28 2013-09-25 日本先锋公司 Calculation apparatus, calculation method, calculation program and recording medium
WO2012101821A1 (en) * 2011-01-28 2012-08-02 パイオニア株式会社 Calculation apparatus, calculation method, calculation program, and recording medium
WO2012114499A1 (en) * 2011-02-24 2012-08-30 パイオニア株式会社 Search device, search system, search method and terminal
CN103384814A (en) * 2011-02-24 2013-11-06 日本先锋公司 Search device, search system, search method and terminal
JP5674915B2 (en) * 2011-02-24 2015-02-25 パイオニア株式会社 SEARCH DEVICE, SEARCH SYSTEM, SEARCH METHOD, AND TERMINAL
JP2012197780A (en) * 2011-03-10 2012-10-18 Denso Corp Fuel-saving driving evaluation system and program for the same
JP2012220415A (en) * 2011-04-12 2012-11-12 Clarion Co Ltd Operation support device and vehicle having the same
EP2720000A1 (en) * 2011-06-10 2014-04-16 Nissan Motor Co., Ltd Energy consumption calculation device, and energy consumption calculation method of same
CN103597317A (en) * 2011-06-10 2014-02-19 日产自动车株式会社 Energy consumption calculation device, and energy consumption calculation method of same
EP2720000A4 (en) * 2011-06-10 2015-04-08 Nissan Motor Energy consumption calculation device, and energy consumption calculation method of same
JP2013221814A (en) * 2012-04-16 2013-10-28 Mitsubishi Electric Corp Energy consumption prediction apparatus
CN105102930A (en) * 2013-04-11 2015-11-25 日产自动车株式会社 Device for predicting amount of energy consumption and method for predicting amount of energy consumption
US9417081B2 (en) 2013-04-11 2016-08-16 Nissan Motor Co., Ltd. Device for predicting energy consumption and method for predicting energy consumption
EP2985570B1 (en) * 2013-04-11 2019-02-20 Nissan Motor Co., Ltd. Device for predicting amount of energy consumption and method for predicting amount of energy consumption
KR101536419B1 (en) * 2013-10-02 2015-07-13 교통안전공단 Fuel Ratio Factor unification Method for Automobile and Navigation thereto
JP2016076055A (en) * 2014-10-06 2016-05-12 パイオニア株式会社 Server device, terminal device, estimated energy consumption calculation system, estimated energy consumption calculation method, estimated energy consumption calculation program and recording medium
CN113566917A (en) * 2021-06-30 2021-10-29 中汽研汽车检验中心(天津)有限公司 Fuel saving amount calculation and test method for shortening warming process of active grille at low temperature
CN113566917B (en) * 2021-06-30 2024-01-02 中汽研汽车检验中心(天津)有限公司 Oil saving amount calculation and test method for shortening vehicle warming process of active grille at low temperature

Also Published As

Publication number Publication date
JP5312574B2 (en) 2013-10-09
JPWO2010113246A1 (en) 2012-10-04

Similar Documents

Publication Publication Date Title
JP5312574B2 (en) Fuel consumption estimation device, fuel consumption estimation method, fuel consumption estimation program, and recording medium
WO2010116492A1 (en) Fuel consumption prediction device, fuel consumption prediction method, fuel consumption prediction program, and recording medium
WO2012035667A1 (en) Travel distance estimation device, travel distance estimation method, travel distance estimation program and recording medium
EP2387698B1 (en) Method for creating speed profiles for digital maps
JP5375805B2 (en) Driving support system and driving support management center
JP3833931B2 (en) Fuel consumption display method and fuel consumption display device
WO2014016825A1 (en) Reducing fuel consumption by accommodating to anticipated road and driving conditions
US20160016525A1 (en) Systems and methods for measuring and reducing vehicle fuel waste
KR101197457B1 (en) Apparatus and method for displaying car drive estimate information
JP2012500970A (en) Fuel efficient route guidance
JP5674915B2 (en) SEARCH DEVICE, SEARCH SYSTEM, SEARCH METHOD, AND TERMINAL
WO2013080312A1 (en) Energy consumption estimation device, energy consumption estimation method, energy consumption estimation program and recording medium
WO2010116481A1 (en) Fuel consumption estimating device, fuel consumption estimating method, fuel consumption estimating program and recording medium
JP5635632B2 (en) Calculation device, calculation method, calculation program, and recording medium
WO2014049878A1 (en) Energy consumption estimation device, energy consumption estimation method, energy consumption estimation program, and recording medium
JP4890659B1 (en) Energy consumption estimation device, energy consumption estimation method, energy consumption estimation program, and recording medium
JP4932057B2 (en) Energy consumption estimation device, energy consumption estimation method, energy consumption estimation program, and recording medium
JPWO2010021036A1 (en) Fuel-saving driving evaluation device and fuel-saving driving evaluation method, etc.
JP4959862B2 (en) Travel distance estimation apparatus, travel distance estimation method, travel distance estimation program, and recording medium
WO2014162526A1 (en) Energy consumption amount estimation device, energy consumption amount estimation method, energy consumption amount estimation program, and recording medium
WO2019225497A1 (en) On-road travel test system, and program for on-road travel test system
JP4955131B1 (en) Wind correction device, wind correction method, wind correction program, and recording medium
WO2012160593A1 (en) Parameter estimation method, characteristic evaluation method, and navigation device
JP2016029395A (en) Energy consumption estimation device, energy consumption estimation method, energy consumption estimation program, and recording medium
JP2016166588A (en) Movable body information acquisition device, server device, movable body information acquisition method, movable body information acquisition program, and recording medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09842601

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011506873

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09842601

Country of ref document: EP

Kind code of ref document: A1